2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3 * Licensed under the GPL
4 * Derived (i.e. mostly copied) from arch/i386/kernel/irq.c:
5 * Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
8 #include <linux/cpumask.h>
9 #include <linux/hardirq.h>
10 #include <linux/interrupt.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/seq_file.h>
15 #include <linux/slab.h>
16 #include <as-layout.h>
17 #include <kern_util.h>
21 * This list is accessed under irq_lock, except in sigio_handler,
22 * where it is safe from being modified. IRQ handlers won't change it -
23 * if an IRQ source has vanished, it will be freed by free_irqs just
24 * before returning from sigio_handler. That will process a separate
25 * list of irqs to free, with its own locking, coming back here to
26 * remove list elements, taking the irq_lock to do so.
28 static struct irq_fd
*active_fds
= NULL
;
29 static struct irq_fd
**last_irq_ptr
= &active_fds
;
31 extern void free_irqs(void);
33 void sigio_handler(int sig
, struct siginfo
*unused_si
, struct uml_pt_regs
*regs
)
35 struct irq_fd
*irq_fd
;
39 n
= os_waiting_for_events(active_fds
);
46 for (irq_fd
= active_fds
; irq_fd
!= NULL
;
47 irq_fd
= irq_fd
->next
) {
48 if (irq_fd
->current_events
!= 0) {
49 irq_fd
->current_events
= 0;
50 do_IRQ(irq_fd
->irq
, regs
);
58 static DEFINE_SPINLOCK(irq_lock
);
60 static int activate_fd(int irq
, int fd
, int type
, void *dev_id
)
62 struct pollfd
*tmp_pfd
;
63 struct irq_fd
*new_fd
, *irq_fd
;
67 err
= os_set_fd_async(fd
);
72 new_fd
= kmalloc(sizeof(struct irq_fd
), GFP_KERNEL
);
77 events
= UM_POLLIN
| UM_POLLPRI
;
78 else events
= UM_POLLOUT
;
79 *new_fd
= ((struct irq_fd
) { .next
= NULL
,
85 .current_events
= 0 } );
88 spin_lock_irqsave(&irq_lock
, flags
);
89 for (irq_fd
= active_fds
; irq_fd
!= NULL
; irq_fd
= irq_fd
->next
) {
90 if ((irq_fd
->fd
== fd
) && (irq_fd
->type
== type
)) {
91 printk(KERN_ERR
"Registering fd %d twice\n", fd
);
92 printk(KERN_ERR
"Irqs : %d, %d\n", irq_fd
->irq
, irq
);
93 printk(KERN_ERR
"Ids : 0x%p, 0x%p\n", irq_fd
->id
,
99 if (type
== IRQ_WRITE
)
106 n
= os_create_pollfd(fd
, events
, tmp_pfd
, n
);
112 * It means we couldn't put new pollfd to current pollfds
113 * and tmp_fds is NULL or too small for new pollfds array.
114 * Needed size is equal to n as minimum.
116 * Here we have to drop the lock in order to call
117 * kmalloc, which might sleep.
118 * If something else came in and changed the pollfds array
119 * so we will not be able to put new pollfd struct to pollfds
120 * then we free the buffer tmp_fds and try again.
122 spin_unlock_irqrestore(&irq_lock
, flags
);
125 tmp_pfd
= kmalloc(n
, GFP_KERNEL
);
129 spin_lock_irqsave(&irq_lock
, flags
);
132 *last_irq_ptr
= new_fd
;
133 last_irq_ptr
= &new_fd
->next
;
135 spin_unlock_irqrestore(&irq_lock
, flags
);
138 * This calls activate_fd, so it has to be outside the critical
141 maybe_sigio_broken(fd
, (type
== IRQ_READ
));
146 spin_unlock_irqrestore(&irq_lock
, flags
);
153 static void free_irq_by_cb(int (*test
)(struct irq_fd
*, void *), void *arg
)
157 spin_lock_irqsave(&irq_lock
, flags
);
158 os_free_irq_by_cb(test
, arg
, active_fds
, &last_irq_ptr
);
159 spin_unlock_irqrestore(&irq_lock
, flags
);
167 static int same_irq_and_dev(struct irq_fd
*irq
, void *d
)
169 struct irq_and_dev
*data
= d
;
171 return ((irq
->irq
== data
->irq
) && (irq
->id
== data
->dev
));
174 static void free_irq_by_irq_and_dev(unsigned int irq
, void *dev
)
176 struct irq_and_dev data
= ((struct irq_and_dev
) { .irq
= irq
,
179 free_irq_by_cb(same_irq_and_dev
, &data
);
182 static int same_fd(struct irq_fd
*irq
, void *fd
)
184 return (irq
->fd
== *((int *)fd
));
187 void free_irq_by_fd(int fd
)
189 free_irq_by_cb(same_fd
, &fd
);
192 /* Must be called with irq_lock held */
193 static struct irq_fd
*find_irq_by_fd(int fd
, int irqnum
, int *index_out
)
199 for (irq
= active_fds
; irq
!= NULL
; irq
= irq
->next
) {
200 if ((irq
->fd
== fd
) && (irq
->irq
== irqnum
))
205 printk(KERN_ERR
"find_irq_by_fd doesn't have descriptor %d\n",
209 fdi
= os_get_pollfd(i
);
210 if ((fdi
!= -1) && (fdi
!= fd
)) {
211 printk(KERN_ERR
"find_irq_by_fd - mismatch between active_fds "
212 "and pollfds, fd %d vs %d, need %d\n", irq
->fd
,
222 void reactivate_fd(int fd
, int irqnum
)
228 spin_lock_irqsave(&irq_lock
, flags
);
229 irq
= find_irq_by_fd(fd
, irqnum
, &i
);
231 spin_unlock_irqrestore(&irq_lock
, flags
);
234 os_set_pollfd(i
, irq
->fd
);
235 spin_unlock_irqrestore(&irq_lock
, flags
);
240 void deactivate_fd(int fd
, int irqnum
)
246 spin_lock_irqsave(&irq_lock
, flags
);
247 irq
= find_irq_by_fd(fd
, irqnum
, &i
);
249 spin_unlock_irqrestore(&irq_lock
, flags
);
253 os_set_pollfd(i
, -1);
254 spin_unlock_irqrestore(&irq_lock
, flags
);
258 EXPORT_SYMBOL(deactivate_fd
);
261 * Called just before shutdown in order to provide a clean exec
262 * environment in case the system is rebooting. No locking because
263 * that would cause a pointless shutdown hang if something hadn't
266 int deactivate_all_fds(void)
271 for (irq
= active_fds
; irq
!= NULL
; irq
= irq
->next
) {
272 err
= os_clear_fd_async(irq
->fd
);
276 /* If there is a signal already queued, after unblocking ignore it */
283 * do_IRQ handles all normal device IRQs (the special
284 * SMP cross-CPU interrupts have their own specific
287 unsigned int do_IRQ(int irq
, struct uml_pt_regs
*regs
)
289 struct pt_regs
*old_regs
= set_irq_regs((struct pt_regs
*)regs
);
291 generic_handle_irq(irq
);
293 set_irq_regs(old_regs
);
297 void um_free_irq(unsigned int irq
, void *dev
)
299 free_irq_by_irq_and_dev(irq
, dev
);
302 EXPORT_SYMBOL(um_free_irq
);
304 int um_request_irq(unsigned int irq
, int fd
, int type
,
305 irq_handler_t handler
,
306 unsigned long irqflags
, const char * devname
,
312 err
= activate_fd(irq
, fd
, type
, dev_id
);
317 return request_irq(irq
, handler
, irqflags
, devname
, dev_id
);
320 EXPORT_SYMBOL(um_request_irq
);
321 EXPORT_SYMBOL(reactivate_fd
);
324 * irq_chip must define at least enable/disable and ack when
325 * the edge handler is used.
327 static void dummy(struct irq_data
*d
)
331 /* This is used for everything else than the timer. */
332 static struct irq_chip normal_irq_type
= {
334 .irq_disable
= dummy
,
341 static struct irq_chip SIGVTALRM_irq_type
= {
343 .irq_disable
= dummy
,
350 void __init
init_IRQ(void)
354 irq_set_chip_and_handler(TIMER_IRQ
, &SIGVTALRM_irq_type
, handle_edge_irq
);
356 for (i
= 1; i
< NR_IRQS
; i
++)
357 irq_set_chip_and_handler(i
, &normal_irq_type
, handle_edge_irq
);
361 * IRQ stack entry and exit:
363 * Unlike i386, UML doesn't receive IRQs on the normal kernel stack
364 * and switch over to the IRQ stack after some preparation. We use
365 * sigaltstack to receive signals on a separate stack from the start.
366 * These two functions make sure the rest of the kernel won't be too
367 * upset by being on a different stack. The IRQ stack has a
368 * thread_info structure at the bottom so that current et al continue
371 * to_irq_stack copies the current task's thread_info to the IRQ stack
372 * thread_info and sets the tasks's stack to point to the IRQ stack.
374 * from_irq_stack copies the thread_info struct back (flags may have
375 * been modified) and resets the task's stack pointer.
379 * What happens when two signals race each other? UML doesn't block
380 * signals with sigprocmask, SA_DEFER, or sa_mask, so a second signal
381 * could arrive while a previous one is still setting up the
384 * There are three cases -
385 * The first interrupt on the stack - sets up the thread_info and
386 * handles the interrupt
387 * A nested interrupt interrupting the copying of the thread_info -
388 * can't handle the interrupt, as the stack is in an unknown state
389 * A nested interrupt not interrupting the copying of the
390 * thread_info - doesn't do any setup, just handles the interrupt
392 * The first job is to figure out whether we interrupted stack setup.
393 * This is done by xchging the signal mask with thread_info->pending.
394 * If the value that comes back is zero, then there is no setup in
395 * progress, and the interrupt can be handled. If the value is
396 * non-zero, then there is stack setup in progress. In order to have
397 * the interrupt handled, we leave our signal in the mask, and it will
398 * be handled by the upper handler after it has set up the stack.
400 * Next is to figure out whether we are the outer handler or a nested
401 * one. As part of setting up the stack, thread_info->real_thread is
402 * set to non-NULL (and is reset to NULL on exit). This is the
403 * nesting indicator. If it is non-NULL, then the stack is already
404 * set up and the handler can run.
407 static unsigned long pending_mask
;
409 unsigned long to_irq_stack(unsigned long *mask_out
)
411 struct thread_info
*ti
;
412 unsigned long mask
, old
;
415 mask
= xchg(&pending_mask
, *mask_out
);
418 * If any interrupts come in at this point, we want to
419 * make sure that their bits aren't lost by our
420 * putting our bit in. So, this loop accumulates bits
421 * until xchg returns the same value that we put in.
422 * When that happens, there were no new interrupts,
423 * and pending_mask contains a bit for each interrupt
429 mask
= xchg(&pending_mask
, old
);
430 } while (mask
!= old
);
434 ti
= current_thread_info();
435 nested
= (ti
->real_thread
!= NULL
);
437 struct task_struct
*task
;
438 struct thread_info
*tti
;
440 task
= cpu_tasks
[ti
->cpu
].task
;
441 tti
= task_thread_info(task
);
444 ti
->real_thread
= tti
;
448 mask
= xchg(&pending_mask
, 0);
449 *mask_out
|= mask
| nested
;
453 unsigned long from_irq_stack(int nested
)
455 struct thread_info
*ti
, *to
;
458 ti
= current_thread_info();
462 to
= ti
->real_thread
;
464 ti
->real_thread
= NULL
;
467 mask
= xchg(&pending_mask
, 0);