2 * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 #include <linux/module.h>
34 #include <linux/errno.h>
35 #include <linux/kernel.h>
36 #include <linux/gfp.h>
38 #include <linux/ipv6.h>
39 #include <linux/poll.h>
44 /* this is just used for stats gathering :/ */
45 static DEFINE_SPINLOCK(rds_sock_lock
);
46 static unsigned long rds_sock_count
;
47 static LIST_HEAD(rds_sock_list
);
48 DECLARE_WAIT_QUEUE_HEAD(rds_poll_waitq
);
51 * This is called as the final descriptor referencing this socket is closed.
52 * We have to unbind the socket so that another socket can be bound to the
53 * address it was using.
55 * We have to be careful about racing with the incoming path. sock_orphan()
56 * sets SOCK_DEAD and we use that as an indicator to the rx path that new
57 * messages shouldn't be queued.
59 static int rds_release(struct socket
*sock
)
61 struct sock
*sk
= sock
->sk
;
67 rs
= rds_sk_to_rs(sk
);
70 /* Note - rds_clear_recv_queue grabs rs_recv_lock, so
71 * that ensures the recv path has completed messing
73 rds_clear_recv_queue(rs
);
74 rds_cong_remove_socket(rs
);
78 rds_send_drop_to(rs
, NULL
);
79 rds_rdma_drop_keys(rs
);
80 rds_notify_queue_get(rs
, NULL
);
81 rds_notify_msg_zcopy_purge(&rs
->rs_zcookie_queue
);
83 spin_lock_bh(&rds_sock_lock
);
84 list_del_init(&rs
->rs_item
);
86 spin_unlock_bh(&rds_sock_lock
);
88 rds_trans_put(rs
->rs_transport
);
97 * Careful not to race with rds_release -> sock_orphan which clears sk_sleep.
98 * _bh() isn't OK here, we're called from interrupt handlers. It's probably OK
99 * to wake the waitqueue after sk_sleep is clear as we hold a sock ref, but
100 * this seems more conservative.
101 * NB - normally, one would use sk_callback_lock for this, but we can
102 * get here from interrupts, whereas the network code grabs sk_callback_lock
103 * with _lock_bh only - so relying on sk_callback_lock introduces livelocks.
105 void rds_wake_sk_sleep(struct rds_sock
*rs
)
109 read_lock_irqsave(&rs
->rs_recv_lock
, flags
);
110 __rds_wake_sk_sleep(rds_rs_to_sk(rs
));
111 read_unlock_irqrestore(&rs
->rs_recv_lock
, flags
);
114 static int rds_getname(struct socket
*sock
, struct sockaddr
*uaddr
,
117 struct rds_sock
*rs
= rds_sk_to_rs(sock
->sk
);
118 struct sockaddr_in6
*sin6
;
119 struct sockaddr_in
*sin
;
122 /* racey, don't care */
124 if (ipv6_addr_any(&rs
->rs_conn_addr
))
127 if (ipv6_addr_v4mapped(&rs
->rs_conn_addr
)) {
128 sin
= (struct sockaddr_in
*)uaddr
;
129 memset(sin
->sin_zero
, 0, sizeof(sin
->sin_zero
));
130 sin
->sin_family
= AF_INET
;
131 sin
->sin_port
= rs
->rs_conn_port
;
132 sin
->sin_addr
.s_addr
= rs
->rs_conn_addr_v4
;
133 uaddr_len
= sizeof(*sin
);
135 sin6
= (struct sockaddr_in6
*)uaddr
;
136 sin6
->sin6_family
= AF_INET6
;
137 sin6
->sin6_port
= rs
->rs_conn_port
;
138 sin6
->sin6_addr
= rs
->rs_conn_addr
;
139 sin6
->sin6_flowinfo
= 0;
140 /* scope_id is the same as in the bound address. */
141 sin6
->sin6_scope_id
= rs
->rs_bound_scope_id
;
142 uaddr_len
= sizeof(*sin6
);
145 /* If socket is not yet bound and the socket is connected,
146 * set the return address family to be the same as the
147 * connected address, but with 0 address value. If it is not
148 * connected, set the family to be AF_UNSPEC (value 0) and
149 * the address size to be that of an IPv4 address.
151 if (ipv6_addr_any(&rs
->rs_bound_addr
)) {
152 if (ipv6_addr_any(&rs
->rs_conn_addr
)) {
153 sin
= (struct sockaddr_in
*)uaddr
;
154 memset(sin
, 0, sizeof(*sin
));
155 sin
->sin_family
= AF_UNSPEC
;
159 #if IS_ENABLED(CONFIG_IPV6)
160 if (!(ipv6_addr_type(&rs
->rs_conn_addr
) &
162 sin6
= (struct sockaddr_in6
*)uaddr
;
163 memset(sin6
, 0, sizeof(*sin6
));
164 sin6
->sin6_family
= AF_INET6
;
165 return sizeof(*sin6
);
169 sin
= (struct sockaddr_in
*)uaddr
;
170 memset(sin
, 0, sizeof(*sin
));
171 sin
->sin_family
= AF_INET
;
174 if (ipv6_addr_v4mapped(&rs
->rs_bound_addr
)) {
175 sin
= (struct sockaddr_in
*)uaddr
;
176 memset(sin
->sin_zero
, 0, sizeof(sin
->sin_zero
));
177 sin
->sin_family
= AF_INET
;
178 sin
->sin_port
= rs
->rs_bound_port
;
179 sin
->sin_addr
.s_addr
= rs
->rs_bound_addr_v4
;
180 uaddr_len
= sizeof(*sin
);
182 sin6
= (struct sockaddr_in6
*)uaddr
;
183 sin6
->sin6_family
= AF_INET6
;
184 sin6
->sin6_port
= rs
->rs_bound_port
;
185 sin6
->sin6_addr
= rs
->rs_bound_addr
;
186 sin6
->sin6_flowinfo
= 0;
187 sin6
->sin6_scope_id
= rs
->rs_bound_scope_id
;
188 uaddr_len
= sizeof(*sin6
);
196 * RDS' poll is without a doubt the least intuitive part of the interface,
197 * as EPOLLIN and EPOLLOUT do not behave entirely as you would expect from
198 * a network protocol.
200 * EPOLLIN is asserted if
201 * - there is data on the receive queue.
202 * - to signal that a previously congested destination may have become
204 * - A notification has been queued to the socket (this can be a congestion
205 * update, or a RDMA completion, or a MSG_ZEROCOPY completion).
207 * EPOLLOUT is asserted if there is room on the send queue. This does not mean
208 * however, that the next sendmsg() call will succeed. If the application tries
209 * to send to a congested destination, the system call may still fail (and
212 static __poll_t
rds_poll(struct file
*file
, struct socket
*sock
,
215 struct sock
*sk
= sock
->sk
;
216 struct rds_sock
*rs
= rds_sk_to_rs(sk
);
220 poll_wait(file
, sk_sleep(sk
), wait
);
222 if (rs
->rs_seen_congestion
)
223 poll_wait(file
, &rds_poll_waitq
, wait
);
225 read_lock_irqsave(&rs
->rs_recv_lock
, flags
);
226 if (!rs
->rs_cong_monitor
) {
227 /* When a congestion map was updated, we signal EPOLLIN for
228 * "historical" reasons. Applications can also poll for
230 if (rds_cong_updated_since(&rs
->rs_cong_track
))
231 mask
|= (EPOLLIN
| EPOLLRDNORM
| EPOLLWRBAND
);
233 spin_lock(&rs
->rs_lock
);
234 if (rs
->rs_cong_notify
)
235 mask
|= (EPOLLIN
| EPOLLRDNORM
);
236 spin_unlock(&rs
->rs_lock
);
238 if (!list_empty(&rs
->rs_recv_queue
) ||
239 !list_empty(&rs
->rs_notify_queue
) ||
240 !list_empty(&rs
->rs_zcookie_queue
.zcookie_head
))
241 mask
|= (EPOLLIN
| EPOLLRDNORM
);
242 if (rs
->rs_snd_bytes
< rds_sk_sndbuf(rs
))
243 mask
|= (EPOLLOUT
| EPOLLWRNORM
);
244 if (sk
->sk_err
|| !skb_queue_empty(&sk
->sk_error_queue
))
246 read_unlock_irqrestore(&rs
->rs_recv_lock
, flags
);
248 /* clear state any time we wake a seen-congested socket */
250 rs
->rs_seen_congestion
= 0;
255 static int rds_ioctl(struct socket
*sock
, unsigned int cmd
, unsigned long arg
)
257 struct rds_sock
*rs
= rds_sk_to_rs(sock
->sk
);
258 rds_tos_t utos
, tos
= 0;
262 if (get_user(utos
, (rds_tos_t __user
*)arg
))
265 if (rs
->rs_transport
&&
266 rs
->rs_transport
->get_tos_map
)
267 tos
= rs
->rs_transport
->get_tos_map(utos
);
271 spin_lock_bh(&rds_sock_lock
);
272 if (rs
->rs_tos
|| rs
->rs_conn
) {
273 spin_unlock_bh(&rds_sock_lock
);
277 spin_unlock_bh(&rds_sock_lock
);
280 spin_lock_bh(&rds_sock_lock
);
282 spin_unlock_bh(&rds_sock_lock
);
283 if (put_user(tos
, (rds_tos_t __user
*)arg
))
293 static int rds_cancel_sent_to(struct rds_sock
*rs
, char __user
*optval
,
296 struct sockaddr_in6 sin6
;
297 struct sockaddr_in sin
;
300 /* racing with another thread binding seems ok here */
301 if (ipv6_addr_any(&rs
->rs_bound_addr
)) {
302 ret
= -ENOTCONN
; /* XXX not a great errno */
306 if (len
< sizeof(struct sockaddr_in
)) {
309 } else if (len
< sizeof(struct sockaddr_in6
)) {
311 if (copy_from_user(&sin
, optval
, sizeof(struct sockaddr_in
))) {
315 ipv6_addr_set_v4mapped(sin
.sin_addr
.s_addr
, &sin6
.sin6_addr
);
316 sin6
.sin6_port
= sin
.sin_port
;
318 if (copy_from_user(&sin6
, optval
,
319 sizeof(struct sockaddr_in6
))) {
325 rds_send_drop_to(rs
, &sin6
);
330 static int rds_set_bool_option(unsigned char *optvar
, char __user
*optval
,
335 if (optlen
< sizeof(int))
337 if (get_user(value
, (int __user
*) optval
))
343 static int rds_cong_monitor(struct rds_sock
*rs
, char __user
*optval
,
348 ret
= rds_set_bool_option(&rs
->rs_cong_monitor
, optval
, optlen
);
350 if (rs
->rs_cong_monitor
) {
351 rds_cong_add_socket(rs
);
353 rds_cong_remove_socket(rs
);
354 rs
->rs_cong_mask
= 0;
355 rs
->rs_cong_notify
= 0;
361 static int rds_set_transport(struct rds_sock
*rs
, char __user
*optval
,
366 if (rs
->rs_transport
)
367 return -EOPNOTSUPP
; /* previously attached to transport */
369 if (optlen
!= sizeof(int))
372 if (copy_from_user(&t_type
, (int __user
*)optval
, sizeof(t_type
)))
375 if (t_type
< 0 || t_type
>= RDS_TRANS_COUNT
)
378 rs
->rs_transport
= rds_trans_get(t_type
);
380 return rs
->rs_transport
? 0 : -ENOPROTOOPT
;
383 static int rds_enable_recvtstamp(struct sock
*sk
, char __user
*optval
,
384 int optlen
, int optname
)
388 if (optlen
!= sizeof(int))
391 if (get_user(val
, (int __user
*)optval
))
394 valbool
= val
? 1 : 0;
396 if (optname
== SO_TIMESTAMP_NEW
)
397 sock_set_flag(sk
, SOCK_TSTAMP_NEW
);
400 sock_set_flag(sk
, SOCK_RCVTSTAMP
);
402 sock_reset_flag(sk
, SOCK_RCVTSTAMP
);
407 static int rds_recv_track_latency(struct rds_sock
*rs
, char __user
*optval
,
410 struct rds_rx_trace_so trace
;
413 if (optlen
!= sizeof(struct rds_rx_trace_so
))
416 if (copy_from_user(&trace
, optval
, sizeof(trace
)))
419 if (trace
.rx_traces
> RDS_MSG_RX_DGRAM_TRACE_MAX
)
422 rs
->rs_rx_traces
= trace
.rx_traces
;
423 for (i
= 0; i
< rs
->rs_rx_traces
; i
++) {
424 if (trace
.rx_trace_pos
[i
] > RDS_MSG_RX_DGRAM_TRACE_MAX
) {
425 rs
->rs_rx_traces
= 0;
428 rs
->rs_rx_trace
[i
] = trace
.rx_trace_pos
[i
];
434 static int rds_setsockopt(struct socket
*sock
, int level
, int optname
,
435 char __user
*optval
, unsigned int optlen
)
437 struct rds_sock
*rs
= rds_sk_to_rs(sock
->sk
);
440 if (level
!= SOL_RDS
) {
446 case RDS_CANCEL_SENT_TO
:
447 ret
= rds_cancel_sent_to(rs
, optval
, optlen
);
450 ret
= rds_get_mr(rs
, optval
, optlen
);
452 case RDS_GET_MR_FOR_DEST
:
453 ret
= rds_get_mr_for_dest(rs
, optval
, optlen
);
456 ret
= rds_free_mr(rs
, optval
, optlen
);
459 ret
= rds_set_bool_option(&rs
->rs_recverr
, optval
, optlen
);
461 case RDS_CONG_MONITOR
:
462 ret
= rds_cong_monitor(rs
, optval
, optlen
);
464 case SO_RDS_TRANSPORT
:
466 ret
= rds_set_transport(rs
, optval
, optlen
);
467 release_sock(sock
->sk
);
469 case SO_TIMESTAMP_OLD
:
470 case SO_TIMESTAMP_NEW
:
472 ret
= rds_enable_recvtstamp(sock
->sk
, optval
, optlen
, optname
);
473 release_sock(sock
->sk
);
475 case SO_RDS_MSG_RXPATH_LATENCY
:
476 ret
= rds_recv_track_latency(rs
, optval
, optlen
);
485 static int rds_getsockopt(struct socket
*sock
, int level
, int optname
,
486 char __user
*optval
, int __user
*optlen
)
488 struct rds_sock
*rs
= rds_sk_to_rs(sock
->sk
);
489 int ret
= -ENOPROTOOPT
, len
;
492 if (level
!= SOL_RDS
)
495 if (get_user(len
, optlen
)) {
501 case RDS_INFO_FIRST
... RDS_INFO_LAST
:
502 ret
= rds_info_getsockopt(sock
, optname
, optval
,
507 if (len
< sizeof(int))
510 if (put_user(rs
->rs_recverr
, (int __user
*) optval
) ||
511 put_user(sizeof(int), optlen
))
516 case SO_RDS_TRANSPORT
:
517 if (len
< sizeof(int)) {
521 trans
= (rs
->rs_transport
? rs
->rs_transport
->t_type
:
522 RDS_TRANS_NONE
); /* unbound */
523 if (put_user(trans
, (int __user
*)optval
) ||
524 put_user(sizeof(int), optlen
))
538 static int rds_connect(struct socket
*sock
, struct sockaddr
*uaddr
,
539 int addr_len
, int flags
)
541 struct sock
*sk
= sock
->sk
;
542 struct sockaddr_in
*sin
;
543 struct rds_sock
*rs
= rds_sk_to_rs(sk
);
546 if (addr_len
< offsetofend(struct sockaddr
, sa_family
))
551 switch (uaddr
->sa_family
) {
553 sin
= (struct sockaddr_in
*)uaddr
;
554 if (addr_len
< sizeof(struct sockaddr_in
)) {
558 if (sin
->sin_addr
.s_addr
== htonl(INADDR_ANY
)) {
562 if (ipv4_is_multicast(sin
->sin_addr
.s_addr
) ||
563 sin
->sin_addr
.s_addr
== htonl(INADDR_BROADCAST
)) {
567 ipv6_addr_set_v4mapped(sin
->sin_addr
.s_addr
, &rs
->rs_conn_addr
);
568 rs
->rs_conn_port
= sin
->sin_port
;
571 #if IS_ENABLED(CONFIG_IPV6)
573 struct sockaddr_in6
*sin6
;
576 sin6
= (struct sockaddr_in6
*)uaddr
;
577 if (addr_len
< sizeof(struct sockaddr_in6
)) {
581 addr_type
= ipv6_addr_type(&sin6
->sin6_addr
);
582 if (!(addr_type
& IPV6_ADDR_UNICAST
)) {
585 if (!(addr_type
& IPV6_ADDR_MAPPED
)) {
590 /* It is a mapped address. Need to do some sanity
593 addr4
= sin6
->sin6_addr
.s6_addr32
[3];
594 if (addr4
== htonl(INADDR_ANY
) ||
595 addr4
== htonl(INADDR_BROADCAST
) ||
596 ipv4_is_multicast(addr4
)) {
602 if (addr_type
& IPV6_ADDR_LINKLOCAL
) {
603 /* If socket is arleady bound to a link local address,
604 * the peer address must be on the same link.
606 if (sin6
->sin6_scope_id
== 0 ||
607 (!ipv6_addr_any(&rs
->rs_bound_addr
) &&
608 rs
->rs_bound_scope_id
&&
609 sin6
->sin6_scope_id
!= rs
->rs_bound_scope_id
)) {
613 /* Remember the connected address scope ID. It will
614 * be checked against the binding local address when
615 * the socket is bound.
617 rs
->rs_bound_scope_id
= sin6
->sin6_scope_id
;
619 rs
->rs_conn_addr
= sin6
->sin6_addr
;
620 rs
->rs_conn_port
= sin6
->sin6_port
;
634 static struct proto rds_proto
= {
636 .owner
= THIS_MODULE
,
637 .obj_size
= sizeof(struct rds_sock
),
640 static const struct proto_ops rds_proto_ops
= {
642 .owner
= THIS_MODULE
,
643 .release
= rds_release
,
645 .connect
= rds_connect
,
646 .socketpair
= sock_no_socketpair
,
647 .accept
= sock_no_accept
,
648 .getname
= rds_getname
,
651 .listen
= sock_no_listen
,
652 .shutdown
= sock_no_shutdown
,
653 .setsockopt
= rds_setsockopt
,
654 .getsockopt
= rds_getsockopt
,
655 .sendmsg
= rds_sendmsg
,
656 .recvmsg
= rds_recvmsg
,
657 .mmap
= sock_no_mmap
,
658 .sendpage
= sock_no_sendpage
,
661 static void rds_sock_destruct(struct sock
*sk
)
663 struct rds_sock
*rs
= rds_sk_to_rs(sk
);
665 WARN_ON((&rs
->rs_item
!= rs
->rs_item
.next
||
666 &rs
->rs_item
!= rs
->rs_item
.prev
));
669 static int __rds_create(struct socket
*sock
, struct sock
*sk
, int protocol
)
673 sock_init_data(sock
, sk
);
674 sock
->ops
= &rds_proto_ops
;
675 sk
->sk_protocol
= protocol
;
676 sk
->sk_destruct
= rds_sock_destruct
;
678 rs
= rds_sk_to_rs(sk
);
679 spin_lock_init(&rs
->rs_lock
);
680 rwlock_init(&rs
->rs_recv_lock
);
681 INIT_LIST_HEAD(&rs
->rs_send_queue
);
682 INIT_LIST_HEAD(&rs
->rs_recv_queue
);
683 INIT_LIST_HEAD(&rs
->rs_notify_queue
);
684 INIT_LIST_HEAD(&rs
->rs_cong_list
);
685 rds_message_zcopy_queue_init(&rs
->rs_zcookie_queue
);
686 spin_lock_init(&rs
->rs_rdma_lock
);
687 rs
->rs_rdma_keys
= RB_ROOT
;
688 rs
->rs_rx_traces
= 0;
692 spin_lock_bh(&rds_sock_lock
);
693 list_add_tail(&rs
->rs_item
, &rds_sock_list
);
695 spin_unlock_bh(&rds_sock_lock
);
700 static int rds_create(struct net
*net
, struct socket
*sock
, int protocol
,
705 if (sock
->type
!= SOCK_SEQPACKET
|| protocol
)
706 return -ESOCKTNOSUPPORT
;
708 sk
= sk_alloc(net
, AF_RDS
, GFP_KERNEL
, &rds_proto
, kern
);
712 return __rds_create(sock
, sk
, protocol
);
715 void rds_sock_addref(struct rds_sock
*rs
)
717 sock_hold(rds_rs_to_sk(rs
));
720 void rds_sock_put(struct rds_sock
*rs
)
722 sock_put(rds_rs_to_sk(rs
));
725 static const struct net_proto_family rds_family_ops
= {
727 .create
= rds_create
,
728 .owner
= THIS_MODULE
,
731 static void rds_sock_inc_info(struct socket
*sock
, unsigned int len
,
732 struct rds_info_iterator
*iter
,
733 struct rds_info_lengths
*lens
)
736 struct rds_incoming
*inc
;
737 unsigned int total
= 0;
739 len
/= sizeof(struct rds_info_message
);
741 spin_lock_bh(&rds_sock_lock
);
743 list_for_each_entry(rs
, &rds_sock_list
, rs_item
) {
744 /* This option only supports IPv4 sockets. */
745 if (!ipv6_addr_v4mapped(&rs
->rs_bound_addr
))
748 read_lock(&rs
->rs_recv_lock
);
750 /* XXX too lazy to maintain counts.. */
751 list_for_each_entry(inc
, &rs
->rs_recv_queue
, i_item
) {
754 rds_inc_info_copy(inc
, iter
,
755 inc
->i_saddr
.s6_addr32
[3],
756 rs
->rs_bound_addr_v4
,
760 read_unlock(&rs
->rs_recv_lock
);
763 spin_unlock_bh(&rds_sock_lock
);
766 lens
->each
= sizeof(struct rds_info_message
);
769 #if IS_ENABLED(CONFIG_IPV6)
770 static void rds6_sock_inc_info(struct socket
*sock
, unsigned int len
,
771 struct rds_info_iterator
*iter
,
772 struct rds_info_lengths
*lens
)
774 struct rds_incoming
*inc
;
775 unsigned int total
= 0;
778 len
/= sizeof(struct rds6_info_message
);
780 spin_lock_bh(&rds_sock_lock
);
782 list_for_each_entry(rs
, &rds_sock_list
, rs_item
) {
783 read_lock(&rs
->rs_recv_lock
);
785 list_for_each_entry(inc
, &rs
->rs_recv_queue
, i_item
) {
788 rds6_inc_info_copy(inc
, iter
, &inc
->i_saddr
,
789 &rs
->rs_bound_addr
, 1);
792 read_unlock(&rs
->rs_recv_lock
);
795 spin_unlock_bh(&rds_sock_lock
);
798 lens
->each
= sizeof(struct rds6_info_message
);
802 static void rds_sock_info(struct socket
*sock
, unsigned int len
,
803 struct rds_info_iterator
*iter
,
804 struct rds_info_lengths
*lens
)
806 struct rds_info_socket sinfo
;
807 unsigned int cnt
= 0;
810 len
/= sizeof(struct rds_info_socket
);
812 spin_lock_bh(&rds_sock_lock
);
814 if (len
< rds_sock_count
) {
815 cnt
= rds_sock_count
;
819 list_for_each_entry(rs
, &rds_sock_list
, rs_item
) {
820 /* This option only supports IPv4 sockets. */
821 if (!ipv6_addr_v4mapped(&rs
->rs_bound_addr
))
823 sinfo
.sndbuf
= rds_sk_sndbuf(rs
);
824 sinfo
.rcvbuf
= rds_sk_rcvbuf(rs
);
825 sinfo
.bound_addr
= rs
->rs_bound_addr_v4
;
826 sinfo
.connected_addr
= rs
->rs_conn_addr_v4
;
827 sinfo
.bound_port
= rs
->rs_bound_port
;
828 sinfo
.connected_port
= rs
->rs_conn_port
;
829 sinfo
.inum
= sock_i_ino(rds_rs_to_sk(rs
));
831 rds_info_copy(iter
, &sinfo
, sizeof(sinfo
));
837 lens
->each
= sizeof(struct rds_info_socket
);
839 spin_unlock_bh(&rds_sock_lock
);
842 #if IS_ENABLED(CONFIG_IPV6)
843 static void rds6_sock_info(struct socket
*sock
, unsigned int len
,
844 struct rds_info_iterator
*iter
,
845 struct rds_info_lengths
*lens
)
847 struct rds6_info_socket sinfo6
;
850 len
/= sizeof(struct rds6_info_socket
);
852 spin_lock_bh(&rds_sock_lock
);
854 if (len
< rds_sock_count
)
857 list_for_each_entry(rs
, &rds_sock_list
, rs_item
) {
858 sinfo6
.sndbuf
= rds_sk_sndbuf(rs
);
859 sinfo6
.rcvbuf
= rds_sk_rcvbuf(rs
);
860 sinfo6
.bound_addr
= rs
->rs_bound_addr
;
861 sinfo6
.connected_addr
= rs
->rs_conn_addr
;
862 sinfo6
.bound_port
= rs
->rs_bound_port
;
863 sinfo6
.connected_port
= rs
->rs_conn_port
;
864 sinfo6
.inum
= sock_i_ino(rds_rs_to_sk(rs
));
866 rds_info_copy(iter
, &sinfo6
, sizeof(sinfo6
));
870 lens
->nr
= rds_sock_count
;
871 lens
->each
= sizeof(struct rds6_info_socket
);
873 spin_unlock_bh(&rds_sock_lock
);
877 static void rds_exit(void)
879 sock_unregister(rds_family_ops
.family
);
880 proto_unregister(&rds_proto
);
887 rds_bind_lock_destroy();
888 rds_info_deregister_func(RDS_INFO_SOCKETS
, rds_sock_info
);
889 rds_info_deregister_func(RDS_INFO_RECV_MESSAGES
, rds_sock_inc_info
);
890 #if IS_ENABLED(CONFIG_IPV6)
891 rds_info_deregister_func(RDS6_INFO_SOCKETS
, rds6_sock_info
);
892 rds_info_deregister_func(RDS6_INFO_RECV_MESSAGES
, rds6_sock_inc_info
);
895 module_exit(rds_exit
);
899 static int rds_init(void)
903 net_get_random_once(&rds_gen_num
, sizeof(rds_gen_num
));
905 ret
= rds_bind_lock_init();
909 ret
= rds_conn_init();
913 ret
= rds_threads_init();
916 ret
= rds_sysctl_init();
919 ret
= rds_stats_init();
922 ret
= proto_register(&rds_proto
, 1);
925 ret
= sock_register(&rds_family_ops
);
929 rds_info_register_func(RDS_INFO_SOCKETS
, rds_sock_info
);
930 rds_info_register_func(RDS_INFO_RECV_MESSAGES
, rds_sock_inc_info
);
931 #if IS_ENABLED(CONFIG_IPV6)
932 rds_info_register_func(RDS6_INFO_SOCKETS
, rds6_sock_info
);
933 rds_info_register_func(RDS6_INFO_RECV_MESSAGES
, rds6_sock_inc_info
);
939 proto_unregister(&rds_proto
);
951 rds_bind_lock_destroy();
955 module_init(rds_init
);
957 #define DRV_VERSION "4.0"
958 #define DRV_RELDATE "Feb 12, 2009"
960 MODULE_AUTHOR("Oracle Corporation <rds-devel@oss.oracle.com>");
961 MODULE_DESCRIPTION("RDS: Reliable Datagram Sockets"
962 " v" DRV_VERSION
" (" DRV_RELDATE
")");
963 MODULE_VERSION(DRV_VERSION
);
964 MODULE_LICENSE("Dual BSD/GPL");
965 MODULE_ALIAS_NETPROTO(PF_RDS
);