Linux 5.7.7
[linux/fpc-iii.git] / mm / truncate.c
blobdd9ebc1da35664d04dd508539b34fb96dc764f28
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/truncate.c - code for taking down pages from address_spaces
5 * Copyright (C) 2002, Linus Torvalds
7 * 10Sep2002 Andrew Morton
8 * Initial version.
9 */
11 #include <linux/kernel.h>
12 #include <linux/backing-dev.h>
13 #include <linux/dax.h>
14 #include <linux/gfp.h>
15 #include <linux/mm.h>
16 #include <linux/swap.h>
17 #include <linux/export.h>
18 #include <linux/pagemap.h>
19 #include <linux/highmem.h>
20 #include <linux/pagevec.h>
21 #include <linux/task_io_accounting_ops.h>
22 #include <linux/buffer_head.h> /* grr. try_to_release_page,
23 do_invalidatepage */
24 #include <linux/shmem_fs.h>
25 #include <linux/cleancache.h>
26 #include <linux/rmap.h>
27 #include "internal.h"
30 * Regular page slots are stabilized by the page lock even without the tree
31 * itself locked. These unlocked entries need verification under the tree
32 * lock.
34 static inline void __clear_shadow_entry(struct address_space *mapping,
35 pgoff_t index, void *entry)
37 XA_STATE(xas, &mapping->i_pages, index);
39 xas_set_update(&xas, workingset_update_node);
40 if (xas_load(&xas) != entry)
41 return;
42 xas_store(&xas, NULL);
43 mapping->nrexceptional--;
46 static void clear_shadow_entry(struct address_space *mapping, pgoff_t index,
47 void *entry)
49 xa_lock_irq(&mapping->i_pages);
50 __clear_shadow_entry(mapping, index, entry);
51 xa_unlock_irq(&mapping->i_pages);
55 * Unconditionally remove exceptional entries. Usually called from truncate
56 * path. Note that the pagevec may be altered by this function by removing
57 * exceptional entries similar to what pagevec_remove_exceptionals does.
59 static void truncate_exceptional_pvec_entries(struct address_space *mapping,
60 struct pagevec *pvec, pgoff_t *indices,
61 pgoff_t end)
63 int i, j;
64 bool dax, lock;
66 /* Handled by shmem itself */
67 if (shmem_mapping(mapping))
68 return;
70 for (j = 0; j < pagevec_count(pvec); j++)
71 if (xa_is_value(pvec->pages[j]))
72 break;
74 if (j == pagevec_count(pvec))
75 return;
77 dax = dax_mapping(mapping);
78 lock = !dax && indices[j] < end;
79 if (lock)
80 xa_lock_irq(&mapping->i_pages);
82 for (i = j; i < pagevec_count(pvec); i++) {
83 struct page *page = pvec->pages[i];
84 pgoff_t index = indices[i];
86 if (!xa_is_value(page)) {
87 pvec->pages[j++] = page;
88 continue;
91 if (index >= end)
92 continue;
94 if (unlikely(dax)) {
95 dax_delete_mapping_entry(mapping, index);
96 continue;
99 __clear_shadow_entry(mapping, index, page);
102 if (lock)
103 xa_unlock_irq(&mapping->i_pages);
104 pvec->nr = j;
108 * Invalidate exceptional entry if easily possible. This handles exceptional
109 * entries for invalidate_inode_pages().
111 static int invalidate_exceptional_entry(struct address_space *mapping,
112 pgoff_t index, void *entry)
114 /* Handled by shmem itself, or for DAX we do nothing. */
115 if (shmem_mapping(mapping) || dax_mapping(mapping))
116 return 1;
117 clear_shadow_entry(mapping, index, entry);
118 return 1;
122 * Invalidate exceptional entry if clean. This handles exceptional entries for
123 * invalidate_inode_pages2() so for DAX it evicts only clean entries.
125 static int invalidate_exceptional_entry2(struct address_space *mapping,
126 pgoff_t index, void *entry)
128 /* Handled by shmem itself */
129 if (shmem_mapping(mapping))
130 return 1;
131 if (dax_mapping(mapping))
132 return dax_invalidate_mapping_entry_sync(mapping, index);
133 clear_shadow_entry(mapping, index, entry);
134 return 1;
138 * do_invalidatepage - invalidate part or all of a page
139 * @page: the page which is affected
140 * @offset: start of the range to invalidate
141 * @length: length of the range to invalidate
143 * do_invalidatepage() is called when all or part of the page has become
144 * invalidated by a truncate operation.
146 * do_invalidatepage() does not have to release all buffers, but it must
147 * ensure that no dirty buffer is left outside @offset and that no I/O
148 * is underway against any of the blocks which are outside the truncation
149 * point. Because the caller is about to free (and possibly reuse) those
150 * blocks on-disk.
152 void do_invalidatepage(struct page *page, unsigned int offset,
153 unsigned int length)
155 void (*invalidatepage)(struct page *, unsigned int, unsigned int);
157 invalidatepage = page->mapping->a_ops->invalidatepage;
158 #ifdef CONFIG_BLOCK
159 if (!invalidatepage)
160 invalidatepage = block_invalidatepage;
161 #endif
162 if (invalidatepage)
163 (*invalidatepage)(page, offset, length);
167 * If truncate cannot remove the fs-private metadata from the page, the page
168 * becomes orphaned. It will be left on the LRU and may even be mapped into
169 * user pagetables if we're racing with filemap_fault().
171 * We need to bale out if page->mapping is no longer equal to the original
172 * mapping. This happens a) when the VM reclaimed the page while we waited on
173 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
174 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
176 static void
177 truncate_cleanup_page(struct address_space *mapping, struct page *page)
179 if (page_mapped(page)) {
180 pgoff_t nr = PageTransHuge(page) ? HPAGE_PMD_NR : 1;
181 unmap_mapping_pages(mapping, page->index, nr, false);
184 if (page_has_private(page))
185 do_invalidatepage(page, 0, PAGE_SIZE);
188 * Some filesystems seem to re-dirty the page even after
189 * the VM has canceled the dirty bit (eg ext3 journaling).
190 * Hence dirty accounting check is placed after invalidation.
192 cancel_dirty_page(page);
193 ClearPageMappedToDisk(page);
197 * This is for invalidate_mapping_pages(). That function can be called at
198 * any time, and is not supposed to throw away dirty pages. But pages can
199 * be marked dirty at any time too, so use remove_mapping which safely
200 * discards clean, unused pages.
202 * Returns non-zero if the page was successfully invalidated.
204 static int
205 invalidate_complete_page(struct address_space *mapping, struct page *page)
207 int ret;
209 if (page->mapping != mapping)
210 return 0;
212 if (page_has_private(page) && !try_to_release_page(page, 0))
213 return 0;
215 ret = remove_mapping(mapping, page);
217 return ret;
220 int truncate_inode_page(struct address_space *mapping, struct page *page)
222 VM_BUG_ON_PAGE(PageTail(page), page);
224 if (page->mapping != mapping)
225 return -EIO;
227 truncate_cleanup_page(mapping, page);
228 delete_from_page_cache(page);
229 return 0;
233 * Used to get rid of pages on hardware memory corruption.
235 int generic_error_remove_page(struct address_space *mapping, struct page *page)
237 if (!mapping)
238 return -EINVAL;
240 * Only punch for normal data pages for now.
241 * Handling other types like directories would need more auditing.
243 if (!S_ISREG(mapping->host->i_mode))
244 return -EIO;
245 return truncate_inode_page(mapping, page);
247 EXPORT_SYMBOL(generic_error_remove_page);
250 * Safely invalidate one page from its pagecache mapping.
251 * It only drops clean, unused pages. The page must be locked.
253 * Returns 1 if the page is successfully invalidated, otherwise 0.
255 int invalidate_inode_page(struct page *page)
257 struct address_space *mapping = page_mapping(page);
258 if (!mapping)
259 return 0;
260 if (PageDirty(page) || PageWriteback(page))
261 return 0;
262 if (page_mapped(page))
263 return 0;
264 return invalidate_complete_page(mapping, page);
268 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
269 * @mapping: mapping to truncate
270 * @lstart: offset from which to truncate
271 * @lend: offset to which to truncate (inclusive)
273 * Truncate the page cache, removing the pages that are between
274 * specified offsets (and zeroing out partial pages
275 * if lstart or lend + 1 is not page aligned).
277 * Truncate takes two passes - the first pass is nonblocking. It will not
278 * block on page locks and it will not block on writeback. The second pass
279 * will wait. This is to prevent as much IO as possible in the affected region.
280 * The first pass will remove most pages, so the search cost of the second pass
281 * is low.
283 * We pass down the cache-hot hint to the page freeing code. Even if the
284 * mapping is large, it is probably the case that the final pages are the most
285 * recently touched, and freeing happens in ascending file offset order.
287 * Note that since ->invalidatepage() accepts range to invalidate
288 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
289 * page aligned properly.
291 void truncate_inode_pages_range(struct address_space *mapping,
292 loff_t lstart, loff_t lend)
294 pgoff_t start; /* inclusive */
295 pgoff_t end; /* exclusive */
296 unsigned int partial_start; /* inclusive */
297 unsigned int partial_end; /* exclusive */
298 struct pagevec pvec;
299 pgoff_t indices[PAGEVEC_SIZE];
300 pgoff_t index;
301 int i;
303 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
304 goto out;
306 /* Offsets within partial pages */
307 partial_start = lstart & (PAGE_SIZE - 1);
308 partial_end = (lend + 1) & (PAGE_SIZE - 1);
311 * 'start' and 'end' always covers the range of pages to be fully
312 * truncated. Partial pages are covered with 'partial_start' at the
313 * start of the range and 'partial_end' at the end of the range.
314 * Note that 'end' is exclusive while 'lend' is inclusive.
316 start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
317 if (lend == -1)
319 * lend == -1 indicates end-of-file so we have to set 'end'
320 * to the highest possible pgoff_t and since the type is
321 * unsigned we're using -1.
323 end = -1;
324 else
325 end = (lend + 1) >> PAGE_SHIFT;
327 pagevec_init(&pvec);
328 index = start;
329 while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
330 min(end - index, (pgoff_t)PAGEVEC_SIZE),
331 indices)) {
333 * Pagevec array has exceptional entries and we may also fail
334 * to lock some pages. So we store pages that can be deleted
335 * in a new pagevec.
337 struct pagevec locked_pvec;
339 pagevec_init(&locked_pvec);
340 for (i = 0; i < pagevec_count(&pvec); i++) {
341 struct page *page = pvec.pages[i];
343 /* We rely upon deletion not changing page->index */
344 index = indices[i];
345 if (index >= end)
346 break;
348 if (xa_is_value(page))
349 continue;
351 if (!trylock_page(page))
352 continue;
353 WARN_ON(page_to_index(page) != index);
354 if (PageWriteback(page)) {
355 unlock_page(page);
356 continue;
358 if (page->mapping != mapping) {
359 unlock_page(page);
360 continue;
362 pagevec_add(&locked_pvec, page);
364 for (i = 0; i < pagevec_count(&locked_pvec); i++)
365 truncate_cleanup_page(mapping, locked_pvec.pages[i]);
366 delete_from_page_cache_batch(mapping, &locked_pvec);
367 for (i = 0; i < pagevec_count(&locked_pvec); i++)
368 unlock_page(locked_pvec.pages[i]);
369 truncate_exceptional_pvec_entries(mapping, &pvec, indices, end);
370 pagevec_release(&pvec);
371 cond_resched();
372 index++;
374 if (partial_start) {
375 struct page *page = find_lock_page(mapping, start - 1);
376 if (page) {
377 unsigned int top = PAGE_SIZE;
378 if (start > end) {
379 /* Truncation within a single page */
380 top = partial_end;
381 partial_end = 0;
383 wait_on_page_writeback(page);
384 zero_user_segment(page, partial_start, top);
385 cleancache_invalidate_page(mapping, page);
386 if (page_has_private(page))
387 do_invalidatepage(page, partial_start,
388 top - partial_start);
389 unlock_page(page);
390 put_page(page);
393 if (partial_end) {
394 struct page *page = find_lock_page(mapping, end);
395 if (page) {
396 wait_on_page_writeback(page);
397 zero_user_segment(page, 0, partial_end);
398 cleancache_invalidate_page(mapping, page);
399 if (page_has_private(page))
400 do_invalidatepage(page, 0,
401 partial_end);
402 unlock_page(page);
403 put_page(page);
407 * If the truncation happened within a single page no pages
408 * will be released, just zeroed, so we can bail out now.
410 if (start >= end)
411 goto out;
413 index = start;
414 for ( ; ; ) {
415 cond_resched();
416 if (!pagevec_lookup_entries(&pvec, mapping, index,
417 min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) {
418 /* If all gone from start onwards, we're done */
419 if (index == start)
420 break;
421 /* Otherwise restart to make sure all gone */
422 index = start;
423 continue;
425 if (index == start && indices[0] >= end) {
426 /* All gone out of hole to be punched, we're done */
427 pagevec_remove_exceptionals(&pvec);
428 pagevec_release(&pvec);
429 break;
432 for (i = 0; i < pagevec_count(&pvec); i++) {
433 struct page *page = pvec.pages[i];
435 /* We rely upon deletion not changing page->index */
436 index = indices[i];
437 if (index >= end) {
438 /* Restart punch to make sure all gone */
439 index = start - 1;
440 break;
443 if (xa_is_value(page))
444 continue;
446 lock_page(page);
447 WARN_ON(page_to_index(page) != index);
448 wait_on_page_writeback(page);
449 truncate_inode_page(mapping, page);
450 unlock_page(page);
452 truncate_exceptional_pvec_entries(mapping, &pvec, indices, end);
453 pagevec_release(&pvec);
454 index++;
457 out:
458 cleancache_invalidate_inode(mapping);
460 EXPORT_SYMBOL(truncate_inode_pages_range);
463 * truncate_inode_pages - truncate *all* the pages from an offset
464 * @mapping: mapping to truncate
465 * @lstart: offset from which to truncate
467 * Called under (and serialised by) inode->i_mutex.
469 * Note: When this function returns, there can be a page in the process of
470 * deletion (inside __delete_from_page_cache()) in the specified range. Thus
471 * mapping->nrpages can be non-zero when this function returns even after
472 * truncation of the whole mapping.
474 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
476 truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
478 EXPORT_SYMBOL(truncate_inode_pages);
481 * truncate_inode_pages_final - truncate *all* pages before inode dies
482 * @mapping: mapping to truncate
484 * Called under (and serialized by) inode->i_mutex.
486 * Filesystems have to use this in the .evict_inode path to inform the
487 * VM that this is the final truncate and the inode is going away.
489 void truncate_inode_pages_final(struct address_space *mapping)
491 unsigned long nrexceptional;
492 unsigned long nrpages;
495 * Page reclaim can not participate in regular inode lifetime
496 * management (can't call iput()) and thus can race with the
497 * inode teardown. Tell it when the address space is exiting,
498 * so that it does not install eviction information after the
499 * final truncate has begun.
501 mapping_set_exiting(mapping);
504 * When reclaim installs eviction entries, it increases
505 * nrexceptional first, then decreases nrpages. Make sure we see
506 * this in the right order or we might miss an entry.
508 nrpages = mapping->nrpages;
509 smp_rmb();
510 nrexceptional = mapping->nrexceptional;
512 if (nrpages || nrexceptional) {
514 * As truncation uses a lockless tree lookup, cycle
515 * the tree lock to make sure any ongoing tree
516 * modification that does not see AS_EXITING is
517 * completed before starting the final truncate.
519 xa_lock_irq(&mapping->i_pages);
520 xa_unlock_irq(&mapping->i_pages);
524 * Cleancache needs notification even if there are no pages or shadow
525 * entries.
527 truncate_inode_pages(mapping, 0);
529 EXPORT_SYMBOL(truncate_inode_pages_final);
532 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
533 * @mapping: the address_space which holds the pages to invalidate
534 * @start: the offset 'from' which to invalidate
535 * @end: the offset 'to' which to invalidate (inclusive)
537 * This function only removes the unlocked pages, if you want to
538 * remove all the pages of one inode, you must call truncate_inode_pages.
540 * invalidate_mapping_pages() will not block on IO activity. It will not
541 * invalidate pages which are dirty, locked, under writeback or mapped into
542 * pagetables.
544 * Return: the number of the pages that were invalidated
546 unsigned long invalidate_mapping_pages(struct address_space *mapping,
547 pgoff_t start, pgoff_t end)
549 pgoff_t indices[PAGEVEC_SIZE];
550 struct pagevec pvec;
551 pgoff_t index = start;
552 unsigned long ret;
553 unsigned long count = 0;
554 int i;
556 pagevec_init(&pvec);
557 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
558 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
559 indices)) {
560 for (i = 0; i < pagevec_count(&pvec); i++) {
561 struct page *page = pvec.pages[i];
563 /* We rely upon deletion not changing page->index */
564 index = indices[i];
565 if (index > end)
566 break;
568 if (xa_is_value(page)) {
569 invalidate_exceptional_entry(mapping, index,
570 page);
571 continue;
574 if (!trylock_page(page))
575 continue;
577 WARN_ON(page_to_index(page) != index);
579 /* Middle of THP: skip */
580 if (PageTransTail(page)) {
581 unlock_page(page);
582 continue;
583 } else if (PageTransHuge(page)) {
584 index += HPAGE_PMD_NR - 1;
585 i += HPAGE_PMD_NR - 1;
587 * 'end' is in the middle of THP. Don't
588 * invalidate the page as the part outside of
589 * 'end' could be still useful.
591 if (index > end) {
592 unlock_page(page);
593 continue;
596 /* Take a pin outside pagevec */
597 get_page(page);
600 * Drop extra pins before trying to invalidate
601 * the huge page.
603 pagevec_remove_exceptionals(&pvec);
604 pagevec_release(&pvec);
607 ret = invalidate_inode_page(page);
608 unlock_page(page);
610 * Invalidation is a hint that the page is no longer
611 * of interest and try to speed up its reclaim.
613 if (!ret)
614 deactivate_file_page(page);
615 if (PageTransHuge(page))
616 put_page(page);
617 count += ret;
619 pagevec_remove_exceptionals(&pvec);
620 pagevec_release(&pvec);
621 cond_resched();
622 index++;
624 return count;
626 EXPORT_SYMBOL(invalidate_mapping_pages);
629 * This is like invalidate_complete_page(), except it ignores the page's
630 * refcount. We do this because invalidate_inode_pages2() needs stronger
631 * invalidation guarantees, and cannot afford to leave pages behind because
632 * shrink_page_list() has a temp ref on them, or because they're transiently
633 * sitting in the lru_cache_add() pagevecs.
635 static int
636 invalidate_complete_page2(struct address_space *mapping, struct page *page)
638 unsigned long flags;
640 if (page->mapping != mapping)
641 return 0;
643 if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
644 return 0;
646 xa_lock_irqsave(&mapping->i_pages, flags);
647 if (PageDirty(page))
648 goto failed;
650 BUG_ON(page_has_private(page));
651 __delete_from_page_cache(page, NULL);
652 xa_unlock_irqrestore(&mapping->i_pages, flags);
654 if (mapping->a_ops->freepage)
655 mapping->a_ops->freepage(page);
657 put_page(page); /* pagecache ref */
658 return 1;
659 failed:
660 xa_unlock_irqrestore(&mapping->i_pages, flags);
661 return 0;
664 static int do_launder_page(struct address_space *mapping, struct page *page)
666 if (!PageDirty(page))
667 return 0;
668 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
669 return 0;
670 return mapping->a_ops->launder_page(page);
674 * invalidate_inode_pages2_range - remove range of pages from an address_space
675 * @mapping: the address_space
676 * @start: the page offset 'from' which to invalidate
677 * @end: the page offset 'to' which to invalidate (inclusive)
679 * Any pages which are found to be mapped into pagetables are unmapped prior to
680 * invalidation.
682 * Return: -EBUSY if any pages could not be invalidated.
684 int invalidate_inode_pages2_range(struct address_space *mapping,
685 pgoff_t start, pgoff_t end)
687 pgoff_t indices[PAGEVEC_SIZE];
688 struct pagevec pvec;
689 pgoff_t index;
690 int i;
691 int ret = 0;
692 int ret2 = 0;
693 int did_range_unmap = 0;
695 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
696 goto out;
698 pagevec_init(&pvec);
699 index = start;
700 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
701 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
702 indices)) {
703 for (i = 0; i < pagevec_count(&pvec); i++) {
704 struct page *page = pvec.pages[i];
706 /* We rely upon deletion not changing page->index */
707 index = indices[i];
708 if (index > end)
709 break;
711 if (xa_is_value(page)) {
712 if (!invalidate_exceptional_entry2(mapping,
713 index, page))
714 ret = -EBUSY;
715 continue;
718 lock_page(page);
719 WARN_ON(page_to_index(page) != index);
720 if (page->mapping != mapping) {
721 unlock_page(page);
722 continue;
724 wait_on_page_writeback(page);
725 if (page_mapped(page)) {
726 if (!did_range_unmap) {
728 * Zap the rest of the file in one hit.
730 unmap_mapping_pages(mapping, index,
731 (1 + end - index), false);
732 did_range_unmap = 1;
733 } else {
735 * Just zap this page
737 unmap_mapping_pages(mapping, index,
738 1, false);
741 BUG_ON(page_mapped(page));
742 ret2 = do_launder_page(mapping, page);
743 if (ret2 == 0) {
744 if (!invalidate_complete_page2(mapping, page))
745 ret2 = -EBUSY;
747 if (ret2 < 0)
748 ret = ret2;
749 unlock_page(page);
751 pagevec_remove_exceptionals(&pvec);
752 pagevec_release(&pvec);
753 cond_resched();
754 index++;
757 * For DAX we invalidate page tables after invalidating page cache. We
758 * could invalidate page tables while invalidating each entry however
759 * that would be expensive. And doing range unmapping before doesn't
760 * work as we have no cheap way to find whether page cache entry didn't
761 * get remapped later.
763 if (dax_mapping(mapping)) {
764 unmap_mapping_pages(mapping, start, end - start + 1, false);
766 out:
767 cleancache_invalidate_inode(mapping);
768 return ret;
770 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
773 * invalidate_inode_pages2 - remove all pages from an address_space
774 * @mapping: the address_space
776 * Any pages which are found to be mapped into pagetables are unmapped prior to
777 * invalidation.
779 * Return: -EBUSY if any pages could not be invalidated.
781 int invalidate_inode_pages2(struct address_space *mapping)
783 return invalidate_inode_pages2_range(mapping, 0, -1);
785 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
788 * truncate_pagecache - unmap and remove pagecache that has been truncated
789 * @inode: inode
790 * @newsize: new file size
792 * inode's new i_size must already be written before truncate_pagecache
793 * is called.
795 * This function should typically be called before the filesystem
796 * releases resources associated with the freed range (eg. deallocates
797 * blocks). This way, pagecache will always stay logically coherent
798 * with on-disk format, and the filesystem would not have to deal with
799 * situations such as writepage being called for a page that has already
800 * had its underlying blocks deallocated.
802 void truncate_pagecache(struct inode *inode, loff_t newsize)
804 struct address_space *mapping = inode->i_mapping;
805 loff_t holebegin = round_up(newsize, PAGE_SIZE);
808 * unmap_mapping_range is called twice, first simply for
809 * efficiency so that truncate_inode_pages does fewer
810 * single-page unmaps. However after this first call, and
811 * before truncate_inode_pages finishes, it is possible for
812 * private pages to be COWed, which remain after
813 * truncate_inode_pages finishes, hence the second
814 * unmap_mapping_range call must be made for correctness.
816 unmap_mapping_range(mapping, holebegin, 0, 1);
817 truncate_inode_pages(mapping, newsize);
818 unmap_mapping_range(mapping, holebegin, 0, 1);
820 EXPORT_SYMBOL(truncate_pagecache);
823 * truncate_setsize - update inode and pagecache for a new file size
824 * @inode: inode
825 * @newsize: new file size
827 * truncate_setsize updates i_size and performs pagecache truncation (if
828 * necessary) to @newsize. It will be typically be called from the filesystem's
829 * setattr function when ATTR_SIZE is passed in.
831 * Must be called with a lock serializing truncates and writes (generally
832 * i_mutex but e.g. xfs uses a different lock) and before all filesystem
833 * specific block truncation has been performed.
835 void truncate_setsize(struct inode *inode, loff_t newsize)
837 loff_t oldsize = inode->i_size;
839 i_size_write(inode, newsize);
840 if (newsize > oldsize)
841 pagecache_isize_extended(inode, oldsize, newsize);
842 truncate_pagecache(inode, newsize);
844 EXPORT_SYMBOL(truncate_setsize);
847 * pagecache_isize_extended - update pagecache after extension of i_size
848 * @inode: inode for which i_size was extended
849 * @from: original inode size
850 * @to: new inode size
852 * Handle extension of inode size either caused by extending truncate or by
853 * write starting after current i_size. We mark the page straddling current
854 * i_size RO so that page_mkwrite() is called on the nearest write access to
855 * the page. This way filesystem can be sure that page_mkwrite() is called on
856 * the page before user writes to the page via mmap after the i_size has been
857 * changed.
859 * The function must be called after i_size is updated so that page fault
860 * coming after we unlock the page will already see the new i_size.
861 * The function must be called while we still hold i_mutex - this not only
862 * makes sure i_size is stable but also that userspace cannot observe new
863 * i_size value before we are prepared to store mmap writes at new inode size.
865 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
867 int bsize = i_blocksize(inode);
868 loff_t rounded_from;
869 struct page *page;
870 pgoff_t index;
872 WARN_ON(to > inode->i_size);
874 if (from >= to || bsize == PAGE_SIZE)
875 return;
876 /* Page straddling @from will not have any hole block created? */
877 rounded_from = round_up(from, bsize);
878 if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
879 return;
881 index = from >> PAGE_SHIFT;
882 page = find_lock_page(inode->i_mapping, index);
883 /* Page not cached? Nothing to do */
884 if (!page)
885 return;
887 * See clear_page_dirty_for_io() for details why set_page_dirty()
888 * is needed.
890 if (page_mkclean(page))
891 set_page_dirty(page);
892 unlock_page(page);
893 put_page(page);
895 EXPORT_SYMBOL(pagecache_isize_extended);
898 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
899 * @inode: inode
900 * @lstart: offset of beginning of hole
901 * @lend: offset of last byte of hole
903 * This function should typically be called before the filesystem
904 * releases resources associated with the freed range (eg. deallocates
905 * blocks). This way, pagecache will always stay logically coherent
906 * with on-disk format, and the filesystem would not have to deal with
907 * situations such as writepage being called for a page that has already
908 * had its underlying blocks deallocated.
910 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
912 struct address_space *mapping = inode->i_mapping;
913 loff_t unmap_start = round_up(lstart, PAGE_SIZE);
914 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
916 * This rounding is currently just for example: unmap_mapping_range
917 * expands its hole outwards, whereas we want it to contract the hole
918 * inwards. However, existing callers of truncate_pagecache_range are
919 * doing their own page rounding first. Note that unmap_mapping_range
920 * allows holelen 0 for all, and we allow lend -1 for end of file.
924 * Unlike in truncate_pagecache, unmap_mapping_range is called only
925 * once (before truncating pagecache), and without "even_cows" flag:
926 * hole-punching should not remove private COWed pages from the hole.
928 if ((u64)unmap_end > (u64)unmap_start)
929 unmap_mapping_range(mapping, unmap_start,
930 1 + unmap_end - unmap_start, 0);
931 truncate_inode_pages_range(mapping, lstart, lend);
933 EXPORT_SYMBOL(truncate_pagecache_range);