Linux 5.7.7
[linux/fpc-iii.git] / net / sctp / sm_sideeffect.c
blob9f36fe911d082e9fa3e3de7096d56323a93d4ba6
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* SCTP kernel implementation
3 * (C) Copyright IBM Corp. 2001, 2004
4 * Copyright (c) 1999 Cisco, Inc.
5 * Copyright (c) 1999-2001 Motorola, Inc.
7 * This file is part of the SCTP kernel implementation
9 * These functions work with the state functions in sctp_sm_statefuns.c
10 * to implement that state operations. These functions implement the
11 * steps which require modifying existing data structures.
13 * Please send any bug reports or fixes you make to the
14 * email address(es):
15 * lksctp developers <linux-sctp@vger.kernel.org>
17 * Written or modified by:
18 * La Monte H.P. Yarroll <piggy@acm.org>
19 * Karl Knutson <karl@athena.chicago.il.us>
20 * Jon Grimm <jgrimm@austin.ibm.com>
21 * Hui Huang <hui.huang@nokia.com>
22 * Dajiang Zhang <dajiang.zhang@nokia.com>
23 * Daisy Chang <daisyc@us.ibm.com>
24 * Sridhar Samudrala <sri@us.ibm.com>
25 * Ardelle Fan <ardelle.fan@intel.com>
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 #include <linux/skbuff.h>
31 #include <linux/types.h>
32 #include <linux/socket.h>
33 #include <linux/ip.h>
34 #include <linux/gfp.h>
35 #include <net/sock.h>
36 #include <net/sctp/sctp.h>
37 #include <net/sctp/sm.h>
38 #include <net/sctp/stream_sched.h>
40 static int sctp_cmd_interpreter(enum sctp_event_type event_type,
41 union sctp_subtype subtype,
42 enum sctp_state state,
43 struct sctp_endpoint *ep,
44 struct sctp_association *asoc,
45 void *event_arg,
46 enum sctp_disposition status,
47 struct sctp_cmd_seq *commands,
48 gfp_t gfp);
49 static int sctp_side_effects(enum sctp_event_type event_type,
50 union sctp_subtype subtype,
51 enum sctp_state state,
52 struct sctp_endpoint *ep,
53 struct sctp_association **asoc,
54 void *event_arg,
55 enum sctp_disposition status,
56 struct sctp_cmd_seq *commands,
57 gfp_t gfp);
59 /********************************************************************
60 * Helper functions
61 ********************************************************************/
63 /* A helper function for delayed processing of INET ECN CE bit. */
64 static void sctp_do_ecn_ce_work(struct sctp_association *asoc,
65 __u32 lowest_tsn)
67 /* Save the TSN away for comparison when we receive CWR */
69 asoc->last_ecne_tsn = lowest_tsn;
70 asoc->need_ecne = 1;
73 /* Helper function for delayed processing of SCTP ECNE chunk. */
74 /* RFC 2960 Appendix A
76 * RFC 2481 details a specific bit for a sender to send in
77 * the header of its next outbound TCP segment to indicate to
78 * its peer that it has reduced its congestion window. This
79 * is termed the CWR bit. For SCTP the same indication is made
80 * by including the CWR chunk. This chunk contains one data
81 * element, i.e. the TSN number that was sent in the ECNE chunk.
82 * This element represents the lowest TSN number in the datagram
83 * that was originally marked with the CE bit.
85 static struct sctp_chunk *sctp_do_ecn_ecne_work(struct sctp_association *asoc,
86 __u32 lowest_tsn,
87 struct sctp_chunk *chunk)
89 struct sctp_chunk *repl;
91 /* Our previously transmitted packet ran into some congestion
92 * so we should take action by reducing cwnd and ssthresh
93 * and then ACK our peer that we we've done so by
94 * sending a CWR.
97 /* First, try to determine if we want to actually lower
98 * our cwnd variables. Only lower them if the ECNE looks more
99 * recent than the last response.
101 if (TSN_lt(asoc->last_cwr_tsn, lowest_tsn)) {
102 struct sctp_transport *transport;
104 /* Find which transport's congestion variables
105 * need to be adjusted.
107 transport = sctp_assoc_lookup_tsn(asoc, lowest_tsn);
109 /* Update the congestion variables. */
110 if (transport)
111 sctp_transport_lower_cwnd(transport,
112 SCTP_LOWER_CWND_ECNE);
113 asoc->last_cwr_tsn = lowest_tsn;
116 /* Always try to quiet the other end. In case of lost CWR,
117 * resend last_cwr_tsn.
119 repl = sctp_make_cwr(asoc, asoc->last_cwr_tsn, chunk);
121 /* If we run out of memory, it will look like a lost CWR. We'll
122 * get back in sync eventually.
124 return repl;
127 /* Helper function to do delayed processing of ECN CWR chunk. */
128 static void sctp_do_ecn_cwr_work(struct sctp_association *asoc,
129 __u32 lowest_tsn)
131 /* Turn off ECNE getting auto-prepended to every outgoing
132 * packet
134 asoc->need_ecne = 0;
137 /* Generate SACK if necessary. We call this at the end of a packet. */
138 static int sctp_gen_sack(struct sctp_association *asoc, int force,
139 struct sctp_cmd_seq *commands)
141 struct sctp_transport *trans = asoc->peer.last_data_from;
142 __u32 ctsn, max_tsn_seen;
143 struct sctp_chunk *sack;
144 int error = 0;
146 if (force ||
147 (!trans && (asoc->param_flags & SPP_SACKDELAY_DISABLE)) ||
148 (trans && (trans->param_flags & SPP_SACKDELAY_DISABLE)))
149 asoc->peer.sack_needed = 1;
151 ctsn = sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map);
152 max_tsn_seen = sctp_tsnmap_get_max_tsn_seen(&asoc->peer.tsn_map);
154 /* From 12.2 Parameters necessary per association (i.e. the TCB):
156 * Ack State : This flag indicates if the next received packet
157 * : is to be responded to with a SACK. ...
158 * : When DATA chunks are out of order, SACK's
159 * : are not delayed (see Section 6).
161 * [This is actually not mentioned in Section 6, but we
162 * implement it here anyway. --piggy]
164 if (max_tsn_seen != ctsn)
165 asoc->peer.sack_needed = 1;
167 /* From 6.2 Acknowledgement on Reception of DATA Chunks:
169 * Section 4.2 of [RFC2581] SHOULD be followed. Specifically,
170 * an acknowledgement SHOULD be generated for at least every
171 * second packet (not every second DATA chunk) received, and
172 * SHOULD be generated within 200 ms of the arrival of any
173 * unacknowledged DATA chunk. ...
175 if (!asoc->peer.sack_needed) {
176 asoc->peer.sack_cnt++;
178 /* Set the SACK delay timeout based on the
179 * SACK delay for the last transport
180 * data was received from, or the default
181 * for the association.
183 if (trans) {
184 /* We will need a SACK for the next packet. */
185 if (asoc->peer.sack_cnt >= trans->sackfreq - 1)
186 asoc->peer.sack_needed = 1;
188 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] =
189 trans->sackdelay;
190 } else {
191 /* We will need a SACK for the next packet. */
192 if (asoc->peer.sack_cnt >= asoc->sackfreq - 1)
193 asoc->peer.sack_needed = 1;
195 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] =
196 asoc->sackdelay;
199 /* Restart the SACK timer. */
200 sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART,
201 SCTP_TO(SCTP_EVENT_TIMEOUT_SACK));
202 } else {
203 __u32 old_a_rwnd = asoc->a_rwnd;
205 asoc->a_rwnd = asoc->rwnd;
206 sack = sctp_make_sack(asoc);
207 if (!sack) {
208 asoc->a_rwnd = old_a_rwnd;
209 goto nomem;
212 asoc->peer.sack_needed = 0;
213 asoc->peer.sack_cnt = 0;
215 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(sack));
217 /* Stop the SACK timer. */
218 sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
219 SCTP_TO(SCTP_EVENT_TIMEOUT_SACK));
222 return error;
223 nomem:
224 error = -ENOMEM;
225 return error;
228 /* When the T3-RTX timer expires, it calls this function to create the
229 * relevant state machine event.
231 void sctp_generate_t3_rtx_event(struct timer_list *t)
233 struct sctp_transport *transport =
234 from_timer(transport, t, T3_rtx_timer);
235 struct sctp_association *asoc = transport->asoc;
236 struct sock *sk = asoc->base.sk;
237 struct net *net = sock_net(sk);
238 int error;
240 /* Check whether a task is in the sock. */
242 bh_lock_sock(sk);
243 if (sock_owned_by_user(sk)) {
244 pr_debug("%s: sock is busy\n", __func__);
246 /* Try again later. */
247 if (!mod_timer(&transport->T3_rtx_timer, jiffies + (HZ/20)))
248 sctp_transport_hold(transport);
249 goto out_unlock;
252 /* Run through the state machine. */
253 error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT,
254 SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_T3_RTX),
255 asoc->state,
256 asoc->ep, asoc,
257 transport, GFP_ATOMIC);
259 if (error)
260 sk->sk_err = -error;
262 out_unlock:
263 bh_unlock_sock(sk);
264 sctp_transport_put(transport);
267 /* This is a sa interface for producing timeout events. It works
268 * for timeouts which use the association as their parameter.
270 static void sctp_generate_timeout_event(struct sctp_association *asoc,
271 enum sctp_event_timeout timeout_type)
273 struct sock *sk = asoc->base.sk;
274 struct net *net = sock_net(sk);
275 int error = 0;
277 bh_lock_sock(sk);
278 if (sock_owned_by_user(sk)) {
279 pr_debug("%s: sock is busy: timer %d\n", __func__,
280 timeout_type);
282 /* Try again later. */
283 if (!mod_timer(&asoc->timers[timeout_type], jiffies + (HZ/20)))
284 sctp_association_hold(asoc);
285 goto out_unlock;
288 /* Is this association really dead and just waiting around for
289 * the timer to let go of the reference?
291 if (asoc->base.dead)
292 goto out_unlock;
294 /* Run through the state machine. */
295 error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT,
296 SCTP_ST_TIMEOUT(timeout_type),
297 asoc->state, asoc->ep, asoc,
298 (void *)timeout_type, GFP_ATOMIC);
300 if (error)
301 sk->sk_err = -error;
303 out_unlock:
304 bh_unlock_sock(sk);
305 sctp_association_put(asoc);
308 static void sctp_generate_t1_cookie_event(struct timer_list *t)
310 struct sctp_association *asoc =
311 from_timer(asoc, t, timers[SCTP_EVENT_TIMEOUT_T1_COOKIE]);
313 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_COOKIE);
316 static void sctp_generate_t1_init_event(struct timer_list *t)
318 struct sctp_association *asoc =
319 from_timer(asoc, t, timers[SCTP_EVENT_TIMEOUT_T1_INIT]);
321 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_INIT);
324 static void sctp_generate_t2_shutdown_event(struct timer_list *t)
326 struct sctp_association *asoc =
327 from_timer(asoc, t, timers[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN]);
329 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T2_SHUTDOWN);
332 static void sctp_generate_t4_rto_event(struct timer_list *t)
334 struct sctp_association *asoc =
335 from_timer(asoc, t, timers[SCTP_EVENT_TIMEOUT_T4_RTO]);
337 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T4_RTO);
340 static void sctp_generate_t5_shutdown_guard_event(struct timer_list *t)
342 struct sctp_association *asoc =
343 from_timer(asoc, t,
344 timers[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]);
346 sctp_generate_timeout_event(asoc,
347 SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD);
349 } /* sctp_generate_t5_shutdown_guard_event() */
351 static void sctp_generate_autoclose_event(struct timer_list *t)
353 struct sctp_association *asoc =
354 from_timer(asoc, t, timers[SCTP_EVENT_TIMEOUT_AUTOCLOSE]);
356 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_AUTOCLOSE);
359 /* Generate a heart beat event. If the sock is busy, reschedule. Make
360 * sure that the transport is still valid.
362 void sctp_generate_heartbeat_event(struct timer_list *t)
364 struct sctp_transport *transport = from_timer(transport, t, hb_timer);
365 struct sctp_association *asoc = transport->asoc;
366 struct sock *sk = asoc->base.sk;
367 struct net *net = sock_net(sk);
368 u32 elapsed, timeout;
369 int error = 0;
371 bh_lock_sock(sk);
372 if (sock_owned_by_user(sk)) {
373 pr_debug("%s: sock is busy\n", __func__);
375 /* Try again later. */
376 if (!mod_timer(&transport->hb_timer, jiffies + (HZ/20)))
377 sctp_transport_hold(transport);
378 goto out_unlock;
381 /* Check if we should still send the heartbeat or reschedule */
382 elapsed = jiffies - transport->last_time_sent;
383 timeout = sctp_transport_timeout(transport);
384 if (elapsed < timeout) {
385 elapsed = timeout - elapsed;
386 if (!mod_timer(&transport->hb_timer, jiffies + elapsed))
387 sctp_transport_hold(transport);
388 goto out_unlock;
391 error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT,
392 SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_HEARTBEAT),
393 asoc->state, asoc->ep, asoc,
394 transport, GFP_ATOMIC);
396 if (error)
397 sk->sk_err = -error;
399 out_unlock:
400 bh_unlock_sock(sk);
401 sctp_transport_put(transport);
404 /* Handle the timeout of the ICMP protocol unreachable timer. Trigger
405 * the correct state machine transition that will close the association.
407 void sctp_generate_proto_unreach_event(struct timer_list *t)
409 struct sctp_transport *transport =
410 from_timer(transport, t, proto_unreach_timer);
411 struct sctp_association *asoc = transport->asoc;
412 struct sock *sk = asoc->base.sk;
413 struct net *net = sock_net(sk);
415 bh_lock_sock(sk);
416 if (sock_owned_by_user(sk)) {
417 pr_debug("%s: sock is busy\n", __func__);
419 /* Try again later. */
420 if (!mod_timer(&transport->proto_unreach_timer,
421 jiffies + (HZ/20)))
422 sctp_association_hold(asoc);
423 goto out_unlock;
426 /* Is this structure just waiting around for us to actually
427 * get destroyed?
429 if (asoc->base.dead)
430 goto out_unlock;
432 sctp_do_sm(net, SCTP_EVENT_T_OTHER,
433 SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
434 asoc->state, asoc->ep, asoc, transport, GFP_ATOMIC);
436 out_unlock:
437 bh_unlock_sock(sk);
438 sctp_association_put(asoc);
441 /* Handle the timeout of the RE-CONFIG timer. */
442 void sctp_generate_reconf_event(struct timer_list *t)
444 struct sctp_transport *transport =
445 from_timer(transport, t, reconf_timer);
446 struct sctp_association *asoc = transport->asoc;
447 struct sock *sk = asoc->base.sk;
448 struct net *net = sock_net(sk);
449 int error = 0;
451 bh_lock_sock(sk);
452 if (sock_owned_by_user(sk)) {
453 pr_debug("%s: sock is busy\n", __func__);
455 /* Try again later. */
456 if (!mod_timer(&transport->reconf_timer, jiffies + (HZ / 20)))
457 sctp_transport_hold(transport);
458 goto out_unlock;
461 error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT,
462 SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_RECONF),
463 asoc->state, asoc->ep, asoc,
464 transport, GFP_ATOMIC);
466 if (error)
467 sk->sk_err = -error;
469 out_unlock:
470 bh_unlock_sock(sk);
471 sctp_transport_put(transport);
474 /* Inject a SACK Timeout event into the state machine. */
475 static void sctp_generate_sack_event(struct timer_list *t)
477 struct sctp_association *asoc =
478 from_timer(asoc, t, timers[SCTP_EVENT_TIMEOUT_SACK]);
480 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_SACK);
483 sctp_timer_event_t *sctp_timer_events[SCTP_NUM_TIMEOUT_TYPES] = {
484 [SCTP_EVENT_TIMEOUT_NONE] = NULL,
485 [SCTP_EVENT_TIMEOUT_T1_COOKIE] = sctp_generate_t1_cookie_event,
486 [SCTP_EVENT_TIMEOUT_T1_INIT] = sctp_generate_t1_init_event,
487 [SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = sctp_generate_t2_shutdown_event,
488 [SCTP_EVENT_TIMEOUT_T3_RTX] = NULL,
489 [SCTP_EVENT_TIMEOUT_T4_RTO] = sctp_generate_t4_rto_event,
490 [SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD] =
491 sctp_generate_t5_shutdown_guard_event,
492 [SCTP_EVENT_TIMEOUT_HEARTBEAT] = NULL,
493 [SCTP_EVENT_TIMEOUT_RECONF] = NULL,
494 [SCTP_EVENT_TIMEOUT_SACK] = sctp_generate_sack_event,
495 [SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sctp_generate_autoclose_event,
499 /* RFC 2960 8.2 Path Failure Detection
501 * When its peer endpoint is multi-homed, an endpoint should keep a
502 * error counter for each of the destination transport addresses of the
503 * peer endpoint.
505 * Each time the T3-rtx timer expires on any address, or when a
506 * HEARTBEAT sent to an idle address is not acknowledged within a RTO,
507 * the error counter of that destination address will be incremented.
508 * When the value in the error counter exceeds the protocol parameter
509 * 'Path.Max.Retrans' of that destination address, the endpoint should
510 * mark the destination transport address as inactive, and a
511 * notification SHOULD be sent to the upper layer.
514 static void sctp_do_8_2_transport_strike(struct sctp_cmd_seq *commands,
515 struct sctp_association *asoc,
516 struct sctp_transport *transport,
517 int is_hb)
519 /* The check for association's overall error counter exceeding the
520 * threshold is done in the state function.
522 /* We are here due to a timer expiration. If the timer was
523 * not a HEARTBEAT, then normal error tracking is done.
524 * If the timer was a heartbeat, we only increment error counts
525 * when we already have an outstanding HEARTBEAT that has not
526 * been acknowledged.
527 * Additionally, some tranport states inhibit error increments.
529 if (!is_hb) {
530 asoc->overall_error_count++;
531 if (transport->state != SCTP_INACTIVE)
532 transport->error_count++;
533 } else if (transport->hb_sent) {
534 if (transport->state != SCTP_UNCONFIRMED)
535 asoc->overall_error_count++;
536 if (transport->state != SCTP_INACTIVE)
537 transport->error_count++;
540 /* If the transport error count is greater than the pf_retrans
541 * threshold, and less than pathmaxrtx, and if the current state
542 * is SCTP_ACTIVE, then mark this transport as Partially Failed,
543 * see SCTP Quick Failover Draft, section 5.1
545 if (asoc->base.net->sctp.pf_enable &&
546 transport->state == SCTP_ACTIVE &&
547 transport->error_count < transport->pathmaxrxt &&
548 transport->error_count > transport->pf_retrans) {
550 sctp_assoc_control_transport(asoc, transport,
551 SCTP_TRANSPORT_PF,
554 /* Update the hb timer to resend a heartbeat every rto */
555 sctp_transport_reset_hb_timer(transport);
558 if (transport->state != SCTP_INACTIVE &&
559 (transport->error_count > transport->pathmaxrxt)) {
560 pr_debug("%s: association:%p transport addr:%pISpc failed\n",
561 __func__, asoc, &transport->ipaddr.sa);
563 sctp_assoc_control_transport(asoc, transport,
564 SCTP_TRANSPORT_DOWN,
565 SCTP_FAILED_THRESHOLD);
568 if (transport->error_count > transport->ps_retrans &&
569 asoc->peer.primary_path == transport &&
570 asoc->peer.active_path != transport)
571 sctp_assoc_set_primary(asoc, asoc->peer.active_path);
573 /* E2) For the destination address for which the timer
574 * expires, set RTO <- RTO * 2 ("back off the timer"). The
575 * maximum value discussed in rule C7 above (RTO.max) may be
576 * used to provide an upper bound to this doubling operation.
578 * Special Case: the first HB doesn't trigger exponential backoff.
579 * The first unacknowledged HB triggers it. We do this with a flag
580 * that indicates that we have an outstanding HB.
582 if (!is_hb || transport->hb_sent) {
583 transport->rto = min((transport->rto * 2), transport->asoc->rto_max);
584 sctp_max_rto(asoc, transport);
588 /* Worker routine to handle INIT command failure. */
589 static void sctp_cmd_init_failed(struct sctp_cmd_seq *commands,
590 struct sctp_association *asoc,
591 unsigned int error)
593 struct sctp_ulpevent *event;
595 event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_CANT_STR_ASSOC,
596 (__u16)error, 0, 0, NULL,
597 GFP_ATOMIC);
599 if (event)
600 sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP,
601 SCTP_ULPEVENT(event));
603 sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
604 SCTP_STATE(SCTP_STATE_CLOSED));
606 /* SEND_FAILED sent later when cleaning up the association. */
607 asoc->outqueue.error = error;
608 sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL());
611 /* Worker routine to handle SCTP_CMD_ASSOC_FAILED. */
612 static void sctp_cmd_assoc_failed(struct sctp_cmd_seq *commands,
613 struct sctp_association *asoc,
614 enum sctp_event_type event_type,
615 union sctp_subtype subtype,
616 struct sctp_chunk *chunk,
617 unsigned int error)
619 struct sctp_ulpevent *event;
620 struct sctp_chunk *abort;
622 /* Cancel any partial delivery in progress. */
623 asoc->stream.si->abort_pd(&asoc->ulpq, GFP_ATOMIC);
625 if (event_type == SCTP_EVENT_T_CHUNK && subtype.chunk == SCTP_CID_ABORT)
626 event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_COMM_LOST,
627 (__u16)error, 0, 0, chunk,
628 GFP_ATOMIC);
629 else
630 event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_COMM_LOST,
631 (__u16)error, 0, 0, NULL,
632 GFP_ATOMIC);
633 if (event)
634 sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP,
635 SCTP_ULPEVENT(event));
637 if (asoc->overall_error_count >= asoc->max_retrans) {
638 abort = sctp_make_violation_max_retrans(asoc, chunk);
639 if (abort)
640 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
641 SCTP_CHUNK(abort));
644 sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
645 SCTP_STATE(SCTP_STATE_CLOSED));
647 /* SEND_FAILED sent later when cleaning up the association. */
648 asoc->outqueue.error = error;
649 sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL());
652 /* Process an init chunk (may be real INIT/INIT-ACK or an embedded INIT
653 * inside the cookie. In reality, this is only used for INIT-ACK processing
654 * since all other cases use "temporary" associations and can do all
655 * their work in statefuns directly.
657 static int sctp_cmd_process_init(struct sctp_cmd_seq *commands,
658 struct sctp_association *asoc,
659 struct sctp_chunk *chunk,
660 struct sctp_init_chunk *peer_init,
661 gfp_t gfp)
663 int error;
665 /* We only process the init as a sideeffect in a single
666 * case. This is when we process the INIT-ACK. If we
667 * fail during INIT processing (due to malloc problems),
668 * just return the error and stop processing the stack.
670 if (!sctp_process_init(asoc, chunk, sctp_source(chunk), peer_init, gfp))
671 error = -ENOMEM;
672 else
673 error = 0;
675 return error;
678 /* Helper function to break out starting up of heartbeat timers. */
679 static void sctp_cmd_hb_timers_start(struct sctp_cmd_seq *cmds,
680 struct sctp_association *asoc)
682 struct sctp_transport *t;
684 /* Start a heartbeat timer for each transport on the association.
685 * hold a reference on the transport to make sure none of
686 * the needed data structures go away.
688 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports)
689 sctp_transport_reset_hb_timer(t);
692 static void sctp_cmd_hb_timers_stop(struct sctp_cmd_seq *cmds,
693 struct sctp_association *asoc)
695 struct sctp_transport *t;
697 /* Stop all heartbeat timers. */
699 list_for_each_entry(t, &asoc->peer.transport_addr_list,
700 transports) {
701 if (del_timer(&t->hb_timer))
702 sctp_transport_put(t);
706 /* Helper function to stop any pending T3-RTX timers */
707 static void sctp_cmd_t3_rtx_timers_stop(struct sctp_cmd_seq *cmds,
708 struct sctp_association *asoc)
710 struct sctp_transport *t;
712 list_for_each_entry(t, &asoc->peer.transport_addr_list,
713 transports) {
714 if (del_timer(&t->T3_rtx_timer))
715 sctp_transport_put(t);
720 /* Helper function to handle the reception of an HEARTBEAT ACK. */
721 static void sctp_cmd_transport_on(struct sctp_cmd_seq *cmds,
722 struct sctp_association *asoc,
723 struct sctp_transport *t,
724 struct sctp_chunk *chunk)
726 struct sctp_sender_hb_info *hbinfo;
727 int was_unconfirmed = 0;
729 /* 8.3 Upon the receipt of the HEARTBEAT ACK, the sender of the
730 * HEARTBEAT should clear the error counter of the destination
731 * transport address to which the HEARTBEAT was sent.
733 t->error_count = 0;
736 * Although RFC4960 specifies that the overall error count must
737 * be cleared when a HEARTBEAT ACK is received, we make an
738 * exception while in SHUTDOWN PENDING. If the peer keeps its
739 * window shut forever, we may never be able to transmit our
740 * outstanding data and rely on the retransmission limit be reached
741 * to shutdown the association.
743 if (t->asoc->state < SCTP_STATE_SHUTDOWN_PENDING)
744 t->asoc->overall_error_count = 0;
746 /* Clear the hb_sent flag to signal that we had a good
747 * acknowledgement.
749 t->hb_sent = 0;
751 /* Mark the destination transport address as active if it is not so
752 * marked.
754 if ((t->state == SCTP_INACTIVE) || (t->state == SCTP_UNCONFIRMED)) {
755 was_unconfirmed = 1;
756 sctp_assoc_control_transport(asoc, t, SCTP_TRANSPORT_UP,
757 SCTP_HEARTBEAT_SUCCESS);
760 if (t->state == SCTP_PF)
761 sctp_assoc_control_transport(asoc, t, SCTP_TRANSPORT_UP,
762 SCTP_HEARTBEAT_SUCCESS);
764 /* HB-ACK was received for a the proper HB. Consider this
765 * forward progress.
767 if (t->dst)
768 sctp_transport_dst_confirm(t);
770 /* The receiver of the HEARTBEAT ACK should also perform an
771 * RTT measurement for that destination transport address
772 * using the time value carried in the HEARTBEAT ACK chunk.
773 * If the transport's rto_pending variable has been cleared,
774 * it was most likely due to a retransmit. However, we want
775 * to re-enable it to properly update the rto.
777 if (t->rto_pending == 0)
778 t->rto_pending = 1;
780 hbinfo = (struct sctp_sender_hb_info *)chunk->skb->data;
781 sctp_transport_update_rto(t, (jiffies - hbinfo->sent_at));
783 /* Update the heartbeat timer. */
784 sctp_transport_reset_hb_timer(t);
786 if (was_unconfirmed && asoc->peer.transport_count == 1)
787 sctp_transport_immediate_rtx(t);
791 /* Helper function to process the process SACK command. */
792 static int sctp_cmd_process_sack(struct sctp_cmd_seq *cmds,
793 struct sctp_association *asoc,
794 struct sctp_chunk *chunk)
796 int err = 0;
798 if (sctp_outq_sack(&asoc->outqueue, chunk)) {
799 /* There are no more TSNs awaiting SACK. */
800 err = sctp_do_sm(asoc->base.net, SCTP_EVENT_T_OTHER,
801 SCTP_ST_OTHER(SCTP_EVENT_NO_PENDING_TSN),
802 asoc->state, asoc->ep, asoc, NULL,
803 GFP_ATOMIC);
806 return err;
809 /* Helper function to set the timeout value for T2-SHUTDOWN timer and to set
810 * the transport for a shutdown chunk.
812 static void sctp_cmd_setup_t2(struct sctp_cmd_seq *cmds,
813 struct sctp_association *asoc,
814 struct sctp_chunk *chunk)
816 struct sctp_transport *t;
818 if (chunk->transport)
819 t = chunk->transport;
820 else {
821 t = sctp_assoc_choose_alter_transport(asoc,
822 asoc->shutdown_last_sent_to);
823 chunk->transport = t;
825 asoc->shutdown_last_sent_to = t;
826 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = t->rto;
829 static void sctp_cmd_assoc_update(struct sctp_cmd_seq *cmds,
830 struct sctp_association *asoc,
831 struct sctp_association *new)
833 struct net *net = asoc->base.net;
834 struct sctp_chunk *abort;
836 if (!sctp_assoc_update(asoc, new))
837 return;
839 abort = sctp_make_abort(asoc, NULL, sizeof(struct sctp_errhdr));
840 if (abort) {
841 sctp_init_cause(abort, SCTP_ERROR_RSRC_LOW, 0);
842 sctp_add_cmd_sf(cmds, SCTP_CMD_REPLY, SCTP_CHUNK(abort));
844 sctp_add_cmd_sf(cmds, SCTP_CMD_SET_SK_ERR, SCTP_ERROR(ECONNABORTED));
845 sctp_add_cmd_sf(cmds, SCTP_CMD_ASSOC_FAILED,
846 SCTP_PERR(SCTP_ERROR_RSRC_LOW));
847 SCTP_INC_STATS(net, SCTP_MIB_ABORTEDS);
848 SCTP_DEC_STATS(net, SCTP_MIB_CURRESTAB);
851 /* Helper function to change the state of an association. */
852 static void sctp_cmd_new_state(struct sctp_cmd_seq *cmds,
853 struct sctp_association *asoc,
854 enum sctp_state state)
856 struct sock *sk = asoc->base.sk;
858 asoc->state = state;
860 pr_debug("%s: asoc:%p[%s]\n", __func__, asoc, sctp_state_tbl[state]);
862 if (sctp_style(sk, TCP)) {
863 /* Change the sk->sk_state of a TCP-style socket that has
864 * successfully completed a connect() call.
866 if (sctp_state(asoc, ESTABLISHED) && sctp_sstate(sk, CLOSED))
867 inet_sk_set_state(sk, SCTP_SS_ESTABLISHED);
869 /* Set the RCV_SHUTDOWN flag when a SHUTDOWN is received. */
870 if (sctp_state(asoc, SHUTDOWN_RECEIVED) &&
871 sctp_sstate(sk, ESTABLISHED)) {
872 inet_sk_set_state(sk, SCTP_SS_CLOSING);
873 sk->sk_shutdown |= RCV_SHUTDOWN;
877 if (sctp_state(asoc, COOKIE_WAIT)) {
878 /* Reset init timeouts since they may have been
879 * increased due to timer expirations.
881 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] =
882 asoc->rto_initial;
883 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] =
884 asoc->rto_initial;
887 if (sctp_state(asoc, ESTABLISHED)) {
888 kfree(asoc->peer.cookie);
889 asoc->peer.cookie = NULL;
892 if (sctp_state(asoc, ESTABLISHED) ||
893 sctp_state(asoc, CLOSED) ||
894 sctp_state(asoc, SHUTDOWN_RECEIVED)) {
895 /* Wake up any processes waiting in the asoc's wait queue in
896 * sctp_wait_for_connect() or sctp_wait_for_sndbuf().
898 if (waitqueue_active(&asoc->wait))
899 wake_up_interruptible(&asoc->wait);
901 /* Wake up any processes waiting in the sk's sleep queue of
902 * a TCP-style or UDP-style peeled-off socket in
903 * sctp_wait_for_accept() or sctp_wait_for_packet().
904 * For a UDP-style socket, the waiters are woken up by the
905 * notifications.
907 if (!sctp_style(sk, UDP))
908 sk->sk_state_change(sk);
911 if (sctp_state(asoc, SHUTDOWN_PENDING) &&
912 !sctp_outq_is_empty(&asoc->outqueue))
913 sctp_outq_uncork(&asoc->outqueue, GFP_ATOMIC);
916 /* Helper function to delete an association. */
917 static void sctp_cmd_delete_tcb(struct sctp_cmd_seq *cmds,
918 struct sctp_association *asoc)
920 struct sock *sk = asoc->base.sk;
922 /* If it is a non-temporary association belonging to a TCP-style
923 * listening socket that is not closed, do not free it so that accept()
924 * can pick it up later.
926 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING) &&
927 (!asoc->temp) && (sk->sk_shutdown != SHUTDOWN_MASK))
928 return;
930 sctp_association_free(asoc);
934 * ADDIP Section 4.1 ASCONF Chunk Procedures
935 * A4) Start a T-4 RTO timer, using the RTO value of the selected
936 * destination address (we use active path instead of primary path just
937 * because primary path may be inactive.
939 static void sctp_cmd_setup_t4(struct sctp_cmd_seq *cmds,
940 struct sctp_association *asoc,
941 struct sctp_chunk *chunk)
943 struct sctp_transport *t;
945 t = sctp_assoc_choose_alter_transport(asoc, chunk->transport);
946 asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = t->rto;
947 chunk->transport = t;
950 /* Process an incoming Operation Error Chunk. */
951 static void sctp_cmd_process_operr(struct sctp_cmd_seq *cmds,
952 struct sctp_association *asoc,
953 struct sctp_chunk *chunk)
955 struct sctp_errhdr *err_hdr;
956 struct sctp_ulpevent *ev;
958 while (chunk->chunk_end > chunk->skb->data) {
959 err_hdr = (struct sctp_errhdr *)(chunk->skb->data);
961 ev = sctp_ulpevent_make_remote_error(asoc, chunk, 0,
962 GFP_ATOMIC);
963 if (!ev)
964 return;
966 asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
968 switch (err_hdr->cause) {
969 case SCTP_ERROR_UNKNOWN_CHUNK:
971 struct sctp_chunkhdr *unk_chunk_hdr;
973 unk_chunk_hdr = (struct sctp_chunkhdr *)
974 err_hdr->variable;
975 switch (unk_chunk_hdr->type) {
976 /* ADDIP 4.1 A9) If the peer responds to an ASCONF with
977 * an ERROR chunk reporting that it did not recognized
978 * the ASCONF chunk type, the sender of the ASCONF MUST
979 * NOT send any further ASCONF chunks and MUST stop its
980 * T-4 timer.
982 case SCTP_CID_ASCONF:
983 if (asoc->peer.asconf_capable == 0)
984 break;
986 asoc->peer.asconf_capable = 0;
987 sctp_add_cmd_sf(cmds, SCTP_CMD_TIMER_STOP,
988 SCTP_TO(SCTP_EVENT_TIMEOUT_T4_RTO));
989 break;
990 default:
991 break;
993 break;
995 default:
996 break;
1001 /* Helper function to remove the association non-primary peer
1002 * transports.
1004 static void sctp_cmd_del_non_primary(struct sctp_association *asoc)
1006 struct sctp_transport *t;
1007 struct list_head *temp;
1008 struct list_head *pos;
1010 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1011 t = list_entry(pos, struct sctp_transport, transports);
1012 if (!sctp_cmp_addr_exact(&t->ipaddr,
1013 &asoc->peer.primary_addr)) {
1014 sctp_assoc_rm_peer(asoc, t);
1019 /* Helper function to set sk_err on a 1-1 style socket. */
1020 static void sctp_cmd_set_sk_err(struct sctp_association *asoc, int error)
1022 struct sock *sk = asoc->base.sk;
1024 if (!sctp_style(sk, UDP))
1025 sk->sk_err = error;
1028 /* Helper function to generate an association change event */
1029 static void sctp_cmd_assoc_change(struct sctp_cmd_seq *commands,
1030 struct sctp_association *asoc,
1031 u8 state)
1033 struct sctp_ulpevent *ev;
1035 ev = sctp_ulpevent_make_assoc_change(asoc, 0, state, 0,
1036 asoc->c.sinit_num_ostreams,
1037 asoc->c.sinit_max_instreams,
1038 NULL, GFP_ATOMIC);
1039 if (ev)
1040 asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
1043 static void sctp_cmd_peer_no_auth(struct sctp_cmd_seq *commands,
1044 struct sctp_association *asoc)
1046 struct sctp_ulpevent *ev;
1048 ev = sctp_ulpevent_make_authkey(asoc, 0, SCTP_AUTH_NO_AUTH, GFP_ATOMIC);
1049 if (ev)
1050 asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
1053 /* Helper function to generate an adaptation indication event */
1054 static void sctp_cmd_adaptation_ind(struct sctp_cmd_seq *commands,
1055 struct sctp_association *asoc)
1057 struct sctp_ulpevent *ev;
1059 ev = sctp_ulpevent_make_adaptation_indication(asoc, GFP_ATOMIC);
1061 if (ev)
1062 asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
1066 static void sctp_cmd_t1_timer_update(struct sctp_association *asoc,
1067 enum sctp_event_timeout timer,
1068 char *name)
1070 struct sctp_transport *t;
1072 t = asoc->init_last_sent_to;
1073 asoc->init_err_counter++;
1075 if (t->init_sent_count > (asoc->init_cycle + 1)) {
1076 asoc->timeouts[timer] *= 2;
1077 if (asoc->timeouts[timer] > asoc->max_init_timeo) {
1078 asoc->timeouts[timer] = asoc->max_init_timeo;
1080 asoc->init_cycle++;
1082 pr_debug("%s: T1[%s] timeout adjustment init_err_counter:%d"
1083 " cycle:%d timeout:%ld\n", __func__, name,
1084 asoc->init_err_counter, asoc->init_cycle,
1085 asoc->timeouts[timer]);
1090 /* Send the whole message, chunk by chunk, to the outqueue.
1091 * This way the whole message is queued up and bundling if
1092 * encouraged for small fragments.
1094 static void sctp_cmd_send_msg(struct sctp_association *asoc,
1095 struct sctp_datamsg *msg, gfp_t gfp)
1097 struct sctp_chunk *chunk;
1099 list_for_each_entry(chunk, &msg->chunks, frag_list)
1100 sctp_outq_tail(&asoc->outqueue, chunk, gfp);
1102 asoc->outqueue.sched->enqueue(&asoc->outqueue, msg);
1106 /* These three macros allow us to pull the debugging code out of the
1107 * main flow of sctp_do_sm() to keep attention focused on the real
1108 * functionality there.
1110 #define debug_pre_sfn() \
1111 pr_debug("%s[pre-fn]: ep:%p, %s, %s, asoc:%p[%s], %s\n", __func__, \
1112 ep, sctp_evttype_tbl[event_type], (*debug_fn)(subtype), \
1113 asoc, sctp_state_tbl[state], state_fn->name)
1115 #define debug_post_sfn() \
1116 pr_debug("%s[post-fn]: asoc:%p, status:%s\n", __func__, asoc, \
1117 sctp_status_tbl[status])
1119 #define debug_post_sfx() \
1120 pr_debug("%s[post-sfx]: error:%d, asoc:%p[%s]\n", __func__, error, \
1121 asoc, sctp_state_tbl[(asoc && sctp_id2assoc(ep->base.sk, \
1122 sctp_assoc2id(asoc))) ? asoc->state : SCTP_STATE_CLOSED])
1125 * This is the master state machine processing function.
1127 * If you want to understand all of lksctp, this is a
1128 * good place to start.
1130 int sctp_do_sm(struct net *net, enum sctp_event_type event_type,
1131 union sctp_subtype subtype, enum sctp_state state,
1132 struct sctp_endpoint *ep, struct sctp_association *asoc,
1133 void *event_arg, gfp_t gfp)
1135 typedef const char *(printfn_t)(union sctp_subtype);
1136 static printfn_t *table[] = {
1137 NULL, sctp_cname, sctp_tname, sctp_oname, sctp_pname,
1139 printfn_t *debug_fn __attribute__ ((unused)) = table[event_type];
1140 const struct sctp_sm_table_entry *state_fn;
1141 struct sctp_cmd_seq commands;
1142 enum sctp_disposition status;
1143 int error = 0;
1145 /* Look up the state function, run it, and then process the
1146 * side effects. These three steps are the heart of lksctp.
1148 state_fn = sctp_sm_lookup_event(net, event_type, state, subtype);
1150 sctp_init_cmd_seq(&commands);
1152 debug_pre_sfn();
1153 status = state_fn->fn(net, ep, asoc, subtype, event_arg, &commands);
1154 debug_post_sfn();
1156 error = sctp_side_effects(event_type, subtype, state,
1157 ep, &asoc, event_arg, status,
1158 &commands, gfp);
1159 debug_post_sfx();
1161 return error;
1164 /*****************************************************************
1165 * This the master state function side effect processing function.
1166 *****************************************************************/
1167 static int sctp_side_effects(enum sctp_event_type event_type,
1168 union sctp_subtype subtype,
1169 enum sctp_state state,
1170 struct sctp_endpoint *ep,
1171 struct sctp_association **asoc,
1172 void *event_arg,
1173 enum sctp_disposition status,
1174 struct sctp_cmd_seq *commands,
1175 gfp_t gfp)
1177 int error;
1179 /* FIXME - Most of the dispositions left today would be categorized
1180 * as "exceptional" dispositions. For those dispositions, it
1181 * may not be proper to run through any of the commands at all.
1182 * For example, the command interpreter might be run only with
1183 * disposition SCTP_DISPOSITION_CONSUME.
1185 if (0 != (error = sctp_cmd_interpreter(event_type, subtype, state,
1186 ep, *asoc,
1187 event_arg, status,
1188 commands, gfp)))
1189 goto bail;
1191 switch (status) {
1192 case SCTP_DISPOSITION_DISCARD:
1193 pr_debug("%s: ignored sctp protocol event - state:%d, "
1194 "event_type:%d, event_id:%d\n", __func__, state,
1195 event_type, subtype.chunk);
1196 break;
1198 case SCTP_DISPOSITION_NOMEM:
1199 /* We ran out of memory, so we need to discard this
1200 * packet.
1202 /* BUG--we should now recover some memory, probably by
1203 * reneging...
1205 error = -ENOMEM;
1206 break;
1208 case SCTP_DISPOSITION_DELETE_TCB:
1209 case SCTP_DISPOSITION_ABORT:
1210 /* This should now be a command. */
1211 *asoc = NULL;
1212 break;
1214 case SCTP_DISPOSITION_CONSUME:
1216 * We should no longer have much work to do here as the
1217 * real work has been done as explicit commands above.
1219 break;
1221 case SCTP_DISPOSITION_VIOLATION:
1222 net_err_ratelimited("protocol violation state %d chunkid %d\n",
1223 state, subtype.chunk);
1224 break;
1226 case SCTP_DISPOSITION_NOT_IMPL:
1227 pr_warn("unimplemented feature in state %d, event_type %d, event_id %d\n",
1228 state, event_type, subtype.chunk);
1229 break;
1231 case SCTP_DISPOSITION_BUG:
1232 pr_err("bug in state %d, event_type %d, event_id %d\n",
1233 state, event_type, subtype.chunk);
1234 BUG();
1235 break;
1237 default:
1238 pr_err("impossible disposition %d in state %d, event_type %d, event_id %d\n",
1239 status, state, event_type, subtype.chunk);
1240 BUG();
1241 break;
1244 bail:
1245 return error;
1248 /********************************************************************
1249 * 2nd Level Abstractions
1250 ********************************************************************/
1252 /* This is the side-effect interpreter. */
1253 static int sctp_cmd_interpreter(enum sctp_event_type event_type,
1254 union sctp_subtype subtype,
1255 enum sctp_state state,
1256 struct sctp_endpoint *ep,
1257 struct sctp_association *asoc,
1258 void *event_arg,
1259 enum sctp_disposition status,
1260 struct sctp_cmd_seq *commands,
1261 gfp_t gfp)
1263 struct sctp_sock *sp = sctp_sk(ep->base.sk);
1264 struct sctp_chunk *chunk = NULL, *new_obj;
1265 struct sctp_packet *packet;
1266 struct sctp_sackhdr sackh;
1267 struct timer_list *timer;
1268 struct sctp_transport *t;
1269 unsigned long timeout;
1270 struct sctp_cmd *cmd;
1271 int local_cork = 0;
1272 int error = 0;
1273 int force;
1275 if (SCTP_EVENT_T_TIMEOUT != event_type)
1276 chunk = event_arg;
1278 /* Note: This whole file is a huge candidate for rework.
1279 * For example, each command could either have its own handler, so
1280 * the loop would look like:
1281 * while (cmds)
1282 * cmd->handle(x, y, z)
1283 * --jgrimm
1285 while (NULL != (cmd = sctp_next_cmd(commands))) {
1286 switch (cmd->verb) {
1287 case SCTP_CMD_NOP:
1288 /* Do nothing. */
1289 break;
1291 case SCTP_CMD_NEW_ASOC:
1292 /* Register a new association. */
1293 if (local_cork) {
1294 sctp_outq_uncork(&asoc->outqueue, gfp);
1295 local_cork = 0;
1298 /* Register with the endpoint. */
1299 asoc = cmd->obj.asoc;
1300 BUG_ON(asoc->peer.primary_path == NULL);
1301 sctp_endpoint_add_asoc(ep, asoc);
1302 break;
1304 case SCTP_CMD_UPDATE_ASSOC:
1305 sctp_cmd_assoc_update(commands, asoc, cmd->obj.asoc);
1306 break;
1308 case SCTP_CMD_PURGE_OUTQUEUE:
1309 sctp_outq_teardown(&asoc->outqueue);
1310 break;
1312 case SCTP_CMD_DELETE_TCB:
1313 if (local_cork) {
1314 sctp_outq_uncork(&asoc->outqueue, gfp);
1315 local_cork = 0;
1317 /* Delete the current association. */
1318 sctp_cmd_delete_tcb(commands, asoc);
1319 asoc = NULL;
1320 break;
1322 case SCTP_CMD_NEW_STATE:
1323 /* Enter a new state. */
1324 sctp_cmd_new_state(commands, asoc, cmd->obj.state);
1325 break;
1327 case SCTP_CMD_REPORT_TSN:
1328 /* Record the arrival of a TSN. */
1329 error = sctp_tsnmap_mark(&asoc->peer.tsn_map,
1330 cmd->obj.u32, NULL);
1331 break;
1333 case SCTP_CMD_REPORT_FWDTSN:
1334 asoc->stream.si->report_ftsn(&asoc->ulpq, cmd->obj.u32);
1335 break;
1337 case SCTP_CMD_PROCESS_FWDTSN:
1338 asoc->stream.si->handle_ftsn(&asoc->ulpq,
1339 cmd->obj.chunk);
1340 break;
1342 case SCTP_CMD_GEN_SACK:
1343 /* Generate a Selective ACK.
1344 * The argument tells us whether to just count
1345 * the packet and MAYBE generate a SACK, or
1346 * force a SACK out.
1348 force = cmd->obj.i32;
1349 error = sctp_gen_sack(asoc, force, commands);
1350 break;
1352 case SCTP_CMD_PROCESS_SACK:
1353 /* Process an inbound SACK. */
1354 error = sctp_cmd_process_sack(commands, asoc,
1355 cmd->obj.chunk);
1356 break;
1358 case SCTP_CMD_GEN_INIT_ACK:
1359 /* Generate an INIT ACK chunk. */
1360 new_obj = sctp_make_init_ack(asoc, chunk, GFP_ATOMIC,
1362 if (!new_obj) {
1363 error = -ENOMEM;
1364 break;
1367 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
1368 SCTP_CHUNK(new_obj));
1369 break;
1371 case SCTP_CMD_PEER_INIT:
1372 /* Process a unified INIT from the peer.
1373 * Note: Only used during INIT-ACK processing. If
1374 * there is an error just return to the outter
1375 * layer which will bail.
1377 error = sctp_cmd_process_init(commands, asoc, chunk,
1378 cmd->obj.init, gfp);
1379 break;
1381 case SCTP_CMD_GEN_COOKIE_ECHO:
1382 /* Generate a COOKIE ECHO chunk. */
1383 new_obj = sctp_make_cookie_echo(asoc, chunk);
1384 if (!new_obj) {
1385 if (cmd->obj.chunk)
1386 sctp_chunk_free(cmd->obj.chunk);
1387 error = -ENOMEM;
1388 break;
1390 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
1391 SCTP_CHUNK(new_obj));
1393 /* If there is an ERROR chunk to be sent along with
1394 * the COOKIE_ECHO, send it, too.
1396 if (cmd->obj.chunk)
1397 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
1398 SCTP_CHUNK(cmd->obj.chunk));
1400 if (new_obj->transport) {
1401 new_obj->transport->init_sent_count++;
1402 asoc->init_last_sent_to = new_obj->transport;
1405 /* FIXME - Eventually come up with a cleaner way to
1406 * enabling COOKIE-ECHO + DATA bundling during
1407 * multihoming stale cookie scenarios, the following
1408 * command plays with asoc->peer.retran_path to
1409 * avoid the problem of sending the COOKIE-ECHO and
1410 * DATA in different paths, which could result
1411 * in the association being ABORTed if the DATA chunk
1412 * is processed first by the server. Checking the
1413 * init error counter simply causes this command
1414 * to be executed only during failed attempts of
1415 * association establishment.
1417 if ((asoc->peer.retran_path !=
1418 asoc->peer.primary_path) &&
1419 (asoc->init_err_counter > 0)) {
1420 sctp_add_cmd_sf(commands,
1421 SCTP_CMD_FORCE_PRIM_RETRAN,
1422 SCTP_NULL());
1425 break;
1427 case SCTP_CMD_GEN_SHUTDOWN:
1428 /* Generate SHUTDOWN when in SHUTDOWN_SENT state.
1429 * Reset error counts.
1431 asoc->overall_error_count = 0;
1433 /* Generate a SHUTDOWN chunk. */
1434 new_obj = sctp_make_shutdown(asoc, chunk);
1435 if (!new_obj) {
1436 error = -ENOMEM;
1437 break;
1439 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
1440 SCTP_CHUNK(new_obj));
1441 break;
1443 case SCTP_CMD_CHUNK_ULP:
1444 /* Send a chunk to the sockets layer. */
1445 pr_debug("%s: sm_sideff: chunk_up:%p, ulpq:%p\n",
1446 __func__, cmd->obj.chunk, &asoc->ulpq);
1448 asoc->stream.si->ulpevent_data(&asoc->ulpq,
1449 cmd->obj.chunk,
1450 GFP_ATOMIC);
1451 break;
1453 case SCTP_CMD_EVENT_ULP:
1454 /* Send a notification to the sockets layer. */
1455 pr_debug("%s: sm_sideff: event_up:%p, ulpq:%p\n",
1456 __func__, cmd->obj.ulpevent, &asoc->ulpq);
1458 asoc->stream.si->enqueue_event(&asoc->ulpq,
1459 cmd->obj.ulpevent);
1460 break;
1462 case SCTP_CMD_REPLY:
1463 /* If an caller has not already corked, do cork. */
1464 if (!asoc->outqueue.cork) {
1465 sctp_outq_cork(&asoc->outqueue);
1466 local_cork = 1;
1468 /* Send a chunk to our peer. */
1469 sctp_outq_tail(&asoc->outqueue, cmd->obj.chunk, gfp);
1470 break;
1472 case SCTP_CMD_SEND_PKT:
1473 /* Send a full packet to our peer. */
1474 packet = cmd->obj.packet;
1475 sctp_packet_transmit(packet, gfp);
1476 sctp_ootb_pkt_free(packet);
1477 break;
1479 case SCTP_CMD_T1_RETRAN:
1480 /* Mark a transport for retransmission. */
1481 sctp_retransmit(&asoc->outqueue, cmd->obj.transport,
1482 SCTP_RTXR_T1_RTX);
1483 break;
1485 case SCTP_CMD_RETRAN:
1486 /* Mark a transport for retransmission. */
1487 sctp_retransmit(&asoc->outqueue, cmd->obj.transport,
1488 SCTP_RTXR_T3_RTX);
1489 break;
1491 case SCTP_CMD_ECN_CE:
1492 /* Do delayed CE processing. */
1493 sctp_do_ecn_ce_work(asoc, cmd->obj.u32);
1494 break;
1496 case SCTP_CMD_ECN_ECNE:
1497 /* Do delayed ECNE processing. */
1498 new_obj = sctp_do_ecn_ecne_work(asoc, cmd->obj.u32,
1499 chunk);
1500 if (new_obj)
1501 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
1502 SCTP_CHUNK(new_obj));
1503 break;
1505 case SCTP_CMD_ECN_CWR:
1506 /* Do delayed CWR processing. */
1507 sctp_do_ecn_cwr_work(asoc, cmd->obj.u32);
1508 break;
1510 case SCTP_CMD_SETUP_T2:
1511 sctp_cmd_setup_t2(commands, asoc, cmd->obj.chunk);
1512 break;
1514 case SCTP_CMD_TIMER_START_ONCE:
1515 timer = &asoc->timers[cmd->obj.to];
1517 if (timer_pending(timer))
1518 break;
1519 /* fall through */
1521 case SCTP_CMD_TIMER_START:
1522 timer = &asoc->timers[cmd->obj.to];
1523 timeout = asoc->timeouts[cmd->obj.to];
1524 BUG_ON(!timeout);
1527 * SCTP has a hard time with timer starts. Because we process
1528 * timer starts as side effects, it can be hard to tell if we
1529 * have already started a timer or not, which leads to BUG
1530 * halts when we call add_timer. So here, instead of just starting
1531 * a timer, if the timer is already started, and just mod
1532 * the timer with the shorter of the two expiration times
1534 if (!timer_pending(timer))
1535 sctp_association_hold(asoc);
1536 timer_reduce(timer, jiffies + timeout);
1537 break;
1539 case SCTP_CMD_TIMER_RESTART:
1540 timer = &asoc->timers[cmd->obj.to];
1541 timeout = asoc->timeouts[cmd->obj.to];
1542 if (!mod_timer(timer, jiffies + timeout))
1543 sctp_association_hold(asoc);
1544 break;
1546 case SCTP_CMD_TIMER_STOP:
1547 timer = &asoc->timers[cmd->obj.to];
1548 if (del_timer(timer))
1549 sctp_association_put(asoc);
1550 break;
1552 case SCTP_CMD_INIT_CHOOSE_TRANSPORT:
1553 chunk = cmd->obj.chunk;
1554 t = sctp_assoc_choose_alter_transport(asoc,
1555 asoc->init_last_sent_to);
1556 asoc->init_last_sent_to = t;
1557 chunk->transport = t;
1558 t->init_sent_count++;
1559 /* Set the new transport as primary */
1560 sctp_assoc_set_primary(asoc, t);
1561 break;
1563 case SCTP_CMD_INIT_RESTART:
1564 /* Do the needed accounting and updates
1565 * associated with restarting an initialization
1566 * timer. Only multiply the timeout by two if
1567 * all transports have been tried at the current
1568 * timeout.
1570 sctp_cmd_t1_timer_update(asoc,
1571 SCTP_EVENT_TIMEOUT_T1_INIT,
1572 "INIT");
1574 sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART,
1575 SCTP_TO(SCTP_EVENT_TIMEOUT_T1_INIT));
1576 break;
1578 case SCTP_CMD_COOKIEECHO_RESTART:
1579 /* Do the needed accounting and updates
1580 * associated with restarting an initialization
1581 * timer. Only multiply the timeout by two if
1582 * all transports have been tried at the current
1583 * timeout.
1585 sctp_cmd_t1_timer_update(asoc,
1586 SCTP_EVENT_TIMEOUT_T1_COOKIE,
1587 "COOKIE");
1589 /* If we've sent any data bundled with
1590 * COOKIE-ECHO we need to resend.
1592 list_for_each_entry(t, &asoc->peer.transport_addr_list,
1593 transports) {
1594 sctp_retransmit_mark(&asoc->outqueue, t,
1595 SCTP_RTXR_T1_RTX);
1598 sctp_add_cmd_sf(commands,
1599 SCTP_CMD_TIMER_RESTART,
1600 SCTP_TO(SCTP_EVENT_TIMEOUT_T1_COOKIE));
1601 break;
1603 case SCTP_CMD_INIT_FAILED:
1604 sctp_cmd_init_failed(commands, asoc, cmd->obj.u32);
1605 break;
1607 case SCTP_CMD_ASSOC_FAILED:
1608 sctp_cmd_assoc_failed(commands, asoc, event_type,
1609 subtype, chunk, cmd->obj.u32);
1610 break;
1612 case SCTP_CMD_INIT_COUNTER_INC:
1613 asoc->init_err_counter++;
1614 break;
1616 case SCTP_CMD_INIT_COUNTER_RESET:
1617 asoc->init_err_counter = 0;
1618 asoc->init_cycle = 0;
1619 list_for_each_entry(t, &asoc->peer.transport_addr_list,
1620 transports) {
1621 t->init_sent_count = 0;
1623 break;
1625 case SCTP_CMD_REPORT_DUP:
1626 sctp_tsnmap_mark_dup(&asoc->peer.tsn_map,
1627 cmd->obj.u32);
1628 break;
1630 case SCTP_CMD_REPORT_BAD_TAG:
1631 pr_debug("%s: vtag mismatch!\n", __func__);
1632 break;
1634 case SCTP_CMD_STRIKE:
1635 /* Mark one strike against a transport. */
1636 sctp_do_8_2_transport_strike(commands, asoc,
1637 cmd->obj.transport, 0);
1638 break;
1640 case SCTP_CMD_TRANSPORT_IDLE:
1641 t = cmd->obj.transport;
1642 sctp_transport_lower_cwnd(t, SCTP_LOWER_CWND_INACTIVE);
1643 break;
1645 case SCTP_CMD_TRANSPORT_HB_SENT:
1646 t = cmd->obj.transport;
1647 sctp_do_8_2_transport_strike(commands, asoc,
1648 t, 1);
1649 t->hb_sent = 1;
1650 break;
1652 case SCTP_CMD_TRANSPORT_ON:
1653 t = cmd->obj.transport;
1654 sctp_cmd_transport_on(commands, asoc, t, chunk);
1655 break;
1657 case SCTP_CMD_HB_TIMERS_START:
1658 sctp_cmd_hb_timers_start(commands, asoc);
1659 break;
1661 case SCTP_CMD_HB_TIMER_UPDATE:
1662 t = cmd->obj.transport;
1663 sctp_transport_reset_hb_timer(t);
1664 break;
1666 case SCTP_CMD_HB_TIMERS_STOP:
1667 sctp_cmd_hb_timers_stop(commands, asoc);
1668 break;
1670 case SCTP_CMD_REPORT_ERROR:
1671 error = cmd->obj.error;
1672 break;
1674 case SCTP_CMD_PROCESS_CTSN:
1675 /* Dummy up a SACK for processing. */
1676 sackh.cum_tsn_ack = cmd->obj.be32;
1677 sackh.a_rwnd = htonl(asoc->peer.rwnd +
1678 asoc->outqueue.outstanding_bytes);
1679 sackh.num_gap_ack_blocks = 0;
1680 sackh.num_dup_tsns = 0;
1681 chunk->subh.sack_hdr = &sackh;
1682 sctp_add_cmd_sf(commands, SCTP_CMD_PROCESS_SACK,
1683 SCTP_CHUNK(chunk));
1684 break;
1686 case SCTP_CMD_DISCARD_PACKET:
1687 /* We need to discard the whole packet.
1688 * Uncork the queue since there might be
1689 * responses pending
1691 chunk->pdiscard = 1;
1692 if (asoc) {
1693 sctp_outq_uncork(&asoc->outqueue, gfp);
1694 local_cork = 0;
1696 break;
1698 case SCTP_CMD_RTO_PENDING:
1699 t = cmd->obj.transport;
1700 t->rto_pending = 1;
1701 break;
1703 case SCTP_CMD_PART_DELIVER:
1704 asoc->stream.si->start_pd(&asoc->ulpq, GFP_ATOMIC);
1705 break;
1707 case SCTP_CMD_RENEGE:
1708 asoc->stream.si->renege_events(&asoc->ulpq,
1709 cmd->obj.chunk,
1710 GFP_ATOMIC);
1711 break;
1713 case SCTP_CMD_SETUP_T4:
1714 sctp_cmd_setup_t4(commands, asoc, cmd->obj.chunk);
1715 break;
1717 case SCTP_CMD_PROCESS_OPERR:
1718 sctp_cmd_process_operr(commands, asoc, chunk);
1719 break;
1720 case SCTP_CMD_CLEAR_INIT_TAG:
1721 asoc->peer.i.init_tag = 0;
1722 break;
1723 case SCTP_CMD_DEL_NON_PRIMARY:
1724 sctp_cmd_del_non_primary(asoc);
1725 break;
1726 case SCTP_CMD_T3_RTX_TIMERS_STOP:
1727 sctp_cmd_t3_rtx_timers_stop(commands, asoc);
1728 break;
1729 case SCTP_CMD_FORCE_PRIM_RETRAN:
1730 t = asoc->peer.retran_path;
1731 asoc->peer.retran_path = asoc->peer.primary_path;
1732 sctp_outq_uncork(&asoc->outqueue, gfp);
1733 local_cork = 0;
1734 asoc->peer.retran_path = t;
1735 break;
1736 case SCTP_CMD_SET_SK_ERR:
1737 sctp_cmd_set_sk_err(asoc, cmd->obj.error);
1738 break;
1739 case SCTP_CMD_ASSOC_CHANGE:
1740 sctp_cmd_assoc_change(commands, asoc,
1741 cmd->obj.u8);
1742 break;
1743 case SCTP_CMD_ADAPTATION_IND:
1744 sctp_cmd_adaptation_ind(commands, asoc);
1745 break;
1746 case SCTP_CMD_PEER_NO_AUTH:
1747 sctp_cmd_peer_no_auth(commands, asoc);
1748 break;
1750 case SCTP_CMD_ASSOC_SHKEY:
1751 error = sctp_auth_asoc_init_active_key(asoc,
1752 GFP_ATOMIC);
1753 break;
1754 case SCTP_CMD_UPDATE_INITTAG:
1755 asoc->peer.i.init_tag = cmd->obj.u32;
1756 break;
1757 case SCTP_CMD_SEND_MSG:
1758 if (!asoc->outqueue.cork) {
1759 sctp_outq_cork(&asoc->outqueue);
1760 local_cork = 1;
1762 sctp_cmd_send_msg(asoc, cmd->obj.msg, gfp);
1763 break;
1764 case SCTP_CMD_PURGE_ASCONF_QUEUE:
1765 sctp_asconf_queue_teardown(asoc);
1766 break;
1768 case SCTP_CMD_SET_ASOC:
1769 if (asoc && local_cork) {
1770 sctp_outq_uncork(&asoc->outqueue, gfp);
1771 local_cork = 0;
1773 asoc = cmd->obj.asoc;
1774 break;
1776 default:
1777 pr_warn("Impossible command: %u\n",
1778 cmd->verb);
1779 break;
1782 if (error) {
1783 cmd = sctp_next_cmd(commands);
1784 while (cmd) {
1785 if (cmd->verb == SCTP_CMD_REPLY)
1786 sctp_chunk_free(cmd->obj.chunk);
1787 cmd = sctp_next_cmd(commands);
1789 break;
1793 /* If this is in response to a received chunk, wait until
1794 * we are done with the packet to open the queue so that we don't
1795 * send multiple packets in response to a single request.
1797 if (asoc && SCTP_EVENT_T_CHUNK == event_type && chunk) {
1798 if (chunk->end_of_packet || chunk->singleton)
1799 sctp_outq_uncork(&asoc->outqueue, gfp);
1800 } else if (local_cork)
1801 sctp_outq_uncork(&asoc->outqueue, gfp);
1803 if (sp->data_ready_signalled)
1804 sp->data_ready_signalled = 0;
1806 return error;