Linux 5.7.7
[linux/fpc-iii.git] / net / rds / ib.c
bloba792d8a3872aca5b835d7bca66cf12a6859cc7eb
1 /*
2 * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
33 #include <linux/dmapool.h>
34 #include <linux/kernel.h>
35 #include <linux/in.h>
36 #include <linux/if.h>
37 #include <linux/netdevice.h>
38 #include <linux/inetdevice.h>
39 #include <linux/if_arp.h>
40 #include <linux/delay.h>
41 #include <linux/slab.h>
42 #include <linux/module.h>
43 #include <net/addrconf.h>
45 #include "rds_single_path.h"
46 #include "rds.h"
47 #include "ib.h"
48 #include "ib_mr.h"
50 static unsigned int rds_ib_mr_1m_pool_size = RDS_MR_1M_POOL_SIZE;
51 static unsigned int rds_ib_mr_8k_pool_size = RDS_MR_8K_POOL_SIZE;
52 unsigned int rds_ib_retry_count = RDS_IB_DEFAULT_RETRY_COUNT;
53 static atomic_t rds_ib_unloading;
55 module_param(rds_ib_mr_1m_pool_size, int, 0444);
56 MODULE_PARM_DESC(rds_ib_mr_1m_pool_size, " Max number of 1M mr per HCA");
57 module_param(rds_ib_mr_8k_pool_size, int, 0444);
58 MODULE_PARM_DESC(rds_ib_mr_8k_pool_size, " Max number of 8K mr per HCA");
59 module_param(rds_ib_retry_count, int, 0444);
60 MODULE_PARM_DESC(rds_ib_retry_count, " Number of hw retries before reporting an error");
63 * we have a clumsy combination of RCU and a rwsem protecting this list
64 * because it is used both in the get_mr fast path and while blocking in
65 * the FMR flushing path.
67 DECLARE_RWSEM(rds_ib_devices_lock);
68 struct list_head rds_ib_devices;
70 /* NOTE: if also grabbing ibdev lock, grab this first */
71 DEFINE_SPINLOCK(ib_nodev_conns_lock);
72 LIST_HEAD(ib_nodev_conns);
74 static void rds_ib_nodev_connect(void)
76 struct rds_ib_connection *ic;
78 spin_lock(&ib_nodev_conns_lock);
79 list_for_each_entry(ic, &ib_nodev_conns, ib_node)
80 rds_conn_connect_if_down(ic->conn);
81 spin_unlock(&ib_nodev_conns_lock);
84 static void rds_ib_dev_shutdown(struct rds_ib_device *rds_ibdev)
86 struct rds_ib_connection *ic;
87 unsigned long flags;
89 spin_lock_irqsave(&rds_ibdev->spinlock, flags);
90 list_for_each_entry(ic, &rds_ibdev->conn_list, ib_node)
91 rds_conn_path_drop(&ic->conn->c_path[0], true);
92 spin_unlock_irqrestore(&rds_ibdev->spinlock, flags);
96 * rds_ib_destroy_mr_pool() blocks on a few things and mrs drop references
97 * from interrupt context so we push freing off into a work struct in krdsd.
99 static void rds_ib_dev_free(struct work_struct *work)
101 struct rds_ib_ipaddr *i_ipaddr, *i_next;
102 struct rds_ib_device *rds_ibdev = container_of(work,
103 struct rds_ib_device, free_work);
105 if (rds_ibdev->mr_8k_pool)
106 rds_ib_destroy_mr_pool(rds_ibdev->mr_8k_pool);
107 if (rds_ibdev->mr_1m_pool)
108 rds_ib_destroy_mr_pool(rds_ibdev->mr_1m_pool);
109 if (rds_ibdev->pd)
110 ib_dealloc_pd(rds_ibdev->pd);
111 dma_pool_destroy(rds_ibdev->rid_hdrs_pool);
113 list_for_each_entry_safe(i_ipaddr, i_next, &rds_ibdev->ipaddr_list, list) {
114 list_del(&i_ipaddr->list);
115 kfree(i_ipaddr);
118 kfree(rds_ibdev->vector_load);
120 kfree(rds_ibdev);
123 void rds_ib_dev_put(struct rds_ib_device *rds_ibdev)
125 BUG_ON(refcount_read(&rds_ibdev->refcount) == 0);
126 if (refcount_dec_and_test(&rds_ibdev->refcount))
127 queue_work(rds_wq, &rds_ibdev->free_work);
130 static void rds_ib_add_one(struct ib_device *device)
132 struct rds_ib_device *rds_ibdev;
133 bool has_fr, has_fmr;
135 /* Only handle IB (no iWARP) devices */
136 if (device->node_type != RDMA_NODE_IB_CA)
137 return;
139 rds_ibdev = kzalloc_node(sizeof(struct rds_ib_device), GFP_KERNEL,
140 ibdev_to_node(device));
141 if (!rds_ibdev)
142 return;
144 spin_lock_init(&rds_ibdev->spinlock);
145 refcount_set(&rds_ibdev->refcount, 1);
146 INIT_WORK(&rds_ibdev->free_work, rds_ib_dev_free);
148 INIT_LIST_HEAD(&rds_ibdev->ipaddr_list);
149 INIT_LIST_HEAD(&rds_ibdev->conn_list);
151 rds_ibdev->max_wrs = device->attrs.max_qp_wr;
152 rds_ibdev->max_sge = min(device->attrs.max_send_sge, RDS_IB_MAX_SGE);
154 has_fr = (device->attrs.device_cap_flags &
155 IB_DEVICE_MEM_MGT_EXTENSIONS);
156 has_fmr = (device->ops.alloc_fmr && device->ops.dealloc_fmr &&
157 device->ops.map_phys_fmr && device->ops.unmap_fmr);
158 rds_ibdev->use_fastreg = (has_fr && !has_fmr);
159 rds_ibdev->odp_capable =
160 !!(device->attrs.device_cap_flags &
161 IB_DEVICE_ON_DEMAND_PAGING) &&
162 !!(device->attrs.odp_caps.per_transport_caps.rc_odp_caps &
163 IB_ODP_SUPPORT_WRITE) &&
164 !!(device->attrs.odp_caps.per_transport_caps.rc_odp_caps &
165 IB_ODP_SUPPORT_READ);
167 rds_ibdev->fmr_max_remaps = device->attrs.max_map_per_fmr?: 32;
168 rds_ibdev->max_1m_mrs = device->attrs.max_mr ?
169 min_t(unsigned int, (device->attrs.max_mr / 2),
170 rds_ib_mr_1m_pool_size) : rds_ib_mr_1m_pool_size;
172 rds_ibdev->max_8k_mrs = device->attrs.max_mr ?
173 min_t(unsigned int, ((device->attrs.max_mr / 2) * RDS_MR_8K_SCALE),
174 rds_ib_mr_8k_pool_size) : rds_ib_mr_8k_pool_size;
176 rds_ibdev->max_initiator_depth = device->attrs.max_qp_init_rd_atom;
177 rds_ibdev->max_responder_resources = device->attrs.max_qp_rd_atom;
179 rds_ibdev->vector_load = kcalloc(device->num_comp_vectors,
180 sizeof(int),
181 GFP_KERNEL);
182 if (!rds_ibdev->vector_load) {
183 pr_err("RDS/IB: %s failed to allocate vector memory\n",
184 __func__);
185 goto put_dev;
188 rds_ibdev->dev = device;
189 rds_ibdev->pd = ib_alloc_pd(device, 0);
190 if (IS_ERR(rds_ibdev->pd)) {
191 rds_ibdev->pd = NULL;
192 goto put_dev;
194 rds_ibdev->rid_hdrs_pool = dma_pool_create(device->name,
195 device->dma_device,
196 sizeof(struct rds_header),
197 L1_CACHE_BYTES, 0);
198 if (!rds_ibdev->rid_hdrs_pool)
199 goto put_dev;
201 rds_ibdev->mr_1m_pool =
202 rds_ib_create_mr_pool(rds_ibdev, RDS_IB_MR_1M_POOL);
203 if (IS_ERR(rds_ibdev->mr_1m_pool)) {
204 rds_ibdev->mr_1m_pool = NULL;
205 goto put_dev;
208 rds_ibdev->mr_8k_pool =
209 rds_ib_create_mr_pool(rds_ibdev, RDS_IB_MR_8K_POOL);
210 if (IS_ERR(rds_ibdev->mr_8k_pool)) {
211 rds_ibdev->mr_8k_pool = NULL;
212 goto put_dev;
215 rdsdebug("RDS/IB: max_mr = %d, max_wrs = %d, max_sge = %d, fmr_max_remaps = %d, max_1m_mrs = %d, max_8k_mrs = %d\n",
216 device->attrs.max_fmr, rds_ibdev->max_wrs, rds_ibdev->max_sge,
217 rds_ibdev->fmr_max_remaps, rds_ibdev->max_1m_mrs,
218 rds_ibdev->max_8k_mrs);
220 pr_info("RDS/IB: %s: %s supported and preferred\n",
221 device->name,
222 rds_ibdev->use_fastreg ? "FRMR" : "FMR");
224 down_write(&rds_ib_devices_lock);
225 list_add_tail_rcu(&rds_ibdev->list, &rds_ib_devices);
226 up_write(&rds_ib_devices_lock);
227 refcount_inc(&rds_ibdev->refcount);
229 ib_set_client_data(device, &rds_ib_client, rds_ibdev);
230 refcount_inc(&rds_ibdev->refcount);
232 rds_ib_nodev_connect();
234 put_dev:
235 rds_ib_dev_put(rds_ibdev);
239 * New connections use this to find the device to associate with the
240 * connection. It's not in the fast path so we're not concerned about the
241 * performance of the IB call. (As of this writing, it uses an interrupt
242 * blocking spinlock to serialize walking a per-device list of all registered
243 * clients.)
245 * RCU is used to handle incoming connections racing with device teardown.
246 * Rather than use a lock to serialize removal from the client_data and
247 * getting a new reference, we use an RCU grace period. The destruction
248 * path removes the device from client_data and then waits for all RCU
249 * readers to finish.
251 * A new connection can get NULL from this if its arriving on a
252 * device that is in the process of being removed.
254 struct rds_ib_device *rds_ib_get_client_data(struct ib_device *device)
256 struct rds_ib_device *rds_ibdev;
258 rcu_read_lock();
259 rds_ibdev = ib_get_client_data(device, &rds_ib_client);
260 if (rds_ibdev)
261 refcount_inc(&rds_ibdev->refcount);
262 rcu_read_unlock();
263 return rds_ibdev;
267 * The IB stack is letting us know that a device is going away. This can
268 * happen if the underlying HCA driver is removed or if PCI hotplug is removing
269 * the pci function, for example.
271 * This can be called at any time and can be racing with any other RDS path.
273 static void rds_ib_remove_one(struct ib_device *device, void *client_data)
275 struct rds_ib_device *rds_ibdev = client_data;
277 if (!rds_ibdev)
278 return;
280 rds_ib_dev_shutdown(rds_ibdev);
282 /* stop connection attempts from getting a reference to this device. */
283 ib_set_client_data(device, &rds_ib_client, NULL);
285 down_write(&rds_ib_devices_lock);
286 list_del_rcu(&rds_ibdev->list);
287 up_write(&rds_ib_devices_lock);
290 * This synchronize rcu is waiting for readers of both the ib
291 * client data and the devices list to finish before we drop
292 * both of those references.
294 synchronize_rcu();
295 rds_ib_dev_put(rds_ibdev);
296 rds_ib_dev_put(rds_ibdev);
299 struct ib_client rds_ib_client = {
300 .name = "rds_ib",
301 .add = rds_ib_add_one,
302 .remove = rds_ib_remove_one
305 static int rds_ib_conn_info_visitor(struct rds_connection *conn,
306 void *buffer)
308 struct rds_info_rdma_connection *iinfo = buffer;
309 struct rds_ib_connection *ic = conn->c_transport_data;
311 /* We will only ever look at IB transports */
312 if (conn->c_trans != &rds_ib_transport)
313 return 0;
314 if (conn->c_isv6)
315 return 0;
317 iinfo->src_addr = conn->c_laddr.s6_addr32[3];
318 iinfo->dst_addr = conn->c_faddr.s6_addr32[3];
319 if (ic) {
320 iinfo->tos = conn->c_tos;
321 iinfo->sl = ic->i_sl;
324 memset(&iinfo->src_gid, 0, sizeof(iinfo->src_gid));
325 memset(&iinfo->dst_gid, 0, sizeof(iinfo->dst_gid));
326 if (rds_conn_state(conn) == RDS_CONN_UP) {
327 struct rds_ib_device *rds_ibdev;
329 rdma_read_gids(ic->i_cm_id, (union ib_gid *)&iinfo->src_gid,
330 (union ib_gid *)&iinfo->dst_gid);
332 rds_ibdev = ic->rds_ibdev;
333 iinfo->max_send_wr = ic->i_send_ring.w_nr;
334 iinfo->max_recv_wr = ic->i_recv_ring.w_nr;
335 iinfo->max_send_sge = rds_ibdev->max_sge;
336 rds_ib_get_mr_info(rds_ibdev, iinfo);
337 iinfo->cache_allocs = atomic_read(&ic->i_cache_allocs);
339 return 1;
342 #if IS_ENABLED(CONFIG_IPV6)
343 /* IPv6 version of rds_ib_conn_info_visitor(). */
344 static int rds6_ib_conn_info_visitor(struct rds_connection *conn,
345 void *buffer)
347 struct rds6_info_rdma_connection *iinfo6 = buffer;
348 struct rds_ib_connection *ic = conn->c_transport_data;
350 /* We will only ever look at IB transports */
351 if (conn->c_trans != &rds_ib_transport)
352 return 0;
354 iinfo6->src_addr = conn->c_laddr;
355 iinfo6->dst_addr = conn->c_faddr;
356 if (ic) {
357 iinfo6->tos = conn->c_tos;
358 iinfo6->sl = ic->i_sl;
361 memset(&iinfo6->src_gid, 0, sizeof(iinfo6->src_gid));
362 memset(&iinfo6->dst_gid, 0, sizeof(iinfo6->dst_gid));
364 if (rds_conn_state(conn) == RDS_CONN_UP) {
365 struct rds_ib_device *rds_ibdev;
367 rdma_read_gids(ic->i_cm_id, (union ib_gid *)&iinfo6->src_gid,
368 (union ib_gid *)&iinfo6->dst_gid);
369 rds_ibdev = ic->rds_ibdev;
370 iinfo6->max_send_wr = ic->i_send_ring.w_nr;
371 iinfo6->max_recv_wr = ic->i_recv_ring.w_nr;
372 iinfo6->max_send_sge = rds_ibdev->max_sge;
373 rds6_ib_get_mr_info(rds_ibdev, iinfo6);
374 iinfo6->cache_allocs = atomic_read(&ic->i_cache_allocs);
376 return 1;
378 #endif
380 static void rds_ib_ic_info(struct socket *sock, unsigned int len,
381 struct rds_info_iterator *iter,
382 struct rds_info_lengths *lens)
384 u64 buffer[(sizeof(struct rds_info_rdma_connection) + 7) / 8];
386 rds_for_each_conn_info(sock, len, iter, lens,
387 rds_ib_conn_info_visitor,
388 buffer,
389 sizeof(struct rds_info_rdma_connection));
392 #if IS_ENABLED(CONFIG_IPV6)
393 /* IPv6 version of rds_ib_ic_info(). */
394 static void rds6_ib_ic_info(struct socket *sock, unsigned int len,
395 struct rds_info_iterator *iter,
396 struct rds_info_lengths *lens)
398 u64 buffer[(sizeof(struct rds6_info_rdma_connection) + 7) / 8];
400 rds_for_each_conn_info(sock, len, iter, lens,
401 rds6_ib_conn_info_visitor,
402 buffer,
403 sizeof(struct rds6_info_rdma_connection));
405 #endif
408 * Early RDS/IB was built to only bind to an address if there is an IPoIB
409 * device with that address set.
411 * If it were me, I'd advocate for something more flexible. Sending and
412 * receiving should be device-agnostic. Transports would try and maintain
413 * connections between peers who have messages queued. Userspace would be
414 * allowed to influence which paths have priority. We could call userspace
415 * asserting this policy "routing".
417 static int rds_ib_laddr_check(struct net *net, const struct in6_addr *addr,
418 __u32 scope_id)
420 int ret;
421 struct rdma_cm_id *cm_id;
422 #if IS_ENABLED(CONFIG_IPV6)
423 struct sockaddr_in6 sin6;
424 #endif
425 struct sockaddr_in sin;
426 struct sockaddr *sa;
427 bool isv4;
429 isv4 = ipv6_addr_v4mapped(addr);
430 /* Create a CMA ID and try to bind it. This catches both
431 * IB and iWARP capable NICs.
433 cm_id = rdma_create_id(&init_net, rds_rdma_cm_event_handler,
434 NULL, RDMA_PS_TCP, IB_QPT_RC);
435 if (IS_ERR(cm_id))
436 return PTR_ERR(cm_id);
438 if (isv4) {
439 memset(&sin, 0, sizeof(sin));
440 sin.sin_family = AF_INET;
441 sin.sin_addr.s_addr = addr->s6_addr32[3];
442 sa = (struct sockaddr *)&sin;
443 } else {
444 #if IS_ENABLED(CONFIG_IPV6)
445 memset(&sin6, 0, sizeof(sin6));
446 sin6.sin6_family = AF_INET6;
447 sin6.sin6_addr = *addr;
448 sin6.sin6_scope_id = scope_id;
449 sa = (struct sockaddr *)&sin6;
451 /* XXX Do a special IPv6 link local address check here. The
452 * reason is that rdma_bind_addr() always succeeds with IPv6
453 * link local address regardless it is indeed configured in a
454 * system.
456 if (ipv6_addr_type(addr) & IPV6_ADDR_LINKLOCAL) {
457 struct net_device *dev;
459 if (scope_id == 0) {
460 ret = -EADDRNOTAVAIL;
461 goto out;
464 /* Use init_net for now as RDS is not network
465 * name space aware.
467 dev = dev_get_by_index(&init_net, scope_id);
468 if (!dev) {
469 ret = -EADDRNOTAVAIL;
470 goto out;
472 if (!ipv6_chk_addr(&init_net, addr, dev, 1)) {
473 dev_put(dev);
474 ret = -EADDRNOTAVAIL;
475 goto out;
477 dev_put(dev);
479 #else
480 ret = -EADDRNOTAVAIL;
481 goto out;
482 #endif
485 /* rdma_bind_addr will only succeed for IB & iWARP devices */
486 ret = rdma_bind_addr(cm_id, sa);
487 /* due to this, we will claim to support iWARP devices unless we
488 check node_type. */
489 if (ret || !cm_id->device ||
490 cm_id->device->node_type != RDMA_NODE_IB_CA)
491 ret = -EADDRNOTAVAIL;
493 rdsdebug("addr %pI6c%%%u ret %d node type %d\n",
494 addr, scope_id, ret,
495 cm_id->device ? cm_id->device->node_type : -1);
497 out:
498 rdma_destroy_id(cm_id);
500 return ret;
503 static void rds_ib_unregister_client(void)
505 ib_unregister_client(&rds_ib_client);
506 /* wait for rds_ib_dev_free() to complete */
507 flush_workqueue(rds_wq);
510 static void rds_ib_set_unloading(void)
512 atomic_set(&rds_ib_unloading, 1);
515 static bool rds_ib_is_unloading(struct rds_connection *conn)
517 struct rds_conn_path *cp = &conn->c_path[0];
519 return (test_bit(RDS_DESTROY_PENDING, &cp->cp_flags) ||
520 atomic_read(&rds_ib_unloading) != 0);
523 void rds_ib_exit(void)
525 rds_ib_set_unloading();
526 synchronize_rcu();
527 rds_info_deregister_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info);
528 #if IS_ENABLED(CONFIG_IPV6)
529 rds_info_deregister_func(RDS6_INFO_IB_CONNECTIONS, rds6_ib_ic_info);
530 #endif
531 rds_ib_unregister_client();
532 rds_ib_destroy_nodev_conns();
533 rds_ib_sysctl_exit();
534 rds_ib_recv_exit();
535 rds_trans_unregister(&rds_ib_transport);
536 rds_ib_mr_exit();
539 static u8 rds_ib_get_tos_map(u8 tos)
541 /* 1:1 user to transport map for RDMA transport.
542 * In future, if custom map is desired, hook can export
543 * user configurable map.
545 return tos;
548 struct rds_transport rds_ib_transport = {
549 .laddr_check = rds_ib_laddr_check,
550 .xmit_path_complete = rds_ib_xmit_path_complete,
551 .xmit = rds_ib_xmit,
552 .xmit_rdma = rds_ib_xmit_rdma,
553 .xmit_atomic = rds_ib_xmit_atomic,
554 .recv_path = rds_ib_recv_path,
555 .conn_alloc = rds_ib_conn_alloc,
556 .conn_free = rds_ib_conn_free,
557 .conn_path_connect = rds_ib_conn_path_connect,
558 .conn_path_shutdown = rds_ib_conn_path_shutdown,
559 .inc_copy_to_user = rds_ib_inc_copy_to_user,
560 .inc_free = rds_ib_inc_free,
561 .cm_initiate_connect = rds_ib_cm_initiate_connect,
562 .cm_handle_connect = rds_ib_cm_handle_connect,
563 .cm_connect_complete = rds_ib_cm_connect_complete,
564 .stats_info_copy = rds_ib_stats_info_copy,
565 .exit = rds_ib_exit,
566 .get_mr = rds_ib_get_mr,
567 .sync_mr = rds_ib_sync_mr,
568 .free_mr = rds_ib_free_mr,
569 .flush_mrs = rds_ib_flush_mrs,
570 .get_tos_map = rds_ib_get_tos_map,
571 .t_owner = THIS_MODULE,
572 .t_name = "infiniband",
573 .t_unloading = rds_ib_is_unloading,
574 .t_type = RDS_TRANS_IB
577 int rds_ib_init(void)
579 int ret;
581 INIT_LIST_HEAD(&rds_ib_devices);
583 ret = rds_ib_mr_init();
584 if (ret)
585 goto out;
587 ret = ib_register_client(&rds_ib_client);
588 if (ret)
589 goto out_mr_exit;
591 ret = rds_ib_sysctl_init();
592 if (ret)
593 goto out_ibreg;
595 ret = rds_ib_recv_init();
596 if (ret)
597 goto out_sysctl;
599 rds_trans_register(&rds_ib_transport);
601 rds_info_register_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info);
602 #if IS_ENABLED(CONFIG_IPV6)
603 rds_info_register_func(RDS6_INFO_IB_CONNECTIONS, rds6_ib_ic_info);
604 #endif
606 goto out;
608 out_sysctl:
609 rds_ib_sysctl_exit();
610 out_ibreg:
611 rds_ib_unregister_client();
612 out_mr_exit:
613 rds_ib_mr_exit();
614 out:
615 return ret;
618 MODULE_LICENSE("GPL");