2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
54 #include <asm/irq_regs.h>
56 typedef int (*remote_function_f
)(void *);
58 struct remote_function_call
{
59 struct task_struct
*p
;
60 remote_function_f func
;
65 static void remote_function(void *data
)
67 struct remote_function_call
*tfc
= data
;
68 struct task_struct
*p
= tfc
->p
;
72 if (task_cpu(p
) != smp_processor_id())
76 * Now that we're on right CPU with IRQs disabled, we can test
77 * if we hit the right task without races.
80 tfc
->ret
= -ESRCH
; /* No such (running) process */
85 tfc
->ret
= tfc
->func(tfc
->info
);
89 * task_function_call - call a function on the cpu on which a task runs
90 * @p: the task to evaluate
91 * @func: the function to be called
92 * @info: the function call argument
94 * Calls the function @func when the task is currently running. This might
95 * be on the current CPU, which just calls the function directly
97 * returns: @func return value, or
98 * -ESRCH - when the process isn't running
99 * -EAGAIN - when the process moved away
102 task_function_call(struct task_struct
*p
, remote_function_f func
, void *info
)
104 struct remote_function_call data
= {
113 ret
= smp_call_function_single(task_cpu(p
), remote_function
, &data
, 1);
116 } while (ret
== -EAGAIN
);
122 * cpu_function_call - call a function on the cpu
123 * @func: the function to be called
124 * @info: the function call argument
126 * Calls the function @func on the remote cpu.
128 * returns: @func return value or -ENXIO when the cpu is offline
130 static int cpu_function_call(int cpu
, remote_function_f func
, void *info
)
132 struct remote_function_call data
= {
136 .ret
= -ENXIO
, /* No such CPU */
139 smp_call_function_single(cpu
, remote_function
, &data
, 1);
144 static inline struct perf_cpu_context
*
145 __get_cpu_context(struct perf_event_context
*ctx
)
147 return this_cpu_ptr(ctx
->pmu
->pmu_cpu_context
);
150 static void perf_ctx_lock(struct perf_cpu_context
*cpuctx
,
151 struct perf_event_context
*ctx
)
153 raw_spin_lock(&cpuctx
->ctx
.lock
);
155 raw_spin_lock(&ctx
->lock
);
158 static void perf_ctx_unlock(struct perf_cpu_context
*cpuctx
,
159 struct perf_event_context
*ctx
)
162 raw_spin_unlock(&ctx
->lock
);
163 raw_spin_unlock(&cpuctx
->ctx
.lock
);
166 #define TASK_TOMBSTONE ((void *)-1L)
168 static bool is_kernel_event(struct perf_event
*event
)
170 return READ_ONCE(event
->owner
) == TASK_TOMBSTONE
;
174 * On task ctx scheduling...
176 * When !ctx->nr_events a task context will not be scheduled. This means
177 * we can disable the scheduler hooks (for performance) without leaving
178 * pending task ctx state.
180 * This however results in two special cases:
182 * - removing the last event from a task ctx; this is relatively straight
183 * forward and is done in __perf_remove_from_context.
185 * - adding the first event to a task ctx; this is tricky because we cannot
186 * rely on ctx->is_active and therefore cannot use event_function_call().
187 * See perf_install_in_context().
189 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192 typedef void (*event_f
)(struct perf_event
*, struct perf_cpu_context
*,
193 struct perf_event_context
*, void *);
195 struct event_function_struct
{
196 struct perf_event
*event
;
201 static int event_function(void *info
)
203 struct event_function_struct
*efs
= info
;
204 struct perf_event
*event
= efs
->event
;
205 struct perf_event_context
*ctx
= event
->ctx
;
206 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
207 struct perf_event_context
*task_ctx
= cpuctx
->task_ctx
;
210 WARN_ON_ONCE(!irqs_disabled());
212 perf_ctx_lock(cpuctx
, task_ctx
);
214 * Since we do the IPI call without holding ctx->lock things can have
215 * changed, double check we hit the task we set out to hit.
218 if (ctx
->task
!= current
) {
224 * We only use event_function_call() on established contexts,
225 * and event_function() is only ever called when active (or
226 * rather, we'll have bailed in task_function_call() or the
227 * above ctx->task != current test), therefore we must have
228 * ctx->is_active here.
230 WARN_ON_ONCE(!ctx
->is_active
);
232 * And since we have ctx->is_active, cpuctx->task_ctx must
235 WARN_ON_ONCE(task_ctx
!= ctx
);
237 WARN_ON_ONCE(&cpuctx
->ctx
!= ctx
);
240 efs
->func(event
, cpuctx
, ctx
, efs
->data
);
242 perf_ctx_unlock(cpuctx
, task_ctx
);
247 static void event_function_call(struct perf_event
*event
, event_f func
, void *data
)
249 struct perf_event_context
*ctx
= event
->ctx
;
250 struct task_struct
*task
= READ_ONCE(ctx
->task
); /* verified in event_function */
251 struct event_function_struct efs
= {
257 if (!event
->parent
) {
259 * If this is a !child event, we must hold ctx::mutex to
260 * stabilize the the event->ctx relation. See
261 * perf_event_ctx_lock().
263 lockdep_assert_held(&ctx
->mutex
);
267 cpu_function_call(event
->cpu
, event_function
, &efs
);
271 if (task
== TASK_TOMBSTONE
)
275 if (!task_function_call(task
, event_function
, &efs
))
278 raw_spin_lock_irq(&ctx
->lock
);
280 * Reload the task pointer, it might have been changed by
281 * a concurrent perf_event_context_sched_out().
284 if (task
== TASK_TOMBSTONE
) {
285 raw_spin_unlock_irq(&ctx
->lock
);
288 if (ctx
->is_active
) {
289 raw_spin_unlock_irq(&ctx
->lock
);
292 func(event
, NULL
, ctx
, data
);
293 raw_spin_unlock_irq(&ctx
->lock
);
297 * Similar to event_function_call() + event_function(), but hard assumes IRQs
298 * are already disabled and we're on the right CPU.
300 static void event_function_local(struct perf_event
*event
, event_f func
, void *data
)
302 struct perf_event_context
*ctx
= event
->ctx
;
303 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
304 struct task_struct
*task
= READ_ONCE(ctx
->task
);
305 struct perf_event_context
*task_ctx
= NULL
;
307 WARN_ON_ONCE(!irqs_disabled());
310 if (task
== TASK_TOMBSTONE
)
316 perf_ctx_lock(cpuctx
, task_ctx
);
319 if (task
== TASK_TOMBSTONE
)
324 * We must be either inactive or active and the right task,
325 * otherwise we're screwed, since we cannot IPI to somewhere
328 if (ctx
->is_active
) {
329 if (WARN_ON_ONCE(task
!= current
))
332 if (WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
))
336 WARN_ON_ONCE(&cpuctx
->ctx
!= ctx
);
339 func(event
, cpuctx
, ctx
, data
);
341 perf_ctx_unlock(cpuctx
, task_ctx
);
344 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
345 PERF_FLAG_FD_OUTPUT |\
346 PERF_FLAG_PID_CGROUP |\
347 PERF_FLAG_FD_CLOEXEC)
350 * branch priv levels that need permission checks
352 #define PERF_SAMPLE_BRANCH_PERM_PLM \
353 (PERF_SAMPLE_BRANCH_KERNEL |\
354 PERF_SAMPLE_BRANCH_HV)
357 EVENT_FLEXIBLE
= 0x1,
360 /* see ctx_resched() for details */
362 EVENT_ALL
= EVENT_FLEXIBLE
| EVENT_PINNED
,
366 * perf_sched_events : >0 events exist
367 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370 static void perf_sched_delayed(struct work_struct
*work
);
371 DEFINE_STATIC_KEY_FALSE(perf_sched_events
);
372 static DECLARE_DELAYED_WORK(perf_sched_work
, perf_sched_delayed
);
373 static DEFINE_MUTEX(perf_sched_mutex
);
374 static atomic_t perf_sched_count
;
376 static DEFINE_PER_CPU(atomic_t
, perf_cgroup_events
);
377 static DEFINE_PER_CPU(int, perf_sched_cb_usages
);
378 static DEFINE_PER_CPU(struct pmu_event_list
, pmu_sb_events
);
380 static atomic_t nr_mmap_events __read_mostly
;
381 static atomic_t nr_comm_events __read_mostly
;
382 static atomic_t nr_task_events __read_mostly
;
383 static atomic_t nr_freq_events __read_mostly
;
384 static atomic_t nr_switch_events __read_mostly
;
386 static LIST_HEAD(pmus
);
387 static DEFINE_MUTEX(pmus_lock
);
388 static struct srcu_struct pmus_srcu
;
391 * perf event paranoia level:
392 * -1 - not paranoid at all
393 * 0 - disallow raw tracepoint access for unpriv
394 * 1 - disallow cpu events for unpriv
395 * 2 - disallow kernel profiling for unpriv
397 int sysctl_perf_event_paranoid __read_mostly
= 2;
399 /* Minimum for 512 kiB + 1 user control page */
400 int sysctl_perf_event_mlock __read_mostly
= 512 + (PAGE_SIZE
/ 1024); /* 'free' kiB per user */
403 * max perf event sample rate
405 #define DEFAULT_MAX_SAMPLE_RATE 100000
406 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
407 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
409 int sysctl_perf_event_sample_rate __read_mostly
= DEFAULT_MAX_SAMPLE_RATE
;
411 static int max_samples_per_tick __read_mostly
= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE
, HZ
);
412 static int perf_sample_period_ns __read_mostly
= DEFAULT_SAMPLE_PERIOD_NS
;
414 static int perf_sample_allowed_ns __read_mostly
=
415 DEFAULT_SAMPLE_PERIOD_NS
* DEFAULT_CPU_TIME_MAX_PERCENT
/ 100;
417 static void update_perf_cpu_limits(void)
419 u64 tmp
= perf_sample_period_ns
;
421 tmp
*= sysctl_perf_cpu_time_max_percent
;
422 tmp
= div_u64(tmp
, 100);
426 WRITE_ONCE(perf_sample_allowed_ns
, tmp
);
429 static int perf_rotate_context(struct perf_cpu_context
*cpuctx
);
431 int perf_proc_update_handler(struct ctl_table
*table
, int write
,
432 void __user
*buffer
, size_t *lenp
,
435 int ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
441 * If throttling is disabled don't allow the write:
443 if (sysctl_perf_cpu_time_max_percent
== 100 ||
444 sysctl_perf_cpu_time_max_percent
== 0)
447 max_samples_per_tick
= DIV_ROUND_UP(sysctl_perf_event_sample_rate
, HZ
);
448 perf_sample_period_ns
= NSEC_PER_SEC
/ sysctl_perf_event_sample_rate
;
449 update_perf_cpu_limits();
454 int sysctl_perf_cpu_time_max_percent __read_mostly
= DEFAULT_CPU_TIME_MAX_PERCENT
;
456 int perf_cpu_time_max_percent_handler(struct ctl_table
*table
, int write
,
457 void __user
*buffer
, size_t *lenp
,
460 int ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
465 if (sysctl_perf_cpu_time_max_percent
== 100 ||
466 sysctl_perf_cpu_time_max_percent
== 0) {
468 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
469 WRITE_ONCE(perf_sample_allowed_ns
, 0);
471 update_perf_cpu_limits();
478 * perf samples are done in some very critical code paths (NMIs).
479 * If they take too much CPU time, the system can lock up and not
480 * get any real work done. This will drop the sample rate when
481 * we detect that events are taking too long.
483 #define NR_ACCUMULATED_SAMPLES 128
484 static DEFINE_PER_CPU(u64
, running_sample_length
);
486 static u64 __report_avg
;
487 static u64 __report_allowed
;
489 static void perf_duration_warn(struct irq_work
*w
)
491 printk_ratelimited(KERN_INFO
492 "perf: interrupt took too long (%lld > %lld), lowering "
493 "kernel.perf_event_max_sample_rate to %d\n",
494 __report_avg
, __report_allowed
,
495 sysctl_perf_event_sample_rate
);
498 static DEFINE_IRQ_WORK(perf_duration_work
, perf_duration_warn
);
500 void perf_sample_event_took(u64 sample_len_ns
)
502 u64 max_len
= READ_ONCE(perf_sample_allowed_ns
);
510 /* Decay the counter by 1 average sample. */
511 running_len
= __this_cpu_read(running_sample_length
);
512 running_len
-= running_len
/NR_ACCUMULATED_SAMPLES
;
513 running_len
+= sample_len_ns
;
514 __this_cpu_write(running_sample_length
, running_len
);
517 * Note: this will be biased artifically low until we have
518 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
519 * from having to maintain a count.
521 avg_len
= running_len
/NR_ACCUMULATED_SAMPLES
;
522 if (avg_len
<= max_len
)
525 __report_avg
= avg_len
;
526 __report_allowed
= max_len
;
529 * Compute a throttle threshold 25% below the current duration.
531 avg_len
+= avg_len
/ 4;
532 max
= (TICK_NSEC
/ 100) * sysctl_perf_cpu_time_max_percent
;
538 WRITE_ONCE(perf_sample_allowed_ns
, avg_len
);
539 WRITE_ONCE(max_samples_per_tick
, max
);
541 sysctl_perf_event_sample_rate
= max
* HZ
;
542 perf_sample_period_ns
= NSEC_PER_SEC
/ sysctl_perf_event_sample_rate
;
544 if (!irq_work_queue(&perf_duration_work
)) {
545 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
546 "kernel.perf_event_max_sample_rate to %d\n",
547 __report_avg
, __report_allowed
,
548 sysctl_perf_event_sample_rate
);
552 static atomic64_t perf_event_id
;
554 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
555 enum event_type_t event_type
);
557 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
558 enum event_type_t event_type
,
559 struct task_struct
*task
);
561 static void update_context_time(struct perf_event_context
*ctx
);
562 static u64
perf_event_time(struct perf_event
*event
);
564 void __weak
perf_event_print_debug(void) { }
566 extern __weak
const char *perf_pmu_name(void)
571 static inline u64
perf_clock(void)
573 return local_clock();
576 static inline u64
perf_event_clock(struct perf_event
*event
)
578 return event
->clock();
581 #ifdef CONFIG_CGROUP_PERF
584 perf_cgroup_match(struct perf_event
*event
)
586 struct perf_event_context
*ctx
= event
->ctx
;
587 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
589 /* @event doesn't care about cgroup */
593 /* wants specific cgroup scope but @cpuctx isn't associated with any */
598 * Cgroup scoping is recursive. An event enabled for a cgroup is
599 * also enabled for all its descendant cgroups. If @cpuctx's
600 * cgroup is a descendant of @event's (the test covers identity
601 * case), it's a match.
603 return cgroup_is_descendant(cpuctx
->cgrp
->css
.cgroup
,
604 event
->cgrp
->css
.cgroup
);
607 static inline void perf_detach_cgroup(struct perf_event
*event
)
609 css_put(&event
->cgrp
->css
);
613 static inline int is_cgroup_event(struct perf_event
*event
)
615 return event
->cgrp
!= NULL
;
618 static inline u64
perf_cgroup_event_time(struct perf_event
*event
)
620 struct perf_cgroup_info
*t
;
622 t
= per_cpu_ptr(event
->cgrp
->info
, event
->cpu
);
626 static inline void __update_cgrp_time(struct perf_cgroup
*cgrp
)
628 struct perf_cgroup_info
*info
;
633 info
= this_cpu_ptr(cgrp
->info
);
635 info
->time
+= now
- info
->timestamp
;
636 info
->timestamp
= now
;
639 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context
*cpuctx
)
641 struct perf_cgroup
*cgrp_out
= cpuctx
->cgrp
;
643 __update_cgrp_time(cgrp_out
);
646 static inline void update_cgrp_time_from_event(struct perf_event
*event
)
648 struct perf_cgroup
*cgrp
;
651 * ensure we access cgroup data only when needed and
652 * when we know the cgroup is pinned (css_get)
654 if (!is_cgroup_event(event
))
657 cgrp
= perf_cgroup_from_task(current
, event
->ctx
);
659 * Do not update time when cgroup is not active
661 if (cgrp
== event
->cgrp
)
662 __update_cgrp_time(event
->cgrp
);
666 perf_cgroup_set_timestamp(struct task_struct
*task
,
667 struct perf_event_context
*ctx
)
669 struct perf_cgroup
*cgrp
;
670 struct perf_cgroup_info
*info
;
673 * ctx->lock held by caller
674 * ensure we do not access cgroup data
675 * unless we have the cgroup pinned (css_get)
677 if (!task
|| !ctx
->nr_cgroups
)
680 cgrp
= perf_cgroup_from_task(task
, ctx
);
681 info
= this_cpu_ptr(cgrp
->info
);
682 info
->timestamp
= ctx
->timestamp
;
685 static DEFINE_PER_CPU(struct list_head
, cgrp_cpuctx_list
);
687 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
688 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
691 * reschedule events based on the cgroup constraint of task.
693 * mode SWOUT : schedule out everything
694 * mode SWIN : schedule in based on cgroup for next
696 static void perf_cgroup_switch(struct task_struct
*task
, int mode
)
698 struct perf_cpu_context
*cpuctx
;
699 struct list_head
*list
;
703 * Disable interrupts and preemption to avoid this CPU's
704 * cgrp_cpuctx_entry to change under us.
706 local_irq_save(flags
);
708 list
= this_cpu_ptr(&cgrp_cpuctx_list
);
709 list_for_each_entry(cpuctx
, list
, cgrp_cpuctx_entry
) {
710 WARN_ON_ONCE(cpuctx
->ctx
.nr_cgroups
== 0);
712 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
713 perf_pmu_disable(cpuctx
->ctx
.pmu
);
715 if (mode
& PERF_CGROUP_SWOUT
) {
716 cpu_ctx_sched_out(cpuctx
, EVENT_ALL
);
718 * must not be done before ctxswout due
719 * to event_filter_match() in event_sched_out()
724 if (mode
& PERF_CGROUP_SWIN
) {
725 WARN_ON_ONCE(cpuctx
->cgrp
);
727 * set cgrp before ctxsw in to allow
728 * event_filter_match() to not have to pass
730 * we pass the cpuctx->ctx to perf_cgroup_from_task()
731 * because cgorup events are only per-cpu
733 cpuctx
->cgrp
= perf_cgroup_from_task(task
,
735 cpu_ctx_sched_in(cpuctx
, EVENT_ALL
, task
);
737 perf_pmu_enable(cpuctx
->ctx
.pmu
);
738 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
741 local_irq_restore(flags
);
744 static inline void perf_cgroup_sched_out(struct task_struct
*task
,
745 struct task_struct
*next
)
747 struct perf_cgroup
*cgrp1
;
748 struct perf_cgroup
*cgrp2
= NULL
;
752 * we come here when we know perf_cgroup_events > 0
753 * we do not need to pass the ctx here because we know
754 * we are holding the rcu lock
756 cgrp1
= perf_cgroup_from_task(task
, NULL
);
757 cgrp2
= perf_cgroup_from_task(next
, NULL
);
760 * only schedule out current cgroup events if we know
761 * that we are switching to a different cgroup. Otherwise,
762 * do no touch the cgroup events.
765 perf_cgroup_switch(task
, PERF_CGROUP_SWOUT
);
770 static inline void perf_cgroup_sched_in(struct task_struct
*prev
,
771 struct task_struct
*task
)
773 struct perf_cgroup
*cgrp1
;
774 struct perf_cgroup
*cgrp2
= NULL
;
778 * we come here when we know perf_cgroup_events > 0
779 * we do not need to pass the ctx here because we know
780 * we are holding the rcu lock
782 cgrp1
= perf_cgroup_from_task(task
, NULL
);
783 cgrp2
= perf_cgroup_from_task(prev
, NULL
);
786 * only need to schedule in cgroup events if we are changing
787 * cgroup during ctxsw. Cgroup events were not scheduled
788 * out of ctxsw out if that was not the case.
791 perf_cgroup_switch(task
, PERF_CGROUP_SWIN
);
796 static inline int perf_cgroup_connect(int fd
, struct perf_event
*event
,
797 struct perf_event_attr
*attr
,
798 struct perf_event
*group_leader
)
800 struct perf_cgroup
*cgrp
;
801 struct cgroup_subsys_state
*css
;
802 struct fd f
= fdget(fd
);
808 css
= css_tryget_online_from_dir(f
.file
->f_path
.dentry
,
809 &perf_event_cgrp_subsys
);
815 cgrp
= container_of(css
, struct perf_cgroup
, css
);
819 * all events in a group must monitor
820 * the same cgroup because a task belongs
821 * to only one perf cgroup at a time
823 if (group_leader
&& group_leader
->cgrp
!= cgrp
) {
824 perf_detach_cgroup(event
);
833 perf_cgroup_set_shadow_time(struct perf_event
*event
, u64 now
)
835 struct perf_cgroup_info
*t
;
836 t
= per_cpu_ptr(event
->cgrp
->info
, event
->cpu
);
837 event
->shadow_ctx_time
= now
- t
->timestamp
;
841 perf_cgroup_defer_enabled(struct perf_event
*event
)
844 * when the current task's perf cgroup does not match
845 * the event's, we need to remember to call the
846 * perf_mark_enable() function the first time a task with
847 * a matching perf cgroup is scheduled in.
849 if (is_cgroup_event(event
) && !perf_cgroup_match(event
))
850 event
->cgrp_defer_enabled
= 1;
854 perf_cgroup_mark_enabled(struct perf_event
*event
,
855 struct perf_event_context
*ctx
)
857 struct perf_event
*sub
;
858 u64 tstamp
= perf_event_time(event
);
860 if (!event
->cgrp_defer_enabled
)
863 event
->cgrp_defer_enabled
= 0;
865 event
->tstamp_enabled
= tstamp
- event
->total_time_enabled
;
866 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
867 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
) {
868 sub
->tstamp_enabled
= tstamp
- sub
->total_time_enabled
;
869 sub
->cgrp_defer_enabled
= 0;
875 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
876 * cleared when last cgroup event is removed.
879 list_update_cgroup_event(struct perf_event
*event
,
880 struct perf_event_context
*ctx
, bool add
)
882 struct perf_cpu_context
*cpuctx
;
883 struct list_head
*cpuctx_entry
;
885 if (!is_cgroup_event(event
))
888 if (add
&& ctx
->nr_cgroups
++)
890 else if (!add
&& --ctx
->nr_cgroups
)
893 * Because cgroup events are always per-cpu events,
894 * this will always be called from the right CPU.
896 cpuctx
= __get_cpu_context(ctx
);
897 cpuctx_entry
= &cpuctx
->cgrp_cpuctx_entry
;
898 /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
900 list_add(cpuctx_entry
, this_cpu_ptr(&cgrp_cpuctx_list
));
901 if (perf_cgroup_from_task(current
, ctx
) == event
->cgrp
)
902 cpuctx
->cgrp
= event
->cgrp
;
904 list_del(cpuctx_entry
);
909 #else /* !CONFIG_CGROUP_PERF */
912 perf_cgroup_match(struct perf_event
*event
)
917 static inline void perf_detach_cgroup(struct perf_event
*event
)
920 static inline int is_cgroup_event(struct perf_event
*event
)
925 static inline u64
perf_cgroup_event_cgrp_time(struct perf_event
*event
)
930 static inline void update_cgrp_time_from_event(struct perf_event
*event
)
934 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context
*cpuctx
)
938 static inline void perf_cgroup_sched_out(struct task_struct
*task
,
939 struct task_struct
*next
)
943 static inline void perf_cgroup_sched_in(struct task_struct
*prev
,
944 struct task_struct
*task
)
948 static inline int perf_cgroup_connect(pid_t pid
, struct perf_event
*event
,
949 struct perf_event_attr
*attr
,
950 struct perf_event
*group_leader
)
956 perf_cgroup_set_timestamp(struct task_struct
*task
,
957 struct perf_event_context
*ctx
)
962 perf_cgroup_switch(struct task_struct
*task
, struct task_struct
*next
)
967 perf_cgroup_set_shadow_time(struct perf_event
*event
, u64 now
)
971 static inline u64
perf_cgroup_event_time(struct perf_event
*event
)
977 perf_cgroup_defer_enabled(struct perf_event
*event
)
982 perf_cgroup_mark_enabled(struct perf_event
*event
,
983 struct perf_event_context
*ctx
)
988 list_update_cgroup_event(struct perf_event
*event
,
989 struct perf_event_context
*ctx
, bool add
)
996 * set default to be dependent on timer tick just
999 #define PERF_CPU_HRTIMER (1000 / HZ)
1001 * function must be called with interrupts disabled
1003 static enum hrtimer_restart
perf_mux_hrtimer_handler(struct hrtimer
*hr
)
1005 struct perf_cpu_context
*cpuctx
;
1008 WARN_ON(!irqs_disabled());
1010 cpuctx
= container_of(hr
, struct perf_cpu_context
, hrtimer
);
1011 rotations
= perf_rotate_context(cpuctx
);
1013 raw_spin_lock(&cpuctx
->hrtimer_lock
);
1015 hrtimer_forward_now(hr
, cpuctx
->hrtimer_interval
);
1017 cpuctx
->hrtimer_active
= 0;
1018 raw_spin_unlock(&cpuctx
->hrtimer_lock
);
1020 return rotations
? HRTIMER_RESTART
: HRTIMER_NORESTART
;
1023 static void __perf_mux_hrtimer_init(struct perf_cpu_context
*cpuctx
, int cpu
)
1025 struct hrtimer
*timer
= &cpuctx
->hrtimer
;
1026 struct pmu
*pmu
= cpuctx
->ctx
.pmu
;
1029 /* no multiplexing needed for SW PMU */
1030 if (pmu
->task_ctx_nr
== perf_sw_context
)
1034 * check default is sane, if not set then force to
1035 * default interval (1/tick)
1037 interval
= pmu
->hrtimer_interval_ms
;
1039 interval
= pmu
->hrtimer_interval_ms
= PERF_CPU_HRTIMER
;
1041 cpuctx
->hrtimer_interval
= ns_to_ktime(NSEC_PER_MSEC
* interval
);
1043 raw_spin_lock_init(&cpuctx
->hrtimer_lock
);
1044 hrtimer_init(timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS_PINNED
);
1045 timer
->function
= perf_mux_hrtimer_handler
;
1048 static int perf_mux_hrtimer_restart(struct perf_cpu_context
*cpuctx
)
1050 struct hrtimer
*timer
= &cpuctx
->hrtimer
;
1051 struct pmu
*pmu
= cpuctx
->ctx
.pmu
;
1052 unsigned long flags
;
1054 /* not for SW PMU */
1055 if (pmu
->task_ctx_nr
== perf_sw_context
)
1058 raw_spin_lock_irqsave(&cpuctx
->hrtimer_lock
, flags
);
1059 if (!cpuctx
->hrtimer_active
) {
1060 cpuctx
->hrtimer_active
= 1;
1061 hrtimer_forward_now(timer
, cpuctx
->hrtimer_interval
);
1062 hrtimer_start_expires(timer
, HRTIMER_MODE_ABS_PINNED
);
1064 raw_spin_unlock_irqrestore(&cpuctx
->hrtimer_lock
, flags
);
1069 void perf_pmu_disable(struct pmu
*pmu
)
1071 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
1073 pmu
->pmu_disable(pmu
);
1076 void perf_pmu_enable(struct pmu
*pmu
)
1078 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
1080 pmu
->pmu_enable(pmu
);
1083 static DEFINE_PER_CPU(struct list_head
, active_ctx_list
);
1086 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1087 * perf_event_task_tick() are fully serialized because they're strictly cpu
1088 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1089 * disabled, while perf_event_task_tick is called from IRQ context.
1091 static void perf_event_ctx_activate(struct perf_event_context
*ctx
)
1093 struct list_head
*head
= this_cpu_ptr(&active_ctx_list
);
1095 WARN_ON(!irqs_disabled());
1097 WARN_ON(!list_empty(&ctx
->active_ctx_list
));
1099 list_add(&ctx
->active_ctx_list
, head
);
1102 static void perf_event_ctx_deactivate(struct perf_event_context
*ctx
)
1104 WARN_ON(!irqs_disabled());
1106 WARN_ON(list_empty(&ctx
->active_ctx_list
));
1108 list_del_init(&ctx
->active_ctx_list
);
1111 static void get_ctx(struct perf_event_context
*ctx
)
1113 WARN_ON(!atomic_inc_not_zero(&ctx
->refcount
));
1116 static void free_ctx(struct rcu_head
*head
)
1118 struct perf_event_context
*ctx
;
1120 ctx
= container_of(head
, struct perf_event_context
, rcu_head
);
1121 kfree(ctx
->task_ctx_data
);
1125 static void put_ctx(struct perf_event_context
*ctx
)
1127 if (atomic_dec_and_test(&ctx
->refcount
)) {
1128 if (ctx
->parent_ctx
)
1129 put_ctx(ctx
->parent_ctx
);
1130 if (ctx
->task
&& ctx
->task
!= TASK_TOMBSTONE
)
1131 put_task_struct(ctx
->task
);
1132 call_rcu(&ctx
->rcu_head
, free_ctx
);
1137 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1138 * perf_pmu_migrate_context() we need some magic.
1140 * Those places that change perf_event::ctx will hold both
1141 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1143 * Lock ordering is by mutex address. There are two other sites where
1144 * perf_event_context::mutex nests and those are:
1146 * - perf_event_exit_task_context() [ child , 0 ]
1147 * perf_event_exit_event()
1148 * put_event() [ parent, 1 ]
1150 * - perf_event_init_context() [ parent, 0 ]
1151 * inherit_task_group()
1154 * perf_event_alloc()
1156 * perf_try_init_event() [ child , 1 ]
1158 * While it appears there is an obvious deadlock here -- the parent and child
1159 * nesting levels are inverted between the two. This is in fact safe because
1160 * life-time rules separate them. That is an exiting task cannot fork, and a
1161 * spawning task cannot (yet) exit.
1163 * But remember that that these are parent<->child context relations, and
1164 * migration does not affect children, therefore these two orderings should not
1167 * The change in perf_event::ctx does not affect children (as claimed above)
1168 * because the sys_perf_event_open() case will install a new event and break
1169 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1170 * concerned with cpuctx and that doesn't have children.
1172 * The places that change perf_event::ctx will issue:
1174 * perf_remove_from_context();
1175 * synchronize_rcu();
1176 * perf_install_in_context();
1178 * to affect the change. The remove_from_context() + synchronize_rcu() should
1179 * quiesce the event, after which we can install it in the new location. This
1180 * means that only external vectors (perf_fops, prctl) can perturb the event
1181 * while in transit. Therefore all such accessors should also acquire
1182 * perf_event_context::mutex to serialize against this.
1184 * However; because event->ctx can change while we're waiting to acquire
1185 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1190 * task_struct::perf_event_mutex
1191 * perf_event_context::mutex
1192 * perf_event::child_mutex;
1193 * perf_event_context::lock
1194 * perf_event::mmap_mutex
1197 static struct perf_event_context
*
1198 perf_event_ctx_lock_nested(struct perf_event
*event
, int nesting
)
1200 struct perf_event_context
*ctx
;
1204 ctx
= ACCESS_ONCE(event
->ctx
);
1205 if (!atomic_inc_not_zero(&ctx
->refcount
)) {
1211 mutex_lock_nested(&ctx
->mutex
, nesting
);
1212 if (event
->ctx
!= ctx
) {
1213 mutex_unlock(&ctx
->mutex
);
1221 static inline struct perf_event_context
*
1222 perf_event_ctx_lock(struct perf_event
*event
)
1224 return perf_event_ctx_lock_nested(event
, 0);
1227 static void perf_event_ctx_unlock(struct perf_event
*event
,
1228 struct perf_event_context
*ctx
)
1230 mutex_unlock(&ctx
->mutex
);
1235 * This must be done under the ctx->lock, such as to serialize against
1236 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1237 * calling scheduler related locks and ctx->lock nests inside those.
1239 static __must_check
struct perf_event_context
*
1240 unclone_ctx(struct perf_event_context
*ctx
)
1242 struct perf_event_context
*parent_ctx
= ctx
->parent_ctx
;
1244 lockdep_assert_held(&ctx
->lock
);
1247 ctx
->parent_ctx
= NULL
;
1253 static u32
perf_event_pid(struct perf_event
*event
, struct task_struct
*p
)
1256 * only top level events have the pid namespace they were created in
1259 event
= event
->parent
;
1261 return task_tgid_nr_ns(p
, event
->ns
);
1264 static u32
perf_event_tid(struct perf_event
*event
, struct task_struct
*p
)
1267 * only top level events have the pid namespace they were created in
1270 event
= event
->parent
;
1272 return task_pid_nr_ns(p
, event
->ns
);
1276 * If we inherit events we want to return the parent event id
1279 static u64
primary_event_id(struct perf_event
*event
)
1284 id
= event
->parent
->id
;
1290 * Get the perf_event_context for a task and lock it.
1292 * This has to cope with with the fact that until it is locked,
1293 * the context could get moved to another task.
1295 static struct perf_event_context
*
1296 perf_lock_task_context(struct task_struct
*task
, int ctxn
, unsigned long *flags
)
1298 struct perf_event_context
*ctx
;
1302 * One of the few rules of preemptible RCU is that one cannot do
1303 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1304 * part of the read side critical section was irqs-enabled -- see
1305 * rcu_read_unlock_special().
1307 * Since ctx->lock nests under rq->lock we must ensure the entire read
1308 * side critical section has interrupts disabled.
1310 local_irq_save(*flags
);
1312 ctx
= rcu_dereference(task
->perf_event_ctxp
[ctxn
]);
1315 * If this context is a clone of another, it might
1316 * get swapped for another underneath us by
1317 * perf_event_task_sched_out, though the
1318 * rcu_read_lock() protects us from any context
1319 * getting freed. Lock the context and check if it
1320 * got swapped before we could get the lock, and retry
1321 * if so. If we locked the right context, then it
1322 * can't get swapped on us any more.
1324 raw_spin_lock(&ctx
->lock
);
1325 if (ctx
!= rcu_dereference(task
->perf_event_ctxp
[ctxn
])) {
1326 raw_spin_unlock(&ctx
->lock
);
1328 local_irq_restore(*flags
);
1332 if (ctx
->task
== TASK_TOMBSTONE
||
1333 !atomic_inc_not_zero(&ctx
->refcount
)) {
1334 raw_spin_unlock(&ctx
->lock
);
1337 WARN_ON_ONCE(ctx
->task
!= task
);
1342 local_irq_restore(*flags
);
1347 * Get the context for a task and increment its pin_count so it
1348 * can't get swapped to another task. This also increments its
1349 * reference count so that the context can't get freed.
1351 static struct perf_event_context
*
1352 perf_pin_task_context(struct task_struct
*task
, int ctxn
)
1354 struct perf_event_context
*ctx
;
1355 unsigned long flags
;
1357 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
1360 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1365 static void perf_unpin_context(struct perf_event_context
*ctx
)
1367 unsigned long flags
;
1369 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
1371 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1375 * Update the record of the current time in a context.
1377 static void update_context_time(struct perf_event_context
*ctx
)
1379 u64 now
= perf_clock();
1381 ctx
->time
+= now
- ctx
->timestamp
;
1382 ctx
->timestamp
= now
;
1385 static u64
perf_event_time(struct perf_event
*event
)
1387 struct perf_event_context
*ctx
= event
->ctx
;
1389 if (is_cgroup_event(event
))
1390 return perf_cgroup_event_time(event
);
1392 return ctx
? ctx
->time
: 0;
1396 * Update the total_time_enabled and total_time_running fields for a event.
1398 static void update_event_times(struct perf_event
*event
)
1400 struct perf_event_context
*ctx
= event
->ctx
;
1403 lockdep_assert_held(&ctx
->lock
);
1405 if (event
->state
< PERF_EVENT_STATE_INACTIVE
||
1406 event
->group_leader
->state
< PERF_EVENT_STATE_INACTIVE
)
1410 * in cgroup mode, time_enabled represents
1411 * the time the event was enabled AND active
1412 * tasks were in the monitored cgroup. This is
1413 * independent of the activity of the context as
1414 * there may be a mix of cgroup and non-cgroup events.
1416 * That is why we treat cgroup events differently
1419 if (is_cgroup_event(event
))
1420 run_end
= perf_cgroup_event_time(event
);
1421 else if (ctx
->is_active
)
1422 run_end
= ctx
->time
;
1424 run_end
= event
->tstamp_stopped
;
1426 event
->total_time_enabled
= run_end
- event
->tstamp_enabled
;
1428 if (event
->state
== PERF_EVENT_STATE_INACTIVE
)
1429 run_end
= event
->tstamp_stopped
;
1431 run_end
= perf_event_time(event
);
1433 event
->total_time_running
= run_end
- event
->tstamp_running
;
1438 * Update total_time_enabled and total_time_running for all events in a group.
1440 static void update_group_times(struct perf_event
*leader
)
1442 struct perf_event
*event
;
1444 update_event_times(leader
);
1445 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
)
1446 update_event_times(event
);
1449 static enum event_type_t
get_event_type(struct perf_event
*event
)
1451 struct perf_event_context
*ctx
= event
->ctx
;
1452 enum event_type_t event_type
;
1454 lockdep_assert_held(&ctx
->lock
);
1456 event_type
= event
->attr
.pinned
? EVENT_PINNED
: EVENT_FLEXIBLE
;
1458 event_type
|= EVENT_CPU
;
1463 static struct list_head
*
1464 ctx_group_list(struct perf_event
*event
, struct perf_event_context
*ctx
)
1466 if (event
->attr
.pinned
)
1467 return &ctx
->pinned_groups
;
1469 return &ctx
->flexible_groups
;
1473 * Add a event from the lists for its context.
1474 * Must be called with ctx->mutex and ctx->lock held.
1477 list_add_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
1479 lockdep_assert_held(&ctx
->lock
);
1481 WARN_ON_ONCE(event
->attach_state
& PERF_ATTACH_CONTEXT
);
1482 event
->attach_state
|= PERF_ATTACH_CONTEXT
;
1485 * If we're a stand alone event or group leader, we go to the context
1486 * list, group events are kept attached to the group so that
1487 * perf_group_detach can, at all times, locate all siblings.
1489 if (event
->group_leader
== event
) {
1490 struct list_head
*list
;
1492 event
->group_caps
= event
->event_caps
;
1494 list
= ctx_group_list(event
, ctx
);
1495 list_add_tail(&event
->group_entry
, list
);
1498 list_update_cgroup_event(event
, ctx
, true);
1500 list_add_rcu(&event
->event_entry
, &ctx
->event_list
);
1502 if (event
->attr
.inherit_stat
)
1509 * Initialize event state based on the perf_event_attr::disabled.
1511 static inline void perf_event__state_init(struct perf_event
*event
)
1513 event
->state
= event
->attr
.disabled
? PERF_EVENT_STATE_OFF
:
1514 PERF_EVENT_STATE_INACTIVE
;
1517 static void __perf_event_read_size(struct perf_event
*event
, int nr_siblings
)
1519 int entry
= sizeof(u64
); /* value */
1523 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
1524 size
+= sizeof(u64
);
1526 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
1527 size
+= sizeof(u64
);
1529 if (event
->attr
.read_format
& PERF_FORMAT_ID
)
1530 entry
+= sizeof(u64
);
1532 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
) {
1534 size
+= sizeof(u64
);
1538 event
->read_size
= size
;
1541 static void __perf_event_header_size(struct perf_event
*event
, u64 sample_type
)
1543 struct perf_sample_data
*data
;
1546 if (sample_type
& PERF_SAMPLE_IP
)
1547 size
+= sizeof(data
->ip
);
1549 if (sample_type
& PERF_SAMPLE_ADDR
)
1550 size
+= sizeof(data
->addr
);
1552 if (sample_type
& PERF_SAMPLE_PERIOD
)
1553 size
+= sizeof(data
->period
);
1555 if (sample_type
& PERF_SAMPLE_WEIGHT
)
1556 size
+= sizeof(data
->weight
);
1558 if (sample_type
& PERF_SAMPLE_READ
)
1559 size
+= event
->read_size
;
1561 if (sample_type
& PERF_SAMPLE_DATA_SRC
)
1562 size
+= sizeof(data
->data_src
.val
);
1564 if (sample_type
& PERF_SAMPLE_TRANSACTION
)
1565 size
+= sizeof(data
->txn
);
1567 event
->header_size
= size
;
1571 * Called at perf_event creation and when events are attached/detached from a
1574 static void perf_event__header_size(struct perf_event
*event
)
1576 __perf_event_read_size(event
,
1577 event
->group_leader
->nr_siblings
);
1578 __perf_event_header_size(event
, event
->attr
.sample_type
);
1581 static void perf_event__id_header_size(struct perf_event
*event
)
1583 struct perf_sample_data
*data
;
1584 u64 sample_type
= event
->attr
.sample_type
;
1587 if (sample_type
& PERF_SAMPLE_TID
)
1588 size
+= sizeof(data
->tid_entry
);
1590 if (sample_type
& PERF_SAMPLE_TIME
)
1591 size
+= sizeof(data
->time
);
1593 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
1594 size
+= sizeof(data
->id
);
1596 if (sample_type
& PERF_SAMPLE_ID
)
1597 size
+= sizeof(data
->id
);
1599 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
1600 size
+= sizeof(data
->stream_id
);
1602 if (sample_type
& PERF_SAMPLE_CPU
)
1603 size
+= sizeof(data
->cpu_entry
);
1605 event
->id_header_size
= size
;
1608 static bool perf_event_validate_size(struct perf_event
*event
)
1611 * The values computed here will be over-written when we actually
1614 __perf_event_read_size(event
, event
->group_leader
->nr_siblings
+ 1);
1615 __perf_event_header_size(event
, event
->attr
.sample_type
& ~PERF_SAMPLE_READ
);
1616 perf_event__id_header_size(event
);
1619 * Sum the lot; should not exceed the 64k limit we have on records.
1620 * Conservative limit to allow for callchains and other variable fields.
1622 if (event
->read_size
+ event
->header_size
+
1623 event
->id_header_size
+ sizeof(struct perf_event_header
) >= 16*1024)
1629 static void perf_group_attach(struct perf_event
*event
)
1631 struct perf_event
*group_leader
= event
->group_leader
, *pos
;
1633 lockdep_assert_held(&event
->ctx
->lock
);
1636 * We can have double attach due to group movement in perf_event_open.
1638 if (event
->attach_state
& PERF_ATTACH_GROUP
)
1641 event
->attach_state
|= PERF_ATTACH_GROUP
;
1643 if (group_leader
== event
)
1646 WARN_ON_ONCE(group_leader
->ctx
!= event
->ctx
);
1648 group_leader
->group_caps
&= event
->event_caps
;
1650 list_add_tail(&event
->group_entry
, &group_leader
->sibling_list
);
1651 group_leader
->nr_siblings
++;
1653 perf_event__header_size(group_leader
);
1655 list_for_each_entry(pos
, &group_leader
->sibling_list
, group_entry
)
1656 perf_event__header_size(pos
);
1660 * Remove a event from the lists for its context.
1661 * Must be called with ctx->mutex and ctx->lock held.
1664 list_del_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
1666 WARN_ON_ONCE(event
->ctx
!= ctx
);
1667 lockdep_assert_held(&ctx
->lock
);
1670 * We can have double detach due to exit/hot-unplug + close.
1672 if (!(event
->attach_state
& PERF_ATTACH_CONTEXT
))
1675 event
->attach_state
&= ~PERF_ATTACH_CONTEXT
;
1677 list_update_cgroup_event(event
, ctx
, false);
1680 if (event
->attr
.inherit_stat
)
1683 list_del_rcu(&event
->event_entry
);
1685 if (event
->group_leader
== event
)
1686 list_del_init(&event
->group_entry
);
1688 update_group_times(event
);
1691 * If event was in error state, then keep it
1692 * that way, otherwise bogus counts will be
1693 * returned on read(). The only way to get out
1694 * of error state is by explicit re-enabling
1697 if (event
->state
> PERF_EVENT_STATE_OFF
)
1698 event
->state
= PERF_EVENT_STATE_OFF
;
1703 static void perf_group_detach(struct perf_event
*event
)
1705 struct perf_event
*sibling
, *tmp
;
1706 struct list_head
*list
= NULL
;
1708 lockdep_assert_held(&event
->ctx
->lock
);
1711 * We can have double detach due to exit/hot-unplug + close.
1713 if (!(event
->attach_state
& PERF_ATTACH_GROUP
))
1716 event
->attach_state
&= ~PERF_ATTACH_GROUP
;
1719 * If this is a sibling, remove it from its group.
1721 if (event
->group_leader
!= event
) {
1722 list_del_init(&event
->group_entry
);
1723 event
->group_leader
->nr_siblings
--;
1727 if (!list_empty(&event
->group_entry
))
1728 list
= &event
->group_entry
;
1731 * If this was a group event with sibling events then
1732 * upgrade the siblings to singleton events by adding them
1733 * to whatever list we are on.
1735 list_for_each_entry_safe(sibling
, tmp
, &event
->sibling_list
, group_entry
) {
1737 list_move_tail(&sibling
->group_entry
, list
);
1738 sibling
->group_leader
= sibling
;
1740 /* Inherit group flags from the previous leader */
1741 sibling
->group_caps
= event
->group_caps
;
1743 WARN_ON_ONCE(sibling
->ctx
!= event
->ctx
);
1747 perf_event__header_size(event
->group_leader
);
1749 list_for_each_entry(tmp
, &event
->group_leader
->sibling_list
, group_entry
)
1750 perf_event__header_size(tmp
);
1753 static bool is_orphaned_event(struct perf_event
*event
)
1755 return event
->state
== PERF_EVENT_STATE_DEAD
;
1758 static inline int __pmu_filter_match(struct perf_event
*event
)
1760 struct pmu
*pmu
= event
->pmu
;
1761 return pmu
->filter_match
? pmu
->filter_match(event
) : 1;
1765 * Check whether we should attempt to schedule an event group based on
1766 * PMU-specific filtering. An event group can consist of HW and SW events,
1767 * potentially with a SW leader, so we must check all the filters, to
1768 * determine whether a group is schedulable:
1770 static inline int pmu_filter_match(struct perf_event
*event
)
1772 struct perf_event
*child
;
1774 if (!__pmu_filter_match(event
))
1777 list_for_each_entry(child
, &event
->sibling_list
, group_entry
) {
1778 if (!__pmu_filter_match(child
))
1786 event_filter_match(struct perf_event
*event
)
1788 return (event
->cpu
== -1 || event
->cpu
== smp_processor_id()) &&
1789 perf_cgroup_match(event
) && pmu_filter_match(event
);
1793 event_sched_out(struct perf_event
*event
,
1794 struct perf_cpu_context
*cpuctx
,
1795 struct perf_event_context
*ctx
)
1797 u64 tstamp
= perf_event_time(event
);
1800 WARN_ON_ONCE(event
->ctx
!= ctx
);
1801 lockdep_assert_held(&ctx
->lock
);
1804 * An event which could not be activated because of
1805 * filter mismatch still needs to have its timings
1806 * maintained, otherwise bogus information is return
1807 * via read() for time_enabled, time_running:
1809 if (event
->state
== PERF_EVENT_STATE_INACTIVE
&&
1810 !event_filter_match(event
)) {
1811 delta
= tstamp
- event
->tstamp_stopped
;
1812 event
->tstamp_running
+= delta
;
1813 event
->tstamp_stopped
= tstamp
;
1816 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
1819 perf_pmu_disable(event
->pmu
);
1821 event
->tstamp_stopped
= tstamp
;
1822 event
->pmu
->del(event
, 0);
1824 event
->state
= PERF_EVENT_STATE_INACTIVE
;
1825 if (event
->pending_disable
) {
1826 event
->pending_disable
= 0;
1827 event
->state
= PERF_EVENT_STATE_OFF
;
1830 if (!is_software_event(event
))
1831 cpuctx
->active_oncpu
--;
1832 if (!--ctx
->nr_active
)
1833 perf_event_ctx_deactivate(ctx
);
1834 if (event
->attr
.freq
&& event
->attr
.sample_freq
)
1836 if (event
->attr
.exclusive
|| !cpuctx
->active_oncpu
)
1837 cpuctx
->exclusive
= 0;
1839 perf_pmu_enable(event
->pmu
);
1843 group_sched_out(struct perf_event
*group_event
,
1844 struct perf_cpu_context
*cpuctx
,
1845 struct perf_event_context
*ctx
)
1847 struct perf_event
*event
;
1848 int state
= group_event
->state
;
1850 perf_pmu_disable(ctx
->pmu
);
1852 event_sched_out(group_event
, cpuctx
, ctx
);
1855 * Schedule out siblings (if any):
1857 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
)
1858 event_sched_out(event
, cpuctx
, ctx
);
1860 perf_pmu_enable(ctx
->pmu
);
1862 if (state
== PERF_EVENT_STATE_ACTIVE
&& group_event
->attr
.exclusive
)
1863 cpuctx
->exclusive
= 0;
1866 #define DETACH_GROUP 0x01UL
1869 * Cross CPU call to remove a performance event
1871 * We disable the event on the hardware level first. After that we
1872 * remove it from the context list.
1875 __perf_remove_from_context(struct perf_event
*event
,
1876 struct perf_cpu_context
*cpuctx
,
1877 struct perf_event_context
*ctx
,
1880 unsigned long flags
= (unsigned long)info
;
1882 event_sched_out(event
, cpuctx
, ctx
);
1883 if (flags
& DETACH_GROUP
)
1884 perf_group_detach(event
);
1885 list_del_event(event
, ctx
);
1887 if (!ctx
->nr_events
&& ctx
->is_active
) {
1890 WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
);
1891 cpuctx
->task_ctx
= NULL
;
1897 * Remove the event from a task's (or a CPU's) list of events.
1899 * If event->ctx is a cloned context, callers must make sure that
1900 * every task struct that event->ctx->task could possibly point to
1901 * remains valid. This is OK when called from perf_release since
1902 * that only calls us on the top-level context, which can't be a clone.
1903 * When called from perf_event_exit_task, it's OK because the
1904 * context has been detached from its task.
1906 static void perf_remove_from_context(struct perf_event
*event
, unsigned long flags
)
1908 struct perf_event_context
*ctx
= event
->ctx
;
1910 lockdep_assert_held(&ctx
->mutex
);
1912 event_function_call(event
, __perf_remove_from_context
, (void *)flags
);
1915 * The above event_function_call() can NO-OP when it hits
1916 * TASK_TOMBSTONE. In that case we must already have been detached
1917 * from the context (by perf_event_exit_event()) but the grouping
1918 * might still be in-tact.
1920 WARN_ON_ONCE(event
->attach_state
& PERF_ATTACH_CONTEXT
);
1921 if ((flags
& DETACH_GROUP
) &&
1922 (event
->attach_state
& PERF_ATTACH_GROUP
)) {
1924 * Since in that case we cannot possibly be scheduled, simply
1927 raw_spin_lock_irq(&ctx
->lock
);
1928 perf_group_detach(event
);
1929 raw_spin_unlock_irq(&ctx
->lock
);
1934 * Cross CPU call to disable a performance event
1936 static void __perf_event_disable(struct perf_event
*event
,
1937 struct perf_cpu_context
*cpuctx
,
1938 struct perf_event_context
*ctx
,
1941 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
1944 update_context_time(ctx
);
1945 update_cgrp_time_from_event(event
);
1946 update_group_times(event
);
1947 if (event
== event
->group_leader
)
1948 group_sched_out(event
, cpuctx
, ctx
);
1950 event_sched_out(event
, cpuctx
, ctx
);
1951 event
->state
= PERF_EVENT_STATE_OFF
;
1957 * If event->ctx is a cloned context, callers must make sure that
1958 * every task struct that event->ctx->task could possibly point to
1959 * remains valid. This condition is satisifed when called through
1960 * perf_event_for_each_child or perf_event_for_each because they
1961 * hold the top-level event's child_mutex, so any descendant that
1962 * goes to exit will block in perf_event_exit_event().
1964 * When called from perf_pending_event it's OK because event->ctx
1965 * is the current context on this CPU and preemption is disabled,
1966 * hence we can't get into perf_event_task_sched_out for this context.
1968 static void _perf_event_disable(struct perf_event
*event
)
1970 struct perf_event_context
*ctx
= event
->ctx
;
1972 raw_spin_lock_irq(&ctx
->lock
);
1973 if (event
->state
<= PERF_EVENT_STATE_OFF
) {
1974 raw_spin_unlock_irq(&ctx
->lock
);
1977 raw_spin_unlock_irq(&ctx
->lock
);
1979 event_function_call(event
, __perf_event_disable
, NULL
);
1982 void perf_event_disable_local(struct perf_event
*event
)
1984 event_function_local(event
, __perf_event_disable
, NULL
);
1988 * Strictly speaking kernel users cannot create groups and therefore this
1989 * interface does not need the perf_event_ctx_lock() magic.
1991 void perf_event_disable(struct perf_event
*event
)
1993 struct perf_event_context
*ctx
;
1995 ctx
= perf_event_ctx_lock(event
);
1996 _perf_event_disable(event
);
1997 perf_event_ctx_unlock(event
, ctx
);
1999 EXPORT_SYMBOL_GPL(perf_event_disable
);
2001 void perf_event_disable_inatomic(struct perf_event
*event
)
2003 event
->pending_disable
= 1;
2004 irq_work_queue(&event
->pending
);
2007 static void perf_set_shadow_time(struct perf_event
*event
,
2008 struct perf_event_context
*ctx
,
2012 * use the correct time source for the time snapshot
2014 * We could get by without this by leveraging the
2015 * fact that to get to this function, the caller
2016 * has most likely already called update_context_time()
2017 * and update_cgrp_time_xx() and thus both timestamp
2018 * are identical (or very close). Given that tstamp is,
2019 * already adjusted for cgroup, we could say that:
2020 * tstamp - ctx->timestamp
2022 * tstamp - cgrp->timestamp.
2024 * Then, in perf_output_read(), the calculation would
2025 * work with no changes because:
2026 * - event is guaranteed scheduled in
2027 * - no scheduled out in between
2028 * - thus the timestamp would be the same
2030 * But this is a bit hairy.
2032 * So instead, we have an explicit cgroup call to remain
2033 * within the time time source all along. We believe it
2034 * is cleaner and simpler to understand.
2036 if (is_cgroup_event(event
))
2037 perf_cgroup_set_shadow_time(event
, tstamp
);
2039 event
->shadow_ctx_time
= tstamp
- ctx
->timestamp
;
2042 #define MAX_INTERRUPTS (~0ULL)
2044 static void perf_log_throttle(struct perf_event
*event
, int enable
);
2045 static void perf_log_itrace_start(struct perf_event
*event
);
2048 event_sched_in(struct perf_event
*event
,
2049 struct perf_cpu_context
*cpuctx
,
2050 struct perf_event_context
*ctx
)
2052 u64 tstamp
= perf_event_time(event
);
2055 lockdep_assert_held(&ctx
->lock
);
2057 if (event
->state
<= PERF_EVENT_STATE_OFF
)
2060 WRITE_ONCE(event
->oncpu
, smp_processor_id());
2062 * Order event::oncpu write to happen before the ACTIVE state
2066 WRITE_ONCE(event
->state
, PERF_EVENT_STATE_ACTIVE
);
2069 * Unthrottle events, since we scheduled we might have missed several
2070 * ticks already, also for a heavily scheduling task there is little
2071 * guarantee it'll get a tick in a timely manner.
2073 if (unlikely(event
->hw
.interrupts
== MAX_INTERRUPTS
)) {
2074 perf_log_throttle(event
, 1);
2075 event
->hw
.interrupts
= 0;
2079 * The new state must be visible before we turn it on in the hardware:
2083 perf_pmu_disable(event
->pmu
);
2085 perf_set_shadow_time(event
, ctx
, tstamp
);
2087 perf_log_itrace_start(event
);
2089 if (event
->pmu
->add(event
, PERF_EF_START
)) {
2090 event
->state
= PERF_EVENT_STATE_INACTIVE
;
2096 event
->tstamp_running
+= tstamp
- event
->tstamp_stopped
;
2098 if (!is_software_event(event
))
2099 cpuctx
->active_oncpu
++;
2100 if (!ctx
->nr_active
++)
2101 perf_event_ctx_activate(ctx
);
2102 if (event
->attr
.freq
&& event
->attr
.sample_freq
)
2105 if (event
->attr
.exclusive
)
2106 cpuctx
->exclusive
= 1;
2109 perf_pmu_enable(event
->pmu
);
2115 group_sched_in(struct perf_event
*group_event
,
2116 struct perf_cpu_context
*cpuctx
,
2117 struct perf_event_context
*ctx
)
2119 struct perf_event
*event
, *partial_group
= NULL
;
2120 struct pmu
*pmu
= ctx
->pmu
;
2121 u64 now
= ctx
->time
;
2122 bool simulate
= false;
2124 if (group_event
->state
== PERF_EVENT_STATE_OFF
)
2127 pmu
->start_txn(pmu
, PERF_PMU_TXN_ADD
);
2129 if (event_sched_in(group_event
, cpuctx
, ctx
)) {
2130 pmu
->cancel_txn(pmu
);
2131 perf_mux_hrtimer_restart(cpuctx
);
2136 * Schedule in siblings as one group (if any):
2138 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
2139 if (event_sched_in(event
, cpuctx
, ctx
)) {
2140 partial_group
= event
;
2145 if (!pmu
->commit_txn(pmu
))
2150 * Groups can be scheduled in as one unit only, so undo any
2151 * partial group before returning:
2152 * The events up to the failed event are scheduled out normally,
2153 * tstamp_stopped will be updated.
2155 * The failed events and the remaining siblings need to have
2156 * their timings updated as if they had gone thru event_sched_in()
2157 * and event_sched_out(). This is required to get consistent timings
2158 * across the group. This also takes care of the case where the group
2159 * could never be scheduled by ensuring tstamp_stopped is set to mark
2160 * the time the event was actually stopped, such that time delta
2161 * calculation in update_event_times() is correct.
2163 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
2164 if (event
== partial_group
)
2168 event
->tstamp_running
+= now
- event
->tstamp_stopped
;
2169 event
->tstamp_stopped
= now
;
2171 event_sched_out(event
, cpuctx
, ctx
);
2174 event_sched_out(group_event
, cpuctx
, ctx
);
2176 pmu
->cancel_txn(pmu
);
2178 perf_mux_hrtimer_restart(cpuctx
);
2184 * Work out whether we can put this event group on the CPU now.
2186 static int group_can_go_on(struct perf_event
*event
,
2187 struct perf_cpu_context
*cpuctx
,
2191 * Groups consisting entirely of software events can always go on.
2193 if (event
->group_caps
& PERF_EV_CAP_SOFTWARE
)
2196 * If an exclusive group is already on, no other hardware
2199 if (cpuctx
->exclusive
)
2202 * If this group is exclusive and there are already
2203 * events on the CPU, it can't go on.
2205 if (event
->attr
.exclusive
&& cpuctx
->active_oncpu
)
2208 * Otherwise, try to add it if all previous groups were able
2214 static void add_event_to_ctx(struct perf_event
*event
,
2215 struct perf_event_context
*ctx
)
2217 u64 tstamp
= perf_event_time(event
);
2219 list_add_event(event
, ctx
);
2220 perf_group_attach(event
);
2221 event
->tstamp_enabled
= tstamp
;
2222 event
->tstamp_running
= tstamp
;
2223 event
->tstamp_stopped
= tstamp
;
2226 static void ctx_sched_out(struct perf_event_context
*ctx
,
2227 struct perf_cpu_context
*cpuctx
,
2228 enum event_type_t event_type
);
2230 ctx_sched_in(struct perf_event_context
*ctx
,
2231 struct perf_cpu_context
*cpuctx
,
2232 enum event_type_t event_type
,
2233 struct task_struct
*task
);
2235 static void task_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
2236 struct perf_event_context
*ctx
,
2237 enum event_type_t event_type
)
2239 if (!cpuctx
->task_ctx
)
2242 if (WARN_ON_ONCE(ctx
!= cpuctx
->task_ctx
))
2245 ctx_sched_out(ctx
, cpuctx
, event_type
);
2248 static void perf_event_sched_in(struct perf_cpu_context
*cpuctx
,
2249 struct perf_event_context
*ctx
,
2250 struct task_struct
*task
)
2252 cpu_ctx_sched_in(cpuctx
, EVENT_PINNED
, task
);
2254 ctx_sched_in(ctx
, cpuctx
, EVENT_PINNED
, task
);
2255 cpu_ctx_sched_in(cpuctx
, EVENT_FLEXIBLE
, task
);
2257 ctx_sched_in(ctx
, cpuctx
, EVENT_FLEXIBLE
, task
);
2261 * We want to maintain the following priority of scheduling:
2262 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2263 * - task pinned (EVENT_PINNED)
2264 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2265 * - task flexible (EVENT_FLEXIBLE).
2267 * In order to avoid unscheduling and scheduling back in everything every
2268 * time an event is added, only do it for the groups of equal priority and
2271 * This can be called after a batch operation on task events, in which case
2272 * event_type is a bit mask of the types of events involved. For CPU events,
2273 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2275 static void ctx_resched(struct perf_cpu_context
*cpuctx
,
2276 struct perf_event_context
*task_ctx
,
2277 enum event_type_t event_type
)
2279 enum event_type_t ctx_event_type
= event_type
& EVENT_ALL
;
2280 bool cpu_event
= !!(event_type
& EVENT_CPU
);
2283 * If pinned groups are involved, flexible groups also need to be
2286 if (event_type
& EVENT_PINNED
)
2287 event_type
|= EVENT_FLEXIBLE
;
2289 perf_pmu_disable(cpuctx
->ctx
.pmu
);
2291 task_ctx_sched_out(cpuctx
, task_ctx
, event_type
);
2294 * Decide which cpu ctx groups to schedule out based on the types
2295 * of events that caused rescheduling:
2296 * - EVENT_CPU: schedule out corresponding groups;
2297 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2298 * - otherwise, do nothing more.
2301 cpu_ctx_sched_out(cpuctx
, ctx_event_type
);
2302 else if (ctx_event_type
& EVENT_PINNED
)
2303 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
2305 perf_event_sched_in(cpuctx
, task_ctx
, current
);
2306 perf_pmu_enable(cpuctx
->ctx
.pmu
);
2310 * Cross CPU call to install and enable a performance event
2312 * Very similar to remote_function() + event_function() but cannot assume that
2313 * things like ctx->is_active and cpuctx->task_ctx are set.
2315 static int __perf_install_in_context(void *info
)
2317 struct perf_event
*event
= info
;
2318 struct perf_event_context
*ctx
= event
->ctx
;
2319 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
2320 struct perf_event_context
*task_ctx
= cpuctx
->task_ctx
;
2321 bool reprogram
= true;
2324 raw_spin_lock(&cpuctx
->ctx
.lock
);
2326 raw_spin_lock(&ctx
->lock
);
2329 reprogram
= (ctx
->task
== current
);
2332 * If the task is running, it must be running on this CPU,
2333 * otherwise we cannot reprogram things.
2335 * If its not running, we don't care, ctx->lock will
2336 * serialize against it becoming runnable.
2338 if (task_curr(ctx
->task
) && !reprogram
) {
2343 WARN_ON_ONCE(reprogram
&& cpuctx
->task_ctx
&& cpuctx
->task_ctx
!= ctx
);
2344 } else if (task_ctx
) {
2345 raw_spin_lock(&task_ctx
->lock
);
2349 ctx_sched_out(ctx
, cpuctx
, EVENT_TIME
);
2350 add_event_to_ctx(event
, ctx
);
2351 ctx_resched(cpuctx
, task_ctx
, get_event_type(event
));
2353 add_event_to_ctx(event
, ctx
);
2357 perf_ctx_unlock(cpuctx
, task_ctx
);
2363 * Attach a performance event to a context.
2365 * Very similar to event_function_call, see comment there.
2368 perf_install_in_context(struct perf_event_context
*ctx
,
2369 struct perf_event
*event
,
2372 struct task_struct
*task
= READ_ONCE(ctx
->task
);
2374 lockdep_assert_held(&ctx
->mutex
);
2376 if (event
->cpu
!= -1)
2380 * Ensures that if we can observe event->ctx, both the event and ctx
2381 * will be 'complete'. See perf_iterate_sb_cpu().
2383 smp_store_release(&event
->ctx
, ctx
);
2386 cpu_function_call(cpu
, __perf_install_in_context
, event
);
2391 * Should not happen, we validate the ctx is still alive before calling.
2393 if (WARN_ON_ONCE(task
== TASK_TOMBSTONE
))
2397 * Installing events is tricky because we cannot rely on ctx->is_active
2398 * to be set in case this is the nr_events 0 -> 1 transition.
2400 * Instead we use task_curr(), which tells us if the task is running.
2401 * However, since we use task_curr() outside of rq::lock, we can race
2402 * against the actual state. This means the result can be wrong.
2404 * If we get a false positive, we retry, this is harmless.
2406 * If we get a false negative, things are complicated. If we are after
2407 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2408 * value must be correct. If we're before, it doesn't matter since
2409 * perf_event_context_sched_in() will program the counter.
2411 * However, this hinges on the remote context switch having observed
2412 * our task->perf_event_ctxp[] store, such that it will in fact take
2413 * ctx::lock in perf_event_context_sched_in().
2415 * We do this by task_function_call(), if the IPI fails to hit the task
2416 * we know any future context switch of task must see the
2417 * perf_event_ctpx[] store.
2421 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2422 * task_cpu() load, such that if the IPI then does not find the task
2423 * running, a future context switch of that task must observe the
2428 if (!task_function_call(task
, __perf_install_in_context
, event
))
2431 raw_spin_lock_irq(&ctx
->lock
);
2433 if (WARN_ON_ONCE(task
== TASK_TOMBSTONE
)) {
2435 * Cannot happen because we already checked above (which also
2436 * cannot happen), and we hold ctx->mutex, which serializes us
2437 * against perf_event_exit_task_context().
2439 raw_spin_unlock_irq(&ctx
->lock
);
2443 * If the task is not running, ctx->lock will avoid it becoming so,
2444 * thus we can safely install the event.
2446 if (task_curr(task
)) {
2447 raw_spin_unlock_irq(&ctx
->lock
);
2450 add_event_to_ctx(event
, ctx
);
2451 raw_spin_unlock_irq(&ctx
->lock
);
2455 * Put a event into inactive state and update time fields.
2456 * Enabling the leader of a group effectively enables all
2457 * the group members that aren't explicitly disabled, so we
2458 * have to update their ->tstamp_enabled also.
2459 * Note: this works for group members as well as group leaders
2460 * since the non-leader members' sibling_lists will be empty.
2462 static void __perf_event_mark_enabled(struct perf_event
*event
)
2464 struct perf_event
*sub
;
2465 u64 tstamp
= perf_event_time(event
);
2467 event
->state
= PERF_EVENT_STATE_INACTIVE
;
2468 event
->tstamp_enabled
= tstamp
- event
->total_time_enabled
;
2469 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
2470 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
)
2471 sub
->tstamp_enabled
= tstamp
- sub
->total_time_enabled
;
2476 * Cross CPU call to enable a performance event
2478 static void __perf_event_enable(struct perf_event
*event
,
2479 struct perf_cpu_context
*cpuctx
,
2480 struct perf_event_context
*ctx
,
2483 struct perf_event
*leader
= event
->group_leader
;
2484 struct perf_event_context
*task_ctx
;
2486 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
||
2487 event
->state
<= PERF_EVENT_STATE_ERROR
)
2491 ctx_sched_out(ctx
, cpuctx
, EVENT_TIME
);
2493 __perf_event_mark_enabled(event
);
2495 if (!ctx
->is_active
)
2498 if (!event_filter_match(event
)) {
2499 if (is_cgroup_event(event
))
2500 perf_cgroup_defer_enabled(event
);
2501 ctx_sched_in(ctx
, cpuctx
, EVENT_TIME
, current
);
2506 * If the event is in a group and isn't the group leader,
2507 * then don't put it on unless the group is on.
2509 if (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
) {
2510 ctx_sched_in(ctx
, cpuctx
, EVENT_TIME
, current
);
2514 task_ctx
= cpuctx
->task_ctx
;
2516 WARN_ON_ONCE(task_ctx
!= ctx
);
2518 ctx_resched(cpuctx
, task_ctx
, get_event_type(event
));
2524 * If event->ctx is a cloned context, callers must make sure that
2525 * every task struct that event->ctx->task could possibly point to
2526 * remains valid. This condition is satisfied when called through
2527 * perf_event_for_each_child or perf_event_for_each as described
2528 * for perf_event_disable.
2530 static void _perf_event_enable(struct perf_event
*event
)
2532 struct perf_event_context
*ctx
= event
->ctx
;
2534 raw_spin_lock_irq(&ctx
->lock
);
2535 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
||
2536 event
->state
< PERF_EVENT_STATE_ERROR
) {
2537 raw_spin_unlock_irq(&ctx
->lock
);
2542 * If the event is in error state, clear that first.
2544 * That way, if we see the event in error state below, we know that it
2545 * has gone back into error state, as distinct from the task having
2546 * been scheduled away before the cross-call arrived.
2548 if (event
->state
== PERF_EVENT_STATE_ERROR
)
2549 event
->state
= PERF_EVENT_STATE_OFF
;
2550 raw_spin_unlock_irq(&ctx
->lock
);
2552 event_function_call(event
, __perf_event_enable
, NULL
);
2556 * See perf_event_disable();
2558 void perf_event_enable(struct perf_event
*event
)
2560 struct perf_event_context
*ctx
;
2562 ctx
= perf_event_ctx_lock(event
);
2563 _perf_event_enable(event
);
2564 perf_event_ctx_unlock(event
, ctx
);
2566 EXPORT_SYMBOL_GPL(perf_event_enable
);
2568 struct stop_event_data
{
2569 struct perf_event
*event
;
2570 unsigned int restart
;
2573 static int __perf_event_stop(void *info
)
2575 struct stop_event_data
*sd
= info
;
2576 struct perf_event
*event
= sd
->event
;
2578 /* if it's already INACTIVE, do nothing */
2579 if (READ_ONCE(event
->state
) != PERF_EVENT_STATE_ACTIVE
)
2582 /* matches smp_wmb() in event_sched_in() */
2586 * There is a window with interrupts enabled before we get here,
2587 * so we need to check again lest we try to stop another CPU's event.
2589 if (READ_ONCE(event
->oncpu
) != smp_processor_id())
2592 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
2595 * May race with the actual stop (through perf_pmu_output_stop()),
2596 * but it is only used for events with AUX ring buffer, and such
2597 * events will refuse to restart because of rb::aux_mmap_count==0,
2598 * see comments in perf_aux_output_begin().
2600 * Since this is happening on a event-local CPU, no trace is lost
2604 event
->pmu
->start(event
, 0);
2609 static int perf_event_stop(struct perf_event
*event
, int restart
)
2611 struct stop_event_data sd
= {
2618 if (READ_ONCE(event
->state
) != PERF_EVENT_STATE_ACTIVE
)
2621 /* matches smp_wmb() in event_sched_in() */
2625 * We only want to restart ACTIVE events, so if the event goes
2626 * inactive here (event->oncpu==-1), there's nothing more to do;
2627 * fall through with ret==-ENXIO.
2629 ret
= cpu_function_call(READ_ONCE(event
->oncpu
),
2630 __perf_event_stop
, &sd
);
2631 } while (ret
== -EAGAIN
);
2637 * In order to contain the amount of racy and tricky in the address filter
2638 * configuration management, it is a two part process:
2640 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2641 * we update the addresses of corresponding vmas in
2642 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2643 * (p2) when an event is scheduled in (pmu::add), it calls
2644 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2645 * if the generation has changed since the previous call.
2647 * If (p1) happens while the event is active, we restart it to force (p2).
2649 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2650 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2652 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2653 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2655 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2658 void perf_event_addr_filters_sync(struct perf_event
*event
)
2660 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
2662 if (!has_addr_filter(event
))
2665 raw_spin_lock(&ifh
->lock
);
2666 if (event
->addr_filters_gen
!= event
->hw
.addr_filters_gen
) {
2667 event
->pmu
->addr_filters_sync(event
);
2668 event
->hw
.addr_filters_gen
= event
->addr_filters_gen
;
2670 raw_spin_unlock(&ifh
->lock
);
2672 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync
);
2674 static int _perf_event_refresh(struct perf_event
*event
, int refresh
)
2677 * not supported on inherited events
2679 if (event
->attr
.inherit
|| !is_sampling_event(event
))
2682 atomic_add(refresh
, &event
->event_limit
);
2683 _perf_event_enable(event
);
2689 * See perf_event_disable()
2691 int perf_event_refresh(struct perf_event
*event
, int refresh
)
2693 struct perf_event_context
*ctx
;
2696 ctx
= perf_event_ctx_lock(event
);
2697 ret
= _perf_event_refresh(event
, refresh
);
2698 perf_event_ctx_unlock(event
, ctx
);
2702 EXPORT_SYMBOL_GPL(perf_event_refresh
);
2704 static void ctx_sched_out(struct perf_event_context
*ctx
,
2705 struct perf_cpu_context
*cpuctx
,
2706 enum event_type_t event_type
)
2708 int is_active
= ctx
->is_active
;
2709 struct perf_event
*event
;
2711 lockdep_assert_held(&ctx
->lock
);
2713 if (likely(!ctx
->nr_events
)) {
2715 * See __perf_remove_from_context().
2717 WARN_ON_ONCE(ctx
->is_active
);
2719 WARN_ON_ONCE(cpuctx
->task_ctx
);
2723 ctx
->is_active
&= ~event_type
;
2724 if (!(ctx
->is_active
& EVENT_ALL
))
2728 WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
);
2729 if (!ctx
->is_active
)
2730 cpuctx
->task_ctx
= NULL
;
2734 * Always update time if it was set; not only when it changes.
2735 * Otherwise we can 'forget' to update time for any but the last
2736 * context we sched out. For example:
2738 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2739 * ctx_sched_out(.event_type = EVENT_PINNED)
2741 * would only update time for the pinned events.
2743 if (is_active
& EVENT_TIME
) {
2744 /* update (and stop) ctx time */
2745 update_context_time(ctx
);
2746 update_cgrp_time_from_cpuctx(cpuctx
);
2749 is_active
^= ctx
->is_active
; /* changed bits */
2751 if (!ctx
->nr_active
|| !(is_active
& EVENT_ALL
))
2754 perf_pmu_disable(ctx
->pmu
);
2755 if (is_active
& EVENT_PINNED
) {
2756 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
)
2757 group_sched_out(event
, cpuctx
, ctx
);
2760 if (is_active
& EVENT_FLEXIBLE
) {
2761 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
)
2762 group_sched_out(event
, cpuctx
, ctx
);
2764 perf_pmu_enable(ctx
->pmu
);
2768 * Test whether two contexts are equivalent, i.e. whether they have both been
2769 * cloned from the same version of the same context.
2771 * Equivalence is measured using a generation number in the context that is
2772 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2773 * and list_del_event().
2775 static int context_equiv(struct perf_event_context
*ctx1
,
2776 struct perf_event_context
*ctx2
)
2778 lockdep_assert_held(&ctx1
->lock
);
2779 lockdep_assert_held(&ctx2
->lock
);
2781 /* Pinning disables the swap optimization */
2782 if (ctx1
->pin_count
|| ctx2
->pin_count
)
2785 /* If ctx1 is the parent of ctx2 */
2786 if (ctx1
== ctx2
->parent_ctx
&& ctx1
->generation
== ctx2
->parent_gen
)
2789 /* If ctx2 is the parent of ctx1 */
2790 if (ctx1
->parent_ctx
== ctx2
&& ctx1
->parent_gen
== ctx2
->generation
)
2794 * If ctx1 and ctx2 have the same parent; we flatten the parent
2795 * hierarchy, see perf_event_init_context().
2797 if (ctx1
->parent_ctx
&& ctx1
->parent_ctx
== ctx2
->parent_ctx
&&
2798 ctx1
->parent_gen
== ctx2
->parent_gen
)
2805 static void __perf_event_sync_stat(struct perf_event
*event
,
2806 struct perf_event
*next_event
)
2810 if (!event
->attr
.inherit_stat
)
2814 * Update the event value, we cannot use perf_event_read()
2815 * because we're in the middle of a context switch and have IRQs
2816 * disabled, which upsets smp_call_function_single(), however
2817 * we know the event must be on the current CPU, therefore we
2818 * don't need to use it.
2820 switch (event
->state
) {
2821 case PERF_EVENT_STATE_ACTIVE
:
2822 event
->pmu
->read(event
);
2825 case PERF_EVENT_STATE_INACTIVE
:
2826 update_event_times(event
);
2834 * In order to keep per-task stats reliable we need to flip the event
2835 * values when we flip the contexts.
2837 value
= local64_read(&next_event
->count
);
2838 value
= local64_xchg(&event
->count
, value
);
2839 local64_set(&next_event
->count
, value
);
2841 swap(event
->total_time_enabled
, next_event
->total_time_enabled
);
2842 swap(event
->total_time_running
, next_event
->total_time_running
);
2845 * Since we swizzled the values, update the user visible data too.
2847 perf_event_update_userpage(event
);
2848 perf_event_update_userpage(next_event
);
2851 static void perf_event_sync_stat(struct perf_event_context
*ctx
,
2852 struct perf_event_context
*next_ctx
)
2854 struct perf_event
*event
, *next_event
;
2859 update_context_time(ctx
);
2861 event
= list_first_entry(&ctx
->event_list
,
2862 struct perf_event
, event_entry
);
2864 next_event
= list_first_entry(&next_ctx
->event_list
,
2865 struct perf_event
, event_entry
);
2867 while (&event
->event_entry
!= &ctx
->event_list
&&
2868 &next_event
->event_entry
!= &next_ctx
->event_list
) {
2870 __perf_event_sync_stat(event
, next_event
);
2872 event
= list_next_entry(event
, event_entry
);
2873 next_event
= list_next_entry(next_event
, event_entry
);
2877 static void perf_event_context_sched_out(struct task_struct
*task
, int ctxn
,
2878 struct task_struct
*next
)
2880 struct perf_event_context
*ctx
= task
->perf_event_ctxp
[ctxn
];
2881 struct perf_event_context
*next_ctx
;
2882 struct perf_event_context
*parent
, *next_parent
;
2883 struct perf_cpu_context
*cpuctx
;
2889 cpuctx
= __get_cpu_context(ctx
);
2890 if (!cpuctx
->task_ctx
)
2894 next_ctx
= next
->perf_event_ctxp
[ctxn
];
2898 parent
= rcu_dereference(ctx
->parent_ctx
);
2899 next_parent
= rcu_dereference(next_ctx
->parent_ctx
);
2901 /* If neither context have a parent context; they cannot be clones. */
2902 if (!parent
&& !next_parent
)
2905 if (next_parent
== ctx
|| next_ctx
== parent
|| next_parent
== parent
) {
2907 * Looks like the two contexts are clones, so we might be
2908 * able to optimize the context switch. We lock both
2909 * contexts and check that they are clones under the
2910 * lock (including re-checking that neither has been
2911 * uncloned in the meantime). It doesn't matter which
2912 * order we take the locks because no other cpu could
2913 * be trying to lock both of these tasks.
2915 raw_spin_lock(&ctx
->lock
);
2916 raw_spin_lock_nested(&next_ctx
->lock
, SINGLE_DEPTH_NESTING
);
2917 if (context_equiv(ctx
, next_ctx
)) {
2918 WRITE_ONCE(ctx
->task
, next
);
2919 WRITE_ONCE(next_ctx
->task
, task
);
2921 swap(ctx
->task_ctx_data
, next_ctx
->task_ctx_data
);
2924 * RCU_INIT_POINTER here is safe because we've not
2925 * modified the ctx and the above modification of
2926 * ctx->task and ctx->task_ctx_data are immaterial
2927 * since those values are always verified under
2928 * ctx->lock which we're now holding.
2930 RCU_INIT_POINTER(task
->perf_event_ctxp
[ctxn
], next_ctx
);
2931 RCU_INIT_POINTER(next
->perf_event_ctxp
[ctxn
], ctx
);
2935 perf_event_sync_stat(ctx
, next_ctx
);
2937 raw_spin_unlock(&next_ctx
->lock
);
2938 raw_spin_unlock(&ctx
->lock
);
2944 raw_spin_lock(&ctx
->lock
);
2945 task_ctx_sched_out(cpuctx
, ctx
, EVENT_ALL
);
2946 raw_spin_unlock(&ctx
->lock
);
2950 static DEFINE_PER_CPU(struct list_head
, sched_cb_list
);
2952 void perf_sched_cb_dec(struct pmu
*pmu
)
2954 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
2956 this_cpu_dec(perf_sched_cb_usages
);
2958 if (!--cpuctx
->sched_cb_usage
)
2959 list_del(&cpuctx
->sched_cb_entry
);
2963 void perf_sched_cb_inc(struct pmu
*pmu
)
2965 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
2967 if (!cpuctx
->sched_cb_usage
++)
2968 list_add(&cpuctx
->sched_cb_entry
, this_cpu_ptr(&sched_cb_list
));
2970 this_cpu_inc(perf_sched_cb_usages
);
2974 * This function provides the context switch callback to the lower code
2975 * layer. It is invoked ONLY when the context switch callback is enabled.
2977 * This callback is relevant even to per-cpu events; for example multi event
2978 * PEBS requires this to provide PID/TID information. This requires we flush
2979 * all queued PEBS records before we context switch to a new task.
2981 static void perf_pmu_sched_task(struct task_struct
*prev
,
2982 struct task_struct
*next
,
2985 struct perf_cpu_context
*cpuctx
;
2991 list_for_each_entry(cpuctx
, this_cpu_ptr(&sched_cb_list
), sched_cb_entry
) {
2992 pmu
= cpuctx
->ctx
.pmu
; /* software PMUs will not have sched_task */
2994 if (WARN_ON_ONCE(!pmu
->sched_task
))
2997 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
2998 perf_pmu_disable(pmu
);
3000 pmu
->sched_task(cpuctx
->task_ctx
, sched_in
);
3002 perf_pmu_enable(pmu
);
3003 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
3007 static void perf_event_switch(struct task_struct
*task
,
3008 struct task_struct
*next_prev
, bool sched_in
);
3010 #define for_each_task_context_nr(ctxn) \
3011 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3014 * Called from scheduler to remove the events of the current task,
3015 * with interrupts disabled.
3017 * We stop each event and update the event value in event->count.
3019 * This does not protect us against NMI, but disable()
3020 * sets the disabled bit in the control field of event _before_
3021 * accessing the event control register. If a NMI hits, then it will
3022 * not restart the event.
3024 void __perf_event_task_sched_out(struct task_struct
*task
,
3025 struct task_struct
*next
)
3029 if (__this_cpu_read(perf_sched_cb_usages
))
3030 perf_pmu_sched_task(task
, next
, false);
3032 if (atomic_read(&nr_switch_events
))
3033 perf_event_switch(task
, next
, false);
3035 for_each_task_context_nr(ctxn
)
3036 perf_event_context_sched_out(task
, ctxn
, next
);
3039 * if cgroup events exist on this CPU, then we need
3040 * to check if we have to switch out PMU state.
3041 * cgroup event are system-wide mode only
3043 if (atomic_read(this_cpu_ptr(&perf_cgroup_events
)))
3044 perf_cgroup_sched_out(task
, next
);
3048 * Called with IRQs disabled
3050 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
3051 enum event_type_t event_type
)
3053 ctx_sched_out(&cpuctx
->ctx
, cpuctx
, event_type
);
3057 ctx_pinned_sched_in(struct perf_event_context
*ctx
,
3058 struct perf_cpu_context
*cpuctx
)
3060 struct perf_event
*event
;
3062 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
) {
3063 if (event
->state
<= PERF_EVENT_STATE_OFF
)
3065 if (!event_filter_match(event
))
3068 /* may need to reset tstamp_enabled */
3069 if (is_cgroup_event(event
))
3070 perf_cgroup_mark_enabled(event
, ctx
);
3072 if (group_can_go_on(event
, cpuctx
, 1))
3073 group_sched_in(event
, cpuctx
, ctx
);
3076 * If this pinned group hasn't been scheduled,
3077 * put it in error state.
3079 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
3080 update_group_times(event
);
3081 event
->state
= PERF_EVENT_STATE_ERROR
;
3087 ctx_flexible_sched_in(struct perf_event_context
*ctx
,
3088 struct perf_cpu_context
*cpuctx
)
3090 struct perf_event
*event
;
3093 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
) {
3094 /* Ignore events in OFF or ERROR state */
3095 if (event
->state
<= PERF_EVENT_STATE_OFF
)
3098 * Listen to the 'cpu' scheduling filter constraint
3101 if (!event_filter_match(event
))
3104 /* may need to reset tstamp_enabled */
3105 if (is_cgroup_event(event
))
3106 perf_cgroup_mark_enabled(event
, ctx
);
3108 if (group_can_go_on(event
, cpuctx
, can_add_hw
)) {
3109 if (group_sched_in(event
, cpuctx
, ctx
))
3116 ctx_sched_in(struct perf_event_context
*ctx
,
3117 struct perf_cpu_context
*cpuctx
,
3118 enum event_type_t event_type
,
3119 struct task_struct
*task
)
3121 int is_active
= ctx
->is_active
;
3124 lockdep_assert_held(&ctx
->lock
);
3126 if (likely(!ctx
->nr_events
))
3129 ctx
->is_active
|= (event_type
| EVENT_TIME
);
3132 cpuctx
->task_ctx
= ctx
;
3134 WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
);
3137 is_active
^= ctx
->is_active
; /* changed bits */
3139 if (is_active
& EVENT_TIME
) {
3140 /* start ctx time */
3142 ctx
->timestamp
= now
;
3143 perf_cgroup_set_timestamp(task
, ctx
);
3147 * First go through the list and put on any pinned groups
3148 * in order to give them the best chance of going on.
3150 if (is_active
& EVENT_PINNED
)
3151 ctx_pinned_sched_in(ctx
, cpuctx
);
3153 /* Then walk through the lower prio flexible groups */
3154 if (is_active
& EVENT_FLEXIBLE
)
3155 ctx_flexible_sched_in(ctx
, cpuctx
);
3158 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
3159 enum event_type_t event_type
,
3160 struct task_struct
*task
)
3162 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
3164 ctx_sched_in(ctx
, cpuctx
, event_type
, task
);
3167 static void perf_event_context_sched_in(struct perf_event_context
*ctx
,
3168 struct task_struct
*task
)
3170 struct perf_cpu_context
*cpuctx
;
3172 cpuctx
= __get_cpu_context(ctx
);
3173 if (cpuctx
->task_ctx
== ctx
)
3176 perf_ctx_lock(cpuctx
, ctx
);
3177 perf_pmu_disable(ctx
->pmu
);
3179 * We want to keep the following priority order:
3180 * cpu pinned (that don't need to move), task pinned,
3181 * cpu flexible, task flexible.
3183 * However, if task's ctx is not carrying any pinned
3184 * events, no need to flip the cpuctx's events around.
3186 if (!list_empty(&ctx
->pinned_groups
))
3187 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
3188 perf_event_sched_in(cpuctx
, ctx
, task
);
3189 perf_pmu_enable(ctx
->pmu
);
3190 perf_ctx_unlock(cpuctx
, ctx
);
3194 * Called from scheduler to add the events of the current task
3195 * with interrupts disabled.
3197 * We restore the event value and then enable it.
3199 * This does not protect us against NMI, but enable()
3200 * sets the enabled bit in the control field of event _before_
3201 * accessing the event control register. If a NMI hits, then it will
3202 * keep the event running.
3204 void __perf_event_task_sched_in(struct task_struct
*prev
,
3205 struct task_struct
*task
)
3207 struct perf_event_context
*ctx
;
3211 * If cgroup events exist on this CPU, then we need to check if we have
3212 * to switch in PMU state; cgroup event are system-wide mode only.
3214 * Since cgroup events are CPU events, we must schedule these in before
3215 * we schedule in the task events.
3217 if (atomic_read(this_cpu_ptr(&perf_cgroup_events
)))
3218 perf_cgroup_sched_in(prev
, task
);
3220 for_each_task_context_nr(ctxn
) {
3221 ctx
= task
->perf_event_ctxp
[ctxn
];
3225 perf_event_context_sched_in(ctx
, task
);
3228 if (atomic_read(&nr_switch_events
))
3229 perf_event_switch(task
, prev
, true);
3231 if (__this_cpu_read(perf_sched_cb_usages
))
3232 perf_pmu_sched_task(prev
, task
, true);
3235 static u64
perf_calculate_period(struct perf_event
*event
, u64 nsec
, u64 count
)
3237 u64 frequency
= event
->attr
.sample_freq
;
3238 u64 sec
= NSEC_PER_SEC
;
3239 u64 divisor
, dividend
;
3241 int count_fls
, nsec_fls
, frequency_fls
, sec_fls
;
3243 count_fls
= fls64(count
);
3244 nsec_fls
= fls64(nsec
);
3245 frequency_fls
= fls64(frequency
);
3249 * We got @count in @nsec, with a target of sample_freq HZ
3250 * the target period becomes:
3253 * period = -------------------
3254 * @nsec * sample_freq
3259 * Reduce accuracy by one bit such that @a and @b converge
3260 * to a similar magnitude.
3262 #define REDUCE_FLS(a, b) \
3264 if (a##_fls > b##_fls) { \
3274 * Reduce accuracy until either term fits in a u64, then proceed with
3275 * the other, so that finally we can do a u64/u64 division.
3277 while (count_fls
+ sec_fls
> 64 && nsec_fls
+ frequency_fls
> 64) {
3278 REDUCE_FLS(nsec
, frequency
);
3279 REDUCE_FLS(sec
, count
);
3282 if (count_fls
+ sec_fls
> 64) {
3283 divisor
= nsec
* frequency
;
3285 while (count_fls
+ sec_fls
> 64) {
3286 REDUCE_FLS(count
, sec
);
3290 dividend
= count
* sec
;
3292 dividend
= count
* sec
;
3294 while (nsec_fls
+ frequency_fls
> 64) {
3295 REDUCE_FLS(nsec
, frequency
);
3299 divisor
= nsec
* frequency
;
3305 return div64_u64(dividend
, divisor
);
3308 static DEFINE_PER_CPU(int, perf_throttled_count
);
3309 static DEFINE_PER_CPU(u64
, perf_throttled_seq
);
3311 static void perf_adjust_period(struct perf_event
*event
, u64 nsec
, u64 count
, bool disable
)
3313 struct hw_perf_event
*hwc
= &event
->hw
;
3314 s64 period
, sample_period
;
3317 period
= perf_calculate_period(event
, nsec
, count
);
3319 delta
= (s64
)(period
- hwc
->sample_period
);
3320 delta
= (delta
+ 7) / 8; /* low pass filter */
3322 sample_period
= hwc
->sample_period
+ delta
;
3327 hwc
->sample_period
= sample_period
;
3329 if (local64_read(&hwc
->period_left
) > 8*sample_period
) {
3331 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
3333 local64_set(&hwc
->period_left
, 0);
3336 event
->pmu
->start(event
, PERF_EF_RELOAD
);
3341 * combine freq adjustment with unthrottling to avoid two passes over the
3342 * events. At the same time, make sure, having freq events does not change
3343 * the rate of unthrottling as that would introduce bias.
3345 static void perf_adjust_freq_unthr_context(struct perf_event_context
*ctx
,
3348 struct perf_event
*event
;
3349 struct hw_perf_event
*hwc
;
3350 u64 now
, period
= TICK_NSEC
;
3354 * only need to iterate over all events iff:
3355 * - context have events in frequency mode (needs freq adjust)
3356 * - there are events to unthrottle on this cpu
3358 if (!(ctx
->nr_freq
|| needs_unthr
))
3361 raw_spin_lock(&ctx
->lock
);
3362 perf_pmu_disable(ctx
->pmu
);
3364 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3365 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
3368 if (!event_filter_match(event
))
3371 perf_pmu_disable(event
->pmu
);
3375 if (hwc
->interrupts
== MAX_INTERRUPTS
) {
3376 hwc
->interrupts
= 0;
3377 perf_log_throttle(event
, 1);
3378 event
->pmu
->start(event
, 0);
3381 if (!event
->attr
.freq
|| !event
->attr
.sample_freq
)
3385 * stop the event and update event->count
3387 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
3389 now
= local64_read(&event
->count
);
3390 delta
= now
- hwc
->freq_count_stamp
;
3391 hwc
->freq_count_stamp
= now
;
3395 * reload only if value has changed
3396 * we have stopped the event so tell that
3397 * to perf_adjust_period() to avoid stopping it
3401 perf_adjust_period(event
, period
, delta
, false);
3403 event
->pmu
->start(event
, delta
> 0 ? PERF_EF_RELOAD
: 0);
3405 perf_pmu_enable(event
->pmu
);
3408 perf_pmu_enable(ctx
->pmu
);
3409 raw_spin_unlock(&ctx
->lock
);
3413 * Round-robin a context's events:
3415 static void rotate_ctx(struct perf_event_context
*ctx
)
3418 * Rotate the first entry last of non-pinned groups. Rotation might be
3419 * disabled by the inheritance code.
3421 if (!ctx
->rotate_disable
)
3422 list_rotate_left(&ctx
->flexible_groups
);
3425 static int perf_rotate_context(struct perf_cpu_context
*cpuctx
)
3427 struct perf_event_context
*ctx
= NULL
;
3430 if (cpuctx
->ctx
.nr_events
) {
3431 if (cpuctx
->ctx
.nr_events
!= cpuctx
->ctx
.nr_active
)
3435 ctx
= cpuctx
->task_ctx
;
3436 if (ctx
&& ctx
->nr_events
) {
3437 if (ctx
->nr_events
!= ctx
->nr_active
)
3444 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
3445 perf_pmu_disable(cpuctx
->ctx
.pmu
);
3447 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
3449 ctx_sched_out(ctx
, cpuctx
, EVENT_FLEXIBLE
);
3451 rotate_ctx(&cpuctx
->ctx
);
3455 perf_event_sched_in(cpuctx
, ctx
, current
);
3457 perf_pmu_enable(cpuctx
->ctx
.pmu
);
3458 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
3464 void perf_event_task_tick(void)
3466 struct list_head
*head
= this_cpu_ptr(&active_ctx_list
);
3467 struct perf_event_context
*ctx
, *tmp
;
3470 WARN_ON(!irqs_disabled());
3472 __this_cpu_inc(perf_throttled_seq
);
3473 throttled
= __this_cpu_xchg(perf_throttled_count
, 0);
3474 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS
);
3476 list_for_each_entry_safe(ctx
, tmp
, head
, active_ctx_list
)
3477 perf_adjust_freq_unthr_context(ctx
, throttled
);
3480 static int event_enable_on_exec(struct perf_event
*event
,
3481 struct perf_event_context
*ctx
)
3483 if (!event
->attr
.enable_on_exec
)
3486 event
->attr
.enable_on_exec
= 0;
3487 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
3490 __perf_event_mark_enabled(event
);
3496 * Enable all of a task's events that have been marked enable-on-exec.
3497 * This expects task == current.
3499 static void perf_event_enable_on_exec(int ctxn
)
3501 struct perf_event_context
*ctx
, *clone_ctx
= NULL
;
3502 enum event_type_t event_type
= 0;
3503 struct perf_cpu_context
*cpuctx
;
3504 struct perf_event
*event
;
3505 unsigned long flags
;
3508 local_irq_save(flags
);
3509 ctx
= current
->perf_event_ctxp
[ctxn
];
3510 if (!ctx
|| !ctx
->nr_events
)
3513 cpuctx
= __get_cpu_context(ctx
);
3514 perf_ctx_lock(cpuctx
, ctx
);
3515 ctx_sched_out(ctx
, cpuctx
, EVENT_TIME
);
3516 list_for_each_entry(event
, &ctx
->event_list
, event_entry
) {
3517 enabled
|= event_enable_on_exec(event
, ctx
);
3518 event_type
|= get_event_type(event
);
3522 * Unclone and reschedule this context if we enabled any event.
3525 clone_ctx
= unclone_ctx(ctx
);
3526 ctx_resched(cpuctx
, ctx
, event_type
);
3528 ctx_sched_in(ctx
, cpuctx
, EVENT_TIME
, current
);
3530 perf_ctx_unlock(cpuctx
, ctx
);
3533 local_irq_restore(flags
);
3539 struct perf_read_data
{
3540 struct perf_event
*event
;
3545 static int __perf_event_read_cpu(struct perf_event
*event
, int event_cpu
)
3547 u16 local_pkg
, event_pkg
;
3549 if (event
->group_caps
& PERF_EV_CAP_READ_ACTIVE_PKG
) {
3550 int local_cpu
= smp_processor_id();
3552 event_pkg
= topology_physical_package_id(event_cpu
);
3553 local_pkg
= topology_physical_package_id(local_cpu
);
3555 if (event_pkg
== local_pkg
)
3563 * Cross CPU call to read the hardware event
3565 static void __perf_event_read(void *info
)
3567 struct perf_read_data
*data
= info
;
3568 struct perf_event
*sub
, *event
= data
->event
;
3569 struct perf_event_context
*ctx
= event
->ctx
;
3570 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
3571 struct pmu
*pmu
= event
->pmu
;
3574 * If this is a task context, we need to check whether it is
3575 * the current task context of this cpu. If not it has been
3576 * scheduled out before the smp call arrived. In that case
3577 * event->count would have been updated to a recent sample
3578 * when the event was scheduled out.
3580 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
3583 raw_spin_lock(&ctx
->lock
);
3584 if (ctx
->is_active
) {
3585 update_context_time(ctx
);
3586 update_cgrp_time_from_event(event
);
3589 update_event_times(event
);
3590 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
3599 pmu
->start_txn(pmu
, PERF_PMU_TXN_READ
);
3603 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
3604 update_event_times(sub
);
3605 if (sub
->state
== PERF_EVENT_STATE_ACTIVE
) {
3607 * Use sibling's PMU rather than @event's since
3608 * sibling could be on different (eg: software) PMU.
3610 sub
->pmu
->read(sub
);
3614 data
->ret
= pmu
->commit_txn(pmu
);
3617 raw_spin_unlock(&ctx
->lock
);
3620 static inline u64
perf_event_count(struct perf_event
*event
)
3622 if (event
->pmu
->count
)
3623 return event
->pmu
->count(event
);
3625 return __perf_event_count(event
);
3629 * NMI-safe method to read a local event, that is an event that
3631 * - either for the current task, or for this CPU
3632 * - does not have inherit set, for inherited task events
3633 * will not be local and we cannot read them atomically
3634 * - must not have a pmu::count method
3636 u64
perf_event_read_local(struct perf_event
*event
)
3638 unsigned long flags
;
3642 * Disabling interrupts avoids all counter scheduling (context
3643 * switches, timer based rotation and IPIs).
3645 local_irq_save(flags
);
3647 /* If this is a per-task event, it must be for current */
3648 WARN_ON_ONCE((event
->attach_state
& PERF_ATTACH_TASK
) &&
3649 event
->hw
.target
!= current
);
3651 /* If this is a per-CPU event, it must be for this CPU */
3652 WARN_ON_ONCE(!(event
->attach_state
& PERF_ATTACH_TASK
) &&
3653 event
->cpu
!= smp_processor_id());
3656 * It must not be an event with inherit set, we cannot read
3657 * all child counters from atomic context.
3659 WARN_ON_ONCE(event
->attr
.inherit
);
3662 * It must not have a pmu::count method, those are not
3665 WARN_ON_ONCE(event
->pmu
->count
);
3668 * If the event is currently on this CPU, its either a per-task event,
3669 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3672 if (event
->oncpu
== smp_processor_id())
3673 event
->pmu
->read(event
);
3675 val
= local64_read(&event
->count
);
3676 local_irq_restore(flags
);
3681 static int perf_event_read(struct perf_event
*event
, bool group
)
3683 int event_cpu
, ret
= 0;
3686 * If event is enabled and currently active on a CPU, update the
3687 * value in the event structure:
3689 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
3690 struct perf_read_data data
= {
3696 event_cpu
= READ_ONCE(event
->oncpu
);
3697 if ((unsigned)event_cpu
>= nr_cpu_ids
)
3701 event_cpu
= __perf_event_read_cpu(event
, event_cpu
);
3704 * Purposely ignore the smp_call_function_single() return
3707 * If event_cpu isn't a valid CPU it means the event got
3708 * scheduled out and that will have updated the event count.
3710 * Therefore, either way, we'll have an up-to-date event count
3713 (void)smp_call_function_single(event_cpu
, __perf_event_read
, &data
, 1);
3716 } else if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
3717 struct perf_event_context
*ctx
= event
->ctx
;
3718 unsigned long flags
;
3720 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
3722 * may read while context is not active
3723 * (e.g., thread is blocked), in that case
3724 * we cannot update context time
3726 if (ctx
->is_active
) {
3727 update_context_time(ctx
);
3728 update_cgrp_time_from_event(event
);
3731 update_group_times(event
);
3733 update_event_times(event
);
3734 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
3741 * Initialize the perf_event context in a task_struct:
3743 static void __perf_event_init_context(struct perf_event_context
*ctx
)
3745 raw_spin_lock_init(&ctx
->lock
);
3746 mutex_init(&ctx
->mutex
);
3747 INIT_LIST_HEAD(&ctx
->active_ctx_list
);
3748 INIT_LIST_HEAD(&ctx
->pinned_groups
);
3749 INIT_LIST_HEAD(&ctx
->flexible_groups
);
3750 INIT_LIST_HEAD(&ctx
->event_list
);
3751 atomic_set(&ctx
->refcount
, 1);
3754 static struct perf_event_context
*
3755 alloc_perf_context(struct pmu
*pmu
, struct task_struct
*task
)
3757 struct perf_event_context
*ctx
;
3759 ctx
= kzalloc(sizeof(struct perf_event_context
), GFP_KERNEL
);
3763 __perf_event_init_context(ctx
);
3766 get_task_struct(task
);
3773 static struct task_struct
*
3774 find_lively_task_by_vpid(pid_t vpid
)
3776 struct task_struct
*task
;
3782 task
= find_task_by_vpid(vpid
);
3784 get_task_struct(task
);
3788 return ERR_PTR(-ESRCH
);
3794 * Returns a matching context with refcount and pincount.
3796 static struct perf_event_context
*
3797 find_get_context(struct pmu
*pmu
, struct task_struct
*task
,
3798 struct perf_event
*event
)
3800 struct perf_event_context
*ctx
, *clone_ctx
= NULL
;
3801 struct perf_cpu_context
*cpuctx
;
3802 void *task_ctx_data
= NULL
;
3803 unsigned long flags
;
3805 int cpu
= event
->cpu
;
3808 /* Must be root to operate on a CPU event: */
3809 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN
))
3810 return ERR_PTR(-EACCES
);
3813 * We could be clever and allow to attach a event to an
3814 * offline CPU and activate it when the CPU comes up, but
3817 if (!cpu_online(cpu
))
3818 return ERR_PTR(-ENODEV
);
3820 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
3829 ctxn
= pmu
->task_ctx_nr
;
3833 if (event
->attach_state
& PERF_ATTACH_TASK_DATA
) {
3834 task_ctx_data
= kzalloc(pmu
->task_ctx_size
, GFP_KERNEL
);
3835 if (!task_ctx_data
) {
3842 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
3844 clone_ctx
= unclone_ctx(ctx
);
3847 if (task_ctx_data
&& !ctx
->task_ctx_data
) {
3848 ctx
->task_ctx_data
= task_ctx_data
;
3849 task_ctx_data
= NULL
;
3851 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
3856 ctx
= alloc_perf_context(pmu
, task
);
3861 if (task_ctx_data
) {
3862 ctx
->task_ctx_data
= task_ctx_data
;
3863 task_ctx_data
= NULL
;
3867 mutex_lock(&task
->perf_event_mutex
);
3869 * If it has already passed perf_event_exit_task().
3870 * we must see PF_EXITING, it takes this mutex too.
3872 if (task
->flags
& PF_EXITING
)
3874 else if (task
->perf_event_ctxp
[ctxn
])
3879 rcu_assign_pointer(task
->perf_event_ctxp
[ctxn
], ctx
);
3881 mutex_unlock(&task
->perf_event_mutex
);
3883 if (unlikely(err
)) {
3892 kfree(task_ctx_data
);
3896 kfree(task_ctx_data
);
3897 return ERR_PTR(err
);
3900 static void perf_event_free_filter(struct perf_event
*event
);
3901 static void perf_event_free_bpf_prog(struct perf_event
*event
);
3903 static void free_event_rcu(struct rcu_head
*head
)
3905 struct perf_event
*event
;
3907 event
= container_of(head
, struct perf_event
, rcu_head
);
3909 put_pid_ns(event
->ns
);
3910 perf_event_free_filter(event
);
3914 static void ring_buffer_attach(struct perf_event
*event
,
3915 struct ring_buffer
*rb
);
3917 static void detach_sb_event(struct perf_event
*event
)
3919 struct pmu_event_list
*pel
= per_cpu_ptr(&pmu_sb_events
, event
->cpu
);
3921 raw_spin_lock(&pel
->lock
);
3922 list_del_rcu(&event
->sb_list
);
3923 raw_spin_unlock(&pel
->lock
);
3926 static bool is_sb_event(struct perf_event
*event
)
3928 struct perf_event_attr
*attr
= &event
->attr
;
3933 if (event
->attach_state
& PERF_ATTACH_TASK
)
3936 if (attr
->mmap
|| attr
->mmap_data
|| attr
->mmap2
||
3937 attr
->comm
|| attr
->comm_exec
||
3939 attr
->context_switch
)
3944 static void unaccount_pmu_sb_event(struct perf_event
*event
)
3946 if (is_sb_event(event
))
3947 detach_sb_event(event
);
3950 static void unaccount_event_cpu(struct perf_event
*event
, int cpu
)
3955 if (is_cgroup_event(event
))
3956 atomic_dec(&per_cpu(perf_cgroup_events
, cpu
));
3959 #ifdef CONFIG_NO_HZ_FULL
3960 static DEFINE_SPINLOCK(nr_freq_lock
);
3963 static void unaccount_freq_event_nohz(void)
3965 #ifdef CONFIG_NO_HZ_FULL
3966 spin_lock(&nr_freq_lock
);
3967 if (atomic_dec_and_test(&nr_freq_events
))
3968 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS
);
3969 spin_unlock(&nr_freq_lock
);
3973 static void unaccount_freq_event(void)
3975 if (tick_nohz_full_enabled())
3976 unaccount_freq_event_nohz();
3978 atomic_dec(&nr_freq_events
);
3981 static void unaccount_event(struct perf_event
*event
)
3988 if (event
->attach_state
& PERF_ATTACH_TASK
)
3990 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
3991 atomic_dec(&nr_mmap_events
);
3992 if (event
->attr
.comm
)
3993 atomic_dec(&nr_comm_events
);
3994 if (event
->attr
.task
)
3995 atomic_dec(&nr_task_events
);
3996 if (event
->attr
.freq
)
3997 unaccount_freq_event();
3998 if (event
->attr
.context_switch
) {
4000 atomic_dec(&nr_switch_events
);
4002 if (is_cgroup_event(event
))
4004 if (has_branch_stack(event
))
4008 if (!atomic_add_unless(&perf_sched_count
, -1, 1))
4009 schedule_delayed_work(&perf_sched_work
, HZ
);
4012 unaccount_event_cpu(event
, event
->cpu
);
4014 unaccount_pmu_sb_event(event
);
4017 static void perf_sched_delayed(struct work_struct
*work
)
4019 mutex_lock(&perf_sched_mutex
);
4020 if (atomic_dec_and_test(&perf_sched_count
))
4021 static_branch_disable(&perf_sched_events
);
4022 mutex_unlock(&perf_sched_mutex
);
4026 * The following implement mutual exclusion of events on "exclusive" pmus
4027 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4028 * at a time, so we disallow creating events that might conflict, namely:
4030 * 1) cpu-wide events in the presence of per-task events,
4031 * 2) per-task events in the presence of cpu-wide events,
4032 * 3) two matching events on the same context.
4034 * The former two cases are handled in the allocation path (perf_event_alloc(),
4035 * _free_event()), the latter -- before the first perf_install_in_context().
4037 static int exclusive_event_init(struct perf_event
*event
)
4039 struct pmu
*pmu
= event
->pmu
;
4041 if (!(pmu
->capabilities
& PERF_PMU_CAP_EXCLUSIVE
))
4045 * Prevent co-existence of per-task and cpu-wide events on the
4046 * same exclusive pmu.
4048 * Negative pmu::exclusive_cnt means there are cpu-wide
4049 * events on this "exclusive" pmu, positive means there are
4052 * Since this is called in perf_event_alloc() path, event::ctx
4053 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4054 * to mean "per-task event", because unlike other attach states it
4055 * never gets cleared.
4057 if (event
->attach_state
& PERF_ATTACH_TASK
) {
4058 if (!atomic_inc_unless_negative(&pmu
->exclusive_cnt
))
4061 if (!atomic_dec_unless_positive(&pmu
->exclusive_cnt
))
4068 static void exclusive_event_destroy(struct perf_event
*event
)
4070 struct pmu
*pmu
= event
->pmu
;
4072 if (!(pmu
->capabilities
& PERF_PMU_CAP_EXCLUSIVE
))
4075 /* see comment in exclusive_event_init() */
4076 if (event
->attach_state
& PERF_ATTACH_TASK
)
4077 atomic_dec(&pmu
->exclusive_cnt
);
4079 atomic_inc(&pmu
->exclusive_cnt
);
4082 static bool exclusive_event_match(struct perf_event
*e1
, struct perf_event
*e2
)
4084 if ((e1
->pmu
== e2
->pmu
) &&
4085 (e1
->cpu
== e2
->cpu
||
4092 /* Called under the same ctx::mutex as perf_install_in_context() */
4093 static bool exclusive_event_installable(struct perf_event
*event
,
4094 struct perf_event_context
*ctx
)
4096 struct perf_event
*iter_event
;
4097 struct pmu
*pmu
= event
->pmu
;
4099 if (!(pmu
->capabilities
& PERF_PMU_CAP_EXCLUSIVE
))
4102 list_for_each_entry(iter_event
, &ctx
->event_list
, event_entry
) {
4103 if (exclusive_event_match(iter_event
, event
))
4110 static void perf_addr_filters_splice(struct perf_event
*event
,
4111 struct list_head
*head
);
4113 static void _free_event(struct perf_event
*event
)
4115 irq_work_sync(&event
->pending
);
4117 unaccount_event(event
);
4121 * Can happen when we close an event with re-directed output.
4123 * Since we have a 0 refcount, perf_mmap_close() will skip
4124 * over us; possibly making our ring_buffer_put() the last.
4126 mutex_lock(&event
->mmap_mutex
);
4127 ring_buffer_attach(event
, NULL
);
4128 mutex_unlock(&event
->mmap_mutex
);
4131 if (is_cgroup_event(event
))
4132 perf_detach_cgroup(event
);
4134 if (!event
->parent
) {
4135 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
)
4136 put_callchain_buffers();
4139 perf_event_free_bpf_prog(event
);
4140 perf_addr_filters_splice(event
, NULL
);
4141 kfree(event
->addr_filters_offs
);
4144 event
->destroy(event
);
4147 put_ctx(event
->ctx
);
4149 exclusive_event_destroy(event
);
4150 module_put(event
->pmu
->module
);
4152 call_rcu(&event
->rcu_head
, free_event_rcu
);
4156 * Used to free events which have a known refcount of 1, such as in error paths
4157 * where the event isn't exposed yet and inherited events.
4159 static void free_event(struct perf_event
*event
)
4161 if (WARN(atomic_long_cmpxchg(&event
->refcount
, 1, 0) != 1,
4162 "unexpected event refcount: %ld; ptr=%p\n",
4163 atomic_long_read(&event
->refcount
), event
)) {
4164 /* leak to avoid use-after-free */
4172 * Remove user event from the owner task.
4174 static void perf_remove_from_owner(struct perf_event
*event
)
4176 struct task_struct
*owner
;
4180 * Matches the smp_store_release() in perf_event_exit_task(). If we
4181 * observe !owner it means the list deletion is complete and we can
4182 * indeed free this event, otherwise we need to serialize on
4183 * owner->perf_event_mutex.
4185 owner
= lockless_dereference(event
->owner
);
4188 * Since delayed_put_task_struct() also drops the last
4189 * task reference we can safely take a new reference
4190 * while holding the rcu_read_lock().
4192 get_task_struct(owner
);
4198 * If we're here through perf_event_exit_task() we're already
4199 * holding ctx->mutex which would be an inversion wrt. the
4200 * normal lock order.
4202 * However we can safely take this lock because its the child
4205 mutex_lock_nested(&owner
->perf_event_mutex
, SINGLE_DEPTH_NESTING
);
4208 * We have to re-check the event->owner field, if it is cleared
4209 * we raced with perf_event_exit_task(), acquiring the mutex
4210 * ensured they're done, and we can proceed with freeing the
4214 list_del_init(&event
->owner_entry
);
4215 smp_store_release(&event
->owner
, NULL
);
4217 mutex_unlock(&owner
->perf_event_mutex
);
4218 put_task_struct(owner
);
4222 static void put_event(struct perf_event
*event
)
4224 if (!atomic_long_dec_and_test(&event
->refcount
))
4231 * Kill an event dead; while event:refcount will preserve the event
4232 * object, it will not preserve its functionality. Once the last 'user'
4233 * gives up the object, we'll destroy the thing.
4235 int perf_event_release_kernel(struct perf_event
*event
)
4237 struct perf_event_context
*ctx
= event
->ctx
;
4238 struct perf_event
*child
, *tmp
;
4241 * If we got here through err_file: fput(event_file); we will not have
4242 * attached to a context yet.
4245 WARN_ON_ONCE(event
->attach_state
&
4246 (PERF_ATTACH_CONTEXT
|PERF_ATTACH_GROUP
));
4250 if (!is_kernel_event(event
))
4251 perf_remove_from_owner(event
);
4253 ctx
= perf_event_ctx_lock(event
);
4254 WARN_ON_ONCE(ctx
->parent_ctx
);
4255 perf_remove_from_context(event
, DETACH_GROUP
);
4257 raw_spin_lock_irq(&ctx
->lock
);
4259 * Mark this event as STATE_DEAD, there is no external reference to it
4262 * Anybody acquiring event->child_mutex after the below loop _must_
4263 * also see this, most importantly inherit_event() which will avoid
4264 * placing more children on the list.
4266 * Thus this guarantees that we will in fact observe and kill _ALL_
4269 event
->state
= PERF_EVENT_STATE_DEAD
;
4270 raw_spin_unlock_irq(&ctx
->lock
);
4272 perf_event_ctx_unlock(event
, ctx
);
4275 mutex_lock(&event
->child_mutex
);
4276 list_for_each_entry(child
, &event
->child_list
, child_list
) {
4279 * Cannot change, child events are not migrated, see the
4280 * comment with perf_event_ctx_lock_nested().
4282 ctx
= lockless_dereference(child
->ctx
);
4284 * Since child_mutex nests inside ctx::mutex, we must jump
4285 * through hoops. We start by grabbing a reference on the ctx.
4287 * Since the event cannot get freed while we hold the
4288 * child_mutex, the context must also exist and have a !0
4294 * Now that we have a ctx ref, we can drop child_mutex, and
4295 * acquire ctx::mutex without fear of it going away. Then we
4296 * can re-acquire child_mutex.
4298 mutex_unlock(&event
->child_mutex
);
4299 mutex_lock(&ctx
->mutex
);
4300 mutex_lock(&event
->child_mutex
);
4303 * Now that we hold ctx::mutex and child_mutex, revalidate our
4304 * state, if child is still the first entry, it didn't get freed
4305 * and we can continue doing so.
4307 tmp
= list_first_entry_or_null(&event
->child_list
,
4308 struct perf_event
, child_list
);
4310 perf_remove_from_context(child
, DETACH_GROUP
);
4311 list_del(&child
->child_list
);
4314 * This matches the refcount bump in inherit_event();
4315 * this can't be the last reference.
4320 mutex_unlock(&event
->child_mutex
);
4321 mutex_unlock(&ctx
->mutex
);
4325 mutex_unlock(&event
->child_mutex
);
4328 put_event(event
); /* Must be the 'last' reference */
4331 EXPORT_SYMBOL_GPL(perf_event_release_kernel
);
4334 * Called when the last reference to the file is gone.
4336 static int perf_release(struct inode
*inode
, struct file
*file
)
4338 perf_event_release_kernel(file
->private_data
);
4342 u64
perf_event_read_value(struct perf_event
*event
, u64
*enabled
, u64
*running
)
4344 struct perf_event
*child
;
4350 mutex_lock(&event
->child_mutex
);
4352 (void)perf_event_read(event
, false);
4353 total
+= perf_event_count(event
);
4355 *enabled
+= event
->total_time_enabled
+
4356 atomic64_read(&event
->child_total_time_enabled
);
4357 *running
+= event
->total_time_running
+
4358 atomic64_read(&event
->child_total_time_running
);
4360 list_for_each_entry(child
, &event
->child_list
, child_list
) {
4361 (void)perf_event_read(child
, false);
4362 total
+= perf_event_count(child
);
4363 *enabled
+= child
->total_time_enabled
;
4364 *running
+= child
->total_time_running
;
4366 mutex_unlock(&event
->child_mutex
);
4370 EXPORT_SYMBOL_GPL(perf_event_read_value
);
4372 static int __perf_read_group_add(struct perf_event
*leader
,
4373 u64 read_format
, u64
*values
)
4375 struct perf_event
*sub
;
4376 int n
= 1; /* skip @nr */
4379 ret
= perf_event_read(leader
, true);
4384 * Since we co-schedule groups, {enabled,running} times of siblings
4385 * will be identical to those of the leader, so we only publish one
4388 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
4389 values
[n
++] += leader
->total_time_enabled
+
4390 atomic64_read(&leader
->child_total_time_enabled
);
4393 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
4394 values
[n
++] += leader
->total_time_running
+
4395 atomic64_read(&leader
->child_total_time_running
);
4399 * Write {count,id} tuples for every sibling.
4401 values
[n
++] += perf_event_count(leader
);
4402 if (read_format
& PERF_FORMAT_ID
)
4403 values
[n
++] = primary_event_id(leader
);
4405 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
4406 values
[n
++] += perf_event_count(sub
);
4407 if (read_format
& PERF_FORMAT_ID
)
4408 values
[n
++] = primary_event_id(sub
);
4414 static int perf_read_group(struct perf_event
*event
,
4415 u64 read_format
, char __user
*buf
)
4417 struct perf_event
*leader
= event
->group_leader
, *child
;
4418 struct perf_event_context
*ctx
= leader
->ctx
;
4422 lockdep_assert_held(&ctx
->mutex
);
4424 values
= kzalloc(event
->read_size
, GFP_KERNEL
);
4428 values
[0] = 1 + leader
->nr_siblings
;
4431 * By locking the child_mutex of the leader we effectively
4432 * lock the child list of all siblings.. XXX explain how.
4434 mutex_lock(&leader
->child_mutex
);
4436 ret
= __perf_read_group_add(leader
, read_format
, values
);
4440 list_for_each_entry(child
, &leader
->child_list
, child_list
) {
4441 ret
= __perf_read_group_add(child
, read_format
, values
);
4446 mutex_unlock(&leader
->child_mutex
);
4448 ret
= event
->read_size
;
4449 if (copy_to_user(buf
, values
, event
->read_size
))
4454 mutex_unlock(&leader
->child_mutex
);
4460 static int perf_read_one(struct perf_event
*event
,
4461 u64 read_format
, char __user
*buf
)
4463 u64 enabled
, running
;
4467 values
[n
++] = perf_event_read_value(event
, &enabled
, &running
);
4468 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
4469 values
[n
++] = enabled
;
4470 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
4471 values
[n
++] = running
;
4472 if (read_format
& PERF_FORMAT_ID
)
4473 values
[n
++] = primary_event_id(event
);
4475 if (copy_to_user(buf
, values
, n
* sizeof(u64
)))
4478 return n
* sizeof(u64
);
4481 static bool is_event_hup(struct perf_event
*event
)
4485 if (event
->state
> PERF_EVENT_STATE_EXIT
)
4488 mutex_lock(&event
->child_mutex
);
4489 no_children
= list_empty(&event
->child_list
);
4490 mutex_unlock(&event
->child_mutex
);
4495 * Read the performance event - simple non blocking version for now
4498 __perf_read(struct perf_event
*event
, char __user
*buf
, size_t count
)
4500 u64 read_format
= event
->attr
.read_format
;
4504 * Return end-of-file for a read on a event that is in
4505 * error state (i.e. because it was pinned but it couldn't be
4506 * scheduled on to the CPU at some point).
4508 if (event
->state
== PERF_EVENT_STATE_ERROR
)
4511 if (count
< event
->read_size
)
4514 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
4515 if (read_format
& PERF_FORMAT_GROUP
)
4516 ret
= perf_read_group(event
, read_format
, buf
);
4518 ret
= perf_read_one(event
, read_format
, buf
);
4524 perf_read(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
4526 struct perf_event
*event
= file
->private_data
;
4527 struct perf_event_context
*ctx
;
4530 ctx
= perf_event_ctx_lock(event
);
4531 ret
= __perf_read(event
, buf
, count
);
4532 perf_event_ctx_unlock(event
, ctx
);
4537 static unsigned int perf_poll(struct file
*file
, poll_table
*wait
)
4539 struct perf_event
*event
= file
->private_data
;
4540 struct ring_buffer
*rb
;
4541 unsigned int events
= POLLHUP
;
4543 poll_wait(file
, &event
->waitq
, wait
);
4545 if (is_event_hup(event
))
4549 * Pin the event->rb by taking event->mmap_mutex; otherwise
4550 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4552 mutex_lock(&event
->mmap_mutex
);
4555 events
= atomic_xchg(&rb
->poll
, 0);
4556 mutex_unlock(&event
->mmap_mutex
);
4560 static void _perf_event_reset(struct perf_event
*event
)
4562 (void)perf_event_read(event
, false);
4563 local64_set(&event
->count
, 0);
4564 perf_event_update_userpage(event
);
4568 * Holding the top-level event's child_mutex means that any
4569 * descendant process that has inherited this event will block
4570 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4571 * task existence requirements of perf_event_enable/disable.
4573 static void perf_event_for_each_child(struct perf_event
*event
,
4574 void (*func
)(struct perf_event
*))
4576 struct perf_event
*child
;
4578 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
4580 mutex_lock(&event
->child_mutex
);
4582 list_for_each_entry(child
, &event
->child_list
, child_list
)
4584 mutex_unlock(&event
->child_mutex
);
4587 static void perf_event_for_each(struct perf_event
*event
,
4588 void (*func
)(struct perf_event
*))
4590 struct perf_event_context
*ctx
= event
->ctx
;
4591 struct perf_event
*sibling
;
4593 lockdep_assert_held(&ctx
->mutex
);
4595 event
= event
->group_leader
;
4597 perf_event_for_each_child(event
, func
);
4598 list_for_each_entry(sibling
, &event
->sibling_list
, group_entry
)
4599 perf_event_for_each_child(sibling
, func
);
4602 static void __perf_event_period(struct perf_event
*event
,
4603 struct perf_cpu_context
*cpuctx
,
4604 struct perf_event_context
*ctx
,
4607 u64 value
= *((u64
*)info
);
4610 if (event
->attr
.freq
) {
4611 event
->attr
.sample_freq
= value
;
4613 event
->attr
.sample_period
= value
;
4614 event
->hw
.sample_period
= value
;
4617 active
= (event
->state
== PERF_EVENT_STATE_ACTIVE
);
4619 perf_pmu_disable(ctx
->pmu
);
4621 * We could be throttled; unthrottle now to avoid the tick
4622 * trying to unthrottle while we already re-started the event.
4624 if (event
->hw
.interrupts
== MAX_INTERRUPTS
) {
4625 event
->hw
.interrupts
= 0;
4626 perf_log_throttle(event
, 1);
4628 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
4631 local64_set(&event
->hw
.period_left
, 0);
4634 event
->pmu
->start(event
, PERF_EF_RELOAD
);
4635 perf_pmu_enable(ctx
->pmu
);
4639 static int perf_event_period(struct perf_event
*event
, u64 __user
*arg
)
4643 if (!is_sampling_event(event
))
4646 if (copy_from_user(&value
, arg
, sizeof(value
)))
4652 if (event
->attr
.freq
&& value
> sysctl_perf_event_sample_rate
)
4655 event_function_call(event
, __perf_event_period
, &value
);
4660 static const struct file_operations perf_fops
;
4662 static inline int perf_fget_light(int fd
, struct fd
*p
)
4664 struct fd f
= fdget(fd
);
4668 if (f
.file
->f_op
!= &perf_fops
) {
4676 static int perf_event_set_output(struct perf_event
*event
,
4677 struct perf_event
*output_event
);
4678 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
);
4679 static int perf_event_set_bpf_prog(struct perf_event
*event
, u32 prog_fd
);
4681 static long _perf_ioctl(struct perf_event
*event
, unsigned int cmd
, unsigned long arg
)
4683 void (*func
)(struct perf_event
*);
4687 case PERF_EVENT_IOC_ENABLE
:
4688 func
= _perf_event_enable
;
4690 case PERF_EVENT_IOC_DISABLE
:
4691 func
= _perf_event_disable
;
4693 case PERF_EVENT_IOC_RESET
:
4694 func
= _perf_event_reset
;
4697 case PERF_EVENT_IOC_REFRESH
:
4698 return _perf_event_refresh(event
, arg
);
4700 case PERF_EVENT_IOC_PERIOD
:
4701 return perf_event_period(event
, (u64 __user
*)arg
);
4703 case PERF_EVENT_IOC_ID
:
4705 u64 id
= primary_event_id(event
);
4707 if (copy_to_user((void __user
*)arg
, &id
, sizeof(id
)))
4712 case PERF_EVENT_IOC_SET_OUTPUT
:
4716 struct perf_event
*output_event
;
4718 ret
= perf_fget_light(arg
, &output
);
4721 output_event
= output
.file
->private_data
;
4722 ret
= perf_event_set_output(event
, output_event
);
4725 ret
= perf_event_set_output(event
, NULL
);
4730 case PERF_EVENT_IOC_SET_FILTER
:
4731 return perf_event_set_filter(event
, (void __user
*)arg
);
4733 case PERF_EVENT_IOC_SET_BPF
:
4734 return perf_event_set_bpf_prog(event
, arg
);
4736 case PERF_EVENT_IOC_PAUSE_OUTPUT
: {
4737 struct ring_buffer
*rb
;
4740 rb
= rcu_dereference(event
->rb
);
4741 if (!rb
|| !rb
->nr_pages
) {
4745 rb_toggle_paused(rb
, !!arg
);
4753 if (flags
& PERF_IOC_FLAG_GROUP
)
4754 perf_event_for_each(event
, func
);
4756 perf_event_for_each_child(event
, func
);
4761 static long perf_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
4763 struct perf_event
*event
= file
->private_data
;
4764 struct perf_event_context
*ctx
;
4767 ctx
= perf_event_ctx_lock(event
);
4768 ret
= _perf_ioctl(event
, cmd
, arg
);
4769 perf_event_ctx_unlock(event
, ctx
);
4774 #ifdef CONFIG_COMPAT
4775 static long perf_compat_ioctl(struct file
*file
, unsigned int cmd
,
4778 switch (_IOC_NR(cmd
)) {
4779 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER
):
4780 case _IOC_NR(PERF_EVENT_IOC_ID
):
4781 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4782 if (_IOC_SIZE(cmd
) == sizeof(compat_uptr_t
)) {
4783 cmd
&= ~IOCSIZE_MASK
;
4784 cmd
|= sizeof(void *) << IOCSIZE_SHIFT
;
4788 return perf_ioctl(file
, cmd
, arg
);
4791 # define perf_compat_ioctl NULL
4794 int perf_event_task_enable(void)
4796 struct perf_event_context
*ctx
;
4797 struct perf_event
*event
;
4799 mutex_lock(¤t
->perf_event_mutex
);
4800 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
) {
4801 ctx
= perf_event_ctx_lock(event
);
4802 perf_event_for_each_child(event
, _perf_event_enable
);
4803 perf_event_ctx_unlock(event
, ctx
);
4805 mutex_unlock(¤t
->perf_event_mutex
);
4810 int perf_event_task_disable(void)
4812 struct perf_event_context
*ctx
;
4813 struct perf_event
*event
;
4815 mutex_lock(¤t
->perf_event_mutex
);
4816 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
) {
4817 ctx
= perf_event_ctx_lock(event
);
4818 perf_event_for_each_child(event
, _perf_event_disable
);
4819 perf_event_ctx_unlock(event
, ctx
);
4821 mutex_unlock(¤t
->perf_event_mutex
);
4826 static int perf_event_index(struct perf_event
*event
)
4828 if (event
->hw
.state
& PERF_HES_STOPPED
)
4831 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
4834 return event
->pmu
->event_idx(event
);
4837 static void calc_timer_values(struct perf_event
*event
,
4844 *now
= perf_clock();
4845 ctx_time
= event
->shadow_ctx_time
+ *now
;
4846 *enabled
= ctx_time
- event
->tstamp_enabled
;
4847 *running
= ctx_time
- event
->tstamp_running
;
4850 static void perf_event_init_userpage(struct perf_event
*event
)
4852 struct perf_event_mmap_page
*userpg
;
4853 struct ring_buffer
*rb
;
4856 rb
= rcu_dereference(event
->rb
);
4860 userpg
= rb
->user_page
;
4862 /* Allow new userspace to detect that bit 0 is deprecated */
4863 userpg
->cap_bit0_is_deprecated
= 1;
4864 userpg
->size
= offsetof(struct perf_event_mmap_page
, __reserved
);
4865 userpg
->data_offset
= PAGE_SIZE
;
4866 userpg
->data_size
= perf_data_size(rb
);
4872 void __weak
arch_perf_update_userpage(
4873 struct perf_event
*event
, struct perf_event_mmap_page
*userpg
, u64 now
)
4878 * Callers need to ensure there can be no nesting of this function, otherwise
4879 * the seqlock logic goes bad. We can not serialize this because the arch
4880 * code calls this from NMI context.
4882 void perf_event_update_userpage(struct perf_event
*event
)
4884 struct perf_event_mmap_page
*userpg
;
4885 struct ring_buffer
*rb
;
4886 u64 enabled
, running
, now
;
4889 rb
= rcu_dereference(event
->rb
);
4894 * compute total_time_enabled, total_time_running
4895 * based on snapshot values taken when the event
4896 * was last scheduled in.
4898 * we cannot simply called update_context_time()
4899 * because of locking issue as we can be called in
4902 calc_timer_values(event
, &now
, &enabled
, &running
);
4904 userpg
= rb
->user_page
;
4906 * Disable preemption so as to not let the corresponding user-space
4907 * spin too long if we get preempted.
4912 userpg
->index
= perf_event_index(event
);
4913 userpg
->offset
= perf_event_count(event
);
4915 userpg
->offset
-= local64_read(&event
->hw
.prev_count
);
4917 userpg
->time_enabled
= enabled
+
4918 atomic64_read(&event
->child_total_time_enabled
);
4920 userpg
->time_running
= running
+
4921 atomic64_read(&event
->child_total_time_running
);
4923 arch_perf_update_userpage(event
, userpg
, now
);
4932 static int perf_mmap_fault(struct vm_fault
*vmf
)
4934 struct perf_event
*event
= vmf
->vma
->vm_file
->private_data
;
4935 struct ring_buffer
*rb
;
4936 int ret
= VM_FAULT_SIGBUS
;
4938 if (vmf
->flags
& FAULT_FLAG_MKWRITE
) {
4939 if (vmf
->pgoff
== 0)
4945 rb
= rcu_dereference(event
->rb
);
4949 if (vmf
->pgoff
&& (vmf
->flags
& FAULT_FLAG_WRITE
))
4952 vmf
->page
= perf_mmap_to_page(rb
, vmf
->pgoff
);
4956 get_page(vmf
->page
);
4957 vmf
->page
->mapping
= vmf
->vma
->vm_file
->f_mapping
;
4958 vmf
->page
->index
= vmf
->pgoff
;
4967 static void ring_buffer_attach(struct perf_event
*event
,
4968 struct ring_buffer
*rb
)
4970 struct ring_buffer
*old_rb
= NULL
;
4971 unsigned long flags
;
4975 * Should be impossible, we set this when removing
4976 * event->rb_entry and wait/clear when adding event->rb_entry.
4978 WARN_ON_ONCE(event
->rcu_pending
);
4981 spin_lock_irqsave(&old_rb
->event_lock
, flags
);
4982 list_del_rcu(&event
->rb_entry
);
4983 spin_unlock_irqrestore(&old_rb
->event_lock
, flags
);
4985 event
->rcu_batches
= get_state_synchronize_rcu();
4986 event
->rcu_pending
= 1;
4990 if (event
->rcu_pending
) {
4991 cond_synchronize_rcu(event
->rcu_batches
);
4992 event
->rcu_pending
= 0;
4995 spin_lock_irqsave(&rb
->event_lock
, flags
);
4996 list_add_rcu(&event
->rb_entry
, &rb
->event_list
);
4997 spin_unlock_irqrestore(&rb
->event_lock
, flags
);
5001 * Avoid racing with perf_mmap_close(AUX): stop the event
5002 * before swizzling the event::rb pointer; if it's getting
5003 * unmapped, its aux_mmap_count will be 0 and it won't
5004 * restart. See the comment in __perf_pmu_output_stop().
5006 * Data will inevitably be lost when set_output is done in
5007 * mid-air, but then again, whoever does it like this is
5008 * not in for the data anyway.
5011 perf_event_stop(event
, 0);
5013 rcu_assign_pointer(event
->rb
, rb
);
5016 ring_buffer_put(old_rb
);
5018 * Since we detached before setting the new rb, so that we
5019 * could attach the new rb, we could have missed a wakeup.
5022 wake_up_all(&event
->waitq
);
5026 static void ring_buffer_wakeup(struct perf_event
*event
)
5028 struct ring_buffer
*rb
;
5031 rb
= rcu_dereference(event
->rb
);
5033 list_for_each_entry_rcu(event
, &rb
->event_list
, rb_entry
)
5034 wake_up_all(&event
->waitq
);
5039 struct ring_buffer
*ring_buffer_get(struct perf_event
*event
)
5041 struct ring_buffer
*rb
;
5044 rb
= rcu_dereference(event
->rb
);
5046 if (!atomic_inc_not_zero(&rb
->refcount
))
5054 void ring_buffer_put(struct ring_buffer
*rb
)
5056 if (!atomic_dec_and_test(&rb
->refcount
))
5059 WARN_ON_ONCE(!list_empty(&rb
->event_list
));
5061 call_rcu(&rb
->rcu_head
, rb_free_rcu
);
5064 static void perf_mmap_open(struct vm_area_struct
*vma
)
5066 struct perf_event
*event
= vma
->vm_file
->private_data
;
5068 atomic_inc(&event
->mmap_count
);
5069 atomic_inc(&event
->rb
->mmap_count
);
5072 atomic_inc(&event
->rb
->aux_mmap_count
);
5074 if (event
->pmu
->event_mapped
)
5075 event
->pmu
->event_mapped(event
);
5078 static void perf_pmu_output_stop(struct perf_event
*event
);
5081 * A buffer can be mmap()ed multiple times; either directly through the same
5082 * event, or through other events by use of perf_event_set_output().
5084 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5085 * the buffer here, where we still have a VM context. This means we need
5086 * to detach all events redirecting to us.
5088 static void perf_mmap_close(struct vm_area_struct
*vma
)
5090 struct perf_event
*event
= vma
->vm_file
->private_data
;
5092 struct ring_buffer
*rb
= ring_buffer_get(event
);
5093 struct user_struct
*mmap_user
= rb
->mmap_user
;
5094 int mmap_locked
= rb
->mmap_locked
;
5095 unsigned long size
= perf_data_size(rb
);
5097 if (event
->pmu
->event_unmapped
)
5098 event
->pmu
->event_unmapped(event
);
5101 * rb->aux_mmap_count will always drop before rb->mmap_count and
5102 * event->mmap_count, so it is ok to use event->mmap_mutex to
5103 * serialize with perf_mmap here.
5105 if (rb_has_aux(rb
) && vma
->vm_pgoff
== rb
->aux_pgoff
&&
5106 atomic_dec_and_mutex_lock(&rb
->aux_mmap_count
, &event
->mmap_mutex
)) {
5108 * Stop all AUX events that are writing to this buffer,
5109 * so that we can free its AUX pages and corresponding PMU
5110 * data. Note that after rb::aux_mmap_count dropped to zero,
5111 * they won't start any more (see perf_aux_output_begin()).
5113 perf_pmu_output_stop(event
);
5115 /* now it's safe to free the pages */
5116 atomic_long_sub(rb
->aux_nr_pages
, &mmap_user
->locked_vm
);
5117 vma
->vm_mm
->pinned_vm
-= rb
->aux_mmap_locked
;
5119 /* this has to be the last one */
5121 WARN_ON_ONCE(atomic_read(&rb
->aux_refcount
));
5123 mutex_unlock(&event
->mmap_mutex
);
5126 atomic_dec(&rb
->mmap_count
);
5128 if (!atomic_dec_and_mutex_lock(&event
->mmap_count
, &event
->mmap_mutex
))
5131 ring_buffer_attach(event
, NULL
);
5132 mutex_unlock(&event
->mmap_mutex
);
5134 /* If there's still other mmap()s of this buffer, we're done. */
5135 if (atomic_read(&rb
->mmap_count
))
5139 * No other mmap()s, detach from all other events that might redirect
5140 * into the now unreachable buffer. Somewhat complicated by the
5141 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5145 list_for_each_entry_rcu(event
, &rb
->event_list
, rb_entry
) {
5146 if (!atomic_long_inc_not_zero(&event
->refcount
)) {
5148 * This event is en-route to free_event() which will
5149 * detach it and remove it from the list.
5155 mutex_lock(&event
->mmap_mutex
);
5157 * Check we didn't race with perf_event_set_output() which can
5158 * swizzle the rb from under us while we were waiting to
5159 * acquire mmap_mutex.
5161 * If we find a different rb; ignore this event, a next
5162 * iteration will no longer find it on the list. We have to
5163 * still restart the iteration to make sure we're not now
5164 * iterating the wrong list.
5166 if (event
->rb
== rb
)
5167 ring_buffer_attach(event
, NULL
);
5169 mutex_unlock(&event
->mmap_mutex
);
5173 * Restart the iteration; either we're on the wrong list or
5174 * destroyed its integrity by doing a deletion.
5181 * It could be there's still a few 0-ref events on the list; they'll
5182 * get cleaned up by free_event() -- they'll also still have their
5183 * ref on the rb and will free it whenever they are done with it.
5185 * Aside from that, this buffer is 'fully' detached and unmapped,
5186 * undo the VM accounting.
5189 atomic_long_sub((size
>> PAGE_SHIFT
) + 1, &mmap_user
->locked_vm
);
5190 vma
->vm_mm
->pinned_vm
-= mmap_locked
;
5191 free_uid(mmap_user
);
5194 ring_buffer_put(rb
); /* could be last */
5197 static const struct vm_operations_struct perf_mmap_vmops
= {
5198 .open
= perf_mmap_open
,
5199 .close
= perf_mmap_close
, /* non mergable */
5200 .fault
= perf_mmap_fault
,
5201 .page_mkwrite
= perf_mmap_fault
,
5204 static int perf_mmap(struct file
*file
, struct vm_area_struct
*vma
)
5206 struct perf_event
*event
= file
->private_data
;
5207 unsigned long user_locked
, user_lock_limit
;
5208 struct user_struct
*user
= current_user();
5209 unsigned long locked
, lock_limit
;
5210 struct ring_buffer
*rb
= NULL
;
5211 unsigned long vma_size
;
5212 unsigned long nr_pages
;
5213 long user_extra
= 0, extra
= 0;
5214 int ret
= 0, flags
= 0;
5217 * Don't allow mmap() of inherited per-task counters. This would
5218 * create a performance issue due to all children writing to the
5221 if (event
->cpu
== -1 && event
->attr
.inherit
)
5224 if (!(vma
->vm_flags
& VM_SHARED
))
5227 vma_size
= vma
->vm_end
- vma
->vm_start
;
5229 if (vma
->vm_pgoff
== 0) {
5230 nr_pages
= (vma_size
/ PAGE_SIZE
) - 1;
5233 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5234 * mapped, all subsequent mappings should have the same size
5235 * and offset. Must be above the normal perf buffer.
5237 u64 aux_offset
, aux_size
;
5242 nr_pages
= vma_size
/ PAGE_SIZE
;
5244 mutex_lock(&event
->mmap_mutex
);
5251 aux_offset
= ACCESS_ONCE(rb
->user_page
->aux_offset
);
5252 aux_size
= ACCESS_ONCE(rb
->user_page
->aux_size
);
5254 if (aux_offset
< perf_data_size(rb
) + PAGE_SIZE
)
5257 if (aux_offset
!= vma
->vm_pgoff
<< PAGE_SHIFT
)
5260 /* already mapped with a different offset */
5261 if (rb_has_aux(rb
) && rb
->aux_pgoff
!= vma
->vm_pgoff
)
5264 if (aux_size
!= vma_size
|| aux_size
!= nr_pages
* PAGE_SIZE
)
5267 /* already mapped with a different size */
5268 if (rb_has_aux(rb
) && rb
->aux_nr_pages
!= nr_pages
)
5271 if (!is_power_of_2(nr_pages
))
5274 if (!atomic_inc_not_zero(&rb
->mmap_count
))
5277 if (rb_has_aux(rb
)) {
5278 atomic_inc(&rb
->aux_mmap_count
);
5283 atomic_set(&rb
->aux_mmap_count
, 1);
5284 user_extra
= nr_pages
;
5290 * If we have rb pages ensure they're a power-of-two number, so we
5291 * can do bitmasks instead of modulo.
5293 if (nr_pages
!= 0 && !is_power_of_2(nr_pages
))
5296 if (vma_size
!= PAGE_SIZE
* (1 + nr_pages
))
5299 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
5301 mutex_lock(&event
->mmap_mutex
);
5303 if (event
->rb
->nr_pages
!= nr_pages
) {
5308 if (!atomic_inc_not_zero(&event
->rb
->mmap_count
)) {
5310 * Raced against perf_mmap_close() through
5311 * perf_event_set_output(). Try again, hope for better
5314 mutex_unlock(&event
->mmap_mutex
);
5321 user_extra
= nr_pages
+ 1;
5324 user_lock_limit
= sysctl_perf_event_mlock
>> (PAGE_SHIFT
- 10);
5327 * Increase the limit linearly with more CPUs:
5329 user_lock_limit
*= num_online_cpus();
5331 user_locked
= atomic_long_read(&user
->locked_vm
) + user_extra
;
5333 if (user_locked
> user_lock_limit
)
5334 extra
= user_locked
- user_lock_limit
;
5336 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
5337 lock_limit
>>= PAGE_SHIFT
;
5338 locked
= vma
->vm_mm
->pinned_vm
+ extra
;
5340 if ((locked
> lock_limit
) && perf_paranoid_tracepoint_raw() &&
5341 !capable(CAP_IPC_LOCK
)) {
5346 WARN_ON(!rb
&& event
->rb
);
5348 if (vma
->vm_flags
& VM_WRITE
)
5349 flags
|= RING_BUFFER_WRITABLE
;
5352 rb
= rb_alloc(nr_pages
,
5353 event
->attr
.watermark
? event
->attr
.wakeup_watermark
: 0,
5361 atomic_set(&rb
->mmap_count
, 1);
5362 rb
->mmap_user
= get_current_user();
5363 rb
->mmap_locked
= extra
;
5365 ring_buffer_attach(event
, rb
);
5367 perf_event_init_userpage(event
);
5368 perf_event_update_userpage(event
);
5370 ret
= rb_alloc_aux(rb
, event
, vma
->vm_pgoff
, nr_pages
,
5371 event
->attr
.aux_watermark
, flags
);
5373 rb
->aux_mmap_locked
= extra
;
5378 atomic_long_add(user_extra
, &user
->locked_vm
);
5379 vma
->vm_mm
->pinned_vm
+= extra
;
5381 atomic_inc(&event
->mmap_count
);
5383 atomic_dec(&rb
->mmap_count
);
5386 mutex_unlock(&event
->mmap_mutex
);
5389 * Since pinned accounting is per vm we cannot allow fork() to copy our
5392 vma
->vm_flags
|= VM_DONTCOPY
| VM_DONTEXPAND
| VM_DONTDUMP
;
5393 vma
->vm_ops
= &perf_mmap_vmops
;
5395 if (event
->pmu
->event_mapped
)
5396 event
->pmu
->event_mapped(event
);
5401 static int perf_fasync(int fd
, struct file
*filp
, int on
)
5403 struct inode
*inode
= file_inode(filp
);
5404 struct perf_event
*event
= filp
->private_data
;
5408 retval
= fasync_helper(fd
, filp
, on
, &event
->fasync
);
5409 inode_unlock(inode
);
5417 static const struct file_operations perf_fops
= {
5418 .llseek
= no_llseek
,
5419 .release
= perf_release
,
5422 .unlocked_ioctl
= perf_ioctl
,
5423 .compat_ioctl
= perf_compat_ioctl
,
5425 .fasync
= perf_fasync
,
5431 * If there's data, ensure we set the poll() state and publish everything
5432 * to user-space before waking everybody up.
5435 static inline struct fasync_struct
**perf_event_fasync(struct perf_event
*event
)
5437 /* only the parent has fasync state */
5439 event
= event
->parent
;
5440 return &event
->fasync
;
5443 void perf_event_wakeup(struct perf_event
*event
)
5445 ring_buffer_wakeup(event
);
5447 if (event
->pending_kill
) {
5448 kill_fasync(perf_event_fasync(event
), SIGIO
, event
->pending_kill
);
5449 event
->pending_kill
= 0;
5453 static void perf_pending_event(struct irq_work
*entry
)
5455 struct perf_event
*event
= container_of(entry
,
5456 struct perf_event
, pending
);
5459 rctx
= perf_swevent_get_recursion_context();
5461 * If we 'fail' here, that's OK, it means recursion is already disabled
5462 * and we won't recurse 'further'.
5465 if (event
->pending_disable
) {
5466 event
->pending_disable
= 0;
5467 perf_event_disable_local(event
);
5470 if (event
->pending_wakeup
) {
5471 event
->pending_wakeup
= 0;
5472 perf_event_wakeup(event
);
5476 perf_swevent_put_recursion_context(rctx
);
5480 * We assume there is only KVM supporting the callbacks.
5481 * Later on, we might change it to a list if there is
5482 * another virtualization implementation supporting the callbacks.
5484 struct perf_guest_info_callbacks
*perf_guest_cbs
;
5486 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
5488 perf_guest_cbs
= cbs
;
5491 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks
);
5493 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
5495 perf_guest_cbs
= NULL
;
5498 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks
);
5501 perf_output_sample_regs(struct perf_output_handle
*handle
,
5502 struct pt_regs
*regs
, u64 mask
)
5505 DECLARE_BITMAP(_mask
, 64);
5507 bitmap_from_u64(_mask
, mask
);
5508 for_each_set_bit(bit
, _mask
, sizeof(mask
) * BITS_PER_BYTE
) {
5511 val
= perf_reg_value(regs
, bit
);
5512 perf_output_put(handle
, val
);
5516 static void perf_sample_regs_user(struct perf_regs
*regs_user
,
5517 struct pt_regs
*regs
,
5518 struct pt_regs
*regs_user_copy
)
5520 if (user_mode(regs
)) {
5521 regs_user
->abi
= perf_reg_abi(current
);
5522 regs_user
->regs
= regs
;
5523 } else if (current
->mm
) {
5524 perf_get_regs_user(regs_user
, regs
, regs_user_copy
);
5526 regs_user
->abi
= PERF_SAMPLE_REGS_ABI_NONE
;
5527 regs_user
->regs
= NULL
;
5531 static void perf_sample_regs_intr(struct perf_regs
*regs_intr
,
5532 struct pt_regs
*regs
)
5534 regs_intr
->regs
= regs
;
5535 regs_intr
->abi
= perf_reg_abi(current
);
5540 * Get remaining task size from user stack pointer.
5542 * It'd be better to take stack vma map and limit this more
5543 * precisly, but there's no way to get it safely under interrupt,
5544 * so using TASK_SIZE as limit.
5546 static u64
perf_ustack_task_size(struct pt_regs
*regs
)
5548 unsigned long addr
= perf_user_stack_pointer(regs
);
5550 if (!addr
|| addr
>= TASK_SIZE
)
5553 return TASK_SIZE
- addr
;
5557 perf_sample_ustack_size(u16 stack_size
, u16 header_size
,
5558 struct pt_regs
*regs
)
5562 /* No regs, no stack pointer, no dump. */
5567 * Check if we fit in with the requested stack size into the:
5569 * If we don't, we limit the size to the TASK_SIZE.
5571 * - remaining sample size
5572 * If we don't, we customize the stack size to
5573 * fit in to the remaining sample size.
5576 task_size
= min((u64
) USHRT_MAX
, perf_ustack_task_size(regs
));
5577 stack_size
= min(stack_size
, (u16
) task_size
);
5579 /* Current header size plus static size and dynamic size. */
5580 header_size
+= 2 * sizeof(u64
);
5582 /* Do we fit in with the current stack dump size? */
5583 if ((u16
) (header_size
+ stack_size
) < header_size
) {
5585 * If we overflow the maximum size for the sample,
5586 * we customize the stack dump size to fit in.
5588 stack_size
= USHRT_MAX
- header_size
- sizeof(u64
);
5589 stack_size
= round_up(stack_size
, sizeof(u64
));
5596 perf_output_sample_ustack(struct perf_output_handle
*handle
, u64 dump_size
,
5597 struct pt_regs
*regs
)
5599 /* Case of a kernel thread, nothing to dump */
5602 perf_output_put(handle
, size
);
5611 * - the size requested by user or the best one we can fit
5612 * in to the sample max size
5614 * - user stack dump data
5616 * - the actual dumped size
5620 perf_output_put(handle
, dump_size
);
5623 sp
= perf_user_stack_pointer(regs
);
5624 rem
= __output_copy_user(handle
, (void *) sp
, dump_size
);
5625 dyn_size
= dump_size
- rem
;
5627 perf_output_skip(handle
, rem
);
5630 perf_output_put(handle
, dyn_size
);
5634 static void __perf_event_header__init_id(struct perf_event_header
*header
,
5635 struct perf_sample_data
*data
,
5636 struct perf_event
*event
)
5638 u64 sample_type
= event
->attr
.sample_type
;
5640 data
->type
= sample_type
;
5641 header
->size
+= event
->id_header_size
;
5643 if (sample_type
& PERF_SAMPLE_TID
) {
5644 /* namespace issues */
5645 data
->tid_entry
.pid
= perf_event_pid(event
, current
);
5646 data
->tid_entry
.tid
= perf_event_tid(event
, current
);
5649 if (sample_type
& PERF_SAMPLE_TIME
)
5650 data
->time
= perf_event_clock(event
);
5652 if (sample_type
& (PERF_SAMPLE_ID
| PERF_SAMPLE_IDENTIFIER
))
5653 data
->id
= primary_event_id(event
);
5655 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
5656 data
->stream_id
= event
->id
;
5658 if (sample_type
& PERF_SAMPLE_CPU
) {
5659 data
->cpu_entry
.cpu
= raw_smp_processor_id();
5660 data
->cpu_entry
.reserved
= 0;
5664 void perf_event_header__init_id(struct perf_event_header
*header
,
5665 struct perf_sample_data
*data
,
5666 struct perf_event
*event
)
5668 if (event
->attr
.sample_id_all
)
5669 __perf_event_header__init_id(header
, data
, event
);
5672 static void __perf_event__output_id_sample(struct perf_output_handle
*handle
,
5673 struct perf_sample_data
*data
)
5675 u64 sample_type
= data
->type
;
5677 if (sample_type
& PERF_SAMPLE_TID
)
5678 perf_output_put(handle
, data
->tid_entry
);
5680 if (sample_type
& PERF_SAMPLE_TIME
)
5681 perf_output_put(handle
, data
->time
);
5683 if (sample_type
& PERF_SAMPLE_ID
)
5684 perf_output_put(handle
, data
->id
);
5686 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
5687 perf_output_put(handle
, data
->stream_id
);
5689 if (sample_type
& PERF_SAMPLE_CPU
)
5690 perf_output_put(handle
, data
->cpu_entry
);
5692 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
5693 perf_output_put(handle
, data
->id
);
5696 void perf_event__output_id_sample(struct perf_event
*event
,
5697 struct perf_output_handle
*handle
,
5698 struct perf_sample_data
*sample
)
5700 if (event
->attr
.sample_id_all
)
5701 __perf_event__output_id_sample(handle
, sample
);
5704 static void perf_output_read_one(struct perf_output_handle
*handle
,
5705 struct perf_event
*event
,
5706 u64 enabled
, u64 running
)
5708 u64 read_format
= event
->attr
.read_format
;
5712 values
[n
++] = perf_event_count(event
);
5713 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
5714 values
[n
++] = enabled
+
5715 atomic64_read(&event
->child_total_time_enabled
);
5717 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
5718 values
[n
++] = running
+
5719 atomic64_read(&event
->child_total_time_running
);
5721 if (read_format
& PERF_FORMAT_ID
)
5722 values
[n
++] = primary_event_id(event
);
5724 __output_copy(handle
, values
, n
* sizeof(u64
));
5728 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5730 static void perf_output_read_group(struct perf_output_handle
*handle
,
5731 struct perf_event
*event
,
5732 u64 enabled
, u64 running
)
5734 struct perf_event
*leader
= event
->group_leader
, *sub
;
5735 u64 read_format
= event
->attr
.read_format
;
5739 values
[n
++] = 1 + leader
->nr_siblings
;
5741 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
5742 values
[n
++] = enabled
;
5744 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
5745 values
[n
++] = running
;
5747 if (leader
!= event
)
5748 leader
->pmu
->read(leader
);
5750 values
[n
++] = perf_event_count(leader
);
5751 if (read_format
& PERF_FORMAT_ID
)
5752 values
[n
++] = primary_event_id(leader
);
5754 __output_copy(handle
, values
, n
* sizeof(u64
));
5756 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
5759 if ((sub
!= event
) &&
5760 (sub
->state
== PERF_EVENT_STATE_ACTIVE
))
5761 sub
->pmu
->read(sub
);
5763 values
[n
++] = perf_event_count(sub
);
5764 if (read_format
& PERF_FORMAT_ID
)
5765 values
[n
++] = primary_event_id(sub
);
5767 __output_copy(handle
, values
, n
* sizeof(u64
));
5771 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5772 PERF_FORMAT_TOTAL_TIME_RUNNING)
5774 static void perf_output_read(struct perf_output_handle
*handle
,
5775 struct perf_event
*event
)
5777 u64 enabled
= 0, running
= 0, now
;
5778 u64 read_format
= event
->attr
.read_format
;
5781 * compute total_time_enabled, total_time_running
5782 * based on snapshot values taken when the event
5783 * was last scheduled in.
5785 * we cannot simply called update_context_time()
5786 * because of locking issue as we are called in
5789 if (read_format
& PERF_FORMAT_TOTAL_TIMES
)
5790 calc_timer_values(event
, &now
, &enabled
, &running
);
5792 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
)
5793 perf_output_read_group(handle
, event
, enabled
, running
);
5795 perf_output_read_one(handle
, event
, enabled
, running
);
5798 void perf_output_sample(struct perf_output_handle
*handle
,
5799 struct perf_event_header
*header
,
5800 struct perf_sample_data
*data
,
5801 struct perf_event
*event
)
5803 u64 sample_type
= data
->type
;
5805 perf_output_put(handle
, *header
);
5807 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
5808 perf_output_put(handle
, data
->id
);
5810 if (sample_type
& PERF_SAMPLE_IP
)
5811 perf_output_put(handle
, data
->ip
);
5813 if (sample_type
& PERF_SAMPLE_TID
)
5814 perf_output_put(handle
, data
->tid_entry
);
5816 if (sample_type
& PERF_SAMPLE_TIME
)
5817 perf_output_put(handle
, data
->time
);
5819 if (sample_type
& PERF_SAMPLE_ADDR
)
5820 perf_output_put(handle
, data
->addr
);
5822 if (sample_type
& PERF_SAMPLE_ID
)
5823 perf_output_put(handle
, data
->id
);
5825 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
5826 perf_output_put(handle
, data
->stream_id
);
5828 if (sample_type
& PERF_SAMPLE_CPU
)
5829 perf_output_put(handle
, data
->cpu_entry
);
5831 if (sample_type
& PERF_SAMPLE_PERIOD
)
5832 perf_output_put(handle
, data
->period
);
5834 if (sample_type
& PERF_SAMPLE_READ
)
5835 perf_output_read(handle
, event
);
5837 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
5838 if (data
->callchain
) {
5841 if (data
->callchain
)
5842 size
+= data
->callchain
->nr
;
5844 size
*= sizeof(u64
);
5846 __output_copy(handle
, data
->callchain
, size
);
5849 perf_output_put(handle
, nr
);
5853 if (sample_type
& PERF_SAMPLE_RAW
) {
5854 struct perf_raw_record
*raw
= data
->raw
;
5857 struct perf_raw_frag
*frag
= &raw
->frag
;
5859 perf_output_put(handle
, raw
->size
);
5862 __output_custom(handle
, frag
->copy
,
5863 frag
->data
, frag
->size
);
5865 __output_copy(handle
, frag
->data
,
5868 if (perf_raw_frag_last(frag
))
5873 __output_skip(handle
, NULL
, frag
->pad
);
5879 .size
= sizeof(u32
),
5882 perf_output_put(handle
, raw
);
5886 if (sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
5887 if (data
->br_stack
) {
5890 size
= data
->br_stack
->nr
5891 * sizeof(struct perf_branch_entry
);
5893 perf_output_put(handle
, data
->br_stack
->nr
);
5894 perf_output_copy(handle
, data
->br_stack
->entries
, size
);
5897 * we always store at least the value of nr
5900 perf_output_put(handle
, nr
);
5904 if (sample_type
& PERF_SAMPLE_REGS_USER
) {
5905 u64 abi
= data
->regs_user
.abi
;
5908 * If there are no regs to dump, notice it through
5909 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5911 perf_output_put(handle
, abi
);
5914 u64 mask
= event
->attr
.sample_regs_user
;
5915 perf_output_sample_regs(handle
,
5916 data
->regs_user
.regs
,
5921 if (sample_type
& PERF_SAMPLE_STACK_USER
) {
5922 perf_output_sample_ustack(handle
,
5923 data
->stack_user_size
,
5924 data
->regs_user
.regs
);
5927 if (sample_type
& PERF_SAMPLE_WEIGHT
)
5928 perf_output_put(handle
, data
->weight
);
5930 if (sample_type
& PERF_SAMPLE_DATA_SRC
)
5931 perf_output_put(handle
, data
->data_src
.val
);
5933 if (sample_type
& PERF_SAMPLE_TRANSACTION
)
5934 perf_output_put(handle
, data
->txn
);
5936 if (sample_type
& PERF_SAMPLE_REGS_INTR
) {
5937 u64 abi
= data
->regs_intr
.abi
;
5939 * If there are no regs to dump, notice it through
5940 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5942 perf_output_put(handle
, abi
);
5945 u64 mask
= event
->attr
.sample_regs_intr
;
5947 perf_output_sample_regs(handle
,
5948 data
->regs_intr
.regs
,
5953 if (!event
->attr
.watermark
) {
5954 int wakeup_events
= event
->attr
.wakeup_events
;
5956 if (wakeup_events
) {
5957 struct ring_buffer
*rb
= handle
->rb
;
5958 int events
= local_inc_return(&rb
->events
);
5960 if (events
>= wakeup_events
) {
5961 local_sub(wakeup_events
, &rb
->events
);
5962 local_inc(&rb
->wakeup
);
5968 void perf_prepare_sample(struct perf_event_header
*header
,
5969 struct perf_sample_data
*data
,
5970 struct perf_event
*event
,
5971 struct pt_regs
*regs
)
5973 u64 sample_type
= event
->attr
.sample_type
;
5975 header
->type
= PERF_RECORD_SAMPLE
;
5976 header
->size
= sizeof(*header
) + event
->header_size
;
5979 header
->misc
|= perf_misc_flags(regs
);
5981 __perf_event_header__init_id(header
, data
, event
);
5983 if (sample_type
& PERF_SAMPLE_IP
)
5984 data
->ip
= perf_instruction_pointer(regs
);
5986 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
5989 data
->callchain
= perf_callchain(event
, regs
);
5991 if (data
->callchain
)
5992 size
+= data
->callchain
->nr
;
5994 header
->size
+= size
* sizeof(u64
);
5997 if (sample_type
& PERF_SAMPLE_RAW
) {
5998 struct perf_raw_record
*raw
= data
->raw
;
6002 struct perf_raw_frag
*frag
= &raw
->frag
;
6007 if (perf_raw_frag_last(frag
))
6012 size
= round_up(sum
+ sizeof(u32
), sizeof(u64
));
6013 raw
->size
= size
- sizeof(u32
);
6014 frag
->pad
= raw
->size
- sum
;
6019 header
->size
+= size
;
6022 if (sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
6023 int size
= sizeof(u64
); /* nr */
6024 if (data
->br_stack
) {
6025 size
+= data
->br_stack
->nr
6026 * sizeof(struct perf_branch_entry
);
6028 header
->size
+= size
;
6031 if (sample_type
& (PERF_SAMPLE_REGS_USER
| PERF_SAMPLE_STACK_USER
))
6032 perf_sample_regs_user(&data
->regs_user
, regs
,
6033 &data
->regs_user_copy
);
6035 if (sample_type
& PERF_SAMPLE_REGS_USER
) {
6036 /* regs dump ABI info */
6037 int size
= sizeof(u64
);
6039 if (data
->regs_user
.regs
) {
6040 u64 mask
= event
->attr
.sample_regs_user
;
6041 size
+= hweight64(mask
) * sizeof(u64
);
6044 header
->size
+= size
;
6047 if (sample_type
& PERF_SAMPLE_STACK_USER
) {
6049 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6050 * processed as the last one or have additional check added
6051 * in case new sample type is added, because we could eat
6052 * up the rest of the sample size.
6054 u16 stack_size
= event
->attr
.sample_stack_user
;
6055 u16 size
= sizeof(u64
);
6057 stack_size
= perf_sample_ustack_size(stack_size
, header
->size
,
6058 data
->regs_user
.regs
);
6061 * If there is something to dump, add space for the dump
6062 * itself and for the field that tells the dynamic size,
6063 * which is how many have been actually dumped.
6066 size
+= sizeof(u64
) + stack_size
;
6068 data
->stack_user_size
= stack_size
;
6069 header
->size
+= size
;
6072 if (sample_type
& PERF_SAMPLE_REGS_INTR
) {
6073 /* regs dump ABI info */
6074 int size
= sizeof(u64
);
6076 perf_sample_regs_intr(&data
->regs_intr
, regs
);
6078 if (data
->regs_intr
.regs
) {
6079 u64 mask
= event
->attr
.sample_regs_intr
;
6081 size
+= hweight64(mask
) * sizeof(u64
);
6084 header
->size
+= size
;
6088 static void __always_inline
6089 __perf_event_output(struct perf_event
*event
,
6090 struct perf_sample_data
*data
,
6091 struct pt_regs
*regs
,
6092 int (*output_begin
)(struct perf_output_handle
*,
6093 struct perf_event
*,
6096 struct perf_output_handle handle
;
6097 struct perf_event_header header
;
6099 /* protect the callchain buffers */
6102 perf_prepare_sample(&header
, data
, event
, regs
);
6104 if (output_begin(&handle
, event
, header
.size
))
6107 perf_output_sample(&handle
, &header
, data
, event
);
6109 perf_output_end(&handle
);
6116 perf_event_output_forward(struct perf_event
*event
,
6117 struct perf_sample_data
*data
,
6118 struct pt_regs
*regs
)
6120 __perf_event_output(event
, data
, regs
, perf_output_begin_forward
);
6124 perf_event_output_backward(struct perf_event
*event
,
6125 struct perf_sample_data
*data
,
6126 struct pt_regs
*regs
)
6128 __perf_event_output(event
, data
, regs
, perf_output_begin_backward
);
6132 perf_event_output(struct perf_event
*event
,
6133 struct perf_sample_data
*data
,
6134 struct pt_regs
*regs
)
6136 __perf_event_output(event
, data
, regs
, perf_output_begin
);
6143 struct perf_read_event
{
6144 struct perf_event_header header
;
6151 perf_event_read_event(struct perf_event
*event
,
6152 struct task_struct
*task
)
6154 struct perf_output_handle handle
;
6155 struct perf_sample_data sample
;
6156 struct perf_read_event read_event
= {
6158 .type
= PERF_RECORD_READ
,
6160 .size
= sizeof(read_event
) + event
->read_size
,
6162 .pid
= perf_event_pid(event
, task
),
6163 .tid
= perf_event_tid(event
, task
),
6167 perf_event_header__init_id(&read_event
.header
, &sample
, event
);
6168 ret
= perf_output_begin(&handle
, event
, read_event
.header
.size
);
6172 perf_output_put(&handle
, read_event
);
6173 perf_output_read(&handle
, event
);
6174 perf_event__output_id_sample(event
, &handle
, &sample
);
6176 perf_output_end(&handle
);
6179 typedef void (perf_iterate_f
)(struct perf_event
*event
, void *data
);
6182 perf_iterate_ctx(struct perf_event_context
*ctx
,
6183 perf_iterate_f output
,
6184 void *data
, bool all
)
6186 struct perf_event
*event
;
6188 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
6190 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
6192 if (!event_filter_match(event
))
6196 output(event
, data
);
6200 static void perf_iterate_sb_cpu(perf_iterate_f output
, void *data
)
6202 struct pmu_event_list
*pel
= this_cpu_ptr(&pmu_sb_events
);
6203 struct perf_event
*event
;
6205 list_for_each_entry_rcu(event
, &pel
->list
, sb_list
) {
6207 * Skip events that are not fully formed yet; ensure that
6208 * if we observe event->ctx, both event and ctx will be
6209 * complete enough. See perf_install_in_context().
6211 if (!smp_load_acquire(&event
->ctx
))
6214 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
6216 if (!event_filter_match(event
))
6218 output(event
, data
);
6223 * Iterate all events that need to receive side-band events.
6225 * For new callers; ensure that account_pmu_sb_event() includes
6226 * your event, otherwise it might not get delivered.
6229 perf_iterate_sb(perf_iterate_f output
, void *data
,
6230 struct perf_event_context
*task_ctx
)
6232 struct perf_event_context
*ctx
;
6239 * If we have task_ctx != NULL we only notify the task context itself.
6240 * The task_ctx is set only for EXIT events before releasing task
6244 perf_iterate_ctx(task_ctx
, output
, data
, false);
6248 perf_iterate_sb_cpu(output
, data
);
6250 for_each_task_context_nr(ctxn
) {
6251 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
6253 perf_iterate_ctx(ctx
, output
, data
, false);
6261 * Clear all file-based filters at exec, they'll have to be
6262 * re-instated when/if these objects are mmapped again.
6264 static void perf_event_addr_filters_exec(struct perf_event
*event
, void *data
)
6266 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
6267 struct perf_addr_filter
*filter
;
6268 unsigned int restart
= 0, count
= 0;
6269 unsigned long flags
;
6271 if (!has_addr_filter(event
))
6274 raw_spin_lock_irqsave(&ifh
->lock
, flags
);
6275 list_for_each_entry(filter
, &ifh
->list
, entry
) {
6276 if (filter
->inode
) {
6277 event
->addr_filters_offs
[count
] = 0;
6285 event
->addr_filters_gen
++;
6286 raw_spin_unlock_irqrestore(&ifh
->lock
, flags
);
6289 perf_event_stop(event
, 1);
6292 void perf_event_exec(void)
6294 struct perf_event_context
*ctx
;
6298 for_each_task_context_nr(ctxn
) {
6299 ctx
= current
->perf_event_ctxp
[ctxn
];
6303 perf_event_enable_on_exec(ctxn
);
6305 perf_iterate_ctx(ctx
, perf_event_addr_filters_exec
, NULL
,
6311 struct remote_output
{
6312 struct ring_buffer
*rb
;
6316 static void __perf_event_output_stop(struct perf_event
*event
, void *data
)
6318 struct perf_event
*parent
= event
->parent
;
6319 struct remote_output
*ro
= data
;
6320 struct ring_buffer
*rb
= ro
->rb
;
6321 struct stop_event_data sd
= {
6325 if (!has_aux(event
))
6332 * In case of inheritance, it will be the parent that links to the
6333 * ring-buffer, but it will be the child that's actually using it.
6335 * We are using event::rb to determine if the event should be stopped,
6336 * however this may race with ring_buffer_attach() (through set_output),
6337 * which will make us skip the event that actually needs to be stopped.
6338 * So ring_buffer_attach() has to stop an aux event before re-assigning
6341 if (rcu_dereference(parent
->rb
) == rb
)
6342 ro
->err
= __perf_event_stop(&sd
);
6345 static int __perf_pmu_output_stop(void *info
)
6347 struct perf_event
*event
= info
;
6348 struct pmu
*pmu
= event
->pmu
;
6349 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
6350 struct remote_output ro
= {
6355 perf_iterate_ctx(&cpuctx
->ctx
, __perf_event_output_stop
, &ro
, false);
6356 if (cpuctx
->task_ctx
)
6357 perf_iterate_ctx(cpuctx
->task_ctx
, __perf_event_output_stop
,
6364 static void perf_pmu_output_stop(struct perf_event
*event
)
6366 struct perf_event
*iter
;
6371 list_for_each_entry_rcu(iter
, &event
->rb
->event_list
, rb_entry
) {
6373 * For per-CPU events, we need to make sure that neither they
6374 * nor their children are running; for cpu==-1 events it's
6375 * sufficient to stop the event itself if it's active, since
6376 * it can't have children.
6380 cpu
= READ_ONCE(iter
->oncpu
);
6385 err
= cpu_function_call(cpu
, __perf_pmu_output_stop
, event
);
6386 if (err
== -EAGAIN
) {
6395 * task tracking -- fork/exit
6397 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6400 struct perf_task_event
{
6401 struct task_struct
*task
;
6402 struct perf_event_context
*task_ctx
;
6405 struct perf_event_header header
;
6415 static int perf_event_task_match(struct perf_event
*event
)
6417 return event
->attr
.comm
|| event
->attr
.mmap
||
6418 event
->attr
.mmap2
|| event
->attr
.mmap_data
||
6422 static void perf_event_task_output(struct perf_event
*event
,
6425 struct perf_task_event
*task_event
= data
;
6426 struct perf_output_handle handle
;
6427 struct perf_sample_data sample
;
6428 struct task_struct
*task
= task_event
->task
;
6429 int ret
, size
= task_event
->event_id
.header
.size
;
6431 if (!perf_event_task_match(event
))
6434 perf_event_header__init_id(&task_event
->event_id
.header
, &sample
, event
);
6436 ret
= perf_output_begin(&handle
, event
,
6437 task_event
->event_id
.header
.size
);
6441 task_event
->event_id
.pid
= perf_event_pid(event
, task
);
6442 task_event
->event_id
.ppid
= perf_event_pid(event
, current
);
6444 task_event
->event_id
.tid
= perf_event_tid(event
, task
);
6445 task_event
->event_id
.ptid
= perf_event_tid(event
, current
);
6447 task_event
->event_id
.time
= perf_event_clock(event
);
6449 perf_output_put(&handle
, task_event
->event_id
);
6451 perf_event__output_id_sample(event
, &handle
, &sample
);
6453 perf_output_end(&handle
);
6455 task_event
->event_id
.header
.size
= size
;
6458 static void perf_event_task(struct task_struct
*task
,
6459 struct perf_event_context
*task_ctx
,
6462 struct perf_task_event task_event
;
6464 if (!atomic_read(&nr_comm_events
) &&
6465 !atomic_read(&nr_mmap_events
) &&
6466 !atomic_read(&nr_task_events
))
6469 task_event
= (struct perf_task_event
){
6471 .task_ctx
= task_ctx
,
6474 .type
= new ? PERF_RECORD_FORK
: PERF_RECORD_EXIT
,
6476 .size
= sizeof(task_event
.event_id
),
6486 perf_iterate_sb(perf_event_task_output
,
6491 void perf_event_fork(struct task_struct
*task
)
6493 perf_event_task(task
, NULL
, 1);
6500 struct perf_comm_event
{
6501 struct task_struct
*task
;
6506 struct perf_event_header header
;
6513 static int perf_event_comm_match(struct perf_event
*event
)
6515 return event
->attr
.comm
;
6518 static void perf_event_comm_output(struct perf_event
*event
,
6521 struct perf_comm_event
*comm_event
= data
;
6522 struct perf_output_handle handle
;
6523 struct perf_sample_data sample
;
6524 int size
= comm_event
->event_id
.header
.size
;
6527 if (!perf_event_comm_match(event
))
6530 perf_event_header__init_id(&comm_event
->event_id
.header
, &sample
, event
);
6531 ret
= perf_output_begin(&handle
, event
,
6532 comm_event
->event_id
.header
.size
);
6537 comm_event
->event_id
.pid
= perf_event_pid(event
, comm_event
->task
);
6538 comm_event
->event_id
.tid
= perf_event_tid(event
, comm_event
->task
);
6540 perf_output_put(&handle
, comm_event
->event_id
);
6541 __output_copy(&handle
, comm_event
->comm
,
6542 comm_event
->comm_size
);
6544 perf_event__output_id_sample(event
, &handle
, &sample
);
6546 perf_output_end(&handle
);
6548 comm_event
->event_id
.header
.size
= size
;
6551 static void perf_event_comm_event(struct perf_comm_event
*comm_event
)
6553 char comm
[TASK_COMM_LEN
];
6556 memset(comm
, 0, sizeof(comm
));
6557 strlcpy(comm
, comm_event
->task
->comm
, sizeof(comm
));
6558 size
= ALIGN(strlen(comm
)+1, sizeof(u64
));
6560 comm_event
->comm
= comm
;
6561 comm_event
->comm_size
= size
;
6563 comm_event
->event_id
.header
.size
= sizeof(comm_event
->event_id
) + size
;
6565 perf_iterate_sb(perf_event_comm_output
,
6570 void perf_event_comm(struct task_struct
*task
, bool exec
)
6572 struct perf_comm_event comm_event
;
6574 if (!atomic_read(&nr_comm_events
))
6577 comm_event
= (struct perf_comm_event
){
6583 .type
= PERF_RECORD_COMM
,
6584 .misc
= exec
? PERF_RECORD_MISC_COMM_EXEC
: 0,
6592 perf_event_comm_event(&comm_event
);
6599 struct perf_mmap_event
{
6600 struct vm_area_struct
*vma
;
6602 const char *file_name
;
6610 struct perf_event_header header
;
6620 static int perf_event_mmap_match(struct perf_event
*event
,
6623 struct perf_mmap_event
*mmap_event
= data
;
6624 struct vm_area_struct
*vma
= mmap_event
->vma
;
6625 int executable
= vma
->vm_flags
& VM_EXEC
;
6627 return (!executable
&& event
->attr
.mmap_data
) ||
6628 (executable
&& (event
->attr
.mmap
|| event
->attr
.mmap2
));
6631 static void perf_event_mmap_output(struct perf_event
*event
,
6634 struct perf_mmap_event
*mmap_event
= data
;
6635 struct perf_output_handle handle
;
6636 struct perf_sample_data sample
;
6637 int size
= mmap_event
->event_id
.header
.size
;
6640 if (!perf_event_mmap_match(event
, data
))
6643 if (event
->attr
.mmap2
) {
6644 mmap_event
->event_id
.header
.type
= PERF_RECORD_MMAP2
;
6645 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->maj
);
6646 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->min
);
6647 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->ino
);
6648 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->ino_generation
);
6649 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->prot
);
6650 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->flags
);
6653 perf_event_header__init_id(&mmap_event
->event_id
.header
, &sample
, event
);
6654 ret
= perf_output_begin(&handle
, event
,
6655 mmap_event
->event_id
.header
.size
);
6659 mmap_event
->event_id
.pid
= perf_event_pid(event
, current
);
6660 mmap_event
->event_id
.tid
= perf_event_tid(event
, current
);
6662 perf_output_put(&handle
, mmap_event
->event_id
);
6664 if (event
->attr
.mmap2
) {
6665 perf_output_put(&handle
, mmap_event
->maj
);
6666 perf_output_put(&handle
, mmap_event
->min
);
6667 perf_output_put(&handle
, mmap_event
->ino
);
6668 perf_output_put(&handle
, mmap_event
->ino_generation
);
6669 perf_output_put(&handle
, mmap_event
->prot
);
6670 perf_output_put(&handle
, mmap_event
->flags
);
6673 __output_copy(&handle
, mmap_event
->file_name
,
6674 mmap_event
->file_size
);
6676 perf_event__output_id_sample(event
, &handle
, &sample
);
6678 perf_output_end(&handle
);
6680 mmap_event
->event_id
.header
.size
= size
;
6683 static void perf_event_mmap_event(struct perf_mmap_event
*mmap_event
)
6685 struct vm_area_struct
*vma
= mmap_event
->vma
;
6686 struct file
*file
= vma
->vm_file
;
6687 int maj
= 0, min
= 0;
6688 u64 ino
= 0, gen
= 0;
6689 u32 prot
= 0, flags
= 0;
6695 if (vma
->vm_flags
& VM_READ
)
6697 if (vma
->vm_flags
& VM_WRITE
)
6699 if (vma
->vm_flags
& VM_EXEC
)
6702 if (vma
->vm_flags
& VM_MAYSHARE
)
6705 flags
= MAP_PRIVATE
;
6707 if (vma
->vm_flags
& VM_DENYWRITE
)
6708 flags
|= MAP_DENYWRITE
;
6709 if (vma
->vm_flags
& VM_MAYEXEC
)
6710 flags
|= MAP_EXECUTABLE
;
6711 if (vma
->vm_flags
& VM_LOCKED
)
6712 flags
|= MAP_LOCKED
;
6713 if (vma
->vm_flags
& VM_HUGETLB
)
6714 flags
|= MAP_HUGETLB
;
6717 struct inode
*inode
;
6720 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
6726 * d_path() works from the end of the rb backwards, so we
6727 * need to add enough zero bytes after the string to handle
6728 * the 64bit alignment we do later.
6730 name
= file_path(file
, buf
, PATH_MAX
- sizeof(u64
));
6735 inode
= file_inode(vma
->vm_file
);
6736 dev
= inode
->i_sb
->s_dev
;
6738 gen
= inode
->i_generation
;
6744 if (vma
->vm_ops
&& vma
->vm_ops
->name
) {
6745 name
= (char *) vma
->vm_ops
->name(vma
);
6750 name
= (char *)arch_vma_name(vma
);
6754 if (vma
->vm_start
<= vma
->vm_mm
->start_brk
&&
6755 vma
->vm_end
>= vma
->vm_mm
->brk
) {
6759 if (vma
->vm_start
<= vma
->vm_mm
->start_stack
&&
6760 vma
->vm_end
>= vma
->vm_mm
->start_stack
) {
6770 strlcpy(tmp
, name
, sizeof(tmp
));
6774 * Since our buffer works in 8 byte units we need to align our string
6775 * size to a multiple of 8. However, we must guarantee the tail end is
6776 * zero'd out to avoid leaking random bits to userspace.
6778 size
= strlen(name
)+1;
6779 while (!IS_ALIGNED(size
, sizeof(u64
)))
6780 name
[size
++] = '\0';
6782 mmap_event
->file_name
= name
;
6783 mmap_event
->file_size
= size
;
6784 mmap_event
->maj
= maj
;
6785 mmap_event
->min
= min
;
6786 mmap_event
->ino
= ino
;
6787 mmap_event
->ino_generation
= gen
;
6788 mmap_event
->prot
= prot
;
6789 mmap_event
->flags
= flags
;
6791 if (!(vma
->vm_flags
& VM_EXEC
))
6792 mmap_event
->event_id
.header
.misc
|= PERF_RECORD_MISC_MMAP_DATA
;
6794 mmap_event
->event_id
.header
.size
= sizeof(mmap_event
->event_id
) + size
;
6796 perf_iterate_sb(perf_event_mmap_output
,
6804 * Check whether inode and address range match filter criteria.
6806 static bool perf_addr_filter_match(struct perf_addr_filter
*filter
,
6807 struct file
*file
, unsigned long offset
,
6810 if (filter
->inode
!= file_inode(file
))
6813 if (filter
->offset
> offset
+ size
)
6816 if (filter
->offset
+ filter
->size
< offset
)
6822 static void __perf_addr_filters_adjust(struct perf_event
*event
, void *data
)
6824 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
6825 struct vm_area_struct
*vma
= data
;
6826 unsigned long off
= vma
->vm_pgoff
<< PAGE_SHIFT
, flags
;
6827 struct file
*file
= vma
->vm_file
;
6828 struct perf_addr_filter
*filter
;
6829 unsigned int restart
= 0, count
= 0;
6831 if (!has_addr_filter(event
))
6837 raw_spin_lock_irqsave(&ifh
->lock
, flags
);
6838 list_for_each_entry(filter
, &ifh
->list
, entry
) {
6839 if (perf_addr_filter_match(filter
, file
, off
,
6840 vma
->vm_end
- vma
->vm_start
)) {
6841 event
->addr_filters_offs
[count
] = vma
->vm_start
;
6849 event
->addr_filters_gen
++;
6850 raw_spin_unlock_irqrestore(&ifh
->lock
, flags
);
6853 perf_event_stop(event
, 1);
6857 * Adjust all task's events' filters to the new vma
6859 static void perf_addr_filters_adjust(struct vm_area_struct
*vma
)
6861 struct perf_event_context
*ctx
;
6865 * Data tracing isn't supported yet and as such there is no need
6866 * to keep track of anything that isn't related to executable code:
6868 if (!(vma
->vm_flags
& VM_EXEC
))
6872 for_each_task_context_nr(ctxn
) {
6873 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
6877 perf_iterate_ctx(ctx
, __perf_addr_filters_adjust
, vma
, true);
6882 void perf_event_mmap(struct vm_area_struct
*vma
)
6884 struct perf_mmap_event mmap_event
;
6886 if (!atomic_read(&nr_mmap_events
))
6889 mmap_event
= (struct perf_mmap_event
){
6895 .type
= PERF_RECORD_MMAP
,
6896 .misc
= PERF_RECORD_MISC_USER
,
6901 .start
= vma
->vm_start
,
6902 .len
= vma
->vm_end
- vma
->vm_start
,
6903 .pgoff
= (u64
)vma
->vm_pgoff
<< PAGE_SHIFT
,
6905 /* .maj (attr_mmap2 only) */
6906 /* .min (attr_mmap2 only) */
6907 /* .ino (attr_mmap2 only) */
6908 /* .ino_generation (attr_mmap2 only) */
6909 /* .prot (attr_mmap2 only) */
6910 /* .flags (attr_mmap2 only) */
6913 perf_addr_filters_adjust(vma
);
6914 perf_event_mmap_event(&mmap_event
);
6917 void perf_event_aux_event(struct perf_event
*event
, unsigned long head
,
6918 unsigned long size
, u64 flags
)
6920 struct perf_output_handle handle
;
6921 struct perf_sample_data sample
;
6922 struct perf_aux_event
{
6923 struct perf_event_header header
;
6929 .type
= PERF_RECORD_AUX
,
6931 .size
= sizeof(rec
),
6939 perf_event_header__init_id(&rec
.header
, &sample
, event
);
6940 ret
= perf_output_begin(&handle
, event
, rec
.header
.size
);
6945 perf_output_put(&handle
, rec
);
6946 perf_event__output_id_sample(event
, &handle
, &sample
);
6948 perf_output_end(&handle
);
6952 * Lost/dropped samples logging
6954 void perf_log_lost_samples(struct perf_event
*event
, u64 lost
)
6956 struct perf_output_handle handle
;
6957 struct perf_sample_data sample
;
6961 struct perf_event_header header
;
6963 } lost_samples_event
= {
6965 .type
= PERF_RECORD_LOST_SAMPLES
,
6967 .size
= sizeof(lost_samples_event
),
6972 perf_event_header__init_id(&lost_samples_event
.header
, &sample
, event
);
6974 ret
= perf_output_begin(&handle
, event
,
6975 lost_samples_event
.header
.size
);
6979 perf_output_put(&handle
, lost_samples_event
);
6980 perf_event__output_id_sample(event
, &handle
, &sample
);
6981 perf_output_end(&handle
);
6985 * context_switch tracking
6988 struct perf_switch_event
{
6989 struct task_struct
*task
;
6990 struct task_struct
*next_prev
;
6993 struct perf_event_header header
;
6999 static int perf_event_switch_match(struct perf_event
*event
)
7001 return event
->attr
.context_switch
;
7004 static void perf_event_switch_output(struct perf_event
*event
, void *data
)
7006 struct perf_switch_event
*se
= data
;
7007 struct perf_output_handle handle
;
7008 struct perf_sample_data sample
;
7011 if (!perf_event_switch_match(event
))
7014 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7015 if (event
->ctx
->task
) {
7016 se
->event_id
.header
.type
= PERF_RECORD_SWITCH
;
7017 se
->event_id
.header
.size
= sizeof(se
->event_id
.header
);
7019 se
->event_id
.header
.type
= PERF_RECORD_SWITCH_CPU_WIDE
;
7020 se
->event_id
.header
.size
= sizeof(se
->event_id
);
7021 se
->event_id
.next_prev_pid
=
7022 perf_event_pid(event
, se
->next_prev
);
7023 se
->event_id
.next_prev_tid
=
7024 perf_event_tid(event
, se
->next_prev
);
7027 perf_event_header__init_id(&se
->event_id
.header
, &sample
, event
);
7029 ret
= perf_output_begin(&handle
, event
, se
->event_id
.header
.size
);
7033 if (event
->ctx
->task
)
7034 perf_output_put(&handle
, se
->event_id
.header
);
7036 perf_output_put(&handle
, se
->event_id
);
7038 perf_event__output_id_sample(event
, &handle
, &sample
);
7040 perf_output_end(&handle
);
7043 static void perf_event_switch(struct task_struct
*task
,
7044 struct task_struct
*next_prev
, bool sched_in
)
7046 struct perf_switch_event switch_event
;
7048 /* N.B. caller checks nr_switch_events != 0 */
7050 switch_event
= (struct perf_switch_event
){
7052 .next_prev
= next_prev
,
7056 .misc
= sched_in
? 0 : PERF_RECORD_MISC_SWITCH_OUT
,
7059 /* .next_prev_pid */
7060 /* .next_prev_tid */
7064 perf_iterate_sb(perf_event_switch_output
,
7070 * IRQ throttle logging
7073 static void perf_log_throttle(struct perf_event
*event
, int enable
)
7075 struct perf_output_handle handle
;
7076 struct perf_sample_data sample
;
7080 struct perf_event_header header
;
7084 } throttle_event
= {
7086 .type
= PERF_RECORD_THROTTLE
,
7088 .size
= sizeof(throttle_event
),
7090 .time
= perf_event_clock(event
),
7091 .id
= primary_event_id(event
),
7092 .stream_id
= event
->id
,
7096 throttle_event
.header
.type
= PERF_RECORD_UNTHROTTLE
;
7098 perf_event_header__init_id(&throttle_event
.header
, &sample
, event
);
7100 ret
= perf_output_begin(&handle
, event
,
7101 throttle_event
.header
.size
);
7105 perf_output_put(&handle
, throttle_event
);
7106 perf_event__output_id_sample(event
, &handle
, &sample
);
7107 perf_output_end(&handle
);
7110 static void perf_log_itrace_start(struct perf_event
*event
)
7112 struct perf_output_handle handle
;
7113 struct perf_sample_data sample
;
7114 struct perf_aux_event
{
7115 struct perf_event_header header
;
7122 event
= event
->parent
;
7124 if (!(event
->pmu
->capabilities
& PERF_PMU_CAP_ITRACE
) ||
7125 event
->hw
.itrace_started
)
7128 rec
.header
.type
= PERF_RECORD_ITRACE_START
;
7129 rec
.header
.misc
= 0;
7130 rec
.header
.size
= sizeof(rec
);
7131 rec
.pid
= perf_event_pid(event
, current
);
7132 rec
.tid
= perf_event_tid(event
, current
);
7134 perf_event_header__init_id(&rec
.header
, &sample
, event
);
7135 ret
= perf_output_begin(&handle
, event
, rec
.header
.size
);
7140 perf_output_put(&handle
, rec
);
7141 perf_event__output_id_sample(event
, &handle
, &sample
);
7143 perf_output_end(&handle
);
7147 __perf_event_account_interrupt(struct perf_event
*event
, int throttle
)
7149 struct hw_perf_event
*hwc
= &event
->hw
;
7153 seq
= __this_cpu_read(perf_throttled_seq
);
7154 if (seq
!= hwc
->interrupts_seq
) {
7155 hwc
->interrupts_seq
= seq
;
7156 hwc
->interrupts
= 1;
7159 if (unlikely(throttle
7160 && hwc
->interrupts
>= max_samples_per_tick
)) {
7161 __this_cpu_inc(perf_throttled_count
);
7162 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS
);
7163 hwc
->interrupts
= MAX_INTERRUPTS
;
7164 perf_log_throttle(event
, 0);
7169 if (event
->attr
.freq
) {
7170 u64 now
= perf_clock();
7171 s64 delta
= now
- hwc
->freq_time_stamp
;
7173 hwc
->freq_time_stamp
= now
;
7175 if (delta
> 0 && delta
< 2*TICK_NSEC
)
7176 perf_adjust_period(event
, delta
, hwc
->last_period
, true);
7182 int perf_event_account_interrupt(struct perf_event
*event
)
7184 return __perf_event_account_interrupt(event
, 1);
7188 * Generic event overflow handling, sampling.
7191 static int __perf_event_overflow(struct perf_event
*event
,
7192 int throttle
, struct perf_sample_data
*data
,
7193 struct pt_regs
*regs
)
7195 int events
= atomic_read(&event
->event_limit
);
7199 * Non-sampling counters might still use the PMI to fold short
7200 * hardware counters, ignore those.
7202 if (unlikely(!is_sampling_event(event
)))
7205 ret
= __perf_event_account_interrupt(event
, throttle
);
7208 * XXX event_limit might not quite work as expected on inherited
7212 event
->pending_kill
= POLL_IN
;
7213 if (events
&& atomic_dec_and_test(&event
->event_limit
)) {
7215 event
->pending_kill
= POLL_HUP
;
7217 perf_event_disable_inatomic(event
);
7220 READ_ONCE(event
->overflow_handler
)(event
, data
, regs
);
7222 if (*perf_event_fasync(event
) && event
->pending_kill
) {
7223 event
->pending_wakeup
= 1;
7224 irq_work_queue(&event
->pending
);
7230 int perf_event_overflow(struct perf_event
*event
,
7231 struct perf_sample_data
*data
,
7232 struct pt_regs
*regs
)
7234 return __perf_event_overflow(event
, 1, data
, regs
);
7238 * Generic software event infrastructure
7241 struct swevent_htable
{
7242 struct swevent_hlist
*swevent_hlist
;
7243 struct mutex hlist_mutex
;
7246 /* Recursion avoidance in each contexts */
7247 int recursion
[PERF_NR_CONTEXTS
];
7250 static DEFINE_PER_CPU(struct swevent_htable
, swevent_htable
);
7253 * We directly increment event->count and keep a second value in
7254 * event->hw.period_left to count intervals. This period event
7255 * is kept in the range [-sample_period, 0] so that we can use the
7259 u64
perf_swevent_set_period(struct perf_event
*event
)
7261 struct hw_perf_event
*hwc
= &event
->hw
;
7262 u64 period
= hwc
->last_period
;
7266 hwc
->last_period
= hwc
->sample_period
;
7269 old
= val
= local64_read(&hwc
->period_left
);
7273 nr
= div64_u64(period
+ val
, period
);
7274 offset
= nr
* period
;
7276 if (local64_cmpxchg(&hwc
->period_left
, old
, val
) != old
)
7282 static void perf_swevent_overflow(struct perf_event
*event
, u64 overflow
,
7283 struct perf_sample_data
*data
,
7284 struct pt_regs
*regs
)
7286 struct hw_perf_event
*hwc
= &event
->hw
;
7290 overflow
= perf_swevent_set_period(event
);
7292 if (hwc
->interrupts
== MAX_INTERRUPTS
)
7295 for (; overflow
; overflow
--) {
7296 if (__perf_event_overflow(event
, throttle
,
7299 * We inhibit the overflow from happening when
7300 * hwc->interrupts == MAX_INTERRUPTS.
7308 static void perf_swevent_event(struct perf_event
*event
, u64 nr
,
7309 struct perf_sample_data
*data
,
7310 struct pt_regs
*regs
)
7312 struct hw_perf_event
*hwc
= &event
->hw
;
7314 local64_add(nr
, &event
->count
);
7319 if (!is_sampling_event(event
))
7322 if ((event
->attr
.sample_type
& PERF_SAMPLE_PERIOD
) && !event
->attr
.freq
) {
7324 return perf_swevent_overflow(event
, 1, data
, regs
);
7326 data
->period
= event
->hw
.last_period
;
7328 if (nr
== 1 && hwc
->sample_period
== 1 && !event
->attr
.freq
)
7329 return perf_swevent_overflow(event
, 1, data
, regs
);
7331 if (local64_add_negative(nr
, &hwc
->period_left
))
7334 perf_swevent_overflow(event
, 0, data
, regs
);
7337 static int perf_exclude_event(struct perf_event
*event
,
7338 struct pt_regs
*regs
)
7340 if (event
->hw
.state
& PERF_HES_STOPPED
)
7344 if (event
->attr
.exclude_user
&& user_mode(regs
))
7347 if (event
->attr
.exclude_kernel
&& !user_mode(regs
))
7354 static int perf_swevent_match(struct perf_event
*event
,
7355 enum perf_type_id type
,
7357 struct perf_sample_data
*data
,
7358 struct pt_regs
*regs
)
7360 if (event
->attr
.type
!= type
)
7363 if (event
->attr
.config
!= event_id
)
7366 if (perf_exclude_event(event
, regs
))
7372 static inline u64
swevent_hash(u64 type
, u32 event_id
)
7374 u64 val
= event_id
| (type
<< 32);
7376 return hash_64(val
, SWEVENT_HLIST_BITS
);
7379 static inline struct hlist_head
*
7380 __find_swevent_head(struct swevent_hlist
*hlist
, u64 type
, u32 event_id
)
7382 u64 hash
= swevent_hash(type
, event_id
);
7384 return &hlist
->heads
[hash
];
7387 /* For the read side: events when they trigger */
7388 static inline struct hlist_head
*
7389 find_swevent_head_rcu(struct swevent_htable
*swhash
, u64 type
, u32 event_id
)
7391 struct swevent_hlist
*hlist
;
7393 hlist
= rcu_dereference(swhash
->swevent_hlist
);
7397 return __find_swevent_head(hlist
, type
, event_id
);
7400 /* For the event head insertion and removal in the hlist */
7401 static inline struct hlist_head
*
7402 find_swevent_head(struct swevent_htable
*swhash
, struct perf_event
*event
)
7404 struct swevent_hlist
*hlist
;
7405 u32 event_id
= event
->attr
.config
;
7406 u64 type
= event
->attr
.type
;
7409 * Event scheduling is always serialized against hlist allocation
7410 * and release. Which makes the protected version suitable here.
7411 * The context lock guarantees that.
7413 hlist
= rcu_dereference_protected(swhash
->swevent_hlist
,
7414 lockdep_is_held(&event
->ctx
->lock
));
7418 return __find_swevent_head(hlist
, type
, event_id
);
7421 static void do_perf_sw_event(enum perf_type_id type
, u32 event_id
,
7423 struct perf_sample_data
*data
,
7424 struct pt_regs
*regs
)
7426 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
7427 struct perf_event
*event
;
7428 struct hlist_head
*head
;
7431 head
= find_swevent_head_rcu(swhash
, type
, event_id
);
7435 hlist_for_each_entry_rcu(event
, head
, hlist_entry
) {
7436 if (perf_swevent_match(event
, type
, event_id
, data
, regs
))
7437 perf_swevent_event(event
, nr
, data
, regs
);
7443 DEFINE_PER_CPU(struct pt_regs
, __perf_regs
[4]);
7445 int perf_swevent_get_recursion_context(void)
7447 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
7449 return get_recursion_context(swhash
->recursion
);
7451 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context
);
7453 void perf_swevent_put_recursion_context(int rctx
)
7455 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
7457 put_recursion_context(swhash
->recursion
, rctx
);
7460 void ___perf_sw_event(u32 event_id
, u64 nr
, struct pt_regs
*regs
, u64 addr
)
7462 struct perf_sample_data data
;
7464 if (WARN_ON_ONCE(!regs
))
7467 perf_sample_data_init(&data
, addr
, 0);
7468 do_perf_sw_event(PERF_TYPE_SOFTWARE
, event_id
, nr
, &data
, regs
);
7471 void __perf_sw_event(u32 event_id
, u64 nr
, struct pt_regs
*regs
, u64 addr
)
7475 preempt_disable_notrace();
7476 rctx
= perf_swevent_get_recursion_context();
7477 if (unlikely(rctx
< 0))
7480 ___perf_sw_event(event_id
, nr
, regs
, addr
);
7482 perf_swevent_put_recursion_context(rctx
);
7484 preempt_enable_notrace();
7487 static void perf_swevent_read(struct perf_event
*event
)
7491 static int perf_swevent_add(struct perf_event
*event
, int flags
)
7493 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
7494 struct hw_perf_event
*hwc
= &event
->hw
;
7495 struct hlist_head
*head
;
7497 if (is_sampling_event(event
)) {
7498 hwc
->last_period
= hwc
->sample_period
;
7499 perf_swevent_set_period(event
);
7502 hwc
->state
= !(flags
& PERF_EF_START
);
7504 head
= find_swevent_head(swhash
, event
);
7505 if (WARN_ON_ONCE(!head
))
7508 hlist_add_head_rcu(&event
->hlist_entry
, head
);
7509 perf_event_update_userpage(event
);
7514 static void perf_swevent_del(struct perf_event
*event
, int flags
)
7516 hlist_del_rcu(&event
->hlist_entry
);
7519 static void perf_swevent_start(struct perf_event
*event
, int flags
)
7521 event
->hw
.state
= 0;
7524 static void perf_swevent_stop(struct perf_event
*event
, int flags
)
7526 event
->hw
.state
= PERF_HES_STOPPED
;
7529 /* Deref the hlist from the update side */
7530 static inline struct swevent_hlist
*
7531 swevent_hlist_deref(struct swevent_htable
*swhash
)
7533 return rcu_dereference_protected(swhash
->swevent_hlist
,
7534 lockdep_is_held(&swhash
->hlist_mutex
));
7537 static void swevent_hlist_release(struct swevent_htable
*swhash
)
7539 struct swevent_hlist
*hlist
= swevent_hlist_deref(swhash
);
7544 RCU_INIT_POINTER(swhash
->swevent_hlist
, NULL
);
7545 kfree_rcu(hlist
, rcu_head
);
7548 static void swevent_hlist_put_cpu(int cpu
)
7550 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
7552 mutex_lock(&swhash
->hlist_mutex
);
7554 if (!--swhash
->hlist_refcount
)
7555 swevent_hlist_release(swhash
);
7557 mutex_unlock(&swhash
->hlist_mutex
);
7560 static void swevent_hlist_put(void)
7564 for_each_possible_cpu(cpu
)
7565 swevent_hlist_put_cpu(cpu
);
7568 static int swevent_hlist_get_cpu(int cpu
)
7570 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
7573 mutex_lock(&swhash
->hlist_mutex
);
7574 if (!swevent_hlist_deref(swhash
) && cpu_online(cpu
)) {
7575 struct swevent_hlist
*hlist
;
7577 hlist
= kzalloc(sizeof(*hlist
), GFP_KERNEL
);
7582 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
7584 swhash
->hlist_refcount
++;
7586 mutex_unlock(&swhash
->hlist_mutex
);
7591 static int swevent_hlist_get(void)
7593 int err
, cpu
, failed_cpu
;
7596 for_each_possible_cpu(cpu
) {
7597 err
= swevent_hlist_get_cpu(cpu
);
7607 for_each_possible_cpu(cpu
) {
7608 if (cpu
== failed_cpu
)
7610 swevent_hlist_put_cpu(cpu
);
7617 struct static_key perf_swevent_enabled
[PERF_COUNT_SW_MAX
];
7619 static void sw_perf_event_destroy(struct perf_event
*event
)
7621 u64 event_id
= event
->attr
.config
;
7623 WARN_ON(event
->parent
);
7625 static_key_slow_dec(&perf_swevent_enabled
[event_id
]);
7626 swevent_hlist_put();
7629 static int perf_swevent_init(struct perf_event
*event
)
7631 u64 event_id
= event
->attr
.config
;
7633 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
7637 * no branch sampling for software events
7639 if (has_branch_stack(event
))
7643 case PERF_COUNT_SW_CPU_CLOCK
:
7644 case PERF_COUNT_SW_TASK_CLOCK
:
7651 if (event_id
>= PERF_COUNT_SW_MAX
)
7654 if (!event
->parent
) {
7657 err
= swevent_hlist_get();
7661 static_key_slow_inc(&perf_swevent_enabled
[event_id
]);
7662 event
->destroy
= sw_perf_event_destroy
;
7668 static struct pmu perf_swevent
= {
7669 .task_ctx_nr
= perf_sw_context
,
7671 .capabilities
= PERF_PMU_CAP_NO_NMI
,
7673 .event_init
= perf_swevent_init
,
7674 .add
= perf_swevent_add
,
7675 .del
= perf_swevent_del
,
7676 .start
= perf_swevent_start
,
7677 .stop
= perf_swevent_stop
,
7678 .read
= perf_swevent_read
,
7681 #ifdef CONFIG_EVENT_TRACING
7683 static int perf_tp_filter_match(struct perf_event
*event
,
7684 struct perf_sample_data
*data
)
7686 void *record
= data
->raw
->frag
.data
;
7688 /* only top level events have filters set */
7690 event
= event
->parent
;
7692 if (likely(!event
->filter
) || filter_match_preds(event
->filter
, record
))
7697 static int perf_tp_event_match(struct perf_event
*event
,
7698 struct perf_sample_data
*data
,
7699 struct pt_regs
*regs
)
7701 if (event
->hw
.state
& PERF_HES_STOPPED
)
7704 * All tracepoints are from kernel-space.
7706 if (event
->attr
.exclude_kernel
)
7709 if (!perf_tp_filter_match(event
, data
))
7715 void perf_trace_run_bpf_submit(void *raw_data
, int size
, int rctx
,
7716 struct trace_event_call
*call
, u64 count
,
7717 struct pt_regs
*regs
, struct hlist_head
*head
,
7718 struct task_struct
*task
)
7720 struct bpf_prog
*prog
= call
->prog
;
7723 *(struct pt_regs
**)raw_data
= regs
;
7724 if (!trace_call_bpf(prog
, raw_data
) || hlist_empty(head
)) {
7725 perf_swevent_put_recursion_context(rctx
);
7729 perf_tp_event(call
->event
.type
, count
, raw_data
, size
, regs
, head
,
7732 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit
);
7734 void perf_tp_event(u16 event_type
, u64 count
, void *record
, int entry_size
,
7735 struct pt_regs
*regs
, struct hlist_head
*head
, int rctx
,
7736 struct task_struct
*task
)
7738 struct perf_sample_data data
;
7739 struct perf_event
*event
;
7741 struct perf_raw_record raw
= {
7748 perf_sample_data_init(&data
, 0, 0);
7751 perf_trace_buf_update(record
, event_type
);
7753 hlist_for_each_entry_rcu(event
, head
, hlist_entry
) {
7754 if (perf_tp_event_match(event
, &data
, regs
))
7755 perf_swevent_event(event
, count
, &data
, regs
);
7759 * If we got specified a target task, also iterate its context and
7760 * deliver this event there too.
7762 if (task
&& task
!= current
) {
7763 struct perf_event_context
*ctx
;
7764 struct trace_entry
*entry
= record
;
7767 ctx
= rcu_dereference(task
->perf_event_ctxp
[perf_sw_context
]);
7771 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
7772 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
7774 if (event
->attr
.config
!= entry
->type
)
7776 if (perf_tp_event_match(event
, &data
, regs
))
7777 perf_swevent_event(event
, count
, &data
, regs
);
7783 perf_swevent_put_recursion_context(rctx
);
7785 EXPORT_SYMBOL_GPL(perf_tp_event
);
7787 static void tp_perf_event_destroy(struct perf_event
*event
)
7789 perf_trace_destroy(event
);
7792 static int perf_tp_event_init(struct perf_event
*event
)
7796 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
7800 * no branch sampling for tracepoint events
7802 if (has_branch_stack(event
))
7805 err
= perf_trace_init(event
);
7809 event
->destroy
= tp_perf_event_destroy
;
7814 static struct pmu perf_tracepoint
= {
7815 .task_ctx_nr
= perf_sw_context
,
7817 .event_init
= perf_tp_event_init
,
7818 .add
= perf_trace_add
,
7819 .del
= perf_trace_del
,
7820 .start
= perf_swevent_start
,
7821 .stop
= perf_swevent_stop
,
7822 .read
= perf_swevent_read
,
7825 static inline void perf_tp_register(void)
7827 perf_pmu_register(&perf_tracepoint
, "tracepoint", PERF_TYPE_TRACEPOINT
);
7830 static void perf_event_free_filter(struct perf_event
*event
)
7832 ftrace_profile_free_filter(event
);
7835 #ifdef CONFIG_BPF_SYSCALL
7836 static void bpf_overflow_handler(struct perf_event
*event
,
7837 struct perf_sample_data
*data
,
7838 struct pt_regs
*regs
)
7840 struct bpf_perf_event_data_kern ctx
= {
7847 if (unlikely(__this_cpu_inc_return(bpf_prog_active
) != 1))
7850 ret
= BPF_PROG_RUN(event
->prog
, &ctx
);
7853 __this_cpu_dec(bpf_prog_active
);
7858 event
->orig_overflow_handler(event
, data
, regs
);
7861 static int perf_event_set_bpf_handler(struct perf_event
*event
, u32 prog_fd
)
7863 struct bpf_prog
*prog
;
7865 if (event
->overflow_handler_context
)
7866 /* hw breakpoint or kernel counter */
7872 prog
= bpf_prog_get_type(prog_fd
, BPF_PROG_TYPE_PERF_EVENT
);
7874 return PTR_ERR(prog
);
7877 event
->orig_overflow_handler
= READ_ONCE(event
->overflow_handler
);
7878 WRITE_ONCE(event
->overflow_handler
, bpf_overflow_handler
);
7882 static void perf_event_free_bpf_handler(struct perf_event
*event
)
7884 struct bpf_prog
*prog
= event
->prog
;
7889 WRITE_ONCE(event
->overflow_handler
, event
->orig_overflow_handler
);
7894 static int perf_event_set_bpf_handler(struct perf_event
*event
, u32 prog_fd
)
7898 static void perf_event_free_bpf_handler(struct perf_event
*event
)
7903 static int perf_event_set_bpf_prog(struct perf_event
*event
, u32 prog_fd
)
7905 bool is_kprobe
, is_tracepoint
;
7906 struct bpf_prog
*prog
;
7908 if (event
->attr
.type
== PERF_TYPE_HARDWARE
||
7909 event
->attr
.type
== PERF_TYPE_SOFTWARE
)
7910 return perf_event_set_bpf_handler(event
, prog_fd
);
7912 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
7915 if (event
->tp_event
->prog
)
7918 is_kprobe
= event
->tp_event
->flags
& TRACE_EVENT_FL_UKPROBE
;
7919 is_tracepoint
= event
->tp_event
->flags
& TRACE_EVENT_FL_TRACEPOINT
;
7920 if (!is_kprobe
&& !is_tracepoint
)
7921 /* bpf programs can only be attached to u/kprobe or tracepoint */
7924 prog
= bpf_prog_get(prog_fd
);
7926 return PTR_ERR(prog
);
7928 if ((is_kprobe
&& prog
->type
!= BPF_PROG_TYPE_KPROBE
) ||
7929 (is_tracepoint
&& prog
->type
!= BPF_PROG_TYPE_TRACEPOINT
)) {
7930 /* valid fd, but invalid bpf program type */
7935 if (is_tracepoint
) {
7936 int off
= trace_event_get_offsets(event
->tp_event
);
7938 if (prog
->aux
->max_ctx_offset
> off
) {
7943 event
->tp_event
->prog
= prog
;
7948 static void perf_event_free_bpf_prog(struct perf_event
*event
)
7950 struct bpf_prog
*prog
;
7952 perf_event_free_bpf_handler(event
);
7954 if (!event
->tp_event
)
7957 prog
= event
->tp_event
->prog
;
7959 event
->tp_event
->prog
= NULL
;
7966 static inline void perf_tp_register(void)
7970 static void perf_event_free_filter(struct perf_event
*event
)
7974 static int perf_event_set_bpf_prog(struct perf_event
*event
, u32 prog_fd
)
7979 static void perf_event_free_bpf_prog(struct perf_event
*event
)
7982 #endif /* CONFIG_EVENT_TRACING */
7984 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7985 void perf_bp_event(struct perf_event
*bp
, void *data
)
7987 struct perf_sample_data sample
;
7988 struct pt_regs
*regs
= data
;
7990 perf_sample_data_init(&sample
, bp
->attr
.bp_addr
, 0);
7992 if (!bp
->hw
.state
&& !perf_exclude_event(bp
, regs
))
7993 perf_swevent_event(bp
, 1, &sample
, regs
);
7998 * Allocate a new address filter
8000 static struct perf_addr_filter
*
8001 perf_addr_filter_new(struct perf_event
*event
, struct list_head
*filters
)
8003 int node
= cpu_to_node(event
->cpu
== -1 ? 0 : event
->cpu
);
8004 struct perf_addr_filter
*filter
;
8006 filter
= kzalloc_node(sizeof(*filter
), GFP_KERNEL
, node
);
8010 INIT_LIST_HEAD(&filter
->entry
);
8011 list_add_tail(&filter
->entry
, filters
);
8016 static void free_filters_list(struct list_head
*filters
)
8018 struct perf_addr_filter
*filter
, *iter
;
8020 list_for_each_entry_safe(filter
, iter
, filters
, entry
) {
8022 iput(filter
->inode
);
8023 list_del(&filter
->entry
);
8029 * Free existing address filters and optionally install new ones
8031 static void perf_addr_filters_splice(struct perf_event
*event
,
8032 struct list_head
*head
)
8034 unsigned long flags
;
8037 if (!has_addr_filter(event
))
8040 /* don't bother with children, they don't have their own filters */
8044 raw_spin_lock_irqsave(&event
->addr_filters
.lock
, flags
);
8046 list_splice_init(&event
->addr_filters
.list
, &list
);
8048 list_splice(head
, &event
->addr_filters
.list
);
8050 raw_spin_unlock_irqrestore(&event
->addr_filters
.lock
, flags
);
8052 free_filters_list(&list
);
8056 * Scan through mm's vmas and see if one of them matches the
8057 * @filter; if so, adjust filter's address range.
8058 * Called with mm::mmap_sem down for reading.
8060 static unsigned long perf_addr_filter_apply(struct perf_addr_filter
*filter
,
8061 struct mm_struct
*mm
)
8063 struct vm_area_struct
*vma
;
8065 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
8066 struct file
*file
= vma
->vm_file
;
8067 unsigned long off
= vma
->vm_pgoff
<< PAGE_SHIFT
;
8068 unsigned long vma_size
= vma
->vm_end
- vma
->vm_start
;
8073 if (!perf_addr_filter_match(filter
, file
, off
, vma_size
))
8076 return vma
->vm_start
;
8083 * Update event's address range filters based on the
8084 * task's existing mappings, if any.
8086 static void perf_event_addr_filters_apply(struct perf_event
*event
)
8088 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
8089 struct task_struct
*task
= READ_ONCE(event
->ctx
->task
);
8090 struct perf_addr_filter
*filter
;
8091 struct mm_struct
*mm
= NULL
;
8092 unsigned int count
= 0;
8093 unsigned long flags
;
8096 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8097 * will stop on the parent's child_mutex that our caller is also holding
8099 if (task
== TASK_TOMBSTONE
)
8102 if (!ifh
->nr_file_filters
)
8105 mm
= get_task_mm(event
->ctx
->task
);
8109 down_read(&mm
->mmap_sem
);
8111 raw_spin_lock_irqsave(&ifh
->lock
, flags
);
8112 list_for_each_entry(filter
, &ifh
->list
, entry
) {
8113 event
->addr_filters_offs
[count
] = 0;
8116 * Adjust base offset if the filter is associated to a binary
8117 * that needs to be mapped:
8120 event
->addr_filters_offs
[count
] =
8121 perf_addr_filter_apply(filter
, mm
);
8126 event
->addr_filters_gen
++;
8127 raw_spin_unlock_irqrestore(&ifh
->lock
, flags
);
8129 up_read(&mm
->mmap_sem
);
8134 perf_event_stop(event
, 1);
8138 * Address range filtering: limiting the data to certain
8139 * instruction address ranges. Filters are ioctl()ed to us from
8140 * userspace as ascii strings.
8142 * Filter string format:
8145 * where ACTION is one of the
8146 * * "filter": limit the trace to this region
8147 * * "start": start tracing from this address
8148 * * "stop": stop tracing at this address/region;
8150 * * for kernel addresses: <start address>[/<size>]
8151 * * for object files: <start address>[/<size>]@</path/to/object/file>
8153 * if <size> is not specified, the range is treated as a single address.
8167 IF_STATE_ACTION
= 0,
8172 static const match_table_t if_tokens
= {
8173 { IF_ACT_FILTER
, "filter" },
8174 { IF_ACT_START
, "start" },
8175 { IF_ACT_STOP
, "stop" },
8176 { IF_SRC_FILE
, "%u/%u@%s" },
8177 { IF_SRC_KERNEL
, "%u/%u" },
8178 { IF_SRC_FILEADDR
, "%u@%s" },
8179 { IF_SRC_KERNELADDR
, "%u" },
8180 { IF_ACT_NONE
, NULL
},
8184 * Address filter string parser
8187 perf_event_parse_addr_filter(struct perf_event
*event
, char *fstr
,
8188 struct list_head
*filters
)
8190 struct perf_addr_filter
*filter
= NULL
;
8191 char *start
, *orig
, *filename
= NULL
;
8193 substring_t args
[MAX_OPT_ARGS
];
8194 int state
= IF_STATE_ACTION
, token
;
8195 unsigned int kernel
= 0;
8198 orig
= fstr
= kstrdup(fstr
, GFP_KERNEL
);
8202 while ((start
= strsep(&fstr
, " ,\n")) != NULL
) {
8208 /* filter definition begins */
8209 if (state
== IF_STATE_ACTION
) {
8210 filter
= perf_addr_filter_new(event
, filters
);
8215 token
= match_token(start
, if_tokens
, args
);
8222 if (state
!= IF_STATE_ACTION
)
8225 state
= IF_STATE_SOURCE
;
8228 case IF_SRC_KERNELADDR
:
8232 case IF_SRC_FILEADDR
:
8234 if (state
!= IF_STATE_SOURCE
)
8237 if (token
== IF_SRC_FILE
|| token
== IF_SRC_KERNEL
)
8241 ret
= kstrtoul(args
[0].from
, 0, &filter
->offset
);
8245 if (filter
->range
) {
8247 ret
= kstrtoul(args
[1].from
, 0, &filter
->size
);
8252 if (token
== IF_SRC_FILE
|| token
== IF_SRC_FILEADDR
) {
8253 int fpos
= filter
->range
? 2 : 1;
8255 filename
= match_strdup(&args
[fpos
]);
8262 state
= IF_STATE_END
;
8270 * Filter definition is fully parsed, validate and install it.
8271 * Make sure that it doesn't contradict itself or the event's
8274 if (state
== IF_STATE_END
) {
8276 if (kernel
&& event
->attr
.exclude_kernel
)
8284 * For now, we only support file-based filters
8285 * in per-task events; doing so for CPU-wide
8286 * events requires additional context switching
8287 * trickery, since same object code will be
8288 * mapped at different virtual addresses in
8289 * different processes.
8292 if (!event
->ctx
->task
)
8293 goto fail_free_name
;
8295 /* look up the path and grab its inode */
8296 ret
= kern_path(filename
, LOOKUP_FOLLOW
, &path
);
8298 goto fail_free_name
;
8300 filter
->inode
= igrab(d_inode(path
.dentry
));
8306 if (!filter
->inode
||
8307 !S_ISREG(filter
->inode
->i_mode
))
8308 /* free_filters_list() will iput() */
8311 event
->addr_filters
.nr_file_filters
++;
8314 /* ready to consume more filters */
8315 state
= IF_STATE_ACTION
;
8320 if (state
!= IF_STATE_ACTION
)
8330 free_filters_list(filters
);
8337 perf_event_set_addr_filter(struct perf_event
*event
, char *filter_str
)
8343 * Since this is called in perf_ioctl() path, we're already holding
8346 lockdep_assert_held(&event
->ctx
->mutex
);
8348 if (WARN_ON_ONCE(event
->parent
))
8351 ret
= perf_event_parse_addr_filter(event
, filter_str
, &filters
);
8353 goto fail_clear_files
;
8355 ret
= event
->pmu
->addr_filters_validate(&filters
);
8357 goto fail_free_filters
;
8359 /* remove existing filters, if any */
8360 perf_addr_filters_splice(event
, &filters
);
8362 /* install new filters */
8363 perf_event_for_each_child(event
, perf_event_addr_filters_apply
);
8368 free_filters_list(&filters
);
8371 event
->addr_filters
.nr_file_filters
= 0;
8376 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
8381 if ((event
->attr
.type
!= PERF_TYPE_TRACEPOINT
||
8382 !IS_ENABLED(CONFIG_EVENT_TRACING
)) &&
8383 !has_addr_filter(event
))
8386 filter_str
= strndup_user(arg
, PAGE_SIZE
);
8387 if (IS_ERR(filter_str
))
8388 return PTR_ERR(filter_str
);
8390 if (IS_ENABLED(CONFIG_EVENT_TRACING
) &&
8391 event
->attr
.type
== PERF_TYPE_TRACEPOINT
)
8392 ret
= ftrace_profile_set_filter(event
, event
->attr
.config
,
8394 else if (has_addr_filter(event
))
8395 ret
= perf_event_set_addr_filter(event
, filter_str
);
8402 * hrtimer based swevent callback
8405 static enum hrtimer_restart
perf_swevent_hrtimer(struct hrtimer
*hrtimer
)
8407 enum hrtimer_restart ret
= HRTIMER_RESTART
;
8408 struct perf_sample_data data
;
8409 struct pt_regs
*regs
;
8410 struct perf_event
*event
;
8413 event
= container_of(hrtimer
, struct perf_event
, hw
.hrtimer
);
8415 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
8416 return HRTIMER_NORESTART
;
8418 event
->pmu
->read(event
);
8420 perf_sample_data_init(&data
, 0, event
->hw
.last_period
);
8421 regs
= get_irq_regs();
8423 if (regs
&& !perf_exclude_event(event
, regs
)) {
8424 if (!(event
->attr
.exclude_idle
&& is_idle_task(current
)))
8425 if (__perf_event_overflow(event
, 1, &data
, regs
))
8426 ret
= HRTIMER_NORESTART
;
8429 period
= max_t(u64
, 10000, event
->hw
.sample_period
);
8430 hrtimer_forward_now(hrtimer
, ns_to_ktime(period
));
8435 static void perf_swevent_start_hrtimer(struct perf_event
*event
)
8437 struct hw_perf_event
*hwc
= &event
->hw
;
8440 if (!is_sampling_event(event
))
8443 period
= local64_read(&hwc
->period_left
);
8448 local64_set(&hwc
->period_left
, 0);
8450 period
= max_t(u64
, 10000, hwc
->sample_period
);
8452 hrtimer_start(&hwc
->hrtimer
, ns_to_ktime(period
),
8453 HRTIMER_MODE_REL_PINNED
);
8456 static void perf_swevent_cancel_hrtimer(struct perf_event
*event
)
8458 struct hw_perf_event
*hwc
= &event
->hw
;
8460 if (is_sampling_event(event
)) {
8461 ktime_t remaining
= hrtimer_get_remaining(&hwc
->hrtimer
);
8462 local64_set(&hwc
->period_left
, ktime_to_ns(remaining
));
8464 hrtimer_cancel(&hwc
->hrtimer
);
8468 static void perf_swevent_init_hrtimer(struct perf_event
*event
)
8470 struct hw_perf_event
*hwc
= &event
->hw
;
8472 if (!is_sampling_event(event
))
8475 hrtimer_init(&hwc
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
8476 hwc
->hrtimer
.function
= perf_swevent_hrtimer
;
8479 * Since hrtimers have a fixed rate, we can do a static freq->period
8480 * mapping and avoid the whole period adjust feedback stuff.
8482 if (event
->attr
.freq
) {
8483 long freq
= event
->attr
.sample_freq
;
8485 event
->attr
.sample_period
= NSEC_PER_SEC
/ freq
;
8486 hwc
->sample_period
= event
->attr
.sample_period
;
8487 local64_set(&hwc
->period_left
, hwc
->sample_period
);
8488 hwc
->last_period
= hwc
->sample_period
;
8489 event
->attr
.freq
= 0;
8494 * Software event: cpu wall time clock
8497 static void cpu_clock_event_update(struct perf_event
*event
)
8502 now
= local_clock();
8503 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
8504 local64_add(now
- prev
, &event
->count
);
8507 static void cpu_clock_event_start(struct perf_event
*event
, int flags
)
8509 local64_set(&event
->hw
.prev_count
, local_clock());
8510 perf_swevent_start_hrtimer(event
);
8513 static void cpu_clock_event_stop(struct perf_event
*event
, int flags
)
8515 perf_swevent_cancel_hrtimer(event
);
8516 cpu_clock_event_update(event
);
8519 static int cpu_clock_event_add(struct perf_event
*event
, int flags
)
8521 if (flags
& PERF_EF_START
)
8522 cpu_clock_event_start(event
, flags
);
8523 perf_event_update_userpage(event
);
8528 static void cpu_clock_event_del(struct perf_event
*event
, int flags
)
8530 cpu_clock_event_stop(event
, flags
);
8533 static void cpu_clock_event_read(struct perf_event
*event
)
8535 cpu_clock_event_update(event
);
8538 static int cpu_clock_event_init(struct perf_event
*event
)
8540 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
8543 if (event
->attr
.config
!= PERF_COUNT_SW_CPU_CLOCK
)
8547 * no branch sampling for software events
8549 if (has_branch_stack(event
))
8552 perf_swevent_init_hrtimer(event
);
8557 static struct pmu perf_cpu_clock
= {
8558 .task_ctx_nr
= perf_sw_context
,
8560 .capabilities
= PERF_PMU_CAP_NO_NMI
,
8562 .event_init
= cpu_clock_event_init
,
8563 .add
= cpu_clock_event_add
,
8564 .del
= cpu_clock_event_del
,
8565 .start
= cpu_clock_event_start
,
8566 .stop
= cpu_clock_event_stop
,
8567 .read
= cpu_clock_event_read
,
8571 * Software event: task time clock
8574 static void task_clock_event_update(struct perf_event
*event
, u64 now
)
8579 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
8581 local64_add(delta
, &event
->count
);
8584 static void task_clock_event_start(struct perf_event
*event
, int flags
)
8586 local64_set(&event
->hw
.prev_count
, event
->ctx
->time
);
8587 perf_swevent_start_hrtimer(event
);
8590 static void task_clock_event_stop(struct perf_event
*event
, int flags
)
8592 perf_swevent_cancel_hrtimer(event
);
8593 task_clock_event_update(event
, event
->ctx
->time
);
8596 static int task_clock_event_add(struct perf_event
*event
, int flags
)
8598 if (flags
& PERF_EF_START
)
8599 task_clock_event_start(event
, flags
);
8600 perf_event_update_userpage(event
);
8605 static void task_clock_event_del(struct perf_event
*event
, int flags
)
8607 task_clock_event_stop(event
, PERF_EF_UPDATE
);
8610 static void task_clock_event_read(struct perf_event
*event
)
8612 u64 now
= perf_clock();
8613 u64 delta
= now
- event
->ctx
->timestamp
;
8614 u64 time
= event
->ctx
->time
+ delta
;
8616 task_clock_event_update(event
, time
);
8619 static int task_clock_event_init(struct perf_event
*event
)
8621 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
8624 if (event
->attr
.config
!= PERF_COUNT_SW_TASK_CLOCK
)
8628 * no branch sampling for software events
8630 if (has_branch_stack(event
))
8633 perf_swevent_init_hrtimer(event
);
8638 static struct pmu perf_task_clock
= {
8639 .task_ctx_nr
= perf_sw_context
,
8641 .capabilities
= PERF_PMU_CAP_NO_NMI
,
8643 .event_init
= task_clock_event_init
,
8644 .add
= task_clock_event_add
,
8645 .del
= task_clock_event_del
,
8646 .start
= task_clock_event_start
,
8647 .stop
= task_clock_event_stop
,
8648 .read
= task_clock_event_read
,
8651 static void perf_pmu_nop_void(struct pmu
*pmu
)
8655 static void perf_pmu_nop_txn(struct pmu
*pmu
, unsigned int flags
)
8659 static int perf_pmu_nop_int(struct pmu
*pmu
)
8664 static DEFINE_PER_CPU(unsigned int, nop_txn_flags
);
8666 static void perf_pmu_start_txn(struct pmu
*pmu
, unsigned int flags
)
8668 __this_cpu_write(nop_txn_flags
, flags
);
8670 if (flags
& ~PERF_PMU_TXN_ADD
)
8673 perf_pmu_disable(pmu
);
8676 static int perf_pmu_commit_txn(struct pmu
*pmu
)
8678 unsigned int flags
= __this_cpu_read(nop_txn_flags
);
8680 __this_cpu_write(nop_txn_flags
, 0);
8682 if (flags
& ~PERF_PMU_TXN_ADD
)
8685 perf_pmu_enable(pmu
);
8689 static void perf_pmu_cancel_txn(struct pmu
*pmu
)
8691 unsigned int flags
= __this_cpu_read(nop_txn_flags
);
8693 __this_cpu_write(nop_txn_flags
, 0);
8695 if (flags
& ~PERF_PMU_TXN_ADD
)
8698 perf_pmu_enable(pmu
);
8701 static int perf_event_idx_default(struct perf_event
*event
)
8707 * Ensures all contexts with the same task_ctx_nr have the same
8708 * pmu_cpu_context too.
8710 static struct perf_cpu_context __percpu
*find_pmu_context(int ctxn
)
8717 list_for_each_entry(pmu
, &pmus
, entry
) {
8718 if (pmu
->task_ctx_nr
== ctxn
)
8719 return pmu
->pmu_cpu_context
;
8725 static void free_pmu_context(struct pmu
*pmu
)
8727 mutex_lock(&pmus_lock
);
8728 free_percpu(pmu
->pmu_cpu_context
);
8729 mutex_unlock(&pmus_lock
);
8733 * Let userspace know that this PMU supports address range filtering:
8735 static ssize_t
nr_addr_filters_show(struct device
*dev
,
8736 struct device_attribute
*attr
,
8739 struct pmu
*pmu
= dev_get_drvdata(dev
);
8741 return snprintf(page
, PAGE_SIZE
- 1, "%d\n", pmu
->nr_addr_filters
);
8743 DEVICE_ATTR_RO(nr_addr_filters
);
8745 static struct idr pmu_idr
;
8748 type_show(struct device
*dev
, struct device_attribute
*attr
, char *page
)
8750 struct pmu
*pmu
= dev_get_drvdata(dev
);
8752 return snprintf(page
, PAGE_SIZE
-1, "%d\n", pmu
->type
);
8754 static DEVICE_ATTR_RO(type
);
8757 perf_event_mux_interval_ms_show(struct device
*dev
,
8758 struct device_attribute
*attr
,
8761 struct pmu
*pmu
= dev_get_drvdata(dev
);
8763 return snprintf(page
, PAGE_SIZE
-1, "%d\n", pmu
->hrtimer_interval_ms
);
8766 static DEFINE_MUTEX(mux_interval_mutex
);
8769 perf_event_mux_interval_ms_store(struct device
*dev
,
8770 struct device_attribute
*attr
,
8771 const char *buf
, size_t count
)
8773 struct pmu
*pmu
= dev_get_drvdata(dev
);
8774 int timer
, cpu
, ret
;
8776 ret
= kstrtoint(buf
, 0, &timer
);
8783 /* same value, noting to do */
8784 if (timer
== pmu
->hrtimer_interval_ms
)
8787 mutex_lock(&mux_interval_mutex
);
8788 pmu
->hrtimer_interval_ms
= timer
;
8790 /* update all cpuctx for this PMU */
8792 for_each_online_cpu(cpu
) {
8793 struct perf_cpu_context
*cpuctx
;
8794 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
8795 cpuctx
->hrtimer_interval
= ns_to_ktime(NSEC_PER_MSEC
* timer
);
8797 cpu_function_call(cpu
,
8798 (remote_function_f
)perf_mux_hrtimer_restart
, cpuctx
);
8801 mutex_unlock(&mux_interval_mutex
);
8805 static DEVICE_ATTR_RW(perf_event_mux_interval_ms
);
8807 static struct attribute
*pmu_dev_attrs
[] = {
8808 &dev_attr_type
.attr
,
8809 &dev_attr_perf_event_mux_interval_ms
.attr
,
8812 ATTRIBUTE_GROUPS(pmu_dev
);
8814 static int pmu_bus_running
;
8815 static struct bus_type pmu_bus
= {
8816 .name
= "event_source",
8817 .dev_groups
= pmu_dev_groups
,
8820 static void pmu_dev_release(struct device
*dev
)
8825 static int pmu_dev_alloc(struct pmu
*pmu
)
8829 pmu
->dev
= kzalloc(sizeof(struct device
), GFP_KERNEL
);
8833 pmu
->dev
->groups
= pmu
->attr_groups
;
8834 device_initialize(pmu
->dev
);
8835 ret
= dev_set_name(pmu
->dev
, "%s", pmu
->name
);
8839 dev_set_drvdata(pmu
->dev
, pmu
);
8840 pmu
->dev
->bus
= &pmu_bus
;
8841 pmu
->dev
->release
= pmu_dev_release
;
8842 ret
= device_add(pmu
->dev
);
8846 /* For PMUs with address filters, throw in an extra attribute: */
8847 if (pmu
->nr_addr_filters
)
8848 ret
= device_create_file(pmu
->dev
, &dev_attr_nr_addr_filters
);
8857 device_del(pmu
->dev
);
8860 put_device(pmu
->dev
);
8864 static struct lock_class_key cpuctx_mutex
;
8865 static struct lock_class_key cpuctx_lock
;
8867 int perf_pmu_register(struct pmu
*pmu
, const char *name
, int type
)
8871 mutex_lock(&pmus_lock
);
8873 pmu
->pmu_disable_count
= alloc_percpu(int);
8874 if (!pmu
->pmu_disable_count
)
8883 type
= idr_alloc(&pmu_idr
, pmu
, PERF_TYPE_MAX
, 0, GFP_KERNEL
);
8891 if (pmu_bus_running
) {
8892 ret
= pmu_dev_alloc(pmu
);
8898 if (pmu
->task_ctx_nr
== perf_hw_context
) {
8899 static int hw_context_taken
= 0;
8902 * Other than systems with heterogeneous CPUs, it never makes
8903 * sense for two PMUs to share perf_hw_context. PMUs which are
8904 * uncore must use perf_invalid_context.
8906 if (WARN_ON_ONCE(hw_context_taken
&&
8907 !(pmu
->capabilities
& PERF_PMU_CAP_HETEROGENEOUS_CPUS
)))
8908 pmu
->task_ctx_nr
= perf_invalid_context
;
8910 hw_context_taken
= 1;
8913 pmu
->pmu_cpu_context
= find_pmu_context(pmu
->task_ctx_nr
);
8914 if (pmu
->pmu_cpu_context
)
8915 goto got_cpu_context
;
8918 pmu
->pmu_cpu_context
= alloc_percpu(struct perf_cpu_context
);
8919 if (!pmu
->pmu_cpu_context
)
8922 for_each_possible_cpu(cpu
) {
8923 struct perf_cpu_context
*cpuctx
;
8925 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
8926 __perf_event_init_context(&cpuctx
->ctx
);
8927 lockdep_set_class(&cpuctx
->ctx
.mutex
, &cpuctx_mutex
);
8928 lockdep_set_class(&cpuctx
->ctx
.lock
, &cpuctx_lock
);
8929 cpuctx
->ctx
.pmu
= pmu
;
8931 __perf_mux_hrtimer_init(cpuctx
, cpu
);
8935 if (!pmu
->start_txn
) {
8936 if (pmu
->pmu_enable
) {
8938 * If we have pmu_enable/pmu_disable calls, install
8939 * transaction stubs that use that to try and batch
8940 * hardware accesses.
8942 pmu
->start_txn
= perf_pmu_start_txn
;
8943 pmu
->commit_txn
= perf_pmu_commit_txn
;
8944 pmu
->cancel_txn
= perf_pmu_cancel_txn
;
8946 pmu
->start_txn
= perf_pmu_nop_txn
;
8947 pmu
->commit_txn
= perf_pmu_nop_int
;
8948 pmu
->cancel_txn
= perf_pmu_nop_void
;
8952 if (!pmu
->pmu_enable
) {
8953 pmu
->pmu_enable
= perf_pmu_nop_void
;
8954 pmu
->pmu_disable
= perf_pmu_nop_void
;
8957 if (!pmu
->event_idx
)
8958 pmu
->event_idx
= perf_event_idx_default
;
8960 list_add_rcu(&pmu
->entry
, &pmus
);
8961 atomic_set(&pmu
->exclusive_cnt
, 0);
8964 mutex_unlock(&pmus_lock
);
8969 device_del(pmu
->dev
);
8970 put_device(pmu
->dev
);
8973 if (pmu
->type
>= PERF_TYPE_MAX
)
8974 idr_remove(&pmu_idr
, pmu
->type
);
8977 free_percpu(pmu
->pmu_disable_count
);
8980 EXPORT_SYMBOL_GPL(perf_pmu_register
);
8982 void perf_pmu_unregister(struct pmu
*pmu
)
8986 mutex_lock(&pmus_lock
);
8987 remove_device
= pmu_bus_running
;
8988 list_del_rcu(&pmu
->entry
);
8989 mutex_unlock(&pmus_lock
);
8992 * We dereference the pmu list under both SRCU and regular RCU, so
8993 * synchronize against both of those.
8995 synchronize_srcu(&pmus_srcu
);
8998 free_percpu(pmu
->pmu_disable_count
);
8999 if (pmu
->type
>= PERF_TYPE_MAX
)
9000 idr_remove(&pmu_idr
, pmu
->type
);
9001 if (remove_device
) {
9002 if (pmu
->nr_addr_filters
)
9003 device_remove_file(pmu
->dev
, &dev_attr_nr_addr_filters
);
9004 device_del(pmu
->dev
);
9005 put_device(pmu
->dev
);
9007 free_pmu_context(pmu
);
9009 EXPORT_SYMBOL_GPL(perf_pmu_unregister
);
9011 static int perf_try_init_event(struct pmu
*pmu
, struct perf_event
*event
)
9013 struct perf_event_context
*ctx
= NULL
;
9016 if (!try_module_get(pmu
->module
))
9019 if (event
->group_leader
!= event
) {
9021 * This ctx->mutex can nest when we're called through
9022 * inheritance. See the perf_event_ctx_lock_nested() comment.
9024 ctx
= perf_event_ctx_lock_nested(event
->group_leader
,
9025 SINGLE_DEPTH_NESTING
);
9030 ret
= pmu
->event_init(event
);
9033 perf_event_ctx_unlock(event
->group_leader
, ctx
);
9036 module_put(pmu
->module
);
9041 static struct pmu
*perf_init_event(struct perf_event
*event
)
9043 struct pmu
*pmu
= NULL
;
9047 idx
= srcu_read_lock(&pmus_srcu
);
9049 /* Try parent's PMU first: */
9050 if (event
->parent
&& event
->parent
->pmu
) {
9051 pmu
= event
->parent
->pmu
;
9052 ret
= perf_try_init_event(pmu
, event
);
9058 pmu
= idr_find(&pmu_idr
, event
->attr
.type
);
9061 ret
= perf_try_init_event(pmu
, event
);
9067 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
9068 ret
= perf_try_init_event(pmu
, event
);
9072 if (ret
!= -ENOENT
) {
9077 pmu
= ERR_PTR(-ENOENT
);
9079 srcu_read_unlock(&pmus_srcu
, idx
);
9084 static void attach_sb_event(struct perf_event
*event
)
9086 struct pmu_event_list
*pel
= per_cpu_ptr(&pmu_sb_events
, event
->cpu
);
9088 raw_spin_lock(&pel
->lock
);
9089 list_add_rcu(&event
->sb_list
, &pel
->list
);
9090 raw_spin_unlock(&pel
->lock
);
9094 * We keep a list of all !task (and therefore per-cpu) events
9095 * that need to receive side-band records.
9097 * This avoids having to scan all the various PMU per-cpu contexts
9100 static void account_pmu_sb_event(struct perf_event
*event
)
9102 if (is_sb_event(event
))
9103 attach_sb_event(event
);
9106 static void account_event_cpu(struct perf_event
*event
, int cpu
)
9111 if (is_cgroup_event(event
))
9112 atomic_inc(&per_cpu(perf_cgroup_events
, cpu
));
9115 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9116 static void account_freq_event_nohz(void)
9118 #ifdef CONFIG_NO_HZ_FULL
9119 /* Lock so we don't race with concurrent unaccount */
9120 spin_lock(&nr_freq_lock
);
9121 if (atomic_inc_return(&nr_freq_events
) == 1)
9122 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS
);
9123 spin_unlock(&nr_freq_lock
);
9127 static void account_freq_event(void)
9129 if (tick_nohz_full_enabled())
9130 account_freq_event_nohz();
9132 atomic_inc(&nr_freq_events
);
9136 static void account_event(struct perf_event
*event
)
9143 if (event
->attach_state
& PERF_ATTACH_TASK
)
9145 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
9146 atomic_inc(&nr_mmap_events
);
9147 if (event
->attr
.comm
)
9148 atomic_inc(&nr_comm_events
);
9149 if (event
->attr
.task
)
9150 atomic_inc(&nr_task_events
);
9151 if (event
->attr
.freq
)
9152 account_freq_event();
9153 if (event
->attr
.context_switch
) {
9154 atomic_inc(&nr_switch_events
);
9157 if (has_branch_stack(event
))
9159 if (is_cgroup_event(event
))
9163 if (atomic_inc_not_zero(&perf_sched_count
))
9166 mutex_lock(&perf_sched_mutex
);
9167 if (!atomic_read(&perf_sched_count
)) {
9168 static_branch_enable(&perf_sched_events
);
9170 * Guarantee that all CPUs observe they key change and
9171 * call the perf scheduling hooks before proceeding to
9172 * install events that need them.
9174 synchronize_sched();
9177 * Now that we have waited for the sync_sched(), allow further
9178 * increments to by-pass the mutex.
9180 atomic_inc(&perf_sched_count
);
9181 mutex_unlock(&perf_sched_mutex
);
9185 account_event_cpu(event
, event
->cpu
);
9187 account_pmu_sb_event(event
);
9191 * Allocate and initialize a event structure
9193 static struct perf_event
*
9194 perf_event_alloc(struct perf_event_attr
*attr
, int cpu
,
9195 struct task_struct
*task
,
9196 struct perf_event
*group_leader
,
9197 struct perf_event
*parent_event
,
9198 perf_overflow_handler_t overflow_handler
,
9199 void *context
, int cgroup_fd
)
9202 struct perf_event
*event
;
9203 struct hw_perf_event
*hwc
;
9206 if ((unsigned)cpu
>= nr_cpu_ids
) {
9207 if (!task
|| cpu
!= -1)
9208 return ERR_PTR(-EINVAL
);
9211 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
9213 return ERR_PTR(-ENOMEM
);
9216 * Single events are their own group leaders, with an
9217 * empty sibling list:
9220 group_leader
= event
;
9222 mutex_init(&event
->child_mutex
);
9223 INIT_LIST_HEAD(&event
->child_list
);
9225 INIT_LIST_HEAD(&event
->group_entry
);
9226 INIT_LIST_HEAD(&event
->event_entry
);
9227 INIT_LIST_HEAD(&event
->sibling_list
);
9228 INIT_LIST_HEAD(&event
->rb_entry
);
9229 INIT_LIST_HEAD(&event
->active_entry
);
9230 INIT_LIST_HEAD(&event
->addr_filters
.list
);
9231 INIT_HLIST_NODE(&event
->hlist_entry
);
9234 init_waitqueue_head(&event
->waitq
);
9235 init_irq_work(&event
->pending
, perf_pending_event
);
9237 mutex_init(&event
->mmap_mutex
);
9238 raw_spin_lock_init(&event
->addr_filters
.lock
);
9240 atomic_long_set(&event
->refcount
, 1);
9242 event
->attr
= *attr
;
9243 event
->group_leader
= group_leader
;
9247 event
->parent
= parent_event
;
9249 event
->ns
= get_pid_ns(task_active_pid_ns(current
));
9250 event
->id
= atomic64_inc_return(&perf_event_id
);
9252 event
->state
= PERF_EVENT_STATE_INACTIVE
;
9255 event
->attach_state
= PERF_ATTACH_TASK
;
9257 * XXX pmu::event_init needs to know what task to account to
9258 * and we cannot use the ctx information because we need the
9259 * pmu before we get a ctx.
9261 event
->hw
.target
= task
;
9264 event
->clock
= &local_clock
;
9266 event
->clock
= parent_event
->clock
;
9268 if (!overflow_handler
&& parent_event
) {
9269 overflow_handler
= parent_event
->overflow_handler
;
9270 context
= parent_event
->overflow_handler_context
;
9271 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9272 if (overflow_handler
== bpf_overflow_handler
) {
9273 struct bpf_prog
*prog
= bpf_prog_inc(parent_event
->prog
);
9276 err
= PTR_ERR(prog
);
9280 event
->orig_overflow_handler
=
9281 parent_event
->orig_overflow_handler
;
9286 if (overflow_handler
) {
9287 event
->overflow_handler
= overflow_handler
;
9288 event
->overflow_handler_context
= context
;
9289 } else if (is_write_backward(event
)){
9290 event
->overflow_handler
= perf_event_output_backward
;
9291 event
->overflow_handler_context
= NULL
;
9293 event
->overflow_handler
= perf_event_output_forward
;
9294 event
->overflow_handler_context
= NULL
;
9297 perf_event__state_init(event
);
9302 hwc
->sample_period
= attr
->sample_period
;
9303 if (attr
->freq
&& attr
->sample_freq
)
9304 hwc
->sample_period
= 1;
9305 hwc
->last_period
= hwc
->sample_period
;
9307 local64_set(&hwc
->period_left
, hwc
->sample_period
);
9310 * we currently do not support PERF_FORMAT_GROUP on inherited events
9312 if (attr
->inherit
&& (attr
->read_format
& PERF_FORMAT_GROUP
))
9315 if (!has_branch_stack(event
))
9316 event
->attr
.branch_sample_type
= 0;
9318 if (cgroup_fd
!= -1) {
9319 err
= perf_cgroup_connect(cgroup_fd
, event
, attr
, group_leader
);
9324 pmu
= perf_init_event(event
);
9327 else if (IS_ERR(pmu
)) {
9332 err
= exclusive_event_init(event
);
9336 if (has_addr_filter(event
)) {
9337 event
->addr_filters_offs
= kcalloc(pmu
->nr_addr_filters
,
9338 sizeof(unsigned long),
9340 if (!event
->addr_filters_offs
)
9343 /* force hw sync on the address filters */
9344 event
->addr_filters_gen
= 1;
9347 if (!event
->parent
) {
9348 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
) {
9349 err
= get_callchain_buffers(attr
->sample_max_stack
);
9351 goto err_addr_filters
;
9355 /* symmetric to unaccount_event() in _free_event() */
9356 account_event(event
);
9361 kfree(event
->addr_filters_offs
);
9364 exclusive_event_destroy(event
);
9368 event
->destroy(event
);
9369 module_put(pmu
->module
);
9371 if (is_cgroup_event(event
))
9372 perf_detach_cgroup(event
);
9374 put_pid_ns(event
->ns
);
9377 return ERR_PTR(err
);
9380 static int perf_copy_attr(struct perf_event_attr __user
*uattr
,
9381 struct perf_event_attr
*attr
)
9386 if (!access_ok(VERIFY_WRITE
, uattr
, PERF_ATTR_SIZE_VER0
))
9390 * zero the full structure, so that a short copy will be nice.
9392 memset(attr
, 0, sizeof(*attr
));
9394 ret
= get_user(size
, &uattr
->size
);
9398 if (size
> PAGE_SIZE
) /* silly large */
9401 if (!size
) /* abi compat */
9402 size
= PERF_ATTR_SIZE_VER0
;
9404 if (size
< PERF_ATTR_SIZE_VER0
)
9408 * If we're handed a bigger struct than we know of,
9409 * ensure all the unknown bits are 0 - i.e. new
9410 * user-space does not rely on any kernel feature
9411 * extensions we dont know about yet.
9413 if (size
> sizeof(*attr
)) {
9414 unsigned char __user
*addr
;
9415 unsigned char __user
*end
;
9418 addr
= (void __user
*)uattr
+ sizeof(*attr
);
9419 end
= (void __user
*)uattr
+ size
;
9421 for (; addr
< end
; addr
++) {
9422 ret
= get_user(val
, addr
);
9428 size
= sizeof(*attr
);
9431 ret
= copy_from_user(attr
, uattr
, size
);
9435 if (attr
->__reserved_1
)
9438 if (attr
->sample_type
& ~(PERF_SAMPLE_MAX
-1))
9441 if (attr
->read_format
& ~(PERF_FORMAT_MAX
-1))
9444 if (attr
->sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
9445 u64 mask
= attr
->branch_sample_type
;
9447 /* only using defined bits */
9448 if (mask
& ~(PERF_SAMPLE_BRANCH_MAX
-1))
9451 /* at least one branch bit must be set */
9452 if (!(mask
& ~PERF_SAMPLE_BRANCH_PLM_ALL
))
9455 /* propagate priv level, when not set for branch */
9456 if (!(mask
& PERF_SAMPLE_BRANCH_PLM_ALL
)) {
9458 /* exclude_kernel checked on syscall entry */
9459 if (!attr
->exclude_kernel
)
9460 mask
|= PERF_SAMPLE_BRANCH_KERNEL
;
9462 if (!attr
->exclude_user
)
9463 mask
|= PERF_SAMPLE_BRANCH_USER
;
9465 if (!attr
->exclude_hv
)
9466 mask
|= PERF_SAMPLE_BRANCH_HV
;
9468 * adjust user setting (for HW filter setup)
9470 attr
->branch_sample_type
= mask
;
9472 /* privileged levels capture (kernel, hv): check permissions */
9473 if ((mask
& PERF_SAMPLE_BRANCH_PERM_PLM
)
9474 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
9478 if (attr
->sample_type
& PERF_SAMPLE_REGS_USER
) {
9479 ret
= perf_reg_validate(attr
->sample_regs_user
);
9484 if (attr
->sample_type
& PERF_SAMPLE_STACK_USER
) {
9485 if (!arch_perf_have_user_stack_dump())
9489 * We have __u32 type for the size, but so far
9490 * we can only use __u16 as maximum due to the
9491 * __u16 sample size limit.
9493 if (attr
->sample_stack_user
>= USHRT_MAX
)
9495 else if (!IS_ALIGNED(attr
->sample_stack_user
, sizeof(u64
)))
9499 if (attr
->sample_type
& PERF_SAMPLE_REGS_INTR
)
9500 ret
= perf_reg_validate(attr
->sample_regs_intr
);
9505 put_user(sizeof(*attr
), &uattr
->size
);
9511 perf_event_set_output(struct perf_event
*event
, struct perf_event
*output_event
)
9513 struct ring_buffer
*rb
= NULL
;
9519 /* don't allow circular references */
9520 if (event
== output_event
)
9524 * Don't allow cross-cpu buffers
9526 if (output_event
->cpu
!= event
->cpu
)
9530 * If its not a per-cpu rb, it must be the same task.
9532 if (output_event
->cpu
== -1 && output_event
->ctx
!= event
->ctx
)
9536 * Mixing clocks in the same buffer is trouble you don't need.
9538 if (output_event
->clock
!= event
->clock
)
9542 * Either writing ring buffer from beginning or from end.
9543 * Mixing is not allowed.
9545 if (is_write_backward(output_event
) != is_write_backward(event
))
9549 * If both events generate aux data, they must be on the same PMU
9551 if (has_aux(event
) && has_aux(output_event
) &&
9552 event
->pmu
!= output_event
->pmu
)
9556 mutex_lock(&event
->mmap_mutex
);
9557 /* Can't redirect output if we've got an active mmap() */
9558 if (atomic_read(&event
->mmap_count
))
9562 /* get the rb we want to redirect to */
9563 rb
= ring_buffer_get(output_event
);
9568 ring_buffer_attach(event
, rb
);
9572 mutex_unlock(&event
->mmap_mutex
);
9578 static void mutex_lock_double(struct mutex
*a
, struct mutex
*b
)
9584 mutex_lock_nested(b
, SINGLE_DEPTH_NESTING
);
9587 static int perf_event_set_clock(struct perf_event
*event
, clockid_t clk_id
)
9589 bool nmi_safe
= false;
9592 case CLOCK_MONOTONIC
:
9593 event
->clock
= &ktime_get_mono_fast_ns
;
9597 case CLOCK_MONOTONIC_RAW
:
9598 event
->clock
= &ktime_get_raw_fast_ns
;
9602 case CLOCK_REALTIME
:
9603 event
->clock
= &ktime_get_real_ns
;
9606 case CLOCK_BOOTTIME
:
9607 event
->clock
= &ktime_get_boot_ns
;
9611 event
->clock
= &ktime_get_tai_ns
;
9618 if (!nmi_safe
&& !(event
->pmu
->capabilities
& PERF_PMU_CAP_NO_NMI
))
9625 * Variation on perf_event_ctx_lock_nested(), except we take two context
9628 static struct perf_event_context
*
9629 __perf_event_ctx_lock_double(struct perf_event
*group_leader
,
9630 struct perf_event_context
*ctx
)
9632 struct perf_event_context
*gctx
;
9636 gctx
= READ_ONCE(group_leader
->ctx
);
9637 if (!atomic_inc_not_zero(&gctx
->refcount
)) {
9643 mutex_lock_double(&gctx
->mutex
, &ctx
->mutex
);
9645 if (group_leader
->ctx
!= gctx
) {
9646 mutex_unlock(&ctx
->mutex
);
9647 mutex_unlock(&gctx
->mutex
);
9656 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9658 * @attr_uptr: event_id type attributes for monitoring/sampling
9661 * @group_fd: group leader event fd
9663 SYSCALL_DEFINE5(perf_event_open
,
9664 struct perf_event_attr __user
*, attr_uptr
,
9665 pid_t
, pid
, int, cpu
, int, group_fd
, unsigned long, flags
)
9667 struct perf_event
*group_leader
= NULL
, *output_event
= NULL
;
9668 struct perf_event
*event
, *sibling
;
9669 struct perf_event_attr attr
;
9670 struct perf_event_context
*ctx
, *uninitialized_var(gctx
);
9671 struct file
*event_file
= NULL
;
9672 struct fd group
= {NULL
, 0};
9673 struct task_struct
*task
= NULL
;
9678 int f_flags
= O_RDWR
;
9681 /* for future expandability... */
9682 if (flags
& ~PERF_FLAG_ALL
)
9685 err
= perf_copy_attr(attr_uptr
, &attr
);
9689 if (!attr
.exclude_kernel
) {
9690 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
9695 if (attr
.sample_freq
> sysctl_perf_event_sample_rate
)
9698 if (attr
.sample_period
& (1ULL << 63))
9702 if (!attr
.sample_max_stack
)
9703 attr
.sample_max_stack
= sysctl_perf_event_max_stack
;
9706 * In cgroup mode, the pid argument is used to pass the fd
9707 * opened to the cgroup directory in cgroupfs. The cpu argument
9708 * designates the cpu on which to monitor threads from that
9711 if ((flags
& PERF_FLAG_PID_CGROUP
) && (pid
== -1 || cpu
== -1))
9714 if (flags
& PERF_FLAG_FD_CLOEXEC
)
9715 f_flags
|= O_CLOEXEC
;
9717 event_fd
= get_unused_fd_flags(f_flags
);
9721 if (group_fd
!= -1) {
9722 err
= perf_fget_light(group_fd
, &group
);
9725 group_leader
= group
.file
->private_data
;
9726 if (flags
& PERF_FLAG_FD_OUTPUT
)
9727 output_event
= group_leader
;
9728 if (flags
& PERF_FLAG_FD_NO_GROUP
)
9729 group_leader
= NULL
;
9732 if (pid
!= -1 && !(flags
& PERF_FLAG_PID_CGROUP
)) {
9733 task
= find_lively_task_by_vpid(pid
);
9735 err
= PTR_ERR(task
);
9740 if (task
&& group_leader
&&
9741 group_leader
->attr
.inherit
!= attr
.inherit
) {
9749 err
= mutex_lock_interruptible(&task
->signal
->cred_guard_mutex
);
9754 * Reuse ptrace permission checks for now.
9756 * We must hold cred_guard_mutex across this and any potential
9757 * perf_install_in_context() call for this new event to
9758 * serialize against exec() altering our credentials (and the
9759 * perf_event_exit_task() that could imply).
9762 if (!ptrace_may_access(task
, PTRACE_MODE_READ_REALCREDS
))
9766 if (flags
& PERF_FLAG_PID_CGROUP
)
9769 event
= perf_event_alloc(&attr
, cpu
, task
, group_leader
, NULL
,
9770 NULL
, NULL
, cgroup_fd
);
9771 if (IS_ERR(event
)) {
9772 err
= PTR_ERR(event
);
9776 if (is_sampling_event(event
)) {
9777 if (event
->pmu
->capabilities
& PERF_PMU_CAP_NO_INTERRUPT
) {
9784 * Special case software events and allow them to be part of
9785 * any hardware group.
9789 if (attr
.use_clockid
) {
9790 err
= perf_event_set_clock(event
, attr
.clockid
);
9795 if (pmu
->task_ctx_nr
== perf_sw_context
)
9796 event
->event_caps
|= PERF_EV_CAP_SOFTWARE
;
9799 (is_software_event(event
) != is_software_event(group_leader
))) {
9800 if (is_software_event(event
)) {
9802 * If event and group_leader are not both a software
9803 * event, and event is, then group leader is not.
9805 * Allow the addition of software events to !software
9806 * groups, this is safe because software events never
9809 pmu
= group_leader
->pmu
;
9810 } else if (is_software_event(group_leader
) &&
9811 (group_leader
->group_caps
& PERF_EV_CAP_SOFTWARE
)) {
9813 * In case the group is a pure software group, and we
9814 * try to add a hardware event, move the whole group to
9815 * the hardware context.
9822 * Get the target context (task or percpu):
9824 ctx
= find_get_context(pmu
, task
, event
);
9830 if ((pmu
->capabilities
& PERF_PMU_CAP_EXCLUSIVE
) && group_leader
) {
9836 * Look up the group leader (we will attach this event to it):
9842 * Do not allow a recursive hierarchy (this new sibling
9843 * becoming part of another group-sibling):
9845 if (group_leader
->group_leader
!= group_leader
)
9848 /* All events in a group should have the same clock */
9849 if (group_leader
->clock
!= event
->clock
)
9853 * Do not allow to attach to a group in a different
9854 * task or CPU context:
9858 * Make sure we're both on the same task, or both
9861 if (group_leader
->ctx
->task
!= ctx
->task
)
9865 * Make sure we're both events for the same CPU;
9866 * grouping events for different CPUs is broken; since
9867 * you can never concurrently schedule them anyhow.
9869 if (group_leader
->cpu
!= event
->cpu
)
9872 if (group_leader
->ctx
!= ctx
)
9877 * Only a group leader can be exclusive or pinned
9879 if (attr
.exclusive
|| attr
.pinned
)
9884 err
= perf_event_set_output(event
, output_event
);
9889 event_file
= anon_inode_getfile("[perf_event]", &perf_fops
, event
,
9891 if (IS_ERR(event_file
)) {
9892 err
= PTR_ERR(event_file
);
9898 gctx
= __perf_event_ctx_lock_double(group_leader
, ctx
);
9900 if (gctx
->task
== TASK_TOMBSTONE
) {
9906 * Check if we raced against another sys_perf_event_open() call
9907 * moving the software group underneath us.
9909 if (!(group_leader
->group_caps
& PERF_EV_CAP_SOFTWARE
)) {
9911 * If someone moved the group out from under us, check
9912 * if this new event wound up on the same ctx, if so
9913 * its the regular !move_group case, otherwise fail.
9919 perf_event_ctx_unlock(group_leader
, gctx
);
9924 mutex_lock(&ctx
->mutex
);
9927 if (ctx
->task
== TASK_TOMBSTONE
) {
9932 if (!perf_event_validate_size(event
)) {
9938 * Must be under the same ctx::mutex as perf_install_in_context(),
9939 * because we need to serialize with concurrent event creation.
9941 if (!exclusive_event_installable(event
, ctx
)) {
9942 /* exclusive and group stuff are assumed mutually exclusive */
9943 WARN_ON_ONCE(move_group
);
9949 WARN_ON_ONCE(ctx
->parent_ctx
);
9952 * This is the point on no return; we cannot fail hereafter. This is
9953 * where we start modifying current state.
9958 * See perf_event_ctx_lock() for comments on the details
9959 * of swizzling perf_event::ctx.
9961 perf_remove_from_context(group_leader
, 0);
9964 list_for_each_entry(sibling
, &group_leader
->sibling_list
,
9966 perf_remove_from_context(sibling
, 0);
9971 * Wait for everybody to stop referencing the events through
9972 * the old lists, before installing it on new lists.
9977 * Install the group siblings before the group leader.
9979 * Because a group leader will try and install the entire group
9980 * (through the sibling list, which is still in-tact), we can
9981 * end up with siblings installed in the wrong context.
9983 * By installing siblings first we NO-OP because they're not
9984 * reachable through the group lists.
9986 list_for_each_entry(sibling
, &group_leader
->sibling_list
,
9988 perf_event__state_init(sibling
);
9989 perf_install_in_context(ctx
, sibling
, sibling
->cpu
);
9994 * Removing from the context ends up with disabled
9995 * event. What we want here is event in the initial
9996 * startup state, ready to be add into new context.
9998 perf_event__state_init(group_leader
);
9999 perf_install_in_context(ctx
, group_leader
, group_leader
->cpu
);
10004 * Precalculate sample_data sizes; do while holding ctx::mutex such
10005 * that we're serialized against further additions and before
10006 * perf_install_in_context() which is the point the event is active and
10007 * can use these values.
10009 perf_event__header_size(event
);
10010 perf_event__id_header_size(event
);
10012 event
->owner
= current
;
10014 perf_install_in_context(ctx
, event
, event
->cpu
);
10015 perf_unpin_context(ctx
);
10018 perf_event_ctx_unlock(group_leader
, gctx
);
10019 mutex_unlock(&ctx
->mutex
);
10022 mutex_unlock(&task
->signal
->cred_guard_mutex
);
10023 put_task_struct(task
);
10028 mutex_lock(¤t
->perf_event_mutex
);
10029 list_add_tail(&event
->owner_entry
, ¤t
->perf_event_list
);
10030 mutex_unlock(¤t
->perf_event_mutex
);
10033 * Drop the reference on the group_event after placing the
10034 * new event on the sibling_list. This ensures destruction
10035 * of the group leader will find the pointer to itself in
10036 * perf_group_detach().
10039 fd_install(event_fd
, event_file
);
10044 perf_event_ctx_unlock(group_leader
, gctx
);
10045 mutex_unlock(&ctx
->mutex
);
10049 perf_unpin_context(ctx
);
10053 * If event_file is set, the fput() above will have called ->release()
10054 * and that will take care of freeing the event.
10060 mutex_unlock(&task
->signal
->cred_guard_mutex
);
10065 put_task_struct(task
);
10069 put_unused_fd(event_fd
);
10074 * perf_event_create_kernel_counter
10076 * @attr: attributes of the counter to create
10077 * @cpu: cpu in which the counter is bound
10078 * @task: task to profile (NULL for percpu)
10080 struct perf_event
*
10081 perf_event_create_kernel_counter(struct perf_event_attr
*attr
, int cpu
,
10082 struct task_struct
*task
,
10083 perf_overflow_handler_t overflow_handler
,
10086 struct perf_event_context
*ctx
;
10087 struct perf_event
*event
;
10091 * Get the target context (task or percpu):
10094 event
= perf_event_alloc(attr
, cpu
, task
, NULL
, NULL
,
10095 overflow_handler
, context
, -1);
10096 if (IS_ERR(event
)) {
10097 err
= PTR_ERR(event
);
10101 /* Mark owner so we could distinguish it from user events. */
10102 event
->owner
= TASK_TOMBSTONE
;
10104 ctx
= find_get_context(event
->pmu
, task
, event
);
10106 err
= PTR_ERR(ctx
);
10110 WARN_ON_ONCE(ctx
->parent_ctx
);
10111 mutex_lock(&ctx
->mutex
);
10112 if (ctx
->task
== TASK_TOMBSTONE
) {
10117 if (!exclusive_event_installable(event
, ctx
)) {
10122 perf_install_in_context(ctx
, event
, cpu
);
10123 perf_unpin_context(ctx
);
10124 mutex_unlock(&ctx
->mutex
);
10129 mutex_unlock(&ctx
->mutex
);
10130 perf_unpin_context(ctx
);
10135 return ERR_PTR(err
);
10137 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter
);
10139 void perf_pmu_migrate_context(struct pmu
*pmu
, int src_cpu
, int dst_cpu
)
10141 struct perf_event_context
*src_ctx
;
10142 struct perf_event_context
*dst_ctx
;
10143 struct perf_event
*event
, *tmp
;
10146 src_ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, src_cpu
)->ctx
;
10147 dst_ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, dst_cpu
)->ctx
;
10150 * See perf_event_ctx_lock() for comments on the details
10151 * of swizzling perf_event::ctx.
10153 mutex_lock_double(&src_ctx
->mutex
, &dst_ctx
->mutex
);
10154 list_for_each_entry_safe(event
, tmp
, &src_ctx
->event_list
,
10156 perf_remove_from_context(event
, 0);
10157 unaccount_event_cpu(event
, src_cpu
);
10159 list_add(&event
->migrate_entry
, &events
);
10163 * Wait for the events to quiesce before re-instating them.
10168 * Re-instate events in 2 passes.
10170 * Skip over group leaders and only install siblings on this first
10171 * pass, siblings will not get enabled without a leader, however a
10172 * leader will enable its siblings, even if those are still on the old
10175 list_for_each_entry_safe(event
, tmp
, &events
, migrate_entry
) {
10176 if (event
->group_leader
== event
)
10179 list_del(&event
->migrate_entry
);
10180 if (event
->state
>= PERF_EVENT_STATE_OFF
)
10181 event
->state
= PERF_EVENT_STATE_INACTIVE
;
10182 account_event_cpu(event
, dst_cpu
);
10183 perf_install_in_context(dst_ctx
, event
, dst_cpu
);
10188 * Once all the siblings are setup properly, install the group leaders
10191 list_for_each_entry_safe(event
, tmp
, &events
, migrate_entry
) {
10192 list_del(&event
->migrate_entry
);
10193 if (event
->state
>= PERF_EVENT_STATE_OFF
)
10194 event
->state
= PERF_EVENT_STATE_INACTIVE
;
10195 account_event_cpu(event
, dst_cpu
);
10196 perf_install_in_context(dst_ctx
, event
, dst_cpu
);
10199 mutex_unlock(&dst_ctx
->mutex
);
10200 mutex_unlock(&src_ctx
->mutex
);
10202 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context
);
10204 static void sync_child_event(struct perf_event
*child_event
,
10205 struct task_struct
*child
)
10207 struct perf_event
*parent_event
= child_event
->parent
;
10210 if (child_event
->attr
.inherit_stat
)
10211 perf_event_read_event(child_event
, child
);
10213 child_val
= perf_event_count(child_event
);
10216 * Add back the child's count to the parent's count:
10218 atomic64_add(child_val
, &parent_event
->child_count
);
10219 atomic64_add(child_event
->total_time_enabled
,
10220 &parent_event
->child_total_time_enabled
);
10221 atomic64_add(child_event
->total_time_running
,
10222 &parent_event
->child_total_time_running
);
10226 perf_event_exit_event(struct perf_event
*child_event
,
10227 struct perf_event_context
*child_ctx
,
10228 struct task_struct
*child
)
10230 struct perf_event
*parent_event
= child_event
->parent
;
10233 * Do not destroy the 'original' grouping; because of the context
10234 * switch optimization the original events could've ended up in a
10235 * random child task.
10237 * If we were to destroy the original group, all group related
10238 * operations would cease to function properly after this random
10241 * Do destroy all inherited groups, we don't care about those
10242 * and being thorough is better.
10244 raw_spin_lock_irq(&child_ctx
->lock
);
10245 WARN_ON_ONCE(child_ctx
->is_active
);
10248 perf_group_detach(child_event
);
10249 list_del_event(child_event
, child_ctx
);
10250 child_event
->state
= PERF_EVENT_STATE_EXIT
; /* is_event_hup() */
10251 raw_spin_unlock_irq(&child_ctx
->lock
);
10254 * Parent events are governed by their filedesc, retain them.
10256 if (!parent_event
) {
10257 perf_event_wakeup(child_event
);
10261 * Child events can be cleaned up.
10264 sync_child_event(child_event
, child
);
10267 * Remove this event from the parent's list
10269 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
10270 mutex_lock(&parent_event
->child_mutex
);
10271 list_del_init(&child_event
->child_list
);
10272 mutex_unlock(&parent_event
->child_mutex
);
10275 * Kick perf_poll() for is_event_hup().
10277 perf_event_wakeup(parent_event
);
10278 free_event(child_event
);
10279 put_event(parent_event
);
10282 static void perf_event_exit_task_context(struct task_struct
*child
, int ctxn
)
10284 struct perf_event_context
*child_ctx
, *clone_ctx
= NULL
;
10285 struct perf_event
*child_event
, *next
;
10287 WARN_ON_ONCE(child
!= current
);
10289 child_ctx
= perf_pin_task_context(child
, ctxn
);
10294 * In order to reduce the amount of tricky in ctx tear-down, we hold
10295 * ctx::mutex over the entire thing. This serializes against almost
10296 * everything that wants to access the ctx.
10298 * The exception is sys_perf_event_open() /
10299 * perf_event_create_kernel_count() which does find_get_context()
10300 * without ctx::mutex (it cannot because of the move_group double mutex
10301 * lock thing). See the comments in perf_install_in_context().
10303 mutex_lock(&child_ctx
->mutex
);
10306 * In a single ctx::lock section, de-schedule the events and detach the
10307 * context from the task such that we cannot ever get it scheduled back
10310 raw_spin_lock_irq(&child_ctx
->lock
);
10311 task_ctx_sched_out(__get_cpu_context(child_ctx
), child_ctx
, EVENT_ALL
);
10314 * Now that the context is inactive, destroy the task <-> ctx relation
10315 * and mark the context dead.
10317 RCU_INIT_POINTER(child
->perf_event_ctxp
[ctxn
], NULL
);
10318 put_ctx(child_ctx
); /* cannot be last */
10319 WRITE_ONCE(child_ctx
->task
, TASK_TOMBSTONE
);
10320 put_task_struct(current
); /* cannot be last */
10322 clone_ctx
= unclone_ctx(child_ctx
);
10323 raw_spin_unlock_irq(&child_ctx
->lock
);
10326 put_ctx(clone_ctx
);
10329 * Report the task dead after unscheduling the events so that we
10330 * won't get any samples after PERF_RECORD_EXIT. We can however still
10331 * get a few PERF_RECORD_READ events.
10333 perf_event_task(child
, child_ctx
, 0);
10335 list_for_each_entry_safe(child_event
, next
, &child_ctx
->event_list
, event_entry
)
10336 perf_event_exit_event(child_event
, child_ctx
, child
);
10338 mutex_unlock(&child_ctx
->mutex
);
10340 put_ctx(child_ctx
);
10344 * When a child task exits, feed back event values to parent events.
10346 * Can be called with cred_guard_mutex held when called from
10347 * install_exec_creds().
10349 void perf_event_exit_task(struct task_struct
*child
)
10351 struct perf_event
*event
, *tmp
;
10354 mutex_lock(&child
->perf_event_mutex
);
10355 list_for_each_entry_safe(event
, tmp
, &child
->perf_event_list
,
10357 list_del_init(&event
->owner_entry
);
10360 * Ensure the list deletion is visible before we clear
10361 * the owner, closes a race against perf_release() where
10362 * we need to serialize on the owner->perf_event_mutex.
10364 smp_store_release(&event
->owner
, NULL
);
10366 mutex_unlock(&child
->perf_event_mutex
);
10368 for_each_task_context_nr(ctxn
)
10369 perf_event_exit_task_context(child
, ctxn
);
10372 * The perf_event_exit_task_context calls perf_event_task
10373 * with child's task_ctx, which generates EXIT events for
10374 * child contexts and sets child->perf_event_ctxp[] to NULL.
10375 * At this point we need to send EXIT events to cpu contexts.
10377 perf_event_task(child
, NULL
, 0);
10380 static void perf_free_event(struct perf_event
*event
,
10381 struct perf_event_context
*ctx
)
10383 struct perf_event
*parent
= event
->parent
;
10385 if (WARN_ON_ONCE(!parent
))
10388 mutex_lock(&parent
->child_mutex
);
10389 list_del_init(&event
->child_list
);
10390 mutex_unlock(&parent
->child_mutex
);
10394 raw_spin_lock_irq(&ctx
->lock
);
10395 perf_group_detach(event
);
10396 list_del_event(event
, ctx
);
10397 raw_spin_unlock_irq(&ctx
->lock
);
10402 * Free an unexposed, unused context as created by inheritance by
10403 * perf_event_init_task below, used by fork() in case of fail.
10405 * Not all locks are strictly required, but take them anyway to be nice and
10406 * help out with the lockdep assertions.
10408 void perf_event_free_task(struct task_struct
*task
)
10410 struct perf_event_context
*ctx
;
10411 struct perf_event
*event
, *tmp
;
10414 for_each_task_context_nr(ctxn
) {
10415 ctx
= task
->perf_event_ctxp
[ctxn
];
10419 mutex_lock(&ctx
->mutex
);
10420 raw_spin_lock_irq(&ctx
->lock
);
10422 * Destroy the task <-> ctx relation and mark the context dead.
10424 * This is important because even though the task hasn't been
10425 * exposed yet the context has been (through child_list).
10427 RCU_INIT_POINTER(task
->perf_event_ctxp
[ctxn
], NULL
);
10428 WRITE_ONCE(ctx
->task
, TASK_TOMBSTONE
);
10429 put_task_struct(task
); /* cannot be last */
10430 raw_spin_unlock_irq(&ctx
->lock
);
10432 list_for_each_entry_safe(event
, tmp
, &ctx
->event_list
, event_entry
)
10433 perf_free_event(event
, ctx
);
10435 mutex_unlock(&ctx
->mutex
);
10440 void perf_event_delayed_put(struct task_struct
*task
)
10444 for_each_task_context_nr(ctxn
)
10445 WARN_ON_ONCE(task
->perf_event_ctxp
[ctxn
]);
10448 struct file
*perf_event_get(unsigned int fd
)
10452 file
= fget_raw(fd
);
10454 return ERR_PTR(-EBADF
);
10456 if (file
->f_op
!= &perf_fops
) {
10458 return ERR_PTR(-EBADF
);
10464 const struct perf_event_attr
*perf_event_attrs(struct perf_event
*event
)
10467 return ERR_PTR(-EINVAL
);
10469 return &event
->attr
;
10473 * Inherit a event from parent task to child task.
10476 * - valid pointer on success
10477 * - NULL for orphaned events
10478 * - IS_ERR() on error
10480 static struct perf_event
*
10481 inherit_event(struct perf_event
*parent_event
,
10482 struct task_struct
*parent
,
10483 struct perf_event_context
*parent_ctx
,
10484 struct task_struct
*child
,
10485 struct perf_event
*group_leader
,
10486 struct perf_event_context
*child_ctx
)
10488 enum perf_event_active_state parent_state
= parent_event
->state
;
10489 struct perf_event
*child_event
;
10490 unsigned long flags
;
10493 * Instead of creating recursive hierarchies of events,
10494 * we link inherited events back to the original parent,
10495 * which has a filp for sure, which we use as the reference
10498 if (parent_event
->parent
)
10499 parent_event
= parent_event
->parent
;
10501 child_event
= perf_event_alloc(&parent_event
->attr
,
10504 group_leader
, parent_event
,
10506 if (IS_ERR(child_event
))
10507 return child_event
;
10510 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10511 * must be under the same lock in order to serialize against
10512 * perf_event_release_kernel(), such that either we must observe
10513 * is_orphaned_event() or they will observe us on the child_list.
10515 mutex_lock(&parent_event
->child_mutex
);
10516 if (is_orphaned_event(parent_event
) ||
10517 !atomic_long_inc_not_zero(&parent_event
->refcount
)) {
10518 mutex_unlock(&parent_event
->child_mutex
);
10519 free_event(child_event
);
10523 get_ctx(child_ctx
);
10526 * Make the child state follow the state of the parent event,
10527 * not its attr.disabled bit. We hold the parent's mutex,
10528 * so we won't race with perf_event_{en, dis}able_family.
10530 if (parent_state
>= PERF_EVENT_STATE_INACTIVE
)
10531 child_event
->state
= PERF_EVENT_STATE_INACTIVE
;
10533 child_event
->state
= PERF_EVENT_STATE_OFF
;
10535 if (parent_event
->attr
.freq
) {
10536 u64 sample_period
= parent_event
->hw
.sample_period
;
10537 struct hw_perf_event
*hwc
= &child_event
->hw
;
10539 hwc
->sample_period
= sample_period
;
10540 hwc
->last_period
= sample_period
;
10542 local64_set(&hwc
->period_left
, sample_period
);
10545 child_event
->ctx
= child_ctx
;
10546 child_event
->overflow_handler
= parent_event
->overflow_handler
;
10547 child_event
->overflow_handler_context
10548 = parent_event
->overflow_handler_context
;
10551 * Precalculate sample_data sizes
10553 perf_event__header_size(child_event
);
10554 perf_event__id_header_size(child_event
);
10557 * Link it up in the child's context:
10559 raw_spin_lock_irqsave(&child_ctx
->lock
, flags
);
10560 add_event_to_ctx(child_event
, child_ctx
);
10561 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
10564 * Link this into the parent event's child list
10566 list_add_tail(&child_event
->child_list
, &parent_event
->child_list
);
10567 mutex_unlock(&parent_event
->child_mutex
);
10569 return child_event
;
10573 * Inherits an event group.
10575 * This will quietly suppress orphaned events; !inherit_event() is not an error.
10576 * This matches with perf_event_release_kernel() removing all child events.
10582 static int inherit_group(struct perf_event
*parent_event
,
10583 struct task_struct
*parent
,
10584 struct perf_event_context
*parent_ctx
,
10585 struct task_struct
*child
,
10586 struct perf_event_context
*child_ctx
)
10588 struct perf_event
*leader
;
10589 struct perf_event
*sub
;
10590 struct perf_event
*child_ctr
;
10592 leader
= inherit_event(parent_event
, parent
, parent_ctx
,
10593 child
, NULL
, child_ctx
);
10594 if (IS_ERR(leader
))
10595 return PTR_ERR(leader
);
10597 * @leader can be NULL here because of is_orphaned_event(). In this
10598 * case inherit_event() will create individual events, similar to what
10599 * perf_group_detach() would do anyway.
10601 list_for_each_entry(sub
, &parent_event
->sibling_list
, group_entry
) {
10602 child_ctr
= inherit_event(sub
, parent
, parent_ctx
,
10603 child
, leader
, child_ctx
);
10604 if (IS_ERR(child_ctr
))
10605 return PTR_ERR(child_ctr
);
10611 * Creates the child task context and tries to inherit the event-group.
10613 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10614 * inherited_all set when we 'fail' to inherit an orphaned event; this is
10615 * consistent with perf_event_release_kernel() removing all child events.
10622 inherit_task_group(struct perf_event
*event
, struct task_struct
*parent
,
10623 struct perf_event_context
*parent_ctx
,
10624 struct task_struct
*child
, int ctxn
,
10625 int *inherited_all
)
10628 struct perf_event_context
*child_ctx
;
10630 if (!event
->attr
.inherit
) {
10631 *inherited_all
= 0;
10635 child_ctx
= child
->perf_event_ctxp
[ctxn
];
10638 * This is executed from the parent task context, so
10639 * inherit events that have been marked for cloning.
10640 * First allocate and initialize a context for the
10643 child_ctx
= alloc_perf_context(parent_ctx
->pmu
, child
);
10647 child
->perf_event_ctxp
[ctxn
] = child_ctx
;
10650 ret
= inherit_group(event
, parent
, parent_ctx
,
10654 *inherited_all
= 0;
10660 * Initialize the perf_event context in task_struct
10662 static int perf_event_init_context(struct task_struct
*child
, int ctxn
)
10664 struct perf_event_context
*child_ctx
, *parent_ctx
;
10665 struct perf_event_context
*cloned_ctx
;
10666 struct perf_event
*event
;
10667 struct task_struct
*parent
= current
;
10668 int inherited_all
= 1;
10669 unsigned long flags
;
10672 if (likely(!parent
->perf_event_ctxp
[ctxn
]))
10676 * If the parent's context is a clone, pin it so it won't get
10677 * swapped under us.
10679 parent_ctx
= perf_pin_task_context(parent
, ctxn
);
10684 * No need to check if parent_ctx != NULL here; since we saw
10685 * it non-NULL earlier, the only reason for it to become NULL
10686 * is if we exit, and since we're currently in the middle of
10687 * a fork we can't be exiting at the same time.
10691 * Lock the parent list. No need to lock the child - not PID
10692 * hashed yet and not running, so nobody can access it.
10694 mutex_lock(&parent_ctx
->mutex
);
10697 * We dont have to disable NMIs - we are only looking at
10698 * the list, not manipulating it:
10700 list_for_each_entry(event
, &parent_ctx
->pinned_groups
, group_entry
) {
10701 ret
= inherit_task_group(event
, parent
, parent_ctx
,
10702 child
, ctxn
, &inherited_all
);
10708 * We can't hold ctx->lock when iterating the ->flexible_group list due
10709 * to allocations, but we need to prevent rotation because
10710 * rotate_ctx() will change the list from interrupt context.
10712 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
10713 parent_ctx
->rotate_disable
= 1;
10714 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
10716 list_for_each_entry(event
, &parent_ctx
->flexible_groups
, group_entry
) {
10717 ret
= inherit_task_group(event
, parent
, parent_ctx
,
10718 child
, ctxn
, &inherited_all
);
10723 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
10724 parent_ctx
->rotate_disable
= 0;
10726 child_ctx
= child
->perf_event_ctxp
[ctxn
];
10728 if (child_ctx
&& inherited_all
) {
10730 * Mark the child context as a clone of the parent
10731 * context, or of whatever the parent is a clone of.
10733 * Note that if the parent is a clone, the holding of
10734 * parent_ctx->lock avoids it from being uncloned.
10736 cloned_ctx
= parent_ctx
->parent_ctx
;
10738 child_ctx
->parent_ctx
= cloned_ctx
;
10739 child_ctx
->parent_gen
= parent_ctx
->parent_gen
;
10741 child_ctx
->parent_ctx
= parent_ctx
;
10742 child_ctx
->parent_gen
= parent_ctx
->generation
;
10744 get_ctx(child_ctx
->parent_ctx
);
10747 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
10749 mutex_unlock(&parent_ctx
->mutex
);
10751 perf_unpin_context(parent_ctx
);
10752 put_ctx(parent_ctx
);
10758 * Initialize the perf_event context in task_struct
10760 int perf_event_init_task(struct task_struct
*child
)
10764 memset(child
->perf_event_ctxp
, 0, sizeof(child
->perf_event_ctxp
));
10765 mutex_init(&child
->perf_event_mutex
);
10766 INIT_LIST_HEAD(&child
->perf_event_list
);
10768 for_each_task_context_nr(ctxn
) {
10769 ret
= perf_event_init_context(child
, ctxn
);
10771 perf_event_free_task(child
);
10779 static void __init
perf_event_init_all_cpus(void)
10781 struct swevent_htable
*swhash
;
10784 for_each_possible_cpu(cpu
) {
10785 swhash
= &per_cpu(swevent_htable
, cpu
);
10786 mutex_init(&swhash
->hlist_mutex
);
10787 INIT_LIST_HEAD(&per_cpu(active_ctx_list
, cpu
));
10789 INIT_LIST_HEAD(&per_cpu(pmu_sb_events
.list
, cpu
));
10790 raw_spin_lock_init(&per_cpu(pmu_sb_events
.lock
, cpu
));
10792 #ifdef CONFIG_CGROUP_PERF
10793 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list
, cpu
));
10795 INIT_LIST_HEAD(&per_cpu(sched_cb_list
, cpu
));
10799 int perf_event_init_cpu(unsigned int cpu
)
10801 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
10803 mutex_lock(&swhash
->hlist_mutex
);
10804 if (swhash
->hlist_refcount
> 0 && !swevent_hlist_deref(swhash
)) {
10805 struct swevent_hlist
*hlist
;
10807 hlist
= kzalloc_node(sizeof(*hlist
), GFP_KERNEL
, cpu_to_node(cpu
));
10809 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
10811 mutex_unlock(&swhash
->hlist_mutex
);
10815 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10816 static void __perf_event_exit_context(void *__info
)
10818 struct perf_event_context
*ctx
= __info
;
10819 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
10820 struct perf_event
*event
;
10822 raw_spin_lock(&ctx
->lock
);
10823 list_for_each_entry(event
, &ctx
->event_list
, event_entry
)
10824 __perf_remove_from_context(event
, cpuctx
, ctx
, (void *)DETACH_GROUP
);
10825 raw_spin_unlock(&ctx
->lock
);
10828 static void perf_event_exit_cpu_context(int cpu
)
10830 struct perf_event_context
*ctx
;
10834 idx
= srcu_read_lock(&pmus_srcu
);
10835 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
10836 ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
)->ctx
;
10838 mutex_lock(&ctx
->mutex
);
10839 smp_call_function_single(cpu
, __perf_event_exit_context
, ctx
, 1);
10840 mutex_unlock(&ctx
->mutex
);
10842 srcu_read_unlock(&pmus_srcu
, idx
);
10846 static void perf_event_exit_cpu_context(int cpu
) { }
10850 int perf_event_exit_cpu(unsigned int cpu
)
10852 perf_event_exit_cpu_context(cpu
);
10857 perf_reboot(struct notifier_block
*notifier
, unsigned long val
, void *v
)
10861 for_each_online_cpu(cpu
)
10862 perf_event_exit_cpu(cpu
);
10868 * Run the perf reboot notifier at the very last possible moment so that
10869 * the generic watchdog code runs as long as possible.
10871 static struct notifier_block perf_reboot_notifier
= {
10872 .notifier_call
= perf_reboot
,
10873 .priority
= INT_MIN
,
10876 void __init
perf_event_init(void)
10880 idr_init(&pmu_idr
);
10882 perf_event_init_all_cpus();
10883 init_srcu_struct(&pmus_srcu
);
10884 perf_pmu_register(&perf_swevent
, "software", PERF_TYPE_SOFTWARE
);
10885 perf_pmu_register(&perf_cpu_clock
, NULL
, -1);
10886 perf_pmu_register(&perf_task_clock
, NULL
, -1);
10887 perf_tp_register();
10888 perf_event_init_cpu(smp_processor_id());
10889 register_reboot_notifier(&perf_reboot_notifier
);
10891 ret
= init_hw_breakpoint();
10892 WARN(ret
, "hw_breakpoint initialization failed with: %d", ret
);
10895 * Build time assertion that we keep the data_head at the intended
10896 * location. IOW, validation we got the __reserved[] size right.
10898 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page
, data_head
))
10902 ssize_t
perf_event_sysfs_show(struct device
*dev
, struct device_attribute
*attr
,
10905 struct perf_pmu_events_attr
*pmu_attr
=
10906 container_of(attr
, struct perf_pmu_events_attr
, attr
);
10908 if (pmu_attr
->event_str
)
10909 return sprintf(page
, "%s\n", pmu_attr
->event_str
);
10913 EXPORT_SYMBOL_GPL(perf_event_sysfs_show
);
10915 static int __init
perf_event_sysfs_init(void)
10920 mutex_lock(&pmus_lock
);
10922 ret
= bus_register(&pmu_bus
);
10926 list_for_each_entry(pmu
, &pmus
, entry
) {
10927 if (!pmu
->name
|| pmu
->type
< 0)
10930 ret
= pmu_dev_alloc(pmu
);
10931 WARN(ret
, "Failed to register pmu: %s, reason %d\n", pmu
->name
, ret
);
10933 pmu_bus_running
= 1;
10937 mutex_unlock(&pmus_lock
);
10941 device_initcall(perf_event_sysfs_init
);
10943 #ifdef CONFIG_CGROUP_PERF
10944 static struct cgroup_subsys_state
*
10945 perf_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
10947 struct perf_cgroup
*jc
;
10949 jc
= kzalloc(sizeof(*jc
), GFP_KERNEL
);
10951 return ERR_PTR(-ENOMEM
);
10953 jc
->info
= alloc_percpu(struct perf_cgroup_info
);
10956 return ERR_PTR(-ENOMEM
);
10962 static void perf_cgroup_css_free(struct cgroup_subsys_state
*css
)
10964 struct perf_cgroup
*jc
= container_of(css
, struct perf_cgroup
, css
);
10966 free_percpu(jc
->info
);
10970 static int __perf_cgroup_move(void *info
)
10972 struct task_struct
*task
= info
;
10974 perf_cgroup_switch(task
, PERF_CGROUP_SWOUT
| PERF_CGROUP_SWIN
);
10979 static void perf_cgroup_attach(struct cgroup_taskset
*tset
)
10981 struct task_struct
*task
;
10982 struct cgroup_subsys_state
*css
;
10984 cgroup_taskset_for_each(task
, css
, tset
)
10985 task_function_call(task
, __perf_cgroup_move
, task
);
10988 struct cgroup_subsys perf_event_cgrp_subsys
= {
10989 .css_alloc
= perf_cgroup_css_alloc
,
10990 .css_free
= perf_cgroup_css_free
,
10991 .attach
= perf_cgroup_attach
,
10993 * Implicitly enable on dfl hierarchy so that perf events can
10994 * always be filtered by cgroup2 path as long as perf_event
10995 * controller is not mounted on a legacy hierarchy.
10997 .implicit_on_dfl
= true,
10999 #endif /* CONFIG_CGROUP_PERF */