Linux 5.7.7
[linux/fpc-iii.git] / net / rds / ib_rdma.c
blobb34b24e237f81bfdf5d01c7c990895517647f25c
1 /*
2 * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/rculist.h>
36 #include <linux/llist.h>
38 #include "rds_single_path.h"
39 #include "ib_mr.h"
40 #include "rds.h"
42 struct workqueue_struct *rds_ib_mr_wq;
43 struct rds_ib_dereg_odp_mr {
44 struct work_struct work;
45 struct ib_mr *mr;
48 static void rds_ib_odp_mr_worker(struct work_struct *work);
50 static struct rds_ib_device *rds_ib_get_device(__be32 ipaddr)
52 struct rds_ib_device *rds_ibdev;
53 struct rds_ib_ipaddr *i_ipaddr;
55 rcu_read_lock();
56 list_for_each_entry_rcu(rds_ibdev, &rds_ib_devices, list) {
57 list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) {
58 if (i_ipaddr->ipaddr == ipaddr) {
59 refcount_inc(&rds_ibdev->refcount);
60 rcu_read_unlock();
61 return rds_ibdev;
65 rcu_read_unlock();
67 return NULL;
70 static int rds_ib_add_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
72 struct rds_ib_ipaddr *i_ipaddr;
74 i_ipaddr = kmalloc(sizeof *i_ipaddr, GFP_KERNEL);
75 if (!i_ipaddr)
76 return -ENOMEM;
78 i_ipaddr->ipaddr = ipaddr;
80 spin_lock_irq(&rds_ibdev->spinlock);
81 list_add_tail_rcu(&i_ipaddr->list, &rds_ibdev->ipaddr_list);
82 spin_unlock_irq(&rds_ibdev->spinlock);
84 return 0;
87 static void rds_ib_remove_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
89 struct rds_ib_ipaddr *i_ipaddr;
90 struct rds_ib_ipaddr *to_free = NULL;
93 spin_lock_irq(&rds_ibdev->spinlock);
94 list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) {
95 if (i_ipaddr->ipaddr == ipaddr) {
96 list_del_rcu(&i_ipaddr->list);
97 to_free = i_ipaddr;
98 break;
101 spin_unlock_irq(&rds_ibdev->spinlock);
103 if (to_free)
104 kfree_rcu(to_free, rcu);
107 int rds_ib_update_ipaddr(struct rds_ib_device *rds_ibdev,
108 struct in6_addr *ipaddr)
110 struct rds_ib_device *rds_ibdev_old;
112 rds_ibdev_old = rds_ib_get_device(ipaddr->s6_addr32[3]);
113 if (!rds_ibdev_old)
114 return rds_ib_add_ipaddr(rds_ibdev, ipaddr->s6_addr32[3]);
116 if (rds_ibdev_old != rds_ibdev) {
117 rds_ib_remove_ipaddr(rds_ibdev_old, ipaddr->s6_addr32[3]);
118 rds_ib_dev_put(rds_ibdev_old);
119 return rds_ib_add_ipaddr(rds_ibdev, ipaddr->s6_addr32[3]);
121 rds_ib_dev_put(rds_ibdev_old);
123 return 0;
126 void rds_ib_add_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn)
128 struct rds_ib_connection *ic = conn->c_transport_data;
130 /* conn was previously on the nodev_conns_list */
131 spin_lock_irq(&ib_nodev_conns_lock);
132 BUG_ON(list_empty(&ib_nodev_conns));
133 BUG_ON(list_empty(&ic->ib_node));
134 list_del(&ic->ib_node);
136 spin_lock(&rds_ibdev->spinlock);
137 list_add_tail(&ic->ib_node, &rds_ibdev->conn_list);
138 spin_unlock(&rds_ibdev->spinlock);
139 spin_unlock_irq(&ib_nodev_conns_lock);
141 ic->rds_ibdev = rds_ibdev;
142 refcount_inc(&rds_ibdev->refcount);
145 void rds_ib_remove_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn)
147 struct rds_ib_connection *ic = conn->c_transport_data;
149 /* place conn on nodev_conns_list */
150 spin_lock(&ib_nodev_conns_lock);
152 spin_lock_irq(&rds_ibdev->spinlock);
153 BUG_ON(list_empty(&ic->ib_node));
154 list_del(&ic->ib_node);
155 spin_unlock_irq(&rds_ibdev->spinlock);
157 list_add_tail(&ic->ib_node, &ib_nodev_conns);
159 spin_unlock(&ib_nodev_conns_lock);
161 ic->rds_ibdev = NULL;
162 rds_ib_dev_put(rds_ibdev);
165 void rds_ib_destroy_nodev_conns(void)
167 struct rds_ib_connection *ic, *_ic;
168 LIST_HEAD(tmp_list);
170 /* avoid calling conn_destroy with irqs off */
171 spin_lock_irq(&ib_nodev_conns_lock);
172 list_splice(&ib_nodev_conns, &tmp_list);
173 spin_unlock_irq(&ib_nodev_conns_lock);
175 list_for_each_entry_safe(ic, _ic, &tmp_list, ib_node)
176 rds_conn_destroy(ic->conn);
179 void rds_ib_get_mr_info(struct rds_ib_device *rds_ibdev, struct rds_info_rdma_connection *iinfo)
181 struct rds_ib_mr_pool *pool_1m = rds_ibdev->mr_1m_pool;
183 iinfo->rdma_mr_max = pool_1m->max_items;
184 iinfo->rdma_mr_size = pool_1m->fmr_attr.max_pages;
187 #if IS_ENABLED(CONFIG_IPV6)
188 void rds6_ib_get_mr_info(struct rds_ib_device *rds_ibdev,
189 struct rds6_info_rdma_connection *iinfo6)
191 struct rds_ib_mr_pool *pool_1m = rds_ibdev->mr_1m_pool;
193 iinfo6->rdma_mr_max = pool_1m->max_items;
194 iinfo6->rdma_mr_size = pool_1m->fmr_attr.max_pages;
196 #endif
198 struct rds_ib_mr *rds_ib_reuse_mr(struct rds_ib_mr_pool *pool)
200 struct rds_ib_mr *ibmr = NULL;
201 struct llist_node *ret;
202 unsigned long flags;
204 spin_lock_irqsave(&pool->clean_lock, flags);
205 ret = llist_del_first(&pool->clean_list);
206 spin_unlock_irqrestore(&pool->clean_lock, flags);
207 if (ret) {
208 ibmr = llist_entry(ret, struct rds_ib_mr, llnode);
209 if (pool->pool_type == RDS_IB_MR_8K_POOL)
210 rds_ib_stats_inc(s_ib_rdma_mr_8k_reused);
211 else
212 rds_ib_stats_inc(s_ib_rdma_mr_1m_reused);
215 return ibmr;
218 void rds_ib_sync_mr(void *trans_private, int direction)
220 struct rds_ib_mr *ibmr = trans_private;
221 struct rds_ib_device *rds_ibdev = ibmr->device;
223 if (ibmr->odp)
224 return;
226 switch (direction) {
227 case DMA_FROM_DEVICE:
228 ib_dma_sync_sg_for_cpu(rds_ibdev->dev, ibmr->sg,
229 ibmr->sg_dma_len, DMA_BIDIRECTIONAL);
230 break;
231 case DMA_TO_DEVICE:
232 ib_dma_sync_sg_for_device(rds_ibdev->dev, ibmr->sg,
233 ibmr->sg_dma_len, DMA_BIDIRECTIONAL);
234 break;
238 void __rds_ib_teardown_mr(struct rds_ib_mr *ibmr)
240 struct rds_ib_device *rds_ibdev = ibmr->device;
242 if (ibmr->sg_dma_len) {
243 ib_dma_unmap_sg(rds_ibdev->dev,
244 ibmr->sg, ibmr->sg_len,
245 DMA_BIDIRECTIONAL);
246 ibmr->sg_dma_len = 0;
249 /* Release the s/g list */
250 if (ibmr->sg_len) {
251 unsigned int i;
253 for (i = 0; i < ibmr->sg_len; ++i) {
254 struct page *page = sg_page(&ibmr->sg[i]);
256 /* FIXME we need a way to tell a r/w MR
257 * from a r/o MR */
258 WARN_ON(!page->mapping && irqs_disabled());
259 set_page_dirty(page);
260 put_page(page);
262 kfree(ibmr->sg);
264 ibmr->sg = NULL;
265 ibmr->sg_len = 0;
269 void rds_ib_teardown_mr(struct rds_ib_mr *ibmr)
271 unsigned int pinned = ibmr->sg_len;
273 __rds_ib_teardown_mr(ibmr);
274 if (pinned) {
275 struct rds_ib_mr_pool *pool = ibmr->pool;
277 atomic_sub(pinned, &pool->free_pinned);
281 static inline unsigned int rds_ib_flush_goal(struct rds_ib_mr_pool *pool, int free_all)
283 unsigned int item_count;
285 item_count = atomic_read(&pool->item_count);
286 if (free_all)
287 return item_count;
289 return 0;
293 * given an llist of mrs, put them all into the list_head for more processing
295 static unsigned int llist_append_to_list(struct llist_head *llist,
296 struct list_head *list)
298 struct rds_ib_mr *ibmr;
299 struct llist_node *node;
300 struct llist_node *next;
301 unsigned int count = 0;
303 node = llist_del_all(llist);
304 while (node) {
305 next = node->next;
306 ibmr = llist_entry(node, struct rds_ib_mr, llnode);
307 list_add_tail(&ibmr->unmap_list, list);
308 node = next;
309 count++;
311 return count;
315 * this takes a list head of mrs and turns it into linked llist nodes
316 * of clusters. Each cluster has linked llist nodes of
317 * MR_CLUSTER_SIZE mrs that are ready for reuse.
319 static void list_to_llist_nodes(struct list_head *list,
320 struct llist_node **nodes_head,
321 struct llist_node **nodes_tail)
323 struct rds_ib_mr *ibmr;
324 struct llist_node *cur = NULL;
325 struct llist_node **next = nodes_head;
327 list_for_each_entry(ibmr, list, unmap_list) {
328 cur = &ibmr->llnode;
329 *next = cur;
330 next = &cur->next;
332 *next = NULL;
333 *nodes_tail = cur;
337 * Flush our pool of MRs.
338 * At a minimum, all currently unused MRs are unmapped.
339 * If the number of MRs allocated exceeds the limit, we also try
340 * to free as many MRs as needed to get back to this limit.
342 int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool,
343 int free_all, struct rds_ib_mr **ibmr_ret)
345 struct rds_ib_mr *ibmr;
346 struct llist_node *clean_nodes;
347 struct llist_node *clean_tail;
348 LIST_HEAD(unmap_list);
349 unsigned long unpinned = 0;
350 unsigned int nfreed = 0, dirty_to_clean = 0, free_goal;
352 if (pool->pool_type == RDS_IB_MR_8K_POOL)
353 rds_ib_stats_inc(s_ib_rdma_mr_8k_pool_flush);
354 else
355 rds_ib_stats_inc(s_ib_rdma_mr_1m_pool_flush);
357 if (ibmr_ret) {
358 DEFINE_WAIT(wait);
359 while (!mutex_trylock(&pool->flush_lock)) {
360 ibmr = rds_ib_reuse_mr(pool);
361 if (ibmr) {
362 *ibmr_ret = ibmr;
363 finish_wait(&pool->flush_wait, &wait);
364 goto out_nolock;
367 prepare_to_wait(&pool->flush_wait, &wait,
368 TASK_UNINTERRUPTIBLE);
369 if (llist_empty(&pool->clean_list))
370 schedule();
372 ibmr = rds_ib_reuse_mr(pool);
373 if (ibmr) {
374 *ibmr_ret = ibmr;
375 finish_wait(&pool->flush_wait, &wait);
376 goto out_nolock;
379 finish_wait(&pool->flush_wait, &wait);
380 } else
381 mutex_lock(&pool->flush_lock);
383 if (ibmr_ret) {
384 ibmr = rds_ib_reuse_mr(pool);
385 if (ibmr) {
386 *ibmr_ret = ibmr;
387 goto out;
391 /* Get the list of all MRs to be dropped. Ordering matters -
392 * we want to put drop_list ahead of free_list.
394 dirty_to_clean = llist_append_to_list(&pool->drop_list, &unmap_list);
395 dirty_to_clean += llist_append_to_list(&pool->free_list, &unmap_list);
396 if (free_all) {
397 unsigned long flags;
399 spin_lock_irqsave(&pool->clean_lock, flags);
400 llist_append_to_list(&pool->clean_list, &unmap_list);
401 spin_unlock_irqrestore(&pool->clean_lock, flags);
404 free_goal = rds_ib_flush_goal(pool, free_all);
406 if (list_empty(&unmap_list))
407 goto out;
409 if (pool->use_fastreg)
410 rds_ib_unreg_frmr(&unmap_list, &nfreed, &unpinned, free_goal);
411 else
412 rds_ib_unreg_fmr(&unmap_list, &nfreed, &unpinned, free_goal);
414 if (!list_empty(&unmap_list)) {
415 unsigned long flags;
417 list_to_llist_nodes(&unmap_list, &clean_nodes, &clean_tail);
418 if (ibmr_ret) {
419 *ibmr_ret = llist_entry(clean_nodes, struct rds_ib_mr, llnode);
420 clean_nodes = clean_nodes->next;
422 /* more than one entry in llist nodes */
423 if (clean_nodes) {
424 spin_lock_irqsave(&pool->clean_lock, flags);
425 llist_add_batch(clean_nodes, clean_tail,
426 &pool->clean_list);
427 spin_unlock_irqrestore(&pool->clean_lock, flags);
431 atomic_sub(unpinned, &pool->free_pinned);
432 atomic_sub(dirty_to_clean, &pool->dirty_count);
433 atomic_sub(nfreed, &pool->item_count);
435 out:
436 mutex_unlock(&pool->flush_lock);
437 if (waitqueue_active(&pool->flush_wait))
438 wake_up(&pool->flush_wait);
439 out_nolock:
440 return 0;
443 struct rds_ib_mr *rds_ib_try_reuse_ibmr(struct rds_ib_mr_pool *pool)
445 struct rds_ib_mr *ibmr = NULL;
446 int iter = 0;
448 while (1) {
449 ibmr = rds_ib_reuse_mr(pool);
450 if (ibmr)
451 return ibmr;
453 if (atomic_inc_return(&pool->item_count) <= pool->max_items)
454 break;
456 atomic_dec(&pool->item_count);
458 if (++iter > 2) {
459 if (pool->pool_type == RDS_IB_MR_8K_POOL)
460 rds_ib_stats_inc(s_ib_rdma_mr_8k_pool_depleted);
461 else
462 rds_ib_stats_inc(s_ib_rdma_mr_1m_pool_depleted);
463 break;
466 /* We do have some empty MRs. Flush them out. */
467 if (pool->pool_type == RDS_IB_MR_8K_POOL)
468 rds_ib_stats_inc(s_ib_rdma_mr_8k_pool_wait);
469 else
470 rds_ib_stats_inc(s_ib_rdma_mr_1m_pool_wait);
472 rds_ib_flush_mr_pool(pool, 0, &ibmr);
473 if (ibmr)
474 return ibmr;
477 return NULL;
480 static void rds_ib_mr_pool_flush_worker(struct work_struct *work)
482 struct rds_ib_mr_pool *pool = container_of(work, struct rds_ib_mr_pool, flush_worker.work);
484 rds_ib_flush_mr_pool(pool, 0, NULL);
487 void rds_ib_free_mr(void *trans_private, int invalidate)
489 struct rds_ib_mr *ibmr = trans_private;
490 struct rds_ib_mr_pool *pool = ibmr->pool;
491 struct rds_ib_device *rds_ibdev = ibmr->device;
493 rdsdebug("RDS/IB: free_mr nents %u\n", ibmr->sg_len);
495 if (ibmr->odp) {
496 /* A MR created and marked as use_once. We use delayed work,
497 * because there is a change that we are in interrupt and can't
498 * call to ib_dereg_mr() directly.
500 INIT_DELAYED_WORK(&ibmr->work, rds_ib_odp_mr_worker);
501 queue_delayed_work(rds_ib_mr_wq, &ibmr->work, 0);
502 return;
505 /* Return it to the pool's free list */
506 if (rds_ibdev->use_fastreg)
507 rds_ib_free_frmr_list(ibmr);
508 else
509 rds_ib_free_fmr_list(ibmr);
511 atomic_add(ibmr->sg_len, &pool->free_pinned);
512 atomic_inc(&pool->dirty_count);
514 /* If we've pinned too many pages, request a flush */
515 if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned ||
516 atomic_read(&pool->dirty_count) >= pool->max_items / 5)
517 queue_delayed_work(rds_ib_mr_wq, &pool->flush_worker, 10);
519 if (invalidate) {
520 if (likely(!in_interrupt())) {
521 rds_ib_flush_mr_pool(pool, 0, NULL);
522 } else {
523 /* We get here if the user created a MR marked
524 * as use_once and invalidate at the same time.
526 queue_delayed_work(rds_ib_mr_wq,
527 &pool->flush_worker, 10);
531 rds_ib_dev_put(rds_ibdev);
534 void rds_ib_flush_mrs(void)
536 struct rds_ib_device *rds_ibdev;
538 down_read(&rds_ib_devices_lock);
539 list_for_each_entry(rds_ibdev, &rds_ib_devices, list) {
540 if (rds_ibdev->mr_8k_pool)
541 rds_ib_flush_mr_pool(rds_ibdev->mr_8k_pool, 0, NULL);
543 if (rds_ibdev->mr_1m_pool)
544 rds_ib_flush_mr_pool(rds_ibdev->mr_1m_pool, 0, NULL);
546 up_read(&rds_ib_devices_lock);
549 u32 rds_ib_get_lkey(void *trans_private)
551 struct rds_ib_mr *ibmr = trans_private;
553 return ibmr->u.mr->lkey;
556 void *rds_ib_get_mr(struct scatterlist *sg, unsigned long nents,
557 struct rds_sock *rs, u32 *key_ret,
558 struct rds_connection *conn,
559 u64 start, u64 length, int need_odp)
561 struct rds_ib_device *rds_ibdev;
562 struct rds_ib_mr *ibmr = NULL;
563 struct rds_ib_connection *ic = NULL;
564 int ret;
566 rds_ibdev = rds_ib_get_device(rs->rs_bound_addr.s6_addr32[3]);
567 if (!rds_ibdev) {
568 ret = -ENODEV;
569 goto out;
572 if (need_odp == ODP_ZEROBASED || need_odp == ODP_VIRTUAL) {
573 u64 virt_addr = need_odp == ODP_ZEROBASED ? 0 : start;
574 int access_flags =
575 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ |
576 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_REMOTE_ATOMIC |
577 IB_ACCESS_ON_DEMAND);
578 struct ib_sge sge = {};
579 struct ib_mr *ib_mr;
581 if (!rds_ibdev->odp_capable) {
582 ret = -EOPNOTSUPP;
583 goto out;
586 ib_mr = ib_reg_user_mr(rds_ibdev->pd, start, length, virt_addr,
587 access_flags);
589 if (IS_ERR(ib_mr)) {
590 rdsdebug("rds_ib_get_user_mr returned %d\n",
591 IS_ERR(ib_mr));
592 ret = PTR_ERR(ib_mr);
593 goto out;
595 if (key_ret)
596 *key_ret = ib_mr->rkey;
598 ibmr = kzalloc(sizeof(*ibmr), GFP_KERNEL);
599 if (!ibmr) {
600 ib_dereg_mr(ib_mr);
601 ret = -ENOMEM;
602 goto out;
604 ibmr->u.mr = ib_mr;
605 ibmr->odp = 1;
607 sge.addr = virt_addr;
608 sge.length = length;
609 sge.lkey = ib_mr->lkey;
611 ib_advise_mr(rds_ibdev->pd,
612 IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE,
613 IB_UVERBS_ADVISE_MR_FLAG_FLUSH, &sge, 1);
614 return ibmr;
617 if (conn)
618 ic = conn->c_transport_data;
620 if (!rds_ibdev->mr_8k_pool || !rds_ibdev->mr_1m_pool) {
621 ret = -ENODEV;
622 goto out;
625 if (rds_ibdev->use_fastreg)
626 ibmr = rds_ib_reg_frmr(rds_ibdev, ic, sg, nents, key_ret);
627 else
628 ibmr = rds_ib_reg_fmr(rds_ibdev, sg, nents, key_ret);
629 if (IS_ERR(ibmr)) {
630 ret = PTR_ERR(ibmr);
631 pr_warn("RDS/IB: rds_ib_get_mr failed (errno=%d)\n", ret);
632 } else {
633 return ibmr;
636 out:
637 if (rds_ibdev)
638 rds_ib_dev_put(rds_ibdev);
640 return ERR_PTR(ret);
643 void rds_ib_destroy_mr_pool(struct rds_ib_mr_pool *pool)
645 cancel_delayed_work_sync(&pool->flush_worker);
646 rds_ib_flush_mr_pool(pool, 1, NULL);
647 WARN_ON(atomic_read(&pool->item_count));
648 WARN_ON(atomic_read(&pool->free_pinned));
649 kfree(pool);
652 struct rds_ib_mr_pool *rds_ib_create_mr_pool(struct rds_ib_device *rds_ibdev,
653 int pool_type)
655 struct rds_ib_mr_pool *pool;
657 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
658 if (!pool)
659 return ERR_PTR(-ENOMEM);
661 pool->pool_type = pool_type;
662 init_llist_head(&pool->free_list);
663 init_llist_head(&pool->drop_list);
664 init_llist_head(&pool->clean_list);
665 spin_lock_init(&pool->clean_lock);
666 mutex_init(&pool->flush_lock);
667 init_waitqueue_head(&pool->flush_wait);
668 INIT_DELAYED_WORK(&pool->flush_worker, rds_ib_mr_pool_flush_worker);
670 if (pool_type == RDS_IB_MR_1M_POOL) {
671 /* +1 allows for unaligned MRs */
672 pool->fmr_attr.max_pages = RDS_MR_1M_MSG_SIZE + 1;
673 pool->max_items = rds_ibdev->max_1m_mrs;
674 } else {
675 /* pool_type == RDS_IB_MR_8K_POOL */
676 pool->fmr_attr.max_pages = RDS_MR_8K_MSG_SIZE + 1;
677 pool->max_items = rds_ibdev->max_8k_mrs;
680 pool->max_free_pinned = pool->max_items * pool->fmr_attr.max_pages / 4;
681 pool->fmr_attr.max_maps = rds_ibdev->fmr_max_remaps;
682 pool->fmr_attr.page_shift = PAGE_SHIFT;
683 pool->max_items_soft = rds_ibdev->max_mrs * 3 / 4;
684 pool->use_fastreg = rds_ibdev->use_fastreg;
686 return pool;
689 int rds_ib_mr_init(void)
691 rds_ib_mr_wq = alloc_workqueue("rds_mr_flushd", WQ_MEM_RECLAIM, 0);
692 if (!rds_ib_mr_wq)
693 return -ENOMEM;
694 return 0;
697 /* By the time this is called all the IB devices should have been torn down and
698 * had their pools freed. As each pool is freed its work struct is waited on,
699 * so the pool flushing work queue should be idle by the time we get here.
701 void rds_ib_mr_exit(void)
703 destroy_workqueue(rds_ib_mr_wq);
706 static void rds_ib_odp_mr_worker(struct work_struct *work)
708 struct rds_ib_mr *ibmr;
710 ibmr = container_of(work, struct rds_ib_mr, work.work);
711 ib_dereg_mr(ibmr->u.mr);
712 kfree(ibmr);