Linux 5.7.7
[linux/fpc-iii.git] / net / rds / rdma.c
bloba7ae11846cd7f57c066ec4967d75ca3b5d906c57
1 /*
2 * Copyright (c) 2007, 2020 Oracle and/or its affiliates.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
33 #include <linux/pagemap.h>
34 #include <linux/slab.h>
35 #include <linux/rbtree.h>
36 #include <linux/dma-mapping.h> /* for DMA_*_DEVICE */
38 #include "rds.h"
41 * XXX
42 * - build with sparse
43 * - should we detect duplicate keys on a socket? hmm.
44 * - an rdma is an mlock, apply rlimit?
48 * get the number of pages by looking at the page indices that the start and
49 * end addresses fall in.
51 * Returns 0 if the vec is invalid. It is invalid if the number of bytes
52 * causes the address to wrap or overflows an unsigned int. This comes
53 * from being stored in the 'length' member of 'struct scatterlist'.
55 static unsigned int rds_pages_in_vec(struct rds_iovec *vec)
57 if ((vec->addr + vec->bytes <= vec->addr) ||
58 (vec->bytes > (u64)UINT_MAX))
59 return 0;
61 return ((vec->addr + vec->bytes + PAGE_SIZE - 1) >> PAGE_SHIFT) -
62 (vec->addr >> PAGE_SHIFT);
65 static struct rds_mr *rds_mr_tree_walk(struct rb_root *root, u64 key,
66 struct rds_mr *insert)
68 struct rb_node **p = &root->rb_node;
69 struct rb_node *parent = NULL;
70 struct rds_mr *mr;
72 while (*p) {
73 parent = *p;
74 mr = rb_entry(parent, struct rds_mr, r_rb_node);
76 if (key < mr->r_key)
77 p = &(*p)->rb_left;
78 else if (key > mr->r_key)
79 p = &(*p)->rb_right;
80 else
81 return mr;
84 if (insert) {
85 rb_link_node(&insert->r_rb_node, parent, p);
86 rb_insert_color(&insert->r_rb_node, root);
87 kref_get(&insert->r_kref);
89 return NULL;
93 * Destroy the transport-specific part of a MR.
95 static void rds_destroy_mr(struct rds_mr *mr)
97 struct rds_sock *rs = mr->r_sock;
98 void *trans_private = NULL;
99 unsigned long flags;
101 rdsdebug("RDS: destroy mr key is %x refcnt %u\n",
102 mr->r_key, kref_read(&mr->r_kref));
104 spin_lock_irqsave(&rs->rs_rdma_lock, flags);
105 if (!RB_EMPTY_NODE(&mr->r_rb_node))
106 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
107 trans_private = mr->r_trans_private;
108 mr->r_trans_private = NULL;
109 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
111 if (trans_private)
112 mr->r_trans->free_mr(trans_private, mr->r_invalidate);
115 void __rds_put_mr_final(struct kref *kref)
117 struct rds_mr *mr = container_of(kref, struct rds_mr, r_kref);
119 rds_destroy_mr(mr);
120 kfree(mr);
124 * By the time this is called we can't have any more ioctls called on
125 * the socket so we don't need to worry about racing with others.
127 void rds_rdma_drop_keys(struct rds_sock *rs)
129 struct rds_mr *mr;
130 struct rb_node *node;
131 unsigned long flags;
133 /* Release any MRs associated with this socket */
134 spin_lock_irqsave(&rs->rs_rdma_lock, flags);
135 while ((node = rb_first(&rs->rs_rdma_keys))) {
136 mr = rb_entry(node, struct rds_mr, r_rb_node);
137 if (mr->r_trans == rs->rs_transport)
138 mr->r_invalidate = 0;
139 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
140 RB_CLEAR_NODE(&mr->r_rb_node);
141 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
142 kref_put(&mr->r_kref, __rds_put_mr_final);
143 spin_lock_irqsave(&rs->rs_rdma_lock, flags);
145 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
147 if (rs->rs_transport && rs->rs_transport->flush_mrs)
148 rs->rs_transport->flush_mrs();
152 * Helper function to pin user pages.
154 static int rds_pin_pages(unsigned long user_addr, unsigned int nr_pages,
155 struct page **pages, int write)
157 unsigned int gup_flags = FOLL_LONGTERM;
158 int ret;
160 if (write)
161 gup_flags |= FOLL_WRITE;
163 ret = pin_user_pages_fast(user_addr, nr_pages, gup_flags, pages);
164 if (ret >= 0 && ret < nr_pages) {
165 unpin_user_pages(pages, ret);
166 ret = -EFAULT;
169 return ret;
172 static int __rds_rdma_map(struct rds_sock *rs, struct rds_get_mr_args *args,
173 u64 *cookie_ret, struct rds_mr **mr_ret,
174 struct rds_conn_path *cp)
176 struct rds_mr *mr = NULL, *found;
177 struct scatterlist *sg = NULL;
178 unsigned int nr_pages;
179 struct page **pages = NULL;
180 void *trans_private;
181 unsigned long flags;
182 rds_rdma_cookie_t cookie;
183 unsigned int nents = 0;
184 int need_odp = 0;
185 long i;
186 int ret;
188 if (ipv6_addr_any(&rs->rs_bound_addr) || !rs->rs_transport) {
189 ret = -ENOTCONN; /* XXX not a great errno */
190 goto out;
193 if (!rs->rs_transport->get_mr) {
194 ret = -EOPNOTSUPP;
195 goto out;
198 /* If the combination of the addr and size requested for this memory
199 * region causes an integer overflow, return error.
201 if (((args->vec.addr + args->vec.bytes) < args->vec.addr) ||
202 PAGE_ALIGN(args->vec.addr + args->vec.bytes) <
203 (args->vec.addr + args->vec.bytes)) {
204 ret = -EINVAL;
205 goto out;
208 if (!can_do_mlock()) {
209 ret = -EPERM;
210 goto out;
213 nr_pages = rds_pages_in_vec(&args->vec);
214 if (nr_pages == 0) {
215 ret = -EINVAL;
216 goto out;
219 /* Restrict the size of mr irrespective of underlying transport
220 * To account for unaligned mr regions, subtract one from nr_pages
222 if ((nr_pages - 1) > (RDS_MAX_MSG_SIZE >> PAGE_SHIFT)) {
223 ret = -EMSGSIZE;
224 goto out;
227 rdsdebug("RDS: get_mr addr %llx len %llu nr_pages %u\n",
228 args->vec.addr, args->vec.bytes, nr_pages);
230 /* XXX clamp nr_pages to limit the size of this alloc? */
231 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
232 if (!pages) {
233 ret = -ENOMEM;
234 goto out;
237 mr = kzalloc(sizeof(struct rds_mr), GFP_KERNEL);
238 if (!mr) {
239 ret = -ENOMEM;
240 goto out;
243 kref_init(&mr->r_kref);
244 RB_CLEAR_NODE(&mr->r_rb_node);
245 mr->r_trans = rs->rs_transport;
246 mr->r_sock = rs;
248 if (args->flags & RDS_RDMA_USE_ONCE)
249 mr->r_use_once = 1;
250 if (args->flags & RDS_RDMA_INVALIDATE)
251 mr->r_invalidate = 1;
252 if (args->flags & RDS_RDMA_READWRITE)
253 mr->r_write = 1;
256 * Pin the pages that make up the user buffer and transfer the page
257 * pointers to the mr's sg array. We check to see if we've mapped
258 * the whole region after transferring the partial page references
259 * to the sg array so that we can have one page ref cleanup path.
261 * For now we have no flag that tells us whether the mapping is
262 * r/o or r/w. We need to assume r/w, or we'll do a lot of RDMA to
263 * the zero page.
265 ret = rds_pin_pages(args->vec.addr, nr_pages, pages, 1);
266 if (ret == -EOPNOTSUPP) {
267 need_odp = 1;
268 } else if (ret <= 0) {
269 goto out;
270 } else {
271 nents = ret;
272 sg = kcalloc(nents, sizeof(*sg), GFP_KERNEL);
273 if (!sg) {
274 ret = -ENOMEM;
275 goto out;
277 WARN_ON(!nents);
278 sg_init_table(sg, nents);
280 /* Stick all pages into the scatterlist */
281 for (i = 0 ; i < nents; i++)
282 sg_set_page(&sg[i], pages[i], PAGE_SIZE, 0);
284 rdsdebug("RDS: trans_private nents is %u\n", nents);
286 /* Obtain a transport specific MR. If this succeeds, the
287 * s/g list is now owned by the MR.
288 * Note that dma_map() implies that pending writes are
289 * flushed to RAM, so no dma_sync is needed here. */
290 trans_private = rs->rs_transport->get_mr(
291 sg, nents, rs, &mr->r_key, cp ? cp->cp_conn : NULL,
292 args->vec.addr, args->vec.bytes,
293 need_odp ? ODP_ZEROBASED : ODP_NOT_NEEDED);
295 if (IS_ERR(trans_private)) {
296 /* In ODP case, we don't GUP pages, so don't need
297 * to release anything.
299 if (!need_odp) {
300 unpin_user_pages(pages, nr_pages);
301 kfree(sg);
303 ret = PTR_ERR(trans_private);
304 goto out;
307 mr->r_trans_private = trans_private;
309 rdsdebug("RDS: get_mr put_user key is %x cookie_addr %p\n",
310 mr->r_key, (void *)(unsigned long) args->cookie_addr);
312 /* The user may pass us an unaligned address, but we can only
313 * map page aligned regions. So we keep the offset, and build
314 * a 64bit cookie containing <R_Key, offset> and pass that
315 * around. */
316 if (need_odp)
317 cookie = rds_rdma_make_cookie(mr->r_key, 0);
318 else
319 cookie = rds_rdma_make_cookie(mr->r_key,
320 args->vec.addr & ~PAGE_MASK);
321 if (cookie_ret)
322 *cookie_ret = cookie;
324 if (args->cookie_addr &&
325 put_user(cookie, (u64 __user *)(unsigned long)args->cookie_addr)) {
326 if (!need_odp) {
327 unpin_user_pages(pages, nr_pages);
328 kfree(sg);
330 ret = -EFAULT;
331 goto out;
334 /* Inserting the new MR into the rbtree bumps its
335 * reference count. */
336 spin_lock_irqsave(&rs->rs_rdma_lock, flags);
337 found = rds_mr_tree_walk(&rs->rs_rdma_keys, mr->r_key, mr);
338 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
340 BUG_ON(found && found != mr);
342 rdsdebug("RDS: get_mr key is %x\n", mr->r_key);
343 if (mr_ret) {
344 kref_get(&mr->r_kref);
345 *mr_ret = mr;
348 ret = 0;
349 out:
350 kfree(pages);
351 if (mr)
352 kref_put(&mr->r_kref, __rds_put_mr_final);
353 return ret;
356 int rds_get_mr(struct rds_sock *rs, char __user *optval, int optlen)
358 struct rds_get_mr_args args;
360 if (optlen != sizeof(struct rds_get_mr_args))
361 return -EINVAL;
363 if (copy_from_user(&args, (struct rds_get_mr_args __user *)optval,
364 sizeof(struct rds_get_mr_args)))
365 return -EFAULT;
367 return __rds_rdma_map(rs, &args, NULL, NULL, NULL);
370 int rds_get_mr_for_dest(struct rds_sock *rs, char __user *optval, int optlen)
372 struct rds_get_mr_for_dest_args args;
373 struct rds_get_mr_args new_args;
375 if (optlen != sizeof(struct rds_get_mr_for_dest_args))
376 return -EINVAL;
378 if (copy_from_user(&args, (struct rds_get_mr_for_dest_args __user *)optval,
379 sizeof(struct rds_get_mr_for_dest_args)))
380 return -EFAULT;
383 * Initially, just behave like get_mr().
384 * TODO: Implement get_mr as wrapper around this
385 * and deprecate it.
387 new_args.vec = args.vec;
388 new_args.cookie_addr = args.cookie_addr;
389 new_args.flags = args.flags;
391 return __rds_rdma_map(rs, &new_args, NULL, NULL, NULL);
395 * Free the MR indicated by the given R_Key
397 int rds_free_mr(struct rds_sock *rs, char __user *optval, int optlen)
399 struct rds_free_mr_args args;
400 struct rds_mr *mr;
401 unsigned long flags;
403 if (optlen != sizeof(struct rds_free_mr_args))
404 return -EINVAL;
406 if (copy_from_user(&args, (struct rds_free_mr_args __user *)optval,
407 sizeof(struct rds_free_mr_args)))
408 return -EFAULT;
410 /* Special case - a null cookie means flush all unused MRs */
411 if (args.cookie == 0) {
412 if (!rs->rs_transport || !rs->rs_transport->flush_mrs)
413 return -EINVAL;
414 rs->rs_transport->flush_mrs();
415 return 0;
418 /* Look up the MR given its R_key and remove it from the rbtree
419 * so nobody else finds it.
420 * This should also prevent races with rds_rdma_unuse.
422 spin_lock_irqsave(&rs->rs_rdma_lock, flags);
423 mr = rds_mr_tree_walk(&rs->rs_rdma_keys, rds_rdma_cookie_key(args.cookie), NULL);
424 if (mr) {
425 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
426 RB_CLEAR_NODE(&mr->r_rb_node);
427 if (args.flags & RDS_RDMA_INVALIDATE)
428 mr->r_invalidate = 1;
430 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
432 if (!mr)
433 return -EINVAL;
435 kref_put(&mr->r_kref, __rds_put_mr_final);
436 return 0;
440 * This is called when we receive an extension header that
441 * tells us this MR was used. It allows us to implement
442 * use_once semantics
444 void rds_rdma_unuse(struct rds_sock *rs, u32 r_key, int force)
446 struct rds_mr *mr;
447 unsigned long flags;
448 int zot_me = 0;
450 spin_lock_irqsave(&rs->rs_rdma_lock, flags);
451 mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL);
452 if (!mr) {
453 pr_debug("rds: trying to unuse MR with unknown r_key %u!\n",
454 r_key);
455 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
456 return;
459 /* Get a reference so that the MR won't go away before calling
460 * sync_mr() below.
462 kref_get(&mr->r_kref);
464 /* If it is going to be freed, remove it from the tree now so
465 * that no other thread can find it and free it.
467 if (mr->r_use_once || force) {
468 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
469 RB_CLEAR_NODE(&mr->r_rb_node);
470 zot_me = 1;
472 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
474 /* May have to issue a dma_sync on this memory region.
475 * Note we could avoid this if the operation was a RDMA READ,
476 * but at this point we can't tell. */
477 if (mr->r_trans->sync_mr)
478 mr->r_trans->sync_mr(mr->r_trans_private, DMA_FROM_DEVICE);
480 /* Release the reference held above. */
481 kref_put(&mr->r_kref, __rds_put_mr_final);
483 /* If the MR was marked as invalidate, this will
484 * trigger an async flush. */
485 if (zot_me)
486 kref_put(&mr->r_kref, __rds_put_mr_final);
489 void rds_rdma_free_op(struct rm_rdma_op *ro)
491 unsigned int i;
493 if (ro->op_odp_mr) {
494 kref_put(&ro->op_odp_mr->r_kref, __rds_put_mr_final);
495 } else {
496 for (i = 0; i < ro->op_nents; i++) {
497 struct page *page = sg_page(&ro->op_sg[i]);
499 /* Mark page dirty if it was possibly modified, which
500 * is the case for a RDMA_READ which copies from remote
501 * to local memory
503 unpin_user_pages_dirty_lock(&page, 1, !ro->op_write);
507 kfree(ro->op_notifier);
508 ro->op_notifier = NULL;
509 ro->op_active = 0;
510 ro->op_odp_mr = NULL;
513 void rds_atomic_free_op(struct rm_atomic_op *ao)
515 struct page *page = sg_page(ao->op_sg);
517 /* Mark page dirty if it was possibly modified, which
518 * is the case for a RDMA_READ which copies from remote
519 * to local memory */
520 unpin_user_pages_dirty_lock(&page, 1, true);
522 kfree(ao->op_notifier);
523 ao->op_notifier = NULL;
524 ao->op_active = 0;
529 * Count the number of pages needed to describe an incoming iovec array.
531 static int rds_rdma_pages(struct rds_iovec iov[], int nr_iovecs)
533 int tot_pages = 0;
534 unsigned int nr_pages;
535 unsigned int i;
537 /* figure out the number of pages in the vector */
538 for (i = 0; i < nr_iovecs; i++) {
539 nr_pages = rds_pages_in_vec(&iov[i]);
540 if (nr_pages == 0)
541 return -EINVAL;
543 tot_pages += nr_pages;
546 * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1,
547 * so tot_pages cannot overflow without first going negative.
549 if (tot_pages < 0)
550 return -EINVAL;
553 return tot_pages;
556 int rds_rdma_extra_size(struct rds_rdma_args *args,
557 struct rds_iov_vector *iov)
559 struct rds_iovec *vec;
560 struct rds_iovec __user *local_vec;
561 int tot_pages = 0;
562 unsigned int nr_pages;
563 unsigned int i;
565 local_vec = (struct rds_iovec __user *)(unsigned long) args->local_vec_addr;
567 if (args->nr_local == 0)
568 return -EINVAL;
570 iov->iov = kcalloc(args->nr_local,
571 sizeof(struct rds_iovec),
572 GFP_KERNEL);
573 if (!iov->iov)
574 return -ENOMEM;
576 vec = &iov->iov[0];
578 if (copy_from_user(vec, local_vec, args->nr_local *
579 sizeof(struct rds_iovec)))
580 return -EFAULT;
581 iov->len = args->nr_local;
583 /* figure out the number of pages in the vector */
584 for (i = 0; i < args->nr_local; i++, vec++) {
586 nr_pages = rds_pages_in_vec(vec);
587 if (nr_pages == 0)
588 return -EINVAL;
590 tot_pages += nr_pages;
593 * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1,
594 * so tot_pages cannot overflow without first going negative.
596 if (tot_pages < 0)
597 return -EINVAL;
600 return tot_pages * sizeof(struct scatterlist);
604 * The application asks for a RDMA transfer.
605 * Extract all arguments and set up the rdma_op
607 int rds_cmsg_rdma_args(struct rds_sock *rs, struct rds_message *rm,
608 struct cmsghdr *cmsg,
609 struct rds_iov_vector *vec)
611 struct rds_rdma_args *args;
612 struct rm_rdma_op *op = &rm->rdma;
613 int nr_pages;
614 unsigned int nr_bytes;
615 struct page **pages = NULL;
616 struct rds_iovec *iovs;
617 unsigned int i, j;
618 int ret = 0;
619 bool odp_supported = true;
621 if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_rdma_args))
622 || rm->rdma.op_active)
623 return -EINVAL;
625 args = CMSG_DATA(cmsg);
627 if (ipv6_addr_any(&rs->rs_bound_addr)) {
628 ret = -ENOTCONN; /* XXX not a great errno */
629 goto out_ret;
632 if (args->nr_local > UIO_MAXIOV) {
633 ret = -EMSGSIZE;
634 goto out_ret;
637 if (vec->len != args->nr_local) {
638 ret = -EINVAL;
639 goto out_ret;
641 /* odp-mr is not supported for multiple requests within one message */
642 if (args->nr_local != 1)
643 odp_supported = false;
645 iovs = vec->iov;
647 nr_pages = rds_rdma_pages(iovs, args->nr_local);
648 if (nr_pages < 0) {
649 ret = -EINVAL;
650 goto out_ret;
653 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
654 if (!pages) {
655 ret = -ENOMEM;
656 goto out_ret;
659 op->op_write = !!(args->flags & RDS_RDMA_READWRITE);
660 op->op_fence = !!(args->flags & RDS_RDMA_FENCE);
661 op->op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME);
662 op->op_silent = !!(args->flags & RDS_RDMA_SILENT);
663 op->op_active = 1;
664 op->op_recverr = rs->rs_recverr;
665 op->op_odp_mr = NULL;
667 WARN_ON(!nr_pages);
668 op->op_sg = rds_message_alloc_sgs(rm, nr_pages);
669 if (IS_ERR(op->op_sg)) {
670 ret = PTR_ERR(op->op_sg);
671 goto out_pages;
674 if (op->op_notify || op->op_recverr) {
675 /* We allocate an uninitialized notifier here, because
676 * we don't want to do that in the completion handler. We
677 * would have to use GFP_ATOMIC there, and don't want to deal
678 * with failed allocations.
680 op->op_notifier = kmalloc(sizeof(struct rds_notifier), GFP_KERNEL);
681 if (!op->op_notifier) {
682 ret = -ENOMEM;
683 goto out_pages;
685 op->op_notifier->n_user_token = args->user_token;
686 op->op_notifier->n_status = RDS_RDMA_SUCCESS;
689 /* The cookie contains the R_Key of the remote memory region, and
690 * optionally an offset into it. This is how we implement RDMA into
691 * unaligned memory.
692 * When setting up the RDMA, we need to add that offset to the
693 * destination address (which is really an offset into the MR)
694 * FIXME: We may want to move this into ib_rdma.c
696 op->op_rkey = rds_rdma_cookie_key(args->cookie);
697 op->op_remote_addr = args->remote_vec.addr + rds_rdma_cookie_offset(args->cookie);
699 nr_bytes = 0;
701 rdsdebug("RDS: rdma prepare nr_local %llu rva %llx rkey %x\n",
702 (unsigned long long)args->nr_local,
703 (unsigned long long)args->remote_vec.addr,
704 op->op_rkey);
706 for (i = 0; i < args->nr_local; i++) {
707 struct rds_iovec *iov = &iovs[i];
708 /* don't need to check, rds_rdma_pages() verified nr will be +nonzero */
709 unsigned int nr = rds_pages_in_vec(iov);
711 rs->rs_user_addr = iov->addr;
712 rs->rs_user_bytes = iov->bytes;
714 /* If it's a WRITE operation, we want to pin the pages for reading.
715 * If it's a READ operation, we need to pin the pages for writing.
717 ret = rds_pin_pages(iov->addr, nr, pages, !op->op_write);
718 if ((!odp_supported && ret <= 0) ||
719 (odp_supported && ret <= 0 && ret != -EOPNOTSUPP))
720 goto out_pages;
722 if (ret == -EOPNOTSUPP) {
723 struct rds_mr *local_odp_mr;
725 if (!rs->rs_transport->get_mr) {
726 ret = -EOPNOTSUPP;
727 goto out_pages;
729 local_odp_mr =
730 kzalloc(sizeof(*local_odp_mr), GFP_KERNEL);
731 if (!local_odp_mr) {
732 ret = -ENOMEM;
733 goto out_pages;
735 RB_CLEAR_NODE(&local_odp_mr->r_rb_node);
736 kref_init(&local_odp_mr->r_kref);
737 local_odp_mr->r_trans = rs->rs_transport;
738 local_odp_mr->r_sock = rs;
739 local_odp_mr->r_trans_private =
740 rs->rs_transport->get_mr(
741 NULL, 0, rs, &local_odp_mr->r_key, NULL,
742 iov->addr, iov->bytes, ODP_VIRTUAL);
743 if (IS_ERR(local_odp_mr->r_trans_private)) {
744 ret = IS_ERR(local_odp_mr->r_trans_private);
745 rdsdebug("get_mr ret %d %p\"", ret,
746 local_odp_mr->r_trans_private);
747 kfree(local_odp_mr);
748 ret = -EOPNOTSUPP;
749 goto out_pages;
751 rdsdebug("Need odp; local_odp_mr %p trans_private %p\n",
752 local_odp_mr, local_odp_mr->r_trans_private);
753 op->op_odp_mr = local_odp_mr;
754 op->op_odp_addr = iov->addr;
757 rdsdebug("RDS: nr_bytes %u nr %u iov->bytes %llu iov->addr %llx\n",
758 nr_bytes, nr, iov->bytes, iov->addr);
760 nr_bytes += iov->bytes;
762 for (j = 0; j < nr; j++) {
763 unsigned int offset = iov->addr & ~PAGE_MASK;
764 struct scatterlist *sg;
766 sg = &op->op_sg[op->op_nents + j];
767 sg_set_page(sg, pages[j],
768 min_t(unsigned int, iov->bytes, PAGE_SIZE - offset),
769 offset);
771 sg_dma_len(sg) = sg->length;
772 rdsdebug("RDS: sg->offset %x sg->len %x iov->addr %llx iov->bytes %llu\n",
773 sg->offset, sg->length, iov->addr, iov->bytes);
775 iov->addr += sg->length;
776 iov->bytes -= sg->length;
779 op->op_nents += nr;
782 if (nr_bytes > args->remote_vec.bytes) {
783 rdsdebug("RDS nr_bytes %u remote_bytes %u do not match\n",
784 nr_bytes,
785 (unsigned int) args->remote_vec.bytes);
786 ret = -EINVAL;
787 goto out_pages;
789 op->op_bytes = nr_bytes;
790 ret = 0;
792 out_pages:
793 kfree(pages);
794 out_ret:
795 if (ret)
796 rds_rdma_free_op(op);
797 else
798 rds_stats_inc(s_send_rdma);
800 return ret;
804 * The application wants us to pass an RDMA destination (aka MR)
805 * to the remote
807 int rds_cmsg_rdma_dest(struct rds_sock *rs, struct rds_message *rm,
808 struct cmsghdr *cmsg)
810 unsigned long flags;
811 struct rds_mr *mr;
812 u32 r_key;
813 int err = 0;
815 if (cmsg->cmsg_len < CMSG_LEN(sizeof(rds_rdma_cookie_t)) ||
816 rm->m_rdma_cookie != 0)
817 return -EINVAL;
819 memcpy(&rm->m_rdma_cookie, CMSG_DATA(cmsg), sizeof(rm->m_rdma_cookie));
821 /* We are reusing a previously mapped MR here. Most likely, the
822 * application has written to the buffer, so we need to explicitly
823 * flush those writes to RAM. Otherwise the HCA may not see them
824 * when doing a DMA from that buffer.
826 r_key = rds_rdma_cookie_key(rm->m_rdma_cookie);
828 spin_lock_irqsave(&rs->rs_rdma_lock, flags);
829 mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL);
830 if (!mr)
831 err = -EINVAL; /* invalid r_key */
832 else
833 kref_get(&mr->r_kref);
834 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
836 if (mr) {
837 mr->r_trans->sync_mr(mr->r_trans_private,
838 DMA_TO_DEVICE);
839 rm->rdma.op_rdma_mr = mr;
841 return err;
845 * The application passes us an address range it wants to enable RDMA
846 * to/from. We map the area, and save the <R_Key,offset> pair
847 * in rm->m_rdma_cookie. This causes it to be sent along to the peer
848 * in an extension header.
850 int rds_cmsg_rdma_map(struct rds_sock *rs, struct rds_message *rm,
851 struct cmsghdr *cmsg)
853 if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_get_mr_args)) ||
854 rm->m_rdma_cookie != 0)
855 return -EINVAL;
857 return __rds_rdma_map(rs, CMSG_DATA(cmsg), &rm->m_rdma_cookie,
858 &rm->rdma.op_rdma_mr, rm->m_conn_path);
862 * Fill in rds_message for an atomic request.
864 int rds_cmsg_atomic(struct rds_sock *rs, struct rds_message *rm,
865 struct cmsghdr *cmsg)
867 struct page *page = NULL;
868 struct rds_atomic_args *args;
869 int ret = 0;
871 if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_atomic_args))
872 || rm->atomic.op_active)
873 return -EINVAL;
875 args = CMSG_DATA(cmsg);
877 /* Nonmasked & masked cmsg ops converted to masked hw ops */
878 switch (cmsg->cmsg_type) {
879 case RDS_CMSG_ATOMIC_FADD:
880 rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD;
881 rm->atomic.op_m_fadd.add = args->fadd.add;
882 rm->atomic.op_m_fadd.nocarry_mask = 0;
883 break;
884 case RDS_CMSG_MASKED_ATOMIC_FADD:
885 rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD;
886 rm->atomic.op_m_fadd.add = args->m_fadd.add;
887 rm->atomic.op_m_fadd.nocarry_mask = args->m_fadd.nocarry_mask;
888 break;
889 case RDS_CMSG_ATOMIC_CSWP:
890 rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP;
891 rm->atomic.op_m_cswp.compare = args->cswp.compare;
892 rm->atomic.op_m_cswp.swap = args->cswp.swap;
893 rm->atomic.op_m_cswp.compare_mask = ~0;
894 rm->atomic.op_m_cswp.swap_mask = ~0;
895 break;
896 case RDS_CMSG_MASKED_ATOMIC_CSWP:
897 rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP;
898 rm->atomic.op_m_cswp.compare = args->m_cswp.compare;
899 rm->atomic.op_m_cswp.swap = args->m_cswp.swap;
900 rm->atomic.op_m_cswp.compare_mask = args->m_cswp.compare_mask;
901 rm->atomic.op_m_cswp.swap_mask = args->m_cswp.swap_mask;
902 break;
903 default:
904 BUG(); /* should never happen */
907 rm->atomic.op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME);
908 rm->atomic.op_silent = !!(args->flags & RDS_RDMA_SILENT);
909 rm->atomic.op_active = 1;
910 rm->atomic.op_recverr = rs->rs_recverr;
911 rm->atomic.op_sg = rds_message_alloc_sgs(rm, 1);
912 if (IS_ERR(rm->atomic.op_sg)) {
913 ret = PTR_ERR(rm->atomic.op_sg);
914 goto err;
917 /* verify 8 byte-aligned */
918 if (args->local_addr & 0x7) {
919 ret = -EFAULT;
920 goto err;
923 ret = rds_pin_pages(args->local_addr, 1, &page, 1);
924 if (ret != 1)
925 goto err;
926 ret = 0;
928 sg_set_page(rm->atomic.op_sg, page, 8, offset_in_page(args->local_addr));
930 if (rm->atomic.op_notify || rm->atomic.op_recverr) {
931 /* We allocate an uninitialized notifier here, because
932 * we don't want to do that in the completion handler. We
933 * would have to use GFP_ATOMIC there, and don't want to deal
934 * with failed allocations.
936 rm->atomic.op_notifier = kmalloc(sizeof(*rm->atomic.op_notifier), GFP_KERNEL);
937 if (!rm->atomic.op_notifier) {
938 ret = -ENOMEM;
939 goto err;
942 rm->atomic.op_notifier->n_user_token = args->user_token;
943 rm->atomic.op_notifier->n_status = RDS_RDMA_SUCCESS;
946 rm->atomic.op_rkey = rds_rdma_cookie_key(args->cookie);
947 rm->atomic.op_remote_addr = args->remote_addr + rds_rdma_cookie_offset(args->cookie);
949 return ret;
950 err:
951 if (page)
952 unpin_user_page(page);
953 rm->atomic.op_active = 0;
954 kfree(rm->atomic.op_notifier);
956 return ret;