1 // SPDX-License-Identifier: GPL-2.0-only
3 * VMware vSockets Driver
5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
8 /* Implementation notes:
10 * - There are two kinds of sockets: those created by user action (such as
11 * calling socket(2)) and those created by incoming connection request packets.
13 * - There are two "global" tables, one for bound sockets (sockets that have
14 * specified an address that they are responsible for) and one for connected
15 * sockets (sockets that have established a connection with another socket).
16 * These tables are "global" in that all sockets on the system are placed
17 * within them. - Note, though, that the bound table contains an extra entry
18 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19 * that list. The bound table is used solely for lookup of sockets when packets
20 * are received and that's not necessary for SOCK_DGRAM sockets since we create
21 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM
22 * sockets out of the bound hash buckets will reduce the chance of collisions
23 * when looking for SOCK_STREAM sockets and prevents us from having to check the
24 * socket type in the hash table lookups.
26 * - Sockets created by user action will either be "client" sockets that
27 * initiate a connection or "server" sockets that listen for connections; we do
28 * not support simultaneous connects (two "client" sockets connecting).
30 * - "Server" sockets are referred to as listener sockets throughout this
31 * implementation because they are in the TCP_LISTEN state. When a
32 * connection request is received (the second kind of socket mentioned above),
33 * we create a new socket and refer to it as a pending socket. These pending
34 * sockets are placed on the pending connection list of the listener socket.
35 * When future packets are received for the address the listener socket is
36 * bound to, we check if the source of the packet is from one that has an
37 * existing pending connection. If it does, we process the packet for the
38 * pending socket. When that socket reaches the connected state, it is removed
39 * from the listener socket's pending list and enqueued in the listener
40 * socket's accept queue. Callers of accept(2) will accept connected sockets
41 * from the listener socket's accept queue. If the socket cannot be accepted
42 * for some reason then it is marked rejected. Once the connection is
43 * accepted, it is owned by the user process and the responsibility for cleanup
44 * falls with that user process.
46 * - It is possible that these pending sockets will never reach the connected
47 * state; in fact, we may never receive another packet after the connection
48 * request. Because of this, we must schedule a cleanup function to run in the
49 * future, after some amount of time passes where a connection should have been
50 * established. This function ensures that the socket is off all lists so it
51 * cannot be retrieved, then drops all references to the socket so it is cleaned
52 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this
53 * function will also cleanup rejected sockets, those that reach the connected
54 * state but leave it before they have been accepted.
56 * - Lock ordering for pending or accept queue sockets is:
58 * lock_sock(listener);
59 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
61 * Using explicit nested locking keeps lockdep happy since normally only one
62 * lock of a given class may be taken at a time.
64 * - Sockets created by user action will be cleaned up when the user process
65 * calls close(2), causing our release implementation to be called. Our release
66 * implementation will perform some cleanup then drop the last reference so our
67 * sk_destruct implementation is invoked. Our sk_destruct implementation will
68 * perform additional cleanup that's common for both types of sockets.
70 * - A socket's reference count is what ensures that the structure won't be
71 * freed. Each entry in a list (such as the "global" bound and connected tables
72 * and the listener socket's pending list and connected queue) ensures a
73 * reference. When we defer work until process context and pass a socket as our
74 * argument, we must ensure the reference count is increased to ensure the
75 * socket isn't freed before the function is run; the deferred function will
76 * then drop the reference.
78 * - sk->sk_state uses the TCP state constants because they are widely used by
79 * other address families and exposed to userspace tools like ss(8):
81 * TCP_CLOSE - unconnected
82 * TCP_SYN_SENT - connecting
83 * TCP_ESTABLISHED - connected
84 * TCP_CLOSING - disconnecting
85 * TCP_LISTEN - listening
88 #include <linux/types.h>
89 #include <linux/bitops.h>
90 #include <linux/cred.h>
91 #include <linux/init.h>
93 #include <linux/kernel.h>
94 #include <linux/sched/signal.h>
95 #include <linux/kmod.h>
96 #include <linux/list.h>
97 #include <linux/miscdevice.h>
98 #include <linux/module.h>
99 #include <linux/mutex.h>
100 #include <linux/net.h>
101 #include <linux/poll.h>
102 #include <linux/random.h>
103 #include <linux/skbuff.h>
104 #include <linux/smp.h>
105 #include <linux/socket.h>
106 #include <linux/stddef.h>
107 #include <linux/unistd.h>
108 #include <linux/wait.h>
109 #include <linux/workqueue.h>
110 #include <net/sock.h>
111 #include <net/af_vsock.h>
113 static int __vsock_bind(struct sock
*sk
, struct sockaddr_vm
*addr
);
114 static void vsock_sk_destruct(struct sock
*sk
);
115 static int vsock_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
);
117 /* Protocol family. */
118 static struct proto vsock_proto
= {
120 .owner
= THIS_MODULE
,
121 .obj_size
= sizeof(struct vsock_sock
),
124 /* The default peer timeout indicates how long we will wait for a peer response
125 * to a control message.
127 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
129 #define VSOCK_DEFAULT_BUFFER_SIZE (1024 * 256)
130 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
131 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
133 /* Transport used for host->guest communication */
134 static const struct vsock_transport
*transport_h2g
;
135 /* Transport used for guest->host communication */
136 static const struct vsock_transport
*transport_g2h
;
137 /* Transport used for DGRAM communication */
138 static const struct vsock_transport
*transport_dgram
;
139 /* Transport used for local communication */
140 static const struct vsock_transport
*transport_local
;
141 static DEFINE_MUTEX(vsock_register_mutex
);
145 /* Each bound VSocket is stored in the bind hash table and each connected
146 * VSocket is stored in the connected hash table.
148 * Unbound sockets are all put on the same list attached to the end of the hash
149 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in
150 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
151 * represents the list that addr hashes to).
153 * Specifically, we initialize the vsock_bind_table array to a size of
154 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
155 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
156 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function
157 * mods with VSOCK_HASH_SIZE to ensure this.
159 #define MAX_PORT_RETRIES 24
161 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE)
162 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
163 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE])
165 /* XXX This can probably be implemented in a better way. */
166 #define VSOCK_CONN_HASH(src, dst) \
167 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
168 #define vsock_connected_sockets(src, dst) \
169 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
170 #define vsock_connected_sockets_vsk(vsk) \
171 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
173 struct list_head vsock_bind_table
[VSOCK_HASH_SIZE
+ 1];
174 EXPORT_SYMBOL_GPL(vsock_bind_table
);
175 struct list_head vsock_connected_table
[VSOCK_HASH_SIZE
];
176 EXPORT_SYMBOL_GPL(vsock_connected_table
);
177 DEFINE_SPINLOCK(vsock_table_lock
);
178 EXPORT_SYMBOL_GPL(vsock_table_lock
);
180 /* Autobind this socket to the local address if necessary. */
181 static int vsock_auto_bind(struct vsock_sock
*vsk
)
183 struct sock
*sk
= sk_vsock(vsk
);
184 struct sockaddr_vm local_addr
;
186 if (vsock_addr_bound(&vsk
->local_addr
))
188 vsock_addr_init(&local_addr
, VMADDR_CID_ANY
, VMADDR_PORT_ANY
);
189 return __vsock_bind(sk
, &local_addr
);
192 static void vsock_init_tables(void)
196 for (i
= 0; i
< ARRAY_SIZE(vsock_bind_table
); i
++)
197 INIT_LIST_HEAD(&vsock_bind_table
[i
]);
199 for (i
= 0; i
< ARRAY_SIZE(vsock_connected_table
); i
++)
200 INIT_LIST_HEAD(&vsock_connected_table
[i
]);
203 static void __vsock_insert_bound(struct list_head
*list
,
204 struct vsock_sock
*vsk
)
207 list_add(&vsk
->bound_table
, list
);
210 static void __vsock_insert_connected(struct list_head
*list
,
211 struct vsock_sock
*vsk
)
214 list_add(&vsk
->connected_table
, list
);
217 static void __vsock_remove_bound(struct vsock_sock
*vsk
)
219 list_del_init(&vsk
->bound_table
);
223 static void __vsock_remove_connected(struct vsock_sock
*vsk
)
225 list_del_init(&vsk
->connected_table
);
229 static struct sock
*__vsock_find_bound_socket(struct sockaddr_vm
*addr
)
231 struct vsock_sock
*vsk
;
233 list_for_each_entry(vsk
, vsock_bound_sockets(addr
), bound_table
) {
234 if (vsock_addr_equals_addr(addr
, &vsk
->local_addr
))
235 return sk_vsock(vsk
);
237 if (addr
->svm_port
== vsk
->local_addr
.svm_port
&&
238 (vsk
->local_addr
.svm_cid
== VMADDR_CID_ANY
||
239 addr
->svm_cid
== VMADDR_CID_ANY
))
240 return sk_vsock(vsk
);
246 static struct sock
*__vsock_find_connected_socket(struct sockaddr_vm
*src
,
247 struct sockaddr_vm
*dst
)
249 struct vsock_sock
*vsk
;
251 list_for_each_entry(vsk
, vsock_connected_sockets(src
, dst
),
253 if (vsock_addr_equals_addr(src
, &vsk
->remote_addr
) &&
254 dst
->svm_port
== vsk
->local_addr
.svm_port
) {
255 return sk_vsock(vsk
);
262 static void vsock_insert_unbound(struct vsock_sock
*vsk
)
264 spin_lock_bh(&vsock_table_lock
);
265 __vsock_insert_bound(vsock_unbound_sockets
, vsk
);
266 spin_unlock_bh(&vsock_table_lock
);
269 void vsock_insert_connected(struct vsock_sock
*vsk
)
271 struct list_head
*list
= vsock_connected_sockets(
272 &vsk
->remote_addr
, &vsk
->local_addr
);
274 spin_lock_bh(&vsock_table_lock
);
275 __vsock_insert_connected(list
, vsk
);
276 spin_unlock_bh(&vsock_table_lock
);
278 EXPORT_SYMBOL_GPL(vsock_insert_connected
);
280 void vsock_remove_bound(struct vsock_sock
*vsk
)
282 spin_lock_bh(&vsock_table_lock
);
283 if (__vsock_in_bound_table(vsk
))
284 __vsock_remove_bound(vsk
);
285 spin_unlock_bh(&vsock_table_lock
);
287 EXPORT_SYMBOL_GPL(vsock_remove_bound
);
289 void vsock_remove_connected(struct vsock_sock
*vsk
)
291 spin_lock_bh(&vsock_table_lock
);
292 if (__vsock_in_connected_table(vsk
))
293 __vsock_remove_connected(vsk
);
294 spin_unlock_bh(&vsock_table_lock
);
296 EXPORT_SYMBOL_GPL(vsock_remove_connected
);
298 struct sock
*vsock_find_bound_socket(struct sockaddr_vm
*addr
)
302 spin_lock_bh(&vsock_table_lock
);
303 sk
= __vsock_find_bound_socket(addr
);
307 spin_unlock_bh(&vsock_table_lock
);
311 EXPORT_SYMBOL_GPL(vsock_find_bound_socket
);
313 struct sock
*vsock_find_connected_socket(struct sockaddr_vm
*src
,
314 struct sockaddr_vm
*dst
)
318 spin_lock_bh(&vsock_table_lock
);
319 sk
= __vsock_find_connected_socket(src
, dst
);
323 spin_unlock_bh(&vsock_table_lock
);
327 EXPORT_SYMBOL_GPL(vsock_find_connected_socket
);
329 void vsock_remove_sock(struct vsock_sock
*vsk
)
331 vsock_remove_bound(vsk
);
332 vsock_remove_connected(vsk
);
334 EXPORT_SYMBOL_GPL(vsock_remove_sock
);
336 void vsock_for_each_connected_socket(void (*fn
)(struct sock
*sk
))
340 spin_lock_bh(&vsock_table_lock
);
342 for (i
= 0; i
< ARRAY_SIZE(vsock_connected_table
); i
++) {
343 struct vsock_sock
*vsk
;
344 list_for_each_entry(vsk
, &vsock_connected_table
[i
],
349 spin_unlock_bh(&vsock_table_lock
);
351 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket
);
353 void vsock_add_pending(struct sock
*listener
, struct sock
*pending
)
355 struct vsock_sock
*vlistener
;
356 struct vsock_sock
*vpending
;
358 vlistener
= vsock_sk(listener
);
359 vpending
= vsock_sk(pending
);
363 list_add_tail(&vpending
->pending_links
, &vlistener
->pending_links
);
365 EXPORT_SYMBOL_GPL(vsock_add_pending
);
367 void vsock_remove_pending(struct sock
*listener
, struct sock
*pending
)
369 struct vsock_sock
*vpending
= vsock_sk(pending
);
371 list_del_init(&vpending
->pending_links
);
375 EXPORT_SYMBOL_GPL(vsock_remove_pending
);
377 void vsock_enqueue_accept(struct sock
*listener
, struct sock
*connected
)
379 struct vsock_sock
*vlistener
;
380 struct vsock_sock
*vconnected
;
382 vlistener
= vsock_sk(listener
);
383 vconnected
= vsock_sk(connected
);
385 sock_hold(connected
);
387 list_add_tail(&vconnected
->accept_queue
, &vlistener
->accept_queue
);
389 EXPORT_SYMBOL_GPL(vsock_enqueue_accept
);
391 static bool vsock_use_local_transport(unsigned int remote_cid
)
393 if (!transport_local
)
396 if (remote_cid
== VMADDR_CID_LOCAL
)
400 return remote_cid
== transport_g2h
->get_local_cid();
402 return remote_cid
== VMADDR_CID_HOST
;
406 static void vsock_deassign_transport(struct vsock_sock
*vsk
)
411 vsk
->transport
->destruct(vsk
);
412 module_put(vsk
->transport
->module
);
413 vsk
->transport
= NULL
;
416 /* Assign a transport to a socket and call the .init transport callback.
418 * Note: for stream socket this must be called when vsk->remote_addr is set
419 * (e.g. during the connect() or when a connection request on a listener
420 * socket is received).
421 * The vsk->remote_addr is used to decide which transport to use:
422 * - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
423 * g2h is not loaded, will use local transport;
424 * - remote CID <= VMADDR_CID_HOST will use guest->host transport;
425 * - remote CID > VMADDR_CID_HOST will use host->guest transport;
427 int vsock_assign_transport(struct vsock_sock
*vsk
, struct vsock_sock
*psk
)
429 const struct vsock_transport
*new_transport
;
430 struct sock
*sk
= sk_vsock(vsk
);
431 unsigned int remote_cid
= vsk
->remote_addr
.svm_cid
;
434 switch (sk
->sk_type
) {
436 new_transport
= transport_dgram
;
439 if (vsock_use_local_transport(remote_cid
))
440 new_transport
= transport_local
;
441 else if (remote_cid
<= VMADDR_CID_HOST
)
442 new_transport
= transport_g2h
;
444 new_transport
= transport_h2g
;
447 return -ESOCKTNOSUPPORT
;
450 if (vsk
->transport
) {
451 if (vsk
->transport
== new_transport
)
454 /* transport->release() must be called with sock lock acquired.
455 * This path can only be taken during vsock_stream_connect(),
456 * where we have already held the sock lock.
457 * In the other cases, this function is called on a new socket
458 * which is not assigned to any transport.
460 vsk
->transport
->release(vsk
);
461 vsock_deassign_transport(vsk
);
464 /* We increase the module refcnt to prevent the transport unloading
465 * while there are open sockets assigned to it.
467 if (!new_transport
|| !try_module_get(new_transport
->module
))
470 ret
= new_transport
->init(vsk
, psk
);
472 module_put(new_transport
->module
);
476 vsk
->transport
= new_transport
;
480 EXPORT_SYMBOL_GPL(vsock_assign_transport
);
482 bool vsock_find_cid(unsigned int cid
)
484 if (transport_g2h
&& cid
== transport_g2h
->get_local_cid())
487 if (transport_h2g
&& cid
== VMADDR_CID_HOST
)
490 if (transport_local
&& cid
== VMADDR_CID_LOCAL
)
495 EXPORT_SYMBOL_GPL(vsock_find_cid
);
497 static struct sock
*vsock_dequeue_accept(struct sock
*listener
)
499 struct vsock_sock
*vlistener
;
500 struct vsock_sock
*vconnected
;
502 vlistener
= vsock_sk(listener
);
504 if (list_empty(&vlistener
->accept_queue
))
507 vconnected
= list_entry(vlistener
->accept_queue
.next
,
508 struct vsock_sock
, accept_queue
);
510 list_del_init(&vconnected
->accept_queue
);
512 /* The caller will need a reference on the connected socket so we let
513 * it call sock_put().
516 return sk_vsock(vconnected
);
519 static bool vsock_is_accept_queue_empty(struct sock
*sk
)
521 struct vsock_sock
*vsk
= vsock_sk(sk
);
522 return list_empty(&vsk
->accept_queue
);
525 static bool vsock_is_pending(struct sock
*sk
)
527 struct vsock_sock
*vsk
= vsock_sk(sk
);
528 return !list_empty(&vsk
->pending_links
);
531 static int vsock_send_shutdown(struct sock
*sk
, int mode
)
533 struct vsock_sock
*vsk
= vsock_sk(sk
);
538 return vsk
->transport
->shutdown(vsk
, mode
);
541 static void vsock_pending_work(struct work_struct
*work
)
544 struct sock
*listener
;
545 struct vsock_sock
*vsk
;
548 vsk
= container_of(work
, struct vsock_sock
, pending_work
.work
);
550 listener
= vsk
->listener
;
554 lock_sock_nested(sk
, SINGLE_DEPTH_NESTING
);
556 if (vsock_is_pending(sk
)) {
557 vsock_remove_pending(listener
, sk
);
559 sk_acceptq_removed(listener
);
560 } else if (!vsk
->rejected
) {
561 /* We are not on the pending list and accept() did not reject
562 * us, so we must have been accepted by our user process. We
563 * just need to drop our references to the sockets and be on
570 /* We need to remove ourself from the global connected sockets list so
571 * incoming packets can't find this socket, and to reduce the reference
574 vsock_remove_connected(vsk
);
576 sk
->sk_state
= TCP_CLOSE
;
580 release_sock(listener
);
588 /**** SOCKET OPERATIONS ****/
590 static int __vsock_bind_stream(struct vsock_sock
*vsk
,
591 struct sockaddr_vm
*addr
)
594 struct sockaddr_vm new_addr
;
597 port
= LAST_RESERVED_PORT
+ 1 +
598 prandom_u32_max(U32_MAX
- LAST_RESERVED_PORT
);
600 vsock_addr_init(&new_addr
, addr
->svm_cid
, addr
->svm_port
);
602 if (addr
->svm_port
== VMADDR_PORT_ANY
) {
606 for (i
= 0; i
< MAX_PORT_RETRIES
; i
++) {
607 if (port
<= LAST_RESERVED_PORT
)
608 port
= LAST_RESERVED_PORT
+ 1;
610 new_addr
.svm_port
= port
++;
612 if (!__vsock_find_bound_socket(&new_addr
)) {
619 return -EADDRNOTAVAIL
;
621 /* If port is in reserved range, ensure caller
622 * has necessary privileges.
624 if (addr
->svm_port
<= LAST_RESERVED_PORT
&&
625 !capable(CAP_NET_BIND_SERVICE
)) {
629 if (__vsock_find_bound_socket(&new_addr
))
633 vsock_addr_init(&vsk
->local_addr
, new_addr
.svm_cid
, new_addr
.svm_port
);
635 /* Remove stream sockets from the unbound list and add them to the hash
636 * table for easy lookup by its address. The unbound list is simply an
637 * extra entry at the end of the hash table, a trick used by AF_UNIX.
639 __vsock_remove_bound(vsk
);
640 __vsock_insert_bound(vsock_bound_sockets(&vsk
->local_addr
), vsk
);
645 static int __vsock_bind_dgram(struct vsock_sock
*vsk
,
646 struct sockaddr_vm
*addr
)
648 return vsk
->transport
->dgram_bind(vsk
, addr
);
651 static int __vsock_bind(struct sock
*sk
, struct sockaddr_vm
*addr
)
653 struct vsock_sock
*vsk
= vsock_sk(sk
);
656 /* First ensure this socket isn't already bound. */
657 if (vsock_addr_bound(&vsk
->local_addr
))
660 /* Now bind to the provided address or select appropriate values if
661 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that
662 * like AF_INET prevents binding to a non-local IP address (in most
663 * cases), we only allow binding to a local CID.
665 if (addr
->svm_cid
!= VMADDR_CID_ANY
&& !vsock_find_cid(addr
->svm_cid
))
666 return -EADDRNOTAVAIL
;
668 switch (sk
->sk_socket
->type
) {
670 spin_lock_bh(&vsock_table_lock
);
671 retval
= __vsock_bind_stream(vsk
, addr
);
672 spin_unlock_bh(&vsock_table_lock
);
676 retval
= __vsock_bind_dgram(vsk
, addr
);
687 static void vsock_connect_timeout(struct work_struct
*work
);
689 static struct sock
*__vsock_create(struct net
*net
,
697 struct vsock_sock
*psk
;
698 struct vsock_sock
*vsk
;
700 sk
= sk_alloc(net
, AF_VSOCK
, priority
, &vsock_proto
, kern
);
704 sock_init_data(sock
, sk
);
706 /* sk->sk_type is normally set in sock_init_data, but only if sock is
707 * non-NULL. We make sure that our sockets always have a type by
708 * setting it here if needed.
714 vsock_addr_init(&vsk
->local_addr
, VMADDR_CID_ANY
, VMADDR_PORT_ANY
);
715 vsock_addr_init(&vsk
->remote_addr
, VMADDR_CID_ANY
, VMADDR_PORT_ANY
);
717 sk
->sk_destruct
= vsock_sk_destruct
;
718 sk
->sk_backlog_rcv
= vsock_queue_rcv_skb
;
719 sock_reset_flag(sk
, SOCK_DONE
);
721 INIT_LIST_HEAD(&vsk
->bound_table
);
722 INIT_LIST_HEAD(&vsk
->connected_table
);
723 vsk
->listener
= NULL
;
724 INIT_LIST_HEAD(&vsk
->pending_links
);
725 INIT_LIST_HEAD(&vsk
->accept_queue
);
726 vsk
->rejected
= false;
727 vsk
->sent_request
= false;
728 vsk
->ignore_connecting_rst
= false;
729 vsk
->peer_shutdown
= 0;
730 INIT_DELAYED_WORK(&vsk
->connect_work
, vsock_connect_timeout
);
731 INIT_DELAYED_WORK(&vsk
->pending_work
, vsock_pending_work
);
733 psk
= parent
? vsock_sk(parent
) : NULL
;
735 vsk
->trusted
= psk
->trusted
;
736 vsk
->owner
= get_cred(psk
->owner
);
737 vsk
->connect_timeout
= psk
->connect_timeout
;
738 vsk
->buffer_size
= psk
->buffer_size
;
739 vsk
->buffer_min_size
= psk
->buffer_min_size
;
740 vsk
->buffer_max_size
= psk
->buffer_max_size
;
742 vsk
->trusted
= capable(CAP_NET_ADMIN
);
743 vsk
->owner
= get_current_cred();
744 vsk
->connect_timeout
= VSOCK_DEFAULT_CONNECT_TIMEOUT
;
745 vsk
->buffer_size
= VSOCK_DEFAULT_BUFFER_SIZE
;
746 vsk
->buffer_min_size
= VSOCK_DEFAULT_BUFFER_MIN_SIZE
;
747 vsk
->buffer_max_size
= VSOCK_DEFAULT_BUFFER_MAX_SIZE
;
753 static void __vsock_release(struct sock
*sk
, int level
)
756 struct sock
*pending
;
757 struct vsock_sock
*vsk
;
760 pending
= NULL
; /* Compiler warning. */
762 /* When "level" is SINGLE_DEPTH_NESTING, use the nested
763 * version to avoid the warning "possible recursive locking
764 * detected". When "level" is 0, lock_sock_nested(sk, level)
765 * is the same as lock_sock(sk).
767 lock_sock_nested(sk
, level
);
770 vsk
->transport
->release(vsk
);
771 else if (sk
->sk_type
== SOCK_STREAM
)
772 vsock_remove_sock(vsk
);
775 sk
->sk_shutdown
= SHUTDOWN_MASK
;
777 skb_queue_purge(&sk
->sk_receive_queue
);
779 /* Clean up any sockets that never were accepted. */
780 while ((pending
= vsock_dequeue_accept(sk
)) != NULL
) {
781 __vsock_release(pending
, SINGLE_DEPTH_NESTING
);
790 static void vsock_sk_destruct(struct sock
*sk
)
792 struct vsock_sock
*vsk
= vsock_sk(sk
);
794 vsock_deassign_transport(vsk
);
796 /* When clearing these addresses, there's no need to set the family and
797 * possibly register the address family with the kernel.
799 vsock_addr_init(&vsk
->local_addr
, VMADDR_CID_ANY
, VMADDR_PORT_ANY
);
800 vsock_addr_init(&vsk
->remote_addr
, VMADDR_CID_ANY
, VMADDR_PORT_ANY
);
802 put_cred(vsk
->owner
);
805 static int vsock_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
)
809 err
= sock_queue_rcv_skb(sk
, skb
);
816 struct sock
*vsock_create_connected(struct sock
*parent
)
818 return __vsock_create(sock_net(parent
), NULL
, parent
, GFP_KERNEL
,
821 EXPORT_SYMBOL_GPL(vsock_create_connected
);
823 s64
vsock_stream_has_data(struct vsock_sock
*vsk
)
825 return vsk
->transport
->stream_has_data(vsk
);
827 EXPORT_SYMBOL_GPL(vsock_stream_has_data
);
829 s64
vsock_stream_has_space(struct vsock_sock
*vsk
)
831 return vsk
->transport
->stream_has_space(vsk
);
833 EXPORT_SYMBOL_GPL(vsock_stream_has_space
);
835 static int vsock_release(struct socket
*sock
)
837 __vsock_release(sock
->sk
, 0);
839 sock
->state
= SS_FREE
;
845 vsock_bind(struct socket
*sock
, struct sockaddr
*addr
, int addr_len
)
849 struct sockaddr_vm
*vm_addr
;
853 if (vsock_addr_cast(addr
, addr_len
, &vm_addr
) != 0)
857 err
= __vsock_bind(sk
, vm_addr
);
863 static int vsock_getname(struct socket
*sock
,
864 struct sockaddr
*addr
, int peer
)
868 struct vsock_sock
*vsk
;
869 struct sockaddr_vm
*vm_addr
;
878 if (sock
->state
!= SS_CONNECTED
) {
882 vm_addr
= &vsk
->remote_addr
;
884 vm_addr
= &vsk
->local_addr
;
892 /* sys_getsockname() and sys_getpeername() pass us a
893 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately
894 * that macro is defined in socket.c instead of .h, so we hardcode its
897 BUILD_BUG_ON(sizeof(*vm_addr
) > 128);
898 memcpy(addr
, vm_addr
, sizeof(*vm_addr
));
899 err
= sizeof(*vm_addr
);
906 static int vsock_shutdown(struct socket
*sock
, int mode
)
911 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
912 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
913 * here like the other address families do. Note also that the
914 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
915 * which is what we want.
919 if ((mode
& ~SHUTDOWN_MASK
) || !mode
)
922 /* If this is a STREAM socket and it is not connected then bail out
923 * immediately. If it is a DGRAM socket then we must first kick the
924 * socket so that it wakes up from any sleeping calls, for example
925 * recv(), and then afterwards return the error.
929 if (sock
->state
== SS_UNCONNECTED
) {
931 if (sk
->sk_type
== SOCK_STREAM
)
934 sock
->state
= SS_DISCONNECTING
;
938 /* Receive and send shutdowns are treated alike. */
939 mode
= mode
& (RCV_SHUTDOWN
| SEND_SHUTDOWN
);
942 sk
->sk_shutdown
|= mode
;
943 sk
->sk_state_change(sk
);
946 if (sk
->sk_type
== SOCK_STREAM
) {
947 sock_reset_flag(sk
, SOCK_DONE
);
948 vsock_send_shutdown(sk
, mode
);
955 static __poll_t
vsock_poll(struct file
*file
, struct socket
*sock
,
960 struct vsock_sock
*vsk
;
965 poll_wait(file
, sk_sleep(sk
), wait
);
969 /* Signify that there has been an error on this socket. */
972 /* INET sockets treat local write shutdown and peer write shutdown as a
973 * case of EPOLLHUP set.
975 if ((sk
->sk_shutdown
== SHUTDOWN_MASK
) ||
976 ((sk
->sk_shutdown
& SEND_SHUTDOWN
) &&
977 (vsk
->peer_shutdown
& SEND_SHUTDOWN
))) {
981 if (sk
->sk_shutdown
& RCV_SHUTDOWN
||
982 vsk
->peer_shutdown
& SEND_SHUTDOWN
) {
986 if (sock
->type
== SOCK_DGRAM
) {
987 /* For datagram sockets we can read if there is something in
988 * the queue and write as long as the socket isn't shutdown for
991 if (!skb_queue_empty_lockless(&sk
->sk_receive_queue
) ||
992 (sk
->sk_shutdown
& RCV_SHUTDOWN
)) {
993 mask
|= EPOLLIN
| EPOLLRDNORM
;
996 if (!(sk
->sk_shutdown
& SEND_SHUTDOWN
))
997 mask
|= EPOLLOUT
| EPOLLWRNORM
| EPOLLWRBAND
;
999 } else if (sock
->type
== SOCK_STREAM
) {
1000 const struct vsock_transport
*transport
= vsk
->transport
;
1003 /* Listening sockets that have connections in their accept
1004 * queue can be read.
1006 if (sk
->sk_state
== TCP_LISTEN
1007 && !vsock_is_accept_queue_empty(sk
))
1008 mask
|= EPOLLIN
| EPOLLRDNORM
;
1010 /* If there is something in the queue then we can read. */
1011 if (transport
&& transport
->stream_is_active(vsk
) &&
1012 !(sk
->sk_shutdown
& RCV_SHUTDOWN
)) {
1013 bool data_ready_now
= false;
1014 int ret
= transport
->notify_poll_in(
1015 vsk
, 1, &data_ready_now
);
1020 mask
|= EPOLLIN
| EPOLLRDNORM
;
1025 /* Sockets whose connections have been closed, reset, or
1026 * terminated should also be considered read, and we check the
1027 * shutdown flag for that.
1029 if (sk
->sk_shutdown
& RCV_SHUTDOWN
||
1030 vsk
->peer_shutdown
& SEND_SHUTDOWN
) {
1031 mask
|= EPOLLIN
| EPOLLRDNORM
;
1034 /* Connected sockets that can produce data can be written. */
1035 if (sk
->sk_state
== TCP_ESTABLISHED
) {
1036 if (!(sk
->sk_shutdown
& SEND_SHUTDOWN
)) {
1037 bool space_avail_now
= false;
1038 int ret
= transport
->notify_poll_out(
1039 vsk
, 1, &space_avail_now
);
1043 if (space_avail_now
)
1044 /* Remove EPOLLWRBAND since INET
1045 * sockets are not setting it.
1047 mask
|= EPOLLOUT
| EPOLLWRNORM
;
1053 /* Simulate INET socket poll behaviors, which sets
1054 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1055 * but local send is not shutdown.
1057 if (sk
->sk_state
== TCP_CLOSE
|| sk
->sk_state
== TCP_CLOSING
) {
1058 if (!(sk
->sk_shutdown
& SEND_SHUTDOWN
))
1059 mask
|= EPOLLOUT
| EPOLLWRNORM
;
1069 static int vsock_dgram_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
1074 struct vsock_sock
*vsk
;
1075 struct sockaddr_vm
*remote_addr
;
1076 const struct vsock_transport
*transport
;
1078 if (msg
->msg_flags
& MSG_OOB
)
1081 /* For now, MSG_DONTWAIT is always assumed... */
1085 transport
= vsk
->transport
;
1089 err
= vsock_auto_bind(vsk
);
1094 /* If the provided message contains an address, use that. Otherwise
1095 * fall back on the socket's remote handle (if it has been connected).
1097 if (msg
->msg_name
&&
1098 vsock_addr_cast(msg
->msg_name
, msg
->msg_namelen
,
1099 &remote_addr
) == 0) {
1100 /* Ensure this address is of the right type and is a valid
1104 if (remote_addr
->svm_cid
== VMADDR_CID_ANY
)
1105 remote_addr
->svm_cid
= transport
->get_local_cid();
1107 if (!vsock_addr_bound(remote_addr
)) {
1111 } else if (sock
->state
== SS_CONNECTED
) {
1112 remote_addr
= &vsk
->remote_addr
;
1114 if (remote_addr
->svm_cid
== VMADDR_CID_ANY
)
1115 remote_addr
->svm_cid
= transport
->get_local_cid();
1117 /* XXX Should connect() or this function ensure remote_addr is
1120 if (!vsock_addr_bound(&vsk
->remote_addr
)) {
1129 if (!transport
->dgram_allow(remote_addr
->svm_cid
,
1130 remote_addr
->svm_port
)) {
1135 err
= transport
->dgram_enqueue(vsk
, remote_addr
, msg
, len
);
1142 static int vsock_dgram_connect(struct socket
*sock
,
1143 struct sockaddr
*addr
, int addr_len
, int flags
)
1147 struct vsock_sock
*vsk
;
1148 struct sockaddr_vm
*remote_addr
;
1153 err
= vsock_addr_cast(addr
, addr_len
, &remote_addr
);
1154 if (err
== -EAFNOSUPPORT
&& remote_addr
->svm_family
== AF_UNSPEC
) {
1156 vsock_addr_init(&vsk
->remote_addr
, VMADDR_CID_ANY
,
1158 sock
->state
= SS_UNCONNECTED
;
1161 } else if (err
!= 0)
1166 err
= vsock_auto_bind(vsk
);
1170 if (!vsk
->transport
->dgram_allow(remote_addr
->svm_cid
,
1171 remote_addr
->svm_port
)) {
1176 memcpy(&vsk
->remote_addr
, remote_addr
, sizeof(vsk
->remote_addr
));
1177 sock
->state
= SS_CONNECTED
;
1184 static int vsock_dgram_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
1185 size_t len
, int flags
)
1187 struct vsock_sock
*vsk
= vsock_sk(sock
->sk
);
1189 return vsk
->transport
->dgram_dequeue(vsk
, msg
, len
, flags
);
1192 static const struct proto_ops vsock_dgram_ops
= {
1194 .owner
= THIS_MODULE
,
1195 .release
= vsock_release
,
1197 .connect
= vsock_dgram_connect
,
1198 .socketpair
= sock_no_socketpair
,
1199 .accept
= sock_no_accept
,
1200 .getname
= vsock_getname
,
1202 .ioctl
= sock_no_ioctl
,
1203 .listen
= sock_no_listen
,
1204 .shutdown
= vsock_shutdown
,
1205 .setsockopt
= sock_no_setsockopt
,
1206 .getsockopt
= sock_no_getsockopt
,
1207 .sendmsg
= vsock_dgram_sendmsg
,
1208 .recvmsg
= vsock_dgram_recvmsg
,
1209 .mmap
= sock_no_mmap
,
1210 .sendpage
= sock_no_sendpage
,
1213 static int vsock_transport_cancel_pkt(struct vsock_sock
*vsk
)
1215 const struct vsock_transport
*transport
= vsk
->transport
;
1217 if (!transport
->cancel_pkt
)
1220 return transport
->cancel_pkt(vsk
);
1223 static void vsock_connect_timeout(struct work_struct
*work
)
1226 struct vsock_sock
*vsk
;
1229 vsk
= container_of(work
, struct vsock_sock
, connect_work
.work
);
1233 if (sk
->sk_state
== TCP_SYN_SENT
&&
1234 (sk
->sk_shutdown
!= SHUTDOWN_MASK
)) {
1235 sk
->sk_state
= TCP_CLOSE
;
1236 sk
->sk_err
= ETIMEDOUT
;
1237 sk
->sk_error_report(sk
);
1242 vsock_transport_cancel_pkt(vsk
);
1247 static int vsock_stream_connect(struct socket
*sock
, struct sockaddr
*addr
,
1248 int addr_len
, int flags
)
1252 struct vsock_sock
*vsk
;
1253 const struct vsock_transport
*transport
;
1254 struct sockaddr_vm
*remote_addr
;
1264 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1265 switch (sock
->state
) {
1269 case SS_DISCONNECTING
:
1273 /* This continues on so we can move sock into the SS_CONNECTED
1274 * state once the connection has completed (at which point err
1275 * will be set to zero also). Otherwise, we will either wait
1276 * for the connection or return -EALREADY should this be a
1277 * non-blocking call.
1282 if ((sk
->sk_state
== TCP_LISTEN
) ||
1283 vsock_addr_cast(addr
, addr_len
, &remote_addr
) != 0) {
1288 /* Set the remote address that we are connecting to. */
1289 memcpy(&vsk
->remote_addr
, remote_addr
,
1290 sizeof(vsk
->remote_addr
));
1292 err
= vsock_assign_transport(vsk
, NULL
);
1296 transport
= vsk
->transport
;
1298 /* The hypervisor and well-known contexts do not have socket
1302 !transport
->stream_allow(remote_addr
->svm_cid
,
1303 remote_addr
->svm_port
)) {
1308 err
= vsock_auto_bind(vsk
);
1312 sk
->sk_state
= TCP_SYN_SENT
;
1314 err
= transport
->connect(vsk
);
1318 /* Mark sock as connecting and set the error code to in
1319 * progress in case this is a non-blocking connect.
1321 sock
->state
= SS_CONNECTING
;
1325 /* The receive path will handle all communication until we are able to
1326 * enter the connected state. Here we wait for the connection to be
1327 * completed or a notification of an error.
1329 timeout
= vsk
->connect_timeout
;
1330 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
1332 while (sk
->sk_state
!= TCP_ESTABLISHED
&& sk
->sk_err
== 0) {
1333 if (flags
& O_NONBLOCK
) {
1334 /* If we're not going to block, we schedule a timeout
1335 * function to generate a timeout on the connection
1336 * attempt, in case the peer doesn't respond in a
1337 * timely manner. We hold on to the socket until the
1341 schedule_delayed_work(&vsk
->connect_work
, timeout
);
1343 /* Skip ahead to preserve error code set above. */
1348 timeout
= schedule_timeout(timeout
);
1351 if (signal_pending(current
)) {
1352 err
= sock_intr_errno(timeout
);
1353 sk
->sk_state
= TCP_CLOSE
;
1354 sock
->state
= SS_UNCONNECTED
;
1355 vsock_transport_cancel_pkt(vsk
);
1357 } else if (timeout
== 0) {
1359 sk
->sk_state
= TCP_CLOSE
;
1360 sock
->state
= SS_UNCONNECTED
;
1361 vsock_transport_cancel_pkt(vsk
);
1365 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
1370 sk
->sk_state
= TCP_CLOSE
;
1371 sock
->state
= SS_UNCONNECTED
;
1377 finish_wait(sk_sleep(sk
), &wait
);
1383 static int vsock_accept(struct socket
*sock
, struct socket
*newsock
, int flags
,
1386 struct sock
*listener
;
1388 struct sock
*connected
;
1389 struct vsock_sock
*vconnected
;
1394 listener
= sock
->sk
;
1396 lock_sock(listener
);
1398 if (sock
->type
!= SOCK_STREAM
) {
1403 if (listener
->sk_state
!= TCP_LISTEN
) {
1408 /* Wait for children sockets to appear; these are the new sockets
1409 * created upon connection establishment.
1411 timeout
= sock_rcvtimeo(listener
, flags
& O_NONBLOCK
);
1412 prepare_to_wait(sk_sleep(listener
), &wait
, TASK_INTERRUPTIBLE
);
1414 while ((connected
= vsock_dequeue_accept(listener
)) == NULL
&&
1415 listener
->sk_err
== 0) {
1416 release_sock(listener
);
1417 timeout
= schedule_timeout(timeout
);
1418 finish_wait(sk_sleep(listener
), &wait
);
1419 lock_sock(listener
);
1421 if (signal_pending(current
)) {
1422 err
= sock_intr_errno(timeout
);
1424 } else if (timeout
== 0) {
1429 prepare_to_wait(sk_sleep(listener
), &wait
, TASK_INTERRUPTIBLE
);
1431 finish_wait(sk_sleep(listener
), &wait
);
1433 if (listener
->sk_err
)
1434 err
= -listener
->sk_err
;
1437 sk_acceptq_removed(listener
);
1439 lock_sock_nested(connected
, SINGLE_DEPTH_NESTING
);
1440 vconnected
= vsock_sk(connected
);
1442 /* If the listener socket has received an error, then we should
1443 * reject this socket and return. Note that we simply mark the
1444 * socket rejected, drop our reference, and let the cleanup
1445 * function handle the cleanup; the fact that we found it in
1446 * the listener's accept queue guarantees that the cleanup
1447 * function hasn't run yet.
1450 vconnected
->rejected
= true;
1452 newsock
->state
= SS_CONNECTED
;
1453 sock_graft(connected
, newsock
);
1456 release_sock(connected
);
1457 sock_put(connected
);
1461 release_sock(listener
);
1465 static int vsock_listen(struct socket
*sock
, int backlog
)
1469 struct vsock_sock
*vsk
;
1475 if (sock
->type
!= SOCK_STREAM
) {
1480 if (sock
->state
!= SS_UNCONNECTED
) {
1487 if (!vsock_addr_bound(&vsk
->local_addr
)) {
1492 sk
->sk_max_ack_backlog
= backlog
;
1493 sk
->sk_state
= TCP_LISTEN
;
1502 static void vsock_update_buffer_size(struct vsock_sock
*vsk
,
1503 const struct vsock_transport
*transport
,
1506 if (val
> vsk
->buffer_max_size
)
1507 val
= vsk
->buffer_max_size
;
1509 if (val
< vsk
->buffer_min_size
)
1510 val
= vsk
->buffer_min_size
;
1512 if (val
!= vsk
->buffer_size
&&
1513 transport
&& transport
->notify_buffer_size
)
1514 transport
->notify_buffer_size(vsk
, &val
);
1516 vsk
->buffer_size
= val
;
1519 static int vsock_stream_setsockopt(struct socket
*sock
,
1522 char __user
*optval
,
1523 unsigned int optlen
)
1527 struct vsock_sock
*vsk
;
1528 const struct vsock_transport
*transport
;
1531 if (level
!= AF_VSOCK
)
1532 return -ENOPROTOOPT
;
1534 #define COPY_IN(_v) \
1536 if (optlen < sizeof(_v)) { \
1540 if (copy_from_user(&_v, optval, sizeof(_v)) != 0) { \
1549 transport
= vsk
->transport
;
1554 case SO_VM_SOCKETS_BUFFER_SIZE
:
1556 vsock_update_buffer_size(vsk
, transport
, val
);
1559 case SO_VM_SOCKETS_BUFFER_MAX_SIZE
:
1561 vsk
->buffer_max_size
= val
;
1562 vsock_update_buffer_size(vsk
, transport
, vsk
->buffer_size
);
1565 case SO_VM_SOCKETS_BUFFER_MIN_SIZE
:
1567 vsk
->buffer_min_size
= val
;
1568 vsock_update_buffer_size(vsk
, transport
, vsk
->buffer_size
);
1571 case SO_VM_SOCKETS_CONNECT_TIMEOUT
: {
1572 struct __kernel_old_timeval tv
;
1574 if (tv
.tv_sec
>= 0 && tv
.tv_usec
< USEC_PER_SEC
&&
1575 tv
.tv_sec
< (MAX_SCHEDULE_TIMEOUT
/ HZ
- 1)) {
1576 vsk
->connect_timeout
= tv
.tv_sec
* HZ
+
1577 DIV_ROUND_UP(tv
.tv_usec
, (1000000 / HZ
));
1578 if (vsk
->connect_timeout
== 0)
1579 vsk
->connect_timeout
=
1580 VSOCK_DEFAULT_CONNECT_TIMEOUT
;
1600 static int vsock_stream_getsockopt(struct socket
*sock
,
1601 int level
, int optname
,
1602 char __user
*optval
,
1608 struct vsock_sock
*vsk
;
1611 if (level
!= AF_VSOCK
)
1612 return -ENOPROTOOPT
;
1614 err
= get_user(len
, optlen
);
1618 #define COPY_OUT(_v) \
1620 if (len < sizeof(_v)) \
1624 if (copy_to_user(optval, &_v, len) != 0) \
1634 case SO_VM_SOCKETS_BUFFER_SIZE
:
1635 val
= vsk
->buffer_size
;
1639 case SO_VM_SOCKETS_BUFFER_MAX_SIZE
:
1640 val
= vsk
->buffer_max_size
;
1644 case SO_VM_SOCKETS_BUFFER_MIN_SIZE
:
1645 val
= vsk
->buffer_min_size
;
1649 case SO_VM_SOCKETS_CONNECT_TIMEOUT
: {
1650 struct __kernel_old_timeval tv
;
1651 tv
.tv_sec
= vsk
->connect_timeout
/ HZ
;
1653 (vsk
->connect_timeout
-
1654 tv
.tv_sec
* HZ
) * (1000000 / HZ
);
1659 return -ENOPROTOOPT
;
1662 err
= put_user(len
, optlen
);
1671 static int vsock_stream_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
1675 struct vsock_sock
*vsk
;
1676 const struct vsock_transport
*transport
;
1677 ssize_t total_written
;
1680 struct vsock_transport_send_notify_data send_data
;
1681 DEFINE_WAIT_FUNC(wait
, woken_wake_function
);
1685 transport
= vsk
->transport
;
1689 if (msg
->msg_flags
& MSG_OOB
)
1694 /* Callers should not provide a destination with stream sockets. */
1695 if (msg
->msg_namelen
) {
1696 err
= sk
->sk_state
== TCP_ESTABLISHED
? -EISCONN
: -EOPNOTSUPP
;
1700 /* Send data only if both sides are not shutdown in the direction. */
1701 if (sk
->sk_shutdown
& SEND_SHUTDOWN
||
1702 vsk
->peer_shutdown
& RCV_SHUTDOWN
) {
1707 if (!transport
|| sk
->sk_state
!= TCP_ESTABLISHED
||
1708 !vsock_addr_bound(&vsk
->local_addr
)) {
1713 if (!vsock_addr_bound(&vsk
->remote_addr
)) {
1714 err
= -EDESTADDRREQ
;
1718 /* Wait for room in the produce queue to enqueue our user's data. */
1719 timeout
= sock_sndtimeo(sk
, msg
->msg_flags
& MSG_DONTWAIT
);
1721 err
= transport
->notify_send_init(vsk
, &send_data
);
1725 while (total_written
< len
) {
1728 add_wait_queue(sk_sleep(sk
), &wait
);
1729 while (vsock_stream_has_space(vsk
) == 0 &&
1731 !(sk
->sk_shutdown
& SEND_SHUTDOWN
) &&
1732 !(vsk
->peer_shutdown
& RCV_SHUTDOWN
)) {
1734 /* Don't wait for non-blocking sockets. */
1737 remove_wait_queue(sk_sleep(sk
), &wait
);
1741 err
= transport
->notify_send_pre_block(vsk
, &send_data
);
1743 remove_wait_queue(sk_sleep(sk
), &wait
);
1748 timeout
= wait_woken(&wait
, TASK_INTERRUPTIBLE
, timeout
);
1750 if (signal_pending(current
)) {
1751 err
= sock_intr_errno(timeout
);
1752 remove_wait_queue(sk_sleep(sk
), &wait
);
1754 } else if (timeout
== 0) {
1756 remove_wait_queue(sk_sleep(sk
), &wait
);
1760 remove_wait_queue(sk_sleep(sk
), &wait
);
1762 /* These checks occur both as part of and after the loop
1763 * conditional since we need to check before and after
1769 } else if ((sk
->sk_shutdown
& SEND_SHUTDOWN
) ||
1770 (vsk
->peer_shutdown
& RCV_SHUTDOWN
)) {
1775 err
= transport
->notify_send_pre_enqueue(vsk
, &send_data
);
1779 /* Note that enqueue will only write as many bytes as are free
1780 * in the produce queue, so we don't need to ensure len is
1781 * smaller than the queue size. It is the caller's
1782 * responsibility to check how many bytes we were able to send.
1785 written
= transport
->stream_enqueue(
1787 len
- total_written
);
1793 total_written
+= written
;
1795 err
= transport
->notify_send_post_enqueue(
1796 vsk
, written
, &send_data
);
1803 if (total_written
> 0)
1804 err
= total_written
;
1812 vsock_stream_recvmsg(struct socket
*sock
, struct msghdr
*msg
, size_t len
,
1816 struct vsock_sock
*vsk
;
1817 const struct vsock_transport
*transport
;
1822 struct vsock_transport_recv_notify_data recv_data
;
1828 transport
= vsk
->transport
;
1833 if (!transport
|| sk
->sk_state
!= TCP_ESTABLISHED
) {
1834 /* Recvmsg is supposed to return 0 if a peer performs an
1835 * orderly shutdown. Differentiate between that case and when a
1836 * peer has not connected or a local shutdown occured with the
1839 if (sock_flag(sk
, SOCK_DONE
))
1847 if (flags
& MSG_OOB
) {
1852 /* We don't check peer_shutdown flag here since peer may actually shut
1853 * down, but there can be data in the queue that a local socket can
1856 if (sk
->sk_shutdown
& RCV_SHUTDOWN
) {
1861 /* It is valid on Linux to pass in a zero-length receive buffer. This
1862 * is not an error. We may as well bail out now.
1869 /* We must not copy less than target bytes into the user's buffer
1870 * before returning successfully, so we wait for the consume queue to
1871 * have that much data to consume before dequeueing. Note that this
1872 * makes it impossible to handle cases where target is greater than the
1875 target
= sock_rcvlowat(sk
, flags
& MSG_WAITALL
, len
);
1876 if (target
>= transport
->stream_rcvhiwat(vsk
)) {
1880 timeout
= sock_rcvtimeo(sk
, flags
& MSG_DONTWAIT
);
1883 err
= transport
->notify_recv_init(vsk
, target
, &recv_data
);
1891 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
1892 ready
= vsock_stream_has_data(vsk
);
1895 if (sk
->sk_err
!= 0 ||
1896 (sk
->sk_shutdown
& RCV_SHUTDOWN
) ||
1897 (vsk
->peer_shutdown
& SEND_SHUTDOWN
)) {
1898 finish_wait(sk_sleep(sk
), &wait
);
1901 /* Don't wait for non-blocking sockets. */
1904 finish_wait(sk_sleep(sk
), &wait
);
1908 err
= transport
->notify_recv_pre_block(
1909 vsk
, target
, &recv_data
);
1911 finish_wait(sk_sleep(sk
), &wait
);
1915 timeout
= schedule_timeout(timeout
);
1918 if (signal_pending(current
)) {
1919 err
= sock_intr_errno(timeout
);
1920 finish_wait(sk_sleep(sk
), &wait
);
1922 } else if (timeout
== 0) {
1924 finish_wait(sk_sleep(sk
), &wait
);
1930 finish_wait(sk_sleep(sk
), &wait
);
1933 /* Invalid queue pair content. XXX This should
1934 * be changed to a connection reset in a later
1942 err
= transport
->notify_recv_pre_dequeue(
1943 vsk
, target
, &recv_data
);
1947 read
= transport
->stream_dequeue(
1949 len
- copied
, flags
);
1957 err
= transport
->notify_recv_post_dequeue(
1959 !(flags
& MSG_PEEK
), &recv_data
);
1963 if (read
>= target
|| flags
& MSG_PEEK
)
1972 else if (sk
->sk_shutdown
& RCV_SHUTDOWN
)
1983 static const struct proto_ops vsock_stream_ops
= {
1985 .owner
= THIS_MODULE
,
1986 .release
= vsock_release
,
1988 .connect
= vsock_stream_connect
,
1989 .socketpair
= sock_no_socketpair
,
1990 .accept
= vsock_accept
,
1991 .getname
= vsock_getname
,
1993 .ioctl
= sock_no_ioctl
,
1994 .listen
= vsock_listen
,
1995 .shutdown
= vsock_shutdown
,
1996 .setsockopt
= vsock_stream_setsockopt
,
1997 .getsockopt
= vsock_stream_getsockopt
,
1998 .sendmsg
= vsock_stream_sendmsg
,
1999 .recvmsg
= vsock_stream_recvmsg
,
2000 .mmap
= sock_no_mmap
,
2001 .sendpage
= sock_no_sendpage
,
2004 static int vsock_create(struct net
*net
, struct socket
*sock
,
2005 int protocol
, int kern
)
2007 struct vsock_sock
*vsk
;
2014 if (protocol
&& protocol
!= PF_VSOCK
)
2015 return -EPROTONOSUPPORT
;
2017 switch (sock
->type
) {
2019 sock
->ops
= &vsock_dgram_ops
;
2022 sock
->ops
= &vsock_stream_ops
;
2025 return -ESOCKTNOSUPPORT
;
2028 sock
->state
= SS_UNCONNECTED
;
2030 sk
= __vsock_create(net
, sock
, NULL
, GFP_KERNEL
, 0, kern
);
2036 if (sock
->type
== SOCK_DGRAM
) {
2037 ret
= vsock_assign_transport(vsk
, NULL
);
2044 vsock_insert_unbound(vsk
);
2049 static const struct net_proto_family vsock_family_ops
= {
2051 .create
= vsock_create
,
2052 .owner
= THIS_MODULE
,
2055 static long vsock_dev_do_ioctl(struct file
*filp
,
2056 unsigned int cmd
, void __user
*ptr
)
2058 u32 __user
*p
= ptr
;
2059 u32 cid
= VMADDR_CID_ANY
;
2063 case IOCTL_VM_SOCKETS_GET_LOCAL_CID
:
2064 /* To be compatible with the VMCI behavior, we prioritize the
2065 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2068 cid
= transport_g2h
->get_local_cid();
2069 else if (transport_h2g
)
2070 cid
= transport_h2g
->get_local_cid();
2072 if (put_user(cid
, p
) != 0)
2077 pr_err("Unknown ioctl %d\n", cmd
);
2084 static long vsock_dev_ioctl(struct file
*filp
,
2085 unsigned int cmd
, unsigned long arg
)
2087 return vsock_dev_do_ioctl(filp
, cmd
, (void __user
*)arg
);
2090 #ifdef CONFIG_COMPAT
2091 static long vsock_dev_compat_ioctl(struct file
*filp
,
2092 unsigned int cmd
, unsigned long arg
)
2094 return vsock_dev_do_ioctl(filp
, cmd
, compat_ptr(arg
));
2098 static const struct file_operations vsock_device_ops
= {
2099 .owner
= THIS_MODULE
,
2100 .unlocked_ioctl
= vsock_dev_ioctl
,
2101 #ifdef CONFIG_COMPAT
2102 .compat_ioctl
= vsock_dev_compat_ioctl
,
2104 .open
= nonseekable_open
,
2107 static struct miscdevice vsock_device
= {
2109 .fops
= &vsock_device_ops
,
2112 static int __init
vsock_init(void)
2116 vsock_init_tables();
2118 vsock_proto
.owner
= THIS_MODULE
;
2119 vsock_device
.minor
= MISC_DYNAMIC_MINOR
;
2120 err
= misc_register(&vsock_device
);
2122 pr_err("Failed to register misc device\n");
2123 goto err_reset_transport
;
2126 err
= proto_register(&vsock_proto
, 1); /* we want our slab */
2128 pr_err("Cannot register vsock protocol\n");
2129 goto err_deregister_misc
;
2132 err
= sock_register(&vsock_family_ops
);
2134 pr_err("could not register af_vsock (%d) address family: %d\n",
2136 goto err_unregister_proto
;
2141 err_unregister_proto
:
2142 proto_unregister(&vsock_proto
);
2143 err_deregister_misc
:
2144 misc_deregister(&vsock_device
);
2145 err_reset_transport
:
2149 static void __exit
vsock_exit(void)
2151 misc_deregister(&vsock_device
);
2152 sock_unregister(AF_VSOCK
);
2153 proto_unregister(&vsock_proto
);
2156 const struct vsock_transport
*vsock_core_get_transport(struct vsock_sock
*vsk
)
2158 return vsk
->transport
;
2160 EXPORT_SYMBOL_GPL(vsock_core_get_transport
);
2162 int vsock_core_register(const struct vsock_transport
*t
, int features
)
2164 const struct vsock_transport
*t_h2g
, *t_g2h
, *t_dgram
, *t_local
;
2165 int err
= mutex_lock_interruptible(&vsock_register_mutex
);
2170 t_h2g
= transport_h2g
;
2171 t_g2h
= transport_g2h
;
2172 t_dgram
= transport_dgram
;
2173 t_local
= transport_local
;
2175 if (features
& VSOCK_TRANSPORT_F_H2G
) {
2183 if (features
& VSOCK_TRANSPORT_F_G2H
) {
2191 if (features
& VSOCK_TRANSPORT_F_DGRAM
) {
2199 if (features
& VSOCK_TRANSPORT_F_LOCAL
) {
2207 transport_h2g
= t_h2g
;
2208 transport_g2h
= t_g2h
;
2209 transport_dgram
= t_dgram
;
2210 transport_local
= t_local
;
2213 mutex_unlock(&vsock_register_mutex
);
2216 EXPORT_SYMBOL_GPL(vsock_core_register
);
2218 void vsock_core_unregister(const struct vsock_transport
*t
)
2220 mutex_lock(&vsock_register_mutex
);
2222 if (transport_h2g
== t
)
2223 transport_h2g
= NULL
;
2225 if (transport_g2h
== t
)
2226 transport_g2h
= NULL
;
2228 if (transport_dgram
== t
)
2229 transport_dgram
= NULL
;
2231 if (transport_local
== t
)
2232 transport_local
= NULL
;
2234 mutex_unlock(&vsock_register_mutex
);
2236 EXPORT_SYMBOL_GPL(vsock_core_unregister
);
2238 module_init(vsock_init
);
2239 module_exit(vsock_exit
);
2241 MODULE_AUTHOR("VMware, Inc.");
2242 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2243 MODULE_VERSION("1.0.2.0-k");
2244 MODULE_LICENSE("GPL v2");