1 // SPDX-License-Identifier: GPL-2.0-only
3 * Generic pidhash and scalable, time-bounded PID allocator
5 * (C) 2002-2003 Nadia Yvette Chambers, IBM
6 * (C) 2004 Nadia Yvette Chambers, Oracle
7 * (C) 2002-2004 Ingo Molnar, Red Hat
9 * pid-structures are backing objects for tasks sharing a given ID to chain
10 * against. There is very little to them aside from hashing them and
11 * parking tasks using given ID's on a list.
13 * The hash is always changed with the tasklist_lock write-acquired,
14 * and the hash is only accessed with the tasklist_lock at least
15 * read-acquired, so there's no additional SMP locking needed here.
17 * We have a list of bitmap pages, which bitmaps represent the PID space.
18 * Allocating and freeing PIDs is completely lockless. The worst-case
19 * allocation scenario when all but one out of 1 million PIDs possible are
20 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
21 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
24 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
25 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
26 * Many thanks to Oleg Nesterov for comments and help
31 #include <linux/export.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/rculist.h>
35 #include <linux/memblock.h>
36 #include <linux/pid_namespace.h>
37 #include <linux/init_task.h>
38 #include <linux/syscalls.h>
39 #include <linux/proc_ns.h>
40 #include <linux/refcount.h>
41 #include <linux/anon_inodes.h>
42 #include <linux/sched/signal.h>
43 #include <linux/sched/task.h>
44 #include <linux/idr.h>
46 struct pid init_struct_pid
= {
47 .count
= REFCOUNT_INIT(1),
60 int pid_max
= PID_MAX_DEFAULT
;
62 #define RESERVED_PIDS 300
64 int pid_max_min
= RESERVED_PIDS
+ 1;
65 int pid_max_max
= PID_MAX_LIMIT
;
68 * PID-map pages start out as NULL, they get allocated upon
69 * first use and are never deallocated. This way a low pid_max
70 * value does not cause lots of bitmaps to be allocated, but
71 * the scheme scales to up to 4 million PIDs, runtime.
73 struct pid_namespace init_pid_ns
= {
75 .idr
= IDR_INIT(init_pid_ns
.idr
),
76 .pid_allocated
= PIDNS_ADDING
,
78 .child_reaper
= &init_task
,
79 .user_ns
= &init_user_ns
,
80 .ns
.inum
= PROC_PID_INIT_INO
,
82 .ns
.ops
= &pidns_operations
,
85 EXPORT_SYMBOL_GPL(init_pid_ns
);
88 * Note: disable interrupts while the pidmap_lock is held as an
89 * interrupt might come in and do read_lock(&tasklist_lock).
91 * If we don't disable interrupts there is a nasty deadlock between
92 * detach_pid()->free_pid() and another cpu that does
93 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
94 * read_lock(&tasklist_lock);
96 * After we clean up the tasklist_lock and know there are no
97 * irq handlers that take it we can leave the interrupts enabled.
98 * For now it is easier to be safe than to prove it can't happen.
101 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(pidmap_lock
);
103 void put_pid(struct pid
*pid
)
105 struct pid_namespace
*ns
;
110 ns
= pid
->numbers
[pid
->level
].ns
;
111 if (refcount_dec_and_test(&pid
->count
)) {
112 kmem_cache_free(ns
->pid_cachep
, pid
);
116 EXPORT_SYMBOL_GPL(put_pid
);
118 static void delayed_put_pid(struct rcu_head
*rhp
)
120 struct pid
*pid
= container_of(rhp
, struct pid
, rcu
);
124 void free_pid(struct pid
*pid
)
126 /* We can be called with write_lock_irq(&tasklist_lock) held */
130 spin_lock_irqsave(&pidmap_lock
, flags
);
131 for (i
= 0; i
<= pid
->level
; i
++) {
132 struct upid
*upid
= pid
->numbers
+ i
;
133 struct pid_namespace
*ns
= upid
->ns
;
134 switch (--ns
->pid_allocated
) {
137 /* When all that is left in the pid namespace
138 * is the reaper wake up the reaper. The reaper
139 * may be sleeping in zap_pid_ns_processes().
141 wake_up_process(ns
->child_reaper
);
144 /* Handle a fork failure of the first process */
145 WARN_ON(ns
->child_reaper
);
146 ns
->pid_allocated
= 0;
150 idr_remove(&ns
->idr
, upid
->nr
);
152 spin_unlock_irqrestore(&pidmap_lock
, flags
);
154 call_rcu(&pid
->rcu
, delayed_put_pid
);
157 struct pid
*alloc_pid(struct pid_namespace
*ns
, pid_t
*set_tid
,
163 struct pid_namespace
*tmp
;
165 int retval
= -ENOMEM
;
168 * set_tid_size contains the size of the set_tid array. Starting at
169 * the most nested currently active PID namespace it tells alloc_pid()
170 * which PID to set for a process in that most nested PID namespace
171 * up to set_tid_size PID namespaces. It does not have to set the PID
172 * for a process in all nested PID namespaces but set_tid_size must
173 * never be greater than the current ns->level + 1.
175 if (set_tid_size
> ns
->level
+ 1)
176 return ERR_PTR(-EINVAL
);
178 pid
= kmem_cache_alloc(ns
->pid_cachep
, GFP_KERNEL
);
180 return ERR_PTR(retval
);
183 pid
->level
= ns
->level
;
185 for (i
= ns
->level
; i
>= 0; i
--) {
189 tid
= set_tid
[ns
->level
- i
];
192 if (tid
< 1 || tid
>= pid_max
)
195 * Also fail if a PID != 1 is requested and
198 if (tid
!= 1 && !tmp
->child_reaper
)
201 if (!ns_capable(tmp
->user_ns
, CAP_SYS_ADMIN
))
206 idr_preload(GFP_KERNEL
);
207 spin_lock_irq(&pidmap_lock
);
210 nr
= idr_alloc(&tmp
->idr
, NULL
, tid
,
211 tid
+ 1, GFP_ATOMIC
);
213 * If ENOSPC is returned it means that the PID is
214 * alreay in use. Return EEXIST in that case.
221 * init really needs pid 1, but after reaching the
222 * maximum wrap back to RESERVED_PIDS
224 if (idr_get_cursor(&tmp
->idr
) > RESERVED_PIDS
)
225 pid_min
= RESERVED_PIDS
;
228 * Store a null pointer so find_pid_ns does not find
229 * a partially initialized PID (see below).
231 nr
= idr_alloc_cyclic(&tmp
->idr
, NULL
, pid_min
,
232 pid_max
, GFP_ATOMIC
);
234 spin_unlock_irq(&pidmap_lock
);
238 retval
= (nr
== -ENOSPC
) ? -EAGAIN
: nr
;
242 pid
->numbers
[i
].nr
= nr
;
243 pid
->numbers
[i
].ns
= tmp
;
248 * ENOMEM is not the most obvious choice especially for the case
249 * where the child subreaper has already exited and the pid
250 * namespace denies the creation of any new processes. But ENOMEM
251 * is what we have exposed to userspace for a long time and it is
252 * documented behavior for pid namespaces. So we can't easily
253 * change it even if there were an error code better suited.
258 refcount_set(&pid
->count
, 1);
259 spin_lock_init(&pid
->lock
);
260 for (type
= 0; type
< PIDTYPE_MAX
; ++type
)
261 INIT_HLIST_HEAD(&pid
->tasks
[type
]);
263 init_waitqueue_head(&pid
->wait_pidfd
);
264 INIT_HLIST_HEAD(&pid
->inodes
);
266 upid
= pid
->numbers
+ ns
->level
;
267 spin_lock_irq(&pidmap_lock
);
268 if (!(ns
->pid_allocated
& PIDNS_ADDING
))
270 for ( ; upid
>= pid
->numbers
; --upid
) {
271 /* Make the PID visible to find_pid_ns. */
272 idr_replace(&upid
->ns
->idr
, pid
, upid
->nr
);
273 upid
->ns
->pid_allocated
++;
275 spin_unlock_irq(&pidmap_lock
);
280 spin_unlock_irq(&pidmap_lock
);
284 spin_lock_irq(&pidmap_lock
);
285 while (++i
<= ns
->level
) {
286 upid
= pid
->numbers
+ i
;
287 idr_remove(&upid
->ns
->idr
, upid
->nr
);
290 /* On failure to allocate the first pid, reset the state */
291 if (ns
->pid_allocated
== PIDNS_ADDING
)
292 idr_set_cursor(&ns
->idr
, 0);
294 spin_unlock_irq(&pidmap_lock
);
296 kmem_cache_free(ns
->pid_cachep
, pid
);
297 return ERR_PTR(retval
);
300 void disable_pid_allocation(struct pid_namespace
*ns
)
302 spin_lock_irq(&pidmap_lock
);
303 ns
->pid_allocated
&= ~PIDNS_ADDING
;
304 spin_unlock_irq(&pidmap_lock
);
307 struct pid
*find_pid_ns(int nr
, struct pid_namespace
*ns
)
309 return idr_find(&ns
->idr
, nr
);
311 EXPORT_SYMBOL_GPL(find_pid_ns
);
313 struct pid
*find_vpid(int nr
)
315 return find_pid_ns(nr
, task_active_pid_ns(current
));
317 EXPORT_SYMBOL_GPL(find_vpid
);
319 static struct pid
**task_pid_ptr(struct task_struct
*task
, enum pid_type type
)
321 return (type
== PIDTYPE_PID
) ?
323 &task
->signal
->pids
[type
];
327 * attach_pid() must be called with the tasklist_lock write-held.
329 void attach_pid(struct task_struct
*task
, enum pid_type type
)
331 struct pid
*pid
= *task_pid_ptr(task
, type
);
332 hlist_add_head_rcu(&task
->pid_links
[type
], &pid
->tasks
[type
]);
335 static void __change_pid(struct task_struct
*task
, enum pid_type type
,
338 struct pid
**pid_ptr
= task_pid_ptr(task
, type
);
344 hlist_del_rcu(&task
->pid_links
[type
]);
347 for (tmp
= PIDTYPE_MAX
; --tmp
>= 0; )
348 if (pid_has_task(pid
, tmp
))
354 void detach_pid(struct task_struct
*task
, enum pid_type type
)
356 __change_pid(task
, type
, NULL
);
359 void change_pid(struct task_struct
*task
, enum pid_type type
,
362 __change_pid(task
, type
, pid
);
363 attach_pid(task
, type
);
366 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
367 void transfer_pid(struct task_struct
*old
, struct task_struct
*new,
370 if (type
== PIDTYPE_PID
)
371 new->thread_pid
= old
->thread_pid
;
372 hlist_replace_rcu(&old
->pid_links
[type
], &new->pid_links
[type
]);
375 struct task_struct
*pid_task(struct pid
*pid
, enum pid_type type
)
377 struct task_struct
*result
= NULL
;
379 struct hlist_node
*first
;
380 first
= rcu_dereference_check(hlist_first_rcu(&pid
->tasks
[type
]),
381 lockdep_tasklist_lock_is_held());
383 result
= hlist_entry(first
, struct task_struct
, pid_links
[(type
)]);
387 EXPORT_SYMBOL(pid_task
);
390 * Must be called under rcu_read_lock().
392 struct task_struct
*find_task_by_pid_ns(pid_t nr
, struct pid_namespace
*ns
)
394 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
395 "find_task_by_pid_ns() needs rcu_read_lock() protection");
396 return pid_task(find_pid_ns(nr
, ns
), PIDTYPE_PID
);
399 struct task_struct
*find_task_by_vpid(pid_t vnr
)
401 return find_task_by_pid_ns(vnr
, task_active_pid_ns(current
));
404 struct task_struct
*find_get_task_by_vpid(pid_t nr
)
406 struct task_struct
*task
;
409 task
= find_task_by_vpid(nr
);
411 get_task_struct(task
);
417 struct pid
*get_task_pid(struct task_struct
*task
, enum pid_type type
)
421 pid
= get_pid(rcu_dereference(*task_pid_ptr(task
, type
)));
425 EXPORT_SYMBOL_GPL(get_task_pid
);
427 struct task_struct
*get_pid_task(struct pid
*pid
, enum pid_type type
)
429 struct task_struct
*result
;
431 result
= pid_task(pid
, type
);
433 get_task_struct(result
);
437 EXPORT_SYMBOL_GPL(get_pid_task
);
439 struct pid
*find_get_pid(pid_t nr
)
444 pid
= get_pid(find_vpid(nr
));
449 EXPORT_SYMBOL_GPL(find_get_pid
);
451 pid_t
pid_nr_ns(struct pid
*pid
, struct pid_namespace
*ns
)
456 if (pid
&& ns
->level
<= pid
->level
) {
457 upid
= &pid
->numbers
[ns
->level
];
463 EXPORT_SYMBOL_GPL(pid_nr_ns
);
465 pid_t
pid_vnr(struct pid
*pid
)
467 return pid_nr_ns(pid
, task_active_pid_ns(current
));
469 EXPORT_SYMBOL_GPL(pid_vnr
);
471 pid_t
__task_pid_nr_ns(struct task_struct
*task
, enum pid_type type
,
472 struct pid_namespace
*ns
)
478 ns
= task_active_pid_ns(current
);
479 if (likely(pid_alive(task
)))
480 nr
= pid_nr_ns(rcu_dereference(*task_pid_ptr(task
, type
)), ns
);
485 EXPORT_SYMBOL(__task_pid_nr_ns
);
487 struct pid_namespace
*task_active_pid_ns(struct task_struct
*tsk
)
489 return ns_of_pid(task_pid(tsk
));
491 EXPORT_SYMBOL_GPL(task_active_pid_ns
);
494 * Used by proc to find the first pid that is greater than or equal to nr.
496 * If there is a pid at nr this function is exactly the same as find_pid_ns.
498 struct pid
*find_ge_pid(int nr
, struct pid_namespace
*ns
)
500 return idr_get_next(&ns
->idr
, &nr
);
504 * pidfd_create() - Create a new pid file descriptor.
506 * @pid: struct pid that the pidfd will reference
508 * This creates a new pid file descriptor with the O_CLOEXEC flag set.
510 * Note, that this function can only be called after the fd table has
511 * been unshared to avoid leaking the pidfd to the new process.
513 * Return: On success, a cloexec pidfd is returned.
514 * On error, a negative errno number will be returned.
516 static int pidfd_create(struct pid
*pid
)
520 fd
= anon_inode_getfd("[pidfd]", &pidfd_fops
, get_pid(pid
),
529 * pidfd_open() - Open new pid file descriptor.
531 * @pid: pid for which to retrieve a pidfd
532 * @flags: flags to pass
534 * This creates a new pid file descriptor with the O_CLOEXEC flag set for
535 * the process identified by @pid. Currently, the process identified by
536 * @pid must be a thread-group leader. This restriction currently exists
537 * for all aspects of pidfds including pidfd creation (CLONE_PIDFD cannot
538 * be used with CLONE_THREAD) and pidfd polling (only supports thread group
541 * Return: On success, a cloexec pidfd is returned.
542 * On error, a negative errno number will be returned.
544 SYSCALL_DEFINE2(pidfd_open
, pid_t
, pid
, unsigned int, flags
)
555 p
= find_get_pid(pid
);
559 if (pid_has_task(p
, PIDTYPE_TGID
))
560 fd
= pidfd_create(p
);
568 void __init
pid_idr_init(void)
570 /* Verify no one has done anything silly: */
571 BUILD_BUG_ON(PID_MAX_LIMIT
>= PIDNS_ADDING
);
573 /* bump default and minimum pid_max based on number of cpus */
574 pid_max
= min(pid_max_max
, max_t(int, pid_max
,
575 PIDS_PER_CPU_DEFAULT
* num_possible_cpus()));
576 pid_max_min
= max_t(int, pid_max_min
,
577 PIDS_PER_CPU_MIN
* num_possible_cpus());
578 pr_info("pid_max: default: %u minimum: %u\n", pid_max
, pid_max_min
);
580 idr_init(&init_pid_ns
.idr
);
582 init_pid_ns
.pid_cachep
= KMEM_CACHE(pid
,
583 SLAB_HWCACHE_ALIGN
| SLAB_PANIC
| SLAB_ACCOUNT
);
586 static struct file
*__pidfd_fget(struct task_struct
*task
, int fd
)
591 ret
= mutex_lock_killable(&task
->signal
->exec_update_mutex
);
595 if (ptrace_may_access(task
, PTRACE_MODE_ATTACH_REALCREDS
))
596 file
= fget_task(task
, fd
);
598 file
= ERR_PTR(-EPERM
);
600 mutex_unlock(&task
->signal
->exec_update_mutex
);
602 return file
?: ERR_PTR(-EBADF
);
605 static int pidfd_getfd(struct pid
*pid
, int fd
)
607 struct task_struct
*task
;
611 task
= get_pid_task(pid
, PIDTYPE_PID
);
615 file
= __pidfd_fget(task
, fd
);
616 put_task_struct(task
);
618 return PTR_ERR(file
);
620 ret
= security_file_receive(file
);
626 ret
= get_unused_fd_flags(O_CLOEXEC
);
630 fd_install(ret
, file
);
636 * sys_pidfd_getfd() - Get a file descriptor from another process
638 * @pidfd: the pidfd file descriptor of the process
639 * @fd: the file descriptor number to get
640 * @flags: flags on how to get the fd (reserved)
642 * This syscall gets a copy of a file descriptor from another process
643 * based on the pidfd, and file descriptor number. It requires that
644 * the calling process has the ability to ptrace the process represented
645 * by the pidfd. The process which is having its file descriptor copied
646 * is otherwise unaffected.
648 * Return: On success, a cloexec file descriptor is returned.
649 * On error, a negative errno number will be returned.
651 SYSCALL_DEFINE3(pidfd_getfd
, int, pidfd
, int, fd
,
658 /* flags is currently unused - make sure it's unset */
666 pid
= pidfd_pid(f
.file
);
670 ret
= pidfd_getfd(pid
, fd
);