1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * This file contains the default values for the operation of the
10 * Linux VM subsystem. Fine-tuning documentation can be found in
11 * Documentation/admin-guide/sysctl/vm.rst.
13 * Swap aging added 23.2.95, Stephen Tweedie.
14 * Buffermem limits added 12.3.98, Rik van Riel.
18 #include <linux/sched.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/pagevec.h>
24 #include <linux/init.h>
25 #include <linux/export.h>
26 #include <linux/mm_inline.h>
27 #include <linux/percpu_counter.h>
28 #include <linux/memremap.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/backing-dev.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/pagemap.h>
44 /* How many pages do we try to swap or page in/out together? */
47 static DEFINE_PER_CPU(struct pagevec
, lru_add_pvec
);
48 static DEFINE_PER_CPU(struct pagevec
, lru_rotate_pvecs
);
49 static DEFINE_PER_CPU(struct pagevec
, lru_deactivate_file_pvecs
);
50 static DEFINE_PER_CPU(struct pagevec
, lru_deactivate_pvecs
);
51 static DEFINE_PER_CPU(struct pagevec
, lru_lazyfree_pvecs
);
53 static DEFINE_PER_CPU(struct pagevec
, activate_page_pvecs
);
57 * This path almost never happens for VM activity - pages are normally
58 * freed via pagevecs. But it gets used by networking.
60 static void __page_cache_release(struct page
*page
)
63 pg_data_t
*pgdat
= page_pgdat(page
);
64 struct lruvec
*lruvec
;
67 spin_lock_irqsave(&pgdat
->lru_lock
, flags
);
68 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
69 VM_BUG_ON_PAGE(!PageLRU(page
), page
);
71 del_page_from_lru_list(page
, lruvec
, page_off_lru(page
));
72 spin_unlock_irqrestore(&pgdat
->lru_lock
, flags
);
74 __ClearPageWaiters(page
);
77 static void __put_single_page(struct page
*page
)
79 __page_cache_release(page
);
80 mem_cgroup_uncharge(page
);
81 free_unref_page(page
);
84 static void __put_compound_page(struct page
*page
)
86 compound_page_dtor
*dtor
;
89 * __page_cache_release() is supposed to be called for thp, not for
90 * hugetlb. This is because hugetlb page does never have PageLRU set
91 * (it's never listed to any LRU lists) and no memcg routines should
92 * be called for hugetlb (it has a separate hugetlb_cgroup.)
95 __page_cache_release(page
);
96 dtor
= get_compound_page_dtor(page
);
100 void __put_page(struct page
*page
)
102 if (is_zone_device_page(page
)) {
103 put_dev_pagemap(page
->pgmap
);
106 * The page belongs to the device that created pgmap. Do
107 * not return it to page allocator.
112 if (unlikely(PageCompound(page
)))
113 __put_compound_page(page
);
115 __put_single_page(page
);
117 EXPORT_SYMBOL(__put_page
);
120 * put_pages_list() - release a list of pages
121 * @pages: list of pages threaded on page->lru
123 * Release a list of pages which are strung together on page.lru. Currently
124 * used by read_cache_pages() and related error recovery code.
126 void put_pages_list(struct list_head
*pages
)
128 while (!list_empty(pages
)) {
131 victim
= lru_to_page(pages
);
132 list_del(&victim
->lru
);
136 EXPORT_SYMBOL(put_pages_list
);
139 * get_kernel_pages() - pin kernel pages in memory
140 * @kiov: An array of struct kvec structures
141 * @nr_segs: number of segments to pin
142 * @write: pinning for read/write, currently ignored
143 * @pages: array that receives pointers to the pages pinned.
144 * Should be at least nr_segs long.
146 * Returns number of pages pinned. This may be fewer than the number
147 * requested. If nr_pages is 0 or negative, returns 0. If no pages
148 * were pinned, returns -errno. Each page returned must be released
149 * with a put_page() call when it is finished with.
151 int get_kernel_pages(const struct kvec
*kiov
, int nr_segs
, int write
,
156 for (seg
= 0; seg
< nr_segs
; seg
++) {
157 if (WARN_ON(kiov
[seg
].iov_len
!= PAGE_SIZE
))
160 pages
[seg
] = kmap_to_page(kiov
[seg
].iov_base
);
161 get_page(pages
[seg
]);
166 EXPORT_SYMBOL_GPL(get_kernel_pages
);
169 * get_kernel_page() - pin a kernel page in memory
170 * @start: starting kernel address
171 * @write: pinning for read/write, currently ignored
172 * @pages: array that receives pointer to the page pinned.
173 * Must be at least nr_segs long.
175 * Returns 1 if page is pinned. If the page was not pinned, returns
176 * -errno. The page returned must be released with a put_page() call
177 * when it is finished with.
179 int get_kernel_page(unsigned long start
, int write
, struct page
**pages
)
181 const struct kvec kiov
= {
182 .iov_base
= (void *)start
,
186 return get_kernel_pages(&kiov
, 1, write
, pages
);
188 EXPORT_SYMBOL_GPL(get_kernel_page
);
190 static void pagevec_lru_move_fn(struct pagevec
*pvec
,
191 void (*move_fn
)(struct page
*page
, struct lruvec
*lruvec
, void *arg
),
195 struct pglist_data
*pgdat
= NULL
;
196 struct lruvec
*lruvec
;
197 unsigned long flags
= 0;
199 for (i
= 0; i
< pagevec_count(pvec
); i
++) {
200 struct page
*page
= pvec
->pages
[i
];
201 struct pglist_data
*pagepgdat
= page_pgdat(page
);
203 if (pagepgdat
!= pgdat
) {
205 spin_unlock_irqrestore(&pgdat
->lru_lock
, flags
);
207 spin_lock_irqsave(&pgdat
->lru_lock
, flags
);
210 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
211 (*move_fn
)(page
, lruvec
, arg
);
214 spin_unlock_irqrestore(&pgdat
->lru_lock
, flags
);
215 release_pages(pvec
->pages
, pvec
->nr
);
216 pagevec_reinit(pvec
);
219 static void pagevec_move_tail_fn(struct page
*page
, struct lruvec
*lruvec
,
224 if (PageLRU(page
) && !PageUnevictable(page
)) {
225 del_page_from_lru_list(page
, lruvec
, page_lru(page
));
226 ClearPageActive(page
);
227 add_page_to_lru_list_tail(page
, lruvec
, page_lru(page
));
233 * pagevec_move_tail() must be called with IRQ disabled.
234 * Otherwise this may cause nasty races.
236 static void pagevec_move_tail(struct pagevec
*pvec
)
240 pagevec_lru_move_fn(pvec
, pagevec_move_tail_fn
, &pgmoved
);
241 __count_vm_events(PGROTATED
, pgmoved
);
245 * Writeback is about to end against a page which has been marked for immediate
246 * reclaim. If it still appears to be reclaimable, move it to the tail of the
249 void rotate_reclaimable_page(struct page
*page
)
251 if (!PageLocked(page
) && !PageDirty(page
) &&
252 !PageUnevictable(page
) && PageLRU(page
)) {
253 struct pagevec
*pvec
;
257 local_irq_save(flags
);
258 pvec
= this_cpu_ptr(&lru_rotate_pvecs
);
259 if (!pagevec_add(pvec
, page
) || PageCompound(page
))
260 pagevec_move_tail(pvec
);
261 local_irq_restore(flags
);
265 static void update_page_reclaim_stat(struct lruvec
*lruvec
,
266 int file
, int rotated
)
268 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
270 reclaim_stat
->recent_scanned
[file
]++;
272 reclaim_stat
->recent_rotated
[file
]++;
275 static void __activate_page(struct page
*page
, struct lruvec
*lruvec
,
278 if (PageLRU(page
) && !PageActive(page
) && !PageUnevictable(page
)) {
279 int file
= page_is_file_lru(page
);
280 int lru
= page_lru_base_type(page
);
282 del_page_from_lru_list(page
, lruvec
, lru
);
285 add_page_to_lru_list(page
, lruvec
, lru
);
286 trace_mm_lru_activate(page
);
288 __count_vm_event(PGACTIVATE
);
289 update_page_reclaim_stat(lruvec
, file
, 1);
294 static void activate_page_drain(int cpu
)
296 struct pagevec
*pvec
= &per_cpu(activate_page_pvecs
, cpu
);
298 if (pagevec_count(pvec
))
299 pagevec_lru_move_fn(pvec
, __activate_page
, NULL
);
302 static bool need_activate_page_drain(int cpu
)
304 return pagevec_count(&per_cpu(activate_page_pvecs
, cpu
)) != 0;
307 void activate_page(struct page
*page
)
309 page
= compound_head(page
);
310 if (PageLRU(page
) && !PageActive(page
) && !PageUnevictable(page
)) {
311 struct pagevec
*pvec
= &get_cpu_var(activate_page_pvecs
);
314 if (!pagevec_add(pvec
, page
) || PageCompound(page
))
315 pagevec_lru_move_fn(pvec
, __activate_page
, NULL
);
316 put_cpu_var(activate_page_pvecs
);
321 static inline void activate_page_drain(int cpu
)
325 void activate_page(struct page
*page
)
327 pg_data_t
*pgdat
= page_pgdat(page
);
329 page
= compound_head(page
);
330 spin_lock_irq(&pgdat
->lru_lock
);
331 __activate_page(page
, mem_cgroup_page_lruvec(page
, pgdat
), NULL
);
332 spin_unlock_irq(&pgdat
->lru_lock
);
336 static void __lru_cache_activate_page(struct page
*page
)
338 struct pagevec
*pvec
= &get_cpu_var(lru_add_pvec
);
342 * Search backwards on the optimistic assumption that the page being
343 * activated has just been added to this pagevec. Note that only
344 * the local pagevec is examined as a !PageLRU page could be in the
345 * process of being released, reclaimed, migrated or on a remote
346 * pagevec that is currently being drained. Furthermore, marking
347 * a remote pagevec's page PageActive potentially hits a race where
348 * a page is marked PageActive just after it is added to the inactive
349 * list causing accounting errors and BUG_ON checks to trigger.
351 for (i
= pagevec_count(pvec
) - 1; i
>= 0; i
--) {
352 struct page
*pagevec_page
= pvec
->pages
[i
];
354 if (pagevec_page
== page
) {
360 put_cpu_var(lru_add_pvec
);
364 * Mark a page as having seen activity.
366 * inactive,unreferenced -> inactive,referenced
367 * inactive,referenced -> active,unreferenced
368 * active,unreferenced -> active,referenced
370 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
371 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
373 void mark_page_accessed(struct page
*page
)
375 page
= compound_head(page
);
377 if (!PageReferenced(page
)) {
378 SetPageReferenced(page
);
379 } else if (PageUnevictable(page
)) {
381 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
382 * this list is never rotated or maintained, so marking an
383 * evictable page accessed has no effect.
385 } else if (!PageActive(page
)) {
387 * If the page is on the LRU, queue it for activation via
388 * activate_page_pvecs. Otherwise, assume the page is on a
389 * pagevec, mark it active and it'll be moved to the active
390 * LRU on the next drain.
395 __lru_cache_activate_page(page
);
396 ClearPageReferenced(page
);
397 if (page_is_file_lru(page
))
398 workingset_activation(page
);
400 if (page_is_idle(page
))
401 clear_page_idle(page
);
403 EXPORT_SYMBOL(mark_page_accessed
);
405 static void __lru_cache_add(struct page
*page
)
407 struct pagevec
*pvec
= &get_cpu_var(lru_add_pvec
);
410 if (!pagevec_add(pvec
, page
) || PageCompound(page
))
411 __pagevec_lru_add(pvec
);
412 put_cpu_var(lru_add_pvec
);
416 * lru_cache_add_anon - add a page to the page lists
417 * @page: the page to add
419 void lru_cache_add_anon(struct page
*page
)
421 if (PageActive(page
))
422 ClearPageActive(page
);
423 __lru_cache_add(page
);
426 void lru_cache_add_file(struct page
*page
)
428 if (PageActive(page
))
429 ClearPageActive(page
);
430 __lru_cache_add(page
);
432 EXPORT_SYMBOL(lru_cache_add_file
);
435 * lru_cache_add - add a page to a page list
436 * @page: the page to be added to the LRU.
438 * Queue the page for addition to the LRU via pagevec. The decision on whether
439 * to add the page to the [in]active [file|anon] list is deferred until the
440 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
441 * have the page added to the active list using mark_page_accessed().
443 void lru_cache_add(struct page
*page
)
445 VM_BUG_ON_PAGE(PageActive(page
) && PageUnevictable(page
), page
);
446 VM_BUG_ON_PAGE(PageLRU(page
), page
);
447 __lru_cache_add(page
);
451 * lru_cache_add_active_or_unevictable
452 * @page: the page to be added to LRU
453 * @vma: vma in which page is mapped for determining reclaimability
455 * Place @page on the active or unevictable LRU list, depending on its
456 * evictability. Note that if the page is not evictable, it goes
457 * directly back onto it's zone's unevictable list, it does NOT use a
460 void lru_cache_add_active_or_unevictable(struct page
*page
,
461 struct vm_area_struct
*vma
)
463 VM_BUG_ON_PAGE(PageLRU(page
), page
);
465 if (likely((vma
->vm_flags
& (VM_LOCKED
| VM_SPECIAL
)) != VM_LOCKED
))
467 else if (!TestSetPageMlocked(page
)) {
469 * We use the irq-unsafe __mod_zone_page_stat because this
470 * counter is not modified from interrupt context, and the pte
471 * lock is held(spinlock), which implies preemption disabled.
473 __mod_zone_page_state(page_zone(page
), NR_MLOCK
,
474 hpage_nr_pages(page
));
475 count_vm_event(UNEVICTABLE_PGMLOCKED
);
481 * If the page can not be invalidated, it is moved to the
482 * inactive list to speed up its reclaim. It is moved to the
483 * head of the list, rather than the tail, to give the flusher
484 * threads some time to write it out, as this is much more
485 * effective than the single-page writeout from reclaim.
487 * If the page isn't page_mapped and dirty/writeback, the page
488 * could reclaim asap using PG_reclaim.
490 * 1. active, mapped page -> none
491 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
492 * 3. inactive, mapped page -> none
493 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
494 * 5. inactive, clean -> inactive, tail
497 * In 4, why it moves inactive's head, the VM expects the page would
498 * be write it out by flusher threads as this is much more effective
499 * than the single-page writeout from reclaim.
501 static void lru_deactivate_file_fn(struct page
*page
, struct lruvec
*lruvec
,
510 if (PageUnevictable(page
))
513 /* Some processes are using the page */
514 if (page_mapped(page
))
517 active
= PageActive(page
);
518 file
= page_is_file_lru(page
);
519 lru
= page_lru_base_type(page
);
521 del_page_from_lru_list(page
, lruvec
, lru
+ active
);
522 ClearPageActive(page
);
523 ClearPageReferenced(page
);
525 if (PageWriteback(page
) || PageDirty(page
)) {
527 * PG_reclaim could be raced with end_page_writeback
528 * It can make readahead confusing. But race window
529 * is _really_ small and it's non-critical problem.
531 add_page_to_lru_list(page
, lruvec
, lru
);
532 SetPageReclaim(page
);
535 * The page's writeback ends up during pagevec
536 * We moves tha page into tail of inactive.
538 add_page_to_lru_list_tail(page
, lruvec
, lru
);
539 __count_vm_event(PGROTATED
);
543 __count_vm_event(PGDEACTIVATE
);
544 update_page_reclaim_stat(lruvec
, file
, 0);
547 static void lru_deactivate_fn(struct page
*page
, struct lruvec
*lruvec
,
550 if (PageLRU(page
) && PageActive(page
) && !PageUnevictable(page
)) {
551 int file
= page_is_file_lru(page
);
552 int lru
= page_lru_base_type(page
);
554 del_page_from_lru_list(page
, lruvec
, lru
+ LRU_ACTIVE
);
555 ClearPageActive(page
);
556 ClearPageReferenced(page
);
557 add_page_to_lru_list(page
, lruvec
, lru
);
559 __count_vm_events(PGDEACTIVATE
, hpage_nr_pages(page
));
560 update_page_reclaim_stat(lruvec
, file
, 0);
564 static void lru_lazyfree_fn(struct page
*page
, struct lruvec
*lruvec
,
567 if (PageLRU(page
) && PageAnon(page
) && PageSwapBacked(page
) &&
568 !PageSwapCache(page
) && !PageUnevictable(page
)) {
569 bool active
= PageActive(page
);
571 del_page_from_lru_list(page
, lruvec
,
572 LRU_INACTIVE_ANON
+ active
);
573 ClearPageActive(page
);
574 ClearPageReferenced(page
);
576 * Lazyfree pages are clean anonymous pages. They have
577 * PG_swapbacked flag cleared, to distinguish them from normal
580 ClearPageSwapBacked(page
);
581 add_page_to_lru_list(page
, lruvec
, LRU_INACTIVE_FILE
);
583 __count_vm_events(PGLAZYFREE
, hpage_nr_pages(page
));
584 count_memcg_page_event(page
, PGLAZYFREE
);
585 update_page_reclaim_stat(lruvec
, 1, 0);
590 * Drain pages out of the cpu's pagevecs.
591 * Either "cpu" is the current CPU, and preemption has already been
592 * disabled; or "cpu" is being hot-unplugged, and is already dead.
594 void lru_add_drain_cpu(int cpu
)
596 struct pagevec
*pvec
= &per_cpu(lru_add_pvec
, cpu
);
598 if (pagevec_count(pvec
))
599 __pagevec_lru_add(pvec
);
601 pvec
= &per_cpu(lru_rotate_pvecs
, cpu
);
602 if (pagevec_count(pvec
)) {
605 /* No harm done if a racing interrupt already did this */
606 local_irq_save(flags
);
607 pagevec_move_tail(pvec
);
608 local_irq_restore(flags
);
611 pvec
= &per_cpu(lru_deactivate_file_pvecs
, cpu
);
612 if (pagevec_count(pvec
))
613 pagevec_lru_move_fn(pvec
, lru_deactivate_file_fn
, NULL
);
615 pvec
= &per_cpu(lru_deactivate_pvecs
, cpu
);
616 if (pagevec_count(pvec
))
617 pagevec_lru_move_fn(pvec
, lru_deactivate_fn
, NULL
);
619 pvec
= &per_cpu(lru_lazyfree_pvecs
, cpu
);
620 if (pagevec_count(pvec
))
621 pagevec_lru_move_fn(pvec
, lru_lazyfree_fn
, NULL
);
623 activate_page_drain(cpu
);
627 * deactivate_file_page - forcefully deactivate a file page
628 * @page: page to deactivate
630 * This function hints the VM that @page is a good reclaim candidate,
631 * for example if its invalidation fails due to the page being dirty
632 * or under writeback.
634 void deactivate_file_page(struct page
*page
)
637 * In a workload with many unevictable page such as mprotect,
638 * unevictable page deactivation for accelerating reclaim is pointless.
640 if (PageUnevictable(page
))
643 if (likely(get_page_unless_zero(page
))) {
644 struct pagevec
*pvec
= &get_cpu_var(lru_deactivate_file_pvecs
);
646 if (!pagevec_add(pvec
, page
) || PageCompound(page
))
647 pagevec_lru_move_fn(pvec
, lru_deactivate_file_fn
, NULL
);
648 put_cpu_var(lru_deactivate_file_pvecs
);
653 * deactivate_page - deactivate a page
654 * @page: page to deactivate
656 * deactivate_page() moves @page to the inactive list if @page was on the active
657 * list and was not an unevictable page. This is done to accelerate the reclaim
660 void deactivate_page(struct page
*page
)
662 if (PageLRU(page
) && PageActive(page
) && !PageUnevictable(page
)) {
663 struct pagevec
*pvec
= &get_cpu_var(lru_deactivate_pvecs
);
666 if (!pagevec_add(pvec
, page
) || PageCompound(page
))
667 pagevec_lru_move_fn(pvec
, lru_deactivate_fn
, NULL
);
668 put_cpu_var(lru_deactivate_pvecs
);
673 * mark_page_lazyfree - make an anon page lazyfree
674 * @page: page to deactivate
676 * mark_page_lazyfree() moves @page to the inactive file list.
677 * This is done to accelerate the reclaim of @page.
679 void mark_page_lazyfree(struct page
*page
)
681 if (PageLRU(page
) && PageAnon(page
) && PageSwapBacked(page
) &&
682 !PageSwapCache(page
) && !PageUnevictable(page
)) {
683 struct pagevec
*pvec
= &get_cpu_var(lru_lazyfree_pvecs
);
686 if (!pagevec_add(pvec
, page
) || PageCompound(page
))
687 pagevec_lru_move_fn(pvec
, lru_lazyfree_fn
, NULL
);
688 put_cpu_var(lru_lazyfree_pvecs
);
692 void lru_add_drain(void)
694 lru_add_drain_cpu(get_cpu());
700 static DEFINE_PER_CPU(struct work_struct
, lru_add_drain_work
);
702 static void lru_add_drain_per_cpu(struct work_struct
*dummy
)
708 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
709 * kworkers being shut down before our page_alloc_cpu_dead callback is
710 * executed on the offlined cpu.
711 * Calling this function with cpu hotplug locks held can actually lead
712 * to obscure indirect dependencies via WQ context.
714 void lru_add_drain_all(void)
716 static seqcount_t seqcount
= SEQCNT_ZERO(seqcount
);
717 static DEFINE_MUTEX(lock
);
718 static struct cpumask has_work
;
722 * Make sure nobody triggers this path before mm_percpu_wq is fully
725 if (WARN_ON(!mm_percpu_wq
))
728 seq
= raw_read_seqcount_latch(&seqcount
);
733 * Piggyback on drain started and finished while we waited for lock:
734 * all pages pended at the time of our enter were drained from vectors.
736 if (__read_seqcount_retry(&seqcount
, seq
))
739 raw_write_seqcount_latch(&seqcount
);
741 cpumask_clear(&has_work
);
743 for_each_online_cpu(cpu
) {
744 struct work_struct
*work
= &per_cpu(lru_add_drain_work
, cpu
);
746 if (pagevec_count(&per_cpu(lru_add_pvec
, cpu
)) ||
747 pagevec_count(&per_cpu(lru_rotate_pvecs
, cpu
)) ||
748 pagevec_count(&per_cpu(lru_deactivate_file_pvecs
, cpu
)) ||
749 pagevec_count(&per_cpu(lru_deactivate_pvecs
, cpu
)) ||
750 pagevec_count(&per_cpu(lru_lazyfree_pvecs
, cpu
)) ||
751 need_activate_page_drain(cpu
)) {
752 INIT_WORK(work
, lru_add_drain_per_cpu
);
753 queue_work_on(cpu
, mm_percpu_wq
, work
);
754 cpumask_set_cpu(cpu
, &has_work
);
758 for_each_cpu(cpu
, &has_work
)
759 flush_work(&per_cpu(lru_add_drain_work
, cpu
));
765 void lru_add_drain_all(void)
772 * release_pages - batched put_page()
773 * @pages: array of pages to release
774 * @nr: number of pages
776 * Decrement the reference count on all the pages in @pages. If it
777 * fell to zero, remove the page from the LRU and free it.
779 void release_pages(struct page
**pages
, int nr
)
782 LIST_HEAD(pages_to_free
);
783 struct pglist_data
*locked_pgdat
= NULL
;
784 struct lruvec
*lruvec
;
785 unsigned long uninitialized_var(flags
);
786 unsigned int uninitialized_var(lock_batch
);
788 for (i
= 0; i
< nr
; i
++) {
789 struct page
*page
= pages
[i
];
792 * Make sure the IRQ-safe lock-holding time does not get
793 * excessive with a continuous string of pages from the
794 * same pgdat. The lock is held only if pgdat != NULL.
796 if (locked_pgdat
&& ++lock_batch
== SWAP_CLUSTER_MAX
) {
797 spin_unlock_irqrestore(&locked_pgdat
->lru_lock
, flags
);
801 if (is_huge_zero_page(page
))
804 if (is_zone_device_page(page
)) {
806 spin_unlock_irqrestore(&locked_pgdat
->lru_lock
,
811 * ZONE_DEVICE pages that return 'false' from
812 * put_devmap_managed_page() do not require special
813 * processing, and instead, expect a call to
814 * put_page_testzero().
816 if (page_is_devmap_managed(page
)) {
817 put_devmap_managed_page(page
);
822 page
= compound_head(page
);
823 if (!put_page_testzero(page
))
826 if (PageCompound(page
)) {
828 spin_unlock_irqrestore(&locked_pgdat
->lru_lock
, flags
);
831 __put_compound_page(page
);
836 struct pglist_data
*pgdat
= page_pgdat(page
);
838 if (pgdat
!= locked_pgdat
) {
840 spin_unlock_irqrestore(&locked_pgdat
->lru_lock
,
843 locked_pgdat
= pgdat
;
844 spin_lock_irqsave(&locked_pgdat
->lru_lock
, flags
);
847 lruvec
= mem_cgroup_page_lruvec(page
, locked_pgdat
);
848 VM_BUG_ON_PAGE(!PageLRU(page
), page
);
849 __ClearPageLRU(page
);
850 del_page_from_lru_list(page
, lruvec
, page_off_lru(page
));
853 /* Clear Active bit in case of parallel mark_page_accessed */
854 __ClearPageActive(page
);
855 __ClearPageWaiters(page
);
857 list_add(&page
->lru
, &pages_to_free
);
860 spin_unlock_irqrestore(&locked_pgdat
->lru_lock
, flags
);
862 mem_cgroup_uncharge_list(&pages_to_free
);
863 free_unref_page_list(&pages_to_free
);
865 EXPORT_SYMBOL(release_pages
);
868 * The pages which we're about to release may be in the deferred lru-addition
869 * queues. That would prevent them from really being freed right now. That's
870 * OK from a correctness point of view but is inefficient - those pages may be
871 * cache-warm and we want to give them back to the page allocator ASAP.
873 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
874 * and __pagevec_lru_add_active() call release_pages() directly to avoid
877 void __pagevec_release(struct pagevec
*pvec
)
879 if (!pvec
->percpu_pvec_drained
) {
881 pvec
->percpu_pvec_drained
= true;
883 release_pages(pvec
->pages
, pagevec_count(pvec
));
884 pagevec_reinit(pvec
);
886 EXPORT_SYMBOL(__pagevec_release
);
888 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
889 /* used by __split_huge_page_refcount() */
890 void lru_add_page_tail(struct page
*page
, struct page
*page_tail
,
891 struct lruvec
*lruvec
, struct list_head
*list
)
895 VM_BUG_ON_PAGE(!PageHead(page
), page
);
896 VM_BUG_ON_PAGE(PageCompound(page_tail
), page
);
897 VM_BUG_ON_PAGE(PageLRU(page_tail
), page
);
898 lockdep_assert_held(&lruvec_pgdat(lruvec
)->lru_lock
);
901 SetPageLRU(page_tail
);
903 if (likely(PageLRU(page
)))
904 list_add_tail(&page_tail
->lru
, &page
->lru
);
906 /* page reclaim is reclaiming a huge page */
908 list_add_tail(&page_tail
->lru
, list
);
911 * Head page has not yet been counted, as an hpage,
912 * so we must account for each subpage individually.
914 * Put page_tail on the list at the correct position
915 * so they all end up in order.
917 add_page_to_lru_list_tail(page_tail
, lruvec
,
918 page_lru(page_tail
));
921 if (!PageUnevictable(page
))
922 update_page_reclaim_stat(lruvec
, file
, PageActive(page_tail
));
924 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
926 static void __pagevec_lru_add_fn(struct page
*page
, struct lruvec
*lruvec
,
930 int was_unevictable
= TestClearPageUnevictable(page
);
932 VM_BUG_ON_PAGE(PageLRU(page
), page
);
935 * Page becomes evictable in two ways:
936 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
937 * 2) Before acquiring LRU lock to put the page to correct LRU and then
938 * a) do PageLRU check with lock [check_move_unevictable_pages]
939 * b) do PageLRU check before lock [clear_page_mlock]
941 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
942 * following strict ordering:
944 * #0: __pagevec_lru_add_fn #1: clear_page_mlock
946 * SetPageLRU() TestClearPageMlocked()
947 * smp_mb() // explicit ordering // above provides strict
949 * PageMlocked() PageLRU()
952 * if '#1' does not observe setting of PG_lru by '#0' and fails
953 * isolation, the explicit barrier will make sure that page_evictable
954 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
955 * can be reordered after PageMlocked check and can make '#1' to fail
956 * the isolation of the page whose Mlocked bit is cleared (#0 is also
957 * looking at the same page) and the evictable page will be stranded
958 * in an unevictable LRU.
961 smp_mb__after_atomic();
963 if (page_evictable(page
)) {
964 lru
= page_lru(page
);
965 update_page_reclaim_stat(lruvec
, page_is_file_lru(page
),
968 count_vm_event(UNEVICTABLE_PGRESCUED
);
970 lru
= LRU_UNEVICTABLE
;
971 ClearPageActive(page
);
972 SetPageUnevictable(page
);
973 if (!was_unevictable
)
974 count_vm_event(UNEVICTABLE_PGCULLED
);
977 add_page_to_lru_list(page
, lruvec
, lru
);
978 trace_mm_lru_insertion(page
, lru
);
982 * Add the passed pages to the LRU, then drop the caller's refcount
983 * on them. Reinitialises the caller's pagevec.
985 void __pagevec_lru_add(struct pagevec
*pvec
)
987 pagevec_lru_move_fn(pvec
, __pagevec_lru_add_fn
, NULL
);
991 * pagevec_lookup_entries - gang pagecache lookup
992 * @pvec: Where the resulting entries are placed
993 * @mapping: The address_space to search
994 * @start: The starting entry index
995 * @nr_entries: The maximum number of pages
996 * @indices: The cache indices corresponding to the entries in @pvec
998 * pagevec_lookup_entries() will search for and return a group of up
999 * to @nr_pages pages and shadow entries in the mapping. All
1000 * entries are placed in @pvec. pagevec_lookup_entries() takes a
1001 * reference against actual pages in @pvec.
1003 * The search returns a group of mapping-contiguous entries with
1004 * ascending indexes. There may be holes in the indices due to
1005 * not-present entries.
1007 * Only one subpage of a Transparent Huge Page is returned in one call:
1008 * allowing truncate_inode_pages_range() to evict the whole THP without
1009 * cycling through a pagevec of extra references.
1011 * pagevec_lookup_entries() returns the number of entries which were
1014 unsigned pagevec_lookup_entries(struct pagevec
*pvec
,
1015 struct address_space
*mapping
,
1016 pgoff_t start
, unsigned nr_entries
,
1019 pvec
->nr
= find_get_entries(mapping
, start
, nr_entries
,
1020 pvec
->pages
, indices
);
1021 return pagevec_count(pvec
);
1025 * pagevec_remove_exceptionals - pagevec exceptionals pruning
1026 * @pvec: The pagevec to prune
1028 * pagevec_lookup_entries() fills both pages and exceptional radix
1029 * tree entries into the pagevec. This function prunes all
1030 * exceptionals from @pvec without leaving holes, so that it can be
1031 * passed on to page-only pagevec operations.
1033 void pagevec_remove_exceptionals(struct pagevec
*pvec
)
1037 for (i
= 0, j
= 0; i
< pagevec_count(pvec
); i
++) {
1038 struct page
*page
= pvec
->pages
[i
];
1039 if (!xa_is_value(page
))
1040 pvec
->pages
[j
++] = page
;
1046 * pagevec_lookup_range - gang pagecache lookup
1047 * @pvec: Where the resulting pages are placed
1048 * @mapping: The address_space to search
1049 * @start: The starting page index
1050 * @end: The final page index
1052 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
1053 * pages in the mapping starting from index @start and upto index @end
1054 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a
1055 * reference against the pages in @pvec.
1057 * The search returns a group of mapping-contiguous pages with ascending
1058 * indexes. There may be holes in the indices due to not-present pages. We
1059 * also update @start to index the next page for the traversal.
1061 * pagevec_lookup_range() returns the number of pages which were found. If this
1062 * number is smaller than PAGEVEC_SIZE, the end of specified range has been
1065 unsigned pagevec_lookup_range(struct pagevec
*pvec
,
1066 struct address_space
*mapping
, pgoff_t
*start
, pgoff_t end
)
1068 pvec
->nr
= find_get_pages_range(mapping
, start
, end
, PAGEVEC_SIZE
,
1070 return pagevec_count(pvec
);
1072 EXPORT_SYMBOL(pagevec_lookup_range
);
1074 unsigned pagevec_lookup_range_tag(struct pagevec
*pvec
,
1075 struct address_space
*mapping
, pgoff_t
*index
, pgoff_t end
,
1078 pvec
->nr
= find_get_pages_range_tag(mapping
, index
, end
, tag
,
1079 PAGEVEC_SIZE
, pvec
->pages
);
1080 return pagevec_count(pvec
);
1082 EXPORT_SYMBOL(pagevec_lookup_range_tag
);
1084 unsigned pagevec_lookup_range_nr_tag(struct pagevec
*pvec
,
1085 struct address_space
*mapping
, pgoff_t
*index
, pgoff_t end
,
1086 xa_mark_t tag
, unsigned max_pages
)
1088 pvec
->nr
= find_get_pages_range_tag(mapping
, index
, end
, tag
,
1089 min_t(unsigned int, max_pages
, PAGEVEC_SIZE
), pvec
->pages
);
1090 return pagevec_count(pvec
);
1092 EXPORT_SYMBOL(pagevec_lookup_range_nr_tag
);
1094 * Perform any setup for the swap system
1096 void __init
swap_setup(void)
1098 unsigned long megs
= totalram_pages() >> (20 - PAGE_SHIFT
);
1100 /* Use a smaller cluster for small-memory machines */
1106 * Right now other parts of the system means that we
1107 * _really_ don't want to cluster much more
1111 #ifdef CONFIG_DEV_PAGEMAP_OPS
1112 void put_devmap_managed_page(struct page
*page
)
1116 if (WARN_ON_ONCE(!page_is_devmap_managed(page
)))
1119 count
= page_ref_dec_return(page
);
1122 * devmap page refcounts are 1-based, rather than 0-based: if
1123 * refcount is 1, then the page is free and the refcount is
1124 * stable because nobody holds a reference on the page.
1127 free_devmap_managed_page(page
);
1131 EXPORT_SYMBOL(put_devmap_managed_page
);