Linux 5.7.7
[linux/fpc-iii.git] / net / bluetooth / hci_request.c
blob649e1e5ed446aa151ad72e607b94855e92b23b6b
1 /*
2 BlueZ - Bluetooth protocol stack for Linux
4 Copyright (C) 2014 Intel Corporation
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License version 2 as
8 published by the Free Software Foundation;
10 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
11 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
12 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
13 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
14 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
15 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
20 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
21 SOFTWARE IS DISCLAIMED.
24 #include <linux/sched/signal.h>
26 #include <net/bluetooth/bluetooth.h>
27 #include <net/bluetooth/hci_core.h>
28 #include <net/bluetooth/mgmt.h>
30 #include "smp.h"
31 #include "hci_request.h"
33 #define HCI_REQ_DONE 0
34 #define HCI_REQ_PEND 1
35 #define HCI_REQ_CANCELED 2
37 #define LE_SUSPEND_SCAN_WINDOW 0x0012
38 #define LE_SUSPEND_SCAN_INTERVAL 0x0060
40 void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
42 skb_queue_head_init(&req->cmd_q);
43 req->hdev = hdev;
44 req->err = 0;
47 void hci_req_purge(struct hci_request *req)
49 skb_queue_purge(&req->cmd_q);
52 bool hci_req_status_pend(struct hci_dev *hdev)
54 return hdev->req_status == HCI_REQ_PEND;
57 static int req_run(struct hci_request *req, hci_req_complete_t complete,
58 hci_req_complete_skb_t complete_skb)
60 struct hci_dev *hdev = req->hdev;
61 struct sk_buff *skb;
62 unsigned long flags;
64 BT_DBG("length %u", skb_queue_len(&req->cmd_q));
66 /* If an error occurred during request building, remove all HCI
67 * commands queued on the HCI request queue.
69 if (req->err) {
70 skb_queue_purge(&req->cmd_q);
71 return req->err;
74 /* Do not allow empty requests */
75 if (skb_queue_empty(&req->cmd_q))
76 return -ENODATA;
78 skb = skb_peek_tail(&req->cmd_q);
79 if (complete) {
80 bt_cb(skb)->hci.req_complete = complete;
81 } else if (complete_skb) {
82 bt_cb(skb)->hci.req_complete_skb = complete_skb;
83 bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
86 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
87 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
88 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
90 queue_work(hdev->workqueue, &hdev->cmd_work);
92 return 0;
95 int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
97 return req_run(req, complete, NULL);
100 int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete)
102 return req_run(req, NULL, complete);
105 static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
106 struct sk_buff *skb)
108 BT_DBG("%s result 0x%2.2x", hdev->name, result);
110 if (hdev->req_status == HCI_REQ_PEND) {
111 hdev->req_result = result;
112 hdev->req_status = HCI_REQ_DONE;
113 if (skb)
114 hdev->req_skb = skb_get(skb);
115 wake_up_interruptible(&hdev->req_wait_q);
119 void hci_req_sync_cancel(struct hci_dev *hdev, int err)
121 BT_DBG("%s err 0x%2.2x", hdev->name, err);
123 if (hdev->req_status == HCI_REQ_PEND) {
124 hdev->req_result = err;
125 hdev->req_status = HCI_REQ_CANCELED;
126 wake_up_interruptible(&hdev->req_wait_q);
130 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
131 const void *param, u8 event, u32 timeout)
133 struct hci_request req;
134 struct sk_buff *skb;
135 int err = 0;
137 BT_DBG("%s", hdev->name);
139 hci_req_init(&req, hdev);
141 hci_req_add_ev(&req, opcode, plen, param, event);
143 hdev->req_status = HCI_REQ_PEND;
145 err = hci_req_run_skb(&req, hci_req_sync_complete);
146 if (err < 0)
147 return ERR_PTR(err);
149 err = wait_event_interruptible_timeout(hdev->req_wait_q,
150 hdev->req_status != HCI_REQ_PEND, timeout);
152 if (err == -ERESTARTSYS)
153 return ERR_PTR(-EINTR);
155 switch (hdev->req_status) {
156 case HCI_REQ_DONE:
157 err = -bt_to_errno(hdev->req_result);
158 break;
160 case HCI_REQ_CANCELED:
161 err = -hdev->req_result;
162 break;
164 default:
165 err = -ETIMEDOUT;
166 break;
169 hdev->req_status = hdev->req_result = 0;
170 skb = hdev->req_skb;
171 hdev->req_skb = NULL;
173 BT_DBG("%s end: err %d", hdev->name, err);
175 if (err < 0) {
176 kfree_skb(skb);
177 return ERR_PTR(err);
180 if (!skb)
181 return ERR_PTR(-ENODATA);
183 return skb;
185 EXPORT_SYMBOL(__hci_cmd_sync_ev);
187 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
188 const void *param, u32 timeout)
190 return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout);
192 EXPORT_SYMBOL(__hci_cmd_sync);
194 /* Execute request and wait for completion. */
195 int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req,
196 unsigned long opt),
197 unsigned long opt, u32 timeout, u8 *hci_status)
199 struct hci_request req;
200 int err = 0;
202 BT_DBG("%s start", hdev->name);
204 hci_req_init(&req, hdev);
206 hdev->req_status = HCI_REQ_PEND;
208 err = func(&req, opt);
209 if (err) {
210 if (hci_status)
211 *hci_status = HCI_ERROR_UNSPECIFIED;
212 return err;
215 err = hci_req_run_skb(&req, hci_req_sync_complete);
216 if (err < 0) {
217 hdev->req_status = 0;
219 /* ENODATA means the HCI request command queue is empty.
220 * This can happen when a request with conditionals doesn't
221 * trigger any commands to be sent. This is normal behavior
222 * and should not trigger an error return.
224 if (err == -ENODATA) {
225 if (hci_status)
226 *hci_status = 0;
227 return 0;
230 if (hci_status)
231 *hci_status = HCI_ERROR_UNSPECIFIED;
233 return err;
236 err = wait_event_interruptible_timeout(hdev->req_wait_q,
237 hdev->req_status != HCI_REQ_PEND, timeout);
239 if (err == -ERESTARTSYS)
240 return -EINTR;
242 switch (hdev->req_status) {
243 case HCI_REQ_DONE:
244 err = -bt_to_errno(hdev->req_result);
245 if (hci_status)
246 *hci_status = hdev->req_result;
247 break;
249 case HCI_REQ_CANCELED:
250 err = -hdev->req_result;
251 if (hci_status)
252 *hci_status = HCI_ERROR_UNSPECIFIED;
253 break;
255 default:
256 err = -ETIMEDOUT;
257 if (hci_status)
258 *hci_status = HCI_ERROR_UNSPECIFIED;
259 break;
262 kfree_skb(hdev->req_skb);
263 hdev->req_skb = NULL;
264 hdev->req_status = hdev->req_result = 0;
266 BT_DBG("%s end: err %d", hdev->name, err);
268 return err;
271 int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req,
272 unsigned long opt),
273 unsigned long opt, u32 timeout, u8 *hci_status)
275 int ret;
277 if (!test_bit(HCI_UP, &hdev->flags))
278 return -ENETDOWN;
280 /* Serialize all requests */
281 hci_req_sync_lock(hdev);
282 ret = __hci_req_sync(hdev, req, opt, timeout, hci_status);
283 hci_req_sync_unlock(hdev);
285 return ret;
288 struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen,
289 const void *param)
291 int len = HCI_COMMAND_HDR_SIZE + plen;
292 struct hci_command_hdr *hdr;
293 struct sk_buff *skb;
295 skb = bt_skb_alloc(len, GFP_ATOMIC);
296 if (!skb)
297 return NULL;
299 hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
300 hdr->opcode = cpu_to_le16(opcode);
301 hdr->plen = plen;
303 if (plen)
304 skb_put_data(skb, param, plen);
306 BT_DBG("skb len %d", skb->len);
308 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
309 hci_skb_opcode(skb) = opcode;
311 return skb;
314 /* Queue a command to an asynchronous HCI request */
315 void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
316 const void *param, u8 event)
318 struct hci_dev *hdev = req->hdev;
319 struct sk_buff *skb;
321 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
323 /* If an error occurred during request building, there is no point in
324 * queueing the HCI command. We can simply return.
326 if (req->err)
327 return;
329 skb = hci_prepare_cmd(hdev, opcode, plen, param);
330 if (!skb) {
331 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
332 opcode);
333 req->err = -ENOMEM;
334 return;
337 if (skb_queue_empty(&req->cmd_q))
338 bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
340 bt_cb(skb)->hci.req_event = event;
342 skb_queue_tail(&req->cmd_q, skb);
345 void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
346 const void *param)
348 hci_req_add_ev(req, opcode, plen, param, 0);
351 void __hci_req_write_fast_connectable(struct hci_request *req, bool enable)
353 struct hci_dev *hdev = req->hdev;
354 struct hci_cp_write_page_scan_activity acp;
355 u8 type;
357 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
358 return;
360 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
361 return;
363 if (enable) {
364 type = PAGE_SCAN_TYPE_INTERLACED;
366 /* 160 msec page scan interval */
367 acp.interval = cpu_to_le16(0x0100);
368 } else {
369 type = PAGE_SCAN_TYPE_STANDARD; /* default */
371 /* default 1.28 sec page scan */
372 acp.interval = cpu_to_le16(0x0800);
375 acp.window = cpu_to_le16(0x0012);
377 if (__cpu_to_le16(hdev->page_scan_interval) != acp.interval ||
378 __cpu_to_le16(hdev->page_scan_window) != acp.window)
379 hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
380 sizeof(acp), &acp);
382 if (hdev->page_scan_type != type)
383 hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_TYPE, 1, &type);
386 /* This function controls the background scanning based on hdev->pend_le_conns
387 * list. If there are pending LE connection we start the background scanning,
388 * otherwise we stop it.
390 * This function requires the caller holds hdev->lock.
392 static void __hci_update_background_scan(struct hci_request *req)
394 struct hci_dev *hdev = req->hdev;
396 if (!test_bit(HCI_UP, &hdev->flags) ||
397 test_bit(HCI_INIT, &hdev->flags) ||
398 hci_dev_test_flag(hdev, HCI_SETUP) ||
399 hci_dev_test_flag(hdev, HCI_CONFIG) ||
400 hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
401 hci_dev_test_flag(hdev, HCI_UNREGISTER))
402 return;
404 /* No point in doing scanning if LE support hasn't been enabled */
405 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
406 return;
408 /* If discovery is active don't interfere with it */
409 if (hdev->discovery.state != DISCOVERY_STOPPED)
410 return;
412 /* Reset RSSI and UUID filters when starting background scanning
413 * since these filters are meant for service discovery only.
415 * The Start Discovery and Start Service Discovery operations
416 * ensure to set proper values for RSSI threshold and UUID
417 * filter list. So it is safe to just reset them here.
419 hci_discovery_filter_clear(hdev);
421 if (list_empty(&hdev->pend_le_conns) &&
422 list_empty(&hdev->pend_le_reports)) {
423 /* If there is no pending LE connections or devices
424 * to be scanned for, we should stop the background
425 * scanning.
428 /* If controller is not scanning we are done. */
429 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
430 return;
432 hci_req_add_le_scan_disable(req);
434 BT_DBG("%s stopping background scanning", hdev->name);
435 } else {
436 /* If there is at least one pending LE connection, we should
437 * keep the background scan running.
440 /* If controller is connecting, we should not start scanning
441 * since some controllers are not able to scan and connect at
442 * the same time.
444 if (hci_lookup_le_connect(hdev))
445 return;
447 /* If controller is currently scanning, we stop it to ensure we
448 * don't miss any advertising (due to duplicates filter).
450 if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
451 hci_req_add_le_scan_disable(req);
453 hci_req_add_le_passive_scan(req);
455 BT_DBG("%s starting background scanning", hdev->name);
459 void __hci_req_update_name(struct hci_request *req)
461 struct hci_dev *hdev = req->hdev;
462 struct hci_cp_write_local_name cp;
464 memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
466 hci_req_add(req, HCI_OP_WRITE_LOCAL_NAME, sizeof(cp), &cp);
469 #define PNP_INFO_SVCLASS_ID 0x1200
471 static u8 *create_uuid16_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
473 u8 *ptr = data, *uuids_start = NULL;
474 struct bt_uuid *uuid;
476 if (len < 4)
477 return ptr;
479 list_for_each_entry(uuid, &hdev->uuids, list) {
480 u16 uuid16;
482 if (uuid->size != 16)
483 continue;
485 uuid16 = get_unaligned_le16(&uuid->uuid[12]);
486 if (uuid16 < 0x1100)
487 continue;
489 if (uuid16 == PNP_INFO_SVCLASS_ID)
490 continue;
492 if (!uuids_start) {
493 uuids_start = ptr;
494 uuids_start[0] = 1;
495 uuids_start[1] = EIR_UUID16_ALL;
496 ptr += 2;
499 /* Stop if not enough space to put next UUID */
500 if ((ptr - data) + sizeof(u16) > len) {
501 uuids_start[1] = EIR_UUID16_SOME;
502 break;
505 *ptr++ = (uuid16 & 0x00ff);
506 *ptr++ = (uuid16 & 0xff00) >> 8;
507 uuids_start[0] += sizeof(uuid16);
510 return ptr;
513 static u8 *create_uuid32_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
515 u8 *ptr = data, *uuids_start = NULL;
516 struct bt_uuid *uuid;
518 if (len < 6)
519 return ptr;
521 list_for_each_entry(uuid, &hdev->uuids, list) {
522 if (uuid->size != 32)
523 continue;
525 if (!uuids_start) {
526 uuids_start = ptr;
527 uuids_start[0] = 1;
528 uuids_start[1] = EIR_UUID32_ALL;
529 ptr += 2;
532 /* Stop if not enough space to put next UUID */
533 if ((ptr - data) + sizeof(u32) > len) {
534 uuids_start[1] = EIR_UUID32_SOME;
535 break;
538 memcpy(ptr, &uuid->uuid[12], sizeof(u32));
539 ptr += sizeof(u32);
540 uuids_start[0] += sizeof(u32);
543 return ptr;
546 static u8 *create_uuid128_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
548 u8 *ptr = data, *uuids_start = NULL;
549 struct bt_uuid *uuid;
551 if (len < 18)
552 return ptr;
554 list_for_each_entry(uuid, &hdev->uuids, list) {
555 if (uuid->size != 128)
556 continue;
558 if (!uuids_start) {
559 uuids_start = ptr;
560 uuids_start[0] = 1;
561 uuids_start[1] = EIR_UUID128_ALL;
562 ptr += 2;
565 /* Stop if not enough space to put next UUID */
566 if ((ptr - data) + 16 > len) {
567 uuids_start[1] = EIR_UUID128_SOME;
568 break;
571 memcpy(ptr, uuid->uuid, 16);
572 ptr += 16;
573 uuids_start[0] += 16;
576 return ptr;
579 static void create_eir(struct hci_dev *hdev, u8 *data)
581 u8 *ptr = data;
582 size_t name_len;
584 name_len = strlen(hdev->dev_name);
586 if (name_len > 0) {
587 /* EIR Data type */
588 if (name_len > 48) {
589 name_len = 48;
590 ptr[1] = EIR_NAME_SHORT;
591 } else
592 ptr[1] = EIR_NAME_COMPLETE;
594 /* EIR Data length */
595 ptr[0] = name_len + 1;
597 memcpy(ptr + 2, hdev->dev_name, name_len);
599 ptr += (name_len + 2);
602 if (hdev->inq_tx_power != HCI_TX_POWER_INVALID) {
603 ptr[0] = 2;
604 ptr[1] = EIR_TX_POWER;
605 ptr[2] = (u8) hdev->inq_tx_power;
607 ptr += 3;
610 if (hdev->devid_source > 0) {
611 ptr[0] = 9;
612 ptr[1] = EIR_DEVICE_ID;
614 put_unaligned_le16(hdev->devid_source, ptr + 2);
615 put_unaligned_le16(hdev->devid_vendor, ptr + 4);
616 put_unaligned_le16(hdev->devid_product, ptr + 6);
617 put_unaligned_le16(hdev->devid_version, ptr + 8);
619 ptr += 10;
622 ptr = create_uuid16_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
623 ptr = create_uuid32_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
624 ptr = create_uuid128_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
627 void __hci_req_update_eir(struct hci_request *req)
629 struct hci_dev *hdev = req->hdev;
630 struct hci_cp_write_eir cp;
632 if (!hdev_is_powered(hdev))
633 return;
635 if (!lmp_ext_inq_capable(hdev))
636 return;
638 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
639 return;
641 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
642 return;
644 memset(&cp, 0, sizeof(cp));
646 create_eir(hdev, cp.data);
648 if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
649 return;
651 memcpy(hdev->eir, cp.data, sizeof(cp.data));
653 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
656 void hci_req_add_le_scan_disable(struct hci_request *req)
658 struct hci_dev *hdev = req->hdev;
660 if (hdev->scanning_paused) {
661 bt_dev_dbg(hdev, "Scanning is paused for suspend");
662 return;
665 if (use_ext_scan(hdev)) {
666 struct hci_cp_le_set_ext_scan_enable cp;
668 memset(&cp, 0, sizeof(cp));
669 cp.enable = LE_SCAN_DISABLE;
670 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, sizeof(cp),
671 &cp);
672 } else {
673 struct hci_cp_le_set_scan_enable cp;
675 memset(&cp, 0, sizeof(cp));
676 cp.enable = LE_SCAN_DISABLE;
677 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
681 static void del_from_white_list(struct hci_request *req, bdaddr_t *bdaddr,
682 u8 bdaddr_type)
684 struct hci_cp_le_del_from_white_list cp;
686 cp.bdaddr_type = bdaddr_type;
687 bacpy(&cp.bdaddr, bdaddr);
689 bt_dev_dbg(req->hdev, "Remove %pMR (0x%x) from whitelist", &cp.bdaddr,
690 cp.bdaddr_type);
691 hci_req_add(req, HCI_OP_LE_DEL_FROM_WHITE_LIST, sizeof(cp), &cp);
694 /* Adds connection to white list if needed. On error, returns -1. */
695 static int add_to_white_list(struct hci_request *req,
696 struct hci_conn_params *params, u8 *num_entries,
697 bool allow_rpa)
699 struct hci_cp_le_add_to_white_list cp;
700 struct hci_dev *hdev = req->hdev;
702 /* Already in white list */
703 if (hci_bdaddr_list_lookup(&hdev->le_white_list, &params->addr,
704 params->addr_type))
705 return 0;
707 /* Select filter policy to accept all advertising */
708 if (*num_entries >= hdev->le_white_list_size)
709 return -1;
711 /* White list can not be used with RPAs */
712 if (!allow_rpa &&
713 hci_find_irk_by_addr(hdev, &params->addr, params->addr_type)) {
714 return -1;
717 /* During suspend, only wakeable devices can be in whitelist */
718 if (hdev->suspended && !params->wakeable)
719 return 0;
721 *num_entries += 1;
722 cp.bdaddr_type = params->addr_type;
723 bacpy(&cp.bdaddr, &params->addr);
725 bt_dev_dbg(hdev, "Add %pMR (0x%x) to whitelist", &cp.bdaddr,
726 cp.bdaddr_type);
727 hci_req_add(req, HCI_OP_LE_ADD_TO_WHITE_LIST, sizeof(cp), &cp);
729 return 0;
732 static u8 update_white_list(struct hci_request *req)
734 struct hci_dev *hdev = req->hdev;
735 struct hci_conn_params *params;
736 struct bdaddr_list *b;
737 u8 num_entries = 0;
738 bool pend_conn, pend_report;
739 /* We allow whitelisting even with RPAs in suspend. In the worst case,
740 * we won't be able to wake from devices that use the privacy1.2
741 * features. Additionally, once we support privacy1.2 and IRK
742 * offloading, we can update this to also check for those conditions.
744 bool allow_rpa = hdev->suspended;
746 /* Go through the current white list programmed into the
747 * controller one by one and check if that address is still
748 * in the list of pending connections or list of devices to
749 * report. If not present in either list, then queue the
750 * command to remove it from the controller.
752 list_for_each_entry(b, &hdev->le_white_list, list) {
753 pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns,
754 &b->bdaddr,
755 b->bdaddr_type);
756 pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports,
757 &b->bdaddr,
758 b->bdaddr_type);
760 /* If the device is not likely to connect or report,
761 * remove it from the whitelist.
763 if (!pend_conn && !pend_report) {
764 del_from_white_list(req, &b->bdaddr, b->bdaddr_type);
765 continue;
768 /* White list can not be used with RPAs */
769 if (!allow_rpa &&
770 hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) {
771 return 0x00;
774 num_entries++;
777 /* Since all no longer valid white list entries have been
778 * removed, walk through the list of pending connections
779 * and ensure that any new device gets programmed into
780 * the controller.
782 * If the list of the devices is larger than the list of
783 * available white list entries in the controller, then
784 * just abort and return filer policy value to not use the
785 * white list.
787 list_for_each_entry(params, &hdev->pend_le_conns, action) {
788 if (add_to_white_list(req, params, &num_entries, allow_rpa))
789 return 0x00;
792 /* After adding all new pending connections, walk through
793 * the list of pending reports and also add these to the
794 * white list if there is still space. Abort if space runs out.
796 list_for_each_entry(params, &hdev->pend_le_reports, action) {
797 if (add_to_white_list(req, params, &num_entries, allow_rpa))
798 return 0x00;
801 /* Select filter policy to use white list */
802 return 0x01;
805 static bool scan_use_rpa(struct hci_dev *hdev)
807 return hci_dev_test_flag(hdev, HCI_PRIVACY);
810 static void hci_req_start_scan(struct hci_request *req, u8 type, u16 interval,
811 u16 window, u8 own_addr_type, u8 filter_policy)
813 struct hci_dev *hdev = req->hdev;
815 /* Use ext scanning if set ext scan param and ext scan enable is
816 * supported
818 if (use_ext_scan(hdev)) {
819 struct hci_cp_le_set_ext_scan_params *ext_param_cp;
820 struct hci_cp_le_set_ext_scan_enable ext_enable_cp;
821 struct hci_cp_le_scan_phy_params *phy_params;
822 u8 data[sizeof(*ext_param_cp) + sizeof(*phy_params) * 2];
823 u32 plen;
825 ext_param_cp = (void *)data;
826 phy_params = (void *)ext_param_cp->data;
828 memset(ext_param_cp, 0, sizeof(*ext_param_cp));
829 ext_param_cp->own_addr_type = own_addr_type;
830 ext_param_cp->filter_policy = filter_policy;
832 plen = sizeof(*ext_param_cp);
834 if (scan_1m(hdev) || scan_2m(hdev)) {
835 ext_param_cp->scanning_phys |= LE_SCAN_PHY_1M;
837 memset(phy_params, 0, sizeof(*phy_params));
838 phy_params->type = type;
839 phy_params->interval = cpu_to_le16(interval);
840 phy_params->window = cpu_to_le16(window);
842 plen += sizeof(*phy_params);
843 phy_params++;
846 if (scan_coded(hdev)) {
847 ext_param_cp->scanning_phys |= LE_SCAN_PHY_CODED;
849 memset(phy_params, 0, sizeof(*phy_params));
850 phy_params->type = type;
851 phy_params->interval = cpu_to_le16(interval);
852 phy_params->window = cpu_to_le16(window);
854 plen += sizeof(*phy_params);
855 phy_params++;
858 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
859 plen, ext_param_cp);
861 memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
862 ext_enable_cp.enable = LE_SCAN_ENABLE;
863 ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
865 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
866 sizeof(ext_enable_cp), &ext_enable_cp);
867 } else {
868 struct hci_cp_le_set_scan_param param_cp;
869 struct hci_cp_le_set_scan_enable enable_cp;
871 memset(&param_cp, 0, sizeof(param_cp));
872 param_cp.type = type;
873 param_cp.interval = cpu_to_le16(interval);
874 param_cp.window = cpu_to_le16(window);
875 param_cp.own_address_type = own_addr_type;
876 param_cp.filter_policy = filter_policy;
877 hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
878 &param_cp);
880 memset(&enable_cp, 0, sizeof(enable_cp));
881 enable_cp.enable = LE_SCAN_ENABLE;
882 enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
883 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
884 &enable_cp);
888 void hci_req_add_le_passive_scan(struct hci_request *req)
890 struct hci_dev *hdev = req->hdev;
891 u8 own_addr_type;
892 u8 filter_policy;
893 u8 window, interval;
895 if (hdev->scanning_paused) {
896 bt_dev_dbg(hdev, "Scanning is paused for suspend");
897 return;
900 /* Set require_privacy to false since no SCAN_REQ are send
901 * during passive scanning. Not using an non-resolvable address
902 * here is important so that peer devices using direct
903 * advertising with our address will be correctly reported
904 * by the controller.
906 if (hci_update_random_address(req, false, scan_use_rpa(hdev),
907 &own_addr_type))
908 return;
910 /* Adding or removing entries from the white list must
911 * happen before enabling scanning. The controller does
912 * not allow white list modification while scanning.
914 filter_policy = update_white_list(req);
916 /* When the controller is using random resolvable addresses and
917 * with that having LE privacy enabled, then controllers with
918 * Extended Scanner Filter Policies support can now enable support
919 * for handling directed advertising.
921 * So instead of using filter polices 0x00 (no whitelist)
922 * and 0x01 (whitelist enabled) use the new filter policies
923 * 0x02 (no whitelist) and 0x03 (whitelist enabled).
925 if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
926 (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
927 filter_policy |= 0x02;
929 if (hdev->suspended) {
930 window = LE_SUSPEND_SCAN_WINDOW;
931 interval = LE_SUSPEND_SCAN_INTERVAL;
932 } else {
933 window = hdev->le_scan_window;
934 interval = hdev->le_scan_interval;
937 bt_dev_dbg(hdev, "LE passive scan with whitelist = %d", filter_policy);
938 hci_req_start_scan(req, LE_SCAN_PASSIVE, interval, window,
939 own_addr_type, filter_policy);
942 static u8 get_adv_instance_scan_rsp_len(struct hci_dev *hdev, u8 instance)
944 struct adv_info *adv_instance;
946 /* Instance 0x00 always set local name */
947 if (instance == 0x00)
948 return 1;
950 adv_instance = hci_find_adv_instance(hdev, instance);
951 if (!adv_instance)
952 return 0;
954 /* TODO: Take into account the "appearance" and "local-name" flags here.
955 * These are currently being ignored as they are not supported.
957 return adv_instance->scan_rsp_len;
960 static void hci_req_clear_event_filter(struct hci_request *req)
962 struct hci_cp_set_event_filter f;
964 memset(&f, 0, sizeof(f));
965 f.flt_type = HCI_FLT_CLEAR_ALL;
966 hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &f);
968 /* Update page scan state (since we may have modified it when setting
969 * the event filter).
971 __hci_req_update_scan(req);
974 static void hci_req_set_event_filter(struct hci_request *req)
976 struct bdaddr_list *b;
977 struct hci_cp_set_event_filter f;
978 struct hci_dev *hdev = req->hdev;
979 u8 scan;
981 /* Always clear event filter when starting */
982 hci_req_clear_event_filter(req);
984 list_for_each_entry(b, &hdev->wakeable, list) {
985 memset(&f, 0, sizeof(f));
986 bacpy(&f.addr_conn_flt.bdaddr, &b->bdaddr);
987 f.flt_type = HCI_FLT_CONN_SETUP;
988 f.cond_type = HCI_CONN_SETUP_ALLOW_BDADDR;
989 f.addr_conn_flt.auto_accept = HCI_CONN_SETUP_AUTO_ON;
991 bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr);
992 hci_req_add(req, HCI_OP_SET_EVENT_FLT, sizeof(f), &f);
995 scan = !list_empty(&hdev->wakeable) ? SCAN_PAGE : SCAN_DISABLED;
996 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
999 static void hci_req_config_le_suspend_scan(struct hci_request *req)
1001 /* Can't change params without disabling first */
1002 hci_req_add_le_scan_disable(req);
1004 /* Configure params and enable scanning */
1005 hci_req_add_le_passive_scan(req);
1007 /* Block suspend notifier on response */
1008 set_bit(SUSPEND_SCAN_ENABLE, req->hdev->suspend_tasks);
1011 static void suspend_req_complete(struct hci_dev *hdev, u8 status, u16 opcode)
1013 bt_dev_dbg(hdev, "Request complete opcode=0x%x, status=0x%x", opcode,
1014 status);
1015 if (test_and_clear_bit(SUSPEND_SCAN_ENABLE, hdev->suspend_tasks) ||
1016 test_and_clear_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks)) {
1017 wake_up(&hdev->suspend_wait_q);
1021 /* Call with hci_dev_lock */
1022 void hci_req_prepare_suspend(struct hci_dev *hdev, enum suspended_state next)
1024 int old_state;
1025 struct hci_conn *conn;
1026 struct hci_request req;
1027 u8 page_scan;
1028 int disconnect_counter;
1030 if (next == hdev->suspend_state) {
1031 bt_dev_dbg(hdev, "Same state before and after: %d", next);
1032 goto done;
1035 hdev->suspend_state = next;
1036 hci_req_init(&req, hdev);
1038 if (next == BT_SUSPEND_DISCONNECT) {
1039 /* Mark device as suspended */
1040 hdev->suspended = true;
1042 /* Pause discovery if not already stopped */
1043 old_state = hdev->discovery.state;
1044 if (old_state != DISCOVERY_STOPPED) {
1045 set_bit(SUSPEND_PAUSE_DISCOVERY, hdev->suspend_tasks);
1046 hci_discovery_set_state(hdev, DISCOVERY_STOPPING);
1047 queue_work(hdev->req_workqueue, &hdev->discov_update);
1050 hdev->discovery_paused = true;
1051 hdev->discovery_old_state = old_state;
1053 /* Stop advertising */
1054 old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING);
1055 if (old_state) {
1056 set_bit(SUSPEND_PAUSE_ADVERTISING, hdev->suspend_tasks);
1057 cancel_delayed_work(&hdev->discov_off);
1058 queue_delayed_work(hdev->req_workqueue,
1059 &hdev->discov_off, 0);
1062 hdev->advertising_paused = true;
1063 hdev->advertising_old_state = old_state;
1064 /* Disable page scan */
1065 page_scan = SCAN_DISABLED;
1066 hci_req_add(&req, HCI_OP_WRITE_SCAN_ENABLE, 1, &page_scan);
1068 /* Disable LE passive scan */
1069 hci_req_add_le_scan_disable(&req);
1071 /* Mark task needing completion */
1072 set_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks);
1074 /* Prevent disconnects from causing scanning to be re-enabled */
1075 hdev->scanning_paused = true;
1077 /* Run commands before disconnecting */
1078 hci_req_run(&req, suspend_req_complete);
1080 disconnect_counter = 0;
1081 /* Soft disconnect everything (power off) */
1082 list_for_each_entry(conn, &hdev->conn_hash.list, list) {
1083 hci_disconnect(conn, HCI_ERROR_REMOTE_POWER_OFF);
1084 disconnect_counter++;
1087 if (disconnect_counter > 0) {
1088 bt_dev_dbg(hdev,
1089 "Had %d disconnects. Will wait on them",
1090 disconnect_counter);
1091 set_bit(SUSPEND_DISCONNECTING, hdev->suspend_tasks);
1093 } else if (next == BT_SUSPEND_COMPLETE) {
1094 /* Unpause to take care of updating scanning params */
1095 hdev->scanning_paused = false;
1096 /* Enable event filter for paired devices */
1097 hci_req_set_event_filter(&req);
1098 /* Enable passive scan at lower duty cycle */
1099 hci_req_config_le_suspend_scan(&req);
1100 /* Pause scan changes again. */
1101 hdev->scanning_paused = true;
1102 hci_req_run(&req, suspend_req_complete);
1103 } else {
1104 hdev->suspended = false;
1105 hdev->scanning_paused = false;
1107 hci_req_clear_event_filter(&req);
1108 /* Reset passive/background scanning to normal */
1109 hci_req_config_le_suspend_scan(&req);
1111 /* Unpause advertising */
1112 hdev->advertising_paused = false;
1113 if (hdev->advertising_old_state) {
1114 set_bit(SUSPEND_UNPAUSE_ADVERTISING,
1115 hdev->suspend_tasks);
1116 hci_dev_set_flag(hdev, HCI_ADVERTISING);
1117 queue_work(hdev->req_workqueue,
1118 &hdev->discoverable_update);
1119 hdev->advertising_old_state = 0;
1122 /* Unpause discovery */
1123 hdev->discovery_paused = false;
1124 if (hdev->discovery_old_state != DISCOVERY_STOPPED &&
1125 hdev->discovery_old_state != DISCOVERY_STOPPING) {
1126 set_bit(SUSPEND_UNPAUSE_DISCOVERY, hdev->suspend_tasks);
1127 hci_discovery_set_state(hdev, DISCOVERY_STARTING);
1128 queue_work(hdev->req_workqueue, &hdev->discov_update);
1131 hci_req_run(&req, suspend_req_complete);
1134 hdev->suspend_state = next;
1136 done:
1137 clear_bit(SUSPEND_PREPARE_NOTIFIER, hdev->suspend_tasks);
1138 wake_up(&hdev->suspend_wait_q);
1141 static u8 get_cur_adv_instance_scan_rsp_len(struct hci_dev *hdev)
1143 u8 instance = hdev->cur_adv_instance;
1144 struct adv_info *adv_instance;
1146 /* Instance 0x00 always set local name */
1147 if (instance == 0x00)
1148 return 1;
1150 adv_instance = hci_find_adv_instance(hdev, instance);
1151 if (!adv_instance)
1152 return 0;
1154 /* TODO: Take into account the "appearance" and "local-name" flags here.
1155 * These are currently being ignored as they are not supported.
1157 return adv_instance->scan_rsp_len;
1160 void __hci_req_disable_advertising(struct hci_request *req)
1162 if (ext_adv_capable(req->hdev)) {
1163 struct hci_cp_le_set_ext_adv_enable cp;
1165 cp.enable = 0x00;
1166 /* Disable all sets since we only support one set at the moment */
1167 cp.num_of_sets = 0x00;
1169 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE, sizeof(cp), &cp);
1170 } else {
1171 u8 enable = 0x00;
1173 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
1177 static u32 get_adv_instance_flags(struct hci_dev *hdev, u8 instance)
1179 u32 flags;
1180 struct adv_info *adv_instance;
1182 if (instance == 0x00) {
1183 /* Instance 0 always manages the "Tx Power" and "Flags"
1184 * fields
1186 flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
1188 /* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
1189 * corresponds to the "connectable" instance flag.
1191 if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
1192 flags |= MGMT_ADV_FLAG_CONNECTABLE;
1194 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1195 flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
1196 else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1197 flags |= MGMT_ADV_FLAG_DISCOV;
1199 return flags;
1202 adv_instance = hci_find_adv_instance(hdev, instance);
1204 /* Return 0 when we got an invalid instance identifier. */
1205 if (!adv_instance)
1206 return 0;
1208 return adv_instance->flags;
1211 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
1213 /* If privacy is not enabled don't use RPA */
1214 if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
1215 return false;
1217 /* If basic privacy mode is enabled use RPA */
1218 if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
1219 return true;
1221 /* If limited privacy mode is enabled don't use RPA if we're
1222 * both discoverable and bondable.
1224 if ((flags & MGMT_ADV_FLAG_DISCOV) &&
1225 hci_dev_test_flag(hdev, HCI_BONDABLE))
1226 return false;
1228 /* We're neither bondable nor discoverable in the limited
1229 * privacy mode, therefore use RPA.
1231 return true;
1234 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
1236 /* If there is no connection we are OK to advertise. */
1237 if (hci_conn_num(hdev, LE_LINK) == 0)
1238 return true;
1240 /* Check le_states if there is any connection in slave role. */
1241 if (hdev->conn_hash.le_num_slave > 0) {
1242 /* Slave connection state and non connectable mode bit 20. */
1243 if (!connectable && !(hdev->le_states[2] & 0x10))
1244 return false;
1246 /* Slave connection state and connectable mode bit 38
1247 * and scannable bit 21.
1249 if (connectable && (!(hdev->le_states[4] & 0x40) ||
1250 !(hdev->le_states[2] & 0x20)))
1251 return false;
1254 /* Check le_states if there is any connection in master role. */
1255 if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_slave) {
1256 /* Master connection state and non connectable mode bit 18. */
1257 if (!connectable && !(hdev->le_states[2] & 0x02))
1258 return false;
1260 /* Master connection state and connectable mode bit 35 and
1261 * scannable 19.
1263 if (connectable && (!(hdev->le_states[4] & 0x08) ||
1264 !(hdev->le_states[2] & 0x08)))
1265 return false;
1268 return true;
1271 void __hci_req_enable_advertising(struct hci_request *req)
1273 struct hci_dev *hdev = req->hdev;
1274 struct hci_cp_le_set_adv_param cp;
1275 u8 own_addr_type, enable = 0x01;
1276 bool connectable;
1277 u16 adv_min_interval, adv_max_interval;
1278 u32 flags;
1280 flags = get_adv_instance_flags(hdev, hdev->cur_adv_instance);
1282 /* If the "connectable" instance flag was not set, then choose between
1283 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1285 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1286 mgmt_get_connectable(hdev);
1288 if (!is_advertising_allowed(hdev, connectable))
1289 return;
1291 if (hci_dev_test_flag(hdev, HCI_LE_ADV))
1292 __hci_req_disable_advertising(req);
1294 /* Clear the HCI_LE_ADV bit temporarily so that the
1295 * hci_update_random_address knows that it's safe to go ahead
1296 * and write a new random address. The flag will be set back on
1297 * as soon as the SET_ADV_ENABLE HCI command completes.
1299 hci_dev_clear_flag(hdev, HCI_LE_ADV);
1301 /* Set require_privacy to true only when non-connectable
1302 * advertising is used. In that case it is fine to use a
1303 * non-resolvable private address.
1305 if (hci_update_random_address(req, !connectable,
1306 adv_use_rpa(hdev, flags),
1307 &own_addr_type) < 0)
1308 return;
1310 memset(&cp, 0, sizeof(cp));
1312 if (connectable) {
1313 cp.type = LE_ADV_IND;
1315 adv_min_interval = hdev->le_adv_min_interval;
1316 adv_max_interval = hdev->le_adv_max_interval;
1317 } else {
1318 if (get_cur_adv_instance_scan_rsp_len(hdev))
1319 cp.type = LE_ADV_SCAN_IND;
1320 else
1321 cp.type = LE_ADV_NONCONN_IND;
1323 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) ||
1324 hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
1325 adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN;
1326 adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX;
1327 } else {
1328 adv_min_interval = hdev->le_adv_min_interval;
1329 adv_max_interval = hdev->le_adv_max_interval;
1333 cp.min_interval = cpu_to_le16(adv_min_interval);
1334 cp.max_interval = cpu_to_le16(adv_max_interval);
1335 cp.own_address_type = own_addr_type;
1336 cp.channel_map = hdev->le_adv_channel_map;
1338 hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);
1340 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
1343 u8 append_local_name(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
1345 size_t short_len;
1346 size_t complete_len;
1348 /* no space left for name (+ NULL + type + len) */
1349 if ((HCI_MAX_AD_LENGTH - ad_len) < HCI_MAX_SHORT_NAME_LENGTH + 3)
1350 return ad_len;
1352 /* use complete name if present and fits */
1353 complete_len = strlen(hdev->dev_name);
1354 if (complete_len && complete_len <= HCI_MAX_SHORT_NAME_LENGTH)
1355 return eir_append_data(ptr, ad_len, EIR_NAME_COMPLETE,
1356 hdev->dev_name, complete_len + 1);
1358 /* use short name if present */
1359 short_len = strlen(hdev->short_name);
1360 if (short_len)
1361 return eir_append_data(ptr, ad_len, EIR_NAME_SHORT,
1362 hdev->short_name, short_len + 1);
1364 /* use shortened full name if present, we already know that name
1365 * is longer then HCI_MAX_SHORT_NAME_LENGTH
1367 if (complete_len) {
1368 u8 name[HCI_MAX_SHORT_NAME_LENGTH + 1];
1370 memcpy(name, hdev->dev_name, HCI_MAX_SHORT_NAME_LENGTH);
1371 name[HCI_MAX_SHORT_NAME_LENGTH] = '\0';
1373 return eir_append_data(ptr, ad_len, EIR_NAME_SHORT, name,
1374 sizeof(name));
1377 return ad_len;
1380 static u8 append_appearance(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
1382 return eir_append_le16(ptr, ad_len, EIR_APPEARANCE, hdev->appearance);
1385 static u8 create_default_scan_rsp_data(struct hci_dev *hdev, u8 *ptr)
1387 u8 scan_rsp_len = 0;
1389 if (hdev->appearance) {
1390 scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1393 return append_local_name(hdev, ptr, scan_rsp_len);
1396 static u8 create_instance_scan_rsp_data(struct hci_dev *hdev, u8 instance,
1397 u8 *ptr)
1399 struct adv_info *adv_instance;
1400 u32 instance_flags;
1401 u8 scan_rsp_len = 0;
1403 adv_instance = hci_find_adv_instance(hdev, instance);
1404 if (!adv_instance)
1405 return 0;
1407 instance_flags = adv_instance->flags;
1409 if ((instance_flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) {
1410 scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1413 memcpy(&ptr[scan_rsp_len], adv_instance->scan_rsp_data,
1414 adv_instance->scan_rsp_len);
1416 scan_rsp_len += adv_instance->scan_rsp_len;
1418 if (instance_flags & MGMT_ADV_FLAG_LOCAL_NAME)
1419 scan_rsp_len = append_local_name(hdev, ptr, scan_rsp_len);
1421 return scan_rsp_len;
1424 void __hci_req_update_scan_rsp_data(struct hci_request *req, u8 instance)
1426 struct hci_dev *hdev = req->hdev;
1427 u8 len;
1429 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1430 return;
1432 if (ext_adv_capable(hdev)) {
1433 struct hci_cp_le_set_ext_scan_rsp_data cp;
1435 memset(&cp, 0, sizeof(cp));
1437 if (instance)
1438 len = create_instance_scan_rsp_data(hdev, instance,
1439 cp.data);
1440 else
1441 len = create_default_scan_rsp_data(hdev, cp.data);
1443 if (hdev->scan_rsp_data_len == len &&
1444 !memcmp(cp.data, hdev->scan_rsp_data, len))
1445 return;
1447 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1448 hdev->scan_rsp_data_len = len;
1450 cp.handle = 0;
1451 cp.length = len;
1452 cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1453 cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1455 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, sizeof(cp),
1456 &cp);
1457 } else {
1458 struct hci_cp_le_set_scan_rsp_data cp;
1460 memset(&cp, 0, sizeof(cp));
1462 if (instance)
1463 len = create_instance_scan_rsp_data(hdev, instance,
1464 cp.data);
1465 else
1466 len = create_default_scan_rsp_data(hdev, cp.data);
1468 if (hdev->scan_rsp_data_len == len &&
1469 !memcmp(cp.data, hdev->scan_rsp_data, len))
1470 return;
1472 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1473 hdev->scan_rsp_data_len = len;
1475 cp.length = len;
1477 hci_req_add(req, HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(cp), &cp);
1481 static u8 create_instance_adv_data(struct hci_dev *hdev, u8 instance, u8 *ptr)
1483 struct adv_info *adv_instance = NULL;
1484 u8 ad_len = 0, flags = 0;
1485 u32 instance_flags;
1487 /* Return 0 when the current instance identifier is invalid. */
1488 if (instance) {
1489 adv_instance = hci_find_adv_instance(hdev, instance);
1490 if (!adv_instance)
1491 return 0;
1494 instance_flags = get_adv_instance_flags(hdev, instance);
1496 /* If instance already has the flags set skip adding it once
1497 * again.
1499 if (adv_instance && eir_get_data(adv_instance->adv_data,
1500 adv_instance->adv_data_len, EIR_FLAGS,
1501 NULL))
1502 goto skip_flags;
1504 /* The Add Advertising command allows userspace to set both the general
1505 * and limited discoverable flags.
1507 if (instance_flags & MGMT_ADV_FLAG_DISCOV)
1508 flags |= LE_AD_GENERAL;
1510 if (instance_flags & MGMT_ADV_FLAG_LIMITED_DISCOV)
1511 flags |= LE_AD_LIMITED;
1513 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1514 flags |= LE_AD_NO_BREDR;
1516 if (flags || (instance_flags & MGMT_ADV_FLAG_MANAGED_FLAGS)) {
1517 /* If a discovery flag wasn't provided, simply use the global
1518 * settings.
1520 if (!flags)
1521 flags |= mgmt_get_adv_discov_flags(hdev);
1523 /* If flags would still be empty, then there is no need to
1524 * include the "Flags" AD field".
1526 if (flags) {
1527 ptr[0] = 0x02;
1528 ptr[1] = EIR_FLAGS;
1529 ptr[2] = flags;
1531 ad_len += 3;
1532 ptr += 3;
1536 skip_flags:
1537 if (adv_instance) {
1538 memcpy(ptr, adv_instance->adv_data,
1539 adv_instance->adv_data_len);
1540 ad_len += adv_instance->adv_data_len;
1541 ptr += adv_instance->adv_data_len;
1544 if (instance_flags & MGMT_ADV_FLAG_TX_POWER) {
1545 s8 adv_tx_power;
1547 if (ext_adv_capable(hdev)) {
1548 if (adv_instance)
1549 adv_tx_power = adv_instance->tx_power;
1550 else
1551 adv_tx_power = hdev->adv_tx_power;
1552 } else {
1553 adv_tx_power = hdev->adv_tx_power;
1556 /* Provide Tx Power only if we can provide a valid value for it */
1557 if (adv_tx_power != HCI_TX_POWER_INVALID) {
1558 ptr[0] = 0x02;
1559 ptr[1] = EIR_TX_POWER;
1560 ptr[2] = (u8)adv_tx_power;
1562 ad_len += 3;
1563 ptr += 3;
1567 return ad_len;
1570 void __hci_req_update_adv_data(struct hci_request *req, u8 instance)
1572 struct hci_dev *hdev = req->hdev;
1573 u8 len;
1575 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1576 return;
1578 if (ext_adv_capable(hdev)) {
1579 struct hci_cp_le_set_ext_adv_data cp;
1581 memset(&cp, 0, sizeof(cp));
1583 len = create_instance_adv_data(hdev, instance, cp.data);
1585 /* There's nothing to do if the data hasn't changed */
1586 if (hdev->adv_data_len == len &&
1587 memcmp(cp.data, hdev->adv_data, len) == 0)
1588 return;
1590 memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1591 hdev->adv_data_len = len;
1593 cp.length = len;
1594 cp.handle = 0;
1595 cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1596 cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1598 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_DATA, sizeof(cp), &cp);
1599 } else {
1600 struct hci_cp_le_set_adv_data cp;
1602 memset(&cp, 0, sizeof(cp));
1604 len = create_instance_adv_data(hdev, instance, cp.data);
1606 /* There's nothing to do if the data hasn't changed */
1607 if (hdev->adv_data_len == len &&
1608 memcmp(cp.data, hdev->adv_data, len) == 0)
1609 return;
1611 memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1612 hdev->adv_data_len = len;
1614 cp.length = len;
1616 hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp);
1620 int hci_req_update_adv_data(struct hci_dev *hdev, u8 instance)
1622 struct hci_request req;
1624 hci_req_init(&req, hdev);
1625 __hci_req_update_adv_data(&req, instance);
1627 return hci_req_run(&req, NULL);
1630 static void adv_enable_complete(struct hci_dev *hdev, u8 status, u16 opcode)
1632 BT_DBG("%s status %u", hdev->name, status);
1635 void hci_req_reenable_advertising(struct hci_dev *hdev)
1637 struct hci_request req;
1639 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1640 list_empty(&hdev->adv_instances))
1641 return;
1643 hci_req_init(&req, hdev);
1645 if (hdev->cur_adv_instance) {
1646 __hci_req_schedule_adv_instance(&req, hdev->cur_adv_instance,
1647 true);
1648 } else {
1649 if (ext_adv_capable(hdev)) {
1650 __hci_req_start_ext_adv(&req, 0x00);
1651 } else {
1652 __hci_req_update_adv_data(&req, 0x00);
1653 __hci_req_update_scan_rsp_data(&req, 0x00);
1654 __hci_req_enable_advertising(&req);
1658 hci_req_run(&req, adv_enable_complete);
1661 static void adv_timeout_expire(struct work_struct *work)
1663 struct hci_dev *hdev = container_of(work, struct hci_dev,
1664 adv_instance_expire.work);
1666 struct hci_request req;
1667 u8 instance;
1669 BT_DBG("%s", hdev->name);
1671 hci_dev_lock(hdev);
1673 hdev->adv_instance_timeout = 0;
1675 instance = hdev->cur_adv_instance;
1676 if (instance == 0x00)
1677 goto unlock;
1679 hci_req_init(&req, hdev);
1681 hci_req_clear_adv_instance(hdev, NULL, &req, instance, false);
1683 if (list_empty(&hdev->adv_instances))
1684 __hci_req_disable_advertising(&req);
1686 hci_req_run(&req, NULL);
1688 unlock:
1689 hci_dev_unlock(hdev);
1692 int hci_get_random_address(struct hci_dev *hdev, bool require_privacy,
1693 bool use_rpa, struct adv_info *adv_instance,
1694 u8 *own_addr_type, bdaddr_t *rand_addr)
1696 int err;
1698 bacpy(rand_addr, BDADDR_ANY);
1700 /* If privacy is enabled use a resolvable private address. If
1701 * current RPA has expired then generate a new one.
1703 if (use_rpa) {
1704 int to;
1706 *own_addr_type = ADDR_LE_DEV_RANDOM;
1708 if (adv_instance) {
1709 if (!adv_instance->rpa_expired &&
1710 !bacmp(&adv_instance->random_addr, &hdev->rpa))
1711 return 0;
1713 adv_instance->rpa_expired = false;
1714 } else {
1715 if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
1716 !bacmp(&hdev->random_addr, &hdev->rpa))
1717 return 0;
1720 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
1721 if (err < 0) {
1722 bt_dev_err(hdev, "failed to generate new RPA");
1723 return err;
1726 bacpy(rand_addr, &hdev->rpa);
1728 to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
1729 if (adv_instance)
1730 queue_delayed_work(hdev->workqueue,
1731 &adv_instance->rpa_expired_cb, to);
1732 else
1733 queue_delayed_work(hdev->workqueue,
1734 &hdev->rpa_expired, to);
1736 return 0;
1739 /* In case of required privacy without resolvable private address,
1740 * use an non-resolvable private address. This is useful for
1741 * non-connectable advertising.
1743 if (require_privacy) {
1744 bdaddr_t nrpa;
1746 while (true) {
1747 /* The non-resolvable private address is generated
1748 * from random six bytes with the two most significant
1749 * bits cleared.
1751 get_random_bytes(&nrpa, 6);
1752 nrpa.b[5] &= 0x3f;
1754 /* The non-resolvable private address shall not be
1755 * equal to the public address.
1757 if (bacmp(&hdev->bdaddr, &nrpa))
1758 break;
1761 *own_addr_type = ADDR_LE_DEV_RANDOM;
1762 bacpy(rand_addr, &nrpa);
1764 return 0;
1767 /* No privacy so use a public address. */
1768 *own_addr_type = ADDR_LE_DEV_PUBLIC;
1770 return 0;
1773 void __hci_req_clear_ext_adv_sets(struct hci_request *req)
1775 hci_req_add(req, HCI_OP_LE_CLEAR_ADV_SETS, 0, NULL);
1778 int __hci_req_setup_ext_adv_instance(struct hci_request *req, u8 instance)
1780 struct hci_cp_le_set_ext_adv_params cp;
1781 struct hci_dev *hdev = req->hdev;
1782 bool connectable;
1783 u32 flags;
1784 bdaddr_t random_addr;
1785 u8 own_addr_type;
1786 int err;
1787 struct adv_info *adv_instance;
1788 bool secondary_adv;
1789 /* In ext adv set param interval is 3 octets */
1790 const u8 adv_interval[3] = { 0x00, 0x08, 0x00 };
1792 if (instance > 0) {
1793 adv_instance = hci_find_adv_instance(hdev, instance);
1794 if (!adv_instance)
1795 return -EINVAL;
1796 } else {
1797 adv_instance = NULL;
1800 flags = get_adv_instance_flags(hdev, instance);
1802 /* If the "connectable" instance flag was not set, then choose between
1803 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1805 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1806 mgmt_get_connectable(hdev);
1808 if (!is_advertising_allowed(hdev, connectable))
1809 return -EPERM;
1811 /* Set require_privacy to true only when non-connectable
1812 * advertising is used. In that case it is fine to use a
1813 * non-resolvable private address.
1815 err = hci_get_random_address(hdev, !connectable,
1816 adv_use_rpa(hdev, flags), adv_instance,
1817 &own_addr_type, &random_addr);
1818 if (err < 0)
1819 return err;
1821 memset(&cp, 0, sizeof(cp));
1823 memcpy(cp.min_interval, adv_interval, sizeof(cp.min_interval));
1824 memcpy(cp.max_interval, adv_interval, sizeof(cp.max_interval));
1826 secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);
1828 if (connectable) {
1829 if (secondary_adv)
1830 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
1831 else
1832 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
1833 } else if (get_adv_instance_scan_rsp_len(hdev, instance)) {
1834 if (secondary_adv)
1835 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
1836 else
1837 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
1838 } else {
1839 if (secondary_adv)
1840 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
1841 else
1842 cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
1845 cp.own_addr_type = own_addr_type;
1846 cp.channel_map = hdev->le_adv_channel_map;
1847 cp.tx_power = 127;
1848 cp.handle = instance;
1850 if (flags & MGMT_ADV_FLAG_SEC_2M) {
1851 cp.primary_phy = HCI_ADV_PHY_1M;
1852 cp.secondary_phy = HCI_ADV_PHY_2M;
1853 } else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
1854 cp.primary_phy = HCI_ADV_PHY_CODED;
1855 cp.secondary_phy = HCI_ADV_PHY_CODED;
1856 } else {
1857 /* In all other cases use 1M */
1858 cp.primary_phy = HCI_ADV_PHY_1M;
1859 cp.secondary_phy = HCI_ADV_PHY_1M;
1862 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp);
1864 if (own_addr_type == ADDR_LE_DEV_RANDOM &&
1865 bacmp(&random_addr, BDADDR_ANY)) {
1866 struct hci_cp_le_set_adv_set_rand_addr cp;
1868 /* Check if random address need to be updated */
1869 if (adv_instance) {
1870 if (!bacmp(&random_addr, &adv_instance->random_addr))
1871 return 0;
1872 } else {
1873 if (!bacmp(&random_addr, &hdev->random_addr))
1874 return 0;
1877 memset(&cp, 0, sizeof(cp));
1879 cp.handle = 0;
1880 bacpy(&cp.bdaddr, &random_addr);
1882 hci_req_add(req,
1883 HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
1884 sizeof(cp), &cp);
1887 return 0;
1890 int __hci_req_enable_ext_advertising(struct hci_request *req, u8 instance)
1892 struct hci_dev *hdev = req->hdev;
1893 struct hci_cp_le_set_ext_adv_enable *cp;
1894 struct hci_cp_ext_adv_set *adv_set;
1895 u8 data[sizeof(*cp) + sizeof(*adv_set) * 1];
1896 struct adv_info *adv_instance;
1898 if (instance > 0) {
1899 adv_instance = hci_find_adv_instance(hdev, instance);
1900 if (!adv_instance)
1901 return -EINVAL;
1902 } else {
1903 adv_instance = NULL;
1906 cp = (void *) data;
1907 adv_set = (void *) cp->data;
1909 memset(cp, 0, sizeof(*cp));
1911 cp->enable = 0x01;
1912 cp->num_of_sets = 0x01;
1914 memset(adv_set, 0, sizeof(*adv_set));
1916 adv_set->handle = instance;
1918 /* Set duration per instance since controller is responsible for
1919 * scheduling it.
1921 if (adv_instance && adv_instance->duration) {
1922 u16 duration = adv_instance->timeout * MSEC_PER_SEC;
1924 /* Time = N * 10 ms */
1925 adv_set->duration = cpu_to_le16(duration / 10);
1928 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE,
1929 sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets,
1930 data);
1932 return 0;
1935 int __hci_req_start_ext_adv(struct hci_request *req, u8 instance)
1937 struct hci_dev *hdev = req->hdev;
1938 int err;
1940 if (hci_dev_test_flag(hdev, HCI_LE_ADV))
1941 __hci_req_disable_advertising(req);
1943 err = __hci_req_setup_ext_adv_instance(req, instance);
1944 if (err < 0)
1945 return err;
1947 __hci_req_update_scan_rsp_data(req, instance);
1948 __hci_req_enable_ext_advertising(req, instance);
1950 return 0;
1953 int __hci_req_schedule_adv_instance(struct hci_request *req, u8 instance,
1954 bool force)
1956 struct hci_dev *hdev = req->hdev;
1957 struct adv_info *adv_instance = NULL;
1958 u16 timeout;
1960 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
1961 list_empty(&hdev->adv_instances))
1962 return -EPERM;
1964 if (hdev->adv_instance_timeout)
1965 return -EBUSY;
1967 adv_instance = hci_find_adv_instance(hdev, instance);
1968 if (!adv_instance)
1969 return -ENOENT;
1971 /* A zero timeout means unlimited advertising. As long as there is
1972 * only one instance, duration should be ignored. We still set a timeout
1973 * in case further instances are being added later on.
1975 * If the remaining lifetime of the instance is more than the duration
1976 * then the timeout corresponds to the duration, otherwise it will be
1977 * reduced to the remaining instance lifetime.
1979 if (adv_instance->timeout == 0 ||
1980 adv_instance->duration <= adv_instance->remaining_time)
1981 timeout = adv_instance->duration;
1982 else
1983 timeout = adv_instance->remaining_time;
1985 /* The remaining time is being reduced unless the instance is being
1986 * advertised without time limit.
1988 if (adv_instance->timeout)
1989 adv_instance->remaining_time =
1990 adv_instance->remaining_time - timeout;
1992 /* Only use work for scheduling instances with legacy advertising */
1993 if (!ext_adv_capable(hdev)) {
1994 hdev->adv_instance_timeout = timeout;
1995 queue_delayed_work(hdev->req_workqueue,
1996 &hdev->adv_instance_expire,
1997 msecs_to_jiffies(timeout * 1000));
2000 /* If we're just re-scheduling the same instance again then do not
2001 * execute any HCI commands. This happens when a single instance is
2002 * being advertised.
2004 if (!force && hdev->cur_adv_instance == instance &&
2005 hci_dev_test_flag(hdev, HCI_LE_ADV))
2006 return 0;
2008 hdev->cur_adv_instance = instance;
2009 if (ext_adv_capable(hdev)) {
2010 __hci_req_start_ext_adv(req, instance);
2011 } else {
2012 __hci_req_update_adv_data(req, instance);
2013 __hci_req_update_scan_rsp_data(req, instance);
2014 __hci_req_enable_advertising(req);
2017 return 0;
2020 static void cancel_adv_timeout(struct hci_dev *hdev)
2022 if (hdev->adv_instance_timeout) {
2023 hdev->adv_instance_timeout = 0;
2024 cancel_delayed_work(&hdev->adv_instance_expire);
2028 /* For a single instance:
2029 * - force == true: The instance will be removed even when its remaining
2030 * lifetime is not zero.
2031 * - force == false: the instance will be deactivated but kept stored unless
2032 * the remaining lifetime is zero.
2034 * For instance == 0x00:
2035 * - force == true: All instances will be removed regardless of their timeout
2036 * setting.
2037 * - force == false: Only instances that have a timeout will be removed.
2039 void hci_req_clear_adv_instance(struct hci_dev *hdev, struct sock *sk,
2040 struct hci_request *req, u8 instance,
2041 bool force)
2043 struct adv_info *adv_instance, *n, *next_instance = NULL;
2044 int err;
2045 u8 rem_inst;
2047 /* Cancel any timeout concerning the removed instance(s). */
2048 if (!instance || hdev->cur_adv_instance == instance)
2049 cancel_adv_timeout(hdev);
2051 /* Get the next instance to advertise BEFORE we remove
2052 * the current one. This can be the same instance again
2053 * if there is only one instance.
2055 if (instance && hdev->cur_adv_instance == instance)
2056 next_instance = hci_get_next_instance(hdev, instance);
2058 if (instance == 0x00) {
2059 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
2060 list) {
2061 if (!(force || adv_instance->timeout))
2062 continue;
2064 rem_inst = adv_instance->instance;
2065 err = hci_remove_adv_instance(hdev, rem_inst);
2066 if (!err)
2067 mgmt_advertising_removed(sk, hdev, rem_inst);
2069 } else {
2070 adv_instance = hci_find_adv_instance(hdev, instance);
2072 if (force || (adv_instance && adv_instance->timeout &&
2073 !adv_instance->remaining_time)) {
2074 /* Don't advertise a removed instance. */
2075 if (next_instance &&
2076 next_instance->instance == instance)
2077 next_instance = NULL;
2079 err = hci_remove_adv_instance(hdev, instance);
2080 if (!err)
2081 mgmt_advertising_removed(sk, hdev, instance);
2085 if (!req || !hdev_is_powered(hdev) ||
2086 hci_dev_test_flag(hdev, HCI_ADVERTISING))
2087 return;
2089 if (next_instance)
2090 __hci_req_schedule_adv_instance(req, next_instance->instance,
2091 false);
2094 static void set_random_addr(struct hci_request *req, bdaddr_t *rpa)
2096 struct hci_dev *hdev = req->hdev;
2098 /* If we're advertising or initiating an LE connection we can't
2099 * go ahead and change the random address at this time. This is
2100 * because the eventual initiator address used for the
2101 * subsequently created connection will be undefined (some
2102 * controllers use the new address and others the one we had
2103 * when the operation started).
2105 * In this kind of scenario skip the update and let the random
2106 * address be updated at the next cycle.
2108 if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
2109 hci_lookup_le_connect(hdev)) {
2110 BT_DBG("Deferring random address update");
2111 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
2112 return;
2115 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa);
2118 int hci_update_random_address(struct hci_request *req, bool require_privacy,
2119 bool use_rpa, u8 *own_addr_type)
2121 struct hci_dev *hdev = req->hdev;
2122 int err;
2124 /* If privacy is enabled use a resolvable private address. If
2125 * current RPA has expired or there is something else than
2126 * the current RPA in use, then generate a new one.
2128 if (use_rpa) {
2129 int to;
2131 *own_addr_type = ADDR_LE_DEV_RANDOM;
2133 if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
2134 !bacmp(&hdev->random_addr, &hdev->rpa))
2135 return 0;
2137 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
2138 if (err < 0) {
2139 bt_dev_err(hdev, "failed to generate new RPA");
2140 return err;
2143 set_random_addr(req, &hdev->rpa);
2145 to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
2146 queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to);
2148 return 0;
2151 /* In case of required privacy without resolvable private address,
2152 * use an non-resolvable private address. This is useful for active
2153 * scanning and non-connectable advertising.
2155 if (require_privacy) {
2156 bdaddr_t nrpa;
2158 while (true) {
2159 /* The non-resolvable private address is generated
2160 * from random six bytes with the two most significant
2161 * bits cleared.
2163 get_random_bytes(&nrpa, 6);
2164 nrpa.b[5] &= 0x3f;
2166 /* The non-resolvable private address shall not be
2167 * equal to the public address.
2169 if (bacmp(&hdev->bdaddr, &nrpa))
2170 break;
2173 *own_addr_type = ADDR_LE_DEV_RANDOM;
2174 set_random_addr(req, &nrpa);
2175 return 0;
2178 /* If forcing static address is in use or there is no public
2179 * address use the static address as random address (but skip
2180 * the HCI command if the current random address is already the
2181 * static one.
2183 * In case BR/EDR has been disabled on a dual-mode controller
2184 * and a static address has been configured, then use that
2185 * address instead of the public BR/EDR address.
2187 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2188 !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2189 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2190 bacmp(&hdev->static_addr, BDADDR_ANY))) {
2191 *own_addr_type = ADDR_LE_DEV_RANDOM;
2192 if (bacmp(&hdev->static_addr, &hdev->random_addr))
2193 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
2194 &hdev->static_addr);
2195 return 0;
2198 /* Neither privacy nor static address is being used so use a
2199 * public address.
2201 *own_addr_type = ADDR_LE_DEV_PUBLIC;
2203 return 0;
2206 static bool disconnected_whitelist_entries(struct hci_dev *hdev)
2208 struct bdaddr_list *b;
2210 list_for_each_entry(b, &hdev->whitelist, list) {
2211 struct hci_conn *conn;
2213 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
2214 if (!conn)
2215 return true;
2217 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
2218 return true;
2221 return false;
2224 void __hci_req_update_scan(struct hci_request *req)
2226 struct hci_dev *hdev = req->hdev;
2227 u8 scan;
2229 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2230 return;
2232 if (!hdev_is_powered(hdev))
2233 return;
2235 if (mgmt_powering_down(hdev))
2236 return;
2238 if (hdev->scanning_paused)
2239 return;
2241 if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
2242 disconnected_whitelist_entries(hdev))
2243 scan = SCAN_PAGE;
2244 else
2245 scan = SCAN_DISABLED;
2247 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
2248 scan |= SCAN_INQUIRY;
2250 if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
2251 test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
2252 return;
2254 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
2257 static int update_scan(struct hci_request *req, unsigned long opt)
2259 hci_dev_lock(req->hdev);
2260 __hci_req_update_scan(req);
2261 hci_dev_unlock(req->hdev);
2262 return 0;
2265 static void scan_update_work(struct work_struct *work)
2267 struct hci_dev *hdev = container_of(work, struct hci_dev, scan_update);
2269 hci_req_sync(hdev, update_scan, 0, HCI_CMD_TIMEOUT, NULL);
2272 static int connectable_update(struct hci_request *req, unsigned long opt)
2274 struct hci_dev *hdev = req->hdev;
2276 hci_dev_lock(hdev);
2278 __hci_req_update_scan(req);
2280 /* If BR/EDR is not enabled and we disable advertising as a
2281 * by-product of disabling connectable, we need to update the
2282 * advertising flags.
2284 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2285 __hci_req_update_adv_data(req, hdev->cur_adv_instance);
2287 /* Update the advertising parameters if necessary */
2288 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2289 !list_empty(&hdev->adv_instances)) {
2290 if (ext_adv_capable(hdev))
2291 __hci_req_start_ext_adv(req, hdev->cur_adv_instance);
2292 else
2293 __hci_req_enable_advertising(req);
2296 __hci_update_background_scan(req);
2298 hci_dev_unlock(hdev);
2300 return 0;
2303 static void connectable_update_work(struct work_struct *work)
2305 struct hci_dev *hdev = container_of(work, struct hci_dev,
2306 connectable_update);
2307 u8 status;
2309 hci_req_sync(hdev, connectable_update, 0, HCI_CMD_TIMEOUT, &status);
2310 mgmt_set_connectable_complete(hdev, status);
2313 static u8 get_service_classes(struct hci_dev *hdev)
2315 struct bt_uuid *uuid;
2316 u8 val = 0;
2318 list_for_each_entry(uuid, &hdev->uuids, list)
2319 val |= uuid->svc_hint;
2321 return val;
2324 void __hci_req_update_class(struct hci_request *req)
2326 struct hci_dev *hdev = req->hdev;
2327 u8 cod[3];
2329 BT_DBG("%s", hdev->name);
2331 if (!hdev_is_powered(hdev))
2332 return;
2334 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2335 return;
2337 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
2338 return;
2340 cod[0] = hdev->minor_class;
2341 cod[1] = hdev->major_class;
2342 cod[2] = get_service_classes(hdev);
2344 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
2345 cod[1] |= 0x20;
2347 if (memcmp(cod, hdev->dev_class, 3) == 0)
2348 return;
2350 hci_req_add(req, HCI_OP_WRITE_CLASS_OF_DEV, sizeof(cod), cod);
2353 static void write_iac(struct hci_request *req)
2355 struct hci_dev *hdev = req->hdev;
2356 struct hci_cp_write_current_iac_lap cp;
2358 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
2359 return;
2361 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
2362 /* Limited discoverable mode */
2363 cp.num_iac = min_t(u8, hdev->num_iac, 2);
2364 cp.iac_lap[0] = 0x00; /* LIAC */
2365 cp.iac_lap[1] = 0x8b;
2366 cp.iac_lap[2] = 0x9e;
2367 cp.iac_lap[3] = 0x33; /* GIAC */
2368 cp.iac_lap[4] = 0x8b;
2369 cp.iac_lap[5] = 0x9e;
2370 } else {
2371 /* General discoverable mode */
2372 cp.num_iac = 1;
2373 cp.iac_lap[0] = 0x33; /* GIAC */
2374 cp.iac_lap[1] = 0x8b;
2375 cp.iac_lap[2] = 0x9e;
2378 hci_req_add(req, HCI_OP_WRITE_CURRENT_IAC_LAP,
2379 (cp.num_iac * 3) + 1, &cp);
2382 static int discoverable_update(struct hci_request *req, unsigned long opt)
2384 struct hci_dev *hdev = req->hdev;
2386 hci_dev_lock(hdev);
2388 if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
2389 write_iac(req);
2390 __hci_req_update_scan(req);
2391 __hci_req_update_class(req);
2394 /* Advertising instances don't use the global discoverable setting, so
2395 * only update AD if advertising was enabled using Set Advertising.
2397 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
2398 __hci_req_update_adv_data(req, 0x00);
2400 /* Discoverable mode affects the local advertising
2401 * address in limited privacy mode.
2403 if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
2404 if (ext_adv_capable(hdev))
2405 __hci_req_start_ext_adv(req, 0x00);
2406 else
2407 __hci_req_enable_advertising(req);
2411 hci_dev_unlock(hdev);
2413 return 0;
2416 static void discoverable_update_work(struct work_struct *work)
2418 struct hci_dev *hdev = container_of(work, struct hci_dev,
2419 discoverable_update);
2420 u8 status;
2422 hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, &status);
2423 mgmt_set_discoverable_complete(hdev, status);
2426 void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn,
2427 u8 reason)
2429 switch (conn->state) {
2430 case BT_CONNECTED:
2431 case BT_CONFIG:
2432 if (conn->type == AMP_LINK) {
2433 struct hci_cp_disconn_phy_link cp;
2435 cp.phy_handle = HCI_PHY_HANDLE(conn->handle);
2436 cp.reason = reason;
2437 hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp),
2438 &cp);
2439 } else {
2440 struct hci_cp_disconnect dc;
2442 dc.handle = cpu_to_le16(conn->handle);
2443 dc.reason = reason;
2444 hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc);
2447 conn->state = BT_DISCONN;
2449 break;
2450 case BT_CONNECT:
2451 if (conn->type == LE_LINK) {
2452 if (test_bit(HCI_CONN_SCANNING, &conn->flags))
2453 break;
2454 hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL,
2455 0, NULL);
2456 } else if (conn->type == ACL_LINK) {
2457 if (req->hdev->hci_ver < BLUETOOTH_VER_1_2)
2458 break;
2459 hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL,
2460 6, &conn->dst);
2462 break;
2463 case BT_CONNECT2:
2464 if (conn->type == ACL_LINK) {
2465 struct hci_cp_reject_conn_req rej;
2467 bacpy(&rej.bdaddr, &conn->dst);
2468 rej.reason = reason;
2470 hci_req_add(req, HCI_OP_REJECT_CONN_REQ,
2471 sizeof(rej), &rej);
2472 } else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
2473 struct hci_cp_reject_sync_conn_req rej;
2475 bacpy(&rej.bdaddr, &conn->dst);
2477 /* SCO rejection has its own limited set of
2478 * allowed error values (0x0D-0x0F) which isn't
2479 * compatible with most values passed to this
2480 * function. To be safe hard-code one of the
2481 * values that's suitable for SCO.
2483 rej.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
2485 hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ,
2486 sizeof(rej), &rej);
2488 break;
2489 default:
2490 conn->state = BT_CLOSED;
2491 break;
2495 static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
2497 if (status)
2498 BT_DBG("Failed to abort connection: status 0x%2.2x", status);
2501 int hci_abort_conn(struct hci_conn *conn, u8 reason)
2503 struct hci_request req;
2504 int err;
2506 hci_req_init(&req, conn->hdev);
2508 __hci_abort_conn(&req, conn, reason);
2510 err = hci_req_run(&req, abort_conn_complete);
2511 if (err && err != -ENODATA) {
2512 bt_dev_err(conn->hdev, "failed to run HCI request: err %d", err);
2513 return err;
2516 return 0;
2519 static int update_bg_scan(struct hci_request *req, unsigned long opt)
2521 hci_dev_lock(req->hdev);
2522 __hci_update_background_scan(req);
2523 hci_dev_unlock(req->hdev);
2524 return 0;
2527 static void bg_scan_update(struct work_struct *work)
2529 struct hci_dev *hdev = container_of(work, struct hci_dev,
2530 bg_scan_update);
2531 struct hci_conn *conn;
2532 u8 status;
2533 int err;
2535 err = hci_req_sync(hdev, update_bg_scan, 0, HCI_CMD_TIMEOUT, &status);
2536 if (!err)
2537 return;
2539 hci_dev_lock(hdev);
2541 conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT);
2542 if (conn)
2543 hci_le_conn_failed(conn, status);
2545 hci_dev_unlock(hdev);
2548 static int le_scan_disable(struct hci_request *req, unsigned long opt)
2550 hci_req_add_le_scan_disable(req);
2551 return 0;
2554 static int bredr_inquiry(struct hci_request *req, unsigned long opt)
2556 u8 length = opt;
2557 const u8 giac[3] = { 0x33, 0x8b, 0x9e };
2558 const u8 liac[3] = { 0x00, 0x8b, 0x9e };
2559 struct hci_cp_inquiry cp;
2561 BT_DBG("%s", req->hdev->name);
2563 hci_dev_lock(req->hdev);
2564 hci_inquiry_cache_flush(req->hdev);
2565 hci_dev_unlock(req->hdev);
2567 memset(&cp, 0, sizeof(cp));
2569 if (req->hdev->discovery.limited)
2570 memcpy(&cp.lap, liac, sizeof(cp.lap));
2571 else
2572 memcpy(&cp.lap, giac, sizeof(cp.lap));
2574 cp.length = length;
2576 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
2578 return 0;
2581 static void le_scan_disable_work(struct work_struct *work)
2583 struct hci_dev *hdev = container_of(work, struct hci_dev,
2584 le_scan_disable.work);
2585 u8 status;
2587 BT_DBG("%s", hdev->name);
2589 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
2590 return;
2592 cancel_delayed_work(&hdev->le_scan_restart);
2594 hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status);
2595 if (status) {
2596 bt_dev_err(hdev, "failed to disable LE scan: status 0x%02x",
2597 status);
2598 return;
2601 hdev->discovery.scan_start = 0;
2603 /* If we were running LE only scan, change discovery state. If
2604 * we were running both LE and BR/EDR inquiry simultaneously,
2605 * and BR/EDR inquiry is already finished, stop discovery,
2606 * otherwise BR/EDR inquiry will stop discovery when finished.
2607 * If we will resolve remote device name, do not change
2608 * discovery state.
2611 if (hdev->discovery.type == DISCOV_TYPE_LE)
2612 goto discov_stopped;
2614 if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
2615 return;
2617 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
2618 if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
2619 hdev->discovery.state != DISCOVERY_RESOLVING)
2620 goto discov_stopped;
2622 return;
2625 hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN,
2626 HCI_CMD_TIMEOUT, &status);
2627 if (status) {
2628 bt_dev_err(hdev, "inquiry failed: status 0x%02x", status);
2629 goto discov_stopped;
2632 return;
2634 discov_stopped:
2635 hci_dev_lock(hdev);
2636 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2637 hci_dev_unlock(hdev);
2640 static int le_scan_restart(struct hci_request *req, unsigned long opt)
2642 struct hci_dev *hdev = req->hdev;
2644 /* If controller is not scanning we are done. */
2645 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
2646 return 0;
2648 hci_req_add_le_scan_disable(req);
2650 if (use_ext_scan(hdev)) {
2651 struct hci_cp_le_set_ext_scan_enable ext_enable_cp;
2653 memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
2654 ext_enable_cp.enable = LE_SCAN_ENABLE;
2655 ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2657 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
2658 sizeof(ext_enable_cp), &ext_enable_cp);
2659 } else {
2660 struct hci_cp_le_set_scan_enable cp;
2662 memset(&cp, 0, sizeof(cp));
2663 cp.enable = LE_SCAN_ENABLE;
2664 cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2665 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
2668 return 0;
2671 static void le_scan_restart_work(struct work_struct *work)
2673 struct hci_dev *hdev = container_of(work, struct hci_dev,
2674 le_scan_restart.work);
2675 unsigned long timeout, duration, scan_start, now;
2676 u8 status;
2678 BT_DBG("%s", hdev->name);
2680 hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status);
2681 if (status) {
2682 bt_dev_err(hdev, "failed to restart LE scan: status %d",
2683 status);
2684 return;
2687 hci_dev_lock(hdev);
2689 if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
2690 !hdev->discovery.scan_start)
2691 goto unlock;
2693 /* When the scan was started, hdev->le_scan_disable has been queued
2694 * after duration from scan_start. During scan restart this job
2695 * has been canceled, and we need to queue it again after proper
2696 * timeout, to make sure that scan does not run indefinitely.
2698 duration = hdev->discovery.scan_duration;
2699 scan_start = hdev->discovery.scan_start;
2700 now = jiffies;
2701 if (now - scan_start <= duration) {
2702 int elapsed;
2704 if (now >= scan_start)
2705 elapsed = now - scan_start;
2706 else
2707 elapsed = ULONG_MAX - scan_start + now;
2709 timeout = duration - elapsed;
2710 } else {
2711 timeout = 0;
2714 queue_delayed_work(hdev->req_workqueue,
2715 &hdev->le_scan_disable, timeout);
2717 unlock:
2718 hci_dev_unlock(hdev);
2721 static int active_scan(struct hci_request *req, unsigned long opt)
2723 uint16_t interval = opt;
2724 struct hci_dev *hdev = req->hdev;
2725 u8 own_addr_type;
2726 int err;
2728 BT_DBG("%s", hdev->name);
2730 /* If controller is scanning, it means the background scanning is
2731 * running. Thus, we should temporarily stop it in order to set the
2732 * discovery scanning parameters.
2734 if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
2735 hci_req_add_le_scan_disable(req);
2737 /* All active scans will be done with either a resolvable private
2738 * address (when privacy feature has been enabled) or non-resolvable
2739 * private address.
2741 err = hci_update_random_address(req, true, scan_use_rpa(hdev),
2742 &own_addr_type);
2743 if (err < 0)
2744 own_addr_type = ADDR_LE_DEV_PUBLIC;
2746 hci_req_start_scan(req, LE_SCAN_ACTIVE, interval, DISCOV_LE_SCAN_WIN,
2747 own_addr_type, 0);
2748 return 0;
2751 static int interleaved_discov(struct hci_request *req, unsigned long opt)
2753 int err;
2755 BT_DBG("%s", req->hdev->name);
2757 err = active_scan(req, opt);
2758 if (err)
2759 return err;
2761 return bredr_inquiry(req, DISCOV_BREDR_INQUIRY_LEN);
2764 static void start_discovery(struct hci_dev *hdev, u8 *status)
2766 unsigned long timeout;
2768 BT_DBG("%s type %u", hdev->name, hdev->discovery.type);
2770 switch (hdev->discovery.type) {
2771 case DISCOV_TYPE_BREDR:
2772 if (!hci_dev_test_flag(hdev, HCI_INQUIRY))
2773 hci_req_sync(hdev, bredr_inquiry,
2774 DISCOV_BREDR_INQUIRY_LEN, HCI_CMD_TIMEOUT,
2775 status);
2776 return;
2777 case DISCOV_TYPE_INTERLEAVED:
2778 /* When running simultaneous discovery, the LE scanning time
2779 * should occupy the whole discovery time sine BR/EDR inquiry
2780 * and LE scanning are scheduled by the controller.
2782 * For interleaving discovery in comparison, BR/EDR inquiry
2783 * and LE scanning are done sequentially with separate
2784 * timeouts.
2786 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
2787 &hdev->quirks)) {
2788 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2789 /* During simultaneous discovery, we double LE scan
2790 * interval. We must leave some time for the controller
2791 * to do BR/EDR inquiry.
2793 hci_req_sync(hdev, interleaved_discov,
2794 DISCOV_LE_SCAN_INT * 2, HCI_CMD_TIMEOUT,
2795 status);
2796 break;
2799 timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
2800 hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
2801 HCI_CMD_TIMEOUT, status);
2802 break;
2803 case DISCOV_TYPE_LE:
2804 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2805 hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
2806 HCI_CMD_TIMEOUT, status);
2807 break;
2808 default:
2809 *status = HCI_ERROR_UNSPECIFIED;
2810 return;
2813 if (*status)
2814 return;
2816 BT_DBG("%s timeout %u ms", hdev->name, jiffies_to_msecs(timeout));
2818 /* When service discovery is used and the controller has a
2819 * strict duplicate filter, it is important to remember the
2820 * start and duration of the scan. This is required for
2821 * restarting scanning during the discovery phase.
2823 if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
2824 hdev->discovery.result_filtering) {
2825 hdev->discovery.scan_start = jiffies;
2826 hdev->discovery.scan_duration = timeout;
2829 queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
2830 timeout);
2833 bool hci_req_stop_discovery(struct hci_request *req)
2835 struct hci_dev *hdev = req->hdev;
2836 struct discovery_state *d = &hdev->discovery;
2837 struct hci_cp_remote_name_req_cancel cp;
2838 struct inquiry_entry *e;
2839 bool ret = false;
2841 BT_DBG("%s state %u", hdev->name, hdev->discovery.state);
2843 if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
2844 if (test_bit(HCI_INQUIRY, &hdev->flags))
2845 hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL);
2847 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2848 cancel_delayed_work(&hdev->le_scan_disable);
2849 hci_req_add_le_scan_disable(req);
2852 ret = true;
2853 } else {
2854 /* Passive scanning */
2855 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2856 hci_req_add_le_scan_disable(req);
2857 ret = true;
2861 /* No further actions needed for LE-only discovery */
2862 if (d->type == DISCOV_TYPE_LE)
2863 return ret;
2865 if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
2866 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
2867 NAME_PENDING);
2868 if (!e)
2869 return ret;
2871 bacpy(&cp.bdaddr, &e->data.bdaddr);
2872 hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp),
2873 &cp);
2874 ret = true;
2877 return ret;
2880 static int stop_discovery(struct hci_request *req, unsigned long opt)
2882 hci_dev_lock(req->hdev);
2883 hci_req_stop_discovery(req);
2884 hci_dev_unlock(req->hdev);
2886 return 0;
2889 static void discov_update(struct work_struct *work)
2891 struct hci_dev *hdev = container_of(work, struct hci_dev,
2892 discov_update);
2893 u8 status = 0;
2895 switch (hdev->discovery.state) {
2896 case DISCOVERY_STARTING:
2897 start_discovery(hdev, &status);
2898 mgmt_start_discovery_complete(hdev, status);
2899 if (status)
2900 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2901 else
2902 hci_discovery_set_state(hdev, DISCOVERY_FINDING);
2903 break;
2904 case DISCOVERY_STOPPING:
2905 hci_req_sync(hdev, stop_discovery, 0, HCI_CMD_TIMEOUT, &status);
2906 mgmt_stop_discovery_complete(hdev, status);
2907 if (!status)
2908 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2909 break;
2910 case DISCOVERY_STOPPED:
2911 default:
2912 return;
2916 static void discov_off(struct work_struct *work)
2918 struct hci_dev *hdev = container_of(work, struct hci_dev,
2919 discov_off.work);
2921 BT_DBG("%s", hdev->name);
2923 hci_dev_lock(hdev);
2925 /* When discoverable timeout triggers, then just make sure
2926 * the limited discoverable flag is cleared. Even in the case
2927 * of a timeout triggered from general discoverable, it is
2928 * safe to unconditionally clear the flag.
2930 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
2931 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
2932 hdev->discov_timeout = 0;
2934 hci_dev_unlock(hdev);
2936 hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, NULL);
2937 mgmt_new_settings(hdev);
2940 static int powered_update_hci(struct hci_request *req, unsigned long opt)
2942 struct hci_dev *hdev = req->hdev;
2943 u8 link_sec;
2945 hci_dev_lock(hdev);
2947 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
2948 !lmp_host_ssp_capable(hdev)) {
2949 u8 mode = 0x01;
2951 hci_req_add(req, HCI_OP_WRITE_SSP_MODE, sizeof(mode), &mode);
2953 if (bredr_sc_enabled(hdev) && !lmp_host_sc_capable(hdev)) {
2954 u8 support = 0x01;
2956 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
2957 sizeof(support), &support);
2961 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED) &&
2962 lmp_bredr_capable(hdev)) {
2963 struct hci_cp_write_le_host_supported cp;
2965 cp.le = 0x01;
2966 cp.simul = 0x00;
2968 /* Check first if we already have the right
2969 * host state (host features set)
2971 if (cp.le != lmp_host_le_capable(hdev) ||
2972 cp.simul != lmp_host_le_br_capable(hdev))
2973 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED,
2974 sizeof(cp), &cp);
2977 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
2978 /* Make sure the controller has a good default for
2979 * advertising data. This also applies to the case
2980 * where BR/EDR was toggled during the AUTO_OFF phase.
2982 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2983 list_empty(&hdev->adv_instances)) {
2984 int err;
2986 if (ext_adv_capable(hdev)) {
2987 err = __hci_req_setup_ext_adv_instance(req,
2988 0x00);
2989 if (!err)
2990 __hci_req_update_scan_rsp_data(req,
2991 0x00);
2992 } else {
2993 err = 0;
2994 __hci_req_update_adv_data(req, 0x00);
2995 __hci_req_update_scan_rsp_data(req, 0x00);
2998 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
2999 if (!ext_adv_capable(hdev))
3000 __hci_req_enable_advertising(req);
3001 else if (!err)
3002 __hci_req_enable_ext_advertising(req,
3003 0x00);
3005 } else if (!list_empty(&hdev->adv_instances)) {
3006 struct adv_info *adv_instance;
3008 adv_instance = list_first_entry(&hdev->adv_instances,
3009 struct adv_info, list);
3010 __hci_req_schedule_adv_instance(req,
3011 adv_instance->instance,
3012 true);
3016 link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
3017 if (link_sec != test_bit(HCI_AUTH, &hdev->flags))
3018 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE,
3019 sizeof(link_sec), &link_sec);
3021 if (lmp_bredr_capable(hdev)) {
3022 if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
3023 __hci_req_write_fast_connectable(req, true);
3024 else
3025 __hci_req_write_fast_connectable(req, false);
3026 __hci_req_update_scan(req);
3027 __hci_req_update_class(req);
3028 __hci_req_update_name(req);
3029 __hci_req_update_eir(req);
3032 hci_dev_unlock(hdev);
3033 return 0;
3036 int __hci_req_hci_power_on(struct hci_dev *hdev)
3038 /* Register the available SMP channels (BR/EDR and LE) only when
3039 * successfully powering on the controller. This late
3040 * registration is required so that LE SMP can clearly decide if
3041 * the public address or static address is used.
3043 smp_register(hdev);
3045 return __hci_req_sync(hdev, powered_update_hci, 0, HCI_CMD_TIMEOUT,
3046 NULL);
3049 void hci_request_setup(struct hci_dev *hdev)
3051 INIT_WORK(&hdev->discov_update, discov_update);
3052 INIT_WORK(&hdev->bg_scan_update, bg_scan_update);
3053 INIT_WORK(&hdev->scan_update, scan_update_work);
3054 INIT_WORK(&hdev->connectable_update, connectable_update_work);
3055 INIT_WORK(&hdev->discoverable_update, discoverable_update_work);
3056 INIT_DELAYED_WORK(&hdev->discov_off, discov_off);
3057 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
3058 INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work);
3059 INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
3062 void hci_request_cancel_all(struct hci_dev *hdev)
3064 hci_req_sync_cancel(hdev, ENODEV);
3066 cancel_work_sync(&hdev->discov_update);
3067 cancel_work_sync(&hdev->bg_scan_update);
3068 cancel_work_sync(&hdev->scan_update);
3069 cancel_work_sync(&hdev->connectable_update);
3070 cancel_work_sync(&hdev->discoverable_update);
3071 cancel_delayed_work_sync(&hdev->discov_off);
3072 cancel_delayed_work_sync(&hdev->le_scan_disable);
3073 cancel_delayed_work_sync(&hdev->le_scan_restart);
3075 if (hdev->adv_instance_timeout) {
3076 cancel_delayed_work_sync(&hdev->adv_instance_expire);
3077 hdev->adv_instance_timeout = 0;