1 // SPDX-License-Identifier: GPL-2.0
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
25 #include <trace/events/sched.h>
28 * Targeted preemption latency for CPU-bound tasks:
30 * NOTE: this latency value is not the same as the concept of
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40 unsigned int sysctl_sched_latency
= 6000000ULL;
41 static unsigned int normalized_sysctl_sched_latency
= 6000000ULL;
44 * The initial- and re-scaling of tunables is configurable
48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
54 enum sched_tunable_scaling sysctl_sched_tunable_scaling
= SCHED_TUNABLESCALING_LOG
;
57 * Minimal preemption granularity for CPU-bound tasks:
59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
61 unsigned int sysctl_sched_min_granularity
= 750000ULL;
62 static unsigned int normalized_sysctl_sched_min_granularity
= 750000ULL;
65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
67 static unsigned int sched_nr_latency
= 8;
70 * After fork, child runs first. If set to 0 (default) then
71 * parent will (try to) run first.
73 unsigned int sysctl_sched_child_runs_first __read_mostly
;
76 * SCHED_OTHER wake-up granularity.
78 * This option delays the preemption effects of decoupled workloads
79 * and reduces their over-scheduling. Synchronous workloads will still
80 * have immediate wakeup/sleep latencies.
82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
84 unsigned int sysctl_sched_wakeup_granularity
= 1000000UL;
85 static unsigned int normalized_sysctl_sched_wakeup_granularity
= 1000000UL;
87 const_debug
unsigned int sysctl_sched_migration_cost
= 500000UL;
89 int sched_thermal_decay_shift
;
90 static int __init
setup_sched_thermal_decay_shift(char *str
)
94 if (kstrtoint(str
, 0, &_shift
))
95 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
97 sched_thermal_decay_shift
= clamp(_shift
, 0, 10);
100 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift
);
104 * For asym packing, by default the lower numbered CPU has higher priority.
106 int __weak
arch_asym_cpu_priority(int cpu
)
112 * The margin used when comparing utilization with CPU capacity.
116 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
120 #ifdef CONFIG_CFS_BANDWIDTH
122 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
123 * each time a cfs_rq requests quota.
125 * Note: in the case that the slice exceeds the runtime remaining (either due
126 * to consumption or the quota being specified to be smaller than the slice)
127 * we will always only issue the remaining available time.
129 * (default: 5 msec, units: microseconds)
131 unsigned int sysctl_sched_cfs_bandwidth_slice
= 5000UL;
134 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
140 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
146 static inline void update_load_set(struct load_weight
*lw
, unsigned long w
)
153 * Increase the granularity value when there are more CPUs,
154 * because with more CPUs the 'effective latency' as visible
155 * to users decreases. But the relationship is not linear,
156 * so pick a second-best guess by going with the log2 of the
159 * This idea comes from the SD scheduler of Con Kolivas:
161 static unsigned int get_update_sysctl_factor(void)
163 unsigned int cpus
= min_t(unsigned int, num_online_cpus(), 8);
166 switch (sysctl_sched_tunable_scaling
) {
167 case SCHED_TUNABLESCALING_NONE
:
170 case SCHED_TUNABLESCALING_LINEAR
:
173 case SCHED_TUNABLESCALING_LOG
:
175 factor
= 1 + ilog2(cpus
);
182 static void update_sysctl(void)
184 unsigned int factor
= get_update_sysctl_factor();
186 #define SET_SYSCTL(name) \
187 (sysctl_##name = (factor) * normalized_sysctl_##name)
188 SET_SYSCTL(sched_min_granularity
);
189 SET_SYSCTL(sched_latency
);
190 SET_SYSCTL(sched_wakeup_granularity
);
194 void sched_init_granularity(void)
199 #define WMULT_CONST (~0U)
200 #define WMULT_SHIFT 32
202 static void __update_inv_weight(struct load_weight
*lw
)
206 if (likely(lw
->inv_weight
))
209 w
= scale_load_down(lw
->weight
);
211 if (BITS_PER_LONG
> 32 && unlikely(w
>= WMULT_CONST
))
213 else if (unlikely(!w
))
214 lw
->inv_weight
= WMULT_CONST
;
216 lw
->inv_weight
= WMULT_CONST
/ w
;
220 * delta_exec * weight / lw.weight
222 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
224 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
225 * we're guaranteed shift stays positive because inv_weight is guaranteed to
226 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
228 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
229 * weight/lw.weight <= 1, and therefore our shift will also be positive.
231 static u64
__calc_delta(u64 delta_exec
, unsigned long weight
, struct load_weight
*lw
)
233 u64 fact
= scale_load_down(weight
);
234 int shift
= WMULT_SHIFT
;
236 __update_inv_weight(lw
);
238 if (unlikely(fact
>> 32)) {
245 fact
= mul_u32_u32(fact
, lw
->inv_weight
);
252 return mul_u64_u32_shr(delta_exec
, fact
, shift
);
256 const struct sched_class fair_sched_class
;
258 /**************************************************************
259 * CFS operations on generic schedulable entities:
262 #ifdef CONFIG_FAIR_GROUP_SCHED
263 static inline struct task_struct
*task_of(struct sched_entity
*se
)
265 SCHED_WARN_ON(!entity_is_task(se
));
266 return container_of(se
, struct task_struct
, se
);
269 /* Walk up scheduling entities hierarchy */
270 #define for_each_sched_entity(se) \
271 for (; se; se = se->parent)
273 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
278 /* runqueue on which this entity is (to be) queued */
279 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
284 /* runqueue "owned" by this group */
285 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
290 static inline void cfs_rq_tg_path(struct cfs_rq
*cfs_rq
, char *path
, int len
)
295 if (cfs_rq
&& task_group_is_autogroup(cfs_rq
->tg
))
296 autogroup_path(cfs_rq
->tg
, path
, len
);
297 else if (cfs_rq
&& cfs_rq
->tg
->css
.cgroup
)
298 cgroup_path(cfs_rq
->tg
->css
.cgroup
, path
, len
);
300 strlcpy(path
, "(null)", len
);
303 static inline bool list_add_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
305 struct rq
*rq
= rq_of(cfs_rq
);
306 int cpu
= cpu_of(rq
);
309 return rq
->tmp_alone_branch
== &rq
->leaf_cfs_rq_list
;
314 * Ensure we either appear before our parent (if already
315 * enqueued) or force our parent to appear after us when it is
316 * enqueued. The fact that we always enqueue bottom-up
317 * reduces this to two cases and a special case for the root
318 * cfs_rq. Furthermore, it also means that we will always reset
319 * tmp_alone_branch either when the branch is connected
320 * to a tree or when we reach the top of the tree
322 if (cfs_rq
->tg
->parent
&&
323 cfs_rq
->tg
->parent
->cfs_rq
[cpu
]->on_list
) {
325 * If parent is already on the list, we add the child
326 * just before. Thanks to circular linked property of
327 * the list, this means to put the child at the tail
328 * of the list that starts by parent.
330 list_add_tail_rcu(&cfs_rq
->leaf_cfs_rq_list
,
331 &(cfs_rq
->tg
->parent
->cfs_rq
[cpu
]->leaf_cfs_rq_list
));
333 * The branch is now connected to its tree so we can
334 * reset tmp_alone_branch to the beginning of the
337 rq
->tmp_alone_branch
= &rq
->leaf_cfs_rq_list
;
341 if (!cfs_rq
->tg
->parent
) {
343 * cfs rq without parent should be put
344 * at the tail of the list.
346 list_add_tail_rcu(&cfs_rq
->leaf_cfs_rq_list
,
347 &rq
->leaf_cfs_rq_list
);
349 * We have reach the top of a tree so we can reset
350 * tmp_alone_branch to the beginning of the list.
352 rq
->tmp_alone_branch
= &rq
->leaf_cfs_rq_list
;
357 * The parent has not already been added so we want to
358 * make sure that it will be put after us.
359 * tmp_alone_branch points to the begin of the branch
360 * where we will add parent.
362 list_add_rcu(&cfs_rq
->leaf_cfs_rq_list
, rq
->tmp_alone_branch
);
364 * update tmp_alone_branch to points to the new begin
367 rq
->tmp_alone_branch
= &cfs_rq
->leaf_cfs_rq_list
;
371 static inline void list_del_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
373 if (cfs_rq
->on_list
) {
374 struct rq
*rq
= rq_of(cfs_rq
);
377 * With cfs_rq being unthrottled/throttled during an enqueue,
378 * it can happen the tmp_alone_branch points the a leaf that
379 * we finally want to del. In this case, tmp_alone_branch moves
380 * to the prev element but it will point to rq->leaf_cfs_rq_list
381 * at the end of the enqueue.
383 if (rq
->tmp_alone_branch
== &cfs_rq
->leaf_cfs_rq_list
)
384 rq
->tmp_alone_branch
= cfs_rq
->leaf_cfs_rq_list
.prev
;
386 list_del_rcu(&cfs_rq
->leaf_cfs_rq_list
);
391 static inline void assert_list_leaf_cfs_rq(struct rq
*rq
)
393 SCHED_WARN_ON(rq
->tmp_alone_branch
!= &rq
->leaf_cfs_rq_list
);
396 /* Iterate thr' all leaf cfs_rq's on a runqueue */
397 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
398 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
401 /* Do the two (enqueued) entities belong to the same group ? */
402 static inline struct cfs_rq
*
403 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
405 if (se
->cfs_rq
== pse
->cfs_rq
)
411 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
417 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
419 int se_depth
, pse_depth
;
422 * preemption test can be made between sibling entities who are in the
423 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
424 * both tasks until we find their ancestors who are siblings of common
428 /* First walk up until both entities are at same depth */
429 se_depth
= (*se
)->depth
;
430 pse_depth
= (*pse
)->depth
;
432 while (se_depth
> pse_depth
) {
434 *se
= parent_entity(*se
);
437 while (pse_depth
> se_depth
) {
439 *pse
= parent_entity(*pse
);
442 while (!is_same_group(*se
, *pse
)) {
443 *se
= parent_entity(*se
);
444 *pse
= parent_entity(*pse
);
448 #else /* !CONFIG_FAIR_GROUP_SCHED */
450 static inline struct task_struct
*task_of(struct sched_entity
*se
)
452 return container_of(se
, struct task_struct
, se
);
455 #define for_each_sched_entity(se) \
456 for (; se; se = NULL)
458 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
460 return &task_rq(p
)->cfs
;
463 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
465 struct task_struct
*p
= task_of(se
);
466 struct rq
*rq
= task_rq(p
);
471 /* runqueue "owned" by this group */
472 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
477 static inline void cfs_rq_tg_path(struct cfs_rq
*cfs_rq
, char *path
, int len
)
480 strlcpy(path
, "(null)", len
);
483 static inline bool list_add_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
488 static inline void list_del_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
492 static inline void assert_list_leaf_cfs_rq(struct rq
*rq
)
496 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
497 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
499 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
505 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
509 #endif /* CONFIG_FAIR_GROUP_SCHED */
511 static __always_inline
512 void account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
, u64 delta_exec
);
514 /**************************************************************
515 * Scheduling class tree data structure manipulation methods:
518 static inline u64
max_vruntime(u64 max_vruntime
, u64 vruntime
)
520 s64 delta
= (s64
)(vruntime
- max_vruntime
);
522 max_vruntime
= vruntime
;
527 static inline u64
min_vruntime(u64 min_vruntime
, u64 vruntime
)
529 s64 delta
= (s64
)(vruntime
- min_vruntime
);
531 min_vruntime
= vruntime
;
536 static inline int entity_before(struct sched_entity
*a
,
537 struct sched_entity
*b
)
539 return (s64
)(a
->vruntime
- b
->vruntime
) < 0;
542 static void update_min_vruntime(struct cfs_rq
*cfs_rq
)
544 struct sched_entity
*curr
= cfs_rq
->curr
;
545 struct rb_node
*leftmost
= rb_first_cached(&cfs_rq
->tasks_timeline
);
547 u64 vruntime
= cfs_rq
->min_vruntime
;
551 vruntime
= curr
->vruntime
;
556 if (leftmost
) { /* non-empty tree */
557 struct sched_entity
*se
;
558 se
= rb_entry(leftmost
, struct sched_entity
, run_node
);
561 vruntime
= se
->vruntime
;
563 vruntime
= min_vruntime(vruntime
, se
->vruntime
);
566 /* ensure we never gain time by being placed backwards. */
567 cfs_rq
->min_vruntime
= max_vruntime(cfs_rq
->min_vruntime
, vruntime
);
570 cfs_rq
->min_vruntime_copy
= cfs_rq
->min_vruntime
;
575 * Enqueue an entity into the rb-tree:
577 static void __enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
579 struct rb_node
**link
= &cfs_rq
->tasks_timeline
.rb_root
.rb_node
;
580 struct rb_node
*parent
= NULL
;
581 struct sched_entity
*entry
;
582 bool leftmost
= true;
585 * Find the right place in the rbtree:
589 entry
= rb_entry(parent
, struct sched_entity
, run_node
);
591 * We dont care about collisions. Nodes with
592 * the same key stay together.
594 if (entity_before(se
, entry
)) {
595 link
= &parent
->rb_left
;
597 link
= &parent
->rb_right
;
602 rb_link_node(&se
->run_node
, parent
, link
);
603 rb_insert_color_cached(&se
->run_node
,
604 &cfs_rq
->tasks_timeline
, leftmost
);
607 static void __dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
609 rb_erase_cached(&se
->run_node
, &cfs_rq
->tasks_timeline
);
612 struct sched_entity
*__pick_first_entity(struct cfs_rq
*cfs_rq
)
614 struct rb_node
*left
= rb_first_cached(&cfs_rq
->tasks_timeline
);
619 return rb_entry(left
, struct sched_entity
, run_node
);
622 static struct sched_entity
*__pick_next_entity(struct sched_entity
*se
)
624 struct rb_node
*next
= rb_next(&se
->run_node
);
629 return rb_entry(next
, struct sched_entity
, run_node
);
632 #ifdef CONFIG_SCHED_DEBUG
633 struct sched_entity
*__pick_last_entity(struct cfs_rq
*cfs_rq
)
635 struct rb_node
*last
= rb_last(&cfs_rq
->tasks_timeline
.rb_root
);
640 return rb_entry(last
, struct sched_entity
, run_node
);
643 /**************************************************************
644 * Scheduling class statistics methods:
647 int sched_proc_update_handler(struct ctl_table
*table
, int write
,
648 void __user
*buffer
, size_t *lenp
,
651 int ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
652 unsigned int factor
= get_update_sysctl_factor();
657 sched_nr_latency
= DIV_ROUND_UP(sysctl_sched_latency
,
658 sysctl_sched_min_granularity
);
660 #define WRT_SYSCTL(name) \
661 (normalized_sysctl_##name = sysctl_##name / (factor))
662 WRT_SYSCTL(sched_min_granularity
);
663 WRT_SYSCTL(sched_latency
);
664 WRT_SYSCTL(sched_wakeup_granularity
);
674 static inline u64
calc_delta_fair(u64 delta
, struct sched_entity
*se
)
676 if (unlikely(se
->load
.weight
!= NICE_0_LOAD
))
677 delta
= __calc_delta(delta
, NICE_0_LOAD
, &se
->load
);
683 * The idea is to set a period in which each task runs once.
685 * When there are too many tasks (sched_nr_latency) we have to stretch
686 * this period because otherwise the slices get too small.
688 * p = (nr <= nl) ? l : l*nr/nl
690 static u64
__sched_period(unsigned long nr_running
)
692 if (unlikely(nr_running
> sched_nr_latency
))
693 return nr_running
* sysctl_sched_min_granularity
;
695 return sysctl_sched_latency
;
699 * We calculate the wall-time slice from the period by taking a part
700 * proportional to the weight.
704 static u64
sched_slice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
706 u64 slice
= __sched_period(cfs_rq
->nr_running
+ !se
->on_rq
);
708 for_each_sched_entity(se
) {
709 struct load_weight
*load
;
710 struct load_weight lw
;
712 cfs_rq
= cfs_rq_of(se
);
713 load
= &cfs_rq
->load
;
715 if (unlikely(!se
->on_rq
)) {
718 update_load_add(&lw
, se
->load
.weight
);
721 slice
= __calc_delta(slice
, se
->load
.weight
, load
);
727 * We calculate the vruntime slice of a to-be-inserted task.
731 static u64
sched_vslice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
733 return calc_delta_fair(sched_slice(cfs_rq
, se
), se
);
739 static int select_idle_sibling(struct task_struct
*p
, int prev_cpu
, int cpu
);
740 static unsigned long task_h_load(struct task_struct
*p
);
741 static unsigned long capacity_of(int cpu
);
743 /* Give new sched_entity start runnable values to heavy its load in infant time */
744 void init_entity_runnable_average(struct sched_entity
*se
)
746 struct sched_avg
*sa
= &se
->avg
;
748 memset(sa
, 0, sizeof(*sa
));
751 * Tasks are initialized with full load to be seen as heavy tasks until
752 * they get a chance to stabilize to their real load level.
753 * Group entities are initialized with zero load to reflect the fact that
754 * nothing has been attached to the task group yet.
756 if (entity_is_task(se
))
757 sa
->load_avg
= scale_load_down(se
->load
.weight
);
759 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
762 static void attach_entity_cfs_rq(struct sched_entity
*se
);
765 * With new tasks being created, their initial util_avgs are extrapolated
766 * based on the cfs_rq's current util_avg:
768 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
770 * However, in many cases, the above util_avg does not give a desired
771 * value. Moreover, the sum of the util_avgs may be divergent, such
772 * as when the series is a harmonic series.
774 * To solve this problem, we also cap the util_avg of successive tasks to
775 * only 1/2 of the left utilization budget:
777 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
779 * where n denotes the nth task and cpu_scale the CPU capacity.
781 * For example, for a CPU with 1024 of capacity, a simplest series from
782 * the beginning would be like:
784 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
785 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
787 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
788 * if util_avg > util_avg_cap.
790 void post_init_entity_util_avg(struct task_struct
*p
)
792 struct sched_entity
*se
= &p
->se
;
793 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
794 struct sched_avg
*sa
= &se
->avg
;
795 long cpu_scale
= arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq
)));
796 long cap
= (long)(cpu_scale
- cfs_rq
->avg
.util_avg
) / 2;
799 if (cfs_rq
->avg
.util_avg
!= 0) {
800 sa
->util_avg
= cfs_rq
->avg
.util_avg
* se
->load
.weight
;
801 sa
->util_avg
/= (cfs_rq
->avg
.load_avg
+ 1);
803 if (sa
->util_avg
> cap
)
810 sa
->runnable_avg
= cpu_scale
;
812 if (p
->sched_class
!= &fair_sched_class
) {
814 * For !fair tasks do:
816 update_cfs_rq_load_avg(now, cfs_rq);
817 attach_entity_load_avg(cfs_rq, se);
818 switched_from_fair(rq, p);
820 * such that the next switched_to_fair() has the
823 se
->avg
.last_update_time
= cfs_rq_clock_pelt(cfs_rq
);
827 attach_entity_cfs_rq(se
);
830 #else /* !CONFIG_SMP */
831 void init_entity_runnable_average(struct sched_entity
*se
)
834 void post_init_entity_util_avg(struct task_struct
*p
)
837 static void update_tg_load_avg(struct cfs_rq
*cfs_rq
, int force
)
840 #endif /* CONFIG_SMP */
843 * Update the current task's runtime statistics.
845 static void update_curr(struct cfs_rq
*cfs_rq
)
847 struct sched_entity
*curr
= cfs_rq
->curr
;
848 u64 now
= rq_clock_task(rq_of(cfs_rq
));
854 delta_exec
= now
- curr
->exec_start
;
855 if (unlikely((s64
)delta_exec
<= 0))
858 curr
->exec_start
= now
;
860 schedstat_set(curr
->statistics
.exec_max
,
861 max(delta_exec
, curr
->statistics
.exec_max
));
863 curr
->sum_exec_runtime
+= delta_exec
;
864 schedstat_add(cfs_rq
->exec_clock
, delta_exec
);
866 curr
->vruntime
+= calc_delta_fair(delta_exec
, curr
);
867 update_min_vruntime(cfs_rq
);
869 if (entity_is_task(curr
)) {
870 struct task_struct
*curtask
= task_of(curr
);
872 trace_sched_stat_runtime(curtask
, delta_exec
, curr
->vruntime
);
873 cgroup_account_cputime(curtask
, delta_exec
);
874 account_group_exec_runtime(curtask
, delta_exec
);
877 account_cfs_rq_runtime(cfs_rq
, delta_exec
);
880 static void update_curr_fair(struct rq
*rq
)
882 update_curr(cfs_rq_of(&rq
->curr
->se
));
886 update_stats_wait_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
888 u64 wait_start
, prev_wait_start
;
890 if (!schedstat_enabled())
893 wait_start
= rq_clock(rq_of(cfs_rq
));
894 prev_wait_start
= schedstat_val(se
->statistics
.wait_start
);
896 if (entity_is_task(se
) && task_on_rq_migrating(task_of(se
)) &&
897 likely(wait_start
> prev_wait_start
))
898 wait_start
-= prev_wait_start
;
900 __schedstat_set(se
->statistics
.wait_start
, wait_start
);
904 update_stats_wait_end(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
906 struct task_struct
*p
;
909 if (!schedstat_enabled())
912 delta
= rq_clock(rq_of(cfs_rq
)) - schedstat_val(se
->statistics
.wait_start
);
914 if (entity_is_task(se
)) {
916 if (task_on_rq_migrating(p
)) {
918 * Preserve migrating task's wait time so wait_start
919 * time stamp can be adjusted to accumulate wait time
920 * prior to migration.
922 __schedstat_set(se
->statistics
.wait_start
, delta
);
925 trace_sched_stat_wait(p
, delta
);
928 __schedstat_set(se
->statistics
.wait_max
,
929 max(schedstat_val(se
->statistics
.wait_max
), delta
));
930 __schedstat_inc(se
->statistics
.wait_count
);
931 __schedstat_add(se
->statistics
.wait_sum
, delta
);
932 __schedstat_set(se
->statistics
.wait_start
, 0);
936 update_stats_enqueue_sleeper(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
938 struct task_struct
*tsk
= NULL
;
939 u64 sleep_start
, block_start
;
941 if (!schedstat_enabled())
944 sleep_start
= schedstat_val(se
->statistics
.sleep_start
);
945 block_start
= schedstat_val(se
->statistics
.block_start
);
947 if (entity_is_task(se
))
951 u64 delta
= rq_clock(rq_of(cfs_rq
)) - sleep_start
;
956 if (unlikely(delta
> schedstat_val(se
->statistics
.sleep_max
)))
957 __schedstat_set(se
->statistics
.sleep_max
, delta
);
959 __schedstat_set(se
->statistics
.sleep_start
, 0);
960 __schedstat_add(se
->statistics
.sum_sleep_runtime
, delta
);
963 account_scheduler_latency(tsk
, delta
>> 10, 1);
964 trace_sched_stat_sleep(tsk
, delta
);
968 u64 delta
= rq_clock(rq_of(cfs_rq
)) - block_start
;
973 if (unlikely(delta
> schedstat_val(se
->statistics
.block_max
)))
974 __schedstat_set(se
->statistics
.block_max
, delta
);
976 __schedstat_set(se
->statistics
.block_start
, 0);
977 __schedstat_add(se
->statistics
.sum_sleep_runtime
, delta
);
980 if (tsk
->in_iowait
) {
981 __schedstat_add(se
->statistics
.iowait_sum
, delta
);
982 __schedstat_inc(se
->statistics
.iowait_count
);
983 trace_sched_stat_iowait(tsk
, delta
);
986 trace_sched_stat_blocked(tsk
, delta
);
989 * Blocking time is in units of nanosecs, so shift by
990 * 20 to get a milliseconds-range estimation of the
991 * amount of time that the task spent sleeping:
993 if (unlikely(prof_on
== SLEEP_PROFILING
)) {
994 profile_hits(SLEEP_PROFILING
,
995 (void *)get_wchan(tsk
),
998 account_scheduler_latency(tsk
, delta
>> 10, 0);
1004 * Task is being enqueued - update stats:
1007 update_stats_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
1009 if (!schedstat_enabled())
1013 * Are we enqueueing a waiting task? (for current tasks
1014 * a dequeue/enqueue event is a NOP)
1016 if (se
!= cfs_rq
->curr
)
1017 update_stats_wait_start(cfs_rq
, se
);
1019 if (flags
& ENQUEUE_WAKEUP
)
1020 update_stats_enqueue_sleeper(cfs_rq
, se
);
1024 update_stats_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
1027 if (!schedstat_enabled())
1031 * Mark the end of the wait period if dequeueing a
1034 if (se
!= cfs_rq
->curr
)
1035 update_stats_wait_end(cfs_rq
, se
);
1037 if ((flags
& DEQUEUE_SLEEP
) && entity_is_task(se
)) {
1038 struct task_struct
*tsk
= task_of(se
);
1040 if (tsk
->state
& TASK_INTERRUPTIBLE
)
1041 __schedstat_set(se
->statistics
.sleep_start
,
1042 rq_clock(rq_of(cfs_rq
)));
1043 if (tsk
->state
& TASK_UNINTERRUPTIBLE
)
1044 __schedstat_set(se
->statistics
.block_start
,
1045 rq_clock(rq_of(cfs_rq
)));
1050 * We are picking a new current task - update its stats:
1053 update_stats_curr_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
1056 * We are starting a new run period:
1058 se
->exec_start
= rq_clock_task(rq_of(cfs_rq
));
1061 /**************************************************
1062 * Scheduling class queueing methods:
1065 #ifdef CONFIG_NUMA_BALANCING
1067 * Approximate time to scan a full NUMA task in ms. The task scan period is
1068 * calculated based on the tasks virtual memory size and
1069 * numa_balancing_scan_size.
1071 unsigned int sysctl_numa_balancing_scan_period_min
= 1000;
1072 unsigned int sysctl_numa_balancing_scan_period_max
= 60000;
1074 /* Portion of address space to scan in MB */
1075 unsigned int sysctl_numa_balancing_scan_size
= 256;
1077 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1078 unsigned int sysctl_numa_balancing_scan_delay
= 1000;
1081 refcount_t refcount
;
1083 spinlock_t lock
; /* nr_tasks, tasks */
1088 struct rcu_head rcu
;
1089 unsigned long total_faults
;
1090 unsigned long max_faults_cpu
;
1092 * Faults_cpu is used to decide whether memory should move
1093 * towards the CPU. As a consequence, these stats are weighted
1094 * more by CPU use than by memory faults.
1096 unsigned long *faults_cpu
;
1097 unsigned long faults
[0];
1101 * For functions that can be called in multiple contexts that permit reading
1102 * ->numa_group (see struct task_struct for locking rules).
1104 static struct numa_group
*deref_task_numa_group(struct task_struct
*p
)
1106 return rcu_dereference_check(p
->numa_group
, p
== current
||
1107 (lockdep_is_held(&task_rq(p
)->lock
) && !READ_ONCE(p
->on_cpu
)));
1110 static struct numa_group
*deref_curr_numa_group(struct task_struct
*p
)
1112 return rcu_dereference_protected(p
->numa_group
, p
== current
);
1115 static inline unsigned long group_faults_priv(struct numa_group
*ng
);
1116 static inline unsigned long group_faults_shared(struct numa_group
*ng
);
1118 static unsigned int task_nr_scan_windows(struct task_struct
*p
)
1120 unsigned long rss
= 0;
1121 unsigned long nr_scan_pages
;
1124 * Calculations based on RSS as non-present and empty pages are skipped
1125 * by the PTE scanner and NUMA hinting faults should be trapped based
1128 nr_scan_pages
= sysctl_numa_balancing_scan_size
<< (20 - PAGE_SHIFT
);
1129 rss
= get_mm_rss(p
->mm
);
1131 rss
= nr_scan_pages
;
1133 rss
= round_up(rss
, nr_scan_pages
);
1134 return rss
/ nr_scan_pages
;
1137 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1138 #define MAX_SCAN_WINDOW 2560
1140 static unsigned int task_scan_min(struct task_struct
*p
)
1142 unsigned int scan_size
= READ_ONCE(sysctl_numa_balancing_scan_size
);
1143 unsigned int scan
, floor
;
1144 unsigned int windows
= 1;
1146 if (scan_size
< MAX_SCAN_WINDOW
)
1147 windows
= MAX_SCAN_WINDOW
/ scan_size
;
1148 floor
= 1000 / windows
;
1150 scan
= sysctl_numa_balancing_scan_period_min
/ task_nr_scan_windows(p
);
1151 return max_t(unsigned int, floor
, scan
);
1154 static unsigned int task_scan_start(struct task_struct
*p
)
1156 unsigned long smin
= task_scan_min(p
);
1157 unsigned long period
= smin
;
1158 struct numa_group
*ng
;
1160 /* Scale the maximum scan period with the amount of shared memory. */
1162 ng
= rcu_dereference(p
->numa_group
);
1164 unsigned long shared
= group_faults_shared(ng
);
1165 unsigned long private = group_faults_priv(ng
);
1167 period
*= refcount_read(&ng
->refcount
);
1168 period
*= shared
+ 1;
1169 period
/= private + shared
+ 1;
1173 return max(smin
, period
);
1176 static unsigned int task_scan_max(struct task_struct
*p
)
1178 unsigned long smin
= task_scan_min(p
);
1180 struct numa_group
*ng
;
1182 /* Watch for min being lower than max due to floor calculations */
1183 smax
= sysctl_numa_balancing_scan_period_max
/ task_nr_scan_windows(p
);
1185 /* Scale the maximum scan period with the amount of shared memory. */
1186 ng
= deref_curr_numa_group(p
);
1188 unsigned long shared
= group_faults_shared(ng
);
1189 unsigned long private = group_faults_priv(ng
);
1190 unsigned long period
= smax
;
1192 period
*= refcount_read(&ng
->refcount
);
1193 period
*= shared
+ 1;
1194 period
/= private + shared
+ 1;
1196 smax
= max(smax
, period
);
1199 return max(smin
, smax
);
1202 static void account_numa_enqueue(struct rq
*rq
, struct task_struct
*p
)
1204 rq
->nr_numa_running
+= (p
->numa_preferred_nid
!= NUMA_NO_NODE
);
1205 rq
->nr_preferred_running
+= (p
->numa_preferred_nid
== task_node(p
));
1208 static void account_numa_dequeue(struct rq
*rq
, struct task_struct
*p
)
1210 rq
->nr_numa_running
-= (p
->numa_preferred_nid
!= NUMA_NO_NODE
);
1211 rq
->nr_preferred_running
-= (p
->numa_preferred_nid
== task_node(p
));
1214 /* Shared or private faults. */
1215 #define NR_NUMA_HINT_FAULT_TYPES 2
1217 /* Memory and CPU locality */
1218 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1220 /* Averaged statistics, and temporary buffers. */
1221 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1223 pid_t
task_numa_group_id(struct task_struct
*p
)
1225 struct numa_group
*ng
;
1229 ng
= rcu_dereference(p
->numa_group
);
1238 * The averaged statistics, shared & private, memory & CPU,
1239 * occupy the first half of the array. The second half of the
1240 * array is for current counters, which are averaged into the
1241 * first set by task_numa_placement.
1243 static inline int task_faults_idx(enum numa_faults_stats s
, int nid
, int priv
)
1245 return NR_NUMA_HINT_FAULT_TYPES
* (s
* nr_node_ids
+ nid
) + priv
;
1248 static inline unsigned long task_faults(struct task_struct
*p
, int nid
)
1250 if (!p
->numa_faults
)
1253 return p
->numa_faults
[task_faults_idx(NUMA_MEM
, nid
, 0)] +
1254 p
->numa_faults
[task_faults_idx(NUMA_MEM
, nid
, 1)];
1257 static inline unsigned long group_faults(struct task_struct
*p
, int nid
)
1259 struct numa_group
*ng
= deref_task_numa_group(p
);
1264 return ng
->faults
[task_faults_idx(NUMA_MEM
, nid
, 0)] +
1265 ng
->faults
[task_faults_idx(NUMA_MEM
, nid
, 1)];
1268 static inline unsigned long group_faults_cpu(struct numa_group
*group
, int nid
)
1270 return group
->faults_cpu
[task_faults_idx(NUMA_MEM
, nid
, 0)] +
1271 group
->faults_cpu
[task_faults_idx(NUMA_MEM
, nid
, 1)];
1274 static inline unsigned long group_faults_priv(struct numa_group
*ng
)
1276 unsigned long faults
= 0;
1279 for_each_online_node(node
) {
1280 faults
+= ng
->faults
[task_faults_idx(NUMA_MEM
, node
, 1)];
1286 static inline unsigned long group_faults_shared(struct numa_group
*ng
)
1288 unsigned long faults
= 0;
1291 for_each_online_node(node
) {
1292 faults
+= ng
->faults
[task_faults_idx(NUMA_MEM
, node
, 0)];
1299 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1300 * considered part of a numa group's pseudo-interleaving set. Migrations
1301 * between these nodes are slowed down, to allow things to settle down.
1303 #define ACTIVE_NODE_FRACTION 3
1305 static bool numa_is_active_node(int nid
, struct numa_group
*ng
)
1307 return group_faults_cpu(ng
, nid
) * ACTIVE_NODE_FRACTION
> ng
->max_faults_cpu
;
1310 /* Handle placement on systems where not all nodes are directly connected. */
1311 static unsigned long score_nearby_nodes(struct task_struct
*p
, int nid
,
1312 int maxdist
, bool task
)
1314 unsigned long score
= 0;
1318 * All nodes are directly connected, and the same distance
1319 * from each other. No need for fancy placement algorithms.
1321 if (sched_numa_topology_type
== NUMA_DIRECT
)
1325 * This code is called for each node, introducing N^2 complexity,
1326 * which should be ok given the number of nodes rarely exceeds 8.
1328 for_each_online_node(node
) {
1329 unsigned long faults
;
1330 int dist
= node_distance(nid
, node
);
1333 * The furthest away nodes in the system are not interesting
1334 * for placement; nid was already counted.
1336 if (dist
== sched_max_numa_distance
|| node
== nid
)
1340 * On systems with a backplane NUMA topology, compare groups
1341 * of nodes, and move tasks towards the group with the most
1342 * memory accesses. When comparing two nodes at distance
1343 * "hoplimit", only nodes closer by than "hoplimit" are part
1344 * of each group. Skip other nodes.
1346 if (sched_numa_topology_type
== NUMA_BACKPLANE
&&
1350 /* Add up the faults from nearby nodes. */
1352 faults
= task_faults(p
, node
);
1354 faults
= group_faults(p
, node
);
1357 * On systems with a glueless mesh NUMA topology, there are
1358 * no fixed "groups of nodes". Instead, nodes that are not
1359 * directly connected bounce traffic through intermediate
1360 * nodes; a numa_group can occupy any set of nodes.
1361 * The further away a node is, the less the faults count.
1362 * This seems to result in good task placement.
1364 if (sched_numa_topology_type
== NUMA_GLUELESS_MESH
) {
1365 faults
*= (sched_max_numa_distance
- dist
);
1366 faults
/= (sched_max_numa_distance
- LOCAL_DISTANCE
);
1376 * These return the fraction of accesses done by a particular task, or
1377 * task group, on a particular numa node. The group weight is given a
1378 * larger multiplier, in order to group tasks together that are almost
1379 * evenly spread out between numa nodes.
1381 static inline unsigned long task_weight(struct task_struct
*p
, int nid
,
1384 unsigned long faults
, total_faults
;
1386 if (!p
->numa_faults
)
1389 total_faults
= p
->total_numa_faults
;
1394 faults
= task_faults(p
, nid
);
1395 faults
+= score_nearby_nodes(p
, nid
, dist
, true);
1397 return 1000 * faults
/ total_faults
;
1400 static inline unsigned long group_weight(struct task_struct
*p
, int nid
,
1403 struct numa_group
*ng
= deref_task_numa_group(p
);
1404 unsigned long faults
, total_faults
;
1409 total_faults
= ng
->total_faults
;
1414 faults
= group_faults(p
, nid
);
1415 faults
+= score_nearby_nodes(p
, nid
, dist
, false);
1417 return 1000 * faults
/ total_faults
;
1420 bool should_numa_migrate_memory(struct task_struct
*p
, struct page
* page
,
1421 int src_nid
, int dst_cpu
)
1423 struct numa_group
*ng
= deref_curr_numa_group(p
);
1424 int dst_nid
= cpu_to_node(dst_cpu
);
1425 int last_cpupid
, this_cpupid
;
1427 this_cpupid
= cpu_pid_to_cpupid(dst_cpu
, current
->pid
);
1428 last_cpupid
= page_cpupid_xchg_last(page
, this_cpupid
);
1431 * Allow first faults or private faults to migrate immediately early in
1432 * the lifetime of a task. The magic number 4 is based on waiting for
1433 * two full passes of the "multi-stage node selection" test that is
1436 if ((p
->numa_preferred_nid
== NUMA_NO_NODE
|| p
->numa_scan_seq
<= 4) &&
1437 (cpupid_pid_unset(last_cpupid
) || cpupid_match_pid(p
, last_cpupid
)))
1441 * Multi-stage node selection is used in conjunction with a periodic
1442 * migration fault to build a temporal task<->page relation. By using
1443 * a two-stage filter we remove short/unlikely relations.
1445 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1446 * a task's usage of a particular page (n_p) per total usage of this
1447 * page (n_t) (in a given time-span) to a probability.
1449 * Our periodic faults will sample this probability and getting the
1450 * same result twice in a row, given these samples are fully
1451 * independent, is then given by P(n)^2, provided our sample period
1452 * is sufficiently short compared to the usage pattern.
1454 * This quadric squishes small probabilities, making it less likely we
1455 * act on an unlikely task<->page relation.
1457 if (!cpupid_pid_unset(last_cpupid
) &&
1458 cpupid_to_nid(last_cpupid
) != dst_nid
)
1461 /* Always allow migrate on private faults */
1462 if (cpupid_match_pid(p
, last_cpupid
))
1465 /* A shared fault, but p->numa_group has not been set up yet. */
1470 * Destination node is much more heavily used than the source
1471 * node? Allow migration.
1473 if (group_faults_cpu(ng
, dst_nid
) > group_faults_cpu(ng
, src_nid
) *
1474 ACTIVE_NODE_FRACTION
)
1478 * Distribute memory according to CPU & memory use on each node,
1479 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1481 * faults_cpu(dst) 3 faults_cpu(src)
1482 * --------------- * - > ---------------
1483 * faults_mem(dst) 4 faults_mem(src)
1485 return group_faults_cpu(ng
, dst_nid
) * group_faults(p
, src_nid
) * 3 >
1486 group_faults_cpu(ng
, src_nid
) * group_faults(p
, dst_nid
) * 4;
1490 * 'numa_type' describes the node at the moment of load balancing.
1493 /* The node has spare capacity that can be used to run more tasks. */
1496 * The node is fully used and the tasks don't compete for more CPU
1497 * cycles. Nevertheless, some tasks might wait before running.
1501 * The node is overloaded and can't provide expected CPU cycles to all
1507 /* Cached statistics for all CPUs within a node */
1511 /* Total compute capacity of CPUs on a node */
1512 unsigned long compute_capacity
;
1513 unsigned int nr_running
;
1514 unsigned int weight
;
1515 enum numa_type node_type
;
1519 static inline bool is_core_idle(int cpu
)
1521 #ifdef CONFIG_SCHED_SMT
1524 for_each_cpu(sibling
, cpu_smt_mask(cpu
)) {
1536 struct task_numa_env
{
1537 struct task_struct
*p
;
1539 int src_cpu
, src_nid
;
1540 int dst_cpu
, dst_nid
;
1542 struct numa_stats src_stats
, dst_stats
;
1547 struct task_struct
*best_task
;
1552 static unsigned long cpu_load(struct rq
*rq
);
1553 static unsigned long cpu_util(int cpu
);
1554 static inline long adjust_numa_imbalance(int imbalance
, int src_nr_running
);
1557 numa_type
numa_classify(unsigned int imbalance_pct
,
1558 struct numa_stats
*ns
)
1560 if ((ns
->nr_running
> ns
->weight
) &&
1561 ((ns
->compute_capacity
* 100) < (ns
->util
* imbalance_pct
)))
1562 return node_overloaded
;
1564 if ((ns
->nr_running
< ns
->weight
) ||
1565 ((ns
->compute_capacity
* 100) > (ns
->util
* imbalance_pct
)))
1566 return node_has_spare
;
1568 return node_fully_busy
;
1571 #ifdef CONFIG_SCHED_SMT
1572 /* Forward declarations of select_idle_sibling helpers */
1573 static inline bool test_idle_cores(int cpu
, bool def
);
1574 static inline int numa_idle_core(int idle_core
, int cpu
)
1576 if (!static_branch_likely(&sched_smt_present
) ||
1577 idle_core
>= 0 || !test_idle_cores(cpu
, false))
1581 * Prefer cores instead of packing HT siblings
1582 * and triggering future load balancing.
1584 if (is_core_idle(cpu
))
1590 static inline int numa_idle_core(int idle_core
, int cpu
)
1597 * Gather all necessary information to make NUMA balancing placement
1598 * decisions that are compatible with standard load balancer. This
1599 * borrows code and logic from update_sg_lb_stats but sharing a
1600 * common implementation is impractical.
1602 static void update_numa_stats(struct task_numa_env
*env
,
1603 struct numa_stats
*ns
, int nid
,
1606 int cpu
, idle_core
= -1;
1608 memset(ns
, 0, sizeof(*ns
));
1612 for_each_cpu(cpu
, cpumask_of_node(nid
)) {
1613 struct rq
*rq
= cpu_rq(cpu
);
1615 ns
->load
+= cpu_load(rq
);
1616 ns
->util
+= cpu_util(cpu
);
1617 ns
->nr_running
+= rq
->cfs
.h_nr_running
;
1618 ns
->compute_capacity
+= capacity_of(cpu
);
1620 if (find_idle
&& !rq
->nr_running
&& idle_cpu(cpu
)) {
1621 if (READ_ONCE(rq
->numa_migrate_on
) ||
1622 !cpumask_test_cpu(cpu
, env
->p
->cpus_ptr
))
1625 if (ns
->idle_cpu
== -1)
1628 idle_core
= numa_idle_core(idle_core
, cpu
);
1633 ns
->weight
= cpumask_weight(cpumask_of_node(nid
));
1635 ns
->node_type
= numa_classify(env
->imbalance_pct
, ns
);
1638 ns
->idle_cpu
= idle_core
;
1641 static void task_numa_assign(struct task_numa_env
*env
,
1642 struct task_struct
*p
, long imp
)
1644 struct rq
*rq
= cpu_rq(env
->dst_cpu
);
1646 /* Check if run-queue part of active NUMA balance. */
1647 if (env
->best_cpu
!= env
->dst_cpu
&& xchg(&rq
->numa_migrate_on
, 1)) {
1649 int start
= env
->dst_cpu
;
1651 /* Find alternative idle CPU. */
1652 for_each_cpu_wrap(cpu
, cpumask_of_node(env
->dst_nid
), start
) {
1653 if (cpu
== env
->best_cpu
|| !idle_cpu(cpu
) ||
1654 !cpumask_test_cpu(cpu
, env
->p
->cpus_ptr
)) {
1659 rq
= cpu_rq(env
->dst_cpu
);
1660 if (!xchg(&rq
->numa_migrate_on
, 1))
1664 /* Failed to find an alternative idle CPU */
1670 * Clear previous best_cpu/rq numa-migrate flag, since task now
1671 * found a better CPU to move/swap.
1673 if (env
->best_cpu
!= -1 && env
->best_cpu
!= env
->dst_cpu
) {
1674 rq
= cpu_rq(env
->best_cpu
);
1675 WRITE_ONCE(rq
->numa_migrate_on
, 0);
1679 put_task_struct(env
->best_task
);
1684 env
->best_imp
= imp
;
1685 env
->best_cpu
= env
->dst_cpu
;
1688 static bool load_too_imbalanced(long src_load
, long dst_load
,
1689 struct task_numa_env
*env
)
1692 long orig_src_load
, orig_dst_load
;
1693 long src_capacity
, dst_capacity
;
1696 * The load is corrected for the CPU capacity available on each node.
1699 * ------------ vs ---------
1700 * src_capacity dst_capacity
1702 src_capacity
= env
->src_stats
.compute_capacity
;
1703 dst_capacity
= env
->dst_stats
.compute_capacity
;
1705 imb
= abs(dst_load
* src_capacity
- src_load
* dst_capacity
);
1707 orig_src_load
= env
->src_stats
.load
;
1708 orig_dst_load
= env
->dst_stats
.load
;
1710 old_imb
= abs(orig_dst_load
* src_capacity
- orig_src_load
* dst_capacity
);
1712 /* Would this change make things worse? */
1713 return (imb
> old_imb
);
1717 * Maximum NUMA importance can be 1998 (2*999);
1718 * SMALLIMP @ 30 would be close to 1998/64.
1719 * Used to deter task migration.
1724 * This checks if the overall compute and NUMA accesses of the system would
1725 * be improved if the source tasks was migrated to the target dst_cpu taking
1726 * into account that it might be best if task running on the dst_cpu should
1727 * be exchanged with the source task
1729 static bool task_numa_compare(struct task_numa_env
*env
,
1730 long taskimp
, long groupimp
, bool maymove
)
1732 struct numa_group
*cur_ng
, *p_ng
= deref_curr_numa_group(env
->p
);
1733 struct rq
*dst_rq
= cpu_rq(env
->dst_cpu
);
1734 long imp
= p_ng
? groupimp
: taskimp
;
1735 struct task_struct
*cur
;
1736 long src_load
, dst_load
;
1737 int dist
= env
->dist
;
1740 bool stopsearch
= false;
1742 if (READ_ONCE(dst_rq
->numa_migrate_on
))
1746 cur
= rcu_dereference(dst_rq
->curr
);
1747 if (cur
&& ((cur
->flags
& PF_EXITING
) || is_idle_task(cur
)))
1751 * Because we have preemption enabled we can get migrated around and
1752 * end try selecting ourselves (current == env->p) as a swap candidate.
1754 if (cur
== env
->p
) {
1760 if (maymove
&& moveimp
>= env
->best_imp
)
1766 /* Skip this swap candidate if cannot move to the source cpu. */
1767 if (!cpumask_test_cpu(env
->src_cpu
, cur
->cpus_ptr
))
1771 * Skip this swap candidate if it is not moving to its preferred
1772 * node and the best task is.
1774 if (env
->best_task
&&
1775 env
->best_task
->numa_preferred_nid
== env
->src_nid
&&
1776 cur
->numa_preferred_nid
!= env
->src_nid
) {
1781 * "imp" is the fault differential for the source task between the
1782 * source and destination node. Calculate the total differential for
1783 * the source task and potential destination task. The more negative
1784 * the value is, the more remote accesses that would be expected to
1785 * be incurred if the tasks were swapped.
1787 * If dst and source tasks are in the same NUMA group, or not
1788 * in any group then look only at task weights.
1790 cur_ng
= rcu_dereference(cur
->numa_group
);
1791 if (cur_ng
== p_ng
) {
1792 imp
= taskimp
+ task_weight(cur
, env
->src_nid
, dist
) -
1793 task_weight(cur
, env
->dst_nid
, dist
);
1795 * Add some hysteresis to prevent swapping the
1796 * tasks within a group over tiny differences.
1802 * Compare the group weights. If a task is all by itself
1803 * (not part of a group), use the task weight instead.
1806 imp
+= group_weight(cur
, env
->src_nid
, dist
) -
1807 group_weight(cur
, env
->dst_nid
, dist
);
1809 imp
+= task_weight(cur
, env
->src_nid
, dist
) -
1810 task_weight(cur
, env
->dst_nid
, dist
);
1813 /* Discourage picking a task already on its preferred node */
1814 if (cur
->numa_preferred_nid
== env
->dst_nid
)
1818 * Encourage picking a task that moves to its preferred node.
1819 * This potentially makes imp larger than it's maximum of
1820 * 1998 (see SMALLIMP and task_weight for why) but in this
1821 * case, it does not matter.
1823 if (cur
->numa_preferred_nid
== env
->src_nid
)
1826 if (maymove
&& moveimp
> imp
&& moveimp
> env
->best_imp
) {
1833 * Prefer swapping with a task moving to its preferred node over a
1836 if (env
->best_task
&& cur
->numa_preferred_nid
== env
->src_nid
&&
1837 env
->best_task
->numa_preferred_nid
!= env
->src_nid
) {
1842 * If the NUMA importance is less than SMALLIMP,
1843 * task migration might only result in ping pong
1844 * of tasks and also hurt performance due to cache
1847 if (imp
< SMALLIMP
|| imp
<= env
->best_imp
+ SMALLIMP
/ 2)
1851 * In the overloaded case, try and keep the load balanced.
1853 load
= task_h_load(env
->p
) - task_h_load(cur
);
1857 dst_load
= env
->dst_stats
.load
+ load
;
1858 src_load
= env
->src_stats
.load
- load
;
1860 if (load_too_imbalanced(src_load
, dst_load
, env
))
1864 /* Evaluate an idle CPU for a task numa move. */
1866 int cpu
= env
->dst_stats
.idle_cpu
;
1868 /* Nothing cached so current CPU went idle since the search. */
1873 * If the CPU is no longer truly idle and the previous best CPU
1874 * is, keep using it.
1876 if (!idle_cpu(cpu
) && env
->best_cpu
>= 0 &&
1877 idle_cpu(env
->best_cpu
)) {
1878 cpu
= env
->best_cpu
;
1884 task_numa_assign(env
, cur
, imp
);
1887 * If a move to idle is allowed because there is capacity or load
1888 * balance improves then stop the search. While a better swap
1889 * candidate may exist, a search is not free.
1891 if (maymove
&& !cur
&& env
->best_cpu
>= 0 && idle_cpu(env
->best_cpu
))
1895 * If a swap candidate must be identified and the current best task
1896 * moves its preferred node then stop the search.
1898 if (!maymove
&& env
->best_task
&&
1899 env
->best_task
->numa_preferred_nid
== env
->src_nid
) {
1908 static void task_numa_find_cpu(struct task_numa_env
*env
,
1909 long taskimp
, long groupimp
)
1911 bool maymove
= false;
1915 * If dst node has spare capacity, then check if there is an
1916 * imbalance that would be overruled by the load balancer.
1918 if (env
->dst_stats
.node_type
== node_has_spare
) {
1919 unsigned int imbalance
;
1920 int src_running
, dst_running
;
1923 * Would movement cause an imbalance? Note that if src has
1924 * more running tasks that the imbalance is ignored as the
1925 * move improves the imbalance from the perspective of the
1926 * CPU load balancer.
1928 src_running
= env
->src_stats
.nr_running
- 1;
1929 dst_running
= env
->dst_stats
.nr_running
+ 1;
1930 imbalance
= max(0, dst_running
- src_running
);
1931 imbalance
= adjust_numa_imbalance(imbalance
, src_running
);
1933 /* Use idle CPU if there is no imbalance */
1936 if (env
->dst_stats
.idle_cpu
>= 0) {
1937 env
->dst_cpu
= env
->dst_stats
.idle_cpu
;
1938 task_numa_assign(env
, NULL
, 0);
1943 long src_load
, dst_load
, load
;
1945 * If the improvement from just moving env->p direction is better
1946 * than swapping tasks around, check if a move is possible.
1948 load
= task_h_load(env
->p
);
1949 dst_load
= env
->dst_stats
.load
+ load
;
1950 src_load
= env
->src_stats
.load
- load
;
1951 maymove
= !load_too_imbalanced(src_load
, dst_load
, env
);
1954 for_each_cpu(cpu
, cpumask_of_node(env
->dst_nid
)) {
1955 /* Skip this CPU if the source task cannot migrate */
1956 if (!cpumask_test_cpu(cpu
, env
->p
->cpus_ptr
))
1960 if (task_numa_compare(env
, taskimp
, groupimp
, maymove
))
1965 static int task_numa_migrate(struct task_struct
*p
)
1967 struct task_numa_env env
= {
1970 .src_cpu
= task_cpu(p
),
1971 .src_nid
= task_node(p
),
1973 .imbalance_pct
= 112,
1979 unsigned long taskweight
, groupweight
;
1980 struct sched_domain
*sd
;
1981 long taskimp
, groupimp
;
1982 struct numa_group
*ng
;
1987 * Pick the lowest SD_NUMA domain, as that would have the smallest
1988 * imbalance and would be the first to start moving tasks about.
1990 * And we want to avoid any moving of tasks about, as that would create
1991 * random movement of tasks -- counter the numa conditions we're trying
1995 sd
= rcu_dereference(per_cpu(sd_numa
, env
.src_cpu
));
1997 env
.imbalance_pct
= 100 + (sd
->imbalance_pct
- 100) / 2;
2001 * Cpusets can break the scheduler domain tree into smaller
2002 * balance domains, some of which do not cross NUMA boundaries.
2003 * Tasks that are "trapped" in such domains cannot be migrated
2004 * elsewhere, so there is no point in (re)trying.
2006 if (unlikely(!sd
)) {
2007 sched_setnuma(p
, task_node(p
));
2011 env
.dst_nid
= p
->numa_preferred_nid
;
2012 dist
= env
.dist
= node_distance(env
.src_nid
, env
.dst_nid
);
2013 taskweight
= task_weight(p
, env
.src_nid
, dist
);
2014 groupweight
= group_weight(p
, env
.src_nid
, dist
);
2015 update_numa_stats(&env
, &env
.src_stats
, env
.src_nid
, false);
2016 taskimp
= task_weight(p
, env
.dst_nid
, dist
) - taskweight
;
2017 groupimp
= group_weight(p
, env
.dst_nid
, dist
) - groupweight
;
2018 update_numa_stats(&env
, &env
.dst_stats
, env
.dst_nid
, true);
2020 /* Try to find a spot on the preferred nid. */
2021 task_numa_find_cpu(&env
, taskimp
, groupimp
);
2024 * Look at other nodes in these cases:
2025 * - there is no space available on the preferred_nid
2026 * - the task is part of a numa_group that is interleaved across
2027 * multiple NUMA nodes; in order to better consolidate the group,
2028 * we need to check other locations.
2030 ng
= deref_curr_numa_group(p
);
2031 if (env
.best_cpu
== -1 || (ng
&& ng
->active_nodes
> 1)) {
2032 for_each_online_node(nid
) {
2033 if (nid
== env
.src_nid
|| nid
== p
->numa_preferred_nid
)
2036 dist
= node_distance(env
.src_nid
, env
.dst_nid
);
2037 if (sched_numa_topology_type
== NUMA_BACKPLANE
&&
2039 taskweight
= task_weight(p
, env
.src_nid
, dist
);
2040 groupweight
= group_weight(p
, env
.src_nid
, dist
);
2043 /* Only consider nodes where both task and groups benefit */
2044 taskimp
= task_weight(p
, nid
, dist
) - taskweight
;
2045 groupimp
= group_weight(p
, nid
, dist
) - groupweight
;
2046 if (taskimp
< 0 && groupimp
< 0)
2051 update_numa_stats(&env
, &env
.dst_stats
, env
.dst_nid
, true);
2052 task_numa_find_cpu(&env
, taskimp
, groupimp
);
2057 * If the task is part of a workload that spans multiple NUMA nodes,
2058 * and is migrating into one of the workload's active nodes, remember
2059 * this node as the task's preferred numa node, so the workload can
2061 * A task that migrated to a second choice node will be better off
2062 * trying for a better one later. Do not set the preferred node here.
2065 if (env
.best_cpu
== -1)
2068 nid
= cpu_to_node(env
.best_cpu
);
2070 if (nid
!= p
->numa_preferred_nid
)
2071 sched_setnuma(p
, nid
);
2074 /* No better CPU than the current one was found. */
2075 if (env
.best_cpu
== -1) {
2076 trace_sched_stick_numa(p
, env
.src_cpu
, NULL
, -1);
2080 best_rq
= cpu_rq(env
.best_cpu
);
2081 if (env
.best_task
== NULL
) {
2082 ret
= migrate_task_to(p
, env
.best_cpu
);
2083 WRITE_ONCE(best_rq
->numa_migrate_on
, 0);
2085 trace_sched_stick_numa(p
, env
.src_cpu
, NULL
, env
.best_cpu
);
2089 ret
= migrate_swap(p
, env
.best_task
, env
.best_cpu
, env
.src_cpu
);
2090 WRITE_ONCE(best_rq
->numa_migrate_on
, 0);
2093 trace_sched_stick_numa(p
, env
.src_cpu
, env
.best_task
, env
.best_cpu
);
2094 put_task_struct(env
.best_task
);
2098 /* Attempt to migrate a task to a CPU on the preferred node. */
2099 static void numa_migrate_preferred(struct task_struct
*p
)
2101 unsigned long interval
= HZ
;
2103 /* This task has no NUMA fault statistics yet */
2104 if (unlikely(p
->numa_preferred_nid
== NUMA_NO_NODE
|| !p
->numa_faults
))
2107 /* Periodically retry migrating the task to the preferred node */
2108 interval
= min(interval
, msecs_to_jiffies(p
->numa_scan_period
) / 16);
2109 p
->numa_migrate_retry
= jiffies
+ interval
;
2111 /* Success if task is already running on preferred CPU */
2112 if (task_node(p
) == p
->numa_preferred_nid
)
2115 /* Otherwise, try migrate to a CPU on the preferred node */
2116 task_numa_migrate(p
);
2120 * Find out how many nodes on the workload is actively running on. Do this by
2121 * tracking the nodes from which NUMA hinting faults are triggered. This can
2122 * be different from the set of nodes where the workload's memory is currently
2125 static void numa_group_count_active_nodes(struct numa_group
*numa_group
)
2127 unsigned long faults
, max_faults
= 0;
2128 int nid
, active_nodes
= 0;
2130 for_each_online_node(nid
) {
2131 faults
= group_faults_cpu(numa_group
, nid
);
2132 if (faults
> max_faults
)
2133 max_faults
= faults
;
2136 for_each_online_node(nid
) {
2137 faults
= group_faults_cpu(numa_group
, nid
);
2138 if (faults
* ACTIVE_NODE_FRACTION
> max_faults
)
2142 numa_group
->max_faults_cpu
= max_faults
;
2143 numa_group
->active_nodes
= active_nodes
;
2147 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2148 * increments. The more local the fault statistics are, the higher the scan
2149 * period will be for the next scan window. If local/(local+remote) ratio is
2150 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2151 * the scan period will decrease. Aim for 70% local accesses.
2153 #define NUMA_PERIOD_SLOTS 10
2154 #define NUMA_PERIOD_THRESHOLD 7
2157 * Increase the scan period (slow down scanning) if the majority of
2158 * our memory is already on our local node, or if the majority of
2159 * the page accesses are shared with other processes.
2160 * Otherwise, decrease the scan period.
2162 static void update_task_scan_period(struct task_struct
*p
,
2163 unsigned long shared
, unsigned long private)
2165 unsigned int period_slot
;
2166 int lr_ratio
, ps_ratio
;
2169 unsigned long remote
= p
->numa_faults_locality
[0];
2170 unsigned long local
= p
->numa_faults_locality
[1];
2173 * If there were no record hinting faults then either the task is
2174 * completely idle or all activity is areas that are not of interest
2175 * to automatic numa balancing. Related to that, if there were failed
2176 * migration then it implies we are migrating too quickly or the local
2177 * node is overloaded. In either case, scan slower
2179 if (local
+ shared
== 0 || p
->numa_faults_locality
[2]) {
2180 p
->numa_scan_period
= min(p
->numa_scan_period_max
,
2181 p
->numa_scan_period
<< 1);
2183 p
->mm
->numa_next_scan
= jiffies
+
2184 msecs_to_jiffies(p
->numa_scan_period
);
2190 * Prepare to scale scan period relative to the current period.
2191 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2192 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2193 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2195 period_slot
= DIV_ROUND_UP(p
->numa_scan_period
, NUMA_PERIOD_SLOTS
);
2196 lr_ratio
= (local
* NUMA_PERIOD_SLOTS
) / (local
+ remote
);
2197 ps_ratio
= (private * NUMA_PERIOD_SLOTS
) / (private + shared
);
2199 if (ps_ratio
>= NUMA_PERIOD_THRESHOLD
) {
2201 * Most memory accesses are local. There is no need to
2202 * do fast NUMA scanning, since memory is already local.
2204 int slot
= ps_ratio
- NUMA_PERIOD_THRESHOLD
;
2207 diff
= slot
* period_slot
;
2208 } else if (lr_ratio
>= NUMA_PERIOD_THRESHOLD
) {
2210 * Most memory accesses are shared with other tasks.
2211 * There is no point in continuing fast NUMA scanning,
2212 * since other tasks may just move the memory elsewhere.
2214 int slot
= lr_ratio
- NUMA_PERIOD_THRESHOLD
;
2217 diff
= slot
* period_slot
;
2220 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2221 * yet they are not on the local NUMA node. Speed up
2222 * NUMA scanning to get the memory moved over.
2224 int ratio
= max(lr_ratio
, ps_ratio
);
2225 diff
= -(NUMA_PERIOD_THRESHOLD
- ratio
) * period_slot
;
2228 p
->numa_scan_period
= clamp(p
->numa_scan_period
+ diff
,
2229 task_scan_min(p
), task_scan_max(p
));
2230 memset(p
->numa_faults_locality
, 0, sizeof(p
->numa_faults_locality
));
2234 * Get the fraction of time the task has been running since the last
2235 * NUMA placement cycle. The scheduler keeps similar statistics, but
2236 * decays those on a 32ms period, which is orders of magnitude off
2237 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2238 * stats only if the task is so new there are no NUMA statistics yet.
2240 static u64
numa_get_avg_runtime(struct task_struct
*p
, u64
*period
)
2242 u64 runtime
, delta
, now
;
2243 /* Use the start of this time slice to avoid calculations. */
2244 now
= p
->se
.exec_start
;
2245 runtime
= p
->se
.sum_exec_runtime
;
2247 if (p
->last_task_numa_placement
) {
2248 delta
= runtime
- p
->last_sum_exec_runtime
;
2249 *period
= now
- p
->last_task_numa_placement
;
2251 /* Avoid time going backwards, prevent potential divide error: */
2252 if (unlikely((s64
)*period
< 0))
2255 delta
= p
->se
.avg
.load_sum
;
2256 *period
= LOAD_AVG_MAX
;
2259 p
->last_sum_exec_runtime
= runtime
;
2260 p
->last_task_numa_placement
= now
;
2266 * Determine the preferred nid for a task in a numa_group. This needs to
2267 * be done in a way that produces consistent results with group_weight,
2268 * otherwise workloads might not converge.
2270 static int preferred_group_nid(struct task_struct
*p
, int nid
)
2275 /* Direct connections between all NUMA nodes. */
2276 if (sched_numa_topology_type
== NUMA_DIRECT
)
2280 * On a system with glueless mesh NUMA topology, group_weight
2281 * scores nodes according to the number of NUMA hinting faults on
2282 * both the node itself, and on nearby nodes.
2284 if (sched_numa_topology_type
== NUMA_GLUELESS_MESH
) {
2285 unsigned long score
, max_score
= 0;
2286 int node
, max_node
= nid
;
2288 dist
= sched_max_numa_distance
;
2290 for_each_online_node(node
) {
2291 score
= group_weight(p
, node
, dist
);
2292 if (score
> max_score
) {
2301 * Finding the preferred nid in a system with NUMA backplane
2302 * interconnect topology is more involved. The goal is to locate
2303 * tasks from numa_groups near each other in the system, and
2304 * untangle workloads from different sides of the system. This requires
2305 * searching down the hierarchy of node groups, recursively searching
2306 * inside the highest scoring group of nodes. The nodemask tricks
2307 * keep the complexity of the search down.
2309 nodes
= node_online_map
;
2310 for (dist
= sched_max_numa_distance
; dist
> LOCAL_DISTANCE
; dist
--) {
2311 unsigned long max_faults
= 0;
2312 nodemask_t max_group
= NODE_MASK_NONE
;
2315 /* Are there nodes at this distance from each other? */
2316 if (!find_numa_distance(dist
))
2319 for_each_node_mask(a
, nodes
) {
2320 unsigned long faults
= 0;
2321 nodemask_t this_group
;
2322 nodes_clear(this_group
);
2324 /* Sum group's NUMA faults; includes a==b case. */
2325 for_each_node_mask(b
, nodes
) {
2326 if (node_distance(a
, b
) < dist
) {
2327 faults
+= group_faults(p
, b
);
2328 node_set(b
, this_group
);
2329 node_clear(b
, nodes
);
2333 /* Remember the top group. */
2334 if (faults
> max_faults
) {
2335 max_faults
= faults
;
2336 max_group
= this_group
;
2338 * subtle: at the smallest distance there is
2339 * just one node left in each "group", the
2340 * winner is the preferred nid.
2345 /* Next round, evaluate the nodes within max_group. */
2353 static void task_numa_placement(struct task_struct
*p
)
2355 int seq
, nid
, max_nid
= NUMA_NO_NODE
;
2356 unsigned long max_faults
= 0;
2357 unsigned long fault_types
[2] = { 0, 0 };
2358 unsigned long total_faults
;
2359 u64 runtime
, period
;
2360 spinlock_t
*group_lock
= NULL
;
2361 struct numa_group
*ng
;
2364 * The p->mm->numa_scan_seq field gets updated without
2365 * exclusive access. Use READ_ONCE() here to ensure
2366 * that the field is read in a single access:
2368 seq
= READ_ONCE(p
->mm
->numa_scan_seq
);
2369 if (p
->numa_scan_seq
== seq
)
2371 p
->numa_scan_seq
= seq
;
2372 p
->numa_scan_period_max
= task_scan_max(p
);
2374 total_faults
= p
->numa_faults_locality
[0] +
2375 p
->numa_faults_locality
[1];
2376 runtime
= numa_get_avg_runtime(p
, &period
);
2378 /* If the task is part of a group prevent parallel updates to group stats */
2379 ng
= deref_curr_numa_group(p
);
2381 group_lock
= &ng
->lock
;
2382 spin_lock_irq(group_lock
);
2385 /* Find the node with the highest number of faults */
2386 for_each_online_node(nid
) {
2387 /* Keep track of the offsets in numa_faults array */
2388 int mem_idx
, membuf_idx
, cpu_idx
, cpubuf_idx
;
2389 unsigned long faults
= 0, group_faults
= 0;
2392 for (priv
= 0; priv
< NR_NUMA_HINT_FAULT_TYPES
; priv
++) {
2393 long diff
, f_diff
, f_weight
;
2395 mem_idx
= task_faults_idx(NUMA_MEM
, nid
, priv
);
2396 membuf_idx
= task_faults_idx(NUMA_MEMBUF
, nid
, priv
);
2397 cpu_idx
= task_faults_idx(NUMA_CPU
, nid
, priv
);
2398 cpubuf_idx
= task_faults_idx(NUMA_CPUBUF
, nid
, priv
);
2400 /* Decay existing window, copy faults since last scan */
2401 diff
= p
->numa_faults
[membuf_idx
] - p
->numa_faults
[mem_idx
] / 2;
2402 fault_types
[priv
] += p
->numa_faults
[membuf_idx
];
2403 p
->numa_faults
[membuf_idx
] = 0;
2406 * Normalize the faults_from, so all tasks in a group
2407 * count according to CPU use, instead of by the raw
2408 * number of faults. Tasks with little runtime have
2409 * little over-all impact on throughput, and thus their
2410 * faults are less important.
2412 f_weight
= div64_u64(runtime
<< 16, period
+ 1);
2413 f_weight
= (f_weight
* p
->numa_faults
[cpubuf_idx
]) /
2415 f_diff
= f_weight
- p
->numa_faults
[cpu_idx
] / 2;
2416 p
->numa_faults
[cpubuf_idx
] = 0;
2418 p
->numa_faults
[mem_idx
] += diff
;
2419 p
->numa_faults
[cpu_idx
] += f_diff
;
2420 faults
+= p
->numa_faults
[mem_idx
];
2421 p
->total_numa_faults
+= diff
;
2424 * safe because we can only change our own group
2426 * mem_idx represents the offset for a given
2427 * nid and priv in a specific region because it
2428 * is at the beginning of the numa_faults array.
2430 ng
->faults
[mem_idx
] += diff
;
2431 ng
->faults_cpu
[mem_idx
] += f_diff
;
2432 ng
->total_faults
+= diff
;
2433 group_faults
+= ng
->faults
[mem_idx
];
2438 if (faults
> max_faults
) {
2439 max_faults
= faults
;
2442 } else if (group_faults
> max_faults
) {
2443 max_faults
= group_faults
;
2449 numa_group_count_active_nodes(ng
);
2450 spin_unlock_irq(group_lock
);
2451 max_nid
= preferred_group_nid(p
, max_nid
);
2455 /* Set the new preferred node */
2456 if (max_nid
!= p
->numa_preferred_nid
)
2457 sched_setnuma(p
, max_nid
);
2460 update_task_scan_period(p
, fault_types
[0], fault_types
[1]);
2463 static inline int get_numa_group(struct numa_group
*grp
)
2465 return refcount_inc_not_zero(&grp
->refcount
);
2468 static inline void put_numa_group(struct numa_group
*grp
)
2470 if (refcount_dec_and_test(&grp
->refcount
))
2471 kfree_rcu(grp
, rcu
);
2474 static void task_numa_group(struct task_struct
*p
, int cpupid
, int flags
,
2477 struct numa_group
*grp
, *my_grp
;
2478 struct task_struct
*tsk
;
2480 int cpu
= cpupid_to_cpu(cpupid
);
2483 if (unlikely(!deref_curr_numa_group(p
))) {
2484 unsigned int size
= sizeof(struct numa_group
) +
2485 4*nr_node_ids
*sizeof(unsigned long);
2487 grp
= kzalloc(size
, GFP_KERNEL
| __GFP_NOWARN
);
2491 refcount_set(&grp
->refcount
, 1);
2492 grp
->active_nodes
= 1;
2493 grp
->max_faults_cpu
= 0;
2494 spin_lock_init(&grp
->lock
);
2496 /* Second half of the array tracks nids where faults happen */
2497 grp
->faults_cpu
= grp
->faults
+ NR_NUMA_HINT_FAULT_TYPES
*
2500 for (i
= 0; i
< NR_NUMA_HINT_FAULT_STATS
* nr_node_ids
; i
++)
2501 grp
->faults
[i
] = p
->numa_faults
[i
];
2503 grp
->total_faults
= p
->total_numa_faults
;
2506 rcu_assign_pointer(p
->numa_group
, grp
);
2510 tsk
= READ_ONCE(cpu_rq(cpu
)->curr
);
2512 if (!cpupid_match_pid(tsk
, cpupid
))
2515 grp
= rcu_dereference(tsk
->numa_group
);
2519 my_grp
= deref_curr_numa_group(p
);
2524 * Only join the other group if its bigger; if we're the bigger group,
2525 * the other task will join us.
2527 if (my_grp
->nr_tasks
> grp
->nr_tasks
)
2531 * Tie-break on the grp address.
2533 if (my_grp
->nr_tasks
== grp
->nr_tasks
&& my_grp
> grp
)
2536 /* Always join threads in the same process. */
2537 if (tsk
->mm
== current
->mm
)
2540 /* Simple filter to avoid false positives due to PID collisions */
2541 if (flags
& TNF_SHARED
)
2544 /* Update priv based on whether false sharing was detected */
2547 if (join
&& !get_numa_group(grp
))
2555 BUG_ON(irqs_disabled());
2556 double_lock_irq(&my_grp
->lock
, &grp
->lock
);
2558 for (i
= 0; i
< NR_NUMA_HINT_FAULT_STATS
* nr_node_ids
; i
++) {
2559 my_grp
->faults
[i
] -= p
->numa_faults
[i
];
2560 grp
->faults
[i
] += p
->numa_faults
[i
];
2562 my_grp
->total_faults
-= p
->total_numa_faults
;
2563 grp
->total_faults
+= p
->total_numa_faults
;
2568 spin_unlock(&my_grp
->lock
);
2569 spin_unlock_irq(&grp
->lock
);
2571 rcu_assign_pointer(p
->numa_group
, grp
);
2573 put_numa_group(my_grp
);
2582 * Get rid of NUMA staticstics associated with a task (either current or dead).
2583 * If @final is set, the task is dead and has reached refcount zero, so we can
2584 * safely free all relevant data structures. Otherwise, there might be
2585 * concurrent reads from places like load balancing and procfs, and we should
2586 * reset the data back to default state without freeing ->numa_faults.
2588 void task_numa_free(struct task_struct
*p
, bool final
)
2590 /* safe: p either is current or is being freed by current */
2591 struct numa_group
*grp
= rcu_dereference_raw(p
->numa_group
);
2592 unsigned long *numa_faults
= p
->numa_faults
;
2593 unsigned long flags
;
2600 spin_lock_irqsave(&grp
->lock
, flags
);
2601 for (i
= 0; i
< NR_NUMA_HINT_FAULT_STATS
* nr_node_ids
; i
++)
2602 grp
->faults
[i
] -= p
->numa_faults
[i
];
2603 grp
->total_faults
-= p
->total_numa_faults
;
2606 spin_unlock_irqrestore(&grp
->lock
, flags
);
2607 RCU_INIT_POINTER(p
->numa_group
, NULL
);
2608 put_numa_group(grp
);
2612 p
->numa_faults
= NULL
;
2615 p
->total_numa_faults
= 0;
2616 for (i
= 0; i
< NR_NUMA_HINT_FAULT_STATS
* nr_node_ids
; i
++)
2622 * Got a PROT_NONE fault for a page on @node.
2624 void task_numa_fault(int last_cpupid
, int mem_node
, int pages
, int flags
)
2626 struct task_struct
*p
= current
;
2627 bool migrated
= flags
& TNF_MIGRATED
;
2628 int cpu_node
= task_node(current
);
2629 int local
= !!(flags
& TNF_FAULT_LOCAL
);
2630 struct numa_group
*ng
;
2633 if (!static_branch_likely(&sched_numa_balancing
))
2636 /* for example, ksmd faulting in a user's mm */
2640 /* Allocate buffer to track faults on a per-node basis */
2641 if (unlikely(!p
->numa_faults
)) {
2642 int size
= sizeof(*p
->numa_faults
) *
2643 NR_NUMA_HINT_FAULT_BUCKETS
* nr_node_ids
;
2645 p
->numa_faults
= kzalloc(size
, GFP_KERNEL
|__GFP_NOWARN
);
2646 if (!p
->numa_faults
)
2649 p
->total_numa_faults
= 0;
2650 memset(p
->numa_faults_locality
, 0, sizeof(p
->numa_faults_locality
));
2654 * First accesses are treated as private, otherwise consider accesses
2655 * to be private if the accessing pid has not changed
2657 if (unlikely(last_cpupid
== (-1 & LAST_CPUPID_MASK
))) {
2660 priv
= cpupid_match_pid(p
, last_cpupid
);
2661 if (!priv
&& !(flags
& TNF_NO_GROUP
))
2662 task_numa_group(p
, last_cpupid
, flags
, &priv
);
2666 * If a workload spans multiple NUMA nodes, a shared fault that
2667 * occurs wholly within the set of nodes that the workload is
2668 * actively using should be counted as local. This allows the
2669 * scan rate to slow down when a workload has settled down.
2671 ng
= deref_curr_numa_group(p
);
2672 if (!priv
&& !local
&& ng
&& ng
->active_nodes
> 1 &&
2673 numa_is_active_node(cpu_node
, ng
) &&
2674 numa_is_active_node(mem_node
, ng
))
2678 * Retry to migrate task to preferred node periodically, in case it
2679 * previously failed, or the scheduler moved us.
2681 if (time_after(jiffies
, p
->numa_migrate_retry
)) {
2682 task_numa_placement(p
);
2683 numa_migrate_preferred(p
);
2687 p
->numa_pages_migrated
+= pages
;
2688 if (flags
& TNF_MIGRATE_FAIL
)
2689 p
->numa_faults_locality
[2] += pages
;
2691 p
->numa_faults
[task_faults_idx(NUMA_MEMBUF
, mem_node
, priv
)] += pages
;
2692 p
->numa_faults
[task_faults_idx(NUMA_CPUBUF
, cpu_node
, priv
)] += pages
;
2693 p
->numa_faults_locality
[local
] += pages
;
2696 static void reset_ptenuma_scan(struct task_struct
*p
)
2699 * We only did a read acquisition of the mmap sem, so
2700 * p->mm->numa_scan_seq is written to without exclusive access
2701 * and the update is not guaranteed to be atomic. That's not
2702 * much of an issue though, since this is just used for
2703 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2704 * expensive, to avoid any form of compiler optimizations:
2706 WRITE_ONCE(p
->mm
->numa_scan_seq
, READ_ONCE(p
->mm
->numa_scan_seq
) + 1);
2707 p
->mm
->numa_scan_offset
= 0;
2711 * The expensive part of numa migration is done from task_work context.
2712 * Triggered from task_tick_numa().
2714 static void task_numa_work(struct callback_head
*work
)
2716 unsigned long migrate
, next_scan
, now
= jiffies
;
2717 struct task_struct
*p
= current
;
2718 struct mm_struct
*mm
= p
->mm
;
2719 u64 runtime
= p
->se
.sum_exec_runtime
;
2720 struct vm_area_struct
*vma
;
2721 unsigned long start
, end
;
2722 unsigned long nr_pte_updates
= 0;
2723 long pages
, virtpages
;
2725 SCHED_WARN_ON(p
!= container_of(work
, struct task_struct
, numa_work
));
2729 * Who cares about NUMA placement when they're dying.
2731 * NOTE: make sure not to dereference p->mm before this check,
2732 * exit_task_work() happens _after_ exit_mm() so we could be called
2733 * without p->mm even though we still had it when we enqueued this
2736 if (p
->flags
& PF_EXITING
)
2739 if (!mm
->numa_next_scan
) {
2740 mm
->numa_next_scan
= now
+
2741 msecs_to_jiffies(sysctl_numa_balancing_scan_delay
);
2745 * Enforce maximal scan/migration frequency..
2747 migrate
= mm
->numa_next_scan
;
2748 if (time_before(now
, migrate
))
2751 if (p
->numa_scan_period
== 0) {
2752 p
->numa_scan_period_max
= task_scan_max(p
);
2753 p
->numa_scan_period
= task_scan_start(p
);
2756 next_scan
= now
+ msecs_to_jiffies(p
->numa_scan_period
);
2757 if (cmpxchg(&mm
->numa_next_scan
, migrate
, next_scan
) != migrate
)
2761 * Delay this task enough that another task of this mm will likely win
2762 * the next time around.
2764 p
->node_stamp
+= 2 * TICK_NSEC
;
2766 start
= mm
->numa_scan_offset
;
2767 pages
= sysctl_numa_balancing_scan_size
;
2768 pages
<<= 20 - PAGE_SHIFT
; /* MB in pages */
2769 virtpages
= pages
* 8; /* Scan up to this much virtual space */
2774 if (!down_read_trylock(&mm
->mmap_sem
))
2776 vma
= find_vma(mm
, start
);
2778 reset_ptenuma_scan(p
);
2782 for (; vma
; vma
= vma
->vm_next
) {
2783 if (!vma_migratable(vma
) || !vma_policy_mof(vma
) ||
2784 is_vm_hugetlb_page(vma
) || (vma
->vm_flags
& VM_MIXEDMAP
)) {
2789 * Shared library pages mapped by multiple processes are not
2790 * migrated as it is expected they are cache replicated. Avoid
2791 * hinting faults in read-only file-backed mappings or the vdso
2792 * as migrating the pages will be of marginal benefit.
2795 (vma
->vm_file
&& (vma
->vm_flags
& (VM_READ
|VM_WRITE
)) == (VM_READ
)))
2799 * Skip inaccessible VMAs to avoid any confusion between
2800 * PROT_NONE and NUMA hinting ptes
2802 if (!vma_is_accessible(vma
))
2806 start
= max(start
, vma
->vm_start
);
2807 end
= ALIGN(start
+ (pages
<< PAGE_SHIFT
), HPAGE_SIZE
);
2808 end
= min(end
, vma
->vm_end
);
2809 nr_pte_updates
= change_prot_numa(vma
, start
, end
);
2812 * Try to scan sysctl_numa_balancing_size worth of
2813 * hpages that have at least one present PTE that
2814 * is not already pte-numa. If the VMA contains
2815 * areas that are unused or already full of prot_numa
2816 * PTEs, scan up to virtpages, to skip through those
2820 pages
-= (end
- start
) >> PAGE_SHIFT
;
2821 virtpages
-= (end
- start
) >> PAGE_SHIFT
;
2824 if (pages
<= 0 || virtpages
<= 0)
2828 } while (end
!= vma
->vm_end
);
2833 * It is possible to reach the end of the VMA list but the last few
2834 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2835 * would find the !migratable VMA on the next scan but not reset the
2836 * scanner to the start so check it now.
2839 mm
->numa_scan_offset
= start
;
2841 reset_ptenuma_scan(p
);
2842 up_read(&mm
->mmap_sem
);
2845 * Make sure tasks use at least 32x as much time to run other code
2846 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2847 * Usually update_task_scan_period slows down scanning enough; on an
2848 * overloaded system we need to limit overhead on a per task basis.
2850 if (unlikely(p
->se
.sum_exec_runtime
!= runtime
)) {
2851 u64 diff
= p
->se
.sum_exec_runtime
- runtime
;
2852 p
->node_stamp
+= 32 * diff
;
2856 void init_numa_balancing(unsigned long clone_flags
, struct task_struct
*p
)
2859 struct mm_struct
*mm
= p
->mm
;
2862 mm_users
= atomic_read(&mm
->mm_users
);
2863 if (mm_users
== 1) {
2864 mm
->numa_next_scan
= jiffies
+ msecs_to_jiffies(sysctl_numa_balancing_scan_delay
);
2865 mm
->numa_scan_seq
= 0;
2869 p
->numa_scan_seq
= mm
? mm
->numa_scan_seq
: 0;
2870 p
->numa_scan_period
= sysctl_numa_balancing_scan_delay
;
2871 /* Protect against double add, see task_tick_numa and task_numa_work */
2872 p
->numa_work
.next
= &p
->numa_work
;
2873 p
->numa_faults
= NULL
;
2874 RCU_INIT_POINTER(p
->numa_group
, NULL
);
2875 p
->last_task_numa_placement
= 0;
2876 p
->last_sum_exec_runtime
= 0;
2878 init_task_work(&p
->numa_work
, task_numa_work
);
2880 /* New address space, reset the preferred nid */
2881 if (!(clone_flags
& CLONE_VM
)) {
2882 p
->numa_preferred_nid
= NUMA_NO_NODE
;
2887 * New thread, keep existing numa_preferred_nid which should be copied
2888 * already by arch_dup_task_struct but stagger when scans start.
2893 delay
= min_t(unsigned int, task_scan_max(current
),
2894 current
->numa_scan_period
* mm_users
* NSEC_PER_MSEC
);
2895 delay
+= 2 * TICK_NSEC
;
2896 p
->node_stamp
= delay
;
2901 * Drive the periodic memory faults..
2903 static void task_tick_numa(struct rq
*rq
, struct task_struct
*curr
)
2905 struct callback_head
*work
= &curr
->numa_work
;
2909 * We don't care about NUMA placement if we don't have memory.
2911 if (!curr
->mm
|| (curr
->flags
& PF_EXITING
) || work
->next
!= work
)
2915 * Using runtime rather than walltime has the dual advantage that
2916 * we (mostly) drive the selection from busy threads and that the
2917 * task needs to have done some actual work before we bother with
2920 now
= curr
->se
.sum_exec_runtime
;
2921 period
= (u64
)curr
->numa_scan_period
* NSEC_PER_MSEC
;
2923 if (now
> curr
->node_stamp
+ period
) {
2924 if (!curr
->node_stamp
)
2925 curr
->numa_scan_period
= task_scan_start(curr
);
2926 curr
->node_stamp
+= period
;
2928 if (!time_before(jiffies
, curr
->mm
->numa_next_scan
))
2929 task_work_add(curr
, work
, true);
2933 static void update_scan_period(struct task_struct
*p
, int new_cpu
)
2935 int src_nid
= cpu_to_node(task_cpu(p
));
2936 int dst_nid
= cpu_to_node(new_cpu
);
2938 if (!static_branch_likely(&sched_numa_balancing
))
2941 if (!p
->mm
|| !p
->numa_faults
|| (p
->flags
& PF_EXITING
))
2944 if (src_nid
== dst_nid
)
2948 * Allow resets if faults have been trapped before one scan
2949 * has completed. This is most likely due to a new task that
2950 * is pulled cross-node due to wakeups or load balancing.
2952 if (p
->numa_scan_seq
) {
2954 * Avoid scan adjustments if moving to the preferred
2955 * node or if the task was not previously running on
2956 * the preferred node.
2958 if (dst_nid
== p
->numa_preferred_nid
||
2959 (p
->numa_preferred_nid
!= NUMA_NO_NODE
&&
2960 src_nid
!= p
->numa_preferred_nid
))
2964 p
->numa_scan_period
= task_scan_start(p
);
2968 static void task_tick_numa(struct rq
*rq
, struct task_struct
*curr
)
2972 static inline void account_numa_enqueue(struct rq
*rq
, struct task_struct
*p
)
2976 static inline void account_numa_dequeue(struct rq
*rq
, struct task_struct
*p
)
2980 static inline void update_scan_period(struct task_struct
*p
, int new_cpu
)
2984 #endif /* CONFIG_NUMA_BALANCING */
2987 account_entity_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
2989 update_load_add(&cfs_rq
->load
, se
->load
.weight
);
2991 if (entity_is_task(se
)) {
2992 struct rq
*rq
= rq_of(cfs_rq
);
2994 account_numa_enqueue(rq
, task_of(se
));
2995 list_add(&se
->group_node
, &rq
->cfs_tasks
);
2998 cfs_rq
->nr_running
++;
3002 account_entity_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3004 update_load_sub(&cfs_rq
->load
, se
->load
.weight
);
3006 if (entity_is_task(se
)) {
3007 account_numa_dequeue(rq_of(cfs_rq
), task_of(se
));
3008 list_del_init(&se
->group_node
);
3011 cfs_rq
->nr_running
--;
3015 * Signed add and clamp on underflow.
3017 * Explicitly do a load-store to ensure the intermediate value never hits
3018 * memory. This allows lockless observations without ever seeing the negative
3021 #define add_positive(_ptr, _val) do { \
3022 typeof(_ptr) ptr = (_ptr); \
3023 typeof(_val) val = (_val); \
3024 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3028 if (val < 0 && res > var) \
3031 WRITE_ONCE(*ptr, res); \
3035 * Unsigned subtract and clamp on underflow.
3037 * Explicitly do a load-store to ensure the intermediate value never hits
3038 * memory. This allows lockless observations without ever seeing the negative
3041 #define sub_positive(_ptr, _val) do { \
3042 typeof(_ptr) ptr = (_ptr); \
3043 typeof(*ptr) val = (_val); \
3044 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3048 WRITE_ONCE(*ptr, res); \
3052 * Remove and clamp on negative, from a local variable.
3054 * A variant of sub_positive(), which does not use explicit load-store
3055 * and is thus optimized for local variable updates.
3057 #define lsub_positive(_ptr, _val) do { \
3058 typeof(_ptr) ptr = (_ptr); \
3059 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3064 enqueue_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3066 cfs_rq
->avg
.load_avg
+= se
->avg
.load_avg
;
3067 cfs_rq
->avg
.load_sum
+= se_weight(se
) * se
->avg
.load_sum
;
3071 dequeue_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3073 sub_positive(&cfs_rq
->avg
.load_avg
, se
->avg
.load_avg
);
3074 sub_positive(&cfs_rq
->avg
.load_sum
, se_weight(se
) * se
->avg
.load_sum
);
3078 enqueue_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) { }
3080 dequeue_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) { }
3083 static void reweight_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
,
3084 unsigned long weight
)
3087 /* commit outstanding execution time */
3088 if (cfs_rq
->curr
== se
)
3089 update_curr(cfs_rq
);
3090 account_entity_dequeue(cfs_rq
, se
);
3092 dequeue_load_avg(cfs_rq
, se
);
3094 update_load_set(&se
->load
, weight
);
3098 u32 divider
= LOAD_AVG_MAX
- 1024 + se
->avg
.period_contrib
;
3100 se
->avg
.load_avg
= div_u64(se_weight(se
) * se
->avg
.load_sum
, divider
);
3104 enqueue_load_avg(cfs_rq
, se
);
3106 account_entity_enqueue(cfs_rq
, se
);
3110 void reweight_task(struct task_struct
*p
, int prio
)
3112 struct sched_entity
*se
= &p
->se
;
3113 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
3114 struct load_weight
*load
= &se
->load
;
3115 unsigned long weight
= scale_load(sched_prio_to_weight
[prio
]);
3117 reweight_entity(cfs_rq
, se
, weight
);
3118 load
->inv_weight
= sched_prio_to_wmult
[prio
];
3121 #ifdef CONFIG_FAIR_GROUP_SCHED
3124 * All this does is approximate the hierarchical proportion which includes that
3125 * global sum we all love to hate.
3127 * That is, the weight of a group entity, is the proportional share of the
3128 * group weight based on the group runqueue weights. That is:
3130 * tg->weight * grq->load.weight
3131 * ge->load.weight = ----------------------------- (1)
3132 * \Sum grq->load.weight
3134 * Now, because computing that sum is prohibitively expensive to compute (been
3135 * there, done that) we approximate it with this average stuff. The average
3136 * moves slower and therefore the approximation is cheaper and more stable.
3138 * So instead of the above, we substitute:
3140 * grq->load.weight -> grq->avg.load_avg (2)
3142 * which yields the following:
3144 * tg->weight * grq->avg.load_avg
3145 * ge->load.weight = ------------------------------ (3)
3148 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3150 * That is shares_avg, and it is right (given the approximation (2)).
3152 * The problem with it is that because the average is slow -- it was designed
3153 * to be exactly that of course -- this leads to transients in boundary
3154 * conditions. In specific, the case where the group was idle and we start the
3155 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3156 * yielding bad latency etc..
3158 * Now, in that special case (1) reduces to:
3160 * tg->weight * grq->load.weight
3161 * ge->load.weight = ----------------------------- = tg->weight (4)
3164 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3166 * So what we do is modify our approximation (3) to approach (4) in the (near)
3171 * tg->weight * grq->load.weight
3172 * --------------------------------------------------- (5)
3173 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3175 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3176 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3179 * tg->weight * grq->load.weight
3180 * ge->load.weight = ----------------------------- (6)
3185 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3186 * max(grq->load.weight, grq->avg.load_avg)
3188 * And that is shares_weight and is icky. In the (near) UP case it approaches
3189 * (4) while in the normal case it approaches (3). It consistently
3190 * overestimates the ge->load.weight and therefore:
3192 * \Sum ge->load.weight >= tg->weight
3196 static long calc_group_shares(struct cfs_rq
*cfs_rq
)
3198 long tg_weight
, tg_shares
, load
, shares
;
3199 struct task_group
*tg
= cfs_rq
->tg
;
3201 tg_shares
= READ_ONCE(tg
->shares
);
3203 load
= max(scale_load_down(cfs_rq
->load
.weight
), cfs_rq
->avg
.load_avg
);
3205 tg_weight
= atomic_long_read(&tg
->load_avg
);
3207 /* Ensure tg_weight >= load */
3208 tg_weight
-= cfs_rq
->tg_load_avg_contrib
;
3211 shares
= (tg_shares
* load
);
3213 shares
/= tg_weight
;
3216 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3217 * of a group with small tg->shares value. It is a floor value which is
3218 * assigned as a minimum load.weight to the sched_entity representing
3219 * the group on a CPU.
3221 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3222 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3223 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3224 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3227 return clamp_t(long, shares
, MIN_SHARES
, tg_shares
);
3229 #endif /* CONFIG_SMP */
3231 static inline int throttled_hierarchy(struct cfs_rq
*cfs_rq
);
3234 * Recomputes the group entity based on the current state of its group
3237 static void update_cfs_group(struct sched_entity
*se
)
3239 struct cfs_rq
*gcfs_rq
= group_cfs_rq(se
);
3245 if (throttled_hierarchy(gcfs_rq
))
3249 shares
= READ_ONCE(gcfs_rq
->tg
->shares
);
3251 if (likely(se
->load
.weight
== shares
))
3254 shares
= calc_group_shares(gcfs_rq
);
3257 reweight_entity(cfs_rq_of(se
), se
, shares
);
3260 #else /* CONFIG_FAIR_GROUP_SCHED */
3261 static inline void update_cfs_group(struct sched_entity
*se
)
3264 #endif /* CONFIG_FAIR_GROUP_SCHED */
3266 static inline void cfs_rq_util_change(struct cfs_rq
*cfs_rq
, int flags
)
3268 struct rq
*rq
= rq_of(cfs_rq
);
3270 if (&rq
->cfs
== cfs_rq
) {
3272 * There are a few boundary cases this might miss but it should
3273 * get called often enough that that should (hopefully) not be
3276 * It will not get called when we go idle, because the idle
3277 * thread is a different class (!fair), nor will the utilization
3278 * number include things like RT tasks.
3280 * As is, the util number is not freq-invariant (we'd have to
3281 * implement arch_scale_freq_capacity() for that).
3285 cpufreq_update_util(rq
, flags
);
3290 #ifdef CONFIG_FAIR_GROUP_SCHED
3292 * update_tg_load_avg - update the tg's load avg
3293 * @cfs_rq: the cfs_rq whose avg changed
3294 * @force: update regardless of how small the difference
3296 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3297 * However, because tg->load_avg is a global value there are performance
3300 * In order to avoid having to look at the other cfs_rq's, we use a
3301 * differential update where we store the last value we propagated. This in
3302 * turn allows skipping updates if the differential is 'small'.
3304 * Updating tg's load_avg is necessary before update_cfs_share().
3306 static inline void update_tg_load_avg(struct cfs_rq
*cfs_rq
, int force
)
3308 long delta
= cfs_rq
->avg
.load_avg
- cfs_rq
->tg_load_avg_contrib
;
3311 * No need to update load_avg for root_task_group as it is not used.
3313 if (cfs_rq
->tg
== &root_task_group
)
3316 if (force
|| abs(delta
) > cfs_rq
->tg_load_avg_contrib
/ 64) {
3317 atomic_long_add(delta
, &cfs_rq
->tg
->load_avg
);
3318 cfs_rq
->tg_load_avg_contrib
= cfs_rq
->avg
.load_avg
;
3323 * Called within set_task_rq() right before setting a task's CPU. The
3324 * caller only guarantees p->pi_lock is held; no other assumptions,
3325 * including the state of rq->lock, should be made.
3327 void set_task_rq_fair(struct sched_entity
*se
,
3328 struct cfs_rq
*prev
, struct cfs_rq
*next
)
3330 u64 p_last_update_time
;
3331 u64 n_last_update_time
;
3333 if (!sched_feat(ATTACH_AGE_LOAD
))
3337 * We are supposed to update the task to "current" time, then its up to
3338 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3339 * getting what current time is, so simply throw away the out-of-date
3340 * time. This will result in the wakee task is less decayed, but giving
3341 * the wakee more load sounds not bad.
3343 if (!(se
->avg
.last_update_time
&& prev
))
3346 #ifndef CONFIG_64BIT
3348 u64 p_last_update_time_copy
;
3349 u64 n_last_update_time_copy
;
3352 p_last_update_time_copy
= prev
->load_last_update_time_copy
;
3353 n_last_update_time_copy
= next
->load_last_update_time_copy
;
3357 p_last_update_time
= prev
->avg
.last_update_time
;
3358 n_last_update_time
= next
->avg
.last_update_time
;
3360 } while (p_last_update_time
!= p_last_update_time_copy
||
3361 n_last_update_time
!= n_last_update_time_copy
);
3364 p_last_update_time
= prev
->avg
.last_update_time
;
3365 n_last_update_time
= next
->avg
.last_update_time
;
3367 __update_load_avg_blocked_se(p_last_update_time
, se
);
3368 se
->avg
.last_update_time
= n_last_update_time
;
3373 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3374 * propagate its contribution. The key to this propagation is the invariant
3375 * that for each group:
3377 * ge->avg == grq->avg (1)
3379 * _IFF_ we look at the pure running and runnable sums. Because they
3380 * represent the very same entity, just at different points in the hierarchy.
3382 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3383 * and simply copies the running/runnable sum over (but still wrong, because
3384 * the group entity and group rq do not have their PELT windows aligned).
3386 * However, update_tg_cfs_load() is more complex. So we have:
3388 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3390 * And since, like util, the runnable part should be directly transferable,
3391 * the following would _appear_ to be the straight forward approach:
3393 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
3395 * And per (1) we have:
3397 * ge->avg.runnable_avg == grq->avg.runnable_avg
3401 * ge->load.weight * grq->avg.load_avg
3402 * ge->avg.load_avg = ----------------------------------- (4)
3405 * Except that is wrong!
3407 * Because while for entities historical weight is not important and we
3408 * really only care about our future and therefore can consider a pure
3409 * runnable sum, runqueues can NOT do this.
3411 * We specifically want runqueues to have a load_avg that includes
3412 * historical weights. Those represent the blocked load, the load we expect
3413 * to (shortly) return to us. This only works by keeping the weights as
3414 * integral part of the sum. We therefore cannot decompose as per (3).
3416 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3417 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3418 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3419 * runnable section of these tasks overlap (or not). If they were to perfectly
3420 * align the rq as a whole would be runnable 2/3 of the time. If however we
3421 * always have at least 1 runnable task, the rq as a whole is always runnable.
3423 * So we'll have to approximate.. :/
3425 * Given the constraint:
3427 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3429 * We can construct a rule that adds runnable to a rq by assuming minimal
3432 * On removal, we'll assume each task is equally runnable; which yields:
3434 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3436 * XXX: only do this for the part of runnable > running ?
3441 update_tg_cfs_util(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, struct cfs_rq
*gcfs_rq
)
3443 long delta
= gcfs_rq
->avg
.util_avg
- se
->avg
.util_avg
;
3445 /* Nothing to update */
3450 * The relation between sum and avg is:
3452 * LOAD_AVG_MAX - 1024 + sa->period_contrib
3454 * however, the PELT windows are not aligned between grq and gse.
3457 /* Set new sched_entity's utilization */
3458 se
->avg
.util_avg
= gcfs_rq
->avg
.util_avg
;
3459 se
->avg
.util_sum
= se
->avg
.util_avg
* LOAD_AVG_MAX
;
3461 /* Update parent cfs_rq utilization */
3462 add_positive(&cfs_rq
->avg
.util_avg
, delta
);
3463 cfs_rq
->avg
.util_sum
= cfs_rq
->avg
.util_avg
* LOAD_AVG_MAX
;
3467 update_tg_cfs_runnable(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, struct cfs_rq
*gcfs_rq
)
3469 long delta
= gcfs_rq
->avg
.runnable_avg
- se
->avg
.runnable_avg
;
3471 /* Nothing to update */
3476 * The relation between sum and avg is:
3478 * LOAD_AVG_MAX - 1024 + sa->period_contrib
3480 * however, the PELT windows are not aligned between grq and gse.
3483 /* Set new sched_entity's runnable */
3484 se
->avg
.runnable_avg
= gcfs_rq
->avg
.runnable_avg
;
3485 se
->avg
.runnable_sum
= se
->avg
.runnable_avg
* LOAD_AVG_MAX
;
3487 /* Update parent cfs_rq runnable */
3488 add_positive(&cfs_rq
->avg
.runnable_avg
, delta
);
3489 cfs_rq
->avg
.runnable_sum
= cfs_rq
->avg
.runnable_avg
* LOAD_AVG_MAX
;
3493 update_tg_cfs_load(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, struct cfs_rq
*gcfs_rq
)
3495 long delta_avg
, running_sum
, runnable_sum
= gcfs_rq
->prop_runnable_sum
;
3496 unsigned long load_avg
;
3503 gcfs_rq
->prop_runnable_sum
= 0;
3505 if (runnable_sum
>= 0) {
3507 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3508 * the CPU is saturated running == runnable.
3510 runnable_sum
+= se
->avg
.load_sum
;
3511 runnable_sum
= min(runnable_sum
, (long)LOAD_AVG_MAX
);
3514 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3515 * assuming all tasks are equally runnable.
3517 if (scale_load_down(gcfs_rq
->load
.weight
)) {
3518 load_sum
= div_s64(gcfs_rq
->avg
.load_sum
,
3519 scale_load_down(gcfs_rq
->load
.weight
));
3522 /* But make sure to not inflate se's runnable */
3523 runnable_sum
= min(se
->avg
.load_sum
, load_sum
);
3527 * runnable_sum can't be lower than running_sum
3528 * Rescale running sum to be in the same range as runnable sum
3529 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3530 * runnable_sum is in [0 : LOAD_AVG_MAX]
3532 running_sum
= se
->avg
.util_sum
>> SCHED_CAPACITY_SHIFT
;
3533 runnable_sum
= max(runnable_sum
, running_sum
);
3535 load_sum
= (s64
)se_weight(se
) * runnable_sum
;
3536 load_avg
= div_s64(load_sum
, LOAD_AVG_MAX
);
3538 delta_sum
= load_sum
- (s64
)se_weight(se
) * se
->avg
.load_sum
;
3539 delta_avg
= load_avg
- se
->avg
.load_avg
;
3541 se
->avg
.load_sum
= runnable_sum
;
3542 se
->avg
.load_avg
= load_avg
;
3543 add_positive(&cfs_rq
->avg
.load_avg
, delta_avg
);
3544 add_positive(&cfs_rq
->avg
.load_sum
, delta_sum
);
3547 static inline void add_tg_cfs_propagate(struct cfs_rq
*cfs_rq
, long runnable_sum
)
3549 cfs_rq
->propagate
= 1;
3550 cfs_rq
->prop_runnable_sum
+= runnable_sum
;
3553 /* Update task and its cfs_rq load average */
3554 static inline int propagate_entity_load_avg(struct sched_entity
*se
)
3556 struct cfs_rq
*cfs_rq
, *gcfs_rq
;
3558 if (entity_is_task(se
))
3561 gcfs_rq
= group_cfs_rq(se
);
3562 if (!gcfs_rq
->propagate
)
3565 gcfs_rq
->propagate
= 0;
3567 cfs_rq
= cfs_rq_of(se
);
3569 add_tg_cfs_propagate(cfs_rq
, gcfs_rq
->prop_runnable_sum
);
3571 update_tg_cfs_util(cfs_rq
, se
, gcfs_rq
);
3572 update_tg_cfs_runnable(cfs_rq
, se
, gcfs_rq
);
3573 update_tg_cfs_load(cfs_rq
, se
, gcfs_rq
);
3575 trace_pelt_cfs_tp(cfs_rq
);
3576 trace_pelt_se_tp(se
);
3582 * Check if we need to update the load and the utilization of a blocked
3585 static inline bool skip_blocked_update(struct sched_entity
*se
)
3587 struct cfs_rq
*gcfs_rq
= group_cfs_rq(se
);
3590 * If sched_entity still have not zero load or utilization, we have to
3593 if (se
->avg
.load_avg
|| se
->avg
.util_avg
)
3597 * If there is a pending propagation, we have to update the load and
3598 * the utilization of the sched_entity:
3600 if (gcfs_rq
->propagate
)
3604 * Otherwise, the load and the utilization of the sched_entity is
3605 * already zero and there is no pending propagation, so it will be a
3606 * waste of time to try to decay it:
3611 #else /* CONFIG_FAIR_GROUP_SCHED */
3613 static inline void update_tg_load_avg(struct cfs_rq
*cfs_rq
, int force
) {}
3615 static inline int propagate_entity_load_avg(struct sched_entity
*se
)
3620 static inline void add_tg_cfs_propagate(struct cfs_rq
*cfs_rq
, long runnable_sum
) {}
3622 #endif /* CONFIG_FAIR_GROUP_SCHED */
3625 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3626 * @now: current time, as per cfs_rq_clock_pelt()
3627 * @cfs_rq: cfs_rq to update
3629 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3630 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3631 * post_init_entity_util_avg().
3633 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3635 * Returns true if the load decayed or we removed load.
3637 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3638 * call update_tg_load_avg() when this function returns true.
3641 update_cfs_rq_load_avg(u64 now
, struct cfs_rq
*cfs_rq
)
3643 unsigned long removed_load
= 0, removed_util
= 0, removed_runnable
= 0;
3644 struct sched_avg
*sa
= &cfs_rq
->avg
;
3647 if (cfs_rq
->removed
.nr
) {
3649 u32 divider
= LOAD_AVG_MAX
- 1024 + sa
->period_contrib
;
3651 raw_spin_lock(&cfs_rq
->removed
.lock
);
3652 swap(cfs_rq
->removed
.util_avg
, removed_util
);
3653 swap(cfs_rq
->removed
.load_avg
, removed_load
);
3654 swap(cfs_rq
->removed
.runnable_avg
, removed_runnable
);
3655 cfs_rq
->removed
.nr
= 0;
3656 raw_spin_unlock(&cfs_rq
->removed
.lock
);
3659 sub_positive(&sa
->load_avg
, r
);
3660 sub_positive(&sa
->load_sum
, r
* divider
);
3663 sub_positive(&sa
->util_avg
, r
);
3664 sub_positive(&sa
->util_sum
, r
* divider
);
3666 r
= removed_runnable
;
3667 sub_positive(&sa
->runnable_avg
, r
);
3668 sub_positive(&sa
->runnable_sum
, r
* divider
);
3671 * removed_runnable is the unweighted version of removed_load so we
3672 * can use it to estimate removed_load_sum.
3674 add_tg_cfs_propagate(cfs_rq
,
3675 -(long)(removed_runnable
* divider
) >> SCHED_CAPACITY_SHIFT
);
3680 decayed
|= __update_load_avg_cfs_rq(now
, cfs_rq
);
3682 #ifndef CONFIG_64BIT
3684 cfs_rq
->load_last_update_time_copy
= sa
->last_update_time
;
3691 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3692 * @cfs_rq: cfs_rq to attach to
3693 * @se: sched_entity to attach
3695 * Must call update_cfs_rq_load_avg() before this, since we rely on
3696 * cfs_rq->avg.last_update_time being current.
3698 static void attach_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3700 u32 divider
= LOAD_AVG_MAX
- 1024 + cfs_rq
->avg
.period_contrib
;
3703 * When we attach the @se to the @cfs_rq, we must align the decay
3704 * window because without that, really weird and wonderful things can
3709 se
->avg
.last_update_time
= cfs_rq
->avg
.last_update_time
;
3710 se
->avg
.period_contrib
= cfs_rq
->avg
.period_contrib
;
3713 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3714 * period_contrib. This isn't strictly correct, but since we're
3715 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3718 se
->avg
.util_sum
= se
->avg
.util_avg
* divider
;
3720 se
->avg
.runnable_sum
= se
->avg
.runnable_avg
* divider
;
3722 se
->avg
.load_sum
= divider
;
3723 if (se_weight(se
)) {
3725 div_u64(se
->avg
.load_avg
* se
->avg
.load_sum
, se_weight(se
));
3728 enqueue_load_avg(cfs_rq
, se
);
3729 cfs_rq
->avg
.util_avg
+= se
->avg
.util_avg
;
3730 cfs_rq
->avg
.util_sum
+= se
->avg
.util_sum
;
3731 cfs_rq
->avg
.runnable_avg
+= se
->avg
.runnable_avg
;
3732 cfs_rq
->avg
.runnable_sum
+= se
->avg
.runnable_sum
;
3734 add_tg_cfs_propagate(cfs_rq
, se
->avg
.load_sum
);
3736 cfs_rq_util_change(cfs_rq
, 0);
3738 trace_pelt_cfs_tp(cfs_rq
);
3742 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3743 * @cfs_rq: cfs_rq to detach from
3744 * @se: sched_entity to detach
3746 * Must call update_cfs_rq_load_avg() before this, since we rely on
3747 * cfs_rq->avg.last_update_time being current.
3749 static void detach_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3751 dequeue_load_avg(cfs_rq
, se
);
3752 sub_positive(&cfs_rq
->avg
.util_avg
, se
->avg
.util_avg
);
3753 sub_positive(&cfs_rq
->avg
.util_sum
, se
->avg
.util_sum
);
3754 sub_positive(&cfs_rq
->avg
.runnable_avg
, se
->avg
.runnable_avg
);
3755 sub_positive(&cfs_rq
->avg
.runnable_sum
, se
->avg
.runnable_sum
);
3757 add_tg_cfs_propagate(cfs_rq
, -se
->avg
.load_sum
);
3759 cfs_rq_util_change(cfs_rq
, 0);
3761 trace_pelt_cfs_tp(cfs_rq
);
3765 * Optional action to be done while updating the load average
3767 #define UPDATE_TG 0x1
3768 #define SKIP_AGE_LOAD 0x2
3769 #define DO_ATTACH 0x4
3771 /* Update task and its cfs_rq load average */
3772 static inline void update_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
3774 u64 now
= cfs_rq_clock_pelt(cfs_rq
);
3778 * Track task load average for carrying it to new CPU after migrated, and
3779 * track group sched_entity load average for task_h_load calc in migration
3781 if (se
->avg
.last_update_time
&& !(flags
& SKIP_AGE_LOAD
))
3782 __update_load_avg_se(now
, cfs_rq
, se
);
3784 decayed
= update_cfs_rq_load_avg(now
, cfs_rq
);
3785 decayed
|= propagate_entity_load_avg(se
);
3787 if (!se
->avg
.last_update_time
&& (flags
& DO_ATTACH
)) {
3790 * DO_ATTACH means we're here from enqueue_entity().
3791 * !last_update_time means we've passed through
3792 * migrate_task_rq_fair() indicating we migrated.
3794 * IOW we're enqueueing a task on a new CPU.
3796 attach_entity_load_avg(cfs_rq
, se
);
3797 update_tg_load_avg(cfs_rq
, 0);
3799 } else if (decayed
) {
3800 cfs_rq_util_change(cfs_rq
, 0);
3802 if (flags
& UPDATE_TG
)
3803 update_tg_load_avg(cfs_rq
, 0);
3807 #ifndef CONFIG_64BIT
3808 static inline u64
cfs_rq_last_update_time(struct cfs_rq
*cfs_rq
)
3810 u64 last_update_time_copy
;
3811 u64 last_update_time
;
3814 last_update_time_copy
= cfs_rq
->load_last_update_time_copy
;
3816 last_update_time
= cfs_rq
->avg
.last_update_time
;
3817 } while (last_update_time
!= last_update_time_copy
);
3819 return last_update_time
;
3822 static inline u64
cfs_rq_last_update_time(struct cfs_rq
*cfs_rq
)
3824 return cfs_rq
->avg
.last_update_time
;
3829 * Synchronize entity load avg of dequeued entity without locking
3832 static void sync_entity_load_avg(struct sched_entity
*se
)
3834 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
3835 u64 last_update_time
;
3837 last_update_time
= cfs_rq_last_update_time(cfs_rq
);
3838 __update_load_avg_blocked_se(last_update_time
, se
);
3842 * Task first catches up with cfs_rq, and then subtract
3843 * itself from the cfs_rq (task must be off the queue now).
3845 static void remove_entity_load_avg(struct sched_entity
*se
)
3847 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
3848 unsigned long flags
;
3851 * tasks cannot exit without having gone through wake_up_new_task() ->
3852 * post_init_entity_util_avg() which will have added things to the
3853 * cfs_rq, so we can remove unconditionally.
3856 sync_entity_load_avg(se
);
3858 raw_spin_lock_irqsave(&cfs_rq
->removed
.lock
, flags
);
3859 ++cfs_rq
->removed
.nr
;
3860 cfs_rq
->removed
.util_avg
+= se
->avg
.util_avg
;
3861 cfs_rq
->removed
.load_avg
+= se
->avg
.load_avg
;
3862 cfs_rq
->removed
.runnable_avg
+= se
->avg
.runnable_avg
;
3863 raw_spin_unlock_irqrestore(&cfs_rq
->removed
.lock
, flags
);
3866 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq
*cfs_rq
)
3868 return cfs_rq
->avg
.runnable_avg
;
3871 static inline unsigned long cfs_rq_load_avg(struct cfs_rq
*cfs_rq
)
3873 return cfs_rq
->avg
.load_avg
;
3876 static inline unsigned long task_util(struct task_struct
*p
)
3878 return READ_ONCE(p
->se
.avg
.util_avg
);
3881 static inline unsigned long _task_util_est(struct task_struct
*p
)
3883 struct util_est ue
= READ_ONCE(p
->se
.avg
.util_est
);
3885 return (max(ue
.ewma
, ue
.enqueued
) | UTIL_AVG_UNCHANGED
);
3888 static inline unsigned long task_util_est(struct task_struct
*p
)
3890 return max(task_util(p
), _task_util_est(p
));
3893 #ifdef CONFIG_UCLAMP_TASK
3894 static inline unsigned long uclamp_task_util(struct task_struct
*p
)
3896 return clamp(task_util_est(p
),
3897 uclamp_eff_value(p
, UCLAMP_MIN
),
3898 uclamp_eff_value(p
, UCLAMP_MAX
));
3901 static inline unsigned long uclamp_task_util(struct task_struct
*p
)
3903 return task_util_est(p
);
3907 static inline void util_est_enqueue(struct cfs_rq
*cfs_rq
,
3908 struct task_struct
*p
)
3910 unsigned int enqueued
;
3912 if (!sched_feat(UTIL_EST
))
3915 /* Update root cfs_rq's estimated utilization */
3916 enqueued
= cfs_rq
->avg
.util_est
.enqueued
;
3917 enqueued
+= _task_util_est(p
);
3918 WRITE_ONCE(cfs_rq
->avg
.util_est
.enqueued
, enqueued
);
3922 * Check if a (signed) value is within a specified (unsigned) margin,
3923 * based on the observation that:
3925 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3927 * NOTE: this only works when value + maring < INT_MAX.
3929 static inline bool within_margin(int value
, int margin
)
3931 return ((unsigned int)(value
+ margin
- 1) < (2 * margin
- 1));
3935 util_est_dequeue(struct cfs_rq
*cfs_rq
, struct task_struct
*p
, bool task_sleep
)
3937 long last_ewma_diff
;
3941 if (!sched_feat(UTIL_EST
))
3944 /* Update root cfs_rq's estimated utilization */
3945 ue
.enqueued
= cfs_rq
->avg
.util_est
.enqueued
;
3946 ue
.enqueued
-= min_t(unsigned int, ue
.enqueued
, _task_util_est(p
));
3947 WRITE_ONCE(cfs_rq
->avg
.util_est
.enqueued
, ue
.enqueued
);
3950 * Skip update of task's estimated utilization when the task has not
3951 * yet completed an activation, e.g. being migrated.
3957 * If the PELT values haven't changed since enqueue time,
3958 * skip the util_est update.
3960 ue
= p
->se
.avg
.util_est
;
3961 if (ue
.enqueued
& UTIL_AVG_UNCHANGED
)
3965 * Reset EWMA on utilization increases, the moving average is used only
3966 * to smooth utilization decreases.
3968 ue
.enqueued
= (task_util(p
) | UTIL_AVG_UNCHANGED
);
3969 if (sched_feat(UTIL_EST_FASTUP
)) {
3970 if (ue
.ewma
< ue
.enqueued
) {
3971 ue
.ewma
= ue
.enqueued
;
3977 * Skip update of task's estimated utilization when its EWMA is
3978 * already ~1% close to its last activation value.
3980 last_ewma_diff
= ue
.enqueued
- ue
.ewma
;
3981 if (within_margin(last_ewma_diff
, (SCHED_CAPACITY_SCALE
/ 100)))
3985 * To avoid overestimation of actual task utilization, skip updates if
3986 * we cannot grant there is idle time in this CPU.
3988 cpu
= cpu_of(rq_of(cfs_rq
));
3989 if (task_util(p
) > capacity_orig_of(cpu
))
3993 * Update Task's estimated utilization
3995 * When *p completes an activation we can consolidate another sample
3996 * of the task size. This is done by storing the current PELT value
3997 * as ue.enqueued and by using this value to update the Exponential
3998 * Weighted Moving Average (EWMA):
4000 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4001 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4002 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
4003 * = w * ( last_ewma_diff ) + ewma(t-1)
4004 * = w * (last_ewma_diff + ewma(t-1) / w)
4006 * Where 'w' is the weight of new samples, which is configured to be
4007 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4009 ue
.ewma
<<= UTIL_EST_WEIGHT_SHIFT
;
4010 ue
.ewma
+= last_ewma_diff
;
4011 ue
.ewma
>>= UTIL_EST_WEIGHT_SHIFT
;
4013 WRITE_ONCE(p
->se
.avg
.util_est
, ue
);
4016 static inline int task_fits_capacity(struct task_struct
*p
, long capacity
)
4018 return fits_capacity(uclamp_task_util(p
), capacity
);
4021 static inline void update_misfit_status(struct task_struct
*p
, struct rq
*rq
)
4023 if (!static_branch_unlikely(&sched_asym_cpucapacity
))
4027 rq
->misfit_task_load
= 0;
4031 if (task_fits_capacity(p
, capacity_of(cpu_of(rq
)))) {
4032 rq
->misfit_task_load
= 0;
4036 rq
->misfit_task_load
= task_h_load(p
);
4039 #else /* CONFIG_SMP */
4041 #define UPDATE_TG 0x0
4042 #define SKIP_AGE_LOAD 0x0
4043 #define DO_ATTACH 0x0
4045 static inline void update_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int not_used1
)
4047 cfs_rq_util_change(cfs_rq
, 0);
4050 static inline void remove_entity_load_avg(struct sched_entity
*se
) {}
4053 attach_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) {}
4055 detach_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) {}
4057 static inline int idle_balance(struct rq
*rq
, struct rq_flags
*rf
)
4063 util_est_enqueue(struct cfs_rq
*cfs_rq
, struct task_struct
*p
) {}
4066 util_est_dequeue(struct cfs_rq
*cfs_rq
, struct task_struct
*p
,
4068 static inline void update_misfit_status(struct task_struct
*p
, struct rq
*rq
) {}
4070 #endif /* CONFIG_SMP */
4072 static void check_spread(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
4074 #ifdef CONFIG_SCHED_DEBUG
4075 s64 d
= se
->vruntime
- cfs_rq
->min_vruntime
;
4080 if (d
> 3*sysctl_sched_latency
)
4081 schedstat_inc(cfs_rq
->nr_spread_over
);
4086 place_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int initial
)
4088 u64 vruntime
= cfs_rq
->min_vruntime
;
4091 * The 'current' period is already promised to the current tasks,
4092 * however the extra weight of the new task will slow them down a
4093 * little, place the new task so that it fits in the slot that
4094 * stays open at the end.
4096 if (initial
&& sched_feat(START_DEBIT
))
4097 vruntime
+= sched_vslice(cfs_rq
, se
);
4099 /* sleeps up to a single latency don't count. */
4101 unsigned long thresh
= sysctl_sched_latency
;
4104 * Halve their sleep time's effect, to allow
4105 * for a gentler effect of sleepers:
4107 if (sched_feat(GENTLE_FAIR_SLEEPERS
))
4113 /* ensure we never gain time by being placed backwards. */
4114 se
->vruntime
= max_vruntime(se
->vruntime
, vruntime
);
4117 static void check_enqueue_throttle(struct cfs_rq
*cfs_rq
);
4119 static inline void check_schedstat_required(void)
4121 #ifdef CONFIG_SCHEDSTATS
4122 if (schedstat_enabled())
4125 /* Force schedstat enabled if a dependent tracepoint is active */
4126 if (trace_sched_stat_wait_enabled() ||
4127 trace_sched_stat_sleep_enabled() ||
4128 trace_sched_stat_iowait_enabled() ||
4129 trace_sched_stat_blocked_enabled() ||
4130 trace_sched_stat_runtime_enabled()) {
4131 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
4132 "stat_blocked and stat_runtime require the "
4133 "kernel parameter schedstats=enable or "
4134 "kernel.sched_schedstats=1\n");
4139 static inline bool cfs_bandwidth_used(void);
4146 * update_min_vruntime()
4147 * vruntime -= min_vruntime
4151 * update_min_vruntime()
4152 * vruntime += min_vruntime
4154 * this way the vruntime transition between RQs is done when both
4155 * min_vruntime are up-to-date.
4159 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
4160 * vruntime -= min_vruntime
4164 * update_min_vruntime()
4165 * vruntime += min_vruntime
4167 * this way we don't have the most up-to-date min_vruntime on the originating
4168 * CPU and an up-to-date min_vruntime on the destination CPU.
4172 enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
4174 bool renorm
= !(flags
& ENQUEUE_WAKEUP
) || (flags
& ENQUEUE_MIGRATED
);
4175 bool curr
= cfs_rq
->curr
== se
;
4178 * If we're the current task, we must renormalise before calling
4182 se
->vruntime
+= cfs_rq
->min_vruntime
;
4184 update_curr(cfs_rq
);
4187 * Otherwise, renormalise after, such that we're placed at the current
4188 * moment in time, instead of some random moment in the past. Being
4189 * placed in the past could significantly boost this task to the
4190 * fairness detriment of existing tasks.
4192 if (renorm
&& !curr
)
4193 se
->vruntime
+= cfs_rq
->min_vruntime
;
4196 * When enqueuing a sched_entity, we must:
4197 * - Update loads to have both entity and cfs_rq synced with now.
4198 * - Add its load to cfs_rq->runnable_avg
4199 * - For group_entity, update its weight to reflect the new share of
4201 * - Add its new weight to cfs_rq->load.weight
4203 update_load_avg(cfs_rq
, se
, UPDATE_TG
| DO_ATTACH
);
4204 se_update_runnable(se
);
4205 update_cfs_group(se
);
4206 account_entity_enqueue(cfs_rq
, se
);
4208 if (flags
& ENQUEUE_WAKEUP
)
4209 place_entity(cfs_rq
, se
, 0);
4211 check_schedstat_required();
4212 update_stats_enqueue(cfs_rq
, se
, flags
);
4213 check_spread(cfs_rq
, se
);
4215 __enqueue_entity(cfs_rq
, se
);
4219 * When bandwidth control is enabled, cfs might have been removed
4220 * because of a parent been throttled but cfs->nr_running > 1. Try to
4221 * add it unconditionnally.
4223 if (cfs_rq
->nr_running
== 1 || cfs_bandwidth_used())
4224 list_add_leaf_cfs_rq(cfs_rq
);
4226 if (cfs_rq
->nr_running
== 1)
4227 check_enqueue_throttle(cfs_rq
);
4230 static void __clear_buddies_last(struct sched_entity
*se
)
4232 for_each_sched_entity(se
) {
4233 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
4234 if (cfs_rq
->last
!= se
)
4237 cfs_rq
->last
= NULL
;
4241 static void __clear_buddies_next(struct sched_entity
*se
)
4243 for_each_sched_entity(se
) {
4244 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
4245 if (cfs_rq
->next
!= se
)
4248 cfs_rq
->next
= NULL
;
4252 static void __clear_buddies_skip(struct sched_entity
*se
)
4254 for_each_sched_entity(se
) {
4255 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
4256 if (cfs_rq
->skip
!= se
)
4259 cfs_rq
->skip
= NULL
;
4263 static void clear_buddies(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
4265 if (cfs_rq
->last
== se
)
4266 __clear_buddies_last(se
);
4268 if (cfs_rq
->next
== se
)
4269 __clear_buddies_next(se
);
4271 if (cfs_rq
->skip
== se
)
4272 __clear_buddies_skip(se
);
4275 static __always_inline
void return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
);
4278 dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
4281 * Update run-time statistics of the 'current'.
4283 update_curr(cfs_rq
);
4286 * When dequeuing a sched_entity, we must:
4287 * - Update loads to have both entity and cfs_rq synced with now.
4288 * - Subtract its load from the cfs_rq->runnable_avg.
4289 * - Subtract its previous weight from cfs_rq->load.weight.
4290 * - For group entity, update its weight to reflect the new share
4291 * of its group cfs_rq.
4293 update_load_avg(cfs_rq
, se
, UPDATE_TG
);
4294 se_update_runnable(se
);
4296 update_stats_dequeue(cfs_rq
, se
, flags
);
4298 clear_buddies(cfs_rq
, se
);
4300 if (se
!= cfs_rq
->curr
)
4301 __dequeue_entity(cfs_rq
, se
);
4303 account_entity_dequeue(cfs_rq
, se
);
4306 * Normalize after update_curr(); which will also have moved
4307 * min_vruntime if @se is the one holding it back. But before doing
4308 * update_min_vruntime() again, which will discount @se's position and
4309 * can move min_vruntime forward still more.
4311 if (!(flags
& DEQUEUE_SLEEP
))
4312 se
->vruntime
-= cfs_rq
->min_vruntime
;
4314 /* return excess runtime on last dequeue */
4315 return_cfs_rq_runtime(cfs_rq
);
4317 update_cfs_group(se
);
4320 * Now advance min_vruntime if @se was the entity holding it back,
4321 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4322 * put back on, and if we advance min_vruntime, we'll be placed back
4323 * further than we started -- ie. we'll be penalized.
4325 if ((flags
& (DEQUEUE_SAVE
| DEQUEUE_MOVE
)) != DEQUEUE_SAVE
)
4326 update_min_vruntime(cfs_rq
);
4330 * Preempt the current task with a newly woken task if needed:
4333 check_preempt_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
4335 unsigned long ideal_runtime
, delta_exec
;
4336 struct sched_entity
*se
;
4339 ideal_runtime
= sched_slice(cfs_rq
, curr
);
4340 delta_exec
= curr
->sum_exec_runtime
- curr
->prev_sum_exec_runtime
;
4341 if (delta_exec
> ideal_runtime
) {
4342 resched_curr(rq_of(cfs_rq
));
4344 * The current task ran long enough, ensure it doesn't get
4345 * re-elected due to buddy favours.
4347 clear_buddies(cfs_rq
, curr
);
4352 * Ensure that a task that missed wakeup preemption by a
4353 * narrow margin doesn't have to wait for a full slice.
4354 * This also mitigates buddy induced latencies under load.
4356 if (delta_exec
< sysctl_sched_min_granularity
)
4359 se
= __pick_first_entity(cfs_rq
);
4360 delta
= curr
->vruntime
- se
->vruntime
;
4365 if (delta
> ideal_runtime
)
4366 resched_curr(rq_of(cfs_rq
));
4370 set_next_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
4372 /* 'current' is not kept within the tree. */
4375 * Any task has to be enqueued before it get to execute on
4376 * a CPU. So account for the time it spent waiting on the
4379 update_stats_wait_end(cfs_rq
, se
);
4380 __dequeue_entity(cfs_rq
, se
);
4381 update_load_avg(cfs_rq
, se
, UPDATE_TG
);
4384 update_stats_curr_start(cfs_rq
, se
);
4388 * Track our maximum slice length, if the CPU's load is at
4389 * least twice that of our own weight (i.e. dont track it
4390 * when there are only lesser-weight tasks around):
4392 if (schedstat_enabled() &&
4393 rq_of(cfs_rq
)->cfs
.load
.weight
>= 2*se
->load
.weight
) {
4394 schedstat_set(se
->statistics
.slice_max
,
4395 max((u64
)schedstat_val(se
->statistics
.slice_max
),
4396 se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
));
4399 se
->prev_sum_exec_runtime
= se
->sum_exec_runtime
;
4403 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
);
4406 * Pick the next process, keeping these things in mind, in this order:
4407 * 1) keep things fair between processes/task groups
4408 * 2) pick the "next" process, since someone really wants that to run
4409 * 3) pick the "last" process, for cache locality
4410 * 4) do not run the "skip" process, if something else is available
4412 static struct sched_entity
*
4413 pick_next_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
4415 struct sched_entity
*left
= __pick_first_entity(cfs_rq
);
4416 struct sched_entity
*se
;
4419 * If curr is set we have to see if its left of the leftmost entity
4420 * still in the tree, provided there was anything in the tree at all.
4422 if (!left
|| (curr
&& entity_before(curr
, left
)))
4425 se
= left
; /* ideally we run the leftmost entity */
4428 * Avoid running the skip buddy, if running something else can
4429 * be done without getting too unfair.
4431 if (cfs_rq
->skip
== se
) {
4432 struct sched_entity
*second
;
4435 second
= __pick_first_entity(cfs_rq
);
4437 second
= __pick_next_entity(se
);
4438 if (!second
|| (curr
&& entity_before(curr
, second
)))
4442 if (second
&& wakeup_preempt_entity(second
, left
) < 1)
4447 * Prefer last buddy, try to return the CPU to a preempted task.
4449 if (cfs_rq
->last
&& wakeup_preempt_entity(cfs_rq
->last
, left
) < 1)
4453 * Someone really wants this to run. If it's not unfair, run it.
4455 if (cfs_rq
->next
&& wakeup_preempt_entity(cfs_rq
->next
, left
) < 1)
4458 clear_buddies(cfs_rq
, se
);
4463 static bool check_cfs_rq_runtime(struct cfs_rq
*cfs_rq
);
4465 static void put_prev_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*prev
)
4468 * If still on the runqueue then deactivate_task()
4469 * was not called and update_curr() has to be done:
4472 update_curr(cfs_rq
);
4474 /* throttle cfs_rqs exceeding runtime */
4475 check_cfs_rq_runtime(cfs_rq
);
4477 check_spread(cfs_rq
, prev
);
4480 update_stats_wait_start(cfs_rq
, prev
);
4481 /* Put 'current' back into the tree. */
4482 __enqueue_entity(cfs_rq
, prev
);
4483 /* in !on_rq case, update occurred at dequeue */
4484 update_load_avg(cfs_rq
, prev
, 0);
4486 cfs_rq
->curr
= NULL
;
4490 entity_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
, int queued
)
4493 * Update run-time statistics of the 'current'.
4495 update_curr(cfs_rq
);
4498 * Ensure that runnable average is periodically updated.
4500 update_load_avg(cfs_rq
, curr
, UPDATE_TG
);
4501 update_cfs_group(curr
);
4503 #ifdef CONFIG_SCHED_HRTICK
4505 * queued ticks are scheduled to match the slice, so don't bother
4506 * validating it and just reschedule.
4509 resched_curr(rq_of(cfs_rq
));
4513 * don't let the period tick interfere with the hrtick preemption
4515 if (!sched_feat(DOUBLE_TICK
) &&
4516 hrtimer_active(&rq_of(cfs_rq
)->hrtick_timer
))
4520 if (cfs_rq
->nr_running
> 1)
4521 check_preempt_tick(cfs_rq
, curr
);
4525 /**************************************************
4526 * CFS bandwidth control machinery
4529 #ifdef CONFIG_CFS_BANDWIDTH
4531 #ifdef CONFIG_JUMP_LABEL
4532 static struct static_key __cfs_bandwidth_used
;
4534 static inline bool cfs_bandwidth_used(void)
4536 return static_key_false(&__cfs_bandwidth_used
);
4539 void cfs_bandwidth_usage_inc(void)
4541 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used
);
4544 void cfs_bandwidth_usage_dec(void)
4546 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used
);
4548 #else /* CONFIG_JUMP_LABEL */
4549 static bool cfs_bandwidth_used(void)
4554 void cfs_bandwidth_usage_inc(void) {}
4555 void cfs_bandwidth_usage_dec(void) {}
4556 #endif /* CONFIG_JUMP_LABEL */
4559 * default period for cfs group bandwidth.
4560 * default: 0.1s, units: nanoseconds
4562 static inline u64
default_cfs_period(void)
4564 return 100000000ULL;
4567 static inline u64
sched_cfs_bandwidth_slice(void)
4569 return (u64
)sysctl_sched_cfs_bandwidth_slice
* NSEC_PER_USEC
;
4573 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4574 * directly instead of rq->clock to avoid adding additional synchronization
4577 * requires cfs_b->lock
4579 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth
*cfs_b
)
4581 if (cfs_b
->quota
!= RUNTIME_INF
)
4582 cfs_b
->runtime
= cfs_b
->quota
;
4585 static inline struct cfs_bandwidth
*tg_cfs_bandwidth(struct task_group
*tg
)
4587 return &tg
->cfs_bandwidth
;
4590 /* returns 0 on failure to allocate runtime */
4591 static int assign_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
4593 struct task_group
*tg
= cfs_rq
->tg
;
4594 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(tg
);
4595 u64 amount
= 0, min_amount
;
4597 /* note: this is a positive sum as runtime_remaining <= 0 */
4598 min_amount
= sched_cfs_bandwidth_slice() - cfs_rq
->runtime_remaining
;
4600 raw_spin_lock(&cfs_b
->lock
);
4601 if (cfs_b
->quota
== RUNTIME_INF
)
4602 amount
= min_amount
;
4604 start_cfs_bandwidth(cfs_b
);
4606 if (cfs_b
->runtime
> 0) {
4607 amount
= min(cfs_b
->runtime
, min_amount
);
4608 cfs_b
->runtime
-= amount
;
4612 raw_spin_unlock(&cfs_b
->lock
);
4614 cfs_rq
->runtime_remaining
+= amount
;
4616 return cfs_rq
->runtime_remaining
> 0;
4619 static void __account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
, u64 delta_exec
)
4621 /* dock delta_exec before expiring quota (as it could span periods) */
4622 cfs_rq
->runtime_remaining
-= delta_exec
;
4624 if (likely(cfs_rq
->runtime_remaining
> 0))
4627 if (cfs_rq
->throttled
)
4630 * if we're unable to extend our runtime we resched so that the active
4631 * hierarchy can be throttled
4633 if (!assign_cfs_rq_runtime(cfs_rq
) && likely(cfs_rq
->curr
))
4634 resched_curr(rq_of(cfs_rq
));
4637 static __always_inline
4638 void account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
, u64 delta_exec
)
4640 if (!cfs_bandwidth_used() || !cfs_rq
->runtime_enabled
)
4643 __account_cfs_rq_runtime(cfs_rq
, delta_exec
);
4646 static inline int cfs_rq_throttled(struct cfs_rq
*cfs_rq
)
4648 return cfs_bandwidth_used() && cfs_rq
->throttled
;
4651 /* check whether cfs_rq, or any parent, is throttled */
4652 static inline int throttled_hierarchy(struct cfs_rq
*cfs_rq
)
4654 return cfs_bandwidth_used() && cfs_rq
->throttle_count
;
4658 * Ensure that neither of the group entities corresponding to src_cpu or
4659 * dest_cpu are members of a throttled hierarchy when performing group
4660 * load-balance operations.
4662 static inline int throttled_lb_pair(struct task_group
*tg
,
4663 int src_cpu
, int dest_cpu
)
4665 struct cfs_rq
*src_cfs_rq
, *dest_cfs_rq
;
4667 src_cfs_rq
= tg
->cfs_rq
[src_cpu
];
4668 dest_cfs_rq
= tg
->cfs_rq
[dest_cpu
];
4670 return throttled_hierarchy(src_cfs_rq
) ||
4671 throttled_hierarchy(dest_cfs_rq
);
4674 static int tg_unthrottle_up(struct task_group
*tg
, void *data
)
4676 struct rq
*rq
= data
;
4677 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu_of(rq
)];
4679 cfs_rq
->throttle_count
--;
4680 if (!cfs_rq
->throttle_count
) {
4681 cfs_rq
->throttled_clock_task_time
+= rq_clock_task(rq
) -
4682 cfs_rq
->throttled_clock_task
;
4684 /* Add cfs_rq with already running entity in the list */
4685 if (cfs_rq
->nr_running
>= 1)
4686 list_add_leaf_cfs_rq(cfs_rq
);
4692 static int tg_throttle_down(struct task_group
*tg
, void *data
)
4694 struct rq
*rq
= data
;
4695 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu_of(rq
)];
4697 /* group is entering throttled state, stop time */
4698 if (!cfs_rq
->throttle_count
) {
4699 cfs_rq
->throttled_clock_task
= rq_clock_task(rq
);
4700 list_del_leaf_cfs_rq(cfs_rq
);
4702 cfs_rq
->throttle_count
++;
4707 static void throttle_cfs_rq(struct cfs_rq
*cfs_rq
)
4709 struct rq
*rq
= rq_of(cfs_rq
);
4710 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
4711 struct sched_entity
*se
;
4712 long task_delta
, idle_task_delta
, dequeue
= 1;
4715 se
= cfs_rq
->tg
->se
[cpu_of(rq_of(cfs_rq
))];
4717 /* freeze hierarchy runnable averages while throttled */
4719 walk_tg_tree_from(cfs_rq
->tg
, tg_throttle_down
, tg_nop
, (void *)rq
);
4722 task_delta
= cfs_rq
->h_nr_running
;
4723 idle_task_delta
= cfs_rq
->idle_h_nr_running
;
4724 for_each_sched_entity(se
) {
4725 struct cfs_rq
*qcfs_rq
= cfs_rq_of(se
);
4726 /* throttled entity or throttle-on-deactivate */
4731 dequeue_entity(qcfs_rq
, se
, DEQUEUE_SLEEP
);
4733 update_load_avg(qcfs_rq
, se
, 0);
4734 se_update_runnable(se
);
4737 qcfs_rq
->h_nr_running
-= task_delta
;
4738 qcfs_rq
->idle_h_nr_running
-= idle_task_delta
;
4740 if (qcfs_rq
->load
.weight
)
4745 sub_nr_running(rq
, task_delta
);
4747 cfs_rq
->throttled
= 1;
4748 cfs_rq
->throttled_clock
= rq_clock(rq
);
4749 raw_spin_lock(&cfs_b
->lock
);
4750 empty
= list_empty(&cfs_b
->throttled_cfs_rq
);
4753 * Add to the _head_ of the list, so that an already-started
4754 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is
4755 * not running add to the tail so that later runqueues don't get starved.
4757 if (cfs_b
->distribute_running
)
4758 list_add_rcu(&cfs_rq
->throttled_list
, &cfs_b
->throttled_cfs_rq
);
4760 list_add_tail_rcu(&cfs_rq
->throttled_list
, &cfs_b
->throttled_cfs_rq
);
4763 * If we're the first throttled task, make sure the bandwidth
4767 start_cfs_bandwidth(cfs_b
);
4769 raw_spin_unlock(&cfs_b
->lock
);
4772 void unthrottle_cfs_rq(struct cfs_rq
*cfs_rq
)
4774 struct rq
*rq
= rq_of(cfs_rq
);
4775 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
4776 struct sched_entity
*se
;
4778 long task_delta
, idle_task_delta
;
4780 se
= cfs_rq
->tg
->se
[cpu_of(rq
)];
4782 cfs_rq
->throttled
= 0;
4784 update_rq_clock(rq
);
4786 raw_spin_lock(&cfs_b
->lock
);
4787 cfs_b
->throttled_time
+= rq_clock(rq
) - cfs_rq
->throttled_clock
;
4788 list_del_rcu(&cfs_rq
->throttled_list
);
4789 raw_spin_unlock(&cfs_b
->lock
);
4791 /* update hierarchical throttle state */
4792 walk_tg_tree_from(cfs_rq
->tg
, tg_nop
, tg_unthrottle_up
, (void *)rq
);
4794 if (!cfs_rq
->load
.weight
)
4797 task_delta
= cfs_rq
->h_nr_running
;
4798 idle_task_delta
= cfs_rq
->idle_h_nr_running
;
4799 for_each_sched_entity(se
) {
4803 cfs_rq
= cfs_rq_of(se
);
4805 enqueue_entity(cfs_rq
, se
, ENQUEUE_WAKEUP
);
4807 update_load_avg(cfs_rq
, se
, 0);
4808 se_update_runnable(se
);
4811 cfs_rq
->h_nr_running
+= task_delta
;
4812 cfs_rq
->idle_h_nr_running
+= idle_task_delta
;
4814 if (cfs_rq_throttled(cfs_rq
))
4819 add_nr_running(rq
, task_delta
);
4822 * The cfs_rq_throttled() breaks in the above iteration can result in
4823 * incomplete leaf list maintenance, resulting in triggering the
4826 for_each_sched_entity(se
) {
4827 cfs_rq
= cfs_rq_of(se
);
4829 list_add_leaf_cfs_rq(cfs_rq
);
4832 assert_list_leaf_cfs_rq(rq
);
4834 /* Determine whether we need to wake up potentially idle CPU: */
4835 if (rq
->curr
== rq
->idle
&& rq
->cfs
.nr_running
)
4839 static void distribute_cfs_runtime(struct cfs_bandwidth
*cfs_b
)
4841 struct cfs_rq
*cfs_rq
;
4842 u64 runtime
, remaining
= 1;
4845 list_for_each_entry_rcu(cfs_rq
, &cfs_b
->throttled_cfs_rq
,
4847 struct rq
*rq
= rq_of(cfs_rq
);
4850 rq_lock_irqsave(rq
, &rf
);
4851 if (!cfs_rq_throttled(cfs_rq
))
4854 /* By the above check, this should never be true */
4855 SCHED_WARN_ON(cfs_rq
->runtime_remaining
> 0);
4857 raw_spin_lock(&cfs_b
->lock
);
4858 runtime
= -cfs_rq
->runtime_remaining
+ 1;
4859 if (runtime
> cfs_b
->runtime
)
4860 runtime
= cfs_b
->runtime
;
4861 cfs_b
->runtime
-= runtime
;
4862 remaining
= cfs_b
->runtime
;
4863 raw_spin_unlock(&cfs_b
->lock
);
4865 cfs_rq
->runtime_remaining
+= runtime
;
4867 /* we check whether we're throttled above */
4868 if (cfs_rq
->runtime_remaining
> 0)
4869 unthrottle_cfs_rq(cfs_rq
);
4872 rq_unlock_irqrestore(rq
, &rf
);
4881 * Responsible for refilling a task_group's bandwidth and unthrottling its
4882 * cfs_rqs as appropriate. If there has been no activity within the last
4883 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4884 * used to track this state.
4886 static int do_sched_cfs_period_timer(struct cfs_bandwidth
*cfs_b
, int overrun
, unsigned long flags
)
4890 /* no need to continue the timer with no bandwidth constraint */
4891 if (cfs_b
->quota
== RUNTIME_INF
)
4892 goto out_deactivate
;
4894 throttled
= !list_empty(&cfs_b
->throttled_cfs_rq
);
4895 cfs_b
->nr_periods
+= overrun
;
4898 * idle depends on !throttled (for the case of a large deficit), and if
4899 * we're going inactive then everything else can be deferred
4901 if (cfs_b
->idle
&& !throttled
)
4902 goto out_deactivate
;
4904 __refill_cfs_bandwidth_runtime(cfs_b
);
4907 /* mark as potentially idle for the upcoming period */
4912 /* account preceding periods in which throttling occurred */
4913 cfs_b
->nr_throttled
+= overrun
;
4916 * This check is repeated as we release cfs_b->lock while we unthrottle.
4918 while (throttled
&& cfs_b
->runtime
> 0 && !cfs_b
->distribute_running
) {
4919 cfs_b
->distribute_running
= 1;
4920 raw_spin_unlock_irqrestore(&cfs_b
->lock
, flags
);
4921 /* we can't nest cfs_b->lock while distributing bandwidth */
4922 distribute_cfs_runtime(cfs_b
);
4923 raw_spin_lock_irqsave(&cfs_b
->lock
, flags
);
4925 cfs_b
->distribute_running
= 0;
4926 throttled
= !list_empty(&cfs_b
->throttled_cfs_rq
);
4930 * While we are ensured activity in the period following an
4931 * unthrottle, this also covers the case in which the new bandwidth is
4932 * insufficient to cover the existing bandwidth deficit. (Forcing the
4933 * timer to remain active while there are any throttled entities.)
4943 /* a cfs_rq won't donate quota below this amount */
4944 static const u64 min_cfs_rq_runtime
= 1 * NSEC_PER_MSEC
;
4945 /* minimum remaining period time to redistribute slack quota */
4946 static const u64 min_bandwidth_expiration
= 2 * NSEC_PER_MSEC
;
4947 /* how long we wait to gather additional slack before distributing */
4948 static const u64 cfs_bandwidth_slack_period
= 5 * NSEC_PER_MSEC
;
4951 * Are we near the end of the current quota period?
4953 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4954 * hrtimer base being cleared by hrtimer_start. In the case of
4955 * migrate_hrtimers, base is never cleared, so we are fine.
4957 static int runtime_refresh_within(struct cfs_bandwidth
*cfs_b
, u64 min_expire
)
4959 struct hrtimer
*refresh_timer
= &cfs_b
->period_timer
;
4962 /* if the call-back is running a quota refresh is already occurring */
4963 if (hrtimer_callback_running(refresh_timer
))
4966 /* is a quota refresh about to occur? */
4967 remaining
= ktime_to_ns(hrtimer_expires_remaining(refresh_timer
));
4968 if (remaining
< min_expire
)
4974 static void start_cfs_slack_bandwidth(struct cfs_bandwidth
*cfs_b
)
4976 u64 min_left
= cfs_bandwidth_slack_period
+ min_bandwidth_expiration
;
4978 /* if there's a quota refresh soon don't bother with slack */
4979 if (runtime_refresh_within(cfs_b
, min_left
))
4982 /* don't push forwards an existing deferred unthrottle */
4983 if (cfs_b
->slack_started
)
4985 cfs_b
->slack_started
= true;
4987 hrtimer_start(&cfs_b
->slack_timer
,
4988 ns_to_ktime(cfs_bandwidth_slack_period
),
4992 /* we know any runtime found here is valid as update_curr() precedes return */
4993 static void __return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
4995 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
4996 s64 slack_runtime
= cfs_rq
->runtime_remaining
- min_cfs_rq_runtime
;
4998 if (slack_runtime
<= 0)
5001 raw_spin_lock(&cfs_b
->lock
);
5002 if (cfs_b
->quota
!= RUNTIME_INF
) {
5003 cfs_b
->runtime
+= slack_runtime
;
5005 /* we are under rq->lock, defer unthrottling using a timer */
5006 if (cfs_b
->runtime
> sched_cfs_bandwidth_slice() &&
5007 !list_empty(&cfs_b
->throttled_cfs_rq
))
5008 start_cfs_slack_bandwidth(cfs_b
);
5010 raw_spin_unlock(&cfs_b
->lock
);
5012 /* even if it's not valid for return we don't want to try again */
5013 cfs_rq
->runtime_remaining
-= slack_runtime
;
5016 static __always_inline
void return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
5018 if (!cfs_bandwidth_used())
5021 if (!cfs_rq
->runtime_enabled
|| cfs_rq
->nr_running
)
5024 __return_cfs_rq_runtime(cfs_rq
);
5028 * This is done with a timer (instead of inline with bandwidth return) since
5029 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5031 static void do_sched_cfs_slack_timer(struct cfs_bandwidth
*cfs_b
)
5033 u64 runtime
= 0, slice
= sched_cfs_bandwidth_slice();
5034 unsigned long flags
;
5036 /* confirm we're still not at a refresh boundary */
5037 raw_spin_lock_irqsave(&cfs_b
->lock
, flags
);
5038 cfs_b
->slack_started
= false;
5039 if (cfs_b
->distribute_running
) {
5040 raw_spin_unlock_irqrestore(&cfs_b
->lock
, flags
);
5044 if (runtime_refresh_within(cfs_b
, min_bandwidth_expiration
)) {
5045 raw_spin_unlock_irqrestore(&cfs_b
->lock
, flags
);
5049 if (cfs_b
->quota
!= RUNTIME_INF
&& cfs_b
->runtime
> slice
)
5050 runtime
= cfs_b
->runtime
;
5053 cfs_b
->distribute_running
= 1;
5055 raw_spin_unlock_irqrestore(&cfs_b
->lock
, flags
);
5060 distribute_cfs_runtime(cfs_b
);
5062 raw_spin_lock_irqsave(&cfs_b
->lock
, flags
);
5063 cfs_b
->distribute_running
= 0;
5064 raw_spin_unlock_irqrestore(&cfs_b
->lock
, flags
);
5068 * When a group wakes up we want to make sure that its quota is not already
5069 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5070 * runtime as update_curr() throttling can not not trigger until it's on-rq.
5072 static void check_enqueue_throttle(struct cfs_rq
*cfs_rq
)
5074 if (!cfs_bandwidth_used())
5077 /* an active group must be handled by the update_curr()->put() path */
5078 if (!cfs_rq
->runtime_enabled
|| cfs_rq
->curr
)
5081 /* ensure the group is not already throttled */
5082 if (cfs_rq_throttled(cfs_rq
))
5085 /* update runtime allocation */
5086 account_cfs_rq_runtime(cfs_rq
, 0);
5087 if (cfs_rq
->runtime_remaining
<= 0)
5088 throttle_cfs_rq(cfs_rq
);
5091 static void sync_throttle(struct task_group
*tg
, int cpu
)
5093 struct cfs_rq
*pcfs_rq
, *cfs_rq
;
5095 if (!cfs_bandwidth_used())
5101 cfs_rq
= tg
->cfs_rq
[cpu
];
5102 pcfs_rq
= tg
->parent
->cfs_rq
[cpu
];
5104 cfs_rq
->throttle_count
= pcfs_rq
->throttle_count
;
5105 cfs_rq
->throttled_clock_task
= rq_clock_task(cpu_rq(cpu
));
5108 /* conditionally throttle active cfs_rq's from put_prev_entity() */
5109 static bool check_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
5111 if (!cfs_bandwidth_used())
5114 if (likely(!cfs_rq
->runtime_enabled
|| cfs_rq
->runtime_remaining
> 0))
5118 * it's possible for a throttled entity to be forced into a running
5119 * state (e.g. set_curr_task), in this case we're finished.
5121 if (cfs_rq_throttled(cfs_rq
))
5124 throttle_cfs_rq(cfs_rq
);
5128 static enum hrtimer_restart
sched_cfs_slack_timer(struct hrtimer
*timer
)
5130 struct cfs_bandwidth
*cfs_b
=
5131 container_of(timer
, struct cfs_bandwidth
, slack_timer
);
5133 do_sched_cfs_slack_timer(cfs_b
);
5135 return HRTIMER_NORESTART
;
5138 extern const u64 max_cfs_quota_period
;
5140 static enum hrtimer_restart
sched_cfs_period_timer(struct hrtimer
*timer
)
5142 struct cfs_bandwidth
*cfs_b
=
5143 container_of(timer
, struct cfs_bandwidth
, period_timer
);
5144 unsigned long flags
;
5149 raw_spin_lock_irqsave(&cfs_b
->lock
, flags
);
5151 overrun
= hrtimer_forward_now(timer
, cfs_b
->period
);
5156 u64
new, old
= ktime_to_ns(cfs_b
->period
);
5159 * Grow period by a factor of 2 to avoid losing precision.
5160 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5164 if (new < max_cfs_quota_period
) {
5165 cfs_b
->period
= ns_to_ktime(new);
5168 pr_warn_ratelimited(
5169 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5171 div_u64(new, NSEC_PER_USEC
),
5172 div_u64(cfs_b
->quota
, NSEC_PER_USEC
));
5174 pr_warn_ratelimited(
5175 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5177 div_u64(old
, NSEC_PER_USEC
),
5178 div_u64(cfs_b
->quota
, NSEC_PER_USEC
));
5181 /* reset count so we don't come right back in here */
5185 idle
= do_sched_cfs_period_timer(cfs_b
, overrun
, flags
);
5188 cfs_b
->period_active
= 0;
5189 raw_spin_unlock_irqrestore(&cfs_b
->lock
, flags
);
5191 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
5194 void init_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
)
5196 raw_spin_lock_init(&cfs_b
->lock
);
5198 cfs_b
->quota
= RUNTIME_INF
;
5199 cfs_b
->period
= ns_to_ktime(default_cfs_period());
5201 INIT_LIST_HEAD(&cfs_b
->throttled_cfs_rq
);
5202 hrtimer_init(&cfs_b
->period_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS_PINNED
);
5203 cfs_b
->period_timer
.function
= sched_cfs_period_timer
;
5204 hrtimer_init(&cfs_b
->slack_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
5205 cfs_b
->slack_timer
.function
= sched_cfs_slack_timer
;
5206 cfs_b
->distribute_running
= 0;
5207 cfs_b
->slack_started
= false;
5210 static void init_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
5212 cfs_rq
->runtime_enabled
= 0;
5213 INIT_LIST_HEAD(&cfs_rq
->throttled_list
);
5216 void start_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
)
5218 lockdep_assert_held(&cfs_b
->lock
);
5220 if (cfs_b
->period_active
)
5223 cfs_b
->period_active
= 1;
5224 hrtimer_forward_now(&cfs_b
->period_timer
, cfs_b
->period
);
5225 hrtimer_start_expires(&cfs_b
->period_timer
, HRTIMER_MODE_ABS_PINNED
);
5228 static void destroy_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
)
5230 /* init_cfs_bandwidth() was not called */
5231 if (!cfs_b
->throttled_cfs_rq
.next
)
5234 hrtimer_cancel(&cfs_b
->period_timer
);
5235 hrtimer_cancel(&cfs_b
->slack_timer
);
5239 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5241 * The race is harmless, since modifying bandwidth settings of unhooked group
5242 * bits doesn't do much.
5245 /* cpu online calback */
5246 static void __maybe_unused
update_runtime_enabled(struct rq
*rq
)
5248 struct task_group
*tg
;
5250 lockdep_assert_held(&rq
->lock
);
5253 list_for_each_entry_rcu(tg
, &task_groups
, list
) {
5254 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
5255 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu_of(rq
)];
5257 raw_spin_lock(&cfs_b
->lock
);
5258 cfs_rq
->runtime_enabled
= cfs_b
->quota
!= RUNTIME_INF
;
5259 raw_spin_unlock(&cfs_b
->lock
);
5264 /* cpu offline callback */
5265 static void __maybe_unused
unthrottle_offline_cfs_rqs(struct rq
*rq
)
5267 struct task_group
*tg
;
5269 lockdep_assert_held(&rq
->lock
);
5272 list_for_each_entry_rcu(tg
, &task_groups
, list
) {
5273 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu_of(rq
)];
5275 if (!cfs_rq
->runtime_enabled
)
5279 * clock_task is not advancing so we just need to make sure
5280 * there's some valid quota amount
5282 cfs_rq
->runtime_remaining
= 1;
5284 * Offline rq is schedulable till CPU is completely disabled
5285 * in take_cpu_down(), so we prevent new cfs throttling here.
5287 cfs_rq
->runtime_enabled
= 0;
5289 if (cfs_rq_throttled(cfs_rq
))
5290 unthrottle_cfs_rq(cfs_rq
);
5295 #else /* CONFIG_CFS_BANDWIDTH */
5297 static inline bool cfs_bandwidth_used(void)
5302 static void account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
, u64 delta_exec
) {}
5303 static bool check_cfs_rq_runtime(struct cfs_rq
*cfs_rq
) { return false; }
5304 static void check_enqueue_throttle(struct cfs_rq
*cfs_rq
) {}
5305 static inline void sync_throttle(struct task_group
*tg
, int cpu
) {}
5306 static __always_inline
void return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
) {}
5308 static inline int cfs_rq_throttled(struct cfs_rq
*cfs_rq
)
5313 static inline int throttled_hierarchy(struct cfs_rq
*cfs_rq
)
5318 static inline int throttled_lb_pair(struct task_group
*tg
,
5319 int src_cpu
, int dest_cpu
)
5324 void init_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
) {}
5326 #ifdef CONFIG_FAIR_GROUP_SCHED
5327 static void init_cfs_rq_runtime(struct cfs_rq
*cfs_rq
) {}
5330 static inline struct cfs_bandwidth
*tg_cfs_bandwidth(struct task_group
*tg
)
5334 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
) {}
5335 static inline void update_runtime_enabled(struct rq
*rq
) {}
5336 static inline void unthrottle_offline_cfs_rqs(struct rq
*rq
) {}
5338 #endif /* CONFIG_CFS_BANDWIDTH */
5340 /**************************************************
5341 * CFS operations on tasks:
5344 #ifdef CONFIG_SCHED_HRTICK
5345 static void hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
5347 struct sched_entity
*se
= &p
->se
;
5348 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
5350 SCHED_WARN_ON(task_rq(p
) != rq
);
5352 if (rq
->cfs
.h_nr_running
> 1) {
5353 u64 slice
= sched_slice(cfs_rq
, se
);
5354 u64 ran
= se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
;
5355 s64 delta
= slice
- ran
;
5362 hrtick_start(rq
, delta
);
5367 * called from enqueue/dequeue and updates the hrtick when the
5368 * current task is from our class and nr_running is low enough
5371 static void hrtick_update(struct rq
*rq
)
5373 struct task_struct
*curr
= rq
->curr
;
5375 if (!hrtick_enabled(rq
) || curr
->sched_class
!= &fair_sched_class
)
5378 if (cfs_rq_of(&curr
->se
)->nr_running
< sched_nr_latency
)
5379 hrtick_start_fair(rq
, curr
);
5381 #else /* !CONFIG_SCHED_HRTICK */
5383 hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
5387 static inline void hrtick_update(struct rq
*rq
)
5393 static inline unsigned long cpu_util(int cpu
);
5395 static inline bool cpu_overutilized(int cpu
)
5397 return !fits_capacity(cpu_util(cpu
), capacity_of(cpu
));
5400 static inline void update_overutilized_status(struct rq
*rq
)
5402 if (!READ_ONCE(rq
->rd
->overutilized
) && cpu_overutilized(rq
->cpu
)) {
5403 WRITE_ONCE(rq
->rd
->overutilized
, SG_OVERUTILIZED
);
5404 trace_sched_overutilized_tp(rq
->rd
, SG_OVERUTILIZED
);
5408 static inline void update_overutilized_status(struct rq
*rq
) { }
5411 /* Runqueue only has SCHED_IDLE tasks enqueued */
5412 static int sched_idle_rq(struct rq
*rq
)
5414 return unlikely(rq
->nr_running
== rq
->cfs
.idle_h_nr_running
&&
5419 static int sched_idle_cpu(int cpu
)
5421 return sched_idle_rq(cpu_rq(cpu
));
5426 * The enqueue_task method is called before nr_running is
5427 * increased. Here we update the fair scheduling stats and
5428 * then put the task into the rbtree:
5431 enqueue_task_fair(struct rq
*rq
, struct task_struct
*p
, int flags
)
5433 struct cfs_rq
*cfs_rq
;
5434 struct sched_entity
*se
= &p
->se
;
5435 int idle_h_nr_running
= task_has_idle_policy(p
);
5438 * The code below (indirectly) updates schedutil which looks at
5439 * the cfs_rq utilization to select a frequency.
5440 * Let's add the task's estimated utilization to the cfs_rq's
5441 * estimated utilization, before we update schedutil.
5443 util_est_enqueue(&rq
->cfs
, p
);
5446 * If in_iowait is set, the code below may not trigger any cpufreq
5447 * utilization updates, so do it here explicitly with the IOWAIT flag
5451 cpufreq_update_util(rq
, SCHED_CPUFREQ_IOWAIT
);
5453 for_each_sched_entity(se
) {
5456 cfs_rq
= cfs_rq_of(se
);
5457 enqueue_entity(cfs_rq
, se
, flags
);
5459 cfs_rq
->h_nr_running
++;
5460 cfs_rq
->idle_h_nr_running
+= idle_h_nr_running
;
5462 /* end evaluation on encountering a throttled cfs_rq */
5463 if (cfs_rq_throttled(cfs_rq
))
5464 goto enqueue_throttle
;
5466 flags
= ENQUEUE_WAKEUP
;
5469 for_each_sched_entity(se
) {
5470 cfs_rq
= cfs_rq_of(se
);
5472 update_load_avg(cfs_rq
, se
, UPDATE_TG
);
5473 se_update_runnable(se
);
5474 update_cfs_group(se
);
5476 cfs_rq
->h_nr_running
++;
5477 cfs_rq
->idle_h_nr_running
+= idle_h_nr_running
;
5479 /* end evaluation on encountering a throttled cfs_rq */
5480 if (cfs_rq_throttled(cfs_rq
))
5481 goto enqueue_throttle
;
5486 add_nr_running(rq
, 1);
5488 * Since new tasks are assigned an initial util_avg equal to
5489 * half of the spare capacity of their CPU, tiny tasks have the
5490 * ability to cross the overutilized threshold, which will
5491 * result in the load balancer ruining all the task placement
5492 * done by EAS. As a way to mitigate that effect, do not account
5493 * for the first enqueue operation of new tasks during the
5494 * overutilized flag detection.
5496 * A better way of solving this problem would be to wait for
5497 * the PELT signals of tasks to converge before taking them
5498 * into account, but that is not straightforward to implement,
5499 * and the following generally works well enough in practice.
5501 if (flags
& ENQUEUE_WAKEUP
)
5502 update_overutilized_status(rq
);
5506 if (cfs_bandwidth_used()) {
5508 * When bandwidth control is enabled; the cfs_rq_throttled()
5509 * breaks in the above iteration can result in incomplete
5510 * leaf list maintenance, resulting in triggering the assertion
5513 for_each_sched_entity(se
) {
5514 cfs_rq
= cfs_rq_of(se
);
5516 if (list_add_leaf_cfs_rq(cfs_rq
))
5521 assert_list_leaf_cfs_rq(rq
);
5526 static void set_next_buddy(struct sched_entity
*se
);
5529 * The dequeue_task method is called before nr_running is
5530 * decreased. We remove the task from the rbtree and
5531 * update the fair scheduling stats:
5533 static void dequeue_task_fair(struct rq
*rq
, struct task_struct
*p
, int flags
)
5535 struct cfs_rq
*cfs_rq
;
5536 struct sched_entity
*se
= &p
->se
;
5537 int task_sleep
= flags
& DEQUEUE_SLEEP
;
5538 int idle_h_nr_running
= task_has_idle_policy(p
);
5539 bool was_sched_idle
= sched_idle_rq(rq
);
5541 for_each_sched_entity(se
) {
5542 cfs_rq
= cfs_rq_of(se
);
5543 dequeue_entity(cfs_rq
, se
, flags
);
5545 cfs_rq
->h_nr_running
--;
5546 cfs_rq
->idle_h_nr_running
-= idle_h_nr_running
;
5548 /* end evaluation on encountering a throttled cfs_rq */
5549 if (cfs_rq_throttled(cfs_rq
))
5550 goto dequeue_throttle
;
5552 /* Don't dequeue parent if it has other entities besides us */
5553 if (cfs_rq
->load
.weight
) {
5554 /* Avoid re-evaluating load for this entity: */
5555 se
= parent_entity(se
);
5557 * Bias pick_next to pick a task from this cfs_rq, as
5558 * p is sleeping when it is within its sched_slice.
5560 if (task_sleep
&& se
&& !throttled_hierarchy(cfs_rq
))
5564 flags
|= DEQUEUE_SLEEP
;
5567 for_each_sched_entity(se
) {
5568 cfs_rq
= cfs_rq_of(se
);
5570 update_load_avg(cfs_rq
, se
, UPDATE_TG
);
5571 se_update_runnable(se
);
5572 update_cfs_group(se
);
5574 cfs_rq
->h_nr_running
--;
5575 cfs_rq
->idle_h_nr_running
-= idle_h_nr_running
;
5577 /* end evaluation on encountering a throttled cfs_rq */
5578 if (cfs_rq_throttled(cfs_rq
))
5579 goto dequeue_throttle
;
5585 sub_nr_running(rq
, 1);
5587 /* balance early to pull high priority tasks */
5588 if (unlikely(!was_sched_idle
&& sched_idle_rq(rq
)))
5589 rq
->next_balance
= jiffies
;
5591 util_est_dequeue(&rq
->cfs
, p
, task_sleep
);
5597 /* Working cpumask for: load_balance, load_balance_newidle. */
5598 DEFINE_PER_CPU(cpumask_var_t
, load_balance_mask
);
5599 DEFINE_PER_CPU(cpumask_var_t
, select_idle_mask
);
5601 #ifdef CONFIG_NO_HZ_COMMON
5604 cpumask_var_t idle_cpus_mask
;
5606 int has_blocked
; /* Idle CPUS has blocked load */
5607 unsigned long next_balance
; /* in jiffy units */
5608 unsigned long next_blocked
; /* Next update of blocked load in jiffies */
5609 } nohz ____cacheline_aligned
;
5611 #endif /* CONFIG_NO_HZ_COMMON */
5613 static unsigned long cpu_load(struct rq
*rq
)
5615 return cfs_rq_load_avg(&rq
->cfs
);
5619 * cpu_load_without - compute CPU load without any contributions from *p
5620 * @cpu: the CPU which load is requested
5621 * @p: the task which load should be discounted
5623 * The load of a CPU is defined by the load of tasks currently enqueued on that
5624 * CPU as well as tasks which are currently sleeping after an execution on that
5627 * This method returns the load of the specified CPU by discounting the load of
5628 * the specified task, whenever the task is currently contributing to the CPU
5631 static unsigned long cpu_load_without(struct rq
*rq
, struct task_struct
*p
)
5633 struct cfs_rq
*cfs_rq
;
5636 /* Task has no contribution or is new */
5637 if (cpu_of(rq
) != task_cpu(p
) || !READ_ONCE(p
->se
.avg
.last_update_time
))
5638 return cpu_load(rq
);
5641 load
= READ_ONCE(cfs_rq
->avg
.load_avg
);
5643 /* Discount task's util from CPU's util */
5644 lsub_positive(&load
, task_h_load(p
));
5649 static unsigned long cpu_runnable(struct rq
*rq
)
5651 return cfs_rq_runnable_avg(&rq
->cfs
);
5654 static unsigned long cpu_runnable_without(struct rq
*rq
, struct task_struct
*p
)
5656 struct cfs_rq
*cfs_rq
;
5657 unsigned int runnable
;
5659 /* Task has no contribution or is new */
5660 if (cpu_of(rq
) != task_cpu(p
) || !READ_ONCE(p
->se
.avg
.last_update_time
))
5661 return cpu_runnable(rq
);
5664 runnable
= READ_ONCE(cfs_rq
->avg
.runnable_avg
);
5666 /* Discount task's runnable from CPU's runnable */
5667 lsub_positive(&runnable
, p
->se
.avg
.runnable_avg
);
5672 static unsigned long capacity_of(int cpu
)
5674 return cpu_rq(cpu
)->cpu_capacity
;
5677 static void record_wakee(struct task_struct
*p
)
5680 * Only decay a single time; tasks that have less then 1 wakeup per
5681 * jiffy will not have built up many flips.
5683 if (time_after(jiffies
, current
->wakee_flip_decay_ts
+ HZ
)) {
5684 current
->wakee_flips
>>= 1;
5685 current
->wakee_flip_decay_ts
= jiffies
;
5688 if (current
->last_wakee
!= p
) {
5689 current
->last_wakee
= p
;
5690 current
->wakee_flips
++;
5695 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5697 * A waker of many should wake a different task than the one last awakened
5698 * at a frequency roughly N times higher than one of its wakees.
5700 * In order to determine whether we should let the load spread vs consolidating
5701 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5702 * partner, and a factor of lls_size higher frequency in the other.
5704 * With both conditions met, we can be relatively sure that the relationship is
5705 * non-monogamous, with partner count exceeding socket size.
5707 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5708 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5711 static int wake_wide(struct task_struct
*p
)
5713 unsigned int master
= current
->wakee_flips
;
5714 unsigned int slave
= p
->wakee_flips
;
5715 int factor
= this_cpu_read(sd_llc_size
);
5718 swap(master
, slave
);
5719 if (slave
< factor
|| master
< slave
* factor
)
5725 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5726 * soonest. For the purpose of speed we only consider the waking and previous
5729 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5730 * cache-affine and is (or will be) idle.
5732 * wake_affine_weight() - considers the weight to reflect the average
5733 * scheduling latency of the CPUs. This seems to work
5734 * for the overloaded case.
5737 wake_affine_idle(int this_cpu
, int prev_cpu
, int sync
)
5740 * If this_cpu is idle, it implies the wakeup is from interrupt
5741 * context. Only allow the move if cache is shared. Otherwise an
5742 * interrupt intensive workload could force all tasks onto one
5743 * node depending on the IO topology or IRQ affinity settings.
5745 * If the prev_cpu is idle and cache affine then avoid a migration.
5746 * There is no guarantee that the cache hot data from an interrupt
5747 * is more important than cache hot data on the prev_cpu and from
5748 * a cpufreq perspective, it's better to have higher utilisation
5751 if (available_idle_cpu(this_cpu
) && cpus_share_cache(this_cpu
, prev_cpu
))
5752 return available_idle_cpu(prev_cpu
) ? prev_cpu
: this_cpu
;
5754 if (sync
&& cpu_rq(this_cpu
)->nr_running
== 1)
5757 return nr_cpumask_bits
;
5761 wake_affine_weight(struct sched_domain
*sd
, struct task_struct
*p
,
5762 int this_cpu
, int prev_cpu
, int sync
)
5764 s64 this_eff_load
, prev_eff_load
;
5765 unsigned long task_load
;
5767 this_eff_load
= cpu_load(cpu_rq(this_cpu
));
5770 unsigned long current_load
= task_h_load(current
);
5772 if (current_load
> this_eff_load
)
5775 this_eff_load
-= current_load
;
5778 task_load
= task_h_load(p
);
5780 this_eff_load
+= task_load
;
5781 if (sched_feat(WA_BIAS
))
5782 this_eff_load
*= 100;
5783 this_eff_load
*= capacity_of(prev_cpu
);
5785 prev_eff_load
= cpu_load(cpu_rq(prev_cpu
));
5786 prev_eff_load
-= task_load
;
5787 if (sched_feat(WA_BIAS
))
5788 prev_eff_load
*= 100 + (sd
->imbalance_pct
- 100) / 2;
5789 prev_eff_load
*= capacity_of(this_cpu
);
5792 * If sync, adjust the weight of prev_eff_load such that if
5793 * prev_eff == this_eff that select_idle_sibling() will consider
5794 * stacking the wakee on top of the waker if no other CPU is
5800 return this_eff_load
< prev_eff_load
? this_cpu
: nr_cpumask_bits
;
5803 static int wake_affine(struct sched_domain
*sd
, struct task_struct
*p
,
5804 int this_cpu
, int prev_cpu
, int sync
)
5806 int target
= nr_cpumask_bits
;
5808 if (sched_feat(WA_IDLE
))
5809 target
= wake_affine_idle(this_cpu
, prev_cpu
, sync
);
5811 if (sched_feat(WA_WEIGHT
) && target
== nr_cpumask_bits
)
5812 target
= wake_affine_weight(sd
, p
, this_cpu
, prev_cpu
, sync
);
5814 schedstat_inc(p
->se
.statistics
.nr_wakeups_affine_attempts
);
5815 if (target
== nr_cpumask_bits
)
5818 schedstat_inc(sd
->ttwu_move_affine
);
5819 schedstat_inc(p
->se
.statistics
.nr_wakeups_affine
);
5823 static struct sched_group
*
5824 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
,
5825 int this_cpu
, int sd_flag
);
5828 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5831 find_idlest_group_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
5833 unsigned long load
, min_load
= ULONG_MAX
;
5834 unsigned int min_exit_latency
= UINT_MAX
;
5835 u64 latest_idle_timestamp
= 0;
5836 int least_loaded_cpu
= this_cpu
;
5837 int shallowest_idle_cpu
= -1;
5840 /* Check if we have any choice: */
5841 if (group
->group_weight
== 1)
5842 return cpumask_first(sched_group_span(group
));
5844 /* Traverse only the allowed CPUs */
5845 for_each_cpu_and(i
, sched_group_span(group
), p
->cpus_ptr
) {
5846 if (sched_idle_cpu(i
))
5849 if (available_idle_cpu(i
)) {
5850 struct rq
*rq
= cpu_rq(i
);
5851 struct cpuidle_state
*idle
= idle_get_state(rq
);
5852 if (idle
&& idle
->exit_latency
< min_exit_latency
) {
5854 * We give priority to a CPU whose idle state
5855 * has the smallest exit latency irrespective
5856 * of any idle timestamp.
5858 min_exit_latency
= idle
->exit_latency
;
5859 latest_idle_timestamp
= rq
->idle_stamp
;
5860 shallowest_idle_cpu
= i
;
5861 } else if ((!idle
|| idle
->exit_latency
== min_exit_latency
) &&
5862 rq
->idle_stamp
> latest_idle_timestamp
) {
5864 * If equal or no active idle state, then
5865 * the most recently idled CPU might have
5868 latest_idle_timestamp
= rq
->idle_stamp
;
5869 shallowest_idle_cpu
= i
;
5871 } else if (shallowest_idle_cpu
== -1) {
5872 load
= cpu_load(cpu_rq(i
));
5873 if (load
< min_load
) {
5875 least_loaded_cpu
= i
;
5880 return shallowest_idle_cpu
!= -1 ? shallowest_idle_cpu
: least_loaded_cpu
;
5883 static inline int find_idlest_cpu(struct sched_domain
*sd
, struct task_struct
*p
,
5884 int cpu
, int prev_cpu
, int sd_flag
)
5888 if (!cpumask_intersects(sched_domain_span(sd
), p
->cpus_ptr
))
5892 * We need task's util for cpu_util_without, sync it up to
5893 * prev_cpu's last_update_time.
5895 if (!(sd_flag
& SD_BALANCE_FORK
))
5896 sync_entity_load_avg(&p
->se
);
5899 struct sched_group
*group
;
5900 struct sched_domain
*tmp
;
5903 if (!(sd
->flags
& sd_flag
)) {
5908 group
= find_idlest_group(sd
, p
, cpu
, sd_flag
);
5914 new_cpu
= find_idlest_group_cpu(group
, p
, cpu
);
5915 if (new_cpu
== cpu
) {
5916 /* Now try balancing at a lower domain level of 'cpu': */
5921 /* Now try balancing at a lower domain level of 'new_cpu': */
5923 weight
= sd
->span_weight
;
5925 for_each_domain(cpu
, tmp
) {
5926 if (weight
<= tmp
->span_weight
)
5928 if (tmp
->flags
& sd_flag
)
5936 #ifdef CONFIG_SCHED_SMT
5937 DEFINE_STATIC_KEY_FALSE(sched_smt_present
);
5938 EXPORT_SYMBOL_GPL(sched_smt_present
);
5940 static inline void set_idle_cores(int cpu
, int val
)
5942 struct sched_domain_shared
*sds
;
5944 sds
= rcu_dereference(per_cpu(sd_llc_shared
, cpu
));
5946 WRITE_ONCE(sds
->has_idle_cores
, val
);
5949 static inline bool test_idle_cores(int cpu
, bool def
)
5951 struct sched_domain_shared
*sds
;
5953 sds
= rcu_dereference(per_cpu(sd_llc_shared
, cpu
));
5955 return READ_ONCE(sds
->has_idle_cores
);
5961 * Scans the local SMT mask to see if the entire core is idle, and records this
5962 * information in sd_llc_shared->has_idle_cores.
5964 * Since SMT siblings share all cache levels, inspecting this limited remote
5965 * state should be fairly cheap.
5967 void __update_idle_core(struct rq
*rq
)
5969 int core
= cpu_of(rq
);
5973 if (test_idle_cores(core
, true))
5976 for_each_cpu(cpu
, cpu_smt_mask(core
)) {
5980 if (!available_idle_cpu(cpu
))
5984 set_idle_cores(core
, 1);
5990 * Scan the entire LLC domain for idle cores; this dynamically switches off if
5991 * there are no idle cores left in the system; tracked through
5992 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5994 static int select_idle_core(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
5996 struct cpumask
*cpus
= this_cpu_cpumask_var_ptr(select_idle_mask
);
5999 if (!static_branch_likely(&sched_smt_present
))
6002 if (!test_idle_cores(target
, false))
6005 cpumask_and(cpus
, sched_domain_span(sd
), p
->cpus_ptr
);
6007 for_each_cpu_wrap(core
, cpus
, target
) {
6010 for_each_cpu(cpu
, cpu_smt_mask(core
)) {
6011 if (!available_idle_cpu(cpu
)) {
6016 cpumask_andnot(cpus
, cpus
, cpu_smt_mask(core
));
6023 * Failed to find an idle core; stop looking for one.
6025 set_idle_cores(target
, 0);
6031 * Scan the local SMT mask for idle CPUs.
6033 static int select_idle_smt(struct task_struct
*p
, int target
)
6037 if (!static_branch_likely(&sched_smt_present
))
6040 for_each_cpu(cpu
, cpu_smt_mask(target
)) {
6041 if (!cpumask_test_cpu(cpu
, p
->cpus_ptr
))
6043 if (available_idle_cpu(cpu
) || sched_idle_cpu(cpu
))
6050 #else /* CONFIG_SCHED_SMT */
6052 static inline int select_idle_core(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
6057 static inline int select_idle_smt(struct task_struct
*p
, int target
)
6062 #endif /* CONFIG_SCHED_SMT */
6065 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6066 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6067 * average idle time for this rq (as found in rq->avg_idle).
6069 static int select_idle_cpu(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
6071 struct cpumask
*cpus
= this_cpu_cpumask_var_ptr(select_idle_mask
);
6072 struct sched_domain
*this_sd
;
6073 u64 avg_cost
, avg_idle
;
6075 int this = smp_processor_id();
6076 int cpu
, nr
= INT_MAX
;
6078 this_sd
= rcu_dereference(*this_cpu_ptr(&sd_llc
));
6083 * Due to large variance we need a large fuzz factor; hackbench in
6084 * particularly is sensitive here.
6086 avg_idle
= this_rq()->avg_idle
/ 512;
6087 avg_cost
= this_sd
->avg_scan_cost
+ 1;
6089 if (sched_feat(SIS_AVG_CPU
) && avg_idle
< avg_cost
)
6092 if (sched_feat(SIS_PROP
)) {
6093 u64 span_avg
= sd
->span_weight
* avg_idle
;
6094 if (span_avg
> 4*avg_cost
)
6095 nr
= div_u64(span_avg
, avg_cost
);
6100 time
= cpu_clock(this);
6102 cpumask_and(cpus
, sched_domain_span(sd
), p
->cpus_ptr
);
6104 for_each_cpu_wrap(cpu
, cpus
, target
) {
6107 if (available_idle_cpu(cpu
) || sched_idle_cpu(cpu
))
6111 time
= cpu_clock(this) - time
;
6112 update_avg(&this_sd
->avg_scan_cost
, time
);
6118 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6119 * the task fits. If no CPU is big enough, but there are idle ones, try to
6120 * maximize capacity.
6123 select_idle_capacity(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
6125 unsigned long best_cap
= 0;
6126 int cpu
, best_cpu
= -1;
6127 struct cpumask
*cpus
;
6129 sync_entity_load_avg(&p
->se
);
6131 cpus
= this_cpu_cpumask_var_ptr(select_idle_mask
);
6132 cpumask_and(cpus
, sched_domain_span(sd
), p
->cpus_ptr
);
6134 for_each_cpu_wrap(cpu
, cpus
, target
) {
6135 unsigned long cpu_cap
= capacity_of(cpu
);
6137 if (!available_idle_cpu(cpu
) && !sched_idle_cpu(cpu
))
6139 if (task_fits_capacity(p
, cpu_cap
))
6142 if (cpu_cap
> best_cap
) {
6152 * Try and locate an idle core/thread in the LLC cache domain.
6154 static int select_idle_sibling(struct task_struct
*p
, int prev
, int target
)
6156 struct sched_domain
*sd
;
6157 int i
, recent_used_cpu
;
6160 * For asymmetric CPU capacity systems, our domain of interest is
6161 * sd_asym_cpucapacity rather than sd_llc.
6163 if (static_branch_unlikely(&sched_asym_cpucapacity
)) {
6164 sd
= rcu_dereference(per_cpu(sd_asym_cpucapacity
, target
));
6166 * On an asymmetric CPU capacity system where an exclusive
6167 * cpuset defines a symmetric island (i.e. one unique
6168 * capacity_orig value through the cpuset), the key will be set
6169 * but the CPUs within that cpuset will not have a domain with
6170 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6176 i
= select_idle_capacity(p
, sd
, target
);
6177 return ((unsigned)i
< nr_cpumask_bits
) ? i
: target
;
6181 if (available_idle_cpu(target
) || sched_idle_cpu(target
))
6185 * If the previous CPU is cache affine and idle, don't be stupid:
6187 if (prev
!= target
&& cpus_share_cache(prev
, target
) &&
6188 (available_idle_cpu(prev
) || sched_idle_cpu(prev
)))
6192 * Allow a per-cpu kthread to stack with the wakee if the
6193 * kworker thread and the tasks previous CPUs are the same.
6194 * The assumption is that the wakee queued work for the
6195 * per-cpu kthread that is now complete and the wakeup is
6196 * essentially a sync wakeup. An obvious example of this
6197 * pattern is IO completions.
6199 if (is_per_cpu_kthread(current
) &&
6200 prev
== smp_processor_id() &&
6201 this_rq()->nr_running
<= 1) {
6205 /* Check a recently used CPU as a potential idle candidate: */
6206 recent_used_cpu
= p
->recent_used_cpu
;
6207 if (recent_used_cpu
!= prev
&&
6208 recent_used_cpu
!= target
&&
6209 cpus_share_cache(recent_used_cpu
, target
) &&
6210 (available_idle_cpu(recent_used_cpu
) || sched_idle_cpu(recent_used_cpu
)) &&
6211 cpumask_test_cpu(p
->recent_used_cpu
, p
->cpus_ptr
)) {
6213 * Replace recent_used_cpu with prev as it is a potential
6214 * candidate for the next wake:
6216 p
->recent_used_cpu
= prev
;
6217 return recent_used_cpu
;
6220 sd
= rcu_dereference(per_cpu(sd_llc
, target
));
6224 i
= select_idle_core(p
, sd
, target
);
6225 if ((unsigned)i
< nr_cpumask_bits
)
6228 i
= select_idle_cpu(p
, sd
, target
);
6229 if ((unsigned)i
< nr_cpumask_bits
)
6232 i
= select_idle_smt(p
, target
);
6233 if ((unsigned)i
< nr_cpumask_bits
)
6240 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6241 * @cpu: the CPU to get the utilization of
6243 * The unit of the return value must be the one of capacity so we can compare
6244 * the utilization with the capacity of the CPU that is available for CFS task
6245 * (ie cpu_capacity).
6247 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6248 * recent utilization of currently non-runnable tasks on a CPU. It represents
6249 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6250 * capacity_orig is the cpu_capacity available at the highest frequency
6251 * (arch_scale_freq_capacity()).
6252 * The utilization of a CPU converges towards a sum equal to or less than the
6253 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6254 * the running time on this CPU scaled by capacity_curr.
6256 * The estimated utilization of a CPU is defined to be the maximum between its
6257 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6258 * currently RUNNABLE on that CPU.
6259 * This allows to properly represent the expected utilization of a CPU which
6260 * has just got a big task running since a long sleep period. At the same time
6261 * however it preserves the benefits of the "blocked utilization" in
6262 * describing the potential for other tasks waking up on the same CPU.
6264 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6265 * higher than capacity_orig because of unfortunate rounding in
6266 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6267 * the average stabilizes with the new running time. We need to check that the
6268 * utilization stays within the range of [0..capacity_orig] and cap it if
6269 * necessary. Without utilization capping, a group could be seen as overloaded
6270 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6271 * available capacity. We allow utilization to overshoot capacity_curr (but not
6272 * capacity_orig) as it useful for predicting the capacity required after task
6273 * migrations (scheduler-driven DVFS).
6275 * Return: the (estimated) utilization for the specified CPU
6277 static inline unsigned long cpu_util(int cpu
)
6279 struct cfs_rq
*cfs_rq
;
6282 cfs_rq
= &cpu_rq(cpu
)->cfs
;
6283 util
= READ_ONCE(cfs_rq
->avg
.util_avg
);
6285 if (sched_feat(UTIL_EST
))
6286 util
= max(util
, READ_ONCE(cfs_rq
->avg
.util_est
.enqueued
));
6288 return min_t(unsigned long, util
, capacity_orig_of(cpu
));
6292 * cpu_util_without: compute cpu utilization without any contributions from *p
6293 * @cpu: the CPU which utilization is requested
6294 * @p: the task which utilization should be discounted
6296 * The utilization of a CPU is defined by the utilization of tasks currently
6297 * enqueued on that CPU as well as tasks which are currently sleeping after an
6298 * execution on that CPU.
6300 * This method returns the utilization of the specified CPU by discounting the
6301 * utilization of the specified task, whenever the task is currently
6302 * contributing to the CPU utilization.
6304 static unsigned long cpu_util_without(int cpu
, struct task_struct
*p
)
6306 struct cfs_rq
*cfs_rq
;
6309 /* Task has no contribution or is new */
6310 if (cpu
!= task_cpu(p
) || !READ_ONCE(p
->se
.avg
.last_update_time
))
6311 return cpu_util(cpu
);
6313 cfs_rq
= &cpu_rq(cpu
)->cfs
;
6314 util
= READ_ONCE(cfs_rq
->avg
.util_avg
);
6316 /* Discount task's util from CPU's util */
6317 lsub_positive(&util
, task_util(p
));
6322 * a) if *p is the only task sleeping on this CPU, then:
6323 * cpu_util (== task_util) > util_est (== 0)
6324 * and thus we return:
6325 * cpu_util_without = (cpu_util - task_util) = 0
6327 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6329 * cpu_util >= task_util
6330 * cpu_util > util_est (== 0)
6331 * and thus we discount *p's blocked utilization to return:
6332 * cpu_util_without = (cpu_util - task_util) >= 0
6334 * c) if other tasks are RUNNABLE on that CPU and
6335 * util_est > cpu_util
6336 * then we use util_est since it returns a more restrictive
6337 * estimation of the spare capacity on that CPU, by just
6338 * considering the expected utilization of tasks already
6339 * runnable on that CPU.
6341 * Cases a) and b) are covered by the above code, while case c) is
6342 * covered by the following code when estimated utilization is
6345 if (sched_feat(UTIL_EST
)) {
6346 unsigned int estimated
=
6347 READ_ONCE(cfs_rq
->avg
.util_est
.enqueued
);
6350 * Despite the following checks we still have a small window
6351 * for a possible race, when an execl's select_task_rq_fair()
6352 * races with LB's detach_task():
6355 * p->on_rq = TASK_ON_RQ_MIGRATING;
6356 * ---------------------------------- A
6357 * deactivate_task() \
6358 * dequeue_task() + RaceTime
6359 * util_est_dequeue() /
6360 * ---------------------------------- B
6362 * The additional check on "current == p" it's required to
6363 * properly fix the execl regression and it helps in further
6364 * reducing the chances for the above race.
6366 if (unlikely(task_on_rq_queued(p
) || current
== p
))
6367 lsub_positive(&estimated
, _task_util_est(p
));
6369 util
= max(util
, estimated
);
6373 * Utilization (estimated) can exceed the CPU capacity, thus let's
6374 * clamp to the maximum CPU capacity to ensure consistency with
6375 * the cpu_util call.
6377 return min_t(unsigned long, util
, capacity_orig_of(cpu
));
6381 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6384 static unsigned long cpu_util_next(int cpu
, struct task_struct
*p
, int dst_cpu
)
6386 struct cfs_rq
*cfs_rq
= &cpu_rq(cpu
)->cfs
;
6387 unsigned long util_est
, util
= READ_ONCE(cfs_rq
->avg
.util_avg
);
6390 * If @p migrates from @cpu to another, remove its contribution. Or,
6391 * if @p migrates from another CPU to @cpu, add its contribution. In
6392 * the other cases, @cpu is not impacted by the migration, so the
6393 * util_avg should already be correct.
6395 if (task_cpu(p
) == cpu
&& dst_cpu
!= cpu
)
6396 sub_positive(&util
, task_util(p
));
6397 else if (task_cpu(p
) != cpu
&& dst_cpu
== cpu
)
6398 util
+= task_util(p
);
6400 if (sched_feat(UTIL_EST
)) {
6401 util_est
= READ_ONCE(cfs_rq
->avg
.util_est
.enqueued
);
6404 * During wake-up, the task isn't enqueued yet and doesn't
6405 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6406 * so just add it (if needed) to "simulate" what will be
6407 * cpu_util() after the task has been enqueued.
6410 util_est
+= _task_util_est(p
);
6412 util
= max(util
, util_est
);
6415 return min(util
, capacity_orig_of(cpu
));
6419 * compute_energy(): Estimates the energy that @pd would consume if @p was
6420 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6421 * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6422 * to compute what would be the energy if we decided to actually migrate that
6426 compute_energy(struct task_struct
*p
, int dst_cpu
, struct perf_domain
*pd
)
6428 struct cpumask
*pd_mask
= perf_domain_span(pd
);
6429 unsigned long cpu_cap
= arch_scale_cpu_capacity(cpumask_first(pd_mask
));
6430 unsigned long max_util
= 0, sum_util
= 0;
6434 * The capacity state of CPUs of the current rd can be driven by CPUs
6435 * of another rd if they belong to the same pd. So, account for the
6436 * utilization of these CPUs too by masking pd with cpu_online_mask
6437 * instead of the rd span.
6439 * If an entire pd is outside of the current rd, it will not appear in
6440 * its pd list and will not be accounted by compute_energy().
6442 for_each_cpu_and(cpu
, pd_mask
, cpu_online_mask
) {
6443 unsigned long cpu_util
, util_cfs
= cpu_util_next(cpu
, p
, dst_cpu
);
6444 struct task_struct
*tsk
= cpu
== dst_cpu
? p
: NULL
;
6447 * Busy time computation: utilization clamping is not
6448 * required since the ratio (sum_util / cpu_capacity)
6449 * is already enough to scale the EM reported power
6450 * consumption at the (eventually clamped) cpu_capacity.
6452 sum_util
+= schedutil_cpu_util(cpu
, util_cfs
, cpu_cap
,
6456 * Performance domain frequency: utilization clamping
6457 * must be considered since it affects the selection
6458 * of the performance domain frequency.
6459 * NOTE: in case RT tasks are running, by default the
6460 * FREQUENCY_UTIL's utilization can be max OPP.
6462 cpu_util
= schedutil_cpu_util(cpu
, util_cfs
, cpu_cap
,
6463 FREQUENCY_UTIL
, tsk
);
6464 max_util
= max(max_util
, cpu_util
);
6467 return em_pd_energy(pd
->em_pd
, max_util
, sum_util
);
6471 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6472 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6473 * spare capacity in each performance domain and uses it as a potential
6474 * candidate to execute the task. Then, it uses the Energy Model to figure
6475 * out which of the CPU candidates is the most energy-efficient.
6477 * The rationale for this heuristic is as follows. In a performance domain,
6478 * all the most energy efficient CPU candidates (according to the Energy
6479 * Model) are those for which we'll request a low frequency. When there are
6480 * several CPUs for which the frequency request will be the same, we don't
6481 * have enough data to break the tie between them, because the Energy Model
6482 * only includes active power costs. With this model, if we assume that
6483 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6484 * the maximum spare capacity in a performance domain is guaranteed to be among
6485 * the best candidates of the performance domain.
6487 * In practice, it could be preferable from an energy standpoint to pack
6488 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6489 * but that could also hurt our chances to go cluster idle, and we have no
6490 * ways to tell with the current Energy Model if this is actually a good
6491 * idea or not. So, find_energy_efficient_cpu() basically favors
6492 * cluster-packing, and spreading inside a cluster. That should at least be
6493 * a good thing for latency, and this is consistent with the idea that most
6494 * of the energy savings of EAS come from the asymmetry of the system, and
6495 * not so much from breaking the tie between identical CPUs. That's also the
6496 * reason why EAS is enabled in the topology code only for systems where
6497 * SD_ASYM_CPUCAPACITY is set.
6499 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6500 * they don't have any useful utilization data yet and it's not possible to
6501 * forecast their impact on energy consumption. Consequently, they will be
6502 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6503 * to be energy-inefficient in some use-cases. The alternative would be to
6504 * bias new tasks towards specific types of CPUs first, or to try to infer
6505 * their util_avg from the parent task, but those heuristics could hurt
6506 * other use-cases too. So, until someone finds a better way to solve this,
6507 * let's keep things simple by re-using the existing slow path.
6509 static int find_energy_efficient_cpu(struct task_struct
*p
, int prev_cpu
)
6511 unsigned long prev_delta
= ULONG_MAX
, best_delta
= ULONG_MAX
;
6512 struct root_domain
*rd
= cpu_rq(smp_processor_id())->rd
;
6513 unsigned long cpu_cap
, util
, base_energy
= 0;
6514 int cpu
, best_energy_cpu
= prev_cpu
;
6515 struct sched_domain
*sd
;
6516 struct perf_domain
*pd
;
6519 pd
= rcu_dereference(rd
->pd
);
6520 if (!pd
|| READ_ONCE(rd
->overutilized
))
6524 * Energy-aware wake-up happens on the lowest sched_domain starting
6525 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6527 sd
= rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity
));
6528 while (sd
&& !cpumask_test_cpu(prev_cpu
, sched_domain_span(sd
)))
6533 sync_entity_load_avg(&p
->se
);
6534 if (!task_util_est(p
))
6537 for (; pd
; pd
= pd
->next
) {
6538 unsigned long cur_delta
, spare_cap
, max_spare_cap
= 0;
6539 unsigned long base_energy_pd
;
6540 int max_spare_cap_cpu
= -1;
6542 /* Compute the 'base' energy of the pd, without @p */
6543 base_energy_pd
= compute_energy(p
, -1, pd
);
6544 base_energy
+= base_energy_pd
;
6546 for_each_cpu_and(cpu
, perf_domain_span(pd
), sched_domain_span(sd
)) {
6547 if (!cpumask_test_cpu(cpu
, p
->cpus_ptr
))
6550 util
= cpu_util_next(cpu
, p
, cpu
);
6551 cpu_cap
= capacity_of(cpu
);
6552 spare_cap
= cpu_cap
- util
;
6555 * Skip CPUs that cannot satisfy the capacity request.
6556 * IOW, placing the task there would make the CPU
6557 * overutilized. Take uclamp into account to see how
6558 * much capacity we can get out of the CPU; this is
6559 * aligned with schedutil_cpu_util().
6561 util
= uclamp_rq_util_with(cpu_rq(cpu
), util
, p
);
6562 if (!fits_capacity(util
, cpu_cap
))
6565 /* Always use prev_cpu as a candidate. */
6566 if (cpu
== prev_cpu
) {
6567 prev_delta
= compute_energy(p
, prev_cpu
, pd
);
6568 prev_delta
-= base_energy_pd
;
6569 best_delta
= min(best_delta
, prev_delta
);
6573 * Find the CPU with the maximum spare capacity in
6574 * the performance domain
6576 if (spare_cap
> max_spare_cap
) {
6577 max_spare_cap
= spare_cap
;
6578 max_spare_cap_cpu
= cpu
;
6582 /* Evaluate the energy impact of using this CPU. */
6583 if (max_spare_cap_cpu
>= 0 && max_spare_cap_cpu
!= prev_cpu
) {
6584 cur_delta
= compute_energy(p
, max_spare_cap_cpu
, pd
);
6585 cur_delta
-= base_energy_pd
;
6586 if (cur_delta
< best_delta
) {
6587 best_delta
= cur_delta
;
6588 best_energy_cpu
= max_spare_cap_cpu
;
6596 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6597 * least 6% of the energy used by prev_cpu.
6599 if (prev_delta
== ULONG_MAX
)
6600 return best_energy_cpu
;
6602 if ((prev_delta
- best_delta
) > ((prev_delta
+ base_energy
) >> 4))
6603 return best_energy_cpu
;
6614 * select_task_rq_fair: Select target runqueue for the waking task in domains
6615 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6616 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6618 * Balances load by selecting the idlest CPU in the idlest group, or under
6619 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6621 * Returns the target CPU number.
6623 * preempt must be disabled.
6626 select_task_rq_fair(struct task_struct
*p
, int prev_cpu
, int sd_flag
, int wake_flags
)
6628 struct sched_domain
*tmp
, *sd
= NULL
;
6629 int cpu
= smp_processor_id();
6630 int new_cpu
= prev_cpu
;
6631 int want_affine
= 0;
6632 int sync
= (wake_flags
& WF_SYNC
) && !(current
->flags
& PF_EXITING
);
6634 if (sd_flag
& SD_BALANCE_WAKE
) {
6637 if (sched_energy_enabled()) {
6638 new_cpu
= find_energy_efficient_cpu(p
, prev_cpu
);
6644 want_affine
= !wake_wide(p
) && cpumask_test_cpu(cpu
, p
->cpus_ptr
);
6648 for_each_domain(cpu
, tmp
) {
6649 if (!(tmp
->flags
& SD_LOAD_BALANCE
))
6653 * If both 'cpu' and 'prev_cpu' are part of this domain,
6654 * cpu is a valid SD_WAKE_AFFINE target.
6656 if (want_affine
&& (tmp
->flags
& SD_WAKE_AFFINE
) &&
6657 cpumask_test_cpu(prev_cpu
, sched_domain_span(tmp
))) {
6658 if (cpu
!= prev_cpu
)
6659 new_cpu
= wake_affine(tmp
, p
, cpu
, prev_cpu
, sync
);
6661 sd
= NULL
; /* Prefer wake_affine over balance flags */
6665 if (tmp
->flags
& sd_flag
)
6667 else if (!want_affine
)
6673 new_cpu
= find_idlest_cpu(sd
, p
, cpu
, prev_cpu
, sd_flag
);
6674 } else if (sd_flag
& SD_BALANCE_WAKE
) { /* XXX always ? */
6677 new_cpu
= select_idle_sibling(p
, prev_cpu
, new_cpu
);
6680 current
->recent_used_cpu
= cpu
;
6687 static void detach_entity_cfs_rq(struct sched_entity
*se
);
6690 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6691 * cfs_rq_of(p) references at time of call are still valid and identify the
6692 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6694 static void migrate_task_rq_fair(struct task_struct
*p
, int new_cpu
)
6697 * As blocked tasks retain absolute vruntime the migration needs to
6698 * deal with this by subtracting the old and adding the new
6699 * min_vruntime -- the latter is done by enqueue_entity() when placing
6700 * the task on the new runqueue.
6702 if (p
->state
== TASK_WAKING
) {
6703 struct sched_entity
*se
= &p
->se
;
6704 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
6707 #ifndef CONFIG_64BIT
6708 u64 min_vruntime_copy
;
6711 min_vruntime_copy
= cfs_rq
->min_vruntime_copy
;
6713 min_vruntime
= cfs_rq
->min_vruntime
;
6714 } while (min_vruntime
!= min_vruntime_copy
);
6716 min_vruntime
= cfs_rq
->min_vruntime
;
6719 se
->vruntime
-= min_vruntime
;
6722 if (p
->on_rq
== TASK_ON_RQ_MIGRATING
) {
6724 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6725 * rq->lock and can modify state directly.
6727 lockdep_assert_held(&task_rq(p
)->lock
);
6728 detach_entity_cfs_rq(&p
->se
);
6732 * We are supposed to update the task to "current" time, then
6733 * its up to date and ready to go to new CPU/cfs_rq. But we
6734 * have difficulty in getting what current time is, so simply
6735 * throw away the out-of-date time. This will result in the
6736 * wakee task is less decayed, but giving the wakee more load
6739 remove_entity_load_avg(&p
->se
);
6742 /* Tell new CPU we are migrated */
6743 p
->se
.avg
.last_update_time
= 0;
6745 /* We have migrated, no longer consider this task hot */
6746 p
->se
.exec_start
= 0;
6748 update_scan_period(p
, new_cpu
);
6751 static void task_dead_fair(struct task_struct
*p
)
6753 remove_entity_load_avg(&p
->se
);
6757 balance_fair(struct rq
*rq
, struct task_struct
*prev
, struct rq_flags
*rf
)
6762 return newidle_balance(rq
, rf
) != 0;
6764 #endif /* CONFIG_SMP */
6766 static unsigned long wakeup_gran(struct sched_entity
*se
)
6768 unsigned long gran
= sysctl_sched_wakeup_granularity
;
6771 * Since its curr running now, convert the gran from real-time
6772 * to virtual-time in his units.
6774 * By using 'se' instead of 'curr' we penalize light tasks, so
6775 * they get preempted easier. That is, if 'se' < 'curr' then
6776 * the resulting gran will be larger, therefore penalizing the
6777 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6778 * be smaller, again penalizing the lighter task.
6780 * This is especially important for buddies when the leftmost
6781 * task is higher priority than the buddy.
6783 return calc_delta_fair(gran
, se
);
6787 * Should 'se' preempt 'curr'.
6801 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
)
6803 s64 gran
, vdiff
= curr
->vruntime
- se
->vruntime
;
6808 gran
= wakeup_gran(se
);
6815 static void set_last_buddy(struct sched_entity
*se
)
6817 if (entity_is_task(se
) && unlikely(task_has_idle_policy(task_of(se
))))
6820 for_each_sched_entity(se
) {
6821 if (SCHED_WARN_ON(!se
->on_rq
))
6823 cfs_rq_of(se
)->last
= se
;
6827 static void set_next_buddy(struct sched_entity
*se
)
6829 if (entity_is_task(se
) && unlikely(task_has_idle_policy(task_of(se
))))
6832 for_each_sched_entity(se
) {
6833 if (SCHED_WARN_ON(!se
->on_rq
))
6835 cfs_rq_of(se
)->next
= se
;
6839 static void set_skip_buddy(struct sched_entity
*se
)
6841 for_each_sched_entity(se
)
6842 cfs_rq_of(se
)->skip
= se
;
6846 * Preempt the current task with a newly woken task if needed:
6848 static void check_preempt_wakeup(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
6850 struct task_struct
*curr
= rq
->curr
;
6851 struct sched_entity
*se
= &curr
->se
, *pse
= &p
->se
;
6852 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
6853 int scale
= cfs_rq
->nr_running
>= sched_nr_latency
;
6854 int next_buddy_marked
= 0;
6856 if (unlikely(se
== pse
))
6860 * This is possible from callers such as attach_tasks(), in which we
6861 * unconditionally check_prempt_curr() after an enqueue (which may have
6862 * lead to a throttle). This both saves work and prevents false
6863 * next-buddy nomination below.
6865 if (unlikely(throttled_hierarchy(cfs_rq_of(pse
))))
6868 if (sched_feat(NEXT_BUDDY
) && scale
&& !(wake_flags
& WF_FORK
)) {
6869 set_next_buddy(pse
);
6870 next_buddy_marked
= 1;
6874 * We can come here with TIF_NEED_RESCHED already set from new task
6877 * Note: this also catches the edge-case of curr being in a throttled
6878 * group (e.g. via set_curr_task), since update_curr() (in the
6879 * enqueue of curr) will have resulted in resched being set. This
6880 * prevents us from potentially nominating it as a false LAST_BUDDY
6883 if (test_tsk_need_resched(curr
))
6886 /* Idle tasks are by definition preempted by non-idle tasks. */
6887 if (unlikely(task_has_idle_policy(curr
)) &&
6888 likely(!task_has_idle_policy(p
)))
6892 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6893 * is driven by the tick):
6895 if (unlikely(p
->policy
!= SCHED_NORMAL
) || !sched_feat(WAKEUP_PREEMPTION
))
6898 find_matching_se(&se
, &pse
);
6899 update_curr(cfs_rq_of(se
));
6901 if (wakeup_preempt_entity(se
, pse
) == 1) {
6903 * Bias pick_next to pick the sched entity that is
6904 * triggering this preemption.
6906 if (!next_buddy_marked
)
6907 set_next_buddy(pse
);
6916 * Only set the backward buddy when the current task is still
6917 * on the rq. This can happen when a wakeup gets interleaved
6918 * with schedule on the ->pre_schedule() or idle_balance()
6919 * point, either of which can * drop the rq lock.
6921 * Also, during early boot the idle thread is in the fair class,
6922 * for obvious reasons its a bad idea to schedule back to it.
6924 if (unlikely(!se
->on_rq
|| curr
== rq
->idle
))
6927 if (sched_feat(LAST_BUDDY
) && scale
&& entity_is_task(se
))
6931 struct task_struct
*
6932 pick_next_task_fair(struct rq
*rq
, struct task_struct
*prev
, struct rq_flags
*rf
)
6934 struct cfs_rq
*cfs_rq
= &rq
->cfs
;
6935 struct sched_entity
*se
;
6936 struct task_struct
*p
;
6940 if (!sched_fair_runnable(rq
))
6943 #ifdef CONFIG_FAIR_GROUP_SCHED
6944 if (!prev
|| prev
->sched_class
!= &fair_sched_class
)
6948 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6949 * likely that a next task is from the same cgroup as the current.
6951 * Therefore attempt to avoid putting and setting the entire cgroup
6952 * hierarchy, only change the part that actually changes.
6956 struct sched_entity
*curr
= cfs_rq
->curr
;
6959 * Since we got here without doing put_prev_entity() we also
6960 * have to consider cfs_rq->curr. If it is still a runnable
6961 * entity, update_curr() will update its vruntime, otherwise
6962 * forget we've ever seen it.
6966 update_curr(cfs_rq
);
6971 * This call to check_cfs_rq_runtime() will do the
6972 * throttle and dequeue its entity in the parent(s).
6973 * Therefore the nr_running test will indeed
6976 if (unlikely(check_cfs_rq_runtime(cfs_rq
))) {
6979 if (!cfs_rq
->nr_running
)
6986 se
= pick_next_entity(cfs_rq
, curr
);
6987 cfs_rq
= group_cfs_rq(se
);
6993 * Since we haven't yet done put_prev_entity and if the selected task
6994 * is a different task than we started out with, try and touch the
6995 * least amount of cfs_rqs.
6998 struct sched_entity
*pse
= &prev
->se
;
7000 while (!(cfs_rq
= is_same_group(se
, pse
))) {
7001 int se_depth
= se
->depth
;
7002 int pse_depth
= pse
->depth
;
7004 if (se_depth
<= pse_depth
) {
7005 put_prev_entity(cfs_rq_of(pse
), pse
);
7006 pse
= parent_entity(pse
);
7008 if (se_depth
>= pse_depth
) {
7009 set_next_entity(cfs_rq_of(se
), se
);
7010 se
= parent_entity(se
);
7014 put_prev_entity(cfs_rq
, pse
);
7015 set_next_entity(cfs_rq
, se
);
7022 put_prev_task(rq
, prev
);
7025 se
= pick_next_entity(cfs_rq
, NULL
);
7026 set_next_entity(cfs_rq
, se
);
7027 cfs_rq
= group_cfs_rq(se
);
7032 done
: __maybe_unused
;
7035 * Move the next running task to the front of
7036 * the list, so our cfs_tasks list becomes MRU
7039 list_move(&p
->se
.group_node
, &rq
->cfs_tasks
);
7042 if (hrtick_enabled(rq
))
7043 hrtick_start_fair(rq
, p
);
7045 update_misfit_status(p
, rq
);
7053 new_tasks
= newidle_balance(rq
, rf
);
7056 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7057 * possible for any higher priority task to appear. In that case we
7058 * must re-start the pick_next_entity() loop.
7067 * rq is about to be idle, check if we need to update the
7068 * lost_idle_time of clock_pelt
7070 update_idle_rq_clock_pelt(rq
);
7075 static struct task_struct
*__pick_next_task_fair(struct rq
*rq
)
7077 return pick_next_task_fair(rq
, NULL
, NULL
);
7081 * Account for a descheduled task:
7083 static void put_prev_task_fair(struct rq
*rq
, struct task_struct
*prev
)
7085 struct sched_entity
*se
= &prev
->se
;
7086 struct cfs_rq
*cfs_rq
;
7088 for_each_sched_entity(se
) {
7089 cfs_rq
= cfs_rq_of(se
);
7090 put_prev_entity(cfs_rq
, se
);
7095 * sched_yield() is very simple
7097 * The magic of dealing with the ->skip buddy is in pick_next_entity.
7099 static void yield_task_fair(struct rq
*rq
)
7101 struct task_struct
*curr
= rq
->curr
;
7102 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
7103 struct sched_entity
*se
= &curr
->se
;
7106 * Are we the only task in the tree?
7108 if (unlikely(rq
->nr_running
== 1))
7111 clear_buddies(cfs_rq
, se
);
7113 if (curr
->policy
!= SCHED_BATCH
) {
7114 update_rq_clock(rq
);
7116 * Update run-time statistics of the 'current'.
7118 update_curr(cfs_rq
);
7120 * Tell update_rq_clock() that we've just updated,
7121 * so we don't do microscopic update in schedule()
7122 * and double the fastpath cost.
7124 rq_clock_skip_update(rq
);
7130 static bool yield_to_task_fair(struct rq
*rq
, struct task_struct
*p
, bool preempt
)
7132 struct sched_entity
*se
= &p
->se
;
7134 /* throttled hierarchies are not runnable */
7135 if (!se
->on_rq
|| throttled_hierarchy(cfs_rq_of(se
)))
7138 /* Tell the scheduler that we'd really like pse to run next. */
7141 yield_task_fair(rq
);
7147 /**************************************************
7148 * Fair scheduling class load-balancing methods.
7152 * The purpose of load-balancing is to achieve the same basic fairness the
7153 * per-CPU scheduler provides, namely provide a proportional amount of compute
7154 * time to each task. This is expressed in the following equation:
7156 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
7158 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7159 * W_i,0 is defined as:
7161 * W_i,0 = \Sum_j w_i,j (2)
7163 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7164 * is derived from the nice value as per sched_prio_to_weight[].
7166 * The weight average is an exponential decay average of the instantaneous
7169 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
7171 * C_i is the compute capacity of CPU i, typically it is the
7172 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7173 * can also include other factors [XXX].
7175 * To achieve this balance we define a measure of imbalance which follows
7176 * directly from (1):
7178 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
7180 * We them move tasks around to minimize the imbalance. In the continuous
7181 * function space it is obvious this converges, in the discrete case we get
7182 * a few fun cases generally called infeasible weight scenarios.
7185 * - infeasible weights;
7186 * - local vs global optima in the discrete case. ]
7191 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7192 * for all i,j solution, we create a tree of CPUs that follows the hardware
7193 * topology where each level pairs two lower groups (or better). This results
7194 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7195 * tree to only the first of the previous level and we decrease the frequency
7196 * of load-balance at each level inv. proportional to the number of CPUs in
7202 * \Sum { --- * --- * 2^i } = O(n) (5)
7204 * `- size of each group
7205 * | | `- number of CPUs doing load-balance
7207 * `- sum over all levels
7209 * Coupled with a limit on how many tasks we can migrate every balance pass,
7210 * this makes (5) the runtime complexity of the balancer.
7212 * An important property here is that each CPU is still (indirectly) connected
7213 * to every other CPU in at most O(log n) steps:
7215 * The adjacency matrix of the resulting graph is given by:
7218 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7221 * And you'll find that:
7223 * A^(log_2 n)_i,j != 0 for all i,j (7)
7225 * Showing there's indeed a path between every CPU in at most O(log n) steps.
7226 * The task movement gives a factor of O(m), giving a convergence complexity
7229 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7234 * In order to avoid CPUs going idle while there's still work to do, new idle
7235 * balancing is more aggressive and has the newly idle CPU iterate up the domain
7236 * tree itself instead of relying on other CPUs to bring it work.
7238 * This adds some complexity to both (5) and (8) but it reduces the total idle
7246 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7249 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7254 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7256 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7258 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7261 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7262 * rewrite all of this once again.]
7265 static unsigned long __read_mostly max_load_balance_interval
= HZ
/10;
7267 enum fbq_type
{ regular
, remote
, all
};
7270 * 'group_type' describes the group of CPUs at the moment of load balancing.
7272 * The enum is ordered by pulling priority, with the group with lowest priority
7273 * first so the group_type can simply be compared when selecting the busiest
7274 * group. See update_sd_pick_busiest().
7277 /* The group has spare capacity that can be used to run more tasks. */
7278 group_has_spare
= 0,
7280 * The group is fully used and the tasks don't compete for more CPU
7281 * cycles. Nevertheless, some tasks might wait before running.
7285 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7286 * and must be migrated to a more powerful CPU.
7290 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7291 * and the task should be migrated to it instead of running on the
7296 * The tasks' affinity constraints previously prevented the scheduler
7297 * from balancing the load across the system.
7301 * The CPU is overloaded and can't provide expected CPU cycles to all
7307 enum migration_type
{
7314 #define LBF_ALL_PINNED 0x01
7315 #define LBF_NEED_BREAK 0x02
7316 #define LBF_DST_PINNED 0x04
7317 #define LBF_SOME_PINNED 0x08
7318 #define LBF_NOHZ_STATS 0x10
7319 #define LBF_NOHZ_AGAIN 0x20
7322 struct sched_domain
*sd
;
7330 struct cpumask
*dst_grpmask
;
7332 enum cpu_idle_type idle
;
7334 /* The set of CPUs under consideration for load-balancing */
7335 struct cpumask
*cpus
;
7340 unsigned int loop_break
;
7341 unsigned int loop_max
;
7343 enum fbq_type fbq_type
;
7344 enum migration_type migration_type
;
7345 struct list_head tasks
;
7349 * Is this task likely cache-hot:
7351 static int task_hot(struct task_struct
*p
, struct lb_env
*env
)
7355 lockdep_assert_held(&env
->src_rq
->lock
);
7357 if (p
->sched_class
!= &fair_sched_class
)
7360 if (unlikely(task_has_idle_policy(p
)))
7364 * Buddy candidates are cache hot:
7366 if (sched_feat(CACHE_HOT_BUDDY
) && env
->dst_rq
->nr_running
&&
7367 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
7368 &p
->se
== cfs_rq_of(&p
->se
)->last
))
7371 if (sysctl_sched_migration_cost
== -1)
7373 if (sysctl_sched_migration_cost
== 0)
7376 delta
= rq_clock_task(env
->src_rq
) - p
->se
.exec_start
;
7378 return delta
< (s64
)sysctl_sched_migration_cost
;
7381 #ifdef CONFIG_NUMA_BALANCING
7383 * Returns 1, if task migration degrades locality
7384 * Returns 0, if task migration improves locality i.e migration preferred.
7385 * Returns -1, if task migration is not affected by locality.
7387 static int migrate_degrades_locality(struct task_struct
*p
, struct lb_env
*env
)
7389 struct numa_group
*numa_group
= rcu_dereference(p
->numa_group
);
7390 unsigned long src_weight
, dst_weight
;
7391 int src_nid
, dst_nid
, dist
;
7393 if (!static_branch_likely(&sched_numa_balancing
))
7396 if (!p
->numa_faults
|| !(env
->sd
->flags
& SD_NUMA
))
7399 src_nid
= cpu_to_node(env
->src_cpu
);
7400 dst_nid
= cpu_to_node(env
->dst_cpu
);
7402 if (src_nid
== dst_nid
)
7405 /* Migrating away from the preferred node is always bad. */
7406 if (src_nid
== p
->numa_preferred_nid
) {
7407 if (env
->src_rq
->nr_running
> env
->src_rq
->nr_preferred_running
)
7413 /* Encourage migration to the preferred node. */
7414 if (dst_nid
== p
->numa_preferred_nid
)
7417 /* Leaving a core idle is often worse than degrading locality. */
7418 if (env
->idle
== CPU_IDLE
)
7421 dist
= node_distance(src_nid
, dst_nid
);
7423 src_weight
= group_weight(p
, src_nid
, dist
);
7424 dst_weight
= group_weight(p
, dst_nid
, dist
);
7426 src_weight
= task_weight(p
, src_nid
, dist
);
7427 dst_weight
= task_weight(p
, dst_nid
, dist
);
7430 return dst_weight
< src_weight
;
7434 static inline int migrate_degrades_locality(struct task_struct
*p
,
7442 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7445 int can_migrate_task(struct task_struct
*p
, struct lb_env
*env
)
7449 lockdep_assert_held(&env
->src_rq
->lock
);
7452 * We do not migrate tasks that are:
7453 * 1) throttled_lb_pair, or
7454 * 2) cannot be migrated to this CPU due to cpus_ptr, or
7455 * 3) running (obviously), or
7456 * 4) are cache-hot on their current CPU.
7458 if (throttled_lb_pair(task_group(p
), env
->src_cpu
, env
->dst_cpu
))
7461 if (!cpumask_test_cpu(env
->dst_cpu
, p
->cpus_ptr
)) {
7464 schedstat_inc(p
->se
.statistics
.nr_failed_migrations_affine
);
7466 env
->flags
|= LBF_SOME_PINNED
;
7469 * Remember if this task can be migrated to any other CPU in
7470 * our sched_group. We may want to revisit it if we couldn't
7471 * meet load balance goals by pulling other tasks on src_cpu.
7473 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7474 * already computed one in current iteration.
7476 if (env
->idle
== CPU_NEWLY_IDLE
|| (env
->flags
& LBF_DST_PINNED
))
7479 /* Prevent to re-select dst_cpu via env's CPUs: */
7480 for_each_cpu_and(cpu
, env
->dst_grpmask
, env
->cpus
) {
7481 if (cpumask_test_cpu(cpu
, p
->cpus_ptr
)) {
7482 env
->flags
|= LBF_DST_PINNED
;
7483 env
->new_dst_cpu
= cpu
;
7491 /* Record that we found atleast one task that could run on dst_cpu */
7492 env
->flags
&= ~LBF_ALL_PINNED
;
7494 if (task_running(env
->src_rq
, p
)) {
7495 schedstat_inc(p
->se
.statistics
.nr_failed_migrations_running
);
7500 * Aggressive migration if:
7501 * 1) destination numa is preferred
7502 * 2) task is cache cold, or
7503 * 3) too many balance attempts have failed.
7505 tsk_cache_hot
= migrate_degrades_locality(p
, env
);
7506 if (tsk_cache_hot
== -1)
7507 tsk_cache_hot
= task_hot(p
, env
);
7509 if (tsk_cache_hot
<= 0 ||
7510 env
->sd
->nr_balance_failed
> env
->sd
->cache_nice_tries
) {
7511 if (tsk_cache_hot
== 1) {
7512 schedstat_inc(env
->sd
->lb_hot_gained
[env
->idle
]);
7513 schedstat_inc(p
->se
.statistics
.nr_forced_migrations
);
7518 schedstat_inc(p
->se
.statistics
.nr_failed_migrations_hot
);
7523 * detach_task() -- detach the task for the migration specified in env
7525 static void detach_task(struct task_struct
*p
, struct lb_env
*env
)
7527 lockdep_assert_held(&env
->src_rq
->lock
);
7529 deactivate_task(env
->src_rq
, p
, DEQUEUE_NOCLOCK
);
7530 set_task_cpu(p
, env
->dst_cpu
);
7534 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7535 * part of active balancing operations within "domain".
7537 * Returns a task if successful and NULL otherwise.
7539 static struct task_struct
*detach_one_task(struct lb_env
*env
)
7541 struct task_struct
*p
;
7543 lockdep_assert_held(&env
->src_rq
->lock
);
7545 list_for_each_entry_reverse(p
,
7546 &env
->src_rq
->cfs_tasks
, se
.group_node
) {
7547 if (!can_migrate_task(p
, env
))
7550 detach_task(p
, env
);
7553 * Right now, this is only the second place where
7554 * lb_gained[env->idle] is updated (other is detach_tasks)
7555 * so we can safely collect stats here rather than
7556 * inside detach_tasks().
7558 schedstat_inc(env
->sd
->lb_gained
[env
->idle
]);
7564 static const unsigned int sched_nr_migrate_break
= 32;
7567 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
7568 * busiest_rq, as part of a balancing operation within domain "sd".
7570 * Returns number of detached tasks if successful and 0 otherwise.
7572 static int detach_tasks(struct lb_env
*env
)
7574 struct list_head
*tasks
= &env
->src_rq
->cfs_tasks
;
7575 unsigned long util
, load
;
7576 struct task_struct
*p
;
7579 lockdep_assert_held(&env
->src_rq
->lock
);
7581 if (env
->imbalance
<= 0)
7584 while (!list_empty(tasks
)) {
7586 * We don't want to steal all, otherwise we may be treated likewise,
7587 * which could at worst lead to a livelock crash.
7589 if (env
->idle
!= CPU_NOT_IDLE
&& env
->src_rq
->nr_running
<= 1)
7592 p
= list_last_entry(tasks
, struct task_struct
, se
.group_node
);
7595 /* We've more or less seen every task there is, call it quits */
7596 if (env
->loop
> env
->loop_max
)
7599 /* take a breather every nr_migrate tasks */
7600 if (env
->loop
> env
->loop_break
) {
7601 env
->loop_break
+= sched_nr_migrate_break
;
7602 env
->flags
|= LBF_NEED_BREAK
;
7606 if (!can_migrate_task(p
, env
))
7609 switch (env
->migration_type
) {
7611 load
= task_h_load(p
);
7613 if (sched_feat(LB_MIN
) &&
7614 load
< 16 && !env
->sd
->nr_balance_failed
)
7618 * Make sure that we don't migrate too much load.
7619 * Nevertheless, let relax the constraint if
7620 * scheduler fails to find a good waiting task to
7623 if (load
/2 > env
->imbalance
&&
7624 env
->sd
->nr_balance_failed
<= env
->sd
->cache_nice_tries
)
7627 env
->imbalance
-= load
;
7631 util
= task_util_est(p
);
7633 if (util
> env
->imbalance
)
7636 env
->imbalance
-= util
;
7643 case migrate_misfit
:
7644 /* This is not a misfit task */
7645 if (task_fits_capacity(p
, capacity_of(env
->src_cpu
)))
7652 detach_task(p
, env
);
7653 list_add(&p
->se
.group_node
, &env
->tasks
);
7657 #ifdef CONFIG_PREEMPTION
7659 * NEWIDLE balancing is a source of latency, so preemptible
7660 * kernels will stop after the first task is detached to minimize
7661 * the critical section.
7663 if (env
->idle
== CPU_NEWLY_IDLE
)
7668 * We only want to steal up to the prescribed amount of
7671 if (env
->imbalance
<= 0)
7676 list_move(&p
->se
.group_node
, tasks
);
7680 * Right now, this is one of only two places we collect this stat
7681 * so we can safely collect detach_one_task() stats here rather
7682 * than inside detach_one_task().
7684 schedstat_add(env
->sd
->lb_gained
[env
->idle
], detached
);
7690 * attach_task() -- attach the task detached by detach_task() to its new rq.
7692 static void attach_task(struct rq
*rq
, struct task_struct
*p
)
7694 lockdep_assert_held(&rq
->lock
);
7696 BUG_ON(task_rq(p
) != rq
);
7697 activate_task(rq
, p
, ENQUEUE_NOCLOCK
);
7698 check_preempt_curr(rq
, p
, 0);
7702 * attach_one_task() -- attaches the task returned from detach_one_task() to
7705 static void attach_one_task(struct rq
*rq
, struct task_struct
*p
)
7710 update_rq_clock(rq
);
7716 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7719 static void attach_tasks(struct lb_env
*env
)
7721 struct list_head
*tasks
= &env
->tasks
;
7722 struct task_struct
*p
;
7725 rq_lock(env
->dst_rq
, &rf
);
7726 update_rq_clock(env
->dst_rq
);
7728 while (!list_empty(tasks
)) {
7729 p
= list_first_entry(tasks
, struct task_struct
, se
.group_node
);
7730 list_del_init(&p
->se
.group_node
);
7732 attach_task(env
->dst_rq
, p
);
7735 rq_unlock(env
->dst_rq
, &rf
);
7738 #ifdef CONFIG_NO_HZ_COMMON
7739 static inline bool cfs_rq_has_blocked(struct cfs_rq
*cfs_rq
)
7741 if (cfs_rq
->avg
.load_avg
)
7744 if (cfs_rq
->avg
.util_avg
)
7750 static inline bool others_have_blocked(struct rq
*rq
)
7752 if (READ_ONCE(rq
->avg_rt
.util_avg
))
7755 if (READ_ONCE(rq
->avg_dl
.util_avg
))
7758 if (thermal_load_avg(rq
))
7761 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
7762 if (READ_ONCE(rq
->avg_irq
.util_avg
))
7769 static inline void update_blocked_load_status(struct rq
*rq
, bool has_blocked
)
7771 rq
->last_blocked_load_update_tick
= jiffies
;
7774 rq
->has_blocked_load
= 0;
7777 static inline bool cfs_rq_has_blocked(struct cfs_rq
*cfs_rq
) { return false; }
7778 static inline bool others_have_blocked(struct rq
*rq
) { return false; }
7779 static inline void update_blocked_load_status(struct rq
*rq
, bool has_blocked
) {}
7782 static bool __update_blocked_others(struct rq
*rq
, bool *done
)
7784 const struct sched_class
*curr_class
;
7785 u64 now
= rq_clock_pelt(rq
);
7786 unsigned long thermal_pressure
;
7790 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
7791 * DL and IRQ signals have been updated before updating CFS.
7793 curr_class
= rq
->curr
->sched_class
;
7795 thermal_pressure
= arch_scale_thermal_pressure(cpu_of(rq
));
7797 decayed
= update_rt_rq_load_avg(now
, rq
, curr_class
== &rt_sched_class
) |
7798 update_dl_rq_load_avg(now
, rq
, curr_class
== &dl_sched_class
) |
7799 update_thermal_load_avg(rq_clock_thermal(rq
), rq
, thermal_pressure
) |
7800 update_irq_load_avg(rq
, 0);
7802 if (others_have_blocked(rq
))
7808 #ifdef CONFIG_FAIR_GROUP_SCHED
7810 static inline bool cfs_rq_is_decayed(struct cfs_rq
*cfs_rq
)
7812 if (cfs_rq
->load
.weight
)
7815 if (cfs_rq
->avg
.load_sum
)
7818 if (cfs_rq
->avg
.util_sum
)
7821 if (cfs_rq
->avg
.runnable_sum
)
7827 static bool __update_blocked_fair(struct rq
*rq
, bool *done
)
7829 struct cfs_rq
*cfs_rq
, *pos
;
7830 bool decayed
= false;
7831 int cpu
= cpu_of(rq
);
7834 * Iterates the task_group tree in a bottom up fashion, see
7835 * list_add_leaf_cfs_rq() for details.
7837 for_each_leaf_cfs_rq_safe(rq
, cfs_rq
, pos
) {
7838 struct sched_entity
*se
;
7840 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq
), cfs_rq
)) {
7841 update_tg_load_avg(cfs_rq
, 0);
7843 if (cfs_rq
== &rq
->cfs
)
7847 /* Propagate pending load changes to the parent, if any: */
7848 se
= cfs_rq
->tg
->se
[cpu
];
7849 if (se
&& !skip_blocked_update(se
))
7850 update_load_avg(cfs_rq_of(se
), se
, 0);
7853 * There can be a lot of idle CPU cgroups. Don't let fully
7854 * decayed cfs_rqs linger on the list.
7856 if (cfs_rq_is_decayed(cfs_rq
))
7857 list_del_leaf_cfs_rq(cfs_rq
);
7859 /* Don't need periodic decay once load/util_avg are null */
7860 if (cfs_rq_has_blocked(cfs_rq
))
7868 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7869 * This needs to be done in a top-down fashion because the load of a child
7870 * group is a fraction of its parents load.
7872 static void update_cfs_rq_h_load(struct cfs_rq
*cfs_rq
)
7874 struct rq
*rq
= rq_of(cfs_rq
);
7875 struct sched_entity
*se
= cfs_rq
->tg
->se
[cpu_of(rq
)];
7876 unsigned long now
= jiffies
;
7879 if (cfs_rq
->last_h_load_update
== now
)
7882 WRITE_ONCE(cfs_rq
->h_load_next
, NULL
);
7883 for_each_sched_entity(se
) {
7884 cfs_rq
= cfs_rq_of(se
);
7885 WRITE_ONCE(cfs_rq
->h_load_next
, se
);
7886 if (cfs_rq
->last_h_load_update
== now
)
7891 cfs_rq
->h_load
= cfs_rq_load_avg(cfs_rq
);
7892 cfs_rq
->last_h_load_update
= now
;
7895 while ((se
= READ_ONCE(cfs_rq
->h_load_next
)) != NULL
) {
7896 load
= cfs_rq
->h_load
;
7897 load
= div64_ul(load
* se
->avg
.load_avg
,
7898 cfs_rq_load_avg(cfs_rq
) + 1);
7899 cfs_rq
= group_cfs_rq(se
);
7900 cfs_rq
->h_load
= load
;
7901 cfs_rq
->last_h_load_update
= now
;
7905 static unsigned long task_h_load(struct task_struct
*p
)
7907 struct cfs_rq
*cfs_rq
= task_cfs_rq(p
);
7909 update_cfs_rq_h_load(cfs_rq
);
7910 return div64_ul(p
->se
.avg
.load_avg
* cfs_rq
->h_load
,
7911 cfs_rq_load_avg(cfs_rq
) + 1);
7914 static bool __update_blocked_fair(struct rq
*rq
, bool *done
)
7916 struct cfs_rq
*cfs_rq
= &rq
->cfs
;
7919 decayed
= update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq
), cfs_rq
);
7920 if (cfs_rq_has_blocked(cfs_rq
))
7926 static unsigned long task_h_load(struct task_struct
*p
)
7928 return p
->se
.avg
.load_avg
;
7932 static void update_blocked_averages(int cpu
)
7934 bool decayed
= false, done
= true;
7935 struct rq
*rq
= cpu_rq(cpu
);
7938 rq_lock_irqsave(rq
, &rf
);
7939 update_rq_clock(rq
);
7941 decayed
|= __update_blocked_others(rq
, &done
);
7942 decayed
|= __update_blocked_fair(rq
, &done
);
7944 update_blocked_load_status(rq
, !done
);
7946 cpufreq_update_util(rq
, 0);
7947 rq_unlock_irqrestore(rq
, &rf
);
7950 /********** Helpers for find_busiest_group ************************/
7953 * sg_lb_stats - stats of a sched_group required for load_balancing
7955 struct sg_lb_stats
{
7956 unsigned long avg_load
; /*Avg load across the CPUs of the group */
7957 unsigned long group_load
; /* Total load over the CPUs of the group */
7958 unsigned long group_capacity
;
7959 unsigned long group_util
; /* Total utilization over the CPUs of the group */
7960 unsigned long group_runnable
; /* Total runnable time over the CPUs of the group */
7961 unsigned int sum_nr_running
; /* Nr of tasks running in the group */
7962 unsigned int sum_h_nr_running
; /* Nr of CFS tasks running in the group */
7963 unsigned int idle_cpus
;
7964 unsigned int group_weight
;
7965 enum group_type group_type
;
7966 unsigned int group_asym_packing
; /* Tasks should be moved to preferred CPU */
7967 unsigned long group_misfit_task_load
; /* A CPU has a task too big for its capacity */
7968 #ifdef CONFIG_NUMA_BALANCING
7969 unsigned int nr_numa_running
;
7970 unsigned int nr_preferred_running
;
7975 * sd_lb_stats - Structure to store the statistics of a sched_domain
7976 * during load balancing.
7978 struct sd_lb_stats
{
7979 struct sched_group
*busiest
; /* Busiest group in this sd */
7980 struct sched_group
*local
; /* Local group in this sd */
7981 unsigned long total_load
; /* Total load of all groups in sd */
7982 unsigned long total_capacity
; /* Total capacity of all groups in sd */
7983 unsigned long avg_load
; /* Average load across all groups in sd */
7984 unsigned int prefer_sibling
; /* tasks should go to sibling first */
7986 struct sg_lb_stats busiest_stat
;/* Statistics of the busiest group */
7987 struct sg_lb_stats local_stat
; /* Statistics of the local group */
7990 static inline void init_sd_lb_stats(struct sd_lb_stats
*sds
)
7993 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7994 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7995 * We must however set busiest_stat::group_type and
7996 * busiest_stat::idle_cpus to the worst busiest group because
7997 * update_sd_pick_busiest() reads these before assignment.
7999 *sds
= (struct sd_lb_stats
){
8003 .total_capacity
= 0UL,
8005 .idle_cpus
= UINT_MAX
,
8006 .group_type
= group_has_spare
,
8011 static unsigned long scale_rt_capacity(struct sched_domain
*sd
, int cpu
)
8013 struct rq
*rq
= cpu_rq(cpu
);
8014 unsigned long max
= arch_scale_cpu_capacity(cpu
);
8015 unsigned long used
, free
;
8018 irq
= cpu_util_irq(rq
);
8020 if (unlikely(irq
>= max
))
8024 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8025 * (running and not running) with weights 0 and 1024 respectively.
8026 * avg_thermal.load_avg tracks thermal pressure and the weighted
8027 * average uses the actual delta max capacity(load).
8029 used
= READ_ONCE(rq
->avg_rt
.util_avg
);
8030 used
+= READ_ONCE(rq
->avg_dl
.util_avg
);
8031 used
+= thermal_load_avg(rq
);
8033 if (unlikely(used
>= max
))
8038 return scale_irq_capacity(free
, irq
, max
);
8041 static void update_cpu_capacity(struct sched_domain
*sd
, int cpu
)
8043 unsigned long capacity
= scale_rt_capacity(sd
, cpu
);
8044 struct sched_group
*sdg
= sd
->groups
;
8046 cpu_rq(cpu
)->cpu_capacity_orig
= arch_scale_cpu_capacity(cpu
);
8051 cpu_rq(cpu
)->cpu_capacity
= capacity
;
8052 sdg
->sgc
->capacity
= capacity
;
8053 sdg
->sgc
->min_capacity
= capacity
;
8054 sdg
->sgc
->max_capacity
= capacity
;
8057 void update_group_capacity(struct sched_domain
*sd
, int cpu
)
8059 struct sched_domain
*child
= sd
->child
;
8060 struct sched_group
*group
, *sdg
= sd
->groups
;
8061 unsigned long capacity
, min_capacity
, max_capacity
;
8062 unsigned long interval
;
8064 interval
= msecs_to_jiffies(sd
->balance_interval
);
8065 interval
= clamp(interval
, 1UL, max_load_balance_interval
);
8066 sdg
->sgc
->next_update
= jiffies
+ interval
;
8069 update_cpu_capacity(sd
, cpu
);
8074 min_capacity
= ULONG_MAX
;
8077 if (child
->flags
& SD_OVERLAP
) {
8079 * SD_OVERLAP domains cannot assume that child groups
8080 * span the current group.
8083 for_each_cpu(cpu
, sched_group_span(sdg
)) {
8084 unsigned long cpu_cap
= capacity_of(cpu
);
8086 capacity
+= cpu_cap
;
8087 min_capacity
= min(cpu_cap
, min_capacity
);
8088 max_capacity
= max(cpu_cap
, max_capacity
);
8092 * !SD_OVERLAP domains can assume that child groups
8093 * span the current group.
8096 group
= child
->groups
;
8098 struct sched_group_capacity
*sgc
= group
->sgc
;
8100 capacity
+= sgc
->capacity
;
8101 min_capacity
= min(sgc
->min_capacity
, min_capacity
);
8102 max_capacity
= max(sgc
->max_capacity
, max_capacity
);
8103 group
= group
->next
;
8104 } while (group
!= child
->groups
);
8107 sdg
->sgc
->capacity
= capacity
;
8108 sdg
->sgc
->min_capacity
= min_capacity
;
8109 sdg
->sgc
->max_capacity
= max_capacity
;
8113 * Check whether the capacity of the rq has been noticeably reduced by side
8114 * activity. The imbalance_pct is used for the threshold.
8115 * Return true is the capacity is reduced
8118 check_cpu_capacity(struct rq
*rq
, struct sched_domain
*sd
)
8120 return ((rq
->cpu_capacity
* sd
->imbalance_pct
) <
8121 (rq
->cpu_capacity_orig
* 100));
8125 * Check whether a rq has a misfit task and if it looks like we can actually
8126 * help that task: we can migrate the task to a CPU of higher capacity, or
8127 * the task's current CPU is heavily pressured.
8129 static inline int check_misfit_status(struct rq
*rq
, struct sched_domain
*sd
)
8131 return rq
->misfit_task_load
&&
8132 (rq
->cpu_capacity_orig
< rq
->rd
->max_cpu_capacity
||
8133 check_cpu_capacity(rq
, sd
));
8137 * Group imbalance indicates (and tries to solve) the problem where balancing
8138 * groups is inadequate due to ->cpus_ptr constraints.
8140 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8141 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8144 * { 0 1 2 3 } { 4 5 6 7 }
8147 * If we were to balance group-wise we'd place two tasks in the first group and
8148 * two tasks in the second group. Clearly this is undesired as it will overload
8149 * cpu 3 and leave one of the CPUs in the second group unused.
8151 * The current solution to this issue is detecting the skew in the first group
8152 * by noticing the lower domain failed to reach balance and had difficulty
8153 * moving tasks due to affinity constraints.
8155 * When this is so detected; this group becomes a candidate for busiest; see
8156 * update_sd_pick_busiest(). And calculate_imbalance() and
8157 * find_busiest_group() avoid some of the usual balance conditions to allow it
8158 * to create an effective group imbalance.
8160 * This is a somewhat tricky proposition since the next run might not find the
8161 * group imbalance and decide the groups need to be balanced again. A most
8162 * subtle and fragile situation.
8165 static inline int sg_imbalanced(struct sched_group
*group
)
8167 return group
->sgc
->imbalance
;
8171 * group_has_capacity returns true if the group has spare capacity that could
8172 * be used by some tasks.
8173 * We consider that a group has spare capacity if the * number of task is
8174 * smaller than the number of CPUs or if the utilization is lower than the
8175 * available capacity for CFS tasks.
8176 * For the latter, we use a threshold to stabilize the state, to take into
8177 * account the variance of the tasks' load and to return true if the available
8178 * capacity in meaningful for the load balancer.
8179 * As an example, an available capacity of 1% can appear but it doesn't make
8180 * any benefit for the load balance.
8183 group_has_capacity(unsigned int imbalance_pct
, struct sg_lb_stats
*sgs
)
8185 if (sgs
->sum_nr_running
< sgs
->group_weight
)
8188 if ((sgs
->group_capacity
* imbalance_pct
) <
8189 (sgs
->group_runnable
* 100))
8192 if ((sgs
->group_capacity
* 100) >
8193 (sgs
->group_util
* imbalance_pct
))
8200 * group_is_overloaded returns true if the group has more tasks than it can
8202 * group_is_overloaded is not equals to !group_has_capacity because a group
8203 * with the exact right number of tasks, has no more spare capacity but is not
8204 * overloaded so both group_has_capacity and group_is_overloaded return
8208 group_is_overloaded(unsigned int imbalance_pct
, struct sg_lb_stats
*sgs
)
8210 if (sgs
->sum_nr_running
<= sgs
->group_weight
)
8213 if ((sgs
->group_capacity
* 100) <
8214 (sgs
->group_util
* imbalance_pct
))
8217 if ((sgs
->group_capacity
* imbalance_pct
) <
8218 (sgs
->group_runnable
* 100))
8225 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
8226 * per-CPU capacity than sched_group ref.
8229 group_smaller_min_cpu_capacity(struct sched_group
*sg
, struct sched_group
*ref
)
8231 return fits_capacity(sg
->sgc
->min_capacity
, ref
->sgc
->min_capacity
);
8235 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
8236 * per-CPU capacity_orig than sched_group ref.
8239 group_smaller_max_cpu_capacity(struct sched_group
*sg
, struct sched_group
*ref
)
8241 return fits_capacity(sg
->sgc
->max_capacity
, ref
->sgc
->max_capacity
);
8245 group_type
group_classify(unsigned int imbalance_pct
,
8246 struct sched_group
*group
,
8247 struct sg_lb_stats
*sgs
)
8249 if (group_is_overloaded(imbalance_pct
, sgs
))
8250 return group_overloaded
;
8252 if (sg_imbalanced(group
))
8253 return group_imbalanced
;
8255 if (sgs
->group_asym_packing
)
8256 return group_asym_packing
;
8258 if (sgs
->group_misfit_task_load
)
8259 return group_misfit_task
;
8261 if (!group_has_capacity(imbalance_pct
, sgs
))
8262 return group_fully_busy
;
8264 return group_has_spare
;
8267 static bool update_nohz_stats(struct rq
*rq
, bool force
)
8269 #ifdef CONFIG_NO_HZ_COMMON
8270 unsigned int cpu
= rq
->cpu
;
8272 if (!rq
->has_blocked_load
)
8275 if (!cpumask_test_cpu(cpu
, nohz
.idle_cpus_mask
))
8278 if (!force
&& !time_after(jiffies
, rq
->last_blocked_load_update_tick
))
8281 update_blocked_averages(cpu
);
8283 return rq
->has_blocked_load
;
8290 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8291 * @env: The load balancing environment.
8292 * @group: sched_group whose statistics are to be updated.
8293 * @sgs: variable to hold the statistics for this group.
8294 * @sg_status: Holds flag indicating the status of the sched_group
8296 static inline void update_sg_lb_stats(struct lb_env
*env
,
8297 struct sched_group
*group
,
8298 struct sg_lb_stats
*sgs
,
8301 int i
, nr_running
, local_group
;
8303 memset(sgs
, 0, sizeof(*sgs
));
8305 local_group
= cpumask_test_cpu(env
->dst_cpu
, sched_group_span(group
));
8307 for_each_cpu_and(i
, sched_group_span(group
), env
->cpus
) {
8308 struct rq
*rq
= cpu_rq(i
);
8310 if ((env
->flags
& LBF_NOHZ_STATS
) && update_nohz_stats(rq
, false))
8311 env
->flags
|= LBF_NOHZ_AGAIN
;
8313 sgs
->group_load
+= cpu_load(rq
);
8314 sgs
->group_util
+= cpu_util(i
);
8315 sgs
->group_runnable
+= cpu_runnable(rq
);
8316 sgs
->sum_h_nr_running
+= rq
->cfs
.h_nr_running
;
8318 nr_running
= rq
->nr_running
;
8319 sgs
->sum_nr_running
+= nr_running
;
8322 *sg_status
|= SG_OVERLOAD
;
8324 if (cpu_overutilized(i
))
8325 *sg_status
|= SG_OVERUTILIZED
;
8327 #ifdef CONFIG_NUMA_BALANCING
8328 sgs
->nr_numa_running
+= rq
->nr_numa_running
;
8329 sgs
->nr_preferred_running
+= rq
->nr_preferred_running
;
8332 * No need to call idle_cpu() if nr_running is not 0
8334 if (!nr_running
&& idle_cpu(i
)) {
8336 /* Idle cpu can't have misfit task */
8343 /* Check for a misfit task on the cpu */
8344 if (env
->sd
->flags
& SD_ASYM_CPUCAPACITY
&&
8345 sgs
->group_misfit_task_load
< rq
->misfit_task_load
) {
8346 sgs
->group_misfit_task_load
= rq
->misfit_task_load
;
8347 *sg_status
|= SG_OVERLOAD
;
8351 /* Check if dst CPU is idle and preferred to this group */
8352 if (env
->sd
->flags
& SD_ASYM_PACKING
&&
8353 env
->idle
!= CPU_NOT_IDLE
&&
8354 sgs
->sum_h_nr_running
&&
8355 sched_asym_prefer(env
->dst_cpu
, group
->asym_prefer_cpu
)) {
8356 sgs
->group_asym_packing
= 1;
8359 sgs
->group_capacity
= group
->sgc
->capacity
;
8361 sgs
->group_weight
= group
->group_weight
;
8363 sgs
->group_type
= group_classify(env
->sd
->imbalance_pct
, group
, sgs
);
8365 /* Computing avg_load makes sense only when group is overloaded */
8366 if (sgs
->group_type
== group_overloaded
)
8367 sgs
->avg_load
= (sgs
->group_load
* SCHED_CAPACITY_SCALE
) /
8368 sgs
->group_capacity
;
8372 * update_sd_pick_busiest - return 1 on busiest group
8373 * @env: The load balancing environment.
8374 * @sds: sched_domain statistics
8375 * @sg: sched_group candidate to be checked for being the busiest
8376 * @sgs: sched_group statistics
8378 * Determine if @sg is a busier group than the previously selected
8381 * Return: %true if @sg is a busier group than the previously selected
8382 * busiest group. %false otherwise.
8384 static bool update_sd_pick_busiest(struct lb_env
*env
,
8385 struct sd_lb_stats
*sds
,
8386 struct sched_group
*sg
,
8387 struct sg_lb_stats
*sgs
)
8389 struct sg_lb_stats
*busiest
= &sds
->busiest_stat
;
8391 /* Make sure that there is at least one task to pull */
8392 if (!sgs
->sum_h_nr_running
)
8396 * Don't try to pull misfit tasks we can't help.
8397 * We can use max_capacity here as reduction in capacity on some
8398 * CPUs in the group should either be possible to resolve
8399 * internally or be covered by avg_load imbalance (eventually).
8401 if (sgs
->group_type
== group_misfit_task
&&
8402 (!group_smaller_max_cpu_capacity(sg
, sds
->local
) ||
8403 sds
->local_stat
.group_type
!= group_has_spare
))
8406 if (sgs
->group_type
> busiest
->group_type
)
8409 if (sgs
->group_type
< busiest
->group_type
)
8413 * The candidate and the current busiest group are the same type of
8414 * group. Let check which one is the busiest according to the type.
8417 switch (sgs
->group_type
) {
8418 case group_overloaded
:
8419 /* Select the overloaded group with highest avg_load. */
8420 if (sgs
->avg_load
<= busiest
->avg_load
)
8424 case group_imbalanced
:
8426 * Select the 1st imbalanced group as we don't have any way to
8427 * choose one more than another.
8431 case group_asym_packing
:
8432 /* Prefer to move from lowest priority CPU's work */
8433 if (sched_asym_prefer(sg
->asym_prefer_cpu
, sds
->busiest
->asym_prefer_cpu
))
8437 case group_misfit_task
:
8439 * If we have more than one misfit sg go with the biggest
8442 if (sgs
->group_misfit_task_load
< busiest
->group_misfit_task_load
)
8446 case group_fully_busy
:
8448 * Select the fully busy group with highest avg_load. In
8449 * theory, there is no need to pull task from such kind of
8450 * group because tasks have all compute capacity that they need
8451 * but we can still improve the overall throughput by reducing
8452 * contention when accessing shared HW resources.
8454 * XXX for now avg_load is not computed and always 0 so we
8455 * select the 1st one.
8457 if (sgs
->avg_load
<= busiest
->avg_load
)
8461 case group_has_spare
:
8463 * Select not overloaded group with lowest number of idle cpus
8464 * and highest number of running tasks. We could also compare
8465 * the spare capacity which is more stable but it can end up
8466 * that the group has less spare capacity but finally more idle
8467 * CPUs which means less opportunity to pull tasks.
8469 if (sgs
->idle_cpus
> busiest
->idle_cpus
)
8471 else if ((sgs
->idle_cpus
== busiest
->idle_cpus
) &&
8472 (sgs
->sum_nr_running
<= busiest
->sum_nr_running
))
8479 * Candidate sg has no more than one task per CPU and has higher
8480 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8481 * throughput. Maximize throughput, power/energy consequences are not
8484 if ((env
->sd
->flags
& SD_ASYM_CPUCAPACITY
) &&
8485 (sgs
->group_type
<= group_fully_busy
) &&
8486 (group_smaller_min_cpu_capacity(sds
->local
, sg
)))
8492 #ifdef CONFIG_NUMA_BALANCING
8493 static inline enum fbq_type
fbq_classify_group(struct sg_lb_stats
*sgs
)
8495 if (sgs
->sum_h_nr_running
> sgs
->nr_numa_running
)
8497 if (sgs
->sum_h_nr_running
> sgs
->nr_preferred_running
)
8502 static inline enum fbq_type
fbq_classify_rq(struct rq
*rq
)
8504 if (rq
->nr_running
> rq
->nr_numa_running
)
8506 if (rq
->nr_running
> rq
->nr_preferred_running
)
8511 static inline enum fbq_type
fbq_classify_group(struct sg_lb_stats
*sgs
)
8516 static inline enum fbq_type
fbq_classify_rq(struct rq
*rq
)
8520 #endif /* CONFIG_NUMA_BALANCING */
8526 * task_running_on_cpu - return 1 if @p is running on @cpu.
8529 static unsigned int task_running_on_cpu(int cpu
, struct task_struct
*p
)
8531 /* Task has no contribution or is new */
8532 if (cpu
!= task_cpu(p
) || !READ_ONCE(p
->se
.avg
.last_update_time
))
8535 if (task_on_rq_queued(p
))
8542 * idle_cpu_without - would a given CPU be idle without p ?
8543 * @cpu: the processor on which idleness is tested.
8544 * @p: task which should be ignored.
8546 * Return: 1 if the CPU would be idle. 0 otherwise.
8548 static int idle_cpu_without(int cpu
, struct task_struct
*p
)
8550 struct rq
*rq
= cpu_rq(cpu
);
8552 if (rq
->curr
!= rq
->idle
&& rq
->curr
!= p
)
8556 * rq->nr_running can't be used but an updated version without the
8557 * impact of p on cpu must be used instead. The updated nr_running
8558 * be computed and tested before calling idle_cpu_without().
8562 if (!llist_empty(&rq
->wake_list
))
8570 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
8571 * @sd: The sched_domain level to look for idlest group.
8572 * @group: sched_group whose statistics are to be updated.
8573 * @sgs: variable to hold the statistics for this group.
8574 * @p: The task for which we look for the idlest group/CPU.
8576 static inline void update_sg_wakeup_stats(struct sched_domain
*sd
,
8577 struct sched_group
*group
,
8578 struct sg_lb_stats
*sgs
,
8579 struct task_struct
*p
)
8583 memset(sgs
, 0, sizeof(*sgs
));
8585 for_each_cpu(i
, sched_group_span(group
)) {
8586 struct rq
*rq
= cpu_rq(i
);
8589 sgs
->group_load
+= cpu_load_without(rq
, p
);
8590 sgs
->group_util
+= cpu_util_without(i
, p
);
8591 sgs
->group_runnable
+= cpu_runnable_without(rq
, p
);
8592 local
= task_running_on_cpu(i
, p
);
8593 sgs
->sum_h_nr_running
+= rq
->cfs
.h_nr_running
- local
;
8595 nr_running
= rq
->nr_running
- local
;
8596 sgs
->sum_nr_running
+= nr_running
;
8599 * No need to call idle_cpu_without() if nr_running is not 0
8601 if (!nr_running
&& idle_cpu_without(i
, p
))
8606 /* Check if task fits in the group */
8607 if (sd
->flags
& SD_ASYM_CPUCAPACITY
&&
8608 !task_fits_capacity(p
, group
->sgc
->max_capacity
)) {
8609 sgs
->group_misfit_task_load
= 1;
8612 sgs
->group_capacity
= group
->sgc
->capacity
;
8614 sgs
->group_weight
= group
->group_weight
;
8616 sgs
->group_type
= group_classify(sd
->imbalance_pct
, group
, sgs
);
8619 * Computing avg_load makes sense only when group is fully busy or
8622 if (sgs
->group_type
== group_fully_busy
||
8623 sgs
->group_type
== group_overloaded
)
8624 sgs
->avg_load
= (sgs
->group_load
* SCHED_CAPACITY_SCALE
) /
8625 sgs
->group_capacity
;
8628 static bool update_pick_idlest(struct sched_group
*idlest
,
8629 struct sg_lb_stats
*idlest_sgs
,
8630 struct sched_group
*group
,
8631 struct sg_lb_stats
*sgs
)
8633 if (sgs
->group_type
< idlest_sgs
->group_type
)
8636 if (sgs
->group_type
> idlest_sgs
->group_type
)
8640 * The candidate and the current idlest group are the same type of
8641 * group. Let check which one is the idlest according to the type.
8644 switch (sgs
->group_type
) {
8645 case group_overloaded
:
8646 case group_fully_busy
:
8647 /* Select the group with lowest avg_load. */
8648 if (idlest_sgs
->avg_load
<= sgs
->avg_load
)
8652 case group_imbalanced
:
8653 case group_asym_packing
:
8654 /* Those types are not used in the slow wakeup path */
8657 case group_misfit_task
:
8658 /* Select group with the highest max capacity */
8659 if (idlest
->sgc
->max_capacity
>= group
->sgc
->max_capacity
)
8663 case group_has_spare
:
8664 /* Select group with most idle CPUs */
8665 if (idlest_sgs
->idle_cpus
>= sgs
->idle_cpus
)
8674 * find_idlest_group() finds and returns the least busy CPU group within the
8677 * Assumes p is allowed on at least one CPU in sd.
8679 static struct sched_group
*
8680 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
,
8681 int this_cpu
, int sd_flag
)
8683 struct sched_group
*idlest
= NULL
, *local
= NULL
, *group
= sd
->groups
;
8684 struct sg_lb_stats local_sgs
, tmp_sgs
;
8685 struct sg_lb_stats
*sgs
;
8686 unsigned long imbalance
;
8687 struct sg_lb_stats idlest_sgs
= {
8688 .avg_load
= UINT_MAX
,
8689 .group_type
= group_overloaded
,
8692 imbalance
= scale_load_down(NICE_0_LOAD
) *
8693 (sd
->imbalance_pct
-100) / 100;
8698 /* Skip over this group if it has no CPUs allowed */
8699 if (!cpumask_intersects(sched_group_span(group
),
8703 local_group
= cpumask_test_cpu(this_cpu
,
8704 sched_group_span(group
));
8713 update_sg_wakeup_stats(sd
, group
, sgs
, p
);
8715 if (!local_group
&& update_pick_idlest(idlest
, &idlest_sgs
, group
, sgs
)) {
8720 } while (group
= group
->next
, group
!= sd
->groups
);
8723 /* There is no idlest group to push tasks to */
8727 /* The local group has been skipped because of CPU affinity */
8732 * If the local group is idler than the selected idlest group
8733 * don't try and push the task.
8735 if (local_sgs
.group_type
< idlest_sgs
.group_type
)
8739 * If the local group is busier than the selected idlest group
8740 * try and push the task.
8742 if (local_sgs
.group_type
> idlest_sgs
.group_type
)
8745 switch (local_sgs
.group_type
) {
8746 case group_overloaded
:
8747 case group_fully_busy
:
8749 * When comparing groups across NUMA domains, it's possible for
8750 * the local domain to be very lightly loaded relative to the
8751 * remote domains but "imbalance" skews the comparison making
8752 * remote CPUs look much more favourable. When considering
8753 * cross-domain, add imbalance to the load on the remote node
8754 * and consider staying local.
8757 if ((sd
->flags
& SD_NUMA
) &&
8758 ((idlest_sgs
.avg_load
+ imbalance
) >= local_sgs
.avg_load
))
8762 * If the local group is less loaded than the selected
8763 * idlest group don't try and push any tasks.
8765 if (idlest_sgs
.avg_load
>= (local_sgs
.avg_load
+ imbalance
))
8768 if (100 * local_sgs
.avg_load
<= sd
->imbalance_pct
* idlest_sgs
.avg_load
)
8772 case group_imbalanced
:
8773 case group_asym_packing
:
8774 /* Those type are not used in the slow wakeup path */
8777 case group_misfit_task
:
8778 /* Select group with the highest max capacity */
8779 if (local
->sgc
->max_capacity
>= idlest
->sgc
->max_capacity
)
8783 case group_has_spare
:
8784 if (sd
->flags
& SD_NUMA
) {
8785 #ifdef CONFIG_NUMA_BALANCING
8788 * If there is spare capacity at NUMA, try to select
8789 * the preferred node
8791 if (cpu_to_node(this_cpu
) == p
->numa_preferred_nid
)
8794 idlest_cpu
= cpumask_first(sched_group_span(idlest
));
8795 if (cpu_to_node(idlest_cpu
) == p
->numa_preferred_nid
)
8799 * Otherwise, keep the task on this node to stay close
8800 * its wakeup source and improve locality. If there is
8801 * a real need of migration, periodic load balance will
8804 if (local_sgs
.idle_cpus
)
8809 * Select group with highest number of idle CPUs. We could also
8810 * compare the utilization which is more stable but it can end
8811 * up that the group has less spare capacity but finally more
8812 * idle CPUs which means more opportunity to run task.
8814 if (local_sgs
.idle_cpus
>= idlest_sgs
.idle_cpus
)
8823 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8824 * @env: The load balancing environment.
8825 * @sds: variable to hold the statistics for this sched_domain.
8828 static inline void update_sd_lb_stats(struct lb_env
*env
, struct sd_lb_stats
*sds
)
8830 struct sched_domain
*child
= env
->sd
->child
;
8831 struct sched_group
*sg
= env
->sd
->groups
;
8832 struct sg_lb_stats
*local
= &sds
->local_stat
;
8833 struct sg_lb_stats tmp_sgs
;
8836 #ifdef CONFIG_NO_HZ_COMMON
8837 if (env
->idle
== CPU_NEWLY_IDLE
&& READ_ONCE(nohz
.has_blocked
))
8838 env
->flags
|= LBF_NOHZ_STATS
;
8842 struct sg_lb_stats
*sgs
= &tmp_sgs
;
8845 local_group
= cpumask_test_cpu(env
->dst_cpu
, sched_group_span(sg
));
8850 if (env
->idle
!= CPU_NEWLY_IDLE
||
8851 time_after_eq(jiffies
, sg
->sgc
->next_update
))
8852 update_group_capacity(env
->sd
, env
->dst_cpu
);
8855 update_sg_lb_stats(env
, sg
, sgs
, &sg_status
);
8861 if (update_sd_pick_busiest(env
, sds
, sg
, sgs
)) {
8863 sds
->busiest_stat
= *sgs
;
8867 /* Now, start updating sd_lb_stats */
8868 sds
->total_load
+= sgs
->group_load
;
8869 sds
->total_capacity
+= sgs
->group_capacity
;
8872 } while (sg
!= env
->sd
->groups
);
8874 /* Tag domain that child domain prefers tasks go to siblings first */
8875 sds
->prefer_sibling
= child
&& child
->flags
& SD_PREFER_SIBLING
;
8877 #ifdef CONFIG_NO_HZ_COMMON
8878 if ((env
->flags
& LBF_NOHZ_AGAIN
) &&
8879 cpumask_subset(nohz
.idle_cpus_mask
, sched_domain_span(env
->sd
))) {
8881 WRITE_ONCE(nohz
.next_blocked
,
8882 jiffies
+ msecs_to_jiffies(LOAD_AVG_PERIOD
));
8886 if (env
->sd
->flags
& SD_NUMA
)
8887 env
->fbq_type
= fbq_classify_group(&sds
->busiest_stat
);
8889 if (!env
->sd
->parent
) {
8890 struct root_domain
*rd
= env
->dst_rq
->rd
;
8892 /* update overload indicator if we are at root domain */
8893 WRITE_ONCE(rd
->overload
, sg_status
& SG_OVERLOAD
);
8895 /* Update over-utilization (tipping point, U >= 0) indicator */
8896 WRITE_ONCE(rd
->overutilized
, sg_status
& SG_OVERUTILIZED
);
8897 trace_sched_overutilized_tp(rd
, sg_status
& SG_OVERUTILIZED
);
8898 } else if (sg_status
& SG_OVERUTILIZED
) {
8899 struct root_domain
*rd
= env
->dst_rq
->rd
;
8901 WRITE_ONCE(rd
->overutilized
, SG_OVERUTILIZED
);
8902 trace_sched_overutilized_tp(rd
, SG_OVERUTILIZED
);
8906 static inline long adjust_numa_imbalance(int imbalance
, int src_nr_running
)
8908 unsigned int imbalance_min
;
8911 * Allow a small imbalance based on a simple pair of communicating
8912 * tasks that remain local when the source domain is almost idle.
8915 if (src_nr_running
<= imbalance_min
)
8922 * calculate_imbalance - Calculate the amount of imbalance present within the
8923 * groups of a given sched_domain during load balance.
8924 * @env: load balance environment
8925 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
8927 static inline void calculate_imbalance(struct lb_env
*env
, struct sd_lb_stats
*sds
)
8929 struct sg_lb_stats
*local
, *busiest
;
8931 local
= &sds
->local_stat
;
8932 busiest
= &sds
->busiest_stat
;
8934 if (busiest
->group_type
== group_misfit_task
) {
8935 /* Set imbalance to allow misfit tasks to be balanced. */
8936 env
->migration_type
= migrate_misfit
;
8941 if (busiest
->group_type
== group_asym_packing
) {
8943 * In case of asym capacity, we will try to migrate all load to
8944 * the preferred CPU.
8946 env
->migration_type
= migrate_task
;
8947 env
->imbalance
= busiest
->sum_h_nr_running
;
8951 if (busiest
->group_type
== group_imbalanced
) {
8953 * In the group_imb case we cannot rely on group-wide averages
8954 * to ensure CPU-load equilibrium, try to move any task to fix
8955 * the imbalance. The next load balance will take care of
8956 * balancing back the system.
8958 env
->migration_type
= migrate_task
;
8964 * Try to use spare capacity of local group without overloading it or
8967 if (local
->group_type
== group_has_spare
) {
8968 if (busiest
->group_type
> group_fully_busy
) {
8970 * If busiest is overloaded, try to fill spare
8971 * capacity. This might end up creating spare capacity
8972 * in busiest or busiest still being overloaded but
8973 * there is no simple way to directly compute the
8974 * amount of load to migrate in order to balance the
8977 env
->migration_type
= migrate_util
;
8978 env
->imbalance
= max(local
->group_capacity
, local
->group_util
) -
8982 * In some cases, the group's utilization is max or even
8983 * higher than capacity because of migrations but the
8984 * local CPU is (newly) idle. There is at least one
8985 * waiting task in this overloaded busiest group. Let's
8988 if (env
->idle
!= CPU_NOT_IDLE
&& env
->imbalance
== 0) {
8989 env
->migration_type
= migrate_task
;
8996 if (busiest
->group_weight
== 1 || sds
->prefer_sibling
) {
8997 unsigned int nr_diff
= busiest
->sum_nr_running
;
8999 * When prefer sibling, evenly spread running tasks on
9002 env
->migration_type
= migrate_task
;
9003 lsub_positive(&nr_diff
, local
->sum_nr_running
);
9004 env
->imbalance
= nr_diff
>> 1;
9008 * If there is no overload, we just want to even the number of
9011 env
->migration_type
= migrate_task
;
9012 env
->imbalance
= max_t(long, 0, (local
->idle_cpus
-
9013 busiest
->idle_cpus
) >> 1);
9016 /* Consider allowing a small imbalance between NUMA groups */
9017 if (env
->sd
->flags
& SD_NUMA
)
9018 env
->imbalance
= adjust_numa_imbalance(env
->imbalance
,
9019 busiest
->sum_nr_running
);
9025 * Local is fully busy but has to take more load to relieve the
9028 if (local
->group_type
< group_overloaded
) {
9030 * Local will become overloaded so the avg_load metrics are
9034 local
->avg_load
= (local
->group_load
* SCHED_CAPACITY_SCALE
) /
9035 local
->group_capacity
;
9037 sds
->avg_load
= (sds
->total_load
* SCHED_CAPACITY_SCALE
) /
9038 sds
->total_capacity
;
9040 * If the local group is more loaded than the selected
9041 * busiest group don't try to pull any tasks.
9043 if (local
->avg_load
>= busiest
->avg_load
) {
9050 * Both group are or will become overloaded and we're trying to get all
9051 * the CPUs to the average_load, so we don't want to push ourselves
9052 * above the average load, nor do we wish to reduce the max loaded CPU
9053 * below the average load. At the same time, we also don't want to
9054 * reduce the group load below the group capacity. Thus we look for
9055 * the minimum possible imbalance.
9057 env
->migration_type
= migrate_load
;
9058 env
->imbalance
= min(
9059 (busiest
->avg_load
- sds
->avg_load
) * busiest
->group_capacity
,
9060 (sds
->avg_load
- local
->avg_load
) * local
->group_capacity
9061 ) / SCHED_CAPACITY_SCALE
;
9064 /******* find_busiest_group() helpers end here *********************/
9067 * Decision matrix according to the local and busiest group type:
9069 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9070 * has_spare nr_idle balanced N/A N/A balanced balanced
9071 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
9072 * misfit_task force N/A N/A N/A force force
9073 * asym_packing force force N/A N/A force force
9074 * imbalanced force force N/A N/A force force
9075 * overloaded force force N/A N/A force avg_load
9077 * N/A : Not Applicable because already filtered while updating
9079 * balanced : The system is balanced for these 2 groups.
9080 * force : Calculate the imbalance as load migration is probably needed.
9081 * avg_load : Only if imbalance is significant enough.
9082 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
9083 * different in groups.
9087 * find_busiest_group - Returns the busiest group within the sched_domain
9088 * if there is an imbalance.
9090 * Also calculates the amount of runnable load which should be moved
9091 * to restore balance.
9093 * @env: The load balancing environment.
9095 * Return: - The busiest group if imbalance exists.
9097 static struct sched_group
*find_busiest_group(struct lb_env
*env
)
9099 struct sg_lb_stats
*local
, *busiest
;
9100 struct sd_lb_stats sds
;
9102 init_sd_lb_stats(&sds
);
9105 * Compute the various statistics relevant for load balancing at
9108 update_sd_lb_stats(env
, &sds
);
9110 if (sched_energy_enabled()) {
9111 struct root_domain
*rd
= env
->dst_rq
->rd
;
9113 if (rcu_dereference(rd
->pd
) && !READ_ONCE(rd
->overutilized
))
9117 local
= &sds
.local_stat
;
9118 busiest
= &sds
.busiest_stat
;
9120 /* There is no busy sibling group to pull tasks from */
9124 /* Misfit tasks should be dealt with regardless of the avg load */
9125 if (busiest
->group_type
== group_misfit_task
)
9128 /* ASYM feature bypasses nice load balance check */
9129 if (busiest
->group_type
== group_asym_packing
)
9133 * If the busiest group is imbalanced the below checks don't
9134 * work because they assume all things are equal, which typically
9135 * isn't true due to cpus_ptr constraints and the like.
9137 if (busiest
->group_type
== group_imbalanced
)
9141 * If the local group is busier than the selected busiest group
9142 * don't try and pull any tasks.
9144 if (local
->group_type
> busiest
->group_type
)
9148 * When groups are overloaded, use the avg_load to ensure fairness
9151 if (local
->group_type
== group_overloaded
) {
9153 * If the local group is more loaded than the selected
9154 * busiest group don't try to pull any tasks.
9156 if (local
->avg_load
>= busiest
->avg_load
)
9159 /* XXX broken for overlapping NUMA groups */
9160 sds
.avg_load
= (sds
.total_load
* SCHED_CAPACITY_SCALE
) /
9164 * Don't pull any tasks if this group is already above the
9165 * domain average load.
9167 if (local
->avg_load
>= sds
.avg_load
)
9171 * If the busiest group is more loaded, use imbalance_pct to be
9174 if (100 * busiest
->avg_load
<=
9175 env
->sd
->imbalance_pct
* local
->avg_load
)
9179 /* Try to move all excess tasks to child's sibling domain */
9180 if (sds
.prefer_sibling
&& local
->group_type
== group_has_spare
&&
9181 busiest
->sum_nr_running
> local
->sum_nr_running
+ 1)
9184 if (busiest
->group_type
!= group_overloaded
) {
9185 if (env
->idle
== CPU_NOT_IDLE
)
9187 * If the busiest group is not overloaded (and as a
9188 * result the local one too) but this CPU is already
9189 * busy, let another idle CPU try to pull task.
9193 if (busiest
->group_weight
> 1 &&
9194 local
->idle_cpus
<= (busiest
->idle_cpus
+ 1))
9196 * If the busiest group is not overloaded
9197 * and there is no imbalance between this and busiest
9198 * group wrt idle CPUs, it is balanced. The imbalance
9199 * becomes significant if the diff is greater than 1
9200 * otherwise we might end up to just move the imbalance
9201 * on another group. Of course this applies only if
9202 * there is more than 1 CPU per group.
9206 if (busiest
->sum_h_nr_running
== 1)
9208 * busiest doesn't have any tasks waiting to run
9214 /* Looks like there is an imbalance. Compute it */
9215 calculate_imbalance(env
, &sds
);
9216 return env
->imbalance
? sds
.busiest
: NULL
;
9224 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
9226 static struct rq
*find_busiest_queue(struct lb_env
*env
,
9227 struct sched_group
*group
)
9229 struct rq
*busiest
= NULL
, *rq
;
9230 unsigned long busiest_util
= 0, busiest_load
= 0, busiest_capacity
= 1;
9231 unsigned int busiest_nr
= 0;
9234 for_each_cpu_and(i
, sched_group_span(group
), env
->cpus
) {
9235 unsigned long capacity
, load
, util
;
9236 unsigned int nr_running
;
9240 rt
= fbq_classify_rq(rq
);
9243 * We classify groups/runqueues into three groups:
9244 * - regular: there are !numa tasks
9245 * - remote: there are numa tasks that run on the 'wrong' node
9246 * - all: there is no distinction
9248 * In order to avoid migrating ideally placed numa tasks,
9249 * ignore those when there's better options.
9251 * If we ignore the actual busiest queue to migrate another
9252 * task, the next balance pass can still reduce the busiest
9253 * queue by moving tasks around inside the node.
9255 * If we cannot move enough load due to this classification
9256 * the next pass will adjust the group classification and
9257 * allow migration of more tasks.
9259 * Both cases only affect the total convergence complexity.
9261 if (rt
> env
->fbq_type
)
9264 capacity
= capacity_of(i
);
9265 nr_running
= rq
->cfs
.h_nr_running
;
9268 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9269 * eventually lead to active_balancing high->low capacity.
9270 * Higher per-CPU capacity is considered better than balancing
9273 if (env
->sd
->flags
& SD_ASYM_CPUCAPACITY
&&
9274 capacity_of(env
->dst_cpu
) < capacity
&&
9278 switch (env
->migration_type
) {
9281 * When comparing with load imbalance, use cpu_load()
9282 * which is not scaled with the CPU capacity.
9284 load
= cpu_load(rq
);
9286 if (nr_running
== 1 && load
> env
->imbalance
&&
9287 !check_cpu_capacity(rq
, env
->sd
))
9291 * For the load comparisons with the other CPUs,
9292 * consider the cpu_load() scaled with the CPU
9293 * capacity, so that the load can be moved away
9294 * from the CPU that is potentially running at a
9297 * Thus we're looking for max(load_i / capacity_i),
9298 * crosswise multiplication to rid ourselves of the
9299 * division works out to:
9300 * load_i * capacity_j > load_j * capacity_i;
9301 * where j is our previous maximum.
9303 if (load
* busiest_capacity
> busiest_load
* capacity
) {
9304 busiest_load
= load
;
9305 busiest_capacity
= capacity
;
9311 util
= cpu_util(cpu_of(rq
));
9314 * Don't try to pull utilization from a CPU with one
9315 * running task. Whatever its utilization, we will fail
9318 if (nr_running
<= 1)
9321 if (busiest_util
< util
) {
9322 busiest_util
= util
;
9328 if (busiest_nr
< nr_running
) {
9329 busiest_nr
= nr_running
;
9334 case migrate_misfit
:
9336 * For ASYM_CPUCAPACITY domains with misfit tasks we
9337 * simply seek the "biggest" misfit task.
9339 if (rq
->misfit_task_load
> busiest_load
) {
9340 busiest_load
= rq
->misfit_task_load
;
9353 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9354 * so long as it is large enough.
9356 #define MAX_PINNED_INTERVAL 512
9359 asym_active_balance(struct lb_env
*env
)
9362 * ASYM_PACKING needs to force migrate tasks from busy but
9363 * lower priority CPUs in order to pack all tasks in the
9364 * highest priority CPUs.
9366 return env
->idle
!= CPU_NOT_IDLE
&& (env
->sd
->flags
& SD_ASYM_PACKING
) &&
9367 sched_asym_prefer(env
->dst_cpu
, env
->src_cpu
);
9371 voluntary_active_balance(struct lb_env
*env
)
9373 struct sched_domain
*sd
= env
->sd
;
9375 if (asym_active_balance(env
))
9379 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9380 * It's worth migrating the task if the src_cpu's capacity is reduced
9381 * because of other sched_class or IRQs if more capacity stays
9382 * available on dst_cpu.
9384 if ((env
->idle
!= CPU_NOT_IDLE
) &&
9385 (env
->src_rq
->cfs
.h_nr_running
== 1)) {
9386 if ((check_cpu_capacity(env
->src_rq
, sd
)) &&
9387 (capacity_of(env
->src_cpu
)*sd
->imbalance_pct
< capacity_of(env
->dst_cpu
)*100))
9391 if (env
->migration_type
== migrate_misfit
)
9397 static int need_active_balance(struct lb_env
*env
)
9399 struct sched_domain
*sd
= env
->sd
;
9401 if (voluntary_active_balance(env
))
9404 return unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2);
9407 static int active_load_balance_cpu_stop(void *data
);
9409 static int should_we_balance(struct lb_env
*env
)
9411 struct sched_group
*sg
= env
->sd
->groups
;
9412 int cpu
, balance_cpu
= -1;
9415 * Ensure the balancing environment is consistent; can happen
9416 * when the softirq triggers 'during' hotplug.
9418 if (!cpumask_test_cpu(env
->dst_cpu
, env
->cpus
))
9422 * In the newly idle case, we will allow all the CPUs
9423 * to do the newly idle load balance.
9425 if (env
->idle
== CPU_NEWLY_IDLE
)
9428 /* Try to find first idle CPU */
9429 for_each_cpu_and(cpu
, group_balance_mask(sg
), env
->cpus
) {
9437 if (balance_cpu
== -1)
9438 balance_cpu
= group_balance_cpu(sg
);
9441 * First idle CPU or the first CPU(busiest) in this sched group
9442 * is eligible for doing load balancing at this and above domains.
9444 return balance_cpu
== env
->dst_cpu
;
9448 * Check this_cpu to ensure it is balanced within domain. Attempt to move
9449 * tasks if there is an imbalance.
9451 static int load_balance(int this_cpu
, struct rq
*this_rq
,
9452 struct sched_domain
*sd
, enum cpu_idle_type idle
,
9453 int *continue_balancing
)
9455 int ld_moved
, cur_ld_moved
, active_balance
= 0;
9456 struct sched_domain
*sd_parent
= sd
->parent
;
9457 struct sched_group
*group
;
9460 struct cpumask
*cpus
= this_cpu_cpumask_var_ptr(load_balance_mask
);
9462 struct lb_env env
= {
9464 .dst_cpu
= this_cpu
,
9466 .dst_grpmask
= sched_group_span(sd
->groups
),
9468 .loop_break
= sched_nr_migrate_break
,
9471 .tasks
= LIST_HEAD_INIT(env
.tasks
),
9474 cpumask_and(cpus
, sched_domain_span(sd
), cpu_active_mask
);
9476 schedstat_inc(sd
->lb_count
[idle
]);
9479 if (!should_we_balance(&env
)) {
9480 *continue_balancing
= 0;
9484 group
= find_busiest_group(&env
);
9486 schedstat_inc(sd
->lb_nobusyg
[idle
]);
9490 busiest
= find_busiest_queue(&env
, group
);
9492 schedstat_inc(sd
->lb_nobusyq
[idle
]);
9496 BUG_ON(busiest
== env
.dst_rq
);
9498 schedstat_add(sd
->lb_imbalance
[idle
], env
.imbalance
);
9500 env
.src_cpu
= busiest
->cpu
;
9501 env
.src_rq
= busiest
;
9504 if (busiest
->nr_running
> 1) {
9506 * Attempt to move tasks. If find_busiest_group has found
9507 * an imbalance but busiest->nr_running <= 1, the group is
9508 * still unbalanced. ld_moved simply stays zero, so it is
9509 * correctly treated as an imbalance.
9511 env
.flags
|= LBF_ALL_PINNED
;
9512 env
.loop_max
= min(sysctl_sched_nr_migrate
, busiest
->nr_running
);
9515 rq_lock_irqsave(busiest
, &rf
);
9516 update_rq_clock(busiest
);
9519 * cur_ld_moved - load moved in current iteration
9520 * ld_moved - cumulative load moved across iterations
9522 cur_ld_moved
= detach_tasks(&env
);
9525 * We've detached some tasks from busiest_rq. Every
9526 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9527 * unlock busiest->lock, and we are able to be sure
9528 * that nobody can manipulate the tasks in parallel.
9529 * See task_rq_lock() family for the details.
9532 rq_unlock(busiest
, &rf
);
9536 ld_moved
+= cur_ld_moved
;
9539 local_irq_restore(rf
.flags
);
9541 if (env
.flags
& LBF_NEED_BREAK
) {
9542 env
.flags
&= ~LBF_NEED_BREAK
;
9547 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9548 * us and move them to an alternate dst_cpu in our sched_group
9549 * where they can run. The upper limit on how many times we
9550 * iterate on same src_cpu is dependent on number of CPUs in our
9553 * This changes load balance semantics a bit on who can move
9554 * load to a given_cpu. In addition to the given_cpu itself
9555 * (or a ilb_cpu acting on its behalf where given_cpu is
9556 * nohz-idle), we now have balance_cpu in a position to move
9557 * load to given_cpu. In rare situations, this may cause
9558 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9559 * _independently_ and at _same_ time to move some load to
9560 * given_cpu) causing exceess load to be moved to given_cpu.
9561 * This however should not happen so much in practice and
9562 * moreover subsequent load balance cycles should correct the
9563 * excess load moved.
9565 if ((env
.flags
& LBF_DST_PINNED
) && env
.imbalance
> 0) {
9567 /* Prevent to re-select dst_cpu via env's CPUs */
9568 __cpumask_clear_cpu(env
.dst_cpu
, env
.cpus
);
9570 env
.dst_rq
= cpu_rq(env
.new_dst_cpu
);
9571 env
.dst_cpu
= env
.new_dst_cpu
;
9572 env
.flags
&= ~LBF_DST_PINNED
;
9574 env
.loop_break
= sched_nr_migrate_break
;
9577 * Go back to "more_balance" rather than "redo" since we
9578 * need to continue with same src_cpu.
9584 * We failed to reach balance because of affinity.
9587 int *group_imbalance
= &sd_parent
->groups
->sgc
->imbalance
;
9589 if ((env
.flags
& LBF_SOME_PINNED
) && env
.imbalance
> 0)
9590 *group_imbalance
= 1;
9593 /* All tasks on this runqueue were pinned by CPU affinity */
9594 if (unlikely(env
.flags
& LBF_ALL_PINNED
)) {
9595 __cpumask_clear_cpu(cpu_of(busiest
), cpus
);
9597 * Attempting to continue load balancing at the current
9598 * sched_domain level only makes sense if there are
9599 * active CPUs remaining as possible busiest CPUs to
9600 * pull load from which are not contained within the
9601 * destination group that is receiving any migrated
9604 if (!cpumask_subset(cpus
, env
.dst_grpmask
)) {
9606 env
.loop_break
= sched_nr_migrate_break
;
9609 goto out_all_pinned
;
9614 schedstat_inc(sd
->lb_failed
[idle
]);
9616 * Increment the failure counter only on periodic balance.
9617 * We do not want newidle balance, which can be very
9618 * frequent, pollute the failure counter causing
9619 * excessive cache_hot migrations and active balances.
9621 if (idle
!= CPU_NEWLY_IDLE
)
9622 sd
->nr_balance_failed
++;
9624 if (need_active_balance(&env
)) {
9625 unsigned long flags
;
9627 raw_spin_lock_irqsave(&busiest
->lock
, flags
);
9630 * Don't kick the active_load_balance_cpu_stop,
9631 * if the curr task on busiest CPU can't be
9632 * moved to this_cpu:
9634 if (!cpumask_test_cpu(this_cpu
, busiest
->curr
->cpus_ptr
)) {
9635 raw_spin_unlock_irqrestore(&busiest
->lock
,
9637 env
.flags
|= LBF_ALL_PINNED
;
9638 goto out_one_pinned
;
9642 * ->active_balance synchronizes accesses to
9643 * ->active_balance_work. Once set, it's cleared
9644 * only after active load balance is finished.
9646 if (!busiest
->active_balance
) {
9647 busiest
->active_balance
= 1;
9648 busiest
->push_cpu
= this_cpu
;
9651 raw_spin_unlock_irqrestore(&busiest
->lock
, flags
);
9653 if (active_balance
) {
9654 stop_one_cpu_nowait(cpu_of(busiest
),
9655 active_load_balance_cpu_stop
, busiest
,
9656 &busiest
->active_balance_work
);
9659 /* We've kicked active balancing, force task migration. */
9660 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
9663 sd
->nr_balance_failed
= 0;
9665 if (likely(!active_balance
) || voluntary_active_balance(&env
)) {
9666 /* We were unbalanced, so reset the balancing interval */
9667 sd
->balance_interval
= sd
->min_interval
;
9670 * If we've begun active balancing, start to back off. This
9671 * case may not be covered by the all_pinned logic if there
9672 * is only 1 task on the busy runqueue (because we don't call
9675 if (sd
->balance_interval
< sd
->max_interval
)
9676 sd
->balance_interval
*= 2;
9683 * We reach balance although we may have faced some affinity
9684 * constraints. Clear the imbalance flag only if other tasks got
9685 * a chance to move and fix the imbalance.
9687 if (sd_parent
&& !(env
.flags
& LBF_ALL_PINNED
)) {
9688 int *group_imbalance
= &sd_parent
->groups
->sgc
->imbalance
;
9690 if (*group_imbalance
)
9691 *group_imbalance
= 0;
9696 * We reach balance because all tasks are pinned at this level so
9697 * we can't migrate them. Let the imbalance flag set so parent level
9698 * can try to migrate them.
9700 schedstat_inc(sd
->lb_balanced
[idle
]);
9702 sd
->nr_balance_failed
= 0;
9708 * newidle_balance() disregards balance intervals, so we could
9709 * repeatedly reach this code, which would lead to balance_interval
9710 * skyrocketting in a short amount of time. Skip the balance_interval
9711 * increase logic to avoid that.
9713 if (env
.idle
== CPU_NEWLY_IDLE
)
9716 /* tune up the balancing interval */
9717 if ((env
.flags
& LBF_ALL_PINNED
&&
9718 sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
9719 sd
->balance_interval
< sd
->max_interval
)
9720 sd
->balance_interval
*= 2;
9725 static inline unsigned long
9726 get_sd_balance_interval(struct sched_domain
*sd
, int cpu_busy
)
9728 unsigned long interval
= sd
->balance_interval
;
9731 interval
*= sd
->busy_factor
;
9733 /* scale ms to jiffies */
9734 interval
= msecs_to_jiffies(interval
);
9735 interval
= clamp(interval
, 1UL, max_load_balance_interval
);
9741 update_next_balance(struct sched_domain
*sd
, unsigned long *next_balance
)
9743 unsigned long interval
, next
;
9745 /* used by idle balance, so cpu_busy = 0 */
9746 interval
= get_sd_balance_interval(sd
, 0);
9747 next
= sd
->last_balance
+ interval
;
9749 if (time_after(*next_balance
, next
))
9750 *next_balance
= next
;
9754 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
9755 * running tasks off the busiest CPU onto idle CPUs. It requires at
9756 * least 1 task to be running on each physical CPU where possible, and
9757 * avoids physical / logical imbalances.
9759 static int active_load_balance_cpu_stop(void *data
)
9761 struct rq
*busiest_rq
= data
;
9762 int busiest_cpu
= cpu_of(busiest_rq
);
9763 int target_cpu
= busiest_rq
->push_cpu
;
9764 struct rq
*target_rq
= cpu_rq(target_cpu
);
9765 struct sched_domain
*sd
;
9766 struct task_struct
*p
= NULL
;
9769 rq_lock_irq(busiest_rq
, &rf
);
9771 * Between queueing the stop-work and running it is a hole in which
9772 * CPUs can become inactive. We should not move tasks from or to
9775 if (!cpu_active(busiest_cpu
) || !cpu_active(target_cpu
))
9778 /* Make sure the requested CPU hasn't gone down in the meantime: */
9779 if (unlikely(busiest_cpu
!= smp_processor_id() ||
9780 !busiest_rq
->active_balance
))
9783 /* Is there any task to move? */
9784 if (busiest_rq
->nr_running
<= 1)
9788 * This condition is "impossible", if it occurs
9789 * we need to fix it. Originally reported by
9790 * Bjorn Helgaas on a 128-CPU setup.
9792 BUG_ON(busiest_rq
== target_rq
);
9794 /* Search for an sd spanning us and the target CPU. */
9796 for_each_domain(target_cpu
, sd
) {
9797 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
9798 cpumask_test_cpu(busiest_cpu
, sched_domain_span(sd
)))
9803 struct lb_env env
= {
9805 .dst_cpu
= target_cpu
,
9806 .dst_rq
= target_rq
,
9807 .src_cpu
= busiest_rq
->cpu
,
9808 .src_rq
= busiest_rq
,
9811 * can_migrate_task() doesn't need to compute new_dst_cpu
9812 * for active balancing. Since we have CPU_IDLE, but no
9813 * @dst_grpmask we need to make that test go away with lying
9816 .flags
= LBF_DST_PINNED
,
9819 schedstat_inc(sd
->alb_count
);
9820 update_rq_clock(busiest_rq
);
9822 p
= detach_one_task(&env
);
9824 schedstat_inc(sd
->alb_pushed
);
9825 /* Active balancing done, reset the failure counter. */
9826 sd
->nr_balance_failed
= 0;
9828 schedstat_inc(sd
->alb_failed
);
9833 busiest_rq
->active_balance
= 0;
9834 rq_unlock(busiest_rq
, &rf
);
9837 attach_one_task(target_rq
, p
);
9844 static DEFINE_SPINLOCK(balancing
);
9847 * Scale the max load_balance interval with the number of CPUs in the system.
9848 * This trades load-balance latency on larger machines for less cross talk.
9850 void update_max_interval(void)
9852 max_load_balance_interval
= HZ
*num_online_cpus()/10;
9856 * It checks each scheduling domain to see if it is due to be balanced,
9857 * and initiates a balancing operation if so.
9859 * Balancing parameters are set up in init_sched_domains.
9861 static void rebalance_domains(struct rq
*rq
, enum cpu_idle_type idle
)
9863 int continue_balancing
= 1;
9865 int busy
= idle
!= CPU_IDLE
&& !sched_idle_cpu(cpu
);
9866 unsigned long interval
;
9867 struct sched_domain
*sd
;
9868 /* Earliest time when we have to do rebalance again */
9869 unsigned long next_balance
= jiffies
+ 60*HZ
;
9870 int update_next_balance
= 0;
9871 int need_serialize
, need_decay
= 0;
9875 for_each_domain(cpu
, sd
) {
9877 * Decay the newidle max times here because this is a regular
9878 * visit to all the domains. Decay ~1% per second.
9880 if (time_after(jiffies
, sd
->next_decay_max_lb_cost
)) {
9881 sd
->max_newidle_lb_cost
=
9882 (sd
->max_newidle_lb_cost
* 253) / 256;
9883 sd
->next_decay_max_lb_cost
= jiffies
+ HZ
;
9886 max_cost
+= sd
->max_newidle_lb_cost
;
9888 if (!(sd
->flags
& SD_LOAD_BALANCE
))
9892 * Stop the load balance at this level. There is another
9893 * CPU in our sched group which is doing load balancing more
9896 if (!continue_balancing
) {
9902 interval
= get_sd_balance_interval(sd
, busy
);
9904 need_serialize
= sd
->flags
& SD_SERIALIZE
;
9905 if (need_serialize
) {
9906 if (!spin_trylock(&balancing
))
9910 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
9911 if (load_balance(cpu
, rq
, sd
, idle
, &continue_balancing
)) {
9913 * The LBF_DST_PINNED logic could have changed
9914 * env->dst_cpu, so we can't know our idle
9915 * state even if we migrated tasks. Update it.
9917 idle
= idle_cpu(cpu
) ? CPU_IDLE
: CPU_NOT_IDLE
;
9918 busy
= idle
!= CPU_IDLE
&& !sched_idle_cpu(cpu
);
9920 sd
->last_balance
= jiffies
;
9921 interval
= get_sd_balance_interval(sd
, busy
);
9924 spin_unlock(&balancing
);
9926 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
9927 next_balance
= sd
->last_balance
+ interval
;
9928 update_next_balance
= 1;
9933 * Ensure the rq-wide value also decays but keep it at a
9934 * reasonable floor to avoid funnies with rq->avg_idle.
9936 rq
->max_idle_balance_cost
=
9937 max((u64
)sysctl_sched_migration_cost
, max_cost
);
9942 * next_balance will be updated only when there is a need.
9943 * When the cpu is attached to null domain for ex, it will not be
9946 if (likely(update_next_balance
)) {
9947 rq
->next_balance
= next_balance
;
9949 #ifdef CONFIG_NO_HZ_COMMON
9951 * If this CPU has been elected to perform the nohz idle
9952 * balance. Other idle CPUs have already rebalanced with
9953 * nohz_idle_balance() and nohz.next_balance has been
9954 * updated accordingly. This CPU is now running the idle load
9955 * balance for itself and we need to update the
9956 * nohz.next_balance accordingly.
9958 if ((idle
== CPU_IDLE
) && time_after(nohz
.next_balance
, rq
->next_balance
))
9959 nohz
.next_balance
= rq
->next_balance
;
9964 static inline int on_null_domain(struct rq
*rq
)
9966 return unlikely(!rcu_dereference_sched(rq
->sd
));
9969 #ifdef CONFIG_NO_HZ_COMMON
9971 * idle load balancing details
9972 * - When one of the busy CPUs notice that there may be an idle rebalancing
9973 * needed, they will kick the idle load balancer, which then does idle
9974 * load balancing for all the idle CPUs.
9975 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
9979 static inline int find_new_ilb(void)
9983 for_each_cpu_and(ilb
, nohz
.idle_cpus_mask
,
9984 housekeeping_cpumask(HK_FLAG_MISC
)) {
9993 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
9994 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
9996 static void kick_ilb(unsigned int flags
)
10000 nohz
.next_balance
++;
10002 ilb_cpu
= find_new_ilb();
10004 if (ilb_cpu
>= nr_cpu_ids
)
10007 flags
= atomic_fetch_or(flags
, nohz_flags(ilb_cpu
));
10008 if (flags
& NOHZ_KICK_MASK
)
10012 * Use smp_send_reschedule() instead of resched_cpu().
10013 * This way we generate a sched IPI on the target CPU which
10014 * is idle. And the softirq performing nohz idle load balance
10015 * will be run before returning from the IPI.
10017 smp_send_reschedule(ilb_cpu
);
10021 * Current decision point for kicking the idle load balancer in the presence
10022 * of idle CPUs in the system.
10024 static void nohz_balancer_kick(struct rq
*rq
)
10026 unsigned long now
= jiffies
;
10027 struct sched_domain_shared
*sds
;
10028 struct sched_domain
*sd
;
10029 int nr_busy
, i
, cpu
= rq
->cpu
;
10030 unsigned int flags
= 0;
10032 if (unlikely(rq
->idle_balance
))
10036 * We may be recently in ticked or tickless idle mode. At the first
10037 * busy tick after returning from idle, we will update the busy stats.
10039 nohz_balance_exit_idle(rq
);
10042 * None are in tickless mode and hence no need for NOHZ idle load
10045 if (likely(!atomic_read(&nohz
.nr_cpus
)))
10048 if (READ_ONCE(nohz
.has_blocked
) &&
10049 time_after(now
, READ_ONCE(nohz
.next_blocked
)))
10050 flags
= NOHZ_STATS_KICK
;
10052 if (time_before(now
, nohz
.next_balance
))
10055 if (rq
->nr_running
>= 2) {
10056 flags
= NOHZ_KICK_MASK
;
10062 sd
= rcu_dereference(rq
->sd
);
10065 * If there's a CFS task and the current CPU has reduced
10066 * capacity; kick the ILB to see if there's a better CPU to run
10069 if (rq
->cfs
.h_nr_running
>= 1 && check_cpu_capacity(rq
, sd
)) {
10070 flags
= NOHZ_KICK_MASK
;
10075 sd
= rcu_dereference(per_cpu(sd_asym_packing
, cpu
));
10078 * When ASYM_PACKING; see if there's a more preferred CPU
10079 * currently idle; in which case, kick the ILB to move tasks
10082 for_each_cpu_and(i
, sched_domain_span(sd
), nohz
.idle_cpus_mask
) {
10083 if (sched_asym_prefer(i
, cpu
)) {
10084 flags
= NOHZ_KICK_MASK
;
10090 sd
= rcu_dereference(per_cpu(sd_asym_cpucapacity
, cpu
));
10093 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10094 * to run the misfit task on.
10096 if (check_misfit_status(rq
, sd
)) {
10097 flags
= NOHZ_KICK_MASK
;
10102 * For asymmetric systems, we do not want to nicely balance
10103 * cache use, instead we want to embrace asymmetry and only
10104 * ensure tasks have enough CPU capacity.
10106 * Skip the LLC logic because it's not relevant in that case.
10111 sds
= rcu_dereference(per_cpu(sd_llc_shared
, cpu
));
10114 * If there is an imbalance between LLC domains (IOW we could
10115 * increase the overall cache use), we need some less-loaded LLC
10116 * domain to pull some load. Likewise, we may need to spread
10117 * load within the current LLC domain (e.g. packed SMT cores but
10118 * other CPUs are idle). We can't really know from here how busy
10119 * the others are - so just get a nohz balance going if it looks
10120 * like this LLC domain has tasks we could move.
10122 nr_busy
= atomic_read(&sds
->nr_busy_cpus
);
10124 flags
= NOHZ_KICK_MASK
;
10135 static void set_cpu_sd_state_busy(int cpu
)
10137 struct sched_domain
*sd
;
10140 sd
= rcu_dereference(per_cpu(sd_llc
, cpu
));
10142 if (!sd
|| !sd
->nohz_idle
)
10146 atomic_inc(&sd
->shared
->nr_busy_cpus
);
10151 void nohz_balance_exit_idle(struct rq
*rq
)
10153 SCHED_WARN_ON(rq
!= this_rq());
10155 if (likely(!rq
->nohz_tick_stopped
))
10158 rq
->nohz_tick_stopped
= 0;
10159 cpumask_clear_cpu(rq
->cpu
, nohz
.idle_cpus_mask
);
10160 atomic_dec(&nohz
.nr_cpus
);
10162 set_cpu_sd_state_busy(rq
->cpu
);
10165 static void set_cpu_sd_state_idle(int cpu
)
10167 struct sched_domain
*sd
;
10170 sd
= rcu_dereference(per_cpu(sd_llc
, cpu
));
10172 if (!sd
|| sd
->nohz_idle
)
10176 atomic_dec(&sd
->shared
->nr_busy_cpus
);
10182 * This routine will record that the CPU is going idle with tick stopped.
10183 * This info will be used in performing idle load balancing in the future.
10185 void nohz_balance_enter_idle(int cpu
)
10187 struct rq
*rq
= cpu_rq(cpu
);
10189 SCHED_WARN_ON(cpu
!= smp_processor_id());
10191 /* If this CPU is going down, then nothing needs to be done: */
10192 if (!cpu_active(cpu
))
10195 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
10196 if (!housekeeping_cpu(cpu
, HK_FLAG_SCHED
))
10200 * Can be set safely without rq->lock held
10201 * If a clear happens, it will have evaluated last additions because
10202 * rq->lock is held during the check and the clear
10204 rq
->has_blocked_load
= 1;
10207 * The tick is still stopped but load could have been added in the
10208 * meantime. We set the nohz.has_blocked flag to trig a check of the
10209 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10210 * of nohz.has_blocked can only happen after checking the new load
10212 if (rq
->nohz_tick_stopped
)
10215 /* If we're a completely isolated CPU, we don't play: */
10216 if (on_null_domain(rq
))
10219 rq
->nohz_tick_stopped
= 1;
10221 cpumask_set_cpu(cpu
, nohz
.idle_cpus_mask
);
10222 atomic_inc(&nohz
.nr_cpus
);
10225 * Ensures that if nohz_idle_balance() fails to observe our
10226 * @idle_cpus_mask store, it must observe the @has_blocked
10229 smp_mb__after_atomic();
10231 set_cpu_sd_state_idle(cpu
);
10235 * Each time a cpu enter idle, we assume that it has blocked load and
10236 * enable the periodic update of the load of idle cpus
10238 WRITE_ONCE(nohz
.has_blocked
, 1);
10242 * Internal function that runs load balance for all idle cpus. The load balance
10243 * can be a simple update of blocked load or a complete load balance with
10244 * tasks movement depending of flags.
10245 * The function returns false if the loop has stopped before running
10246 * through all idle CPUs.
10248 static bool _nohz_idle_balance(struct rq
*this_rq
, unsigned int flags
,
10249 enum cpu_idle_type idle
)
10251 /* Earliest time when we have to do rebalance again */
10252 unsigned long now
= jiffies
;
10253 unsigned long next_balance
= now
+ 60*HZ
;
10254 bool has_blocked_load
= false;
10255 int update_next_balance
= 0;
10256 int this_cpu
= this_rq
->cpu
;
10261 SCHED_WARN_ON((flags
& NOHZ_KICK_MASK
) == NOHZ_BALANCE_KICK
);
10264 * We assume there will be no idle load after this update and clear
10265 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10266 * set the has_blocked flag and trig another update of idle load.
10267 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10268 * setting the flag, we are sure to not clear the state and not
10269 * check the load of an idle cpu.
10271 WRITE_ONCE(nohz
.has_blocked
, 0);
10274 * Ensures that if we miss the CPU, we must see the has_blocked
10275 * store from nohz_balance_enter_idle().
10279 for_each_cpu(balance_cpu
, nohz
.idle_cpus_mask
) {
10280 if (balance_cpu
== this_cpu
|| !idle_cpu(balance_cpu
))
10284 * If this CPU gets work to do, stop the load balancing
10285 * work being done for other CPUs. Next load
10286 * balancing owner will pick it up.
10288 if (need_resched()) {
10289 has_blocked_load
= true;
10293 rq
= cpu_rq(balance_cpu
);
10295 has_blocked_load
|= update_nohz_stats(rq
, true);
10298 * If time for next balance is due,
10301 if (time_after_eq(jiffies
, rq
->next_balance
)) {
10302 struct rq_flags rf
;
10304 rq_lock_irqsave(rq
, &rf
);
10305 update_rq_clock(rq
);
10306 rq_unlock_irqrestore(rq
, &rf
);
10308 if (flags
& NOHZ_BALANCE_KICK
)
10309 rebalance_domains(rq
, CPU_IDLE
);
10312 if (time_after(next_balance
, rq
->next_balance
)) {
10313 next_balance
= rq
->next_balance
;
10314 update_next_balance
= 1;
10318 /* Newly idle CPU doesn't need an update */
10319 if (idle
!= CPU_NEWLY_IDLE
) {
10320 update_blocked_averages(this_cpu
);
10321 has_blocked_load
|= this_rq
->has_blocked_load
;
10324 if (flags
& NOHZ_BALANCE_KICK
)
10325 rebalance_domains(this_rq
, CPU_IDLE
);
10327 WRITE_ONCE(nohz
.next_blocked
,
10328 now
+ msecs_to_jiffies(LOAD_AVG_PERIOD
));
10330 /* The full idle balance loop has been done */
10334 /* There is still blocked load, enable periodic update */
10335 if (has_blocked_load
)
10336 WRITE_ONCE(nohz
.has_blocked
, 1);
10339 * next_balance will be updated only when there is a need.
10340 * When the CPU is attached to null domain for ex, it will not be
10343 if (likely(update_next_balance
))
10344 nohz
.next_balance
= next_balance
;
10350 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10351 * rebalancing for all the cpus for whom scheduler ticks are stopped.
10353 static bool nohz_idle_balance(struct rq
*this_rq
, enum cpu_idle_type idle
)
10355 int this_cpu
= this_rq
->cpu
;
10356 unsigned int flags
;
10358 if (!(atomic_read(nohz_flags(this_cpu
)) & NOHZ_KICK_MASK
))
10361 if (idle
!= CPU_IDLE
) {
10362 atomic_andnot(NOHZ_KICK_MASK
, nohz_flags(this_cpu
));
10366 /* could be _relaxed() */
10367 flags
= atomic_fetch_andnot(NOHZ_KICK_MASK
, nohz_flags(this_cpu
));
10368 if (!(flags
& NOHZ_KICK_MASK
))
10371 _nohz_idle_balance(this_rq
, flags
, idle
);
10376 static void nohz_newidle_balance(struct rq
*this_rq
)
10378 int this_cpu
= this_rq
->cpu
;
10381 * This CPU doesn't want to be disturbed by scheduler
10384 if (!housekeeping_cpu(this_cpu
, HK_FLAG_SCHED
))
10387 /* Will wake up very soon. No time for doing anything else*/
10388 if (this_rq
->avg_idle
< sysctl_sched_migration_cost
)
10391 /* Don't need to update blocked load of idle CPUs*/
10392 if (!READ_ONCE(nohz
.has_blocked
) ||
10393 time_before(jiffies
, READ_ONCE(nohz
.next_blocked
)))
10396 raw_spin_unlock(&this_rq
->lock
);
10398 * This CPU is going to be idle and blocked load of idle CPUs
10399 * need to be updated. Run the ilb locally as it is a good
10400 * candidate for ilb instead of waking up another idle CPU.
10401 * Kick an normal ilb if we failed to do the update.
10403 if (!_nohz_idle_balance(this_rq
, NOHZ_STATS_KICK
, CPU_NEWLY_IDLE
))
10404 kick_ilb(NOHZ_STATS_KICK
);
10405 raw_spin_lock(&this_rq
->lock
);
10408 #else /* !CONFIG_NO_HZ_COMMON */
10409 static inline void nohz_balancer_kick(struct rq
*rq
) { }
10411 static inline bool nohz_idle_balance(struct rq
*this_rq
, enum cpu_idle_type idle
)
10416 static inline void nohz_newidle_balance(struct rq
*this_rq
) { }
10417 #endif /* CONFIG_NO_HZ_COMMON */
10420 * idle_balance is called by schedule() if this_cpu is about to become
10421 * idle. Attempts to pull tasks from other CPUs.
10424 * < 0 - we released the lock and there are !fair tasks present
10425 * 0 - failed, no new tasks
10426 * > 0 - success, new (fair) tasks present
10428 int newidle_balance(struct rq
*this_rq
, struct rq_flags
*rf
)
10430 unsigned long next_balance
= jiffies
+ HZ
;
10431 int this_cpu
= this_rq
->cpu
;
10432 struct sched_domain
*sd
;
10433 int pulled_task
= 0;
10436 update_misfit_status(NULL
, this_rq
);
10438 * We must set idle_stamp _before_ calling idle_balance(), such that we
10439 * measure the duration of idle_balance() as idle time.
10441 this_rq
->idle_stamp
= rq_clock(this_rq
);
10444 * Do not pull tasks towards !active CPUs...
10446 if (!cpu_active(this_cpu
))
10450 * This is OK, because current is on_cpu, which avoids it being picked
10451 * for load-balance and preemption/IRQs are still disabled avoiding
10452 * further scheduler activity on it and we're being very careful to
10453 * re-start the picking loop.
10455 rq_unpin_lock(this_rq
, rf
);
10457 if (this_rq
->avg_idle
< sysctl_sched_migration_cost
||
10458 !READ_ONCE(this_rq
->rd
->overload
)) {
10461 sd
= rcu_dereference_check_sched_domain(this_rq
->sd
);
10463 update_next_balance(sd
, &next_balance
);
10466 nohz_newidle_balance(this_rq
);
10471 raw_spin_unlock(&this_rq
->lock
);
10473 update_blocked_averages(this_cpu
);
10475 for_each_domain(this_cpu
, sd
) {
10476 int continue_balancing
= 1;
10477 u64 t0
, domain_cost
;
10479 if (!(sd
->flags
& SD_LOAD_BALANCE
))
10482 if (this_rq
->avg_idle
< curr_cost
+ sd
->max_newidle_lb_cost
) {
10483 update_next_balance(sd
, &next_balance
);
10487 if (sd
->flags
& SD_BALANCE_NEWIDLE
) {
10488 t0
= sched_clock_cpu(this_cpu
);
10490 pulled_task
= load_balance(this_cpu
, this_rq
,
10491 sd
, CPU_NEWLY_IDLE
,
10492 &continue_balancing
);
10494 domain_cost
= sched_clock_cpu(this_cpu
) - t0
;
10495 if (domain_cost
> sd
->max_newidle_lb_cost
)
10496 sd
->max_newidle_lb_cost
= domain_cost
;
10498 curr_cost
+= domain_cost
;
10501 update_next_balance(sd
, &next_balance
);
10504 * Stop searching for tasks to pull if there are
10505 * now runnable tasks on this rq.
10507 if (pulled_task
|| this_rq
->nr_running
> 0)
10512 raw_spin_lock(&this_rq
->lock
);
10514 if (curr_cost
> this_rq
->max_idle_balance_cost
)
10515 this_rq
->max_idle_balance_cost
= curr_cost
;
10519 * While browsing the domains, we released the rq lock, a task could
10520 * have been enqueued in the meantime. Since we're not going idle,
10521 * pretend we pulled a task.
10523 if (this_rq
->cfs
.h_nr_running
&& !pulled_task
)
10526 /* Move the next balance forward */
10527 if (time_after(this_rq
->next_balance
, next_balance
))
10528 this_rq
->next_balance
= next_balance
;
10530 /* Is there a task of a high priority class? */
10531 if (this_rq
->nr_running
!= this_rq
->cfs
.h_nr_running
)
10535 this_rq
->idle_stamp
= 0;
10537 rq_repin_lock(this_rq
, rf
);
10539 return pulled_task
;
10543 * run_rebalance_domains is triggered when needed from the scheduler tick.
10544 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10546 static __latent_entropy
void run_rebalance_domains(struct softirq_action
*h
)
10548 struct rq
*this_rq
= this_rq();
10549 enum cpu_idle_type idle
= this_rq
->idle_balance
?
10550 CPU_IDLE
: CPU_NOT_IDLE
;
10553 * If this CPU has a pending nohz_balance_kick, then do the
10554 * balancing on behalf of the other idle CPUs whose ticks are
10555 * stopped. Do nohz_idle_balance *before* rebalance_domains to
10556 * give the idle CPUs a chance to load balance. Else we may
10557 * load balance only within the local sched_domain hierarchy
10558 * and abort nohz_idle_balance altogether if we pull some load.
10560 if (nohz_idle_balance(this_rq
, idle
))
10563 /* normal load balance */
10564 update_blocked_averages(this_rq
->cpu
);
10565 rebalance_domains(this_rq
, idle
);
10569 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
10571 void trigger_load_balance(struct rq
*rq
)
10573 /* Don't need to rebalance while attached to NULL domain */
10574 if (unlikely(on_null_domain(rq
)))
10577 if (time_after_eq(jiffies
, rq
->next_balance
))
10578 raise_softirq(SCHED_SOFTIRQ
);
10580 nohz_balancer_kick(rq
);
10583 static void rq_online_fair(struct rq
*rq
)
10587 update_runtime_enabled(rq
);
10590 static void rq_offline_fair(struct rq
*rq
)
10594 /* Ensure any throttled groups are reachable by pick_next_task */
10595 unthrottle_offline_cfs_rqs(rq
);
10598 #endif /* CONFIG_SMP */
10601 * scheduler tick hitting a task of our scheduling class.
10603 * NOTE: This function can be called remotely by the tick offload that
10604 * goes along full dynticks. Therefore no local assumption can be made
10605 * and everything must be accessed through the @rq and @curr passed in
10608 static void task_tick_fair(struct rq
*rq
, struct task_struct
*curr
, int queued
)
10610 struct cfs_rq
*cfs_rq
;
10611 struct sched_entity
*se
= &curr
->se
;
10613 for_each_sched_entity(se
) {
10614 cfs_rq
= cfs_rq_of(se
);
10615 entity_tick(cfs_rq
, se
, queued
);
10618 if (static_branch_unlikely(&sched_numa_balancing
))
10619 task_tick_numa(rq
, curr
);
10621 update_misfit_status(curr
, rq
);
10622 update_overutilized_status(task_rq(curr
));
10626 * called on fork with the child task as argument from the parent's context
10627 * - child not yet on the tasklist
10628 * - preemption disabled
10630 static void task_fork_fair(struct task_struct
*p
)
10632 struct cfs_rq
*cfs_rq
;
10633 struct sched_entity
*se
= &p
->se
, *curr
;
10634 struct rq
*rq
= this_rq();
10635 struct rq_flags rf
;
10638 update_rq_clock(rq
);
10640 cfs_rq
= task_cfs_rq(current
);
10641 curr
= cfs_rq
->curr
;
10643 update_curr(cfs_rq
);
10644 se
->vruntime
= curr
->vruntime
;
10646 place_entity(cfs_rq
, se
, 1);
10648 if (sysctl_sched_child_runs_first
&& curr
&& entity_before(curr
, se
)) {
10650 * Upon rescheduling, sched_class::put_prev_task() will place
10651 * 'current' within the tree based on its new key value.
10653 swap(curr
->vruntime
, se
->vruntime
);
10657 se
->vruntime
-= cfs_rq
->min_vruntime
;
10658 rq_unlock(rq
, &rf
);
10662 * Priority of the task has changed. Check to see if we preempt
10663 * the current task.
10666 prio_changed_fair(struct rq
*rq
, struct task_struct
*p
, int oldprio
)
10668 if (!task_on_rq_queued(p
))
10671 if (rq
->cfs
.nr_running
== 1)
10675 * Reschedule if we are currently running on this runqueue and
10676 * our priority decreased, or if we are not currently running on
10677 * this runqueue and our priority is higher than the current's
10679 if (rq
->curr
== p
) {
10680 if (p
->prio
> oldprio
)
10683 check_preempt_curr(rq
, p
, 0);
10686 static inline bool vruntime_normalized(struct task_struct
*p
)
10688 struct sched_entity
*se
= &p
->se
;
10691 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10692 * the dequeue_entity(.flags=0) will already have normalized the
10699 * When !on_rq, vruntime of the task has usually NOT been normalized.
10700 * But there are some cases where it has already been normalized:
10702 * - A forked child which is waiting for being woken up by
10703 * wake_up_new_task().
10704 * - A task which has been woken up by try_to_wake_up() and
10705 * waiting for actually being woken up by sched_ttwu_pending().
10707 if (!se
->sum_exec_runtime
||
10708 (p
->state
== TASK_WAKING
&& p
->sched_remote_wakeup
))
10714 #ifdef CONFIG_FAIR_GROUP_SCHED
10716 * Propagate the changes of the sched_entity across the tg tree to make it
10717 * visible to the root
10719 static void propagate_entity_cfs_rq(struct sched_entity
*se
)
10721 struct cfs_rq
*cfs_rq
;
10723 /* Start to propagate at parent */
10726 for_each_sched_entity(se
) {
10727 cfs_rq
= cfs_rq_of(se
);
10729 if (cfs_rq_throttled(cfs_rq
))
10732 update_load_avg(cfs_rq
, se
, UPDATE_TG
);
10736 static void propagate_entity_cfs_rq(struct sched_entity
*se
) { }
10739 static void detach_entity_cfs_rq(struct sched_entity
*se
)
10741 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
10743 /* Catch up with the cfs_rq and remove our load when we leave */
10744 update_load_avg(cfs_rq
, se
, 0);
10745 detach_entity_load_avg(cfs_rq
, se
);
10746 update_tg_load_avg(cfs_rq
, false);
10747 propagate_entity_cfs_rq(se
);
10750 static void attach_entity_cfs_rq(struct sched_entity
*se
)
10752 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
10754 #ifdef CONFIG_FAIR_GROUP_SCHED
10756 * Since the real-depth could have been changed (only FAIR
10757 * class maintain depth value), reset depth properly.
10759 se
->depth
= se
->parent
? se
->parent
->depth
+ 1 : 0;
10762 /* Synchronize entity with its cfs_rq */
10763 update_load_avg(cfs_rq
, se
, sched_feat(ATTACH_AGE_LOAD
) ? 0 : SKIP_AGE_LOAD
);
10764 attach_entity_load_avg(cfs_rq
, se
);
10765 update_tg_load_avg(cfs_rq
, false);
10766 propagate_entity_cfs_rq(se
);
10769 static void detach_task_cfs_rq(struct task_struct
*p
)
10771 struct sched_entity
*se
= &p
->se
;
10772 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
10774 if (!vruntime_normalized(p
)) {
10776 * Fix up our vruntime so that the current sleep doesn't
10777 * cause 'unlimited' sleep bonus.
10779 place_entity(cfs_rq
, se
, 0);
10780 se
->vruntime
-= cfs_rq
->min_vruntime
;
10783 detach_entity_cfs_rq(se
);
10786 static void attach_task_cfs_rq(struct task_struct
*p
)
10788 struct sched_entity
*se
= &p
->se
;
10789 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
10791 attach_entity_cfs_rq(se
);
10793 if (!vruntime_normalized(p
))
10794 se
->vruntime
+= cfs_rq
->min_vruntime
;
10797 static void switched_from_fair(struct rq
*rq
, struct task_struct
*p
)
10799 detach_task_cfs_rq(p
);
10802 static void switched_to_fair(struct rq
*rq
, struct task_struct
*p
)
10804 attach_task_cfs_rq(p
);
10806 if (task_on_rq_queued(p
)) {
10808 * We were most likely switched from sched_rt, so
10809 * kick off the schedule if running, otherwise just see
10810 * if we can still preempt the current task.
10815 check_preempt_curr(rq
, p
, 0);
10819 /* Account for a task changing its policy or group.
10821 * This routine is mostly called to set cfs_rq->curr field when a task
10822 * migrates between groups/classes.
10824 static void set_next_task_fair(struct rq
*rq
, struct task_struct
*p
, bool first
)
10826 struct sched_entity
*se
= &p
->se
;
10829 if (task_on_rq_queued(p
)) {
10831 * Move the next running task to the front of the list, so our
10832 * cfs_tasks list becomes MRU one.
10834 list_move(&se
->group_node
, &rq
->cfs_tasks
);
10838 for_each_sched_entity(se
) {
10839 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
10841 set_next_entity(cfs_rq
, se
);
10842 /* ensure bandwidth has been allocated on our new cfs_rq */
10843 account_cfs_rq_runtime(cfs_rq
, 0);
10847 void init_cfs_rq(struct cfs_rq
*cfs_rq
)
10849 cfs_rq
->tasks_timeline
= RB_ROOT_CACHED
;
10850 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
10851 #ifndef CONFIG_64BIT
10852 cfs_rq
->min_vruntime_copy
= cfs_rq
->min_vruntime
;
10855 raw_spin_lock_init(&cfs_rq
->removed
.lock
);
10859 #ifdef CONFIG_FAIR_GROUP_SCHED
10860 static void task_set_group_fair(struct task_struct
*p
)
10862 struct sched_entity
*se
= &p
->se
;
10864 set_task_rq(p
, task_cpu(p
));
10865 se
->depth
= se
->parent
? se
->parent
->depth
+ 1 : 0;
10868 static void task_move_group_fair(struct task_struct
*p
)
10870 detach_task_cfs_rq(p
);
10871 set_task_rq(p
, task_cpu(p
));
10874 /* Tell se's cfs_rq has been changed -- migrated */
10875 p
->se
.avg
.last_update_time
= 0;
10877 attach_task_cfs_rq(p
);
10880 static void task_change_group_fair(struct task_struct
*p
, int type
)
10883 case TASK_SET_GROUP
:
10884 task_set_group_fair(p
);
10887 case TASK_MOVE_GROUP
:
10888 task_move_group_fair(p
);
10893 void free_fair_sched_group(struct task_group
*tg
)
10897 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg
));
10899 for_each_possible_cpu(i
) {
10901 kfree(tg
->cfs_rq
[i
]);
10910 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
10912 struct sched_entity
*se
;
10913 struct cfs_rq
*cfs_rq
;
10916 tg
->cfs_rq
= kcalloc(nr_cpu_ids
, sizeof(cfs_rq
), GFP_KERNEL
);
10919 tg
->se
= kcalloc(nr_cpu_ids
, sizeof(se
), GFP_KERNEL
);
10923 tg
->shares
= NICE_0_LOAD
;
10925 init_cfs_bandwidth(tg_cfs_bandwidth(tg
));
10927 for_each_possible_cpu(i
) {
10928 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
10929 GFP_KERNEL
, cpu_to_node(i
));
10933 se
= kzalloc_node(sizeof(struct sched_entity
),
10934 GFP_KERNEL
, cpu_to_node(i
));
10938 init_cfs_rq(cfs_rq
);
10939 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, parent
->se
[i
]);
10940 init_entity_runnable_average(se
);
10951 void online_fair_sched_group(struct task_group
*tg
)
10953 struct sched_entity
*se
;
10954 struct rq_flags rf
;
10958 for_each_possible_cpu(i
) {
10961 rq_lock_irq(rq
, &rf
);
10962 update_rq_clock(rq
);
10963 attach_entity_cfs_rq(se
);
10964 sync_throttle(tg
, i
);
10965 rq_unlock_irq(rq
, &rf
);
10969 void unregister_fair_sched_group(struct task_group
*tg
)
10971 unsigned long flags
;
10975 for_each_possible_cpu(cpu
) {
10977 remove_entity_load_avg(tg
->se
[cpu
]);
10980 * Only empty task groups can be destroyed; so we can speculatively
10981 * check on_list without danger of it being re-added.
10983 if (!tg
->cfs_rq
[cpu
]->on_list
)
10988 raw_spin_lock_irqsave(&rq
->lock
, flags
);
10989 list_del_leaf_cfs_rq(tg
->cfs_rq
[cpu
]);
10990 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
10994 void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
10995 struct sched_entity
*se
, int cpu
,
10996 struct sched_entity
*parent
)
10998 struct rq
*rq
= cpu_rq(cpu
);
11002 init_cfs_rq_runtime(cfs_rq
);
11004 tg
->cfs_rq
[cpu
] = cfs_rq
;
11007 /* se could be NULL for root_task_group */
11012 se
->cfs_rq
= &rq
->cfs
;
11015 se
->cfs_rq
= parent
->my_q
;
11016 se
->depth
= parent
->depth
+ 1;
11020 /* guarantee group entities always have weight */
11021 update_load_set(&se
->load
, NICE_0_LOAD
);
11022 se
->parent
= parent
;
11025 static DEFINE_MUTEX(shares_mutex
);
11027 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
11032 * We can't change the weight of the root cgroup.
11037 shares
= clamp(shares
, scale_load(MIN_SHARES
), scale_load(MAX_SHARES
));
11039 mutex_lock(&shares_mutex
);
11040 if (tg
->shares
== shares
)
11043 tg
->shares
= shares
;
11044 for_each_possible_cpu(i
) {
11045 struct rq
*rq
= cpu_rq(i
);
11046 struct sched_entity
*se
= tg
->se
[i
];
11047 struct rq_flags rf
;
11049 /* Propagate contribution to hierarchy */
11050 rq_lock_irqsave(rq
, &rf
);
11051 update_rq_clock(rq
);
11052 for_each_sched_entity(se
) {
11053 update_load_avg(cfs_rq_of(se
), se
, UPDATE_TG
);
11054 update_cfs_group(se
);
11056 rq_unlock_irqrestore(rq
, &rf
);
11060 mutex_unlock(&shares_mutex
);
11063 #else /* CONFIG_FAIR_GROUP_SCHED */
11065 void free_fair_sched_group(struct task_group
*tg
) { }
11067 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
11072 void online_fair_sched_group(struct task_group
*tg
) { }
11074 void unregister_fair_sched_group(struct task_group
*tg
) { }
11076 #endif /* CONFIG_FAIR_GROUP_SCHED */
11079 static unsigned int get_rr_interval_fair(struct rq
*rq
, struct task_struct
*task
)
11081 struct sched_entity
*se
= &task
->se
;
11082 unsigned int rr_interval
= 0;
11085 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11088 if (rq
->cfs
.load
.weight
)
11089 rr_interval
= NS_TO_JIFFIES(sched_slice(cfs_rq_of(se
), se
));
11091 return rr_interval
;
11095 * All the scheduling class methods:
11097 const struct sched_class fair_sched_class
= {
11098 .next
= &idle_sched_class
,
11099 .enqueue_task
= enqueue_task_fair
,
11100 .dequeue_task
= dequeue_task_fair
,
11101 .yield_task
= yield_task_fair
,
11102 .yield_to_task
= yield_to_task_fair
,
11104 .check_preempt_curr
= check_preempt_wakeup
,
11106 .pick_next_task
= __pick_next_task_fair
,
11107 .put_prev_task
= put_prev_task_fair
,
11108 .set_next_task
= set_next_task_fair
,
11111 .balance
= balance_fair
,
11112 .select_task_rq
= select_task_rq_fair
,
11113 .migrate_task_rq
= migrate_task_rq_fair
,
11115 .rq_online
= rq_online_fair
,
11116 .rq_offline
= rq_offline_fair
,
11118 .task_dead
= task_dead_fair
,
11119 .set_cpus_allowed
= set_cpus_allowed_common
,
11122 .task_tick
= task_tick_fair
,
11123 .task_fork
= task_fork_fair
,
11125 .prio_changed
= prio_changed_fair
,
11126 .switched_from
= switched_from_fair
,
11127 .switched_to
= switched_to_fair
,
11129 .get_rr_interval
= get_rr_interval_fair
,
11131 .update_curr
= update_curr_fair
,
11133 #ifdef CONFIG_FAIR_GROUP_SCHED
11134 .task_change_group
= task_change_group_fair
,
11137 #ifdef CONFIG_UCLAMP_TASK
11138 .uclamp_enabled
= 1,
11142 #ifdef CONFIG_SCHED_DEBUG
11143 void print_cfs_stats(struct seq_file
*m
, int cpu
)
11145 struct cfs_rq
*cfs_rq
, *pos
;
11148 for_each_leaf_cfs_rq_safe(cpu_rq(cpu
), cfs_rq
, pos
)
11149 print_cfs_rq(m
, cpu
, cfs_rq
);
11153 #ifdef CONFIG_NUMA_BALANCING
11154 void show_numa_stats(struct task_struct
*p
, struct seq_file
*m
)
11157 unsigned long tsf
= 0, tpf
= 0, gsf
= 0, gpf
= 0;
11158 struct numa_group
*ng
;
11161 ng
= rcu_dereference(p
->numa_group
);
11162 for_each_online_node(node
) {
11163 if (p
->numa_faults
) {
11164 tsf
= p
->numa_faults
[task_faults_idx(NUMA_MEM
, node
, 0)];
11165 tpf
= p
->numa_faults
[task_faults_idx(NUMA_MEM
, node
, 1)];
11168 gsf
= ng
->faults
[task_faults_idx(NUMA_MEM
, node
, 0)],
11169 gpf
= ng
->faults
[task_faults_idx(NUMA_MEM
, node
, 1)];
11171 print_numa_stats(m
, node
, tsf
, tpf
, gsf
, gpf
);
11175 #endif /* CONFIG_NUMA_BALANCING */
11176 #endif /* CONFIG_SCHED_DEBUG */
11178 __init
void init_sched_fair_class(void)
11181 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
11183 #ifdef CONFIG_NO_HZ_COMMON
11184 nohz
.next_balance
= jiffies
;
11185 nohz
.next_blocked
= jiffies
;
11186 zalloc_cpumask_var(&nohz
.idle_cpus_mask
, GFP_NOWAIT
);
11193 * Helper functions to facilitate extracting info from tracepoints.
11196 const struct sched_avg
*sched_trace_cfs_rq_avg(struct cfs_rq
*cfs_rq
)
11199 return cfs_rq
? &cfs_rq
->avg
: NULL
;
11204 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg
);
11206 char *sched_trace_cfs_rq_path(struct cfs_rq
*cfs_rq
, char *str
, int len
)
11210 strlcpy(str
, "(null)", len
);
11215 cfs_rq_tg_path(cfs_rq
, str
, len
);
11218 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path
);
11220 int sched_trace_cfs_rq_cpu(struct cfs_rq
*cfs_rq
)
11222 return cfs_rq
? cpu_of(rq_of(cfs_rq
)) : -1;
11224 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu
);
11226 const struct sched_avg
*sched_trace_rq_avg_rt(struct rq
*rq
)
11229 return rq
? &rq
->avg_rt
: NULL
;
11234 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt
);
11236 const struct sched_avg
*sched_trace_rq_avg_dl(struct rq
*rq
)
11239 return rq
? &rq
->avg_dl
: NULL
;
11244 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl
);
11246 const struct sched_avg
*sched_trace_rq_avg_irq(struct rq
*rq
)
11248 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11249 return rq
? &rq
->avg_irq
: NULL
;
11254 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq
);
11256 int sched_trace_rq_cpu(struct rq
*rq
)
11258 return rq
? cpu_of(rq
) : -1;
11260 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu
);
11262 const struct cpumask
*sched_trace_rd_span(struct root_domain
*rd
)
11265 return rd
? rd
->span
: NULL
;
11270 EXPORT_SYMBOL_GPL(sched_trace_rd_span
);