1 // SPDX-License-Identifier: GPL-2.0-only
3 * mm/percpu.c - percpu memory allocator
5 * Copyright (C) 2009 SUSE Linux Products GmbH
6 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
8 * Copyright (C) 2017 Facebook Inc.
9 * Copyright (C) 2017 Dennis Zhou <dennis@kernel.org>
11 * The percpu allocator handles both static and dynamic areas. Percpu
12 * areas are allocated in chunks which are divided into units. There is
13 * a 1-to-1 mapping for units to possible cpus. These units are grouped
14 * based on NUMA properties of the machine.
17 * ------------------- ------------------- ------------
18 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
19 * ------------------- ...... ------------------- .... ------------
21 * Allocation is done by offsets into a unit's address space. Ie., an
22 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
23 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear
24 * and even sparse. Access is handled by configuring percpu base
25 * registers according to the cpu to unit mappings and offsetting the
26 * base address using pcpu_unit_size.
28 * There is special consideration for the first chunk which must handle
29 * the static percpu variables in the kernel image as allocation services
30 * are not online yet. In short, the first chunk is structured like so:
32 * <Static | [Reserved] | Dynamic>
34 * The static data is copied from the original section managed by the
35 * linker. The reserved section, if non-zero, primarily manages static
36 * percpu variables from kernel modules. Finally, the dynamic section
37 * takes care of normal allocations.
39 * The allocator organizes chunks into lists according to free size and
40 * tries to allocate from the fullest chunk first. Each chunk is managed
41 * by a bitmap with metadata blocks. The allocation map is updated on
42 * every allocation and free to reflect the current state while the boundary
43 * map is only updated on allocation. Each metadata block contains
44 * information to help mitigate the need to iterate over large portions
45 * of the bitmap. The reverse mapping from page to chunk is stored in
46 * the page's index. Lastly, units are lazily backed and grow in unison.
48 * There is a unique conversion that goes on here between bytes and bits.
49 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE. The chunk
50 * tracks the number of pages it is responsible for in nr_pages. Helper
51 * functions are used to convert from between the bytes, bits, and blocks.
52 * All hints are managed in bits unless explicitly stated.
54 * To use this allocator, arch code should do the following:
56 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
57 * regular address to percpu pointer and back if they need to be
58 * different from the default
60 * - use pcpu_setup_first_chunk() during percpu area initialization to
61 * setup the first chunk containing the kernel static percpu area
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
66 #include <linux/bitmap.h>
67 #include <linux/memblock.h>
68 #include <linux/err.h>
69 #include <linux/lcm.h>
70 #include <linux/list.h>
71 #include <linux/log2.h>
73 #include <linux/module.h>
74 #include <linux/mutex.h>
75 #include <linux/percpu.h>
76 #include <linux/pfn.h>
77 #include <linux/slab.h>
78 #include <linux/spinlock.h>
79 #include <linux/vmalloc.h>
80 #include <linux/workqueue.h>
81 #include <linux/kmemleak.h>
82 #include <linux/sched.h>
83 #include <linux/sched/mm.h>
85 #include <asm/cacheflush.h>
86 #include <asm/sections.h>
87 #include <asm/tlbflush.h>
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/percpu.h>
93 #include "percpu-internal.h"
95 /* the slots are sorted by free bytes left, 1-31 bytes share the same slot */
96 #define PCPU_SLOT_BASE_SHIFT 5
97 /* chunks in slots below this are subject to being sidelined on failed alloc */
98 #define PCPU_SLOT_FAIL_THRESHOLD 3
100 #define PCPU_EMPTY_POP_PAGES_LOW 2
101 #define PCPU_EMPTY_POP_PAGES_HIGH 4
104 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
105 #ifndef __addr_to_pcpu_ptr
106 #define __addr_to_pcpu_ptr(addr) \
107 (void __percpu *)((unsigned long)(addr) - \
108 (unsigned long)pcpu_base_addr + \
109 (unsigned long)__per_cpu_start)
111 #ifndef __pcpu_ptr_to_addr
112 #define __pcpu_ptr_to_addr(ptr) \
113 (void __force *)((unsigned long)(ptr) + \
114 (unsigned long)pcpu_base_addr - \
115 (unsigned long)__per_cpu_start)
117 #else /* CONFIG_SMP */
118 /* on UP, it's always identity mapped */
119 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
120 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
121 #endif /* CONFIG_SMP */
123 static int pcpu_unit_pages __ro_after_init
;
124 static int pcpu_unit_size __ro_after_init
;
125 static int pcpu_nr_units __ro_after_init
;
126 static int pcpu_atom_size __ro_after_init
;
127 int pcpu_nr_slots __ro_after_init
;
128 static size_t pcpu_chunk_struct_size __ro_after_init
;
130 /* cpus with the lowest and highest unit addresses */
131 static unsigned int pcpu_low_unit_cpu __ro_after_init
;
132 static unsigned int pcpu_high_unit_cpu __ro_after_init
;
134 /* the address of the first chunk which starts with the kernel static area */
135 void *pcpu_base_addr __ro_after_init
;
136 EXPORT_SYMBOL_GPL(pcpu_base_addr
);
138 static const int *pcpu_unit_map __ro_after_init
; /* cpu -> unit */
139 const unsigned long *pcpu_unit_offsets __ro_after_init
; /* cpu -> unit offset */
141 /* group information, used for vm allocation */
142 static int pcpu_nr_groups __ro_after_init
;
143 static const unsigned long *pcpu_group_offsets __ro_after_init
;
144 static const size_t *pcpu_group_sizes __ro_after_init
;
147 * The first chunk which always exists. Note that unlike other
148 * chunks, this one can be allocated and mapped in several different
149 * ways and thus often doesn't live in the vmalloc area.
151 struct pcpu_chunk
*pcpu_first_chunk __ro_after_init
;
154 * Optional reserved chunk. This chunk reserves part of the first
155 * chunk and serves it for reserved allocations. When the reserved
156 * region doesn't exist, the following variable is NULL.
158 struct pcpu_chunk
*pcpu_reserved_chunk __ro_after_init
;
160 DEFINE_SPINLOCK(pcpu_lock
); /* all internal data structures */
161 static DEFINE_MUTEX(pcpu_alloc_mutex
); /* chunk create/destroy, [de]pop, map ext */
163 struct list_head
*pcpu_slot __ro_after_init
; /* chunk list slots */
165 /* chunks which need their map areas extended, protected by pcpu_lock */
166 static LIST_HEAD(pcpu_map_extend_chunks
);
169 * The number of empty populated pages, protected by pcpu_lock. The
170 * reserved chunk doesn't contribute to the count.
172 int pcpu_nr_empty_pop_pages
;
175 * The number of populated pages in use by the allocator, protected by
176 * pcpu_lock. This number is kept per a unit per chunk (i.e. when a page gets
177 * allocated/deallocated, it is allocated/deallocated in all units of a chunk
178 * and increments/decrements this count by 1).
180 static unsigned long pcpu_nr_populated
;
183 * Balance work is used to populate or destroy chunks asynchronously. We
184 * try to keep the number of populated free pages between
185 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
188 static void pcpu_balance_workfn(struct work_struct
*work
);
189 static DECLARE_WORK(pcpu_balance_work
, pcpu_balance_workfn
);
190 static bool pcpu_async_enabled __read_mostly
;
191 static bool pcpu_atomic_alloc_failed
;
193 static void pcpu_schedule_balance_work(void)
195 if (pcpu_async_enabled
)
196 schedule_work(&pcpu_balance_work
);
200 * pcpu_addr_in_chunk - check if the address is served from this chunk
201 * @chunk: chunk of interest
202 * @addr: percpu address
205 * True if the address is served from this chunk.
207 static bool pcpu_addr_in_chunk(struct pcpu_chunk
*chunk
, void *addr
)
209 void *start_addr
, *end_addr
;
214 start_addr
= chunk
->base_addr
+ chunk
->start_offset
;
215 end_addr
= chunk
->base_addr
+ chunk
->nr_pages
* PAGE_SIZE
-
218 return addr
>= start_addr
&& addr
< end_addr
;
221 static int __pcpu_size_to_slot(int size
)
223 int highbit
= fls(size
); /* size is in bytes */
224 return max(highbit
- PCPU_SLOT_BASE_SHIFT
+ 2, 1);
227 static int pcpu_size_to_slot(int size
)
229 if (size
== pcpu_unit_size
)
230 return pcpu_nr_slots
- 1;
231 return __pcpu_size_to_slot(size
);
234 static int pcpu_chunk_slot(const struct pcpu_chunk
*chunk
)
236 const struct pcpu_block_md
*chunk_md
= &chunk
->chunk_md
;
238 if (chunk
->free_bytes
< PCPU_MIN_ALLOC_SIZE
||
239 chunk_md
->contig_hint
== 0)
242 return pcpu_size_to_slot(chunk_md
->contig_hint
* PCPU_MIN_ALLOC_SIZE
);
245 /* set the pointer to a chunk in a page struct */
246 static void pcpu_set_page_chunk(struct page
*page
, struct pcpu_chunk
*pcpu
)
248 page
->index
= (unsigned long)pcpu
;
251 /* obtain pointer to a chunk from a page struct */
252 static struct pcpu_chunk
*pcpu_get_page_chunk(struct page
*page
)
254 return (struct pcpu_chunk
*)page
->index
;
257 static int __maybe_unused
pcpu_page_idx(unsigned int cpu
, int page_idx
)
259 return pcpu_unit_map
[cpu
] * pcpu_unit_pages
+ page_idx
;
262 static unsigned long pcpu_unit_page_offset(unsigned int cpu
, int page_idx
)
264 return pcpu_unit_offsets
[cpu
] + (page_idx
<< PAGE_SHIFT
);
267 static unsigned long pcpu_chunk_addr(struct pcpu_chunk
*chunk
,
268 unsigned int cpu
, int page_idx
)
270 return (unsigned long)chunk
->base_addr
+
271 pcpu_unit_page_offset(cpu
, page_idx
);
275 * The following are helper functions to help access bitmaps and convert
276 * between bitmap offsets to address offsets.
278 static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk
*chunk
, int index
)
280 return chunk
->alloc_map
+
281 (index
* PCPU_BITMAP_BLOCK_BITS
/ BITS_PER_LONG
);
284 static unsigned long pcpu_off_to_block_index(int off
)
286 return off
/ PCPU_BITMAP_BLOCK_BITS
;
289 static unsigned long pcpu_off_to_block_off(int off
)
291 return off
& (PCPU_BITMAP_BLOCK_BITS
- 1);
294 static unsigned long pcpu_block_off_to_off(int index
, int off
)
296 return index
* PCPU_BITMAP_BLOCK_BITS
+ off
;
300 * pcpu_next_hint - determine which hint to use
301 * @block: block of interest
302 * @alloc_bits: size of allocation
304 * This determines if we should scan based on the scan_hint or first_free.
305 * In general, we want to scan from first_free to fulfill allocations by
306 * first fit. However, if we know a scan_hint at position scan_hint_start
307 * cannot fulfill an allocation, we can begin scanning from there knowing
308 * the contig_hint will be our fallback.
310 static int pcpu_next_hint(struct pcpu_block_md
*block
, int alloc_bits
)
313 * The three conditions below determine if we can skip past the
314 * scan_hint. First, does the scan hint exist. Second, is the
315 * contig_hint after the scan_hint (possibly not true iff
316 * contig_hint == scan_hint). Third, is the allocation request
317 * larger than the scan_hint.
319 if (block
->scan_hint
&&
320 block
->contig_hint_start
> block
->scan_hint_start
&&
321 alloc_bits
> block
->scan_hint
)
322 return block
->scan_hint_start
+ block
->scan_hint
;
324 return block
->first_free
;
328 * pcpu_next_md_free_region - finds the next hint free area
329 * @chunk: chunk of interest
330 * @bit_off: chunk offset
331 * @bits: size of free area
333 * Helper function for pcpu_for_each_md_free_region. It checks
334 * block->contig_hint and performs aggregation across blocks to find the
335 * next hint. It modifies bit_off and bits in-place to be consumed in the
338 static void pcpu_next_md_free_region(struct pcpu_chunk
*chunk
, int *bit_off
,
341 int i
= pcpu_off_to_block_index(*bit_off
);
342 int block_off
= pcpu_off_to_block_off(*bit_off
);
343 struct pcpu_block_md
*block
;
346 for (block
= chunk
->md_blocks
+ i
; i
< pcpu_chunk_nr_blocks(chunk
);
348 /* handles contig area across blocks */
350 *bits
+= block
->left_free
;
351 if (block
->left_free
== PCPU_BITMAP_BLOCK_BITS
)
357 * This checks three things. First is there a contig_hint to
358 * check. Second, have we checked this hint before by
359 * comparing the block_off. Third, is this the same as the
360 * right contig hint. In the last case, it spills over into
361 * the next block and should be handled by the contig area
362 * across blocks code.
364 *bits
= block
->contig_hint
;
365 if (*bits
&& block
->contig_hint_start
>= block_off
&&
366 *bits
+ block
->contig_hint_start
< PCPU_BITMAP_BLOCK_BITS
) {
367 *bit_off
= pcpu_block_off_to_off(i
,
368 block
->contig_hint_start
);
371 /* reset to satisfy the second predicate above */
374 *bits
= block
->right_free
;
375 *bit_off
= (i
+ 1) * PCPU_BITMAP_BLOCK_BITS
- block
->right_free
;
380 * pcpu_next_fit_region - finds fit areas for a given allocation request
381 * @chunk: chunk of interest
382 * @alloc_bits: size of allocation
383 * @align: alignment of area (max PAGE_SIZE)
384 * @bit_off: chunk offset
385 * @bits: size of free area
387 * Finds the next free region that is viable for use with a given size and
388 * alignment. This only returns if there is a valid area to be used for this
389 * allocation. block->first_free is returned if the allocation request fits
390 * within the block to see if the request can be fulfilled prior to the contig
393 static void pcpu_next_fit_region(struct pcpu_chunk
*chunk
, int alloc_bits
,
394 int align
, int *bit_off
, int *bits
)
396 int i
= pcpu_off_to_block_index(*bit_off
);
397 int block_off
= pcpu_off_to_block_off(*bit_off
);
398 struct pcpu_block_md
*block
;
401 for (block
= chunk
->md_blocks
+ i
; i
< pcpu_chunk_nr_blocks(chunk
);
403 /* handles contig area across blocks */
405 *bits
+= block
->left_free
;
406 if (*bits
>= alloc_bits
)
408 if (block
->left_free
== PCPU_BITMAP_BLOCK_BITS
)
412 /* check block->contig_hint */
413 *bits
= ALIGN(block
->contig_hint_start
, align
) -
414 block
->contig_hint_start
;
416 * This uses the block offset to determine if this has been
417 * checked in the prior iteration.
419 if (block
->contig_hint
&&
420 block
->contig_hint_start
>= block_off
&&
421 block
->contig_hint
>= *bits
+ alloc_bits
) {
422 int start
= pcpu_next_hint(block
, alloc_bits
);
424 *bits
+= alloc_bits
+ block
->contig_hint_start
-
426 *bit_off
= pcpu_block_off_to_off(i
, start
);
429 /* reset to satisfy the second predicate above */
432 *bit_off
= ALIGN(PCPU_BITMAP_BLOCK_BITS
- block
->right_free
,
434 *bits
= PCPU_BITMAP_BLOCK_BITS
- *bit_off
;
435 *bit_off
= pcpu_block_off_to_off(i
, *bit_off
);
436 if (*bits
>= alloc_bits
)
440 /* no valid offsets were found - fail condition */
441 *bit_off
= pcpu_chunk_map_bits(chunk
);
445 * Metadata free area iterators. These perform aggregation of free areas
446 * based on the metadata blocks and return the offset @bit_off and size in
447 * bits of the free area @bits. pcpu_for_each_fit_region only returns when
448 * a fit is found for the allocation request.
450 #define pcpu_for_each_md_free_region(chunk, bit_off, bits) \
451 for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits)); \
452 (bit_off) < pcpu_chunk_map_bits((chunk)); \
453 (bit_off) += (bits) + 1, \
454 pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
456 #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) \
457 for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
459 (bit_off) < pcpu_chunk_map_bits((chunk)); \
460 (bit_off) += (bits), \
461 pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
465 * pcpu_mem_zalloc - allocate memory
466 * @size: bytes to allocate
467 * @gfp: allocation flags
469 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
470 * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
471 * This is to facilitate passing through whitelisted flags. The
472 * returned memory is always zeroed.
475 * Pointer to the allocated area on success, NULL on failure.
477 static void *pcpu_mem_zalloc(size_t size
, gfp_t gfp
)
479 if (WARN_ON_ONCE(!slab_is_available()))
482 if (size
<= PAGE_SIZE
)
483 return kzalloc(size
, gfp
);
485 return __vmalloc(size
, gfp
| __GFP_ZERO
, PAGE_KERNEL
);
489 * pcpu_mem_free - free memory
490 * @ptr: memory to free
492 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
494 static void pcpu_mem_free(void *ptr
)
499 static void __pcpu_chunk_move(struct pcpu_chunk
*chunk
, int slot
,
502 if (chunk
!= pcpu_reserved_chunk
) {
504 list_move(&chunk
->list
, &pcpu_slot
[slot
]);
506 list_move_tail(&chunk
->list
, &pcpu_slot
[slot
]);
510 static void pcpu_chunk_move(struct pcpu_chunk
*chunk
, int slot
)
512 __pcpu_chunk_move(chunk
, slot
, true);
516 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
517 * @chunk: chunk of interest
518 * @oslot: the previous slot it was on
520 * This function is called after an allocation or free changed @chunk.
521 * New slot according to the changed state is determined and @chunk is
522 * moved to the slot. Note that the reserved chunk is never put on
528 static void pcpu_chunk_relocate(struct pcpu_chunk
*chunk
, int oslot
)
530 int nslot
= pcpu_chunk_slot(chunk
);
533 __pcpu_chunk_move(chunk
, nslot
, oslot
< nslot
);
537 * pcpu_update_empty_pages - update empty page counters
538 * @chunk: chunk of interest
539 * @nr: nr of empty pages
541 * This is used to keep track of the empty pages now based on the premise
542 * a md_block covers a page. The hint update functions recognize if a block
543 * is made full or broken to calculate deltas for keeping track of free pages.
545 static inline void pcpu_update_empty_pages(struct pcpu_chunk
*chunk
, int nr
)
547 chunk
->nr_empty_pop_pages
+= nr
;
548 if (chunk
!= pcpu_reserved_chunk
)
549 pcpu_nr_empty_pop_pages
+= nr
;
553 * pcpu_region_overlap - determines if two regions overlap
554 * @a: start of first region, inclusive
555 * @b: end of first region, exclusive
556 * @x: start of second region, inclusive
557 * @y: end of second region, exclusive
559 * This is used to determine if the hint region [a, b) overlaps with the
560 * allocated region [x, y).
562 static inline bool pcpu_region_overlap(int a
, int b
, int x
, int y
)
564 return (a
< y
) && (x
< b
);
568 * pcpu_block_update - updates a block given a free area
569 * @block: block of interest
570 * @start: start offset in block
571 * @end: end offset in block
573 * Updates a block given a known free area. The region [start, end) is
574 * expected to be the entirety of the free area within a block. Chooses
575 * the best starting offset if the contig hints are equal.
577 static void pcpu_block_update(struct pcpu_block_md
*block
, int start
, int end
)
579 int contig
= end
- start
;
581 block
->first_free
= min(block
->first_free
, start
);
583 block
->left_free
= contig
;
585 if (end
== block
->nr_bits
)
586 block
->right_free
= contig
;
588 if (contig
> block
->contig_hint
) {
589 /* promote the old contig_hint to be the new scan_hint */
590 if (start
> block
->contig_hint_start
) {
591 if (block
->contig_hint
> block
->scan_hint
) {
592 block
->scan_hint_start
=
593 block
->contig_hint_start
;
594 block
->scan_hint
= block
->contig_hint
;
595 } else if (start
< block
->scan_hint_start
) {
597 * The old contig_hint == scan_hint. But, the
598 * new contig is larger so hold the invariant
599 * scan_hint_start < contig_hint_start.
601 block
->scan_hint
= 0;
604 block
->scan_hint
= 0;
606 block
->contig_hint_start
= start
;
607 block
->contig_hint
= contig
;
608 } else if (contig
== block
->contig_hint
) {
609 if (block
->contig_hint_start
&&
611 __ffs(start
) > __ffs(block
->contig_hint_start
))) {
612 /* start has a better alignment so use it */
613 block
->contig_hint_start
= start
;
614 if (start
< block
->scan_hint_start
&&
615 block
->contig_hint
> block
->scan_hint
)
616 block
->scan_hint
= 0;
617 } else if (start
> block
->scan_hint_start
||
618 block
->contig_hint
> block
->scan_hint
) {
620 * Knowing contig == contig_hint, update the scan_hint
621 * if it is farther than or larger than the current
624 block
->scan_hint_start
= start
;
625 block
->scan_hint
= contig
;
629 * The region is smaller than the contig_hint. So only update
630 * the scan_hint if it is larger than or equal and farther than
631 * the current scan_hint.
633 if ((start
< block
->contig_hint_start
&&
634 (contig
> block
->scan_hint
||
635 (contig
== block
->scan_hint
&&
636 start
> block
->scan_hint_start
)))) {
637 block
->scan_hint_start
= start
;
638 block
->scan_hint
= contig
;
644 * pcpu_block_update_scan - update a block given a free area from a scan
645 * @chunk: chunk of interest
646 * @bit_off: chunk offset
647 * @bits: size of free area
649 * Finding the final allocation spot first goes through pcpu_find_block_fit()
650 * to find a block that can hold the allocation and then pcpu_alloc_area()
651 * where a scan is used. When allocations require specific alignments,
652 * we can inadvertently create holes which will not be seen in the alloc
655 * This takes a given free area hole and updates a block as it may change the
656 * scan_hint. We need to scan backwards to ensure we don't miss free bits
659 static void pcpu_block_update_scan(struct pcpu_chunk
*chunk
, int bit_off
,
662 int s_off
= pcpu_off_to_block_off(bit_off
);
663 int e_off
= s_off
+ bits
;
665 struct pcpu_block_md
*block
;
667 if (e_off
> PCPU_BITMAP_BLOCK_BITS
)
670 s_index
= pcpu_off_to_block_index(bit_off
);
671 block
= chunk
->md_blocks
+ s_index
;
673 /* scan backwards in case of alignment skipping free bits */
674 l_bit
= find_last_bit(pcpu_index_alloc_map(chunk
, s_index
), s_off
);
675 s_off
= (s_off
== l_bit
) ? 0 : l_bit
+ 1;
677 pcpu_block_update(block
, s_off
, e_off
);
681 * pcpu_chunk_refresh_hint - updates metadata about a chunk
682 * @chunk: chunk of interest
683 * @full_scan: if we should scan from the beginning
685 * Iterates over the metadata blocks to find the largest contig area.
686 * A full scan can be avoided on the allocation path as this is triggered
687 * if we broke the contig_hint. In doing so, the scan_hint will be before
688 * the contig_hint or after if the scan_hint == contig_hint. This cannot
689 * be prevented on freeing as we want to find the largest area possibly
692 static void pcpu_chunk_refresh_hint(struct pcpu_chunk
*chunk
, bool full_scan
)
694 struct pcpu_block_md
*chunk_md
= &chunk
->chunk_md
;
697 /* promote scan_hint to contig_hint */
698 if (!full_scan
&& chunk_md
->scan_hint
) {
699 bit_off
= chunk_md
->scan_hint_start
+ chunk_md
->scan_hint
;
700 chunk_md
->contig_hint_start
= chunk_md
->scan_hint_start
;
701 chunk_md
->contig_hint
= chunk_md
->scan_hint
;
702 chunk_md
->scan_hint
= 0;
704 bit_off
= chunk_md
->first_free
;
705 chunk_md
->contig_hint
= 0;
709 pcpu_for_each_md_free_region(chunk
, bit_off
, bits
)
710 pcpu_block_update(chunk_md
, bit_off
, bit_off
+ bits
);
714 * pcpu_block_refresh_hint
715 * @chunk: chunk of interest
716 * @index: index of the metadata block
718 * Scans over the block beginning at first_free and updates the block
719 * metadata accordingly.
721 static void pcpu_block_refresh_hint(struct pcpu_chunk
*chunk
, int index
)
723 struct pcpu_block_md
*block
= chunk
->md_blocks
+ index
;
724 unsigned long *alloc_map
= pcpu_index_alloc_map(chunk
, index
);
725 unsigned int rs
, re
, start
; /* region start, region end */
727 /* promote scan_hint to contig_hint */
728 if (block
->scan_hint
) {
729 start
= block
->scan_hint_start
+ block
->scan_hint
;
730 block
->contig_hint_start
= block
->scan_hint_start
;
731 block
->contig_hint
= block
->scan_hint
;
732 block
->scan_hint
= 0;
734 start
= block
->first_free
;
735 block
->contig_hint
= 0;
738 block
->right_free
= 0;
740 /* iterate over free areas and update the contig hints */
741 bitmap_for_each_clear_region(alloc_map
, rs
, re
, start
,
742 PCPU_BITMAP_BLOCK_BITS
)
743 pcpu_block_update(block
, rs
, re
);
747 * pcpu_block_update_hint_alloc - update hint on allocation path
748 * @chunk: chunk of interest
749 * @bit_off: chunk offset
750 * @bits: size of request
752 * Updates metadata for the allocation path. The metadata only has to be
753 * refreshed by a full scan iff the chunk's contig hint is broken. Block level
754 * scans are required if the block's contig hint is broken.
756 static void pcpu_block_update_hint_alloc(struct pcpu_chunk
*chunk
, int bit_off
,
759 struct pcpu_block_md
*chunk_md
= &chunk
->chunk_md
;
760 int nr_empty_pages
= 0;
761 struct pcpu_block_md
*s_block
, *e_block
, *block
;
762 int s_index
, e_index
; /* block indexes of the freed allocation */
763 int s_off
, e_off
; /* block offsets of the freed allocation */
766 * Calculate per block offsets.
767 * The calculation uses an inclusive range, but the resulting offsets
768 * are [start, end). e_index always points to the last block in the
771 s_index
= pcpu_off_to_block_index(bit_off
);
772 e_index
= pcpu_off_to_block_index(bit_off
+ bits
- 1);
773 s_off
= pcpu_off_to_block_off(bit_off
);
774 e_off
= pcpu_off_to_block_off(bit_off
+ bits
- 1) + 1;
776 s_block
= chunk
->md_blocks
+ s_index
;
777 e_block
= chunk
->md_blocks
+ e_index
;
781 * block->first_free must be updated if the allocation takes its place.
782 * If the allocation breaks the contig_hint, a scan is required to
785 if (s_block
->contig_hint
== PCPU_BITMAP_BLOCK_BITS
)
788 if (s_off
== s_block
->first_free
)
789 s_block
->first_free
= find_next_zero_bit(
790 pcpu_index_alloc_map(chunk
, s_index
),
791 PCPU_BITMAP_BLOCK_BITS
,
794 if (pcpu_region_overlap(s_block
->scan_hint_start
,
795 s_block
->scan_hint_start
+ s_block
->scan_hint
,
798 s_block
->scan_hint
= 0;
800 if (pcpu_region_overlap(s_block
->contig_hint_start
,
801 s_block
->contig_hint_start
+
802 s_block
->contig_hint
,
805 /* block contig hint is broken - scan to fix it */
807 s_block
->left_free
= 0;
808 pcpu_block_refresh_hint(chunk
, s_index
);
810 /* update left and right contig manually */
811 s_block
->left_free
= min(s_block
->left_free
, s_off
);
812 if (s_index
== e_index
)
813 s_block
->right_free
= min_t(int, s_block
->right_free
,
814 PCPU_BITMAP_BLOCK_BITS
- e_off
);
816 s_block
->right_free
= 0;
822 if (s_index
!= e_index
) {
823 if (e_block
->contig_hint
== PCPU_BITMAP_BLOCK_BITS
)
827 * When the allocation is across blocks, the end is along
828 * the left part of the e_block.
830 e_block
->first_free
= find_next_zero_bit(
831 pcpu_index_alloc_map(chunk
, e_index
),
832 PCPU_BITMAP_BLOCK_BITS
, e_off
);
834 if (e_off
== PCPU_BITMAP_BLOCK_BITS
) {
835 /* reset the block */
838 if (e_off
> e_block
->scan_hint_start
)
839 e_block
->scan_hint
= 0;
841 e_block
->left_free
= 0;
842 if (e_off
> e_block
->contig_hint_start
) {
843 /* contig hint is broken - scan to fix it */
844 pcpu_block_refresh_hint(chunk
, e_index
);
846 e_block
->right_free
=
847 min_t(int, e_block
->right_free
,
848 PCPU_BITMAP_BLOCK_BITS
- e_off
);
852 /* update in-between md_blocks */
853 nr_empty_pages
+= (e_index
- s_index
- 1);
854 for (block
= s_block
+ 1; block
< e_block
; block
++) {
855 block
->scan_hint
= 0;
856 block
->contig_hint
= 0;
857 block
->left_free
= 0;
858 block
->right_free
= 0;
863 pcpu_update_empty_pages(chunk
, -nr_empty_pages
);
865 if (pcpu_region_overlap(chunk_md
->scan_hint_start
,
866 chunk_md
->scan_hint_start
+
870 chunk_md
->scan_hint
= 0;
873 * The only time a full chunk scan is required is if the chunk
874 * contig hint is broken. Otherwise, it means a smaller space
875 * was used and therefore the chunk contig hint is still correct.
877 if (pcpu_region_overlap(chunk_md
->contig_hint_start
,
878 chunk_md
->contig_hint_start
+
879 chunk_md
->contig_hint
,
882 pcpu_chunk_refresh_hint(chunk
, false);
886 * pcpu_block_update_hint_free - updates the block hints on the free path
887 * @chunk: chunk of interest
888 * @bit_off: chunk offset
889 * @bits: size of request
891 * Updates metadata for the allocation path. This avoids a blind block
892 * refresh by making use of the block contig hints. If this fails, it scans
893 * forward and backward to determine the extent of the free area. This is
894 * capped at the boundary of blocks.
896 * A chunk update is triggered if a page becomes free, a block becomes free,
897 * or the free spans across blocks. This tradeoff is to minimize iterating
898 * over the block metadata to update chunk_md->contig_hint.
899 * chunk_md->contig_hint may be off by up to a page, but it will never be more
900 * than the available space. If the contig hint is contained in one block, it
903 static void pcpu_block_update_hint_free(struct pcpu_chunk
*chunk
, int bit_off
,
906 int nr_empty_pages
= 0;
907 struct pcpu_block_md
*s_block
, *e_block
, *block
;
908 int s_index
, e_index
; /* block indexes of the freed allocation */
909 int s_off
, e_off
; /* block offsets of the freed allocation */
910 int start
, end
; /* start and end of the whole free area */
913 * Calculate per block offsets.
914 * The calculation uses an inclusive range, but the resulting offsets
915 * are [start, end). e_index always points to the last block in the
918 s_index
= pcpu_off_to_block_index(bit_off
);
919 e_index
= pcpu_off_to_block_index(bit_off
+ bits
- 1);
920 s_off
= pcpu_off_to_block_off(bit_off
);
921 e_off
= pcpu_off_to_block_off(bit_off
+ bits
- 1) + 1;
923 s_block
= chunk
->md_blocks
+ s_index
;
924 e_block
= chunk
->md_blocks
+ e_index
;
927 * Check if the freed area aligns with the block->contig_hint.
928 * If it does, then the scan to find the beginning/end of the
929 * larger free area can be avoided.
931 * start and end refer to beginning and end of the free area
932 * within each their respective blocks. This is not necessarily
933 * the entire free area as it may span blocks past the beginning
934 * or end of the block.
937 if (s_off
== s_block
->contig_hint
+ s_block
->contig_hint_start
) {
938 start
= s_block
->contig_hint_start
;
941 * Scan backwards to find the extent of the free area.
942 * find_last_bit returns the starting bit, so if the start bit
943 * is returned, that means there was no last bit and the
944 * remainder of the chunk is free.
946 int l_bit
= find_last_bit(pcpu_index_alloc_map(chunk
, s_index
),
948 start
= (start
== l_bit
) ? 0 : l_bit
+ 1;
952 if (e_off
== e_block
->contig_hint_start
)
953 end
= e_block
->contig_hint_start
+ e_block
->contig_hint
;
955 end
= find_next_bit(pcpu_index_alloc_map(chunk
, e_index
),
956 PCPU_BITMAP_BLOCK_BITS
, end
);
959 e_off
= (s_index
== e_index
) ? end
: PCPU_BITMAP_BLOCK_BITS
;
960 if (!start
&& e_off
== PCPU_BITMAP_BLOCK_BITS
)
962 pcpu_block_update(s_block
, start
, e_off
);
964 /* freeing in the same block */
965 if (s_index
!= e_index
) {
967 if (end
== PCPU_BITMAP_BLOCK_BITS
)
969 pcpu_block_update(e_block
, 0, end
);
971 /* reset md_blocks in the middle */
972 nr_empty_pages
+= (e_index
- s_index
- 1);
973 for (block
= s_block
+ 1; block
< e_block
; block
++) {
974 block
->first_free
= 0;
975 block
->scan_hint
= 0;
976 block
->contig_hint_start
= 0;
977 block
->contig_hint
= PCPU_BITMAP_BLOCK_BITS
;
978 block
->left_free
= PCPU_BITMAP_BLOCK_BITS
;
979 block
->right_free
= PCPU_BITMAP_BLOCK_BITS
;
984 pcpu_update_empty_pages(chunk
, nr_empty_pages
);
987 * Refresh chunk metadata when the free makes a block free or spans
988 * across blocks. The contig_hint may be off by up to a page, but if
989 * the contig_hint is contained in a block, it will be accurate with
990 * the else condition below.
992 if (((end
- start
) >= PCPU_BITMAP_BLOCK_BITS
) || s_index
!= e_index
)
993 pcpu_chunk_refresh_hint(chunk
, true);
995 pcpu_block_update(&chunk
->chunk_md
,
996 pcpu_block_off_to_off(s_index
, start
),
1001 * pcpu_is_populated - determines if the region is populated
1002 * @chunk: chunk of interest
1003 * @bit_off: chunk offset
1004 * @bits: size of area
1005 * @next_off: return value for the next offset to start searching
1007 * For atomic allocations, check if the backing pages are populated.
1010 * Bool if the backing pages are populated.
1011 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
1013 static bool pcpu_is_populated(struct pcpu_chunk
*chunk
, int bit_off
, int bits
,
1016 unsigned int page_start
, page_end
, rs
, re
;
1018 page_start
= PFN_DOWN(bit_off
* PCPU_MIN_ALLOC_SIZE
);
1019 page_end
= PFN_UP((bit_off
+ bits
) * PCPU_MIN_ALLOC_SIZE
);
1022 bitmap_next_clear_region(chunk
->populated
, &rs
, &re
, page_end
);
1026 *next_off
= re
* PAGE_SIZE
/ PCPU_MIN_ALLOC_SIZE
;
1031 * pcpu_find_block_fit - finds the block index to start searching
1032 * @chunk: chunk of interest
1033 * @alloc_bits: size of request in allocation units
1034 * @align: alignment of area (max PAGE_SIZE bytes)
1035 * @pop_only: use populated regions only
1037 * Given a chunk and an allocation spec, find the offset to begin searching
1038 * for a free region. This iterates over the bitmap metadata blocks to
1039 * find an offset that will be guaranteed to fit the requirements. It is
1040 * not quite first fit as if the allocation does not fit in the contig hint
1041 * of a block or chunk, it is skipped. This errs on the side of caution
1042 * to prevent excess iteration. Poor alignment can cause the allocator to
1043 * skip over blocks and chunks that have valid free areas.
1046 * The offset in the bitmap to begin searching.
1047 * -1 if no offset is found.
1049 static int pcpu_find_block_fit(struct pcpu_chunk
*chunk
, int alloc_bits
,
1050 size_t align
, bool pop_only
)
1052 struct pcpu_block_md
*chunk_md
= &chunk
->chunk_md
;
1053 int bit_off
, bits
, next_off
;
1056 * Check to see if the allocation can fit in the chunk's contig hint.
1057 * This is an optimization to prevent scanning by assuming if it
1058 * cannot fit in the global hint, there is memory pressure and creating
1059 * a new chunk would happen soon.
1061 bit_off
= ALIGN(chunk_md
->contig_hint_start
, align
) -
1062 chunk_md
->contig_hint_start
;
1063 if (bit_off
+ alloc_bits
> chunk_md
->contig_hint
)
1066 bit_off
= pcpu_next_hint(chunk_md
, alloc_bits
);
1068 pcpu_for_each_fit_region(chunk
, alloc_bits
, align
, bit_off
, bits
) {
1069 if (!pop_only
|| pcpu_is_populated(chunk
, bit_off
, bits
,
1077 if (bit_off
== pcpu_chunk_map_bits(chunk
))
1084 * pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off()
1085 * @map: the address to base the search on
1086 * @size: the bitmap size in bits
1087 * @start: the bitnumber to start searching at
1088 * @nr: the number of zeroed bits we're looking for
1089 * @align_mask: alignment mask for zero area
1090 * @largest_off: offset of the largest area skipped
1091 * @largest_bits: size of the largest area skipped
1093 * The @align_mask should be one less than a power of 2.
1095 * This is a modified version of bitmap_find_next_zero_area_off() to remember
1096 * the largest area that was skipped. This is imperfect, but in general is
1097 * good enough. The largest remembered region is the largest failed region
1098 * seen. This does not include anything we possibly skipped due to alignment.
1099 * pcpu_block_update_scan() does scan backwards to try and recover what was
1100 * lost to alignment. While this can cause scanning to miss earlier possible
1101 * free areas, smaller allocations will eventually fill those holes.
1103 static unsigned long pcpu_find_zero_area(unsigned long *map
,
1105 unsigned long start
,
1107 unsigned long align_mask
,
1108 unsigned long *largest_off
,
1109 unsigned long *largest_bits
)
1111 unsigned long index
, end
, i
, area_off
, area_bits
;
1113 index
= find_next_zero_bit(map
, size
, start
);
1115 /* Align allocation */
1116 index
= __ALIGN_MASK(index
, align_mask
);
1122 i
= find_next_bit(map
, end
, index
);
1124 area_bits
= i
- area_off
;
1125 /* remember largest unused area with best alignment */
1126 if (area_bits
> *largest_bits
||
1127 (area_bits
== *largest_bits
&& *largest_off
&&
1128 (!area_off
|| __ffs(area_off
) > __ffs(*largest_off
)))) {
1129 *largest_off
= area_off
;
1130 *largest_bits
= area_bits
;
1140 * pcpu_alloc_area - allocates an area from a pcpu_chunk
1141 * @chunk: chunk of interest
1142 * @alloc_bits: size of request in allocation units
1143 * @align: alignment of area (max PAGE_SIZE)
1144 * @start: bit_off to start searching
1146 * This function takes in a @start offset to begin searching to fit an
1147 * allocation of @alloc_bits with alignment @align. It needs to scan
1148 * the allocation map because if it fits within the block's contig hint,
1149 * @start will be block->first_free. This is an attempt to fill the
1150 * allocation prior to breaking the contig hint. The allocation and
1151 * boundary maps are updated accordingly if it confirms a valid
1155 * Allocated addr offset in @chunk on success.
1156 * -1 if no matching area is found.
1158 static int pcpu_alloc_area(struct pcpu_chunk
*chunk
, int alloc_bits
,
1159 size_t align
, int start
)
1161 struct pcpu_block_md
*chunk_md
= &chunk
->chunk_md
;
1162 size_t align_mask
= (align
) ? (align
- 1) : 0;
1163 unsigned long area_off
= 0, area_bits
= 0;
1164 int bit_off
, end
, oslot
;
1166 lockdep_assert_held(&pcpu_lock
);
1168 oslot
= pcpu_chunk_slot(chunk
);
1171 * Search to find a fit.
1173 end
= min_t(int, start
+ alloc_bits
+ PCPU_BITMAP_BLOCK_BITS
,
1174 pcpu_chunk_map_bits(chunk
));
1175 bit_off
= pcpu_find_zero_area(chunk
->alloc_map
, end
, start
, alloc_bits
,
1176 align_mask
, &area_off
, &area_bits
);
1181 pcpu_block_update_scan(chunk
, area_off
, area_bits
);
1183 /* update alloc map */
1184 bitmap_set(chunk
->alloc_map
, bit_off
, alloc_bits
);
1186 /* update boundary map */
1187 set_bit(bit_off
, chunk
->bound_map
);
1188 bitmap_clear(chunk
->bound_map
, bit_off
+ 1, alloc_bits
- 1);
1189 set_bit(bit_off
+ alloc_bits
, chunk
->bound_map
);
1191 chunk
->free_bytes
-= alloc_bits
* PCPU_MIN_ALLOC_SIZE
;
1193 /* update first free bit */
1194 if (bit_off
== chunk_md
->first_free
)
1195 chunk_md
->first_free
= find_next_zero_bit(
1197 pcpu_chunk_map_bits(chunk
),
1198 bit_off
+ alloc_bits
);
1200 pcpu_block_update_hint_alloc(chunk
, bit_off
, alloc_bits
);
1202 pcpu_chunk_relocate(chunk
, oslot
);
1204 return bit_off
* PCPU_MIN_ALLOC_SIZE
;
1208 * pcpu_free_area - frees the corresponding offset
1209 * @chunk: chunk of interest
1210 * @off: addr offset into chunk
1212 * This function determines the size of an allocation to free using
1213 * the boundary bitmap and clears the allocation map.
1215 static void pcpu_free_area(struct pcpu_chunk
*chunk
, int off
)
1217 struct pcpu_block_md
*chunk_md
= &chunk
->chunk_md
;
1218 int bit_off
, bits
, end
, oslot
;
1220 lockdep_assert_held(&pcpu_lock
);
1221 pcpu_stats_area_dealloc(chunk
);
1223 oslot
= pcpu_chunk_slot(chunk
);
1225 bit_off
= off
/ PCPU_MIN_ALLOC_SIZE
;
1227 /* find end index */
1228 end
= find_next_bit(chunk
->bound_map
, pcpu_chunk_map_bits(chunk
),
1230 bits
= end
- bit_off
;
1231 bitmap_clear(chunk
->alloc_map
, bit_off
, bits
);
1233 /* update metadata */
1234 chunk
->free_bytes
+= bits
* PCPU_MIN_ALLOC_SIZE
;
1236 /* update first free bit */
1237 chunk_md
->first_free
= min(chunk_md
->first_free
, bit_off
);
1239 pcpu_block_update_hint_free(chunk
, bit_off
, bits
);
1241 pcpu_chunk_relocate(chunk
, oslot
);
1244 static void pcpu_init_md_block(struct pcpu_block_md
*block
, int nr_bits
)
1246 block
->scan_hint
= 0;
1247 block
->contig_hint
= nr_bits
;
1248 block
->left_free
= nr_bits
;
1249 block
->right_free
= nr_bits
;
1250 block
->first_free
= 0;
1251 block
->nr_bits
= nr_bits
;
1254 static void pcpu_init_md_blocks(struct pcpu_chunk
*chunk
)
1256 struct pcpu_block_md
*md_block
;
1258 /* init the chunk's block */
1259 pcpu_init_md_block(&chunk
->chunk_md
, pcpu_chunk_map_bits(chunk
));
1261 for (md_block
= chunk
->md_blocks
;
1262 md_block
!= chunk
->md_blocks
+ pcpu_chunk_nr_blocks(chunk
);
1264 pcpu_init_md_block(md_block
, PCPU_BITMAP_BLOCK_BITS
);
1268 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1269 * @tmp_addr: the start of the region served
1270 * @map_size: size of the region served
1272 * This is responsible for creating the chunks that serve the first chunk. The
1273 * base_addr is page aligned down of @tmp_addr while the region end is page
1274 * aligned up. Offsets are kept track of to determine the region served. All
1275 * this is done to appease the bitmap allocator in avoiding partial blocks.
1278 * Chunk serving the region at @tmp_addr of @map_size.
1280 static struct pcpu_chunk
* __init
pcpu_alloc_first_chunk(unsigned long tmp_addr
,
1283 struct pcpu_chunk
*chunk
;
1284 unsigned long aligned_addr
, lcm_align
;
1285 int start_offset
, offset_bits
, region_size
, region_bits
;
1288 /* region calculations */
1289 aligned_addr
= tmp_addr
& PAGE_MASK
;
1291 start_offset
= tmp_addr
- aligned_addr
;
1294 * Align the end of the region with the LCM of PAGE_SIZE and
1295 * PCPU_BITMAP_BLOCK_SIZE. One of these constants is a multiple of
1298 lcm_align
= lcm(PAGE_SIZE
, PCPU_BITMAP_BLOCK_SIZE
);
1299 region_size
= ALIGN(start_offset
+ map_size
, lcm_align
);
1301 /* allocate chunk */
1302 alloc_size
= sizeof(struct pcpu_chunk
) +
1303 BITS_TO_LONGS(region_size
>> PAGE_SHIFT
);
1304 chunk
= memblock_alloc(alloc_size
, SMP_CACHE_BYTES
);
1306 panic("%s: Failed to allocate %zu bytes\n", __func__
,
1309 INIT_LIST_HEAD(&chunk
->list
);
1311 chunk
->base_addr
= (void *)aligned_addr
;
1312 chunk
->start_offset
= start_offset
;
1313 chunk
->end_offset
= region_size
- chunk
->start_offset
- map_size
;
1315 chunk
->nr_pages
= region_size
>> PAGE_SHIFT
;
1316 region_bits
= pcpu_chunk_map_bits(chunk
);
1318 alloc_size
= BITS_TO_LONGS(region_bits
) * sizeof(chunk
->alloc_map
[0]);
1319 chunk
->alloc_map
= memblock_alloc(alloc_size
, SMP_CACHE_BYTES
);
1320 if (!chunk
->alloc_map
)
1321 panic("%s: Failed to allocate %zu bytes\n", __func__
,
1325 BITS_TO_LONGS(region_bits
+ 1) * sizeof(chunk
->bound_map
[0]);
1326 chunk
->bound_map
= memblock_alloc(alloc_size
, SMP_CACHE_BYTES
);
1327 if (!chunk
->bound_map
)
1328 panic("%s: Failed to allocate %zu bytes\n", __func__
,
1331 alloc_size
= pcpu_chunk_nr_blocks(chunk
) * sizeof(chunk
->md_blocks
[0]);
1332 chunk
->md_blocks
= memblock_alloc(alloc_size
, SMP_CACHE_BYTES
);
1333 if (!chunk
->md_blocks
)
1334 panic("%s: Failed to allocate %zu bytes\n", __func__
,
1337 pcpu_init_md_blocks(chunk
);
1339 /* manage populated page bitmap */
1340 chunk
->immutable
= true;
1341 bitmap_fill(chunk
->populated
, chunk
->nr_pages
);
1342 chunk
->nr_populated
= chunk
->nr_pages
;
1343 chunk
->nr_empty_pop_pages
= chunk
->nr_pages
;
1345 chunk
->free_bytes
= map_size
;
1347 if (chunk
->start_offset
) {
1348 /* hide the beginning of the bitmap */
1349 offset_bits
= chunk
->start_offset
/ PCPU_MIN_ALLOC_SIZE
;
1350 bitmap_set(chunk
->alloc_map
, 0, offset_bits
);
1351 set_bit(0, chunk
->bound_map
);
1352 set_bit(offset_bits
, chunk
->bound_map
);
1354 chunk
->chunk_md
.first_free
= offset_bits
;
1356 pcpu_block_update_hint_alloc(chunk
, 0, offset_bits
);
1359 if (chunk
->end_offset
) {
1360 /* hide the end of the bitmap */
1361 offset_bits
= chunk
->end_offset
/ PCPU_MIN_ALLOC_SIZE
;
1362 bitmap_set(chunk
->alloc_map
,
1363 pcpu_chunk_map_bits(chunk
) - offset_bits
,
1365 set_bit((start_offset
+ map_size
) / PCPU_MIN_ALLOC_SIZE
,
1367 set_bit(region_bits
, chunk
->bound_map
);
1369 pcpu_block_update_hint_alloc(chunk
, pcpu_chunk_map_bits(chunk
)
1370 - offset_bits
, offset_bits
);
1376 static struct pcpu_chunk
*pcpu_alloc_chunk(gfp_t gfp
)
1378 struct pcpu_chunk
*chunk
;
1381 chunk
= pcpu_mem_zalloc(pcpu_chunk_struct_size
, gfp
);
1385 INIT_LIST_HEAD(&chunk
->list
);
1386 chunk
->nr_pages
= pcpu_unit_pages
;
1387 region_bits
= pcpu_chunk_map_bits(chunk
);
1389 chunk
->alloc_map
= pcpu_mem_zalloc(BITS_TO_LONGS(region_bits
) *
1390 sizeof(chunk
->alloc_map
[0]), gfp
);
1391 if (!chunk
->alloc_map
)
1392 goto alloc_map_fail
;
1394 chunk
->bound_map
= pcpu_mem_zalloc(BITS_TO_LONGS(region_bits
+ 1) *
1395 sizeof(chunk
->bound_map
[0]), gfp
);
1396 if (!chunk
->bound_map
)
1397 goto bound_map_fail
;
1399 chunk
->md_blocks
= pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk
) *
1400 sizeof(chunk
->md_blocks
[0]), gfp
);
1401 if (!chunk
->md_blocks
)
1402 goto md_blocks_fail
;
1404 pcpu_init_md_blocks(chunk
);
1407 chunk
->free_bytes
= chunk
->nr_pages
* PAGE_SIZE
;
1412 pcpu_mem_free(chunk
->bound_map
);
1414 pcpu_mem_free(chunk
->alloc_map
);
1416 pcpu_mem_free(chunk
);
1421 static void pcpu_free_chunk(struct pcpu_chunk
*chunk
)
1425 pcpu_mem_free(chunk
->md_blocks
);
1426 pcpu_mem_free(chunk
->bound_map
);
1427 pcpu_mem_free(chunk
->alloc_map
);
1428 pcpu_mem_free(chunk
);
1432 * pcpu_chunk_populated - post-population bookkeeping
1433 * @chunk: pcpu_chunk which got populated
1434 * @page_start: the start page
1435 * @page_end: the end page
1437 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
1438 * the bookkeeping information accordingly. Must be called after each
1439 * successful population.
1441 * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
1442 * is to serve an allocation in that area.
1444 static void pcpu_chunk_populated(struct pcpu_chunk
*chunk
, int page_start
,
1447 int nr
= page_end
- page_start
;
1449 lockdep_assert_held(&pcpu_lock
);
1451 bitmap_set(chunk
->populated
, page_start
, nr
);
1452 chunk
->nr_populated
+= nr
;
1453 pcpu_nr_populated
+= nr
;
1455 pcpu_update_empty_pages(chunk
, nr
);
1459 * pcpu_chunk_depopulated - post-depopulation bookkeeping
1460 * @chunk: pcpu_chunk which got depopulated
1461 * @page_start: the start page
1462 * @page_end: the end page
1464 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1465 * Update the bookkeeping information accordingly. Must be called after
1466 * each successful depopulation.
1468 static void pcpu_chunk_depopulated(struct pcpu_chunk
*chunk
,
1469 int page_start
, int page_end
)
1471 int nr
= page_end
- page_start
;
1473 lockdep_assert_held(&pcpu_lock
);
1475 bitmap_clear(chunk
->populated
, page_start
, nr
);
1476 chunk
->nr_populated
-= nr
;
1477 pcpu_nr_populated
-= nr
;
1479 pcpu_update_empty_pages(chunk
, -nr
);
1483 * Chunk management implementation.
1485 * To allow different implementations, chunk alloc/free and
1486 * [de]population are implemented in a separate file which is pulled
1487 * into this file and compiled together. The following functions
1488 * should be implemented.
1490 * pcpu_populate_chunk - populate the specified range of a chunk
1491 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
1492 * pcpu_create_chunk - create a new chunk
1493 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
1494 * pcpu_addr_to_page - translate address to physical address
1495 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
1497 static int pcpu_populate_chunk(struct pcpu_chunk
*chunk
,
1498 int page_start
, int page_end
, gfp_t gfp
);
1499 static void pcpu_depopulate_chunk(struct pcpu_chunk
*chunk
,
1500 int page_start
, int page_end
);
1501 static struct pcpu_chunk
*pcpu_create_chunk(gfp_t gfp
);
1502 static void pcpu_destroy_chunk(struct pcpu_chunk
*chunk
);
1503 static struct page
*pcpu_addr_to_page(void *addr
);
1504 static int __init
pcpu_verify_alloc_info(const struct pcpu_alloc_info
*ai
);
1506 #ifdef CONFIG_NEED_PER_CPU_KM
1507 #include "percpu-km.c"
1509 #include "percpu-vm.c"
1513 * pcpu_chunk_addr_search - determine chunk containing specified address
1514 * @addr: address for which the chunk needs to be determined.
1516 * This is an internal function that handles all but static allocations.
1517 * Static percpu address values should never be passed into the allocator.
1520 * The address of the found chunk.
1522 static struct pcpu_chunk
*pcpu_chunk_addr_search(void *addr
)
1524 /* is it in the dynamic region (first chunk)? */
1525 if (pcpu_addr_in_chunk(pcpu_first_chunk
, addr
))
1526 return pcpu_first_chunk
;
1528 /* is it in the reserved region? */
1529 if (pcpu_addr_in_chunk(pcpu_reserved_chunk
, addr
))
1530 return pcpu_reserved_chunk
;
1533 * The address is relative to unit0 which might be unused and
1534 * thus unmapped. Offset the address to the unit space of the
1535 * current processor before looking it up in the vmalloc
1536 * space. Note that any possible cpu id can be used here, so
1537 * there's no need to worry about preemption or cpu hotplug.
1539 addr
+= pcpu_unit_offsets
[raw_smp_processor_id()];
1540 return pcpu_get_page_chunk(pcpu_addr_to_page(addr
));
1544 * pcpu_alloc - the percpu allocator
1545 * @size: size of area to allocate in bytes
1546 * @align: alignment of area (max PAGE_SIZE)
1547 * @reserved: allocate from the reserved chunk if available
1548 * @gfp: allocation flags
1550 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
1551 * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
1552 * then no warning will be triggered on invalid or failed allocation
1556 * Percpu pointer to the allocated area on success, NULL on failure.
1558 static void __percpu
*pcpu_alloc(size_t size
, size_t align
, bool reserved
,
1564 static int warn_limit
= 10;
1565 struct pcpu_chunk
*chunk
, *next
;
1567 int slot
, off
, cpu
, ret
;
1568 unsigned long flags
;
1570 size_t bits
, bit_align
;
1572 gfp
= current_gfp_context(gfp
);
1573 /* whitelisted flags that can be passed to the backing allocators */
1574 pcpu_gfp
= gfp
& (GFP_KERNEL
| __GFP_NORETRY
| __GFP_NOWARN
);
1575 is_atomic
= (gfp
& GFP_KERNEL
) != GFP_KERNEL
;
1576 do_warn
= !(gfp
& __GFP_NOWARN
);
1579 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1580 * therefore alignment must be a minimum of that many bytes.
1581 * An allocation may have internal fragmentation from rounding up
1582 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
1584 if (unlikely(align
< PCPU_MIN_ALLOC_SIZE
))
1585 align
= PCPU_MIN_ALLOC_SIZE
;
1587 size
= ALIGN(size
, PCPU_MIN_ALLOC_SIZE
);
1588 bits
= size
>> PCPU_MIN_ALLOC_SHIFT
;
1589 bit_align
= align
>> PCPU_MIN_ALLOC_SHIFT
;
1591 if (unlikely(!size
|| size
> PCPU_MIN_UNIT_SIZE
|| align
> PAGE_SIZE
||
1592 !is_power_of_2(align
))) {
1593 WARN(do_warn
, "illegal size (%zu) or align (%zu) for percpu allocation\n",
1600 * pcpu_balance_workfn() allocates memory under this mutex,
1601 * and it may wait for memory reclaim. Allow current task
1602 * to become OOM victim, in case of memory pressure.
1604 if (gfp
& __GFP_NOFAIL
)
1605 mutex_lock(&pcpu_alloc_mutex
);
1606 else if (mutex_lock_killable(&pcpu_alloc_mutex
))
1610 spin_lock_irqsave(&pcpu_lock
, flags
);
1612 /* serve reserved allocations from the reserved chunk if available */
1613 if (reserved
&& pcpu_reserved_chunk
) {
1614 chunk
= pcpu_reserved_chunk
;
1616 off
= pcpu_find_block_fit(chunk
, bits
, bit_align
, is_atomic
);
1618 err
= "alloc from reserved chunk failed";
1622 off
= pcpu_alloc_area(chunk
, bits
, bit_align
, off
);
1626 err
= "alloc from reserved chunk failed";
1631 /* search through normal chunks */
1632 for (slot
= pcpu_size_to_slot(size
); slot
< pcpu_nr_slots
; slot
++) {
1633 list_for_each_entry_safe(chunk
, next
, &pcpu_slot
[slot
], list
) {
1634 off
= pcpu_find_block_fit(chunk
, bits
, bit_align
,
1637 if (slot
< PCPU_SLOT_FAIL_THRESHOLD
)
1638 pcpu_chunk_move(chunk
, 0);
1642 off
= pcpu_alloc_area(chunk
, bits
, bit_align
, off
);
1649 spin_unlock_irqrestore(&pcpu_lock
, flags
);
1652 * No space left. Create a new chunk. We don't want multiple
1653 * tasks to create chunks simultaneously. Serialize and create iff
1654 * there's still no empty chunk after grabbing the mutex.
1657 err
= "atomic alloc failed, no space left";
1661 if (list_empty(&pcpu_slot
[pcpu_nr_slots
- 1])) {
1662 chunk
= pcpu_create_chunk(pcpu_gfp
);
1664 err
= "failed to allocate new chunk";
1668 spin_lock_irqsave(&pcpu_lock
, flags
);
1669 pcpu_chunk_relocate(chunk
, -1);
1671 spin_lock_irqsave(&pcpu_lock
, flags
);
1677 pcpu_stats_area_alloc(chunk
, size
);
1678 spin_unlock_irqrestore(&pcpu_lock
, flags
);
1680 /* populate if not all pages are already there */
1682 unsigned int page_start
, page_end
, rs
, re
;
1684 page_start
= PFN_DOWN(off
);
1685 page_end
= PFN_UP(off
+ size
);
1687 bitmap_for_each_clear_region(chunk
->populated
, rs
, re
,
1688 page_start
, page_end
) {
1689 WARN_ON(chunk
->immutable
);
1691 ret
= pcpu_populate_chunk(chunk
, rs
, re
, pcpu_gfp
);
1693 spin_lock_irqsave(&pcpu_lock
, flags
);
1695 pcpu_free_area(chunk
, off
);
1696 err
= "failed to populate";
1699 pcpu_chunk_populated(chunk
, rs
, re
);
1700 spin_unlock_irqrestore(&pcpu_lock
, flags
);
1703 mutex_unlock(&pcpu_alloc_mutex
);
1706 if (pcpu_nr_empty_pop_pages
< PCPU_EMPTY_POP_PAGES_LOW
)
1707 pcpu_schedule_balance_work();
1709 /* clear the areas and return address relative to base address */
1710 for_each_possible_cpu(cpu
)
1711 memset((void *)pcpu_chunk_addr(chunk
, cpu
, 0) + off
, 0, size
);
1713 ptr
= __addr_to_pcpu_ptr(chunk
->base_addr
+ off
);
1714 kmemleak_alloc_percpu(ptr
, size
, gfp
);
1716 trace_percpu_alloc_percpu(reserved
, is_atomic
, size
, align
,
1717 chunk
->base_addr
, off
, ptr
);
1722 spin_unlock_irqrestore(&pcpu_lock
, flags
);
1724 trace_percpu_alloc_percpu_fail(reserved
, is_atomic
, size
, align
);
1726 if (!is_atomic
&& do_warn
&& warn_limit
) {
1727 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1728 size
, align
, is_atomic
, err
);
1731 pr_info("limit reached, disable warning\n");
1734 /* see the flag handling in pcpu_blance_workfn() */
1735 pcpu_atomic_alloc_failed
= true;
1736 pcpu_schedule_balance_work();
1738 mutex_unlock(&pcpu_alloc_mutex
);
1744 * __alloc_percpu_gfp - allocate dynamic percpu area
1745 * @size: size of area to allocate in bytes
1746 * @align: alignment of area (max PAGE_SIZE)
1747 * @gfp: allocation flags
1749 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1750 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1751 * be called from any context but is a lot more likely to fail. If @gfp
1752 * has __GFP_NOWARN then no warning will be triggered on invalid or failed
1753 * allocation requests.
1756 * Percpu pointer to the allocated area on success, NULL on failure.
1758 void __percpu
*__alloc_percpu_gfp(size_t size
, size_t align
, gfp_t gfp
)
1760 return pcpu_alloc(size
, align
, false, gfp
);
1762 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp
);
1765 * __alloc_percpu - allocate dynamic percpu area
1766 * @size: size of area to allocate in bytes
1767 * @align: alignment of area (max PAGE_SIZE)
1769 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1771 void __percpu
*__alloc_percpu(size_t size
, size_t align
)
1773 return pcpu_alloc(size
, align
, false, GFP_KERNEL
);
1775 EXPORT_SYMBOL_GPL(__alloc_percpu
);
1778 * __alloc_reserved_percpu - allocate reserved percpu area
1779 * @size: size of area to allocate in bytes
1780 * @align: alignment of area (max PAGE_SIZE)
1782 * Allocate zero-filled percpu area of @size bytes aligned at @align
1783 * from reserved percpu area if arch has set it up; otherwise,
1784 * allocation is served from the same dynamic area. Might sleep.
1785 * Might trigger writeouts.
1788 * Does GFP_KERNEL allocation.
1791 * Percpu pointer to the allocated area on success, NULL on failure.
1793 void __percpu
*__alloc_reserved_percpu(size_t size
, size_t align
)
1795 return pcpu_alloc(size
, align
, true, GFP_KERNEL
);
1799 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1802 * Reclaim all fully free chunks except for the first one. This is also
1803 * responsible for maintaining the pool of empty populated pages. However,
1804 * it is possible that this is called when physical memory is scarce causing
1805 * OOM killer to be triggered. We should avoid doing so until an actual
1806 * allocation causes the failure as it is possible that requests can be
1807 * serviced from already backed regions.
1809 static void pcpu_balance_workfn(struct work_struct
*work
)
1811 /* gfp flags passed to underlying allocators */
1812 const gfp_t gfp
= GFP_KERNEL
| __GFP_NORETRY
| __GFP_NOWARN
;
1814 struct list_head
*free_head
= &pcpu_slot
[pcpu_nr_slots
- 1];
1815 struct pcpu_chunk
*chunk
, *next
;
1816 int slot
, nr_to_pop
, ret
;
1819 * There's no reason to keep around multiple unused chunks and VM
1820 * areas can be scarce. Destroy all free chunks except for one.
1822 mutex_lock(&pcpu_alloc_mutex
);
1823 spin_lock_irq(&pcpu_lock
);
1825 list_for_each_entry_safe(chunk
, next
, free_head
, list
) {
1826 WARN_ON(chunk
->immutable
);
1828 /* spare the first one */
1829 if (chunk
== list_first_entry(free_head
, struct pcpu_chunk
, list
))
1832 list_move(&chunk
->list
, &to_free
);
1835 spin_unlock_irq(&pcpu_lock
);
1837 list_for_each_entry_safe(chunk
, next
, &to_free
, list
) {
1838 unsigned int rs
, re
;
1840 bitmap_for_each_set_region(chunk
->populated
, rs
, re
, 0,
1842 pcpu_depopulate_chunk(chunk
, rs
, re
);
1843 spin_lock_irq(&pcpu_lock
);
1844 pcpu_chunk_depopulated(chunk
, rs
, re
);
1845 spin_unlock_irq(&pcpu_lock
);
1847 pcpu_destroy_chunk(chunk
);
1852 * Ensure there are certain number of free populated pages for
1853 * atomic allocs. Fill up from the most packed so that atomic
1854 * allocs don't increase fragmentation. If atomic allocation
1855 * failed previously, always populate the maximum amount. This
1856 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1857 * failing indefinitely; however, large atomic allocs are not
1858 * something we support properly and can be highly unreliable and
1862 if (pcpu_atomic_alloc_failed
) {
1863 nr_to_pop
= PCPU_EMPTY_POP_PAGES_HIGH
;
1864 /* best effort anyway, don't worry about synchronization */
1865 pcpu_atomic_alloc_failed
= false;
1867 nr_to_pop
= clamp(PCPU_EMPTY_POP_PAGES_HIGH
-
1868 pcpu_nr_empty_pop_pages
,
1869 0, PCPU_EMPTY_POP_PAGES_HIGH
);
1872 for (slot
= pcpu_size_to_slot(PAGE_SIZE
); slot
< pcpu_nr_slots
; slot
++) {
1873 unsigned int nr_unpop
= 0, rs
, re
;
1878 spin_lock_irq(&pcpu_lock
);
1879 list_for_each_entry(chunk
, &pcpu_slot
[slot
], list
) {
1880 nr_unpop
= chunk
->nr_pages
- chunk
->nr_populated
;
1884 spin_unlock_irq(&pcpu_lock
);
1889 /* @chunk can't go away while pcpu_alloc_mutex is held */
1890 bitmap_for_each_clear_region(chunk
->populated
, rs
, re
, 0,
1892 int nr
= min_t(int, re
- rs
, nr_to_pop
);
1894 ret
= pcpu_populate_chunk(chunk
, rs
, rs
+ nr
, gfp
);
1897 spin_lock_irq(&pcpu_lock
);
1898 pcpu_chunk_populated(chunk
, rs
, rs
+ nr
);
1899 spin_unlock_irq(&pcpu_lock
);
1910 /* ran out of chunks to populate, create a new one and retry */
1911 chunk
= pcpu_create_chunk(gfp
);
1913 spin_lock_irq(&pcpu_lock
);
1914 pcpu_chunk_relocate(chunk
, -1);
1915 spin_unlock_irq(&pcpu_lock
);
1920 mutex_unlock(&pcpu_alloc_mutex
);
1924 * free_percpu - free percpu area
1925 * @ptr: pointer to area to free
1927 * Free percpu area @ptr.
1930 * Can be called from atomic context.
1932 void free_percpu(void __percpu
*ptr
)
1935 struct pcpu_chunk
*chunk
;
1936 unsigned long flags
;
1938 bool need_balance
= false;
1943 kmemleak_free_percpu(ptr
);
1945 addr
= __pcpu_ptr_to_addr(ptr
);
1947 spin_lock_irqsave(&pcpu_lock
, flags
);
1949 chunk
= pcpu_chunk_addr_search(addr
);
1950 off
= addr
- chunk
->base_addr
;
1952 pcpu_free_area(chunk
, off
);
1954 /* if there are more than one fully free chunks, wake up grim reaper */
1955 if (chunk
->free_bytes
== pcpu_unit_size
) {
1956 struct pcpu_chunk
*pos
;
1958 list_for_each_entry(pos
, &pcpu_slot
[pcpu_nr_slots
- 1], list
)
1960 need_balance
= true;
1965 trace_percpu_free_percpu(chunk
->base_addr
, off
, ptr
);
1967 spin_unlock_irqrestore(&pcpu_lock
, flags
);
1970 pcpu_schedule_balance_work();
1972 EXPORT_SYMBOL_GPL(free_percpu
);
1974 bool __is_kernel_percpu_address(unsigned long addr
, unsigned long *can_addr
)
1977 const size_t static_size
= __per_cpu_end
- __per_cpu_start
;
1978 void __percpu
*base
= __addr_to_pcpu_ptr(pcpu_base_addr
);
1981 for_each_possible_cpu(cpu
) {
1982 void *start
= per_cpu_ptr(base
, cpu
);
1983 void *va
= (void *)addr
;
1985 if (va
>= start
&& va
< start
+ static_size
) {
1987 *can_addr
= (unsigned long) (va
- start
);
1988 *can_addr
+= (unsigned long)
1989 per_cpu_ptr(base
, get_boot_cpu_id());
1995 /* on UP, can't distinguish from other static vars, always false */
2000 * is_kernel_percpu_address - test whether address is from static percpu area
2001 * @addr: address to test
2003 * Test whether @addr belongs to in-kernel static percpu area. Module
2004 * static percpu areas are not considered. For those, use
2005 * is_module_percpu_address().
2008 * %true if @addr is from in-kernel static percpu area, %false otherwise.
2010 bool is_kernel_percpu_address(unsigned long addr
)
2012 return __is_kernel_percpu_address(addr
, NULL
);
2016 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
2017 * @addr: the address to be converted to physical address
2019 * Given @addr which is dereferenceable address obtained via one of
2020 * percpu access macros, this function translates it into its physical
2021 * address. The caller is responsible for ensuring @addr stays valid
2022 * until this function finishes.
2024 * percpu allocator has special setup for the first chunk, which currently
2025 * supports either embedding in linear address space or vmalloc mapping,
2026 * and, from the second one, the backing allocator (currently either vm or
2027 * km) provides translation.
2029 * The addr can be translated simply without checking if it falls into the
2030 * first chunk. But the current code reflects better how percpu allocator
2031 * actually works, and the verification can discover both bugs in percpu
2032 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
2036 * The physical address for @addr.
2038 phys_addr_t
per_cpu_ptr_to_phys(void *addr
)
2040 void __percpu
*base
= __addr_to_pcpu_ptr(pcpu_base_addr
);
2041 bool in_first_chunk
= false;
2042 unsigned long first_low
, first_high
;
2046 * The following test on unit_low/high isn't strictly
2047 * necessary but will speed up lookups of addresses which
2048 * aren't in the first chunk.
2050 * The address check is against full chunk sizes. pcpu_base_addr
2051 * points to the beginning of the first chunk including the
2052 * static region. Assumes good intent as the first chunk may
2053 * not be full (ie. < pcpu_unit_pages in size).
2055 first_low
= (unsigned long)pcpu_base_addr
+
2056 pcpu_unit_page_offset(pcpu_low_unit_cpu
, 0);
2057 first_high
= (unsigned long)pcpu_base_addr
+
2058 pcpu_unit_page_offset(pcpu_high_unit_cpu
, pcpu_unit_pages
);
2059 if ((unsigned long)addr
>= first_low
&&
2060 (unsigned long)addr
< first_high
) {
2061 for_each_possible_cpu(cpu
) {
2062 void *start
= per_cpu_ptr(base
, cpu
);
2064 if (addr
>= start
&& addr
< start
+ pcpu_unit_size
) {
2065 in_first_chunk
= true;
2071 if (in_first_chunk
) {
2072 if (!is_vmalloc_addr(addr
))
2075 return page_to_phys(vmalloc_to_page(addr
)) +
2076 offset_in_page(addr
);
2078 return page_to_phys(pcpu_addr_to_page(addr
)) +
2079 offset_in_page(addr
);
2083 * pcpu_alloc_alloc_info - allocate percpu allocation info
2084 * @nr_groups: the number of groups
2085 * @nr_units: the number of units
2087 * Allocate ai which is large enough for @nr_groups groups containing
2088 * @nr_units units. The returned ai's groups[0].cpu_map points to the
2089 * cpu_map array which is long enough for @nr_units and filled with
2090 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
2091 * pointer of other groups.
2094 * Pointer to the allocated pcpu_alloc_info on success, NULL on
2097 struct pcpu_alloc_info
* __init
pcpu_alloc_alloc_info(int nr_groups
,
2100 struct pcpu_alloc_info
*ai
;
2101 size_t base_size
, ai_size
;
2105 base_size
= ALIGN(struct_size(ai
, groups
, nr_groups
),
2106 __alignof__(ai
->groups
[0].cpu_map
[0]));
2107 ai_size
= base_size
+ nr_units
* sizeof(ai
->groups
[0].cpu_map
[0]);
2109 ptr
= memblock_alloc(PFN_ALIGN(ai_size
), PAGE_SIZE
);
2115 ai
->groups
[0].cpu_map
= ptr
;
2117 for (unit
= 0; unit
< nr_units
; unit
++)
2118 ai
->groups
[0].cpu_map
[unit
] = NR_CPUS
;
2120 ai
->nr_groups
= nr_groups
;
2121 ai
->__ai_size
= PFN_ALIGN(ai_size
);
2127 * pcpu_free_alloc_info - free percpu allocation info
2128 * @ai: pcpu_alloc_info to free
2130 * Free @ai which was allocated by pcpu_alloc_alloc_info().
2132 void __init
pcpu_free_alloc_info(struct pcpu_alloc_info
*ai
)
2134 memblock_free_early(__pa(ai
), ai
->__ai_size
);
2138 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
2140 * @ai: allocation info to dump
2142 * Print out information about @ai using loglevel @lvl.
2144 static void pcpu_dump_alloc_info(const char *lvl
,
2145 const struct pcpu_alloc_info
*ai
)
2147 int group_width
= 1, cpu_width
= 1, width
;
2148 char empty_str
[] = "--------";
2149 int alloc
= 0, alloc_end
= 0;
2151 int upa
, apl
; /* units per alloc, allocs per line */
2157 v
= num_possible_cpus();
2160 empty_str
[min_t(int, cpu_width
, sizeof(empty_str
) - 1)] = '\0';
2162 upa
= ai
->alloc_size
/ ai
->unit_size
;
2163 width
= upa
* (cpu_width
+ 1) + group_width
+ 3;
2164 apl
= rounddown_pow_of_two(max(60 / width
, 1));
2166 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
2167 lvl
, ai
->static_size
, ai
->reserved_size
, ai
->dyn_size
,
2168 ai
->unit_size
, ai
->alloc_size
/ ai
->atom_size
, ai
->atom_size
);
2170 for (group
= 0; group
< ai
->nr_groups
; group
++) {
2171 const struct pcpu_group_info
*gi
= &ai
->groups
[group
];
2172 int unit
= 0, unit_end
= 0;
2174 BUG_ON(gi
->nr_units
% upa
);
2175 for (alloc_end
+= gi
->nr_units
/ upa
;
2176 alloc
< alloc_end
; alloc
++) {
2177 if (!(alloc
% apl
)) {
2179 printk("%spcpu-alloc: ", lvl
);
2181 pr_cont("[%0*d] ", group_width
, group
);
2183 for (unit_end
+= upa
; unit
< unit_end
; unit
++)
2184 if (gi
->cpu_map
[unit
] != NR_CPUS
)
2186 cpu_width
, gi
->cpu_map
[unit
]);
2188 pr_cont("%s ", empty_str
);
2195 * pcpu_setup_first_chunk - initialize the first percpu chunk
2196 * @ai: pcpu_alloc_info describing how to percpu area is shaped
2197 * @base_addr: mapped address
2199 * Initialize the first percpu chunk which contains the kernel static
2200 * percpu area. This function is to be called from arch percpu area
2203 * @ai contains all information necessary to initialize the first
2204 * chunk and prime the dynamic percpu allocator.
2206 * @ai->static_size is the size of static percpu area.
2208 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
2209 * reserve after the static area in the first chunk. This reserves
2210 * the first chunk such that it's available only through reserved
2211 * percpu allocation. This is primarily used to serve module percpu
2212 * static areas on architectures where the addressing model has
2213 * limited offset range for symbol relocations to guarantee module
2214 * percpu symbols fall inside the relocatable range.
2216 * @ai->dyn_size determines the number of bytes available for dynamic
2217 * allocation in the first chunk. The area between @ai->static_size +
2218 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
2220 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
2221 * and equal to or larger than @ai->static_size + @ai->reserved_size +
2224 * @ai->atom_size is the allocation atom size and used as alignment
2227 * @ai->alloc_size is the allocation size and always multiple of
2228 * @ai->atom_size. This is larger than @ai->atom_size if
2229 * @ai->unit_size is larger than @ai->atom_size.
2231 * @ai->nr_groups and @ai->groups describe virtual memory layout of
2232 * percpu areas. Units which should be colocated are put into the
2233 * same group. Dynamic VM areas will be allocated according to these
2234 * groupings. If @ai->nr_groups is zero, a single group containing
2235 * all units is assumed.
2237 * The caller should have mapped the first chunk at @base_addr and
2238 * copied static data to each unit.
2240 * The first chunk will always contain a static and a dynamic region.
2241 * However, the static region is not managed by any chunk. If the first
2242 * chunk also contains a reserved region, it is served by two chunks -
2243 * one for the reserved region and one for the dynamic region. They
2244 * share the same vm, but use offset regions in the area allocation map.
2245 * The chunk serving the dynamic region is circulated in the chunk slots
2246 * and available for dynamic allocation like any other chunk.
2248 void __init
pcpu_setup_first_chunk(const struct pcpu_alloc_info
*ai
,
2251 size_t size_sum
= ai
->static_size
+ ai
->reserved_size
+ ai
->dyn_size
;
2252 size_t static_size
, dyn_size
;
2253 struct pcpu_chunk
*chunk
;
2254 unsigned long *group_offsets
;
2255 size_t *group_sizes
;
2256 unsigned long *unit_off
;
2261 unsigned long tmp_addr
;
2264 #define PCPU_SETUP_BUG_ON(cond) do { \
2265 if (unlikely(cond)) { \
2266 pr_emerg("failed to initialize, %s\n", #cond); \
2267 pr_emerg("cpu_possible_mask=%*pb\n", \
2268 cpumask_pr_args(cpu_possible_mask)); \
2269 pcpu_dump_alloc_info(KERN_EMERG, ai); \
2275 PCPU_SETUP_BUG_ON(ai
->nr_groups
<= 0);
2277 PCPU_SETUP_BUG_ON(!ai
->static_size
);
2278 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start
));
2280 PCPU_SETUP_BUG_ON(!base_addr
);
2281 PCPU_SETUP_BUG_ON(offset_in_page(base_addr
));
2282 PCPU_SETUP_BUG_ON(ai
->unit_size
< size_sum
);
2283 PCPU_SETUP_BUG_ON(offset_in_page(ai
->unit_size
));
2284 PCPU_SETUP_BUG_ON(ai
->unit_size
< PCPU_MIN_UNIT_SIZE
);
2285 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai
->unit_size
, PCPU_BITMAP_BLOCK_SIZE
));
2286 PCPU_SETUP_BUG_ON(ai
->dyn_size
< PERCPU_DYNAMIC_EARLY_SIZE
);
2287 PCPU_SETUP_BUG_ON(!ai
->dyn_size
);
2288 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai
->reserved_size
, PCPU_MIN_ALLOC_SIZE
));
2289 PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE
, PAGE_SIZE
) ||
2290 IS_ALIGNED(PAGE_SIZE
, PCPU_BITMAP_BLOCK_SIZE
)));
2291 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai
) < 0);
2293 /* process group information and build config tables accordingly */
2294 alloc_size
= ai
->nr_groups
* sizeof(group_offsets
[0]);
2295 group_offsets
= memblock_alloc(alloc_size
, SMP_CACHE_BYTES
);
2297 panic("%s: Failed to allocate %zu bytes\n", __func__
,
2300 alloc_size
= ai
->nr_groups
* sizeof(group_sizes
[0]);
2301 group_sizes
= memblock_alloc(alloc_size
, SMP_CACHE_BYTES
);
2303 panic("%s: Failed to allocate %zu bytes\n", __func__
,
2306 alloc_size
= nr_cpu_ids
* sizeof(unit_map
[0]);
2307 unit_map
= memblock_alloc(alloc_size
, SMP_CACHE_BYTES
);
2309 panic("%s: Failed to allocate %zu bytes\n", __func__
,
2312 alloc_size
= nr_cpu_ids
* sizeof(unit_off
[0]);
2313 unit_off
= memblock_alloc(alloc_size
, SMP_CACHE_BYTES
);
2315 panic("%s: Failed to allocate %zu bytes\n", __func__
,
2318 for (cpu
= 0; cpu
< nr_cpu_ids
; cpu
++)
2319 unit_map
[cpu
] = UINT_MAX
;
2321 pcpu_low_unit_cpu
= NR_CPUS
;
2322 pcpu_high_unit_cpu
= NR_CPUS
;
2324 for (group
= 0, unit
= 0; group
< ai
->nr_groups
; group
++, unit
+= i
) {
2325 const struct pcpu_group_info
*gi
= &ai
->groups
[group
];
2327 group_offsets
[group
] = gi
->base_offset
;
2328 group_sizes
[group
] = gi
->nr_units
* ai
->unit_size
;
2330 for (i
= 0; i
< gi
->nr_units
; i
++) {
2331 cpu
= gi
->cpu_map
[i
];
2335 PCPU_SETUP_BUG_ON(cpu
>= nr_cpu_ids
);
2336 PCPU_SETUP_BUG_ON(!cpu_possible(cpu
));
2337 PCPU_SETUP_BUG_ON(unit_map
[cpu
] != UINT_MAX
);
2339 unit_map
[cpu
] = unit
+ i
;
2340 unit_off
[cpu
] = gi
->base_offset
+ i
* ai
->unit_size
;
2342 /* determine low/high unit_cpu */
2343 if (pcpu_low_unit_cpu
== NR_CPUS
||
2344 unit_off
[cpu
] < unit_off
[pcpu_low_unit_cpu
])
2345 pcpu_low_unit_cpu
= cpu
;
2346 if (pcpu_high_unit_cpu
== NR_CPUS
||
2347 unit_off
[cpu
] > unit_off
[pcpu_high_unit_cpu
])
2348 pcpu_high_unit_cpu
= cpu
;
2351 pcpu_nr_units
= unit
;
2353 for_each_possible_cpu(cpu
)
2354 PCPU_SETUP_BUG_ON(unit_map
[cpu
] == UINT_MAX
);
2356 /* we're done parsing the input, undefine BUG macro and dump config */
2357 #undef PCPU_SETUP_BUG_ON
2358 pcpu_dump_alloc_info(KERN_DEBUG
, ai
);
2360 pcpu_nr_groups
= ai
->nr_groups
;
2361 pcpu_group_offsets
= group_offsets
;
2362 pcpu_group_sizes
= group_sizes
;
2363 pcpu_unit_map
= unit_map
;
2364 pcpu_unit_offsets
= unit_off
;
2366 /* determine basic parameters */
2367 pcpu_unit_pages
= ai
->unit_size
>> PAGE_SHIFT
;
2368 pcpu_unit_size
= pcpu_unit_pages
<< PAGE_SHIFT
;
2369 pcpu_atom_size
= ai
->atom_size
;
2370 pcpu_chunk_struct_size
= sizeof(struct pcpu_chunk
) +
2371 BITS_TO_LONGS(pcpu_unit_pages
) * sizeof(unsigned long);
2373 pcpu_stats_save_ai(ai
);
2376 * Allocate chunk slots. The additional last slot is for
2379 pcpu_nr_slots
= __pcpu_size_to_slot(pcpu_unit_size
) + 2;
2380 pcpu_slot
= memblock_alloc(pcpu_nr_slots
* sizeof(pcpu_slot
[0]),
2383 panic("%s: Failed to allocate %zu bytes\n", __func__
,
2384 pcpu_nr_slots
* sizeof(pcpu_slot
[0]));
2385 for (i
= 0; i
< pcpu_nr_slots
; i
++)
2386 INIT_LIST_HEAD(&pcpu_slot
[i
]);
2389 * The end of the static region needs to be aligned with the
2390 * minimum allocation size as this offsets the reserved and
2391 * dynamic region. The first chunk ends page aligned by
2392 * expanding the dynamic region, therefore the dynamic region
2393 * can be shrunk to compensate while still staying above the
2396 static_size
= ALIGN(ai
->static_size
, PCPU_MIN_ALLOC_SIZE
);
2397 dyn_size
= ai
->dyn_size
- (static_size
- ai
->static_size
);
2400 * Initialize first chunk.
2401 * If the reserved_size is non-zero, this initializes the reserved
2402 * chunk. If the reserved_size is zero, the reserved chunk is NULL
2403 * and the dynamic region is initialized here. The first chunk,
2404 * pcpu_first_chunk, will always point to the chunk that serves
2405 * the dynamic region.
2407 tmp_addr
= (unsigned long)base_addr
+ static_size
;
2408 map_size
= ai
->reserved_size
?: dyn_size
;
2409 chunk
= pcpu_alloc_first_chunk(tmp_addr
, map_size
);
2411 /* init dynamic chunk if necessary */
2412 if (ai
->reserved_size
) {
2413 pcpu_reserved_chunk
= chunk
;
2415 tmp_addr
= (unsigned long)base_addr
+ static_size
+
2417 map_size
= dyn_size
;
2418 chunk
= pcpu_alloc_first_chunk(tmp_addr
, map_size
);
2421 /* link the first chunk in */
2422 pcpu_first_chunk
= chunk
;
2423 pcpu_nr_empty_pop_pages
= pcpu_first_chunk
->nr_empty_pop_pages
;
2424 pcpu_chunk_relocate(pcpu_first_chunk
, -1);
2426 /* include all regions of the first chunk */
2427 pcpu_nr_populated
+= PFN_DOWN(size_sum
);
2429 pcpu_stats_chunk_alloc();
2430 trace_percpu_create_chunk(base_addr
);
2433 pcpu_base_addr
= base_addr
;
2438 const char * const pcpu_fc_names
[PCPU_FC_NR
] __initconst
= {
2439 [PCPU_FC_AUTO
] = "auto",
2440 [PCPU_FC_EMBED
] = "embed",
2441 [PCPU_FC_PAGE
] = "page",
2444 enum pcpu_fc pcpu_chosen_fc __initdata
= PCPU_FC_AUTO
;
2446 static int __init
percpu_alloc_setup(char *str
)
2453 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2454 else if (!strcmp(str
, "embed"))
2455 pcpu_chosen_fc
= PCPU_FC_EMBED
;
2457 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2458 else if (!strcmp(str
, "page"))
2459 pcpu_chosen_fc
= PCPU_FC_PAGE
;
2462 pr_warn("unknown allocator %s specified\n", str
);
2466 early_param("percpu_alloc", percpu_alloc_setup
);
2469 * pcpu_embed_first_chunk() is used by the generic percpu setup.
2470 * Build it if needed by the arch config or the generic setup is going
2473 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2474 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
2475 #define BUILD_EMBED_FIRST_CHUNK
2478 /* build pcpu_page_first_chunk() iff needed by the arch config */
2479 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2480 #define BUILD_PAGE_FIRST_CHUNK
2483 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
2484 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2486 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2487 * @reserved_size: the size of reserved percpu area in bytes
2488 * @dyn_size: minimum free size for dynamic allocation in bytes
2489 * @atom_size: allocation atom size
2490 * @cpu_distance_fn: callback to determine distance between cpus, optional
2492 * This function determines grouping of units, their mappings to cpus
2493 * and other parameters considering needed percpu size, allocation
2494 * atom size and distances between CPUs.
2496 * Groups are always multiples of atom size and CPUs which are of
2497 * LOCAL_DISTANCE both ways are grouped together and share space for
2498 * units in the same group. The returned configuration is guaranteed
2499 * to have CPUs on different nodes on different groups and >=75% usage
2500 * of allocated virtual address space.
2503 * On success, pointer to the new allocation_info is returned. On
2504 * failure, ERR_PTR value is returned.
2506 static struct pcpu_alloc_info
* __init
pcpu_build_alloc_info(
2507 size_t reserved_size
, size_t dyn_size
,
2509 pcpu_fc_cpu_distance_fn_t cpu_distance_fn
)
2511 static int group_map
[NR_CPUS
] __initdata
;
2512 static int group_cnt
[NR_CPUS
] __initdata
;
2513 const size_t static_size
= __per_cpu_end
- __per_cpu_start
;
2514 int nr_groups
= 1, nr_units
= 0;
2515 size_t size_sum
, min_unit_size
, alloc_size
;
2516 int upa
, max_upa
, uninitialized_var(best_upa
); /* units_per_alloc */
2517 int last_allocs
, group
, unit
;
2518 unsigned int cpu
, tcpu
;
2519 struct pcpu_alloc_info
*ai
;
2520 unsigned int *cpu_map
;
2522 /* this function may be called multiple times */
2523 memset(group_map
, 0, sizeof(group_map
));
2524 memset(group_cnt
, 0, sizeof(group_cnt
));
2526 /* calculate size_sum and ensure dyn_size is enough for early alloc */
2527 size_sum
= PFN_ALIGN(static_size
+ reserved_size
+
2528 max_t(size_t, dyn_size
, PERCPU_DYNAMIC_EARLY_SIZE
));
2529 dyn_size
= size_sum
- static_size
- reserved_size
;
2532 * Determine min_unit_size, alloc_size and max_upa such that
2533 * alloc_size is multiple of atom_size and is the smallest
2534 * which can accommodate 4k aligned segments which are equal to
2535 * or larger than min_unit_size.
2537 min_unit_size
= max_t(size_t, size_sum
, PCPU_MIN_UNIT_SIZE
);
2539 /* determine the maximum # of units that can fit in an allocation */
2540 alloc_size
= roundup(min_unit_size
, atom_size
);
2541 upa
= alloc_size
/ min_unit_size
;
2542 while (alloc_size
% upa
|| (offset_in_page(alloc_size
/ upa
)))
2546 /* group cpus according to their proximity */
2547 for_each_possible_cpu(cpu
) {
2550 for_each_possible_cpu(tcpu
) {
2553 if (group_map
[tcpu
] == group
&& cpu_distance_fn
&&
2554 (cpu_distance_fn(cpu
, tcpu
) > LOCAL_DISTANCE
||
2555 cpu_distance_fn(tcpu
, cpu
) > LOCAL_DISTANCE
)) {
2557 nr_groups
= max(nr_groups
, group
+ 1);
2561 group_map
[cpu
] = group
;
2566 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2567 * Expand the unit_size until we use >= 75% of the units allocated.
2568 * Related to atom_size, which could be much larger than the unit_size.
2570 last_allocs
= INT_MAX
;
2571 for (upa
= max_upa
; upa
; upa
--) {
2572 int allocs
= 0, wasted
= 0;
2574 if (alloc_size
% upa
|| (offset_in_page(alloc_size
/ upa
)))
2577 for (group
= 0; group
< nr_groups
; group
++) {
2578 int this_allocs
= DIV_ROUND_UP(group_cnt
[group
], upa
);
2579 allocs
+= this_allocs
;
2580 wasted
+= this_allocs
* upa
- group_cnt
[group
];
2584 * Don't accept if wastage is over 1/3. The
2585 * greater-than comparison ensures upa==1 always
2586 * passes the following check.
2588 if (wasted
> num_possible_cpus() / 3)
2591 /* and then don't consume more memory */
2592 if (allocs
> last_allocs
)
2594 last_allocs
= allocs
;
2599 /* allocate and fill alloc_info */
2600 for (group
= 0; group
< nr_groups
; group
++)
2601 nr_units
+= roundup(group_cnt
[group
], upa
);
2603 ai
= pcpu_alloc_alloc_info(nr_groups
, nr_units
);
2605 return ERR_PTR(-ENOMEM
);
2606 cpu_map
= ai
->groups
[0].cpu_map
;
2608 for (group
= 0; group
< nr_groups
; group
++) {
2609 ai
->groups
[group
].cpu_map
= cpu_map
;
2610 cpu_map
+= roundup(group_cnt
[group
], upa
);
2613 ai
->static_size
= static_size
;
2614 ai
->reserved_size
= reserved_size
;
2615 ai
->dyn_size
= dyn_size
;
2616 ai
->unit_size
= alloc_size
/ upa
;
2617 ai
->atom_size
= atom_size
;
2618 ai
->alloc_size
= alloc_size
;
2620 for (group
= 0, unit
= 0; group
< nr_groups
; group
++) {
2621 struct pcpu_group_info
*gi
= &ai
->groups
[group
];
2624 * Initialize base_offset as if all groups are located
2625 * back-to-back. The caller should update this to
2626 * reflect actual allocation.
2628 gi
->base_offset
= unit
* ai
->unit_size
;
2630 for_each_possible_cpu(cpu
)
2631 if (group_map
[cpu
] == group
)
2632 gi
->cpu_map
[gi
->nr_units
++] = cpu
;
2633 gi
->nr_units
= roundup(gi
->nr_units
, upa
);
2634 unit
+= gi
->nr_units
;
2636 BUG_ON(unit
!= nr_units
);
2640 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2642 #if defined(BUILD_EMBED_FIRST_CHUNK)
2644 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
2645 * @reserved_size: the size of reserved percpu area in bytes
2646 * @dyn_size: minimum free size for dynamic allocation in bytes
2647 * @atom_size: allocation atom size
2648 * @cpu_distance_fn: callback to determine distance between cpus, optional
2649 * @alloc_fn: function to allocate percpu page
2650 * @free_fn: function to free percpu page
2652 * This is a helper to ease setting up embedded first percpu chunk and
2653 * can be called where pcpu_setup_first_chunk() is expected.
2655 * If this function is used to setup the first chunk, it is allocated
2656 * by calling @alloc_fn and used as-is without being mapped into
2657 * vmalloc area. Allocations are always whole multiples of @atom_size
2658 * aligned to @atom_size.
2660 * This enables the first chunk to piggy back on the linear physical
2661 * mapping which often uses larger page size. Please note that this
2662 * can result in very sparse cpu->unit mapping on NUMA machines thus
2663 * requiring large vmalloc address space. Don't use this allocator if
2664 * vmalloc space is not orders of magnitude larger than distances
2665 * between node memory addresses (ie. 32bit NUMA machines).
2667 * @dyn_size specifies the minimum dynamic area size.
2669 * If the needed size is smaller than the minimum or specified unit
2670 * size, the leftover is returned using @free_fn.
2673 * 0 on success, -errno on failure.
2675 int __init
pcpu_embed_first_chunk(size_t reserved_size
, size_t dyn_size
,
2677 pcpu_fc_cpu_distance_fn_t cpu_distance_fn
,
2678 pcpu_fc_alloc_fn_t alloc_fn
,
2679 pcpu_fc_free_fn_t free_fn
)
2681 void *base
= (void *)ULONG_MAX
;
2682 void **areas
= NULL
;
2683 struct pcpu_alloc_info
*ai
;
2684 size_t size_sum
, areas_size
;
2685 unsigned long max_distance
;
2686 int group
, i
, highest_group
, rc
= 0;
2688 ai
= pcpu_build_alloc_info(reserved_size
, dyn_size
, atom_size
,
2693 size_sum
= ai
->static_size
+ ai
->reserved_size
+ ai
->dyn_size
;
2694 areas_size
= PFN_ALIGN(ai
->nr_groups
* sizeof(void *));
2696 areas
= memblock_alloc(areas_size
, SMP_CACHE_BYTES
);
2702 /* allocate, copy and determine base address & max_distance */
2704 for (group
= 0; group
< ai
->nr_groups
; group
++) {
2705 struct pcpu_group_info
*gi
= &ai
->groups
[group
];
2706 unsigned int cpu
= NR_CPUS
;
2709 for (i
= 0; i
< gi
->nr_units
&& cpu
== NR_CPUS
; i
++)
2710 cpu
= gi
->cpu_map
[i
];
2711 BUG_ON(cpu
== NR_CPUS
);
2713 /* allocate space for the whole group */
2714 ptr
= alloc_fn(cpu
, gi
->nr_units
* ai
->unit_size
, atom_size
);
2717 goto out_free_areas
;
2719 /* kmemleak tracks the percpu allocations separately */
2723 base
= min(ptr
, base
);
2724 if (ptr
> areas
[highest_group
])
2725 highest_group
= group
;
2727 max_distance
= areas
[highest_group
] - base
;
2728 max_distance
+= ai
->unit_size
* ai
->groups
[highest_group
].nr_units
;
2730 /* warn if maximum distance is further than 75% of vmalloc space */
2731 if (max_distance
> VMALLOC_TOTAL
* 3 / 4) {
2732 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2733 max_distance
, VMALLOC_TOTAL
);
2734 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2735 /* and fail if we have fallback */
2737 goto out_free_areas
;
2742 * Copy data and free unused parts. This should happen after all
2743 * allocations are complete; otherwise, we may end up with
2744 * overlapping groups.
2746 for (group
= 0; group
< ai
->nr_groups
; group
++) {
2747 struct pcpu_group_info
*gi
= &ai
->groups
[group
];
2748 void *ptr
= areas
[group
];
2750 for (i
= 0; i
< gi
->nr_units
; i
++, ptr
+= ai
->unit_size
) {
2751 if (gi
->cpu_map
[i
] == NR_CPUS
) {
2752 /* unused unit, free whole */
2753 free_fn(ptr
, ai
->unit_size
);
2756 /* copy and return the unused part */
2757 memcpy(ptr
, __per_cpu_load
, ai
->static_size
);
2758 free_fn(ptr
+ size_sum
, ai
->unit_size
- size_sum
);
2762 /* base address is now known, determine group base offsets */
2763 for (group
= 0; group
< ai
->nr_groups
; group
++) {
2764 ai
->groups
[group
].base_offset
= areas
[group
] - base
;
2767 pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n",
2768 PFN_DOWN(size_sum
), ai
->static_size
, ai
->reserved_size
,
2769 ai
->dyn_size
, ai
->unit_size
);
2771 pcpu_setup_first_chunk(ai
, base
);
2775 for (group
= 0; group
< ai
->nr_groups
; group
++)
2777 free_fn(areas
[group
],
2778 ai
->groups
[group
].nr_units
* ai
->unit_size
);
2780 pcpu_free_alloc_info(ai
);
2782 memblock_free_early(__pa(areas
), areas_size
);
2785 #endif /* BUILD_EMBED_FIRST_CHUNK */
2787 #ifdef BUILD_PAGE_FIRST_CHUNK
2789 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2790 * @reserved_size: the size of reserved percpu area in bytes
2791 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2792 * @free_fn: function to free percpu page, always called with PAGE_SIZE
2793 * @populate_pte_fn: function to populate pte
2795 * This is a helper to ease setting up page-remapped first percpu
2796 * chunk and can be called where pcpu_setup_first_chunk() is expected.
2798 * This is the basic allocator. Static percpu area is allocated
2799 * page-by-page into vmalloc area.
2802 * 0 on success, -errno on failure.
2804 int __init
pcpu_page_first_chunk(size_t reserved_size
,
2805 pcpu_fc_alloc_fn_t alloc_fn
,
2806 pcpu_fc_free_fn_t free_fn
,
2807 pcpu_fc_populate_pte_fn_t populate_pte_fn
)
2809 static struct vm_struct vm
;
2810 struct pcpu_alloc_info
*ai
;
2814 struct page
**pages
;
2815 int unit
, i
, j
, rc
= 0;
2819 snprintf(psize_str
, sizeof(psize_str
), "%luK", PAGE_SIZE
>> 10);
2821 ai
= pcpu_build_alloc_info(reserved_size
, 0, PAGE_SIZE
, NULL
);
2824 BUG_ON(ai
->nr_groups
!= 1);
2825 upa
= ai
->alloc_size
/ai
->unit_size
;
2826 nr_g0_units
= roundup(num_possible_cpus(), upa
);
2827 if (WARN_ON(ai
->groups
[0].nr_units
!= nr_g0_units
)) {
2828 pcpu_free_alloc_info(ai
);
2832 unit_pages
= ai
->unit_size
>> PAGE_SHIFT
;
2834 /* unaligned allocations can't be freed, round up to page size */
2835 pages_size
= PFN_ALIGN(unit_pages
* num_possible_cpus() *
2837 pages
= memblock_alloc(pages_size
, SMP_CACHE_BYTES
);
2839 panic("%s: Failed to allocate %zu bytes\n", __func__
,
2842 /* allocate pages */
2844 for (unit
= 0; unit
< num_possible_cpus(); unit
++) {
2845 unsigned int cpu
= ai
->groups
[0].cpu_map
[unit
];
2846 for (i
= 0; i
< unit_pages
; i
++) {
2849 ptr
= alloc_fn(cpu
, PAGE_SIZE
, PAGE_SIZE
);
2851 pr_warn("failed to allocate %s page for cpu%u\n",
2855 /* kmemleak tracks the percpu allocations separately */
2857 pages
[j
++] = virt_to_page(ptr
);
2861 /* allocate vm area, map the pages and copy static data */
2862 vm
.flags
= VM_ALLOC
;
2863 vm
.size
= num_possible_cpus() * ai
->unit_size
;
2864 vm_area_register_early(&vm
, PAGE_SIZE
);
2866 for (unit
= 0; unit
< num_possible_cpus(); unit
++) {
2867 unsigned long unit_addr
=
2868 (unsigned long)vm
.addr
+ unit
* ai
->unit_size
;
2870 for (i
= 0; i
< unit_pages
; i
++)
2871 populate_pte_fn(unit_addr
+ (i
<< PAGE_SHIFT
));
2873 /* pte already populated, the following shouldn't fail */
2874 rc
= __pcpu_map_pages(unit_addr
, &pages
[unit
* unit_pages
],
2877 panic("failed to map percpu area, err=%d\n", rc
);
2880 * FIXME: Archs with virtual cache should flush local
2881 * cache for the linear mapping here - something
2882 * equivalent to flush_cache_vmap() on the local cpu.
2883 * flush_cache_vmap() can't be used as most supporting
2884 * data structures are not set up yet.
2887 /* copy static data */
2888 memcpy((void *)unit_addr
, __per_cpu_load
, ai
->static_size
);
2891 /* we're ready, commit */
2892 pr_info("%d %s pages/cpu s%zu r%zu d%zu\n",
2893 unit_pages
, psize_str
, ai
->static_size
,
2894 ai
->reserved_size
, ai
->dyn_size
);
2896 pcpu_setup_first_chunk(ai
, vm
.addr
);
2901 free_fn(page_address(pages
[j
]), PAGE_SIZE
);
2904 memblock_free_early(__pa(pages
), pages_size
);
2905 pcpu_free_alloc_info(ai
);
2908 #endif /* BUILD_PAGE_FIRST_CHUNK */
2910 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
2912 * Generic SMP percpu area setup.
2914 * The embedding helper is used because its behavior closely resembles
2915 * the original non-dynamic generic percpu area setup. This is
2916 * important because many archs have addressing restrictions and might
2917 * fail if the percpu area is located far away from the previous
2918 * location. As an added bonus, in non-NUMA cases, embedding is
2919 * generally a good idea TLB-wise because percpu area can piggy back
2920 * on the physical linear memory mapping which uses large page
2921 * mappings on applicable archs.
2923 unsigned long __per_cpu_offset
[NR_CPUS
] __read_mostly
;
2924 EXPORT_SYMBOL(__per_cpu_offset
);
2926 static void * __init
pcpu_dfl_fc_alloc(unsigned int cpu
, size_t size
,
2929 return memblock_alloc_from(size
, align
, __pa(MAX_DMA_ADDRESS
));
2932 static void __init
pcpu_dfl_fc_free(void *ptr
, size_t size
)
2934 memblock_free_early(__pa(ptr
), size
);
2937 void __init
setup_per_cpu_areas(void)
2939 unsigned long delta
;
2944 * Always reserve area for module percpu variables. That's
2945 * what the legacy allocator did.
2947 rc
= pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE
,
2948 PERCPU_DYNAMIC_RESERVE
, PAGE_SIZE
, NULL
,
2949 pcpu_dfl_fc_alloc
, pcpu_dfl_fc_free
);
2951 panic("Failed to initialize percpu areas.");
2953 delta
= (unsigned long)pcpu_base_addr
- (unsigned long)__per_cpu_start
;
2954 for_each_possible_cpu(cpu
)
2955 __per_cpu_offset
[cpu
] = delta
+ pcpu_unit_offsets
[cpu
];
2957 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2959 #else /* CONFIG_SMP */
2962 * UP percpu area setup.
2964 * UP always uses km-based percpu allocator with identity mapping.
2965 * Static percpu variables are indistinguishable from the usual static
2966 * variables and don't require any special preparation.
2968 void __init
setup_per_cpu_areas(void)
2970 const size_t unit_size
=
2971 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE
,
2972 PERCPU_DYNAMIC_RESERVE
));
2973 struct pcpu_alloc_info
*ai
;
2976 ai
= pcpu_alloc_alloc_info(1, 1);
2977 fc
= memblock_alloc_from(unit_size
, PAGE_SIZE
, __pa(MAX_DMA_ADDRESS
));
2979 panic("Failed to allocate memory for percpu areas.");
2980 /* kmemleak tracks the percpu allocations separately */
2983 ai
->dyn_size
= unit_size
;
2984 ai
->unit_size
= unit_size
;
2985 ai
->atom_size
= unit_size
;
2986 ai
->alloc_size
= unit_size
;
2987 ai
->groups
[0].nr_units
= 1;
2988 ai
->groups
[0].cpu_map
[0] = 0;
2990 pcpu_setup_first_chunk(ai
, fc
);
2991 pcpu_free_alloc_info(ai
);
2994 #endif /* CONFIG_SMP */
2997 * pcpu_nr_pages - calculate total number of populated backing pages
2999 * This reflects the number of pages populated to back chunks. Metadata is
3000 * excluded in the number exposed in meminfo as the number of backing pages
3001 * scales with the number of cpus and can quickly outweigh the memory used for
3002 * metadata. It also keeps this calculation nice and simple.
3005 * Total number of populated backing pages in use by the allocator.
3007 unsigned long pcpu_nr_pages(void)
3009 return pcpu_nr_populated
* pcpu_nr_units
;
3013 * Percpu allocator is initialized early during boot when neither slab or
3014 * workqueue is available. Plug async management until everything is up
3017 static int __init
percpu_enable_async(void)
3019 pcpu_async_enabled
= true;
3022 subsys_initcall(percpu_enable_async
);