Linux 5.7.7
[linux/fpc-iii.git] / net / mac80211 / rx.c
blob91a13aee43784f428654206af1a1824fc1c7e02a
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2002-2005, Instant802 Networks, Inc.
4 * Copyright 2005-2006, Devicescape Software, Inc.
5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
6 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
7 * Copyright 2013-2014 Intel Mobile Communications GmbH
8 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
9 * Copyright (C) 2018-2020 Intel Corporation
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <linux/bitops.h>
21 #include <net/mac80211.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <asm/unaligned.h>
25 #include "ieee80211_i.h"
26 #include "driver-ops.h"
27 #include "led.h"
28 #include "mesh.h"
29 #include "wep.h"
30 #include "wpa.h"
31 #include "tkip.h"
32 #include "wme.h"
33 #include "rate.h"
35 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len)
37 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
39 u64_stats_update_begin(&tstats->syncp);
40 tstats->rx_packets++;
41 tstats->rx_bytes += len;
42 u64_stats_update_end(&tstats->syncp);
45 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
46 enum nl80211_iftype type)
48 __le16 fc = hdr->frame_control;
50 if (ieee80211_is_data(fc)) {
51 if (len < 24) /* drop incorrect hdr len (data) */
52 return NULL;
54 if (ieee80211_has_a4(fc))
55 return NULL;
56 if (ieee80211_has_tods(fc))
57 return hdr->addr1;
58 if (ieee80211_has_fromds(fc))
59 return hdr->addr2;
61 return hdr->addr3;
64 if (ieee80211_is_mgmt(fc)) {
65 if (len < 24) /* drop incorrect hdr len (mgmt) */
66 return NULL;
67 return hdr->addr3;
70 if (ieee80211_is_ctl(fc)) {
71 if (ieee80211_is_pspoll(fc))
72 return hdr->addr1;
74 if (ieee80211_is_back_req(fc)) {
75 switch (type) {
76 case NL80211_IFTYPE_STATION:
77 return hdr->addr2;
78 case NL80211_IFTYPE_AP:
79 case NL80211_IFTYPE_AP_VLAN:
80 return hdr->addr1;
81 default:
82 break; /* fall through to the return */
87 return NULL;
91 * monitor mode reception
93 * This function cleans up the SKB, i.e. it removes all the stuff
94 * only useful for monitoring.
96 static void remove_monitor_info(struct sk_buff *skb,
97 unsigned int present_fcs_len,
98 unsigned int rtap_space)
100 if (present_fcs_len)
101 __pskb_trim(skb, skb->len - present_fcs_len);
102 __pskb_pull(skb, rtap_space);
105 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
106 unsigned int rtap_space)
108 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
109 struct ieee80211_hdr *hdr;
111 hdr = (void *)(skb->data + rtap_space);
113 if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
114 RX_FLAG_FAILED_PLCP_CRC |
115 RX_FLAG_ONLY_MONITOR |
116 RX_FLAG_NO_PSDU))
117 return true;
119 if (unlikely(skb->len < 16 + present_fcs_len + rtap_space))
120 return true;
122 if (ieee80211_is_ctl(hdr->frame_control) &&
123 !ieee80211_is_pspoll(hdr->frame_control) &&
124 !ieee80211_is_back_req(hdr->frame_control))
125 return true;
127 return false;
130 static int
131 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
132 struct ieee80211_rx_status *status,
133 struct sk_buff *skb)
135 int len;
137 /* always present fields */
138 len = sizeof(struct ieee80211_radiotap_header) + 8;
140 /* allocate extra bitmaps */
141 if (status->chains)
142 len += 4 * hweight8(status->chains);
143 /* vendor presence bitmap */
144 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)
145 len += 4;
147 if (ieee80211_have_rx_timestamp(status)) {
148 len = ALIGN(len, 8);
149 len += 8;
151 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
152 len += 1;
154 /* antenna field, if we don't have per-chain info */
155 if (!status->chains)
156 len += 1;
158 /* padding for RX_FLAGS if necessary */
159 len = ALIGN(len, 2);
161 if (status->encoding == RX_ENC_HT) /* HT info */
162 len += 3;
164 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
165 len = ALIGN(len, 4);
166 len += 8;
169 if (status->encoding == RX_ENC_VHT) {
170 len = ALIGN(len, 2);
171 len += 12;
174 if (local->hw.radiotap_timestamp.units_pos >= 0) {
175 len = ALIGN(len, 8);
176 len += 12;
179 if (status->encoding == RX_ENC_HE &&
180 status->flag & RX_FLAG_RADIOTAP_HE) {
181 len = ALIGN(len, 2);
182 len += 12;
183 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12);
186 if (status->encoding == RX_ENC_HE &&
187 status->flag & RX_FLAG_RADIOTAP_HE_MU) {
188 len = ALIGN(len, 2);
189 len += 12;
190 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12);
193 if (status->flag & RX_FLAG_NO_PSDU)
194 len += 1;
196 if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
197 len = ALIGN(len, 2);
198 len += 4;
199 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4);
202 if (status->chains) {
203 /* antenna and antenna signal fields */
204 len += 2 * hweight8(status->chains);
207 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
208 struct ieee80211_vendor_radiotap *rtap;
209 int vendor_data_offset = 0;
212 * The position to look at depends on the existence (or non-
213 * existence) of other elements, so take that into account...
215 if (status->flag & RX_FLAG_RADIOTAP_HE)
216 vendor_data_offset +=
217 sizeof(struct ieee80211_radiotap_he);
218 if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
219 vendor_data_offset +=
220 sizeof(struct ieee80211_radiotap_he_mu);
221 if (status->flag & RX_FLAG_RADIOTAP_LSIG)
222 vendor_data_offset +=
223 sizeof(struct ieee80211_radiotap_lsig);
225 rtap = (void *)&skb->data[vendor_data_offset];
227 /* alignment for fixed 6-byte vendor data header */
228 len = ALIGN(len, 2);
229 /* vendor data header */
230 len += 6;
231 if (WARN_ON(rtap->align == 0))
232 rtap->align = 1;
233 len = ALIGN(len, rtap->align);
234 len += rtap->len + rtap->pad;
237 return len;
240 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata,
241 struct sk_buff *skb,
242 int rtap_space)
244 struct {
245 struct ieee80211_hdr_3addr hdr;
246 u8 category;
247 u8 action_code;
248 } __packed __aligned(2) action;
250 if (!sdata)
251 return;
253 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1);
255 if (skb->len < rtap_space + sizeof(action) +
256 VHT_MUMIMO_GROUPS_DATA_LEN)
257 return;
259 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr))
260 return;
262 skb_copy_bits(skb, rtap_space, &action, sizeof(action));
264 if (!ieee80211_is_action(action.hdr.frame_control))
265 return;
267 if (action.category != WLAN_CATEGORY_VHT)
268 return;
270 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT)
271 return;
273 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr))
274 return;
276 skb = skb_copy(skb, GFP_ATOMIC);
277 if (!skb)
278 return;
280 skb_queue_tail(&sdata->skb_queue, skb);
281 ieee80211_queue_work(&sdata->local->hw, &sdata->work);
285 * ieee80211_add_rx_radiotap_header - add radiotap header
287 * add a radiotap header containing all the fields which the hardware provided.
289 static void
290 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
291 struct sk_buff *skb,
292 struct ieee80211_rate *rate,
293 int rtap_len, bool has_fcs)
295 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
296 struct ieee80211_radiotap_header *rthdr;
297 unsigned char *pos;
298 __le32 *it_present;
299 u32 it_present_val;
300 u16 rx_flags = 0;
301 u16 channel_flags = 0;
302 int mpdulen, chain;
303 unsigned long chains = status->chains;
304 struct ieee80211_vendor_radiotap rtap = {};
305 struct ieee80211_radiotap_he he = {};
306 struct ieee80211_radiotap_he_mu he_mu = {};
307 struct ieee80211_radiotap_lsig lsig = {};
309 if (status->flag & RX_FLAG_RADIOTAP_HE) {
310 he = *(struct ieee80211_radiotap_he *)skb->data;
311 skb_pull(skb, sizeof(he));
312 WARN_ON_ONCE(status->encoding != RX_ENC_HE);
315 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) {
316 he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data;
317 skb_pull(skb, sizeof(he_mu));
320 if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
321 lsig = *(struct ieee80211_radiotap_lsig *)skb->data;
322 skb_pull(skb, sizeof(lsig));
325 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
326 rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
327 /* rtap.len and rtap.pad are undone immediately */
328 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
331 mpdulen = skb->len;
332 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
333 mpdulen += FCS_LEN;
335 rthdr = skb_push(skb, rtap_len);
336 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
337 it_present = &rthdr->it_present;
339 /* radiotap header, set always present flags */
340 rthdr->it_len = cpu_to_le16(rtap_len);
341 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
342 BIT(IEEE80211_RADIOTAP_CHANNEL) |
343 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
345 if (!status->chains)
346 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
348 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
349 it_present_val |=
350 BIT(IEEE80211_RADIOTAP_EXT) |
351 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
352 put_unaligned_le32(it_present_val, it_present);
353 it_present++;
354 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
355 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
358 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
359 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
360 BIT(IEEE80211_RADIOTAP_EXT);
361 put_unaligned_le32(it_present_val, it_present);
362 it_present++;
363 it_present_val = rtap.present;
366 put_unaligned_le32(it_present_val, it_present);
368 pos = (void *)(it_present + 1);
370 /* the order of the following fields is important */
372 /* IEEE80211_RADIOTAP_TSFT */
373 if (ieee80211_have_rx_timestamp(status)) {
374 /* padding */
375 while ((pos - (u8 *)rthdr) & 7)
376 *pos++ = 0;
377 put_unaligned_le64(
378 ieee80211_calculate_rx_timestamp(local, status,
379 mpdulen, 0),
380 pos);
381 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
382 pos += 8;
385 /* IEEE80211_RADIOTAP_FLAGS */
386 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
387 *pos |= IEEE80211_RADIOTAP_F_FCS;
388 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
389 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
390 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE)
391 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
392 pos++;
394 /* IEEE80211_RADIOTAP_RATE */
395 if (!rate || status->encoding != RX_ENC_LEGACY) {
397 * Without rate information don't add it. If we have,
398 * MCS information is a separate field in radiotap,
399 * added below. The byte here is needed as padding
400 * for the channel though, so initialise it to 0.
402 *pos = 0;
403 } else {
404 int shift = 0;
405 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
406 if (status->bw == RATE_INFO_BW_10)
407 shift = 1;
408 else if (status->bw == RATE_INFO_BW_5)
409 shift = 2;
410 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
412 pos++;
414 /* IEEE80211_RADIOTAP_CHANNEL */
415 put_unaligned_le16(status->freq, pos);
416 pos += 2;
417 if (status->bw == RATE_INFO_BW_10)
418 channel_flags |= IEEE80211_CHAN_HALF;
419 else if (status->bw == RATE_INFO_BW_5)
420 channel_flags |= IEEE80211_CHAN_QUARTER;
422 if (status->band == NL80211_BAND_5GHZ)
423 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
424 else if (status->encoding != RX_ENC_LEGACY)
425 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
426 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
427 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
428 else if (rate)
429 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
430 else
431 channel_flags |= IEEE80211_CHAN_2GHZ;
432 put_unaligned_le16(channel_flags, pos);
433 pos += 2;
435 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
436 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
437 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
438 *pos = status->signal;
439 rthdr->it_present |=
440 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
441 pos++;
444 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
446 if (!status->chains) {
447 /* IEEE80211_RADIOTAP_ANTENNA */
448 *pos = status->antenna;
449 pos++;
452 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
454 /* IEEE80211_RADIOTAP_RX_FLAGS */
455 /* ensure 2 byte alignment for the 2 byte field as required */
456 if ((pos - (u8 *)rthdr) & 1)
457 *pos++ = 0;
458 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
459 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
460 put_unaligned_le16(rx_flags, pos);
461 pos += 2;
463 if (status->encoding == RX_ENC_HT) {
464 unsigned int stbc;
466 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
467 *pos++ = local->hw.radiotap_mcs_details;
468 *pos = 0;
469 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
470 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
471 if (status->bw == RATE_INFO_BW_40)
472 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
473 if (status->enc_flags & RX_ENC_FLAG_HT_GF)
474 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
475 if (status->enc_flags & RX_ENC_FLAG_LDPC)
476 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
477 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT;
478 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
479 pos++;
480 *pos++ = status->rate_idx;
483 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
484 u16 flags = 0;
486 /* ensure 4 byte alignment */
487 while ((pos - (u8 *)rthdr) & 3)
488 pos++;
489 rthdr->it_present |=
490 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
491 put_unaligned_le32(status->ampdu_reference, pos);
492 pos += 4;
493 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
494 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
495 if (status->flag & RX_FLAG_AMPDU_IS_LAST)
496 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
497 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
498 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
499 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
500 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
501 if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN)
502 flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN;
503 if (status->flag & RX_FLAG_AMPDU_EOF_BIT)
504 flags |= IEEE80211_RADIOTAP_AMPDU_EOF;
505 put_unaligned_le16(flags, pos);
506 pos += 2;
507 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
508 *pos++ = status->ampdu_delimiter_crc;
509 else
510 *pos++ = 0;
511 *pos++ = 0;
514 if (status->encoding == RX_ENC_VHT) {
515 u16 known = local->hw.radiotap_vht_details;
517 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
518 put_unaligned_le16(known, pos);
519 pos += 2;
520 /* flags */
521 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
522 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
523 /* in VHT, STBC is binary */
524 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK)
525 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
526 if (status->enc_flags & RX_ENC_FLAG_BF)
527 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
528 pos++;
529 /* bandwidth */
530 switch (status->bw) {
531 case RATE_INFO_BW_80:
532 *pos++ = 4;
533 break;
534 case RATE_INFO_BW_160:
535 *pos++ = 11;
536 break;
537 case RATE_INFO_BW_40:
538 *pos++ = 1;
539 break;
540 default:
541 *pos++ = 0;
543 /* MCS/NSS */
544 *pos = (status->rate_idx << 4) | status->nss;
545 pos += 4;
546 /* coding field */
547 if (status->enc_flags & RX_ENC_FLAG_LDPC)
548 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
549 pos++;
550 /* group ID */
551 pos++;
552 /* partial_aid */
553 pos += 2;
556 if (local->hw.radiotap_timestamp.units_pos >= 0) {
557 u16 accuracy = 0;
558 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT;
560 rthdr->it_present |=
561 cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP);
563 /* ensure 8 byte alignment */
564 while ((pos - (u8 *)rthdr) & 7)
565 pos++;
567 put_unaligned_le64(status->device_timestamp, pos);
568 pos += sizeof(u64);
570 if (local->hw.radiotap_timestamp.accuracy >= 0) {
571 accuracy = local->hw.radiotap_timestamp.accuracy;
572 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY;
574 put_unaligned_le16(accuracy, pos);
575 pos += sizeof(u16);
577 *pos++ = local->hw.radiotap_timestamp.units_pos;
578 *pos++ = flags;
581 if (status->encoding == RX_ENC_HE &&
582 status->flag & RX_FLAG_RADIOTAP_HE) {
583 #define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f)
585 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) {
586 he.data6 |= HE_PREP(DATA6_NSTS,
587 FIELD_GET(RX_ENC_FLAG_STBC_MASK,
588 status->enc_flags));
589 he.data3 |= HE_PREP(DATA3_STBC, 1);
590 } else {
591 he.data6 |= HE_PREP(DATA6_NSTS, status->nss);
594 #define CHECK_GI(s) \
595 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \
596 (int)NL80211_RATE_INFO_HE_GI_##s)
598 CHECK_GI(0_8);
599 CHECK_GI(1_6);
600 CHECK_GI(3_2);
602 he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx);
603 he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm);
604 he.data3 |= HE_PREP(DATA3_CODING,
605 !!(status->enc_flags & RX_ENC_FLAG_LDPC));
607 he.data5 |= HE_PREP(DATA5_GI, status->he_gi);
609 switch (status->bw) {
610 case RATE_INFO_BW_20:
611 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
612 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ);
613 break;
614 case RATE_INFO_BW_40:
615 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
616 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ);
617 break;
618 case RATE_INFO_BW_80:
619 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
620 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ);
621 break;
622 case RATE_INFO_BW_160:
623 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
624 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ);
625 break;
626 case RATE_INFO_BW_HE_RU:
627 #define CHECK_RU_ALLOC(s) \
628 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \
629 NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4)
631 CHECK_RU_ALLOC(26);
632 CHECK_RU_ALLOC(52);
633 CHECK_RU_ALLOC(106);
634 CHECK_RU_ALLOC(242);
635 CHECK_RU_ALLOC(484);
636 CHECK_RU_ALLOC(996);
637 CHECK_RU_ALLOC(2x996);
639 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
640 status->he_ru + 4);
641 break;
642 default:
643 WARN_ONCE(1, "Invalid SU BW %d\n", status->bw);
646 /* ensure 2 byte alignment */
647 while ((pos - (u8 *)rthdr) & 1)
648 pos++;
649 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE);
650 memcpy(pos, &he, sizeof(he));
651 pos += sizeof(he);
654 if (status->encoding == RX_ENC_HE &&
655 status->flag & RX_FLAG_RADIOTAP_HE_MU) {
656 /* ensure 2 byte alignment */
657 while ((pos - (u8 *)rthdr) & 1)
658 pos++;
659 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE_MU);
660 memcpy(pos, &he_mu, sizeof(he_mu));
661 pos += sizeof(he_mu);
664 if (status->flag & RX_FLAG_NO_PSDU) {
665 rthdr->it_present |=
666 cpu_to_le32(1 << IEEE80211_RADIOTAP_ZERO_LEN_PSDU);
667 *pos++ = status->zero_length_psdu_type;
670 if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
671 /* ensure 2 byte alignment */
672 while ((pos - (u8 *)rthdr) & 1)
673 pos++;
674 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_LSIG);
675 memcpy(pos, &lsig, sizeof(lsig));
676 pos += sizeof(lsig);
679 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
680 *pos++ = status->chain_signal[chain];
681 *pos++ = chain;
684 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
685 /* ensure 2 byte alignment for the vendor field as required */
686 if ((pos - (u8 *)rthdr) & 1)
687 *pos++ = 0;
688 *pos++ = rtap.oui[0];
689 *pos++ = rtap.oui[1];
690 *pos++ = rtap.oui[2];
691 *pos++ = rtap.subns;
692 put_unaligned_le16(rtap.len, pos);
693 pos += 2;
694 /* align the actual payload as requested */
695 while ((pos - (u8 *)rthdr) & (rtap.align - 1))
696 *pos++ = 0;
697 /* data (and possible padding) already follows */
701 static struct sk_buff *
702 ieee80211_make_monitor_skb(struct ieee80211_local *local,
703 struct sk_buff **origskb,
704 struct ieee80211_rate *rate,
705 int rtap_space, bool use_origskb)
707 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb);
708 int rt_hdrlen, needed_headroom;
709 struct sk_buff *skb;
711 /* room for the radiotap header based on driver features */
712 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb);
713 needed_headroom = rt_hdrlen - rtap_space;
715 if (use_origskb) {
716 /* only need to expand headroom if necessary */
717 skb = *origskb;
718 *origskb = NULL;
721 * This shouldn't trigger often because most devices have an
722 * RX header they pull before we get here, and that should
723 * be big enough for our radiotap information. We should
724 * probably export the length to drivers so that we can have
725 * them allocate enough headroom to start with.
727 if (skb_headroom(skb) < needed_headroom &&
728 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
729 dev_kfree_skb(skb);
730 return NULL;
732 } else {
734 * Need to make a copy and possibly remove radiotap header
735 * and FCS from the original.
737 skb = skb_copy_expand(*origskb, needed_headroom, 0, GFP_ATOMIC);
739 if (!skb)
740 return NULL;
743 /* prepend radiotap information */
744 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
746 skb_reset_mac_header(skb);
747 skb->ip_summed = CHECKSUM_UNNECESSARY;
748 skb->pkt_type = PACKET_OTHERHOST;
749 skb->protocol = htons(ETH_P_802_2);
751 return skb;
755 * This function copies a received frame to all monitor interfaces and
756 * returns a cleaned-up SKB that no longer includes the FCS nor the
757 * radiotap header the driver might have added.
759 static struct sk_buff *
760 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
761 struct ieee80211_rate *rate)
763 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
764 struct ieee80211_sub_if_data *sdata;
765 struct sk_buff *monskb = NULL;
766 int present_fcs_len = 0;
767 unsigned int rtap_space = 0;
768 struct ieee80211_sub_if_data *monitor_sdata =
769 rcu_dereference(local->monitor_sdata);
770 bool only_monitor = false;
771 unsigned int min_head_len;
773 if (status->flag & RX_FLAG_RADIOTAP_HE)
774 rtap_space += sizeof(struct ieee80211_radiotap_he);
776 if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
777 rtap_space += sizeof(struct ieee80211_radiotap_he_mu);
779 if (status->flag & RX_FLAG_RADIOTAP_LSIG)
780 rtap_space += sizeof(struct ieee80211_radiotap_lsig);
782 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
783 struct ieee80211_vendor_radiotap *rtap =
784 (void *)(origskb->data + rtap_space);
786 rtap_space += sizeof(*rtap) + rtap->len + rtap->pad;
789 min_head_len = rtap_space;
792 * First, we may need to make a copy of the skb because
793 * (1) we need to modify it for radiotap (if not present), and
794 * (2) the other RX handlers will modify the skb we got.
796 * We don't need to, of course, if we aren't going to return
797 * the SKB because it has a bad FCS/PLCP checksum.
800 if (!(status->flag & RX_FLAG_NO_PSDU)) {
801 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
802 if (unlikely(origskb->len <= FCS_LEN + rtap_space)) {
803 /* driver bug */
804 WARN_ON(1);
805 dev_kfree_skb(origskb);
806 return NULL;
808 present_fcs_len = FCS_LEN;
811 /* also consider the hdr->frame_control */
812 min_head_len += 2;
815 /* ensure that the expected data elements are in skb head */
816 if (!pskb_may_pull(origskb, min_head_len)) {
817 dev_kfree_skb(origskb);
818 return NULL;
821 only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space);
823 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
824 if (only_monitor) {
825 dev_kfree_skb(origskb);
826 return NULL;
829 remove_monitor_info(origskb, present_fcs_len, rtap_space);
830 return origskb;
833 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space);
835 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) {
836 bool last_monitor = list_is_last(&sdata->u.mntr.list,
837 &local->mon_list);
839 if (!monskb)
840 monskb = ieee80211_make_monitor_skb(local, &origskb,
841 rate, rtap_space,
842 only_monitor &&
843 last_monitor);
845 if (monskb) {
846 struct sk_buff *skb;
848 if (last_monitor) {
849 skb = monskb;
850 monskb = NULL;
851 } else {
852 skb = skb_clone(monskb, GFP_ATOMIC);
855 if (skb) {
856 skb->dev = sdata->dev;
857 ieee80211_rx_stats(skb->dev, skb->len);
858 netif_receive_skb(skb);
862 if (last_monitor)
863 break;
866 /* this happens if last_monitor was erroneously false */
867 dev_kfree_skb(monskb);
869 /* ditto */
870 if (!origskb)
871 return NULL;
873 remove_monitor_info(origskb, present_fcs_len, rtap_space);
874 return origskb;
877 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
879 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
880 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
881 int tid, seqno_idx, security_idx;
883 /* does the frame have a qos control field? */
884 if (ieee80211_is_data_qos(hdr->frame_control)) {
885 u8 *qc = ieee80211_get_qos_ctl(hdr);
886 /* frame has qos control */
887 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
888 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
889 status->rx_flags |= IEEE80211_RX_AMSDU;
891 seqno_idx = tid;
892 security_idx = tid;
893 } else {
895 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
897 * Sequence numbers for management frames, QoS data
898 * frames with a broadcast/multicast address in the
899 * Address 1 field, and all non-QoS data frames sent
900 * by QoS STAs are assigned using an additional single
901 * modulo-4096 counter, [...]
903 * We also use that counter for non-QoS STAs.
905 seqno_idx = IEEE80211_NUM_TIDS;
906 security_idx = 0;
907 if (ieee80211_is_mgmt(hdr->frame_control))
908 security_idx = IEEE80211_NUM_TIDS;
909 tid = 0;
912 rx->seqno_idx = seqno_idx;
913 rx->security_idx = security_idx;
914 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
915 * For now, set skb->priority to 0 for other cases. */
916 rx->skb->priority = (tid > 7) ? 0 : tid;
920 * DOC: Packet alignment
922 * Drivers always need to pass packets that are aligned to two-byte boundaries
923 * to the stack.
925 * Additionally, should, if possible, align the payload data in a way that
926 * guarantees that the contained IP header is aligned to a four-byte
927 * boundary. In the case of regular frames, this simply means aligning the
928 * payload to a four-byte boundary (because either the IP header is directly
929 * contained, or IV/RFC1042 headers that have a length divisible by four are
930 * in front of it). If the payload data is not properly aligned and the
931 * architecture doesn't support efficient unaligned operations, mac80211
932 * will align the data.
934 * With A-MSDU frames, however, the payload data address must yield two modulo
935 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
936 * push the IP header further back to a multiple of four again. Thankfully, the
937 * specs were sane enough this time around to require padding each A-MSDU
938 * subframe to a length that is a multiple of four.
940 * Padding like Atheros hardware adds which is between the 802.11 header and
941 * the payload is not supported, the driver is required to move the 802.11
942 * header to be directly in front of the payload in that case.
944 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
946 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
947 WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
948 #endif
952 /* rx handlers */
954 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
956 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
958 if (is_multicast_ether_addr(hdr->addr1))
959 return 0;
961 return ieee80211_is_robust_mgmt_frame(skb);
965 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
967 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
969 if (!is_multicast_ether_addr(hdr->addr1))
970 return 0;
972 return ieee80211_is_robust_mgmt_frame(skb);
976 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
977 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
979 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
980 struct ieee80211_mmie *mmie;
981 struct ieee80211_mmie_16 *mmie16;
983 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
984 return -1;
986 if (!ieee80211_is_robust_mgmt_frame(skb) &&
987 !ieee80211_is_beacon(hdr->frame_control))
988 return -1; /* not a robust management frame */
990 mmie = (struct ieee80211_mmie *)
991 (skb->data + skb->len - sizeof(*mmie));
992 if (mmie->element_id == WLAN_EID_MMIE &&
993 mmie->length == sizeof(*mmie) - 2)
994 return le16_to_cpu(mmie->key_id);
996 mmie16 = (struct ieee80211_mmie_16 *)
997 (skb->data + skb->len - sizeof(*mmie16));
998 if (skb->len >= 24 + sizeof(*mmie16) &&
999 mmie16->element_id == WLAN_EID_MMIE &&
1000 mmie16->length == sizeof(*mmie16) - 2)
1001 return le16_to_cpu(mmie16->key_id);
1003 return -1;
1006 static int ieee80211_get_keyid(struct sk_buff *skb,
1007 const struct ieee80211_cipher_scheme *cs)
1009 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1010 __le16 fc;
1011 int hdrlen;
1012 int minlen;
1013 u8 key_idx_off;
1014 u8 key_idx_shift;
1015 u8 keyid;
1017 fc = hdr->frame_control;
1018 hdrlen = ieee80211_hdrlen(fc);
1020 if (cs) {
1021 minlen = hdrlen + cs->hdr_len;
1022 key_idx_off = hdrlen + cs->key_idx_off;
1023 key_idx_shift = cs->key_idx_shift;
1024 } else {
1025 /* WEP, TKIP, CCMP and GCMP */
1026 minlen = hdrlen + IEEE80211_WEP_IV_LEN;
1027 key_idx_off = hdrlen + 3;
1028 key_idx_shift = 6;
1031 if (unlikely(skb->len < minlen))
1032 return -EINVAL;
1034 skb_copy_bits(skb, key_idx_off, &keyid, 1);
1036 if (cs)
1037 keyid &= cs->key_idx_mask;
1038 keyid >>= key_idx_shift;
1040 /* cs could use more than the usual two bits for the keyid */
1041 if (unlikely(keyid >= NUM_DEFAULT_KEYS))
1042 return -EINVAL;
1044 return keyid;
1047 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
1049 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1050 char *dev_addr = rx->sdata->vif.addr;
1052 if (ieee80211_is_data(hdr->frame_control)) {
1053 if (is_multicast_ether_addr(hdr->addr1)) {
1054 if (ieee80211_has_tods(hdr->frame_control) ||
1055 !ieee80211_has_fromds(hdr->frame_control))
1056 return RX_DROP_MONITOR;
1057 if (ether_addr_equal(hdr->addr3, dev_addr))
1058 return RX_DROP_MONITOR;
1059 } else {
1060 if (!ieee80211_has_a4(hdr->frame_control))
1061 return RX_DROP_MONITOR;
1062 if (ether_addr_equal(hdr->addr4, dev_addr))
1063 return RX_DROP_MONITOR;
1067 /* If there is not an established peer link and this is not a peer link
1068 * establisment frame, beacon or probe, drop the frame.
1071 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
1072 struct ieee80211_mgmt *mgmt;
1074 if (!ieee80211_is_mgmt(hdr->frame_control))
1075 return RX_DROP_MONITOR;
1077 if (ieee80211_is_action(hdr->frame_control)) {
1078 u8 category;
1080 /* make sure category field is present */
1081 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
1082 return RX_DROP_MONITOR;
1084 mgmt = (struct ieee80211_mgmt *)hdr;
1085 category = mgmt->u.action.category;
1086 if (category != WLAN_CATEGORY_MESH_ACTION &&
1087 category != WLAN_CATEGORY_SELF_PROTECTED)
1088 return RX_DROP_MONITOR;
1089 return RX_CONTINUE;
1092 if (ieee80211_is_probe_req(hdr->frame_control) ||
1093 ieee80211_is_probe_resp(hdr->frame_control) ||
1094 ieee80211_is_beacon(hdr->frame_control) ||
1095 ieee80211_is_auth(hdr->frame_control))
1096 return RX_CONTINUE;
1098 return RX_DROP_MONITOR;
1101 return RX_CONTINUE;
1104 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
1105 int index)
1107 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
1108 struct sk_buff *tail = skb_peek_tail(frames);
1109 struct ieee80211_rx_status *status;
1111 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
1112 return true;
1114 if (!tail)
1115 return false;
1117 status = IEEE80211_SKB_RXCB(tail);
1118 if (status->flag & RX_FLAG_AMSDU_MORE)
1119 return false;
1121 return true;
1124 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
1125 struct tid_ampdu_rx *tid_agg_rx,
1126 int index,
1127 struct sk_buff_head *frames)
1129 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
1130 struct sk_buff *skb;
1131 struct ieee80211_rx_status *status;
1133 lockdep_assert_held(&tid_agg_rx->reorder_lock);
1135 if (skb_queue_empty(skb_list))
1136 goto no_frame;
1138 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1139 __skb_queue_purge(skb_list);
1140 goto no_frame;
1143 /* release frames from the reorder ring buffer */
1144 tid_agg_rx->stored_mpdu_num--;
1145 while ((skb = __skb_dequeue(skb_list))) {
1146 status = IEEE80211_SKB_RXCB(skb);
1147 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
1148 __skb_queue_tail(frames, skb);
1151 no_frame:
1152 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
1153 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1156 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
1157 struct tid_ampdu_rx *tid_agg_rx,
1158 u16 head_seq_num,
1159 struct sk_buff_head *frames)
1161 int index;
1163 lockdep_assert_held(&tid_agg_rx->reorder_lock);
1165 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
1166 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1167 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1168 frames);
1173 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
1174 * the skb was added to the buffer longer than this time ago, the earlier
1175 * frames that have not yet been received are assumed to be lost and the skb
1176 * can be released for processing. This may also release other skb's from the
1177 * reorder buffer if there are no additional gaps between the frames.
1179 * Callers must hold tid_agg_rx->reorder_lock.
1181 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
1183 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
1184 struct tid_ampdu_rx *tid_agg_rx,
1185 struct sk_buff_head *frames)
1187 int index, i, j;
1189 lockdep_assert_held(&tid_agg_rx->reorder_lock);
1191 /* release the buffer until next missing frame */
1192 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1193 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
1194 tid_agg_rx->stored_mpdu_num) {
1196 * No buffers ready to be released, but check whether any
1197 * frames in the reorder buffer have timed out.
1199 int skipped = 1;
1200 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
1201 j = (j + 1) % tid_agg_rx->buf_size) {
1202 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
1203 skipped++;
1204 continue;
1206 if (skipped &&
1207 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
1208 HT_RX_REORDER_BUF_TIMEOUT))
1209 goto set_release_timer;
1211 /* don't leave incomplete A-MSDUs around */
1212 for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
1213 i = (i + 1) % tid_agg_rx->buf_size)
1214 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
1216 ht_dbg_ratelimited(sdata,
1217 "release an RX reorder frame due to timeout on earlier frames\n");
1218 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
1219 frames);
1222 * Increment the head seq# also for the skipped slots.
1224 tid_agg_rx->head_seq_num =
1225 (tid_agg_rx->head_seq_num +
1226 skipped) & IEEE80211_SN_MASK;
1227 skipped = 0;
1229 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1230 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1231 frames);
1232 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1235 if (tid_agg_rx->stored_mpdu_num) {
1236 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1238 for (; j != (index - 1) % tid_agg_rx->buf_size;
1239 j = (j + 1) % tid_agg_rx->buf_size) {
1240 if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
1241 break;
1244 set_release_timer:
1246 if (!tid_agg_rx->removed)
1247 mod_timer(&tid_agg_rx->reorder_timer,
1248 tid_agg_rx->reorder_time[j] + 1 +
1249 HT_RX_REORDER_BUF_TIMEOUT);
1250 } else {
1251 del_timer(&tid_agg_rx->reorder_timer);
1256 * As this function belongs to the RX path it must be under
1257 * rcu_read_lock protection. It returns false if the frame
1258 * can be processed immediately, true if it was consumed.
1260 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
1261 struct tid_ampdu_rx *tid_agg_rx,
1262 struct sk_buff *skb,
1263 struct sk_buff_head *frames)
1265 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1266 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1267 u16 sc = le16_to_cpu(hdr->seq_ctrl);
1268 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
1269 u16 head_seq_num, buf_size;
1270 int index;
1271 bool ret = true;
1273 spin_lock(&tid_agg_rx->reorder_lock);
1276 * Offloaded BA sessions have no known starting sequence number so pick
1277 * one from first Rxed frame for this tid after BA was started.
1279 if (unlikely(tid_agg_rx->auto_seq)) {
1280 tid_agg_rx->auto_seq = false;
1281 tid_agg_rx->ssn = mpdu_seq_num;
1282 tid_agg_rx->head_seq_num = mpdu_seq_num;
1285 buf_size = tid_agg_rx->buf_size;
1286 head_seq_num = tid_agg_rx->head_seq_num;
1289 * If the current MPDU's SN is smaller than the SSN, it shouldn't
1290 * be reordered.
1292 if (unlikely(!tid_agg_rx->started)) {
1293 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1294 ret = false;
1295 goto out;
1297 tid_agg_rx->started = true;
1300 /* frame with out of date sequence number */
1301 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1302 dev_kfree_skb(skb);
1303 goto out;
1307 * If frame the sequence number exceeds our buffering window
1308 * size release some previous frames to make room for this one.
1310 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
1311 head_seq_num = ieee80211_sn_inc(
1312 ieee80211_sn_sub(mpdu_seq_num, buf_size));
1313 /* release stored frames up to new head to stack */
1314 ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1315 head_seq_num, frames);
1318 /* Now the new frame is always in the range of the reordering buffer */
1320 index = mpdu_seq_num % tid_agg_rx->buf_size;
1322 /* check if we already stored this frame */
1323 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1324 dev_kfree_skb(skb);
1325 goto out;
1329 * If the current MPDU is in the right order and nothing else
1330 * is stored we can process it directly, no need to buffer it.
1331 * If it is first but there's something stored, we may be able
1332 * to release frames after this one.
1334 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1335 tid_agg_rx->stored_mpdu_num == 0) {
1336 if (!(status->flag & RX_FLAG_AMSDU_MORE))
1337 tid_agg_rx->head_seq_num =
1338 ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1339 ret = false;
1340 goto out;
1343 /* put the frame in the reordering buffer */
1344 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1345 if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1346 tid_agg_rx->reorder_time[index] = jiffies;
1347 tid_agg_rx->stored_mpdu_num++;
1348 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1351 out:
1352 spin_unlock(&tid_agg_rx->reorder_lock);
1353 return ret;
1357 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1358 * true if the MPDU was buffered, false if it should be processed.
1360 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1361 struct sk_buff_head *frames)
1363 struct sk_buff *skb = rx->skb;
1364 struct ieee80211_local *local = rx->local;
1365 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1366 struct sta_info *sta = rx->sta;
1367 struct tid_ampdu_rx *tid_agg_rx;
1368 u16 sc;
1369 u8 tid, ack_policy;
1371 if (!ieee80211_is_data_qos(hdr->frame_control) ||
1372 is_multicast_ether_addr(hdr->addr1))
1373 goto dont_reorder;
1376 * filter the QoS data rx stream according to
1377 * STA/TID and check if this STA/TID is on aggregation
1380 if (!sta)
1381 goto dont_reorder;
1383 ack_policy = *ieee80211_get_qos_ctl(hdr) &
1384 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1385 tid = ieee80211_get_tid(hdr);
1387 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1388 if (!tid_agg_rx) {
1389 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1390 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
1391 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
1392 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
1393 WLAN_BACK_RECIPIENT,
1394 WLAN_REASON_QSTA_REQUIRE_SETUP);
1395 goto dont_reorder;
1398 /* qos null data frames are excluded */
1399 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1400 goto dont_reorder;
1402 /* not part of a BA session */
1403 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1404 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1405 goto dont_reorder;
1407 /* new, potentially un-ordered, ampdu frame - process it */
1409 /* reset session timer */
1410 if (tid_agg_rx->timeout)
1411 tid_agg_rx->last_rx = jiffies;
1413 /* if this mpdu is fragmented - terminate rx aggregation session */
1414 sc = le16_to_cpu(hdr->seq_ctrl);
1415 if (sc & IEEE80211_SCTL_FRAG) {
1416 skb_queue_tail(&rx->sdata->skb_queue, skb);
1417 ieee80211_queue_work(&local->hw, &rx->sdata->work);
1418 return;
1422 * No locking needed -- we will only ever process one
1423 * RX packet at a time, and thus own tid_agg_rx. All
1424 * other code manipulating it needs to (and does) make
1425 * sure that we cannot get to it any more before doing
1426 * anything with it.
1428 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1429 frames))
1430 return;
1432 dont_reorder:
1433 __skb_queue_tail(frames, skb);
1436 static ieee80211_rx_result debug_noinline
1437 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1439 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1440 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1442 if (status->flag & RX_FLAG_DUP_VALIDATED)
1443 return RX_CONTINUE;
1446 * Drop duplicate 802.11 retransmissions
1447 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1450 if (rx->skb->len < 24)
1451 return RX_CONTINUE;
1453 if (ieee80211_is_ctl(hdr->frame_control) ||
1454 ieee80211_is_any_nullfunc(hdr->frame_control) ||
1455 is_multicast_ether_addr(hdr->addr1))
1456 return RX_CONTINUE;
1458 if (!rx->sta)
1459 return RX_CONTINUE;
1461 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1462 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1463 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1464 rx->sta->rx_stats.num_duplicates++;
1465 return RX_DROP_UNUSABLE;
1466 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1467 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1470 return RX_CONTINUE;
1473 static ieee80211_rx_result debug_noinline
1474 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1476 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1478 /* Drop disallowed frame classes based on STA auth/assoc state;
1479 * IEEE 802.11, Chap 5.5.
1481 * mac80211 filters only based on association state, i.e. it drops
1482 * Class 3 frames from not associated stations. hostapd sends
1483 * deauth/disassoc frames when needed. In addition, hostapd is
1484 * responsible for filtering on both auth and assoc states.
1487 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1488 return ieee80211_rx_mesh_check(rx);
1490 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1491 ieee80211_is_pspoll(hdr->frame_control)) &&
1492 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1493 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1494 rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1495 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1497 * accept port control frames from the AP even when it's not
1498 * yet marked ASSOC to prevent a race where we don't set the
1499 * assoc bit quickly enough before it sends the first frame
1501 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1502 ieee80211_is_data_present(hdr->frame_control)) {
1503 unsigned int hdrlen;
1504 __be16 ethertype;
1506 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1508 if (rx->skb->len < hdrlen + 8)
1509 return RX_DROP_MONITOR;
1511 skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1512 if (ethertype == rx->sdata->control_port_protocol)
1513 return RX_CONTINUE;
1516 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1517 cfg80211_rx_spurious_frame(rx->sdata->dev,
1518 hdr->addr2,
1519 GFP_ATOMIC))
1520 return RX_DROP_UNUSABLE;
1522 return RX_DROP_MONITOR;
1525 return RX_CONTINUE;
1529 static ieee80211_rx_result debug_noinline
1530 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1532 struct ieee80211_local *local;
1533 struct ieee80211_hdr *hdr;
1534 struct sk_buff *skb;
1536 local = rx->local;
1537 skb = rx->skb;
1538 hdr = (struct ieee80211_hdr *) skb->data;
1540 if (!local->pspolling)
1541 return RX_CONTINUE;
1543 if (!ieee80211_has_fromds(hdr->frame_control))
1544 /* this is not from AP */
1545 return RX_CONTINUE;
1547 if (!ieee80211_is_data(hdr->frame_control))
1548 return RX_CONTINUE;
1550 if (!ieee80211_has_moredata(hdr->frame_control)) {
1551 /* AP has no more frames buffered for us */
1552 local->pspolling = false;
1553 return RX_CONTINUE;
1556 /* more data bit is set, let's request a new frame from the AP */
1557 ieee80211_send_pspoll(local, rx->sdata);
1559 return RX_CONTINUE;
1562 static void sta_ps_start(struct sta_info *sta)
1564 struct ieee80211_sub_if_data *sdata = sta->sdata;
1565 struct ieee80211_local *local = sdata->local;
1566 struct ps_data *ps;
1567 int tid;
1569 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1570 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1571 ps = &sdata->bss->ps;
1572 else
1573 return;
1575 atomic_inc(&ps->num_sta_ps);
1576 set_sta_flag(sta, WLAN_STA_PS_STA);
1577 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1578 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1579 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1580 sta->sta.addr, sta->sta.aid);
1582 ieee80211_clear_fast_xmit(sta);
1584 if (!sta->sta.txq[0])
1585 return;
1587 for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) {
1588 struct ieee80211_txq *txq = sta->sta.txq[tid];
1589 struct txq_info *txqi = to_txq_info(txq);
1591 spin_lock(&local->active_txq_lock[txq->ac]);
1592 if (!list_empty(&txqi->schedule_order))
1593 list_del_init(&txqi->schedule_order);
1594 spin_unlock(&local->active_txq_lock[txq->ac]);
1596 if (txq_has_queue(txq))
1597 set_bit(tid, &sta->txq_buffered_tids);
1598 else
1599 clear_bit(tid, &sta->txq_buffered_tids);
1603 static void sta_ps_end(struct sta_info *sta)
1605 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1606 sta->sta.addr, sta->sta.aid);
1608 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1610 * Clear the flag only if the other one is still set
1611 * so that the TX path won't start TX'ing new frames
1612 * directly ... In the case that the driver flag isn't
1613 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1615 clear_sta_flag(sta, WLAN_STA_PS_STA);
1616 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1617 sta->sta.addr, sta->sta.aid);
1618 return;
1621 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1622 clear_sta_flag(sta, WLAN_STA_PS_STA);
1623 ieee80211_sta_ps_deliver_wakeup(sta);
1626 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1628 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1629 bool in_ps;
1631 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1633 /* Don't let the same PS state be set twice */
1634 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1635 if ((start && in_ps) || (!start && !in_ps))
1636 return -EINVAL;
1638 if (start)
1639 sta_ps_start(sta);
1640 else
1641 sta_ps_end(sta);
1643 return 0;
1645 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1647 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
1649 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1651 if (test_sta_flag(sta, WLAN_STA_SP))
1652 return;
1654 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1655 ieee80211_sta_ps_deliver_poll_response(sta);
1656 else
1657 set_sta_flag(sta, WLAN_STA_PSPOLL);
1659 EXPORT_SYMBOL(ieee80211_sta_pspoll);
1661 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
1663 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1664 int ac = ieee80211_ac_from_tid(tid);
1667 * If this AC is not trigger-enabled do nothing unless the
1668 * driver is calling us after it already checked.
1670 * NB: This could/should check a separate bitmap of trigger-
1671 * enabled queues, but for now we only implement uAPSD w/o
1672 * TSPEC changes to the ACs, so they're always the same.
1674 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) &&
1675 tid != IEEE80211_NUM_TIDS)
1676 return;
1678 /* if we are in a service period, do nothing */
1679 if (test_sta_flag(sta, WLAN_STA_SP))
1680 return;
1682 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1683 ieee80211_sta_ps_deliver_uapsd(sta);
1684 else
1685 set_sta_flag(sta, WLAN_STA_UAPSD);
1687 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
1689 static ieee80211_rx_result debug_noinline
1690 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1692 struct ieee80211_sub_if_data *sdata = rx->sdata;
1693 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1694 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1696 if (!rx->sta)
1697 return RX_CONTINUE;
1699 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1700 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1701 return RX_CONTINUE;
1704 * The device handles station powersave, so don't do anything about
1705 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1706 * it to mac80211 since they're handled.)
1708 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1709 return RX_CONTINUE;
1712 * Don't do anything if the station isn't already asleep. In
1713 * the uAPSD case, the station will probably be marked asleep,
1714 * in the PS-Poll case the station must be confused ...
1716 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1717 return RX_CONTINUE;
1719 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1720 ieee80211_sta_pspoll(&rx->sta->sta);
1722 /* Free PS Poll skb here instead of returning RX_DROP that would
1723 * count as an dropped frame. */
1724 dev_kfree_skb(rx->skb);
1726 return RX_QUEUED;
1727 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1728 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1729 ieee80211_has_pm(hdr->frame_control) &&
1730 (ieee80211_is_data_qos(hdr->frame_control) ||
1731 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1732 u8 tid = ieee80211_get_tid(hdr);
1734 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
1737 return RX_CONTINUE;
1740 static ieee80211_rx_result debug_noinline
1741 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1743 struct sta_info *sta = rx->sta;
1744 struct sk_buff *skb = rx->skb;
1745 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1746 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1747 int i;
1749 if (!sta)
1750 return RX_CONTINUE;
1753 * Update last_rx only for IBSS packets which are for the current
1754 * BSSID and for station already AUTHORIZED to avoid keeping the
1755 * current IBSS network alive in cases where other STAs start
1756 * using different BSSID. This will also give the station another
1757 * chance to restart the authentication/authorization in case
1758 * something went wrong the first time.
1760 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1761 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1762 NL80211_IFTYPE_ADHOC);
1763 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1764 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1765 sta->rx_stats.last_rx = jiffies;
1766 if (ieee80211_is_data(hdr->frame_control) &&
1767 !is_multicast_ether_addr(hdr->addr1))
1768 sta->rx_stats.last_rate =
1769 sta_stats_encode_rate(status);
1771 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1772 sta->rx_stats.last_rx = jiffies;
1773 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1775 * Mesh beacons will update last_rx when if they are found to
1776 * match the current local configuration when processed.
1778 sta->rx_stats.last_rx = jiffies;
1779 if (ieee80211_is_data(hdr->frame_control))
1780 sta->rx_stats.last_rate = sta_stats_encode_rate(status);
1783 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1784 ieee80211_sta_rx_notify(rx->sdata, hdr);
1786 sta->rx_stats.fragments++;
1788 u64_stats_update_begin(&rx->sta->rx_stats.syncp);
1789 sta->rx_stats.bytes += rx->skb->len;
1790 u64_stats_update_end(&rx->sta->rx_stats.syncp);
1792 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1793 sta->rx_stats.last_signal = status->signal;
1794 ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal);
1797 if (status->chains) {
1798 sta->rx_stats.chains = status->chains;
1799 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1800 int signal = status->chain_signal[i];
1802 if (!(status->chains & BIT(i)))
1803 continue;
1805 sta->rx_stats.chain_signal_last[i] = signal;
1806 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
1807 -signal);
1812 * Change STA power saving mode only at the end of a frame
1813 * exchange sequence, and only for a data or management
1814 * frame as specified in IEEE 802.11-2016 11.2.3.2
1816 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1817 !ieee80211_has_morefrags(hdr->frame_control) &&
1818 !is_multicast_ether_addr(hdr->addr1) &&
1819 (ieee80211_is_mgmt(hdr->frame_control) ||
1820 ieee80211_is_data(hdr->frame_control)) &&
1821 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1822 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1823 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1824 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1825 if (!ieee80211_has_pm(hdr->frame_control))
1826 sta_ps_end(sta);
1827 } else {
1828 if (ieee80211_has_pm(hdr->frame_control))
1829 sta_ps_start(sta);
1833 /* mesh power save support */
1834 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1835 ieee80211_mps_rx_h_sta_process(sta, hdr);
1838 * Drop (qos-)data::nullfunc frames silently, since they
1839 * are used only to control station power saving mode.
1841 if (ieee80211_is_any_nullfunc(hdr->frame_control)) {
1842 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1845 * If we receive a 4-addr nullfunc frame from a STA
1846 * that was not moved to a 4-addr STA vlan yet send
1847 * the event to userspace and for older hostapd drop
1848 * the frame to the monitor interface.
1850 if (ieee80211_has_a4(hdr->frame_control) &&
1851 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1852 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1853 !rx->sdata->u.vlan.sta))) {
1854 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1855 cfg80211_rx_unexpected_4addr_frame(
1856 rx->sdata->dev, sta->sta.addr,
1857 GFP_ATOMIC);
1858 return RX_DROP_MONITOR;
1861 * Update counter and free packet here to avoid
1862 * counting this as a dropped packed.
1864 sta->rx_stats.packets++;
1865 dev_kfree_skb(rx->skb);
1866 return RX_QUEUED;
1869 return RX_CONTINUE;
1870 } /* ieee80211_rx_h_sta_process */
1872 static struct ieee80211_key *
1873 ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx)
1875 struct ieee80211_key *key = NULL;
1876 struct ieee80211_sub_if_data *sdata = rx->sdata;
1877 int idx2;
1879 /* Make sure key gets set if either BIGTK key index is set so that
1880 * ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected
1881 * Beacon frames and Beacon frames that claim to use another BIGTK key
1882 * index (i.e., a key that we do not have).
1885 if (idx < 0) {
1886 idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS;
1887 idx2 = idx + 1;
1888 } else {
1889 if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1890 idx2 = idx + 1;
1891 else
1892 idx2 = idx - 1;
1895 if (rx->sta)
1896 key = rcu_dereference(rx->sta->gtk[idx]);
1897 if (!key)
1898 key = rcu_dereference(sdata->keys[idx]);
1899 if (!key && rx->sta)
1900 key = rcu_dereference(rx->sta->gtk[idx2]);
1901 if (!key)
1902 key = rcu_dereference(sdata->keys[idx2]);
1904 return key;
1907 static ieee80211_rx_result debug_noinline
1908 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1910 struct sk_buff *skb = rx->skb;
1911 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1912 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1913 int keyidx;
1914 ieee80211_rx_result result = RX_DROP_UNUSABLE;
1915 struct ieee80211_key *sta_ptk = NULL;
1916 struct ieee80211_key *ptk_idx = NULL;
1917 int mmie_keyidx = -1;
1918 __le16 fc;
1919 const struct ieee80211_cipher_scheme *cs = NULL;
1922 * Key selection 101
1924 * There are five types of keys:
1925 * - GTK (group keys)
1926 * - IGTK (group keys for management frames)
1927 * - BIGTK (group keys for Beacon frames)
1928 * - PTK (pairwise keys)
1929 * - STK (station-to-station pairwise keys)
1931 * When selecting a key, we have to distinguish between multicast
1932 * (including broadcast) and unicast frames, the latter can only
1933 * use PTKs and STKs while the former always use GTKs, IGTKs, and
1934 * BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used,
1935 * then unicast frames can also use key indices like GTKs. Hence, if we
1936 * don't have a PTK/STK we check the key index for a WEP key.
1938 * Note that in a regular BSS, multicast frames are sent by the
1939 * AP only, associated stations unicast the frame to the AP first
1940 * which then multicasts it on their behalf.
1942 * There is also a slight problem in IBSS mode: GTKs are negotiated
1943 * with each station, that is something we don't currently handle.
1944 * The spec seems to expect that one negotiates the same key with
1945 * every station but there's no such requirement; VLANs could be
1946 * possible.
1949 /* start without a key */
1950 rx->key = NULL;
1951 fc = hdr->frame_control;
1953 if (rx->sta) {
1954 int keyid = rx->sta->ptk_idx;
1955 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1957 if (ieee80211_has_protected(fc)) {
1958 cs = rx->sta->cipher_scheme;
1959 keyid = ieee80211_get_keyid(rx->skb, cs);
1961 if (unlikely(keyid < 0))
1962 return RX_DROP_UNUSABLE;
1964 ptk_idx = rcu_dereference(rx->sta->ptk[keyid]);
1968 if (!ieee80211_has_protected(fc))
1969 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1971 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1972 rx->key = ptk_idx ? ptk_idx : sta_ptk;
1973 if ((status->flag & RX_FLAG_DECRYPTED) &&
1974 (status->flag & RX_FLAG_IV_STRIPPED))
1975 return RX_CONTINUE;
1976 /* Skip decryption if the frame is not protected. */
1977 if (!ieee80211_has_protected(fc))
1978 return RX_CONTINUE;
1979 } else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) {
1980 /* Broadcast/multicast robust management frame / BIP */
1981 if ((status->flag & RX_FLAG_DECRYPTED) &&
1982 (status->flag & RX_FLAG_IV_STRIPPED))
1983 return RX_CONTINUE;
1985 if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS ||
1986 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS +
1987 NUM_DEFAULT_BEACON_KEYS)
1988 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1990 rx->key = ieee80211_rx_get_bigtk(rx, mmie_keyidx);
1991 if (!rx->key)
1992 return RX_CONTINUE; /* Beacon protection not in use */
1993 } else if (mmie_keyidx >= 0) {
1994 /* Broadcast/multicast robust management frame / BIP */
1995 if ((status->flag & RX_FLAG_DECRYPTED) &&
1996 (status->flag & RX_FLAG_IV_STRIPPED))
1997 return RX_CONTINUE;
1999 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
2000 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
2001 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
2002 if (rx->sta) {
2003 if (ieee80211_is_group_privacy_action(skb) &&
2004 test_sta_flag(rx->sta, WLAN_STA_MFP))
2005 return RX_DROP_MONITOR;
2007 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
2009 if (!rx->key)
2010 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
2011 } else if (!ieee80211_has_protected(fc)) {
2013 * The frame was not protected, so skip decryption. However, we
2014 * need to set rx->key if there is a key that could have been
2015 * used so that the frame may be dropped if encryption would
2016 * have been expected.
2018 struct ieee80211_key *key = NULL;
2019 struct ieee80211_sub_if_data *sdata = rx->sdata;
2020 int i;
2022 if (ieee80211_is_beacon(fc)) {
2023 key = ieee80211_rx_get_bigtk(rx, -1);
2024 } else if (ieee80211_is_mgmt(fc) &&
2025 is_multicast_ether_addr(hdr->addr1)) {
2026 key = rcu_dereference(rx->sdata->default_mgmt_key);
2027 } else {
2028 if (rx->sta) {
2029 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
2030 key = rcu_dereference(rx->sta->gtk[i]);
2031 if (key)
2032 break;
2035 if (!key) {
2036 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
2037 key = rcu_dereference(sdata->keys[i]);
2038 if (key)
2039 break;
2043 if (key)
2044 rx->key = key;
2045 return RX_CONTINUE;
2046 } else {
2048 * The device doesn't give us the IV so we won't be
2049 * able to look up the key. That's ok though, we
2050 * don't need to decrypt the frame, we just won't
2051 * be able to keep statistics accurate.
2052 * Except for key threshold notifications, should
2053 * we somehow allow the driver to tell us which key
2054 * the hardware used if this flag is set?
2056 if ((status->flag & RX_FLAG_DECRYPTED) &&
2057 (status->flag & RX_FLAG_IV_STRIPPED))
2058 return RX_CONTINUE;
2060 keyidx = ieee80211_get_keyid(rx->skb, cs);
2062 if (unlikely(keyidx < 0))
2063 return RX_DROP_UNUSABLE;
2065 /* check per-station GTK first, if multicast packet */
2066 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
2067 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
2069 /* if not found, try default key */
2070 if (!rx->key) {
2071 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
2074 * RSNA-protected unicast frames should always be
2075 * sent with pairwise or station-to-station keys,
2076 * but for WEP we allow using a key index as well.
2078 if (rx->key &&
2079 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
2080 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
2081 !is_multicast_ether_addr(hdr->addr1))
2082 rx->key = NULL;
2086 if (rx->key) {
2087 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
2088 return RX_DROP_MONITOR;
2090 /* TODO: add threshold stuff again */
2091 } else {
2092 return RX_DROP_MONITOR;
2095 switch (rx->key->conf.cipher) {
2096 case WLAN_CIPHER_SUITE_WEP40:
2097 case WLAN_CIPHER_SUITE_WEP104:
2098 result = ieee80211_crypto_wep_decrypt(rx);
2099 break;
2100 case WLAN_CIPHER_SUITE_TKIP:
2101 result = ieee80211_crypto_tkip_decrypt(rx);
2102 break;
2103 case WLAN_CIPHER_SUITE_CCMP:
2104 result = ieee80211_crypto_ccmp_decrypt(
2105 rx, IEEE80211_CCMP_MIC_LEN);
2106 break;
2107 case WLAN_CIPHER_SUITE_CCMP_256:
2108 result = ieee80211_crypto_ccmp_decrypt(
2109 rx, IEEE80211_CCMP_256_MIC_LEN);
2110 break;
2111 case WLAN_CIPHER_SUITE_AES_CMAC:
2112 result = ieee80211_crypto_aes_cmac_decrypt(rx);
2113 break;
2114 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
2115 result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
2116 break;
2117 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
2118 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
2119 result = ieee80211_crypto_aes_gmac_decrypt(rx);
2120 break;
2121 case WLAN_CIPHER_SUITE_GCMP:
2122 case WLAN_CIPHER_SUITE_GCMP_256:
2123 result = ieee80211_crypto_gcmp_decrypt(rx);
2124 break;
2125 default:
2126 result = ieee80211_crypto_hw_decrypt(rx);
2129 /* the hdr variable is invalid after the decrypt handlers */
2131 /* either the frame has been decrypted or will be dropped */
2132 status->flag |= RX_FLAG_DECRYPTED;
2134 return result;
2137 static inline struct ieee80211_fragment_entry *
2138 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
2139 unsigned int frag, unsigned int seq, int rx_queue,
2140 struct sk_buff **skb)
2142 struct ieee80211_fragment_entry *entry;
2144 entry = &sdata->fragments[sdata->fragment_next++];
2145 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
2146 sdata->fragment_next = 0;
2148 if (!skb_queue_empty(&entry->skb_list))
2149 __skb_queue_purge(&entry->skb_list);
2151 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
2152 *skb = NULL;
2153 entry->first_frag_time = jiffies;
2154 entry->seq = seq;
2155 entry->rx_queue = rx_queue;
2156 entry->last_frag = frag;
2157 entry->check_sequential_pn = false;
2158 entry->extra_len = 0;
2160 return entry;
2163 static inline struct ieee80211_fragment_entry *
2164 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
2165 unsigned int frag, unsigned int seq,
2166 int rx_queue, struct ieee80211_hdr *hdr)
2168 struct ieee80211_fragment_entry *entry;
2169 int i, idx;
2171 idx = sdata->fragment_next;
2172 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
2173 struct ieee80211_hdr *f_hdr;
2174 struct sk_buff *f_skb;
2176 idx--;
2177 if (idx < 0)
2178 idx = IEEE80211_FRAGMENT_MAX - 1;
2180 entry = &sdata->fragments[idx];
2181 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
2182 entry->rx_queue != rx_queue ||
2183 entry->last_frag + 1 != frag)
2184 continue;
2186 f_skb = __skb_peek(&entry->skb_list);
2187 f_hdr = (struct ieee80211_hdr *) f_skb->data;
2190 * Check ftype and addresses are equal, else check next fragment
2192 if (((hdr->frame_control ^ f_hdr->frame_control) &
2193 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
2194 !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
2195 !ether_addr_equal(hdr->addr2, f_hdr->addr2))
2196 continue;
2198 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
2199 __skb_queue_purge(&entry->skb_list);
2200 continue;
2202 return entry;
2205 return NULL;
2208 static ieee80211_rx_result debug_noinline
2209 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
2211 struct ieee80211_hdr *hdr;
2212 u16 sc;
2213 __le16 fc;
2214 unsigned int frag, seq;
2215 struct ieee80211_fragment_entry *entry;
2216 struct sk_buff *skb;
2218 hdr = (struct ieee80211_hdr *)rx->skb->data;
2219 fc = hdr->frame_control;
2221 if (ieee80211_is_ctl(fc))
2222 return RX_CONTINUE;
2224 sc = le16_to_cpu(hdr->seq_ctrl);
2225 frag = sc & IEEE80211_SCTL_FRAG;
2227 if (is_multicast_ether_addr(hdr->addr1)) {
2228 I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount);
2229 goto out_no_led;
2232 if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
2233 goto out;
2235 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
2237 if (skb_linearize(rx->skb))
2238 return RX_DROP_UNUSABLE;
2241 * skb_linearize() might change the skb->data and
2242 * previously cached variables (in this case, hdr) need to
2243 * be refreshed with the new data.
2245 hdr = (struct ieee80211_hdr *)rx->skb->data;
2246 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
2248 if (frag == 0) {
2249 /* This is the first fragment of a new frame. */
2250 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
2251 rx->seqno_idx, &(rx->skb));
2252 if (rx->key &&
2253 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
2254 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
2255 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
2256 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
2257 ieee80211_has_protected(fc)) {
2258 int queue = rx->security_idx;
2260 /* Store CCMP/GCMP PN so that we can verify that the
2261 * next fragment has a sequential PN value.
2263 entry->check_sequential_pn = true;
2264 memcpy(entry->last_pn,
2265 rx->key->u.ccmp.rx_pn[queue],
2266 IEEE80211_CCMP_PN_LEN);
2267 BUILD_BUG_ON(offsetof(struct ieee80211_key,
2268 u.ccmp.rx_pn) !=
2269 offsetof(struct ieee80211_key,
2270 u.gcmp.rx_pn));
2271 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
2272 sizeof(rx->key->u.gcmp.rx_pn[queue]));
2273 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
2274 IEEE80211_GCMP_PN_LEN);
2276 return RX_QUEUED;
2279 /* This is a fragment for a frame that should already be pending in
2280 * fragment cache. Add this fragment to the end of the pending entry.
2282 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
2283 rx->seqno_idx, hdr);
2284 if (!entry) {
2285 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2286 return RX_DROP_MONITOR;
2289 /* "The receiver shall discard MSDUs and MMPDUs whose constituent
2290 * MPDU PN values are not incrementing in steps of 1."
2291 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
2292 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
2294 if (entry->check_sequential_pn) {
2295 int i;
2296 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
2297 int queue;
2299 if (!rx->key ||
2300 (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP &&
2301 rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 &&
2302 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP &&
2303 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256))
2304 return RX_DROP_UNUSABLE;
2305 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
2306 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
2307 pn[i]++;
2308 if (pn[i])
2309 break;
2311 queue = rx->security_idx;
2312 rpn = rx->key->u.ccmp.rx_pn[queue];
2313 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
2314 return RX_DROP_UNUSABLE;
2315 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
2318 skb_pull(rx->skb, ieee80211_hdrlen(fc));
2319 __skb_queue_tail(&entry->skb_list, rx->skb);
2320 entry->last_frag = frag;
2321 entry->extra_len += rx->skb->len;
2322 if (ieee80211_has_morefrags(fc)) {
2323 rx->skb = NULL;
2324 return RX_QUEUED;
2327 rx->skb = __skb_dequeue(&entry->skb_list);
2328 if (skb_tailroom(rx->skb) < entry->extra_len) {
2329 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
2330 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
2331 GFP_ATOMIC))) {
2332 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2333 __skb_queue_purge(&entry->skb_list);
2334 return RX_DROP_UNUSABLE;
2337 while ((skb = __skb_dequeue(&entry->skb_list))) {
2338 skb_put_data(rx->skb, skb->data, skb->len);
2339 dev_kfree_skb(skb);
2342 out:
2343 ieee80211_led_rx(rx->local);
2344 out_no_led:
2345 if (rx->sta)
2346 rx->sta->rx_stats.packets++;
2347 return RX_CONTINUE;
2350 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
2352 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
2353 return -EACCES;
2355 return 0;
2358 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
2360 struct sk_buff *skb = rx->skb;
2361 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2364 * Pass through unencrypted frames if the hardware has
2365 * decrypted them already.
2367 if (status->flag & RX_FLAG_DECRYPTED)
2368 return 0;
2370 /* Drop unencrypted frames if key is set. */
2371 if (unlikely(!ieee80211_has_protected(fc) &&
2372 !ieee80211_is_any_nullfunc(fc) &&
2373 ieee80211_is_data(fc) && rx->key))
2374 return -EACCES;
2376 return 0;
2379 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
2381 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2382 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2383 __le16 fc = hdr->frame_control;
2386 * Pass through unencrypted frames if the hardware has
2387 * decrypted them already.
2389 if (status->flag & RX_FLAG_DECRYPTED)
2390 return 0;
2392 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
2393 if (unlikely(!ieee80211_has_protected(fc) &&
2394 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
2395 rx->key)) {
2396 if (ieee80211_is_deauth(fc) ||
2397 ieee80211_is_disassoc(fc))
2398 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2399 rx->skb->data,
2400 rx->skb->len);
2401 return -EACCES;
2403 /* BIP does not use Protected field, so need to check MMIE */
2404 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2405 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2406 if (ieee80211_is_deauth(fc) ||
2407 ieee80211_is_disassoc(fc))
2408 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2409 rx->skb->data,
2410 rx->skb->len);
2411 return -EACCES;
2413 if (unlikely(ieee80211_is_beacon(fc) && rx->key &&
2414 ieee80211_get_mmie_keyidx(rx->skb) < 0))
2415 return -EACCES;
2417 * When using MFP, Action frames are not allowed prior to
2418 * having configured keys.
2420 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2421 ieee80211_is_robust_mgmt_frame(rx->skb)))
2422 return -EACCES;
2425 return 0;
2428 static int
2429 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2431 struct ieee80211_sub_if_data *sdata = rx->sdata;
2432 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2433 bool check_port_control = false;
2434 struct ethhdr *ehdr;
2435 int ret;
2437 *port_control = false;
2438 if (ieee80211_has_a4(hdr->frame_control) &&
2439 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2440 return -1;
2442 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2443 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2445 if (!sdata->u.mgd.use_4addr)
2446 return -1;
2447 else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr))
2448 check_port_control = true;
2451 if (is_multicast_ether_addr(hdr->addr1) &&
2452 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2453 return -1;
2455 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2456 if (ret < 0)
2457 return ret;
2459 ehdr = (struct ethhdr *) rx->skb->data;
2460 if (ehdr->h_proto == rx->sdata->control_port_protocol)
2461 *port_control = true;
2462 else if (check_port_control)
2463 return -1;
2465 return 0;
2469 * requires that rx->skb is a frame with ethernet header
2471 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2473 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2474 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2475 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2478 * Allow EAPOL frames to us/the PAE group address regardless
2479 * of whether the frame was encrypted or not.
2481 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
2482 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2483 ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2484 return true;
2486 if (ieee80211_802_1x_port_control(rx) ||
2487 ieee80211_drop_unencrypted(rx, fc))
2488 return false;
2490 return true;
2493 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb,
2494 struct ieee80211_rx_data *rx)
2496 struct ieee80211_sub_if_data *sdata = rx->sdata;
2497 struct net_device *dev = sdata->dev;
2499 if (unlikely((skb->protocol == sdata->control_port_protocol ||
2500 (skb->protocol == cpu_to_be16(ETH_P_PREAUTH) &&
2501 !sdata->control_port_no_preauth)) &&
2502 sdata->control_port_over_nl80211)) {
2503 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2504 bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED);
2506 cfg80211_rx_control_port(dev, skb, noencrypt);
2507 dev_kfree_skb(skb);
2508 } else {
2509 memset(skb->cb, 0, sizeof(skb->cb));
2511 /* deliver to local stack */
2512 if (rx->napi)
2513 napi_gro_receive(rx->napi, skb);
2514 else
2515 netif_receive_skb(skb);
2520 * requires that rx->skb is a frame with ethernet header
2522 static void
2523 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2525 struct ieee80211_sub_if_data *sdata = rx->sdata;
2526 struct net_device *dev = sdata->dev;
2527 struct sk_buff *skb, *xmit_skb;
2528 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2529 struct sta_info *dsta;
2531 skb = rx->skb;
2532 xmit_skb = NULL;
2534 ieee80211_rx_stats(dev, skb->len);
2536 if (rx->sta) {
2537 /* The seqno index has the same property as needed
2538 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2539 * for non-QoS-data frames. Here we know it's a data
2540 * frame, so count MSDUs.
2542 u64_stats_update_begin(&rx->sta->rx_stats.syncp);
2543 rx->sta->rx_stats.msdu[rx->seqno_idx]++;
2544 u64_stats_update_end(&rx->sta->rx_stats.syncp);
2547 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2548 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2549 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2550 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2551 if (is_multicast_ether_addr(ehdr->h_dest) &&
2552 ieee80211_vif_get_num_mcast_if(sdata) != 0) {
2554 * send multicast frames both to higher layers in
2555 * local net stack and back to the wireless medium
2557 xmit_skb = skb_copy(skb, GFP_ATOMIC);
2558 if (!xmit_skb)
2559 net_info_ratelimited("%s: failed to clone multicast frame\n",
2560 dev->name);
2561 } else if (!is_multicast_ether_addr(ehdr->h_dest) &&
2562 !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) {
2563 dsta = sta_info_get(sdata, ehdr->h_dest);
2564 if (dsta) {
2566 * The destination station is associated to
2567 * this AP (in this VLAN), so send the frame
2568 * directly to it and do not pass it to local
2569 * net stack.
2571 xmit_skb = skb;
2572 skb = NULL;
2577 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2578 if (skb) {
2579 /* 'align' will only take the values 0 or 2 here since all
2580 * frames are required to be aligned to 2-byte boundaries
2581 * when being passed to mac80211; the code here works just
2582 * as well if that isn't true, but mac80211 assumes it can
2583 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2585 int align;
2587 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2588 if (align) {
2589 if (WARN_ON(skb_headroom(skb) < 3)) {
2590 dev_kfree_skb(skb);
2591 skb = NULL;
2592 } else {
2593 u8 *data = skb->data;
2594 size_t len = skb_headlen(skb);
2595 skb->data -= align;
2596 memmove(skb->data, data, len);
2597 skb_set_tail_pointer(skb, len);
2601 #endif
2603 if (skb) {
2604 skb->protocol = eth_type_trans(skb, dev);
2605 ieee80211_deliver_skb_to_local_stack(skb, rx);
2608 if (xmit_skb) {
2610 * Send to wireless media and increase priority by 256 to
2611 * keep the received priority instead of reclassifying
2612 * the frame (see cfg80211_classify8021d).
2614 xmit_skb->priority += 256;
2615 xmit_skb->protocol = htons(ETH_P_802_3);
2616 skb_reset_network_header(xmit_skb);
2617 skb_reset_mac_header(xmit_skb);
2618 dev_queue_xmit(xmit_skb);
2622 static ieee80211_rx_result debug_noinline
2623 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset)
2625 struct net_device *dev = rx->sdata->dev;
2626 struct sk_buff *skb = rx->skb;
2627 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2628 __le16 fc = hdr->frame_control;
2629 struct sk_buff_head frame_list;
2630 struct ethhdr ethhdr;
2631 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source;
2633 if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2634 check_da = NULL;
2635 check_sa = NULL;
2636 } else switch (rx->sdata->vif.type) {
2637 case NL80211_IFTYPE_AP:
2638 case NL80211_IFTYPE_AP_VLAN:
2639 check_da = NULL;
2640 break;
2641 case NL80211_IFTYPE_STATION:
2642 if (!rx->sta ||
2643 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER))
2644 check_sa = NULL;
2645 break;
2646 case NL80211_IFTYPE_MESH_POINT:
2647 check_sa = NULL;
2648 break;
2649 default:
2650 break;
2653 skb->dev = dev;
2654 __skb_queue_head_init(&frame_list);
2656 if (ieee80211_data_to_8023_exthdr(skb, &ethhdr,
2657 rx->sdata->vif.addr,
2658 rx->sdata->vif.type,
2659 data_offset))
2660 return RX_DROP_UNUSABLE;
2662 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2663 rx->sdata->vif.type,
2664 rx->local->hw.extra_tx_headroom,
2665 check_da, check_sa);
2667 while (!skb_queue_empty(&frame_list)) {
2668 rx->skb = __skb_dequeue(&frame_list);
2670 if (!ieee80211_frame_allowed(rx, fc)) {
2671 dev_kfree_skb(rx->skb);
2672 continue;
2675 ieee80211_deliver_skb(rx);
2678 return RX_QUEUED;
2681 static ieee80211_rx_result debug_noinline
2682 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2684 struct sk_buff *skb = rx->skb;
2685 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2686 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2687 __le16 fc = hdr->frame_control;
2689 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2690 return RX_CONTINUE;
2692 if (unlikely(!ieee80211_is_data(fc)))
2693 return RX_CONTINUE;
2695 if (unlikely(!ieee80211_is_data_present(fc)))
2696 return RX_DROP_MONITOR;
2698 if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2699 switch (rx->sdata->vif.type) {
2700 case NL80211_IFTYPE_AP_VLAN:
2701 if (!rx->sdata->u.vlan.sta)
2702 return RX_DROP_UNUSABLE;
2703 break;
2704 case NL80211_IFTYPE_STATION:
2705 if (!rx->sdata->u.mgd.use_4addr)
2706 return RX_DROP_UNUSABLE;
2707 break;
2708 default:
2709 return RX_DROP_UNUSABLE;
2713 if (is_multicast_ether_addr(hdr->addr1))
2714 return RX_DROP_UNUSABLE;
2716 return __ieee80211_rx_h_amsdu(rx, 0);
2719 #ifdef CONFIG_MAC80211_MESH
2720 static ieee80211_rx_result
2721 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2723 struct ieee80211_hdr *fwd_hdr, *hdr;
2724 struct ieee80211_tx_info *info;
2725 struct ieee80211s_hdr *mesh_hdr;
2726 struct sk_buff *skb = rx->skb, *fwd_skb;
2727 struct ieee80211_local *local = rx->local;
2728 struct ieee80211_sub_if_data *sdata = rx->sdata;
2729 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2730 u16 ac, q, hdrlen;
2731 int tailroom = 0;
2733 hdr = (struct ieee80211_hdr *) skb->data;
2734 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2736 /* make sure fixed part of mesh header is there, also checks skb len */
2737 if (!pskb_may_pull(rx->skb, hdrlen + 6))
2738 return RX_DROP_MONITOR;
2740 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2742 /* make sure full mesh header is there, also checks skb len */
2743 if (!pskb_may_pull(rx->skb,
2744 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2745 return RX_DROP_MONITOR;
2747 /* reload pointers */
2748 hdr = (struct ieee80211_hdr *) skb->data;
2749 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2751 if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2752 return RX_DROP_MONITOR;
2754 /* frame is in RMC, don't forward */
2755 if (ieee80211_is_data(hdr->frame_control) &&
2756 is_multicast_ether_addr(hdr->addr1) &&
2757 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2758 return RX_DROP_MONITOR;
2760 if (!ieee80211_is_data(hdr->frame_control))
2761 return RX_CONTINUE;
2763 if (!mesh_hdr->ttl)
2764 return RX_DROP_MONITOR;
2766 if (mesh_hdr->flags & MESH_FLAGS_AE) {
2767 struct mesh_path *mppath;
2768 char *proxied_addr;
2769 char *mpp_addr;
2771 if (is_multicast_ether_addr(hdr->addr1)) {
2772 mpp_addr = hdr->addr3;
2773 proxied_addr = mesh_hdr->eaddr1;
2774 } else if ((mesh_hdr->flags & MESH_FLAGS_AE) ==
2775 MESH_FLAGS_AE_A5_A6) {
2776 /* has_a4 already checked in ieee80211_rx_mesh_check */
2777 mpp_addr = hdr->addr4;
2778 proxied_addr = mesh_hdr->eaddr2;
2779 } else {
2780 return RX_DROP_MONITOR;
2783 rcu_read_lock();
2784 mppath = mpp_path_lookup(sdata, proxied_addr);
2785 if (!mppath) {
2786 mpp_path_add(sdata, proxied_addr, mpp_addr);
2787 } else {
2788 spin_lock_bh(&mppath->state_lock);
2789 if (!ether_addr_equal(mppath->mpp, mpp_addr))
2790 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2791 mppath->exp_time = jiffies;
2792 spin_unlock_bh(&mppath->state_lock);
2794 rcu_read_unlock();
2797 /* Frame has reached destination. Don't forward */
2798 if (!is_multicast_ether_addr(hdr->addr1) &&
2799 ether_addr_equal(sdata->vif.addr, hdr->addr3))
2800 return RX_CONTINUE;
2802 ac = ieee80211_select_queue_80211(sdata, skb, hdr);
2803 q = sdata->vif.hw_queue[ac];
2804 if (ieee80211_queue_stopped(&local->hw, q)) {
2805 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2806 return RX_DROP_MONITOR;
2808 skb_set_queue_mapping(skb, q);
2810 if (!--mesh_hdr->ttl) {
2811 if (!is_multicast_ether_addr(hdr->addr1))
2812 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh,
2813 dropped_frames_ttl);
2814 goto out;
2817 if (!ifmsh->mshcfg.dot11MeshForwarding)
2818 goto out;
2820 if (sdata->crypto_tx_tailroom_needed_cnt)
2821 tailroom = IEEE80211_ENCRYPT_TAILROOM;
2823 fwd_skb = skb_copy_expand(skb, local->tx_headroom +
2824 sdata->encrypt_headroom,
2825 tailroom, GFP_ATOMIC);
2826 if (!fwd_skb)
2827 goto out;
2829 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
2830 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2831 info = IEEE80211_SKB_CB(fwd_skb);
2832 memset(info, 0, sizeof(*info));
2833 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2834 info->control.vif = &rx->sdata->vif;
2835 info->control.jiffies = jiffies;
2836 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2837 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2838 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2839 /* update power mode indication when forwarding */
2840 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2841 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2842 /* mesh power mode flags updated in mesh_nexthop_lookup */
2843 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2844 } else {
2845 /* unable to resolve next hop */
2846 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2847 fwd_hdr->addr3, 0,
2848 WLAN_REASON_MESH_PATH_NOFORWARD,
2849 fwd_hdr->addr2);
2850 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2851 kfree_skb(fwd_skb);
2852 return RX_DROP_MONITOR;
2855 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2856 ieee80211_add_pending_skb(local, fwd_skb);
2857 out:
2858 if (is_multicast_ether_addr(hdr->addr1))
2859 return RX_CONTINUE;
2860 return RX_DROP_MONITOR;
2862 #endif
2864 static ieee80211_rx_result debug_noinline
2865 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2867 struct ieee80211_sub_if_data *sdata = rx->sdata;
2868 struct ieee80211_local *local = rx->local;
2869 struct net_device *dev = sdata->dev;
2870 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2871 __le16 fc = hdr->frame_control;
2872 bool port_control;
2873 int err;
2875 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2876 return RX_CONTINUE;
2878 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2879 return RX_DROP_MONITOR;
2882 * Send unexpected-4addr-frame event to hostapd. For older versions,
2883 * also drop the frame to cooked monitor interfaces.
2885 if (ieee80211_has_a4(hdr->frame_control) &&
2886 sdata->vif.type == NL80211_IFTYPE_AP) {
2887 if (rx->sta &&
2888 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2889 cfg80211_rx_unexpected_4addr_frame(
2890 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2891 return RX_DROP_MONITOR;
2894 err = __ieee80211_data_to_8023(rx, &port_control);
2895 if (unlikely(err))
2896 return RX_DROP_UNUSABLE;
2898 if (!ieee80211_frame_allowed(rx, fc))
2899 return RX_DROP_MONITOR;
2901 /* directly handle TDLS channel switch requests/responses */
2902 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
2903 cpu_to_be16(ETH_P_TDLS))) {
2904 struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
2906 if (pskb_may_pull(rx->skb,
2907 offsetof(struct ieee80211_tdls_data, u)) &&
2908 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
2909 tf->category == WLAN_CATEGORY_TDLS &&
2910 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
2911 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
2912 skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb);
2913 schedule_work(&local->tdls_chsw_work);
2914 if (rx->sta)
2915 rx->sta->rx_stats.packets++;
2917 return RX_QUEUED;
2921 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2922 unlikely(port_control) && sdata->bss) {
2923 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2924 u.ap);
2925 dev = sdata->dev;
2926 rx->sdata = sdata;
2929 rx->skb->dev = dev;
2931 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
2932 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2933 !is_multicast_ether_addr(
2934 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2935 (!local->scanning &&
2936 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
2937 mod_timer(&local->dynamic_ps_timer, jiffies +
2938 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2940 ieee80211_deliver_skb(rx);
2942 return RX_QUEUED;
2945 static ieee80211_rx_result debug_noinline
2946 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2948 struct sk_buff *skb = rx->skb;
2949 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2950 struct tid_ampdu_rx *tid_agg_rx;
2951 u16 start_seq_num;
2952 u16 tid;
2954 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2955 return RX_CONTINUE;
2957 if (ieee80211_is_back_req(bar->frame_control)) {
2958 struct {
2959 __le16 control, start_seq_num;
2960 } __packed bar_data;
2961 struct ieee80211_event event = {
2962 .type = BAR_RX_EVENT,
2965 if (!rx->sta)
2966 return RX_DROP_MONITOR;
2968 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2969 &bar_data, sizeof(bar_data)))
2970 return RX_DROP_MONITOR;
2972 tid = le16_to_cpu(bar_data.control) >> 12;
2974 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
2975 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
2976 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
2977 WLAN_BACK_RECIPIENT,
2978 WLAN_REASON_QSTA_REQUIRE_SETUP);
2980 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2981 if (!tid_agg_rx)
2982 return RX_DROP_MONITOR;
2984 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2985 event.u.ba.tid = tid;
2986 event.u.ba.ssn = start_seq_num;
2987 event.u.ba.sta = &rx->sta->sta;
2989 /* reset session timer */
2990 if (tid_agg_rx->timeout)
2991 mod_timer(&tid_agg_rx->session_timer,
2992 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2994 spin_lock(&tid_agg_rx->reorder_lock);
2995 /* release stored frames up to start of BAR */
2996 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2997 start_seq_num, frames);
2998 spin_unlock(&tid_agg_rx->reorder_lock);
3000 drv_event_callback(rx->local, rx->sdata, &event);
3002 kfree_skb(skb);
3003 return RX_QUEUED;
3007 * After this point, we only want management frames,
3008 * so we can drop all remaining control frames to
3009 * cooked monitor interfaces.
3011 return RX_DROP_MONITOR;
3014 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
3015 struct ieee80211_mgmt *mgmt,
3016 size_t len)
3018 struct ieee80211_local *local = sdata->local;
3019 struct sk_buff *skb;
3020 struct ieee80211_mgmt *resp;
3022 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
3023 /* Not to own unicast address */
3024 return;
3027 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
3028 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
3029 /* Not from the current AP or not associated yet. */
3030 return;
3033 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
3034 /* Too short SA Query request frame */
3035 return;
3038 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
3039 if (skb == NULL)
3040 return;
3042 skb_reserve(skb, local->hw.extra_tx_headroom);
3043 resp = skb_put_zero(skb, 24);
3044 memcpy(resp->da, mgmt->sa, ETH_ALEN);
3045 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
3046 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
3047 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
3048 IEEE80211_STYPE_ACTION);
3049 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
3050 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
3051 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
3052 memcpy(resp->u.action.u.sa_query.trans_id,
3053 mgmt->u.action.u.sa_query.trans_id,
3054 WLAN_SA_QUERY_TR_ID_LEN);
3056 ieee80211_tx_skb(sdata, skb);
3059 static ieee80211_rx_result debug_noinline
3060 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
3062 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3063 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3066 * From here on, look only at management frames.
3067 * Data and control frames are already handled,
3068 * and unknown (reserved) frames are useless.
3070 if (rx->skb->len < 24)
3071 return RX_DROP_MONITOR;
3073 if (!ieee80211_is_mgmt(mgmt->frame_control))
3074 return RX_DROP_MONITOR;
3076 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
3077 ieee80211_is_beacon(mgmt->frame_control) &&
3078 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
3079 int sig = 0;
3081 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3082 !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3083 sig = status->signal;
3085 cfg80211_report_obss_beacon(rx->local->hw.wiphy,
3086 rx->skb->data, rx->skb->len,
3087 status->freq, sig);
3088 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
3091 if (ieee80211_drop_unencrypted_mgmt(rx))
3092 return RX_DROP_UNUSABLE;
3094 return RX_CONTINUE;
3097 static ieee80211_rx_result debug_noinline
3098 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
3100 struct ieee80211_local *local = rx->local;
3101 struct ieee80211_sub_if_data *sdata = rx->sdata;
3102 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3103 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3104 int len = rx->skb->len;
3106 if (!ieee80211_is_action(mgmt->frame_control))
3107 return RX_CONTINUE;
3109 /* drop too small frames */
3110 if (len < IEEE80211_MIN_ACTION_SIZE)
3111 return RX_DROP_UNUSABLE;
3113 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
3114 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
3115 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
3116 return RX_DROP_UNUSABLE;
3118 switch (mgmt->u.action.category) {
3119 case WLAN_CATEGORY_HT:
3120 /* reject HT action frames from stations not supporting HT */
3121 if (!rx->sta->sta.ht_cap.ht_supported)
3122 goto invalid;
3124 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3125 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3126 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3127 sdata->vif.type != NL80211_IFTYPE_AP &&
3128 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3129 break;
3131 /* verify action & smps_control/chanwidth are present */
3132 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3133 goto invalid;
3135 switch (mgmt->u.action.u.ht_smps.action) {
3136 case WLAN_HT_ACTION_SMPS: {
3137 struct ieee80211_supported_band *sband;
3138 enum ieee80211_smps_mode smps_mode;
3139 struct sta_opmode_info sta_opmode = {};
3141 if (sdata->vif.type != NL80211_IFTYPE_AP &&
3142 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
3143 goto handled;
3145 /* convert to HT capability */
3146 switch (mgmt->u.action.u.ht_smps.smps_control) {
3147 case WLAN_HT_SMPS_CONTROL_DISABLED:
3148 smps_mode = IEEE80211_SMPS_OFF;
3149 break;
3150 case WLAN_HT_SMPS_CONTROL_STATIC:
3151 smps_mode = IEEE80211_SMPS_STATIC;
3152 break;
3153 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
3154 smps_mode = IEEE80211_SMPS_DYNAMIC;
3155 break;
3156 default:
3157 goto invalid;
3160 /* if no change do nothing */
3161 if (rx->sta->sta.smps_mode == smps_mode)
3162 goto handled;
3163 rx->sta->sta.smps_mode = smps_mode;
3164 sta_opmode.smps_mode =
3165 ieee80211_smps_mode_to_smps_mode(smps_mode);
3166 sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED;
3168 sband = rx->local->hw.wiphy->bands[status->band];
3170 rate_control_rate_update(local, sband, rx->sta,
3171 IEEE80211_RC_SMPS_CHANGED);
3172 cfg80211_sta_opmode_change_notify(sdata->dev,
3173 rx->sta->addr,
3174 &sta_opmode,
3175 GFP_ATOMIC);
3176 goto handled;
3178 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
3179 struct ieee80211_supported_band *sband;
3180 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
3181 enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
3182 struct sta_opmode_info sta_opmode = {};
3184 /* If it doesn't support 40 MHz it can't change ... */
3185 if (!(rx->sta->sta.ht_cap.cap &
3186 IEEE80211_HT_CAP_SUP_WIDTH_20_40))
3187 goto handled;
3189 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
3190 max_bw = IEEE80211_STA_RX_BW_20;
3191 else
3192 max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
3194 /* set cur_max_bandwidth and recalc sta bw */
3195 rx->sta->cur_max_bandwidth = max_bw;
3196 new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
3198 if (rx->sta->sta.bandwidth == new_bw)
3199 goto handled;
3201 rx->sta->sta.bandwidth = new_bw;
3202 sband = rx->local->hw.wiphy->bands[status->band];
3203 sta_opmode.bw =
3204 ieee80211_sta_rx_bw_to_chan_width(rx->sta);
3205 sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED;
3207 rate_control_rate_update(local, sband, rx->sta,
3208 IEEE80211_RC_BW_CHANGED);
3209 cfg80211_sta_opmode_change_notify(sdata->dev,
3210 rx->sta->addr,
3211 &sta_opmode,
3212 GFP_ATOMIC);
3213 goto handled;
3215 default:
3216 goto invalid;
3219 break;
3220 case WLAN_CATEGORY_PUBLIC:
3221 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3222 goto invalid;
3223 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3224 break;
3225 if (!rx->sta)
3226 break;
3227 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
3228 break;
3229 if (mgmt->u.action.u.ext_chan_switch.action_code !=
3230 WLAN_PUB_ACTION_EXT_CHANSW_ANN)
3231 break;
3232 if (len < offsetof(struct ieee80211_mgmt,
3233 u.action.u.ext_chan_switch.variable))
3234 goto invalid;
3235 goto queue;
3236 case WLAN_CATEGORY_VHT:
3237 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3238 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3239 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3240 sdata->vif.type != NL80211_IFTYPE_AP &&
3241 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3242 break;
3244 /* verify action code is present */
3245 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3246 goto invalid;
3248 switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
3249 case WLAN_VHT_ACTION_OPMODE_NOTIF: {
3250 /* verify opmode is present */
3251 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3252 goto invalid;
3253 goto queue;
3255 case WLAN_VHT_ACTION_GROUPID_MGMT: {
3256 if (len < IEEE80211_MIN_ACTION_SIZE + 25)
3257 goto invalid;
3258 goto queue;
3260 default:
3261 break;
3263 break;
3264 case WLAN_CATEGORY_BACK:
3265 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3266 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3267 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3268 sdata->vif.type != NL80211_IFTYPE_AP &&
3269 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3270 break;
3272 /* verify action_code is present */
3273 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3274 break;
3276 switch (mgmt->u.action.u.addba_req.action_code) {
3277 case WLAN_ACTION_ADDBA_REQ:
3278 if (len < (IEEE80211_MIN_ACTION_SIZE +
3279 sizeof(mgmt->u.action.u.addba_req)))
3280 goto invalid;
3281 break;
3282 case WLAN_ACTION_ADDBA_RESP:
3283 if (len < (IEEE80211_MIN_ACTION_SIZE +
3284 sizeof(mgmt->u.action.u.addba_resp)))
3285 goto invalid;
3286 break;
3287 case WLAN_ACTION_DELBA:
3288 if (len < (IEEE80211_MIN_ACTION_SIZE +
3289 sizeof(mgmt->u.action.u.delba)))
3290 goto invalid;
3291 break;
3292 default:
3293 goto invalid;
3296 goto queue;
3297 case WLAN_CATEGORY_SPECTRUM_MGMT:
3298 /* verify action_code is present */
3299 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3300 break;
3302 switch (mgmt->u.action.u.measurement.action_code) {
3303 case WLAN_ACTION_SPCT_MSR_REQ:
3304 if (status->band != NL80211_BAND_5GHZ)
3305 break;
3307 if (len < (IEEE80211_MIN_ACTION_SIZE +
3308 sizeof(mgmt->u.action.u.measurement)))
3309 break;
3311 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3312 break;
3314 ieee80211_process_measurement_req(sdata, mgmt, len);
3315 goto handled;
3316 case WLAN_ACTION_SPCT_CHL_SWITCH: {
3317 u8 *bssid;
3318 if (len < (IEEE80211_MIN_ACTION_SIZE +
3319 sizeof(mgmt->u.action.u.chan_switch)))
3320 break;
3322 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3323 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3324 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3325 break;
3327 if (sdata->vif.type == NL80211_IFTYPE_STATION)
3328 bssid = sdata->u.mgd.bssid;
3329 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
3330 bssid = sdata->u.ibss.bssid;
3331 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
3332 bssid = mgmt->sa;
3333 else
3334 break;
3336 if (!ether_addr_equal(mgmt->bssid, bssid))
3337 break;
3339 goto queue;
3342 break;
3343 case WLAN_CATEGORY_SA_QUERY:
3344 if (len < (IEEE80211_MIN_ACTION_SIZE +
3345 sizeof(mgmt->u.action.u.sa_query)))
3346 break;
3348 switch (mgmt->u.action.u.sa_query.action) {
3349 case WLAN_ACTION_SA_QUERY_REQUEST:
3350 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3351 break;
3352 ieee80211_process_sa_query_req(sdata, mgmt, len);
3353 goto handled;
3355 break;
3356 case WLAN_CATEGORY_SELF_PROTECTED:
3357 if (len < (IEEE80211_MIN_ACTION_SIZE +
3358 sizeof(mgmt->u.action.u.self_prot.action_code)))
3359 break;
3361 switch (mgmt->u.action.u.self_prot.action_code) {
3362 case WLAN_SP_MESH_PEERING_OPEN:
3363 case WLAN_SP_MESH_PEERING_CLOSE:
3364 case WLAN_SP_MESH_PEERING_CONFIRM:
3365 if (!ieee80211_vif_is_mesh(&sdata->vif))
3366 goto invalid;
3367 if (sdata->u.mesh.user_mpm)
3368 /* userspace handles this frame */
3369 break;
3370 goto queue;
3371 case WLAN_SP_MGK_INFORM:
3372 case WLAN_SP_MGK_ACK:
3373 if (!ieee80211_vif_is_mesh(&sdata->vif))
3374 goto invalid;
3375 break;
3377 break;
3378 case WLAN_CATEGORY_MESH_ACTION:
3379 if (len < (IEEE80211_MIN_ACTION_SIZE +
3380 sizeof(mgmt->u.action.u.mesh_action.action_code)))
3381 break;
3383 if (!ieee80211_vif_is_mesh(&sdata->vif))
3384 break;
3385 if (mesh_action_is_path_sel(mgmt) &&
3386 !mesh_path_sel_is_hwmp(sdata))
3387 break;
3388 goto queue;
3391 return RX_CONTINUE;
3393 invalid:
3394 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
3395 /* will return in the next handlers */
3396 return RX_CONTINUE;
3398 handled:
3399 if (rx->sta)
3400 rx->sta->rx_stats.packets++;
3401 dev_kfree_skb(rx->skb);
3402 return RX_QUEUED;
3404 queue:
3405 skb_queue_tail(&sdata->skb_queue, rx->skb);
3406 ieee80211_queue_work(&local->hw, &sdata->work);
3407 if (rx->sta)
3408 rx->sta->rx_stats.packets++;
3409 return RX_QUEUED;
3412 static ieee80211_rx_result debug_noinline
3413 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
3415 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3416 int sig = 0;
3418 /* skip known-bad action frames and return them in the next handler */
3419 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
3420 return RX_CONTINUE;
3423 * Getting here means the kernel doesn't know how to handle
3424 * it, but maybe userspace does ... include returned frames
3425 * so userspace can register for those to know whether ones
3426 * it transmitted were processed or returned.
3429 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3430 !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3431 sig = status->signal;
3433 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
3434 rx->skb->data, rx->skb->len, 0)) {
3435 if (rx->sta)
3436 rx->sta->rx_stats.packets++;
3437 dev_kfree_skb(rx->skb);
3438 return RX_QUEUED;
3441 return RX_CONTINUE;
3444 static ieee80211_rx_result debug_noinline
3445 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
3447 struct ieee80211_local *local = rx->local;
3448 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3449 struct sk_buff *nskb;
3450 struct ieee80211_sub_if_data *sdata = rx->sdata;
3451 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3453 if (!ieee80211_is_action(mgmt->frame_control))
3454 return RX_CONTINUE;
3457 * For AP mode, hostapd is responsible for handling any action
3458 * frames that we didn't handle, including returning unknown
3459 * ones. For all other modes we will return them to the sender,
3460 * setting the 0x80 bit in the action category, as required by
3461 * 802.11-2012 9.24.4.
3462 * Newer versions of hostapd shall also use the management frame
3463 * registration mechanisms, but older ones still use cooked
3464 * monitor interfaces so push all frames there.
3466 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
3467 (sdata->vif.type == NL80211_IFTYPE_AP ||
3468 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
3469 return RX_DROP_MONITOR;
3471 if (is_multicast_ether_addr(mgmt->da))
3472 return RX_DROP_MONITOR;
3474 /* do not return rejected action frames */
3475 if (mgmt->u.action.category & 0x80)
3476 return RX_DROP_UNUSABLE;
3478 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
3479 GFP_ATOMIC);
3480 if (nskb) {
3481 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3483 nmgmt->u.action.category |= 0x80;
3484 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3485 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3487 memset(nskb->cb, 0, sizeof(nskb->cb));
3489 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3490 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
3492 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3493 IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3494 IEEE80211_TX_CTL_NO_CCK_RATE;
3495 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3496 info->hw_queue =
3497 local->hw.offchannel_tx_hw_queue;
3500 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3501 status->band, 0);
3503 dev_kfree_skb(rx->skb);
3504 return RX_QUEUED;
3507 static ieee80211_rx_result debug_noinline
3508 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3510 struct ieee80211_sub_if_data *sdata = rx->sdata;
3511 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3512 __le16 stype;
3514 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3516 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3517 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3518 sdata->vif.type != NL80211_IFTYPE_OCB &&
3519 sdata->vif.type != NL80211_IFTYPE_STATION)
3520 return RX_DROP_MONITOR;
3522 switch (stype) {
3523 case cpu_to_le16(IEEE80211_STYPE_AUTH):
3524 case cpu_to_le16(IEEE80211_STYPE_BEACON):
3525 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3526 /* process for all: mesh, mlme, ibss */
3527 break;
3528 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3529 if (is_multicast_ether_addr(mgmt->da) &&
3530 !is_broadcast_ether_addr(mgmt->da))
3531 return RX_DROP_MONITOR;
3533 /* process only for station/IBSS */
3534 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3535 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3536 return RX_DROP_MONITOR;
3537 break;
3538 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3539 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3540 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3541 if (is_multicast_ether_addr(mgmt->da) &&
3542 !is_broadcast_ether_addr(mgmt->da))
3543 return RX_DROP_MONITOR;
3545 /* process only for station */
3546 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3547 return RX_DROP_MONITOR;
3548 break;
3549 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3550 /* process only for ibss and mesh */
3551 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3552 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3553 return RX_DROP_MONITOR;
3554 break;
3555 default:
3556 return RX_DROP_MONITOR;
3559 /* queue up frame and kick off work to process it */
3560 skb_queue_tail(&sdata->skb_queue, rx->skb);
3561 ieee80211_queue_work(&rx->local->hw, &sdata->work);
3562 if (rx->sta)
3563 rx->sta->rx_stats.packets++;
3565 return RX_QUEUED;
3568 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3569 struct ieee80211_rate *rate)
3571 struct ieee80211_sub_if_data *sdata;
3572 struct ieee80211_local *local = rx->local;
3573 struct sk_buff *skb = rx->skb, *skb2;
3574 struct net_device *prev_dev = NULL;
3575 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3576 int needed_headroom;
3579 * If cooked monitor has been processed already, then
3580 * don't do it again. If not, set the flag.
3582 if (rx->flags & IEEE80211_RX_CMNTR)
3583 goto out_free_skb;
3584 rx->flags |= IEEE80211_RX_CMNTR;
3586 /* If there are no cooked monitor interfaces, just free the SKB */
3587 if (!local->cooked_mntrs)
3588 goto out_free_skb;
3590 /* vendor data is long removed here */
3591 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3592 /* room for the radiotap header based on driver features */
3593 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3595 if (skb_headroom(skb) < needed_headroom &&
3596 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3597 goto out_free_skb;
3599 /* prepend radiotap information */
3600 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3601 false);
3603 skb_reset_mac_header(skb);
3604 skb->ip_summed = CHECKSUM_UNNECESSARY;
3605 skb->pkt_type = PACKET_OTHERHOST;
3606 skb->protocol = htons(ETH_P_802_2);
3608 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3609 if (!ieee80211_sdata_running(sdata))
3610 continue;
3612 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3613 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES))
3614 continue;
3616 if (prev_dev) {
3617 skb2 = skb_clone(skb, GFP_ATOMIC);
3618 if (skb2) {
3619 skb2->dev = prev_dev;
3620 netif_receive_skb(skb2);
3624 prev_dev = sdata->dev;
3625 ieee80211_rx_stats(sdata->dev, skb->len);
3628 if (prev_dev) {
3629 skb->dev = prev_dev;
3630 netif_receive_skb(skb);
3631 return;
3634 out_free_skb:
3635 dev_kfree_skb(skb);
3638 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3639 ieee80211_rx_result res)
3641 switch (res) {
3642 case RX_DROP_MONITOR:
3643 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3644 if (rx->sta)
3645 rx->sta->rx_stats.dropped++;
3646 /* fall through */
3647 case RX_CONTINUE: {
3648 struct ieee80211_rate *rate = NULL;
3649 struct ieee80211_supported_band *sband;
3650 struct ieee80211_rx_status *status;
3652 status = IEEE80211_SKB_RXCB((rx->skb));
3654 sband = rx->local->hw.wiphy->bands[status->band];
3655 if (status->encoding == RX_ENC_LEGACY)
3656 rate = &sband->bitrates[status->rate_idx];
3658 ieee80211_rx_cooked_monitor(rx, rate);
3659 break;
3661 case RX_DROP_UNUSABLE:
3662 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3663 if (rx->sta)
3664 rx->sta->rx_stats.dropped++;
3665 dev_kfree_skb(rx->skb);
3666 break;
3667 case RX_QUEUED:
3668 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3669 break;
3673 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3674 struct sk_buff_head *frames)
3676 ieee80211_rx_result res = RX_DROP_MONITOR;
3677 struct sk_buff *skb;
3679 #define CALL_RXH(rxh) \
3680 do { \
3681 res = rxh(rx); \
3682 if (res != RX_CONTINUE) \
3683 goto rxh_next; \
3684 } while (0)
3686 /* Lock here to avoid hitting all of the data used in the RX
3687 * path (e.g. key data, station data, ...) concurrently when
3688 * a frame is released from the reorder buffer due to timeout
3689 * from the timer, potentially concurrently with RX from the
3690 * driver.
3692 spin_lock_bh(&rx->local->rx_path_lock);
3694 while ((skb = __skb_dequeue(frames))) {
3696 * all the other fields are valid across frames
3697 * that belong to an aMPDU since they are on the
3698 * same TID from the same station
3700 rx->skb = skb;
3702 CALL_RXH(ieee80211_rx_h_check_more_data);
3703 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
3704 CALL_RXH(ieee80211_rx_h_sta_process);
3705 CALL_RXH(ieee80211_rx_h_decrypt);
3706 CALL_RXH(ieee80211_rx_h_defragment);
3707 CALL_RXH(ieee80211_rx_h_michael_mic_verify);
3708 /* must be after MMIC verify so header is counted in MPDU mic */
3709 #ifdef CONFIG_MAC80211_MESH
3710 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3711 CALL_RXH(ieee80211_rx_h_mesh_fwding);
3712 #endif
3713 CALL_RXH(ieee80211_rx_h_amsdu);
3714 CALL_RXH(ieee80211_rx_h_data);
3716 /* special treatment -- needs the queue */
3717 res = ieee80211_rx_h_ctrl(rx, frames);
3718 if (res != RX_CONTINUE)
3719 goto rxh_next;
3721 CALL_RXH(ieee80211_rx_h_mgmt_check);
3722 CALL_RXH(ieee80211_rx_h_action);
3723 CALL_RXH(ieee80211_rx_h_userspace_mgmt);
3724 CALL_RXH(ieee80211_rx_h_action_return);
3725 CALL_RXH(ieee80211_rx_h_mgmt);
3727 rxh_next:
3728 ieee80211_rx_handlers_result(rx, res);
3730 #undef CALL_RXH
3733 spin_unlock_bh(&rx->local->rx_path_lock);
3736 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3738 struct sk_buff_head reorder_release;
3739 ieee80211_rx_result res = RX_DROP_MONITOR;
3741 __skb_queue_head_init(&reorder_release);
3743 #define CALL_RXH(rxh) \
3744 do { \
3745 res = rxh(rx); \
3746 if (res != RX_CONTINUE) \
3747 goto rxh_next; \
3748 } while (0)
3750 CALL_RXH(ieee80211_rx_h_check_dup);
3751 CALL_RXH(ieee80211_rx_h_check);
3753 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3755 ieee80211_rx_handlers(rx, &reorder_release);
3756 return;
3758 rxh_next:
3759 ieee80211_rx_handlers_result(rx, res);
3761 #undef CALL_RXH
3765 * This function makes calls into the RX path, therefore
3766 * it has to be invoked under RCU read lock.
3768 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3770 struct sk_buff_head frames;
3771 struct ieee80211_rx_data rx = {
3772 .sta = sta,
3773 .sdata = sta->sdata,
3774 .local = sta->local,
3775 /* This is OK -- must be QoS data frame */
3776 .security_idx = tid,
3777 .seqno_idx = tid,
3778 .napi = NULL, /* must be NULL to not have races */
3780 struct tid_ampdu_rx *tid_agg_rx;
3782 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3783 if (!tid_agg_rx)
3784 return;
3786 __skb_queue_head_init(&frames);
3788 spin_lock(&tid_agg_rx->reorder_lock);
3789 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3790 spin_unlock(&tid_agg_rx->reorder_lock);
3792 if (!skb_queue_empty(&frames)) {
3793 struct ieee80211_event event = {
3794 .type = BA_FRAME_TIMEOUT,
3795 .u.ba.tid = tid,
3796 .u.ba.sta = &sta->sta,
3798 drv_event_callback(rx.local, rx.sdata, &event);
3801 ieee80211_rx_handlers(&rx, &frames);
3804 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
3805 u16 ssn, u64 filtered,
3806 u16 received_mpdus)
3808 struct sta_info *sta;
3809 struct tid_ampdu_rx *tid_agg_rx;
3810 struct sk_buff_head frames;
3811 struct ieee80211_rx_data rx = {
3812 /* This is OK -- must be QoS data frame */
3813 .security_idx = tid,
3814 .seqno_idx = tid,
3816 int i, diff;
3818 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
3819 return;
3821 __skb_queue_head_init(&frames);
3823 sta = container_of(pubsta, struct sta_info, sta);
3825 rx.sta = sta;
3826 rx.sdata = sta->sdata;
3827 rx.local = sta->local;
3829 rcu_read_lock();
3830 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3831 if (!tid_agg_rx)
3832 goto out;
3834 spin_lock_bh(&tid_agg_rx->reorder_lock);
3836 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
3837 int release;
3839 /* release all frames in the reorder buffer */
3840 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
3841 IEEE80211_SN_MODULO;
3842 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
3843 release, &frames);
3844 /* update ssn to match received ssn */
3845 tid_agg_rx->head_seq_num = ssn;
3846 } else {
3847 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
3848 &frames);
3851 /* handle the case that received ssn is behind the mac ssn.
3852 * it can be tid_agg_rx->buf_size behind and still be valid */
3853 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
3854 if (diff >= tid_agg_rx->buf_size) {
3855 tid_agg_rx->reorder_buf_filtered = 0;
3856 goto release;
3858 filtered = filtered >> diff;
3859 ssn += diff;
3861 /* update bitmap */
3862 for (i = 0; i < tid_agg_rx->buf_size; i++) {
3863 int index = (ssn + i) % tid_agg_rx->buf_size;
3865 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
3866 if (filtered & BIT_ULL(i))
3867 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
3870 /* now process also frames that the filter marking released */
3871 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3873 release:
3874 spin_unlock_bh(&tid_agg_rx->reorder_lock);
3876 ieee80211_rx_handlers(&rx, &frames);
3878 out:
3879 rcu_read_unlock();
3881 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
3883 /* main receive path */
3885 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
3887 struct ieee80211_sub_if_data *sdata = rx->sdata;
3888 struct sk_buff *skb = rx->skb;
3889 struct ieee80211_hdr *hdr = (void *)skb->data;
3890 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3891 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3892 bool multicast = is_multicast_ether_addr(hdr->addr1);
3894 switch (sdata->vif.type) {
3895 case NL80211_IFTYPE_STATION:
3896 if (!bssid && !sdata->u.mgd.use_4addr)
3897 return false;
3898 if (ieee80211_is_robust_mgmt_frame(skb) && !rx->sta)
3899 return false;
3900 if (multicast)
3901 return true;
3902 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3903 case NL80211_IFTYPE_ADHOC:
3904 if (!bssid)
3905 return false;
3906 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3907 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3908 return false;
3909 if (ieee80211_is_beacon(hdr->frame_control))
3910 return true;
3911 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
3912 return false;
3913 if (!multicast &&
3914 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3915 return false;
3916 if (!rx->sta) {
3917 int rate_idx;
3918 if (status->encoding != RX_ENC_LEGACY)
3919 rate_idx = 0; /* TODO: HT/VHT rates */
3920 else
3921 rate_idx = status->rate_idx;
3922 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3923 BIT(rate_idx));
3925 return true;
3926 case NL80211_IFTYPE_OCB:
3927 if (!bssid)
3928 return false;
3929 if (!ieee80211_is_data_present(hdr->frame_control))
3930 return false;
3931 if (!is_broadcast_ether_addr(bssid))
3932 return false;
3933 if (!multicast &&
3934 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
3935 return false;
3936 if (!rx->sta) {
3937 int rate_idx;
3938 if (status->encoding != RX_ENC_LEGACY)
3939 rate_idx = 0; /* TODO: HT rates */
3940 else
3941 rate_idx = status->rate_idx;
3942 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
3943 BIT(rate_idx));
3945 return true;
3946 case NL80211_IFTYPE_MESH_POINT:
3947 if (ether_addr_equal(sdata->vif.addr, hdr->addr2))
3948 return false;
3949 if (multicast)
3950 return true;
3951 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3952 case NL80211_IFTYPE_AP_VLAN:
3953 case NL80211_IFTYPE_AP:
3954 if (!bssid)
3955 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3957 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3959 * Accept public action frames even when the
3960 * BSSID doesn't match, this is used for P2P
3961 * and location updates. Note that mac80211
3962 * itself never looks at these frames.
3964 if (!multicast &&
3965 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3966 return false;
3967 if (ieee80211_is_public_action(hdr, skb->len))
3968 return true;
3969 return ieee80211_is_beacon(hdr->frame_control);
3972 if (!ieee80211_has_tods(hdr->frame_control)) {
3973 /* ignore data frames to TDLS-peers */
3974 if (ieee80211_is_data(hdr->frame_control))
3975 return false;
3976 /* ignore action frames to TDLS-peers */
3977 if (ieee80211_is_action(hdr->frame_control) &&
3978 !is_broadcast_ether_addr(bssid) &&
3979 !ether_addr_equal(bssid, hdr->addr1))
3980 return false;
3984 * 802.11-2016 Table 9-26 says that for data frames, A1 must be
3985 * the BSSID - we've checked that already but may have accepted
3986 * the wildcard (ff:ff:ff:ff:ff:ff).
3988 * It also says:
3989 * The BSSID of the Data frame is determined as follows:
3990 * a) If the STA is contained within an AP or is associated
3991 * with an AP, the BSSID is the address currently in use
3992 * by the STA contained in the AP.
3994 * So we should not accept data frames with an address that's
3995 * multicast.
3997 * Accepting it also opens a security problem because stations
3998 * could encrypt it with the GTK and inject traffic that way.
4000 if (ieee80211_is_data(hdr->frame_control) && multicast)
4001 return false;
4003 return true;
4004 case NL80211_IFTYPE_WDS:
4005 if (bssid || !ieee80211_is_data(hdr->frame_control))
4006 return false;
4007 return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2);
4008 case NL80211_IFTYPE_P2P_DEVICE:
4009 return ieee80211_is_public_action(hdr, skb->len) ||
4010 ieee80211_is_probe_req(hdr->frame_control) ||
4011 ieee80211_is_probe_resp(hdr->frame_control) ||
4012 ieee80211_is_beacon(hdr->frame_control);
4013 case NL80211_IFTYPE_NAN:
4014 /* Currently no frames on NAN interface are allowed */
4015 return false;
4016 default:
4017 break;
4020 WARN_ON_ONCE(1);
4021 return false;
4024 void ieee80211_check_fast_rx(struct sta_info *sta)
4026 struct ieee80211_sub_if_data *sdata = sta->sdata;
4027 struct ieee80211_local *local = sdata->local;
4028 struct ieee80211_key *key;
4029 struct ieee80211_fast_rx fastrx = {
4030 .dev = sdata->dev,
4031 .vif_type = sdata->vif.type,
4032 .control_port_protocol = sdata->control_port_protocol,
4033 }, *old, *new = NULL;
4034 bool assign = false;
4036 /* use sparse to check that we don't return without updating */
4037 __acquire(check_fast_rx);
4039 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
4040 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
4041 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
4042 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
4044 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
4046 /* fast-rx doesn't do reordering */
4047 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
4048 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
4049 goto clear;
4051 switch (sdata->vif.type) {
4052 case NL80211_IFTYPE_STATION:
4053 if (sta->sta.tdls) {
4054 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
4055 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
4056 fastrx.expected_ds_bits = 0;
4057 } else {
4058 fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0;
4059 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
4060 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
4061 fastrx.expected_ds_bits =
4062 cpu_to_le16(IEEE80211_FCTL_FROMDS);
4065 if (sdata->u.mgd.use_4addr && !sta->sta.tdls) {
4066 fastrx.expected_ds_bits |=
4067 cpu_to_le16(IEEE80211_FCTL_TODS);
4068 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4069 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4072 if (!sdata->u.mgd.powersave)
4073 break;
4075 /* software powersave is a huge mess, avoid all of it */
4076 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
4077 goto clear;
4078 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
4079 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
4080 goto clear;
4081 break;
4082 case NL80211_IFTYPE_AP_VLAN:
4083 case NL80211_IFTYPE_AP:
4084 /* parallel-rx requires this, at least with calls to
4085 * ieee80211_sta_ps_transition()
4087 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
4088 goto clear;
4089 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4090 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
4091 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
4093 fastrx.internal_forward =
4094 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
4095 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
4096 !sdata->u.vlan.sta);
4098 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
4099 sdata->u.vlan.sta) {
4100 fastrx.expected_ds_bits |=
4101 cpu_to_le16(IEEE80211_FCTL_FROMDS);
4102 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4103 fastrx.internal_forward = 0;
4106 break;
4107 default:
4108 goto clear;
4111 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
4112 goto clear;
4114 rcu_read_lock();
4115 key = rcu_dereference(sta->ptk[sta->ptk_idx]);
4116 if (key) {
4117 switch (key->conf.cipher) {
4118 case WLAN_CIPHER_SUITE_TKIP:
4119 /* we don't want to deal with MMIC in fast-rx */
4120 goto clear_rcu;
4121 case WLAN_CIPHER_SUITE_CCMP:
4122 case WLAN_CIPHER_SUITE_CCMP_256:
4123 case WLAN_CIPHER_SUITE_GCMP:
4124 case WLAN_CIPHER_SUITE_GCMP_256:
4125 break;
4126 default:
4127 /* We also don't want to deal with
4128 * WEP or cipher scheme.
4130 goto clear_rcu;
4133 fastrx.key = true;
4134 fastrx.icv_len = key->conf.icv_len;
4137 assign = true;
4138 clear_rcu:
4139 rcu_read_unlock();
4140 clear:
4141 __release(check_fast_rx);
4143 if (assign)
4144 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
4146 spin_lock_bh(&sta->lock);
4147 old = rcu_dereference_protected(sta->fast_rx, true);
4148 rcu_assign_pointer(sta->fast_rx, new);
4149 spin_unlock_bh(&sta->lock);
4151 if (old)
4152 kfree_rcu(old, rcu_head);
4155 void ieee80211_clear_fast_rx(struct sta_info *sta)
4157 struct ieee80211_fast_rx *old;
4159 spin_lock_bh(&sta->lock);
4160 old = rcu_dereference_protected(sta->fast_rx, true);
4161 RCU_INIT_POINTER(sta->fast_rx, NULL);
4162 spin_unlock_bh(&sta->lock);
4164 if (old)
4165 kfree_rcu(old, rcu_head);
4168 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4170 struct ieee80211_local *local = sdata->local;
4171 struct sta_info *sta;
4173 lockdep_assert_held(&local->sta_mtx);
4175 list_for_each_entry(sta, &local->sta_list, list) {
4176 if (sdata != sta->sdata &&
4177 (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
4178 continue;
4179 ieee80211_check_fast_rx(sta);
4183 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4185 struct ieee80211_local *local = sdata->local;
4187 mutex_lock(&local->sta_mtx);
4188 __ieee80211_check_fast_rx_iface(sdata);
4189 mutex_unlock(&local->sta_mtx);
4192 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
4193 struct ieee80211_fast_rx *fast_rx)
4195 struct sk_buff *skb = rx->skb;
4196 struct ieee80211_hdr *hdr = (void *)skb->data;
4197 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4198 struct sta_info *sta = rx->sta;
4199 int orig_len = skb->len;
4200 int hdrlen = ieee80211_hdrlen(hdr->frame_control);
4201 int snap_offs = hdrlen;
4202 struct {
4203 u8 snap[sizeof(rfc1042_header)];
4204 __be16 proto;
4205 } *payload __aligned(2);
4206 struct {
4207 u8 da[ETH_ALEN];
4208 u8 sa[ETH_ALEN];
4209 } addrs __aligned(2);
4210 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
4212 if (fast_rx->uses_rss)
4213 stats = this_cpu_ptr(sta->pcpu_rx_stats);
4215 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
4216 * to a common data structure; drivers can implement that per queue
4217 * but we don't have that information in mac80211
4219 if (!(status->flag & RX_FLAG_DUP_VALIDATED))
4220 return false;
4222 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
4224 /* If using encryption, we also need to have:
4225 * - PN_VALIDATED: similar, but the implementation is tricky
4226 * - DECRYPTED: necessary for PN_VALIDATED
4228 if (fast_rx->key &&
4229 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
4230 return false;
4232 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
4233 return false;
4235 if (unlikely(ieee80211_is_frag(hdr)))
4236 return false;
4238 /* Since our interface address cannot be multicast, this
4239 * implicitly also rejects multicast frames without the
4240 * explicit check.
4242 * We shouldn't get any *data* frames not addressed to us
4243 * (AP mode will accept multicast *management* frames), but
4244 * punting here will make it go through the full checks in
4245 * ieee80211_accept_frame().
4247 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
4248 return false;
4250 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
4251 IEEE80211_FCTL_TODS)) !=
4252 fast_rx->expected_ds_bits)
4253 return false;
4255 /* assign the key to drop unencrypted frames (later)
4256 * and strip the IV/MIC if necessary
4258 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
4259 /* GCMP header length is the same */
4260 snap_offs += IEEE80211_CCMP_HDR_LEN;
4263 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) {
4264 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
4265 goto drop;
4267 payload = (void *)(skb->data + snap_offs);
4269 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
4270 return false;
4272 /* Don't handle these here since they require special code.
4273 * Accept AARP and IPX even though they should come with a
4274 * bridge-tunnel header - but if we get them this way then
4275 * there's little point in discarding them.
4277 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
4278 payload->proto == fast_rx->control_port_protocol))
4279 return false;
4282 /* after this point, don't punt to the slowpath! */
4284 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
4285 pskb_trim(skb, skb->len - fast_rx->icv_len))
4286 goto drop;
4288 if (unlikely(fast_rx->sta_notify)) {
4289 ieee80211_sta_rx_notify(rx->sdata, hdr);
4290 fast_rx->sta_notify = false;
4293 /* statistics part of ieee80211_rx_h_sta_process() */
4294 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
4295 stats->last_signal = status->signal;
4296 if (!fast_rx->uses_rss)
4297 ewma_signal_add(&sta->rx_stats_avg.signal,
4298 -status->signal);
4301 if (status->chains) {
4302 int i;
4304 stats->chains = status->chains;
4305 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
4306 int signal = status->chain_signal[i];
4308 if (!(status->chains & BIT(i)))
4309 continue;
4311 stats->chain_signal_last[i] = signal;
4312 if (!fast_rx->uses_rss)
4313 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
4314 -signal);
4317 /* end of statistics */
4319 if (rx->key && !ieee80211_has_protected(hdr->frame_control))
4320 goto drop;
4322 if (status->rx_flags & IEEE80211_RX_AMSDU) {
4323 if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) !=
4324 RX_QUEUED)
4325 goto drop;
4327 return true;
4330 stats->last_rx = jiffies;
4331 stats->last_rate = sta_stats_encode_rate(status);
4333 stats->fragments++;
4334 stats->packets++;
4336 /* do the header conversion - first grab the addresses */
4337 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
4338 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
4339 /* remove the SNAP but leave the ethertype */
4340 skb_pull(skb, snap_offs + sizeof(rfc1042_header));
4341 /* push the addresses in front */
4342 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
4344 skb->dev = fast_rx->dev;
4346 ieee80211_rx_stats(fast_rx->dev, skb->len);
4348 /* The seqno index has the same property as needed
4349 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
4350 * for non-QoS-data frames. Here we know it's a data
4351 * frame, so count MSDUs.
4353 u64_stats_update_begin(&stats->syncp);
4354 stats->msdu[rx->seqno_idx]++;
4355 stats->bytes += orig_len;
4356 u64_stats_update_end(&stats->syncp);
4358 if (fast_rx->internal_forward) {
4359 struct sk_buff *xmit_skb = NULL;
4360 if (is_multicast_ether_addr(addrs.da)) {
4361 xmit_skb = skb_copy(skb, GFP_ATOMIC);
4362 } else if (!ether_addr_equal(addrs.da, addrs.sa) &&
4363 sta_info_get(rx->sdata, addrs.da)) {
4364 xmit_skb = skb;
4365 skb = NULL;
4368 if (xmit_skb) {
4370 * Send to wireless media and increase priority by 256
4371 * to keep the received priority instead of
4372 * reclassifying the frame (see cfg80211_classify8021d).
4374 xmit_skb->priority += 256;
4375 xmit_skb->protocol = htons(ETH_P_802_3);
4376 skb_reset_network_header(xmit_skb);
4377 skb_reset_mac_header(xmit_skb);
4378 dev_queue_xmit(xmit_skb);
4381 if (!skb)
4382 return true;
4385 /* deliver to local stack */
4386 skb->protocol = eth_type_trans(skb, fast_rx->dev);
4387 memset(skb->cb, 0, sizeof(skb->cb));
4388 if (rx->napi)
4389 napi_gro_receive(rx->napi, skb);
4390 else
4391 netif_receive_skb(skb);
4393 return true;
4394 drop:
4395 dev_kfree_skb(skb);
4396 stats->dropped++;
4397 return true;
4401 * This function returns whether or not the SKB
4402 * was destined for RX processing or not, which,
4403 * if consume is true, is equivalent to whether
4404 * or not the skb was consumed.
4406 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
4407 struct sk_buff *skb, bool consume)
4409 struct ieee80211_local *local = rx->local;
4410 struct ieee80211_sub_if_data *sdata = rx->sdata;
4412 rx->skb = skb;
4414 /* See if we can do fast-rx; if we have to copy we already lost,
4415 * so punt in that case. We should never have to deliver a data
4416 * frame to multiple interfaces anyway.
4418 * We skip the ieee80211_accept_frame() call and do the necessary
4419 * checking inside ieee80211_invoke_fast_rx().
4421 if (consume && rx->sta) {
4422 struct ieee80211_fast_rx *fast_rx;
4424 fast_rx = rcu_dereference(rx->sta->fast_rx);
4425 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
4426 return true;
4429 if (!ieee80211_accept_frame(rx))
4430 return false;
4432 if (!consume) {
4433 skb = skb_copy(skb, GFP_ATOMIC);
4434 if (!skb) {
4435 if (net_ratelimit())
4436 wiphy_debug(local->hw.wiphy,
4437 "failed to copy skb for %s\n",
4438 sdata->name);
4439 return true;
4442 rx->skb = skb;
4445 ieee80211_invoke_rx_handlers(rx);
4446 return true;
4450 * This is the actual Rx frames handler. as it belongs to Rx path it must
4451 * be called with rcu_read_lock protection.
4453 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
4454 struct ieee80211_sta *pubsta,
4455 struct sk_buff *skb,
4456 struct napi_struct *napi)
4458 struct ieee80211_local *local = hw_to_local(hw);
4459 struct ieee80211_sub_if_data *sdata;
4460 struct ieee80211_hdr *hdr;
4461 __le16 fc;
4462 struct ieee80211_rx_data rx;
4463 struct ieee80211_sub_if_data *prev;
4464 struct rhlist_head *tmp;
4465 int err = 0;
4467 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
4468 memset(&rx, 0, sizeof(rx));
4469 rx.skb = skb;
4470 rx.local = local;
4471 rx.napi = napi;
4473 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
4474 I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4476 if (ieee80211_is_mgmt(fc)) {
4477 /* drop frame if too short for header */
4478 if (skb->len < ieee80211_hdrlen(fc))
4479 err = -ENOBUFS;
4480 else
4481 err = skb_linearize(skb);
4482 } else {
4483 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
4486 if (err) {
4487 dev_kfree_skb(skb);
4488 return;
4491 hdr = (struct ieee80211_hdr *)skb->data;
4492 ieee80211_parse_qos(&rx);
4493 ieee80211_verify_alignment(&rx);
4495 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
4496 ieee80211_is_beacon(hdr->frame_control)))
4497 ieee80211_scan_rx(local, skb);
4499 if (ieee80211_is_data(fc)) {
4500 struct sta_info *sta, *prev_sta;
4502 if (pubsta) {
4503 rx.sta = container_of(pubsta, struct sta_info, sta);
4504 rx.sdata = rx.sta->sdata;
4505 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4506 return;
4507 goto out;
4510 prev_sta = NULL;
4512 for_each_sta_info(local, hdr->addr2, sta, tmp) {
4513 if (!prev_sta) {
4514 prev_sta = sta;
4515 continue;
4518 rx.sta = prev_sta;
4519 rx.sdata = prev_sta->sdata;
4520 ieee80211_prepare_and_rx_handle(&rx, skb, false);
4522 prev_sta = sta;
4525 if (prev_sta) {
4526 rx.sta = prev_sta;
4527 rx.sdata = prev_sta->sdata;
4529 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4530 return;
4531 goto out;
4535 prev = NULL;
4537 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
4538 if (!ieee80211_sdata_running(sdata))
4539 continue;
4541 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
4542 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
4543 continue;
4546 * frame is destined for this interface, but if it's
4547 * not also for the previous one we handle that after
4548 * the loop to avoid copying the SKB once too much
4551 if (!prev) {
4552 prev = sdata;
4553 continue;
4556 rx.sta = sta_info_get_bss(prev, hdr->addr2);
4557 rx.sdata = prev;
4558 ieee80211_prepare_and_rx_handle(&rx, skb, false);
4560 prev = sdata;
4563 if (prev) {
4564 rx.sta = sta_info_get_bss(prev, hdr->addr2);
4565 rx.sdata = prev;
4567 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4568 return;
4571 out:
4572 dev_kfree_skb(skb);
4576 * This is the receive path handler. It is called by a low level driver when an
4577 * 802.11 MPDU is received from the hardware.
4579 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4580 struct sk_buff *skb, struct napi_struct *napi)
4582 struct ieee80211_local *local = hw_to_local(hw);
4583 struct ieee80211_rate *rate = NULL;
4584 struct ieee80211_supported_band *sband;
4585 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4587 WARN_ON_ONCE(softirq_count() == 0);
4589 if (WARN_ON(status->band >= NUM_NL80211_BANDS))
4590 goto drop;
4592 sband = local->hw.wiphy->bands[status->band];
4593 if (WARN_ON(!sband))
4594 goto drop;
4597 * If we're suspending, it is possible although not too likely
4598 * that we'd be receiving frames after having already partially
4599 * quiesced the stack. We can't process such frames then since
4600 * that might, for example, cause stations to be added or other
4601 * driver callbacks be invoked.
4603 if (unlikely(local->quiescing || local->suspended))
4604 goto drop;
4606 /* We might be during a HW reconfig, prevent Rx for the same reason */
4607 if (unlikely(local->in_reconfig))
4608 goto drop;
4611 * The same happens when we're not even started,
4612 * but that's worth a warning.
4614 if (WARN_ON(!local->started))
4615 goto drop;
4617 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
4619 * Validate the rate, unless a PLCP error means that
4620 * we probably can't have a valid rate here anyway.
4623 switch (status->encoding) {
4624 case RX_ENC_HT:
4626 * rate_idx is MCS index, which can be [0-76]
4627 * as documented on:
4629 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
4631 * Anything else would be some sort of driver or
4632 * hardware error. The driver should catch hardware
4633 * errors.
4635 if (WARN(status->rate_idx > 76,
4636 "Rate marked as an HT rate but passed "
4637 "status->rate_idx is not "
4638 "an MCS index [0-76]: %d (0x%02x)\n",
4639 status->rate_idx,
4640 status->rate_idx))
4641 goto drop;
4642 break;
4643 case RX_ENC_VHT:
4644 if (WARN_ONCE(status->rate_idx > 9 ||
4645 !status->nss ||
4646 status->nss > 8,
4647 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4648 status->rate_idx, status->nss))
4649 goto drop;
4650 break;
4651 case RX_ENC_HE:
4652 if (WARN_ONCE(status->rate_idx > 11 ||
4653 !status->nss ||
4654 status->nss > 8,
4655 "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n",
4656 status->rate_idx, status->nss))
4657 goto drop;
4658 break;
4659 default:
4660 WARN_ON_ONCE(1);
4661 /* fall through */
4662 case RX_ENC_LEGACY:
4663 if (WARN_ON(status->rate_idx >= sband->n_bitrates))
4664 goto drop;
4665 rate = &sband->bitrates[status->rate_idx];
4669 status->rx_flags = 0;
4672 * key references and virtual interfaces are protected using RCU
4673 * and this requires that we are in a read-side RCU section during
4674 * receive processing
4676 rcu_read_lock();
4679 * Frames with failed FCS/PLCP checksum are not returned,
4680 * all other frames are returned without radiotap header
4681 * if it was previously present.
4682 * Also, frames with less than 16 bytes are dropped.
4684 skb = ieee80211_rx_monitor(local, skb, rate);
4685 if (!skb) {
4686 rcu_read_unlock();
4687 return;
4690 ieee80211_tpt_led_trig_rx(local,
4691 ((struct ieee80211_hdr *)skb->data)->frame_control,
4692 skb->len);
4694 __ieee80211_rx_handle_packet(hw, pubsta, skb, napi);
4696 rcu_read_unlock();
4698 return;
4699 drop:
4700 kfree_skb(skb);
4702 EXPORT_SYMBOL(ieee80211_rx_napi);
4704 /* This is a version of the rx handler that can be called from hard irq
4705 * context. Post the skb on the queue and schedule the tasklet */
4706 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
4708 struct ieee80211_local *local = hw_to_local(hw);
4710 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
4712 skb->pkt_type = IEEE80211_RX_MSG;
4713 skb_queue_tail(&local->skb_queue, skb);
4714 tasklet_schedule(&local->tasklet);
4716 EXPORT_SYMBOL(ieee80211_rx_irqsafe);