2 * linux/kernel/power/snapshot.c
4 * This file provides system snapshot/restore functionality for swsusp.
6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9 * This file is released under the GPLv2.
13 #include <linux/version.h>
14 #include <linux/module.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/nmi.h>
26 #include <linux/syscalls.h>
27 #include <linux/console.h>
28 #include <linux/highmem.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31 #include <linux/compiler.h>
32 #include <linux/ktime.h>
34 #include <linux/uaccess.h>
35 #include <asm/mmu_context.h>
36 #include <asm/pgtable.h>
37 #include <asm/tlbflush.h>
42 #ifdef CONFIG_STRICT_KERNEL_RWX
43 static bool hibernate_restore_protection
;
44 static bool hibernate_restore_protection_active
;
46 void enable_restore_image_protection(void)
48 hibernate_restore_protection
= true;
51 static inline void hibernate_restore_protection_begin(void)
53 hibernate_restore_protection_active
= hibernate_restore_protection
;
56 static inline void hibernate_restore_protection_end(void)
58 hibernate_restore_protection_active
= false;
61 static inline void hibernate_restore_protect_page(void *page_address
)
63 if (hibernate_restore_protection_active
)
64 set_memory_ro((unsigned long)page_address
, 1);
67 static inline void hibernate_restore_unprotect_page(void *page_address
)
69 if (hibernate_restore_protection_active
)
70 set_memory_rw((unsigned long)page_address
, 1);
73 static inline void hibernate_restore_protection_begin(void) {}
74 static inline void hibernate_restore_protection_end(void) {}
75 static inline void hibernate_restore_protect_page(void *page_address
) {}
76 static inline void hibernate_restore_unprotect_page(void *page_address
) {}
77 #endif /* CONFIG_STRICT_KERNEL_RWX */
79 static int swsusp_page_is_free(struct page
*);
80 static void swsusp_set_page_forbidden(struct page
*);
81 static void swsusp_unset_page_forbidden(struct page
*);
84 * Number of bytes to reserve for memory allocations made by device drivers
85 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
86 * cause image creation to fail (tunable via /sys/power/reserved_size).
88 unsigned long reserved_size
;
90 void __init
hibernate_reserved_size_init(void)
92 reserved_size
= SPARE_PAGES
* PAGE_SIZE
;
96 * Preferred image size in bytes (tunable via /sys/power/image_size).
97 * When it is set to N, swsusp will do its best to ensure the image
98 * size will not exceed N bytes, but if that is impossible, it will
99 * try to create the smallest image possible.
101 unsigned long image_size
;
103 void __init
hibernate_image_size_init(void)
105 image_size
= ((totalram_pages
* 2) / 5) * PAGE_SIZE
;
109 * List of PBEs needed for restoring the pages that were allocated before
110 * the suspend and included in the suspend image, but have also been
111 * allocated by the "resume" kernel, so their contents cannot be written
112 * directly to their "original" page frames.
114 struct pbe
*restore_pblist
;
116 /* struct linked_page is used to build chains of pages */
118 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
121 struct linked_page
*next
;
122 char data
[LINKED_PAGE_DATA_SIZE
];
126 * List of "safe" pages (ie. pages that were not used by the image kernel
127 * before hibernation) that may be used as temporary storage for image kernel
130 static struct linked_page
*safe_pages_list
;
132 /* Pointer to an auxiliary buffer (1 page) */
137 #define PG_UNSAFE_CLEAR 1
138 #define PG_UNSAFE_KEEP 0
140 static unsigned int allocated_unsafe_pages
;
143 * get_image_page - Allocate a page for a hibernation image.
144 * @gfp_mask: GFP mask for the allocation.
145 * @safe_needed: Get pages that were not used before hibernation (restore only)
147 * During image restoration, for storing the PBE list and the image data, we can
148 * only use memory pages that do not conflict with the pages used before
149 * hibernation. The "unsafe" pages have PageNosaveFree set and we count them
150 * using allocated_unsafe_pages.
152 * Each allocated image page is marked as PageNosave and PageNosaveFree so that
153 * swsusp_free() can release it.
155 static void *get_image_page(gfp_t gfp_mask
, int safe_needed
)
159 res
= (void *)get_zeroed_page(gfp_mask
);
161 while (res
&& swsusp_page_is_free(virt_to_page(res
))) {
162 /* The page is unsafe, mark it for swsusp_free() */
163 swsusp_set_page_forbidden(virt_to_page(res
));
164 allocated_unsafe_pages
++;
165 res
= (void *)get_zeroed_page(gfp_mask
);
168 swsusp_set_page_forbidden(virt_to_page(res
));
169 swsusp_set_page_free(virt_to_page(res
));
174 static void *__get_safe_page(gfp_t gfp_mask
)
176 if (safe_pages_list
) {
177 void *ret
= safe_pages_list
;
179 safe_pages_list
= safe_pages_list
->next
;
180 memset(ret
, 0, PAGE_SIZE
);
183 return get_image_page(gfp_mask
, PG_SAFE
);
186 unsigned long get_safe_page(gfp_t gfp_mask
)
188 return (unsigned long)__get_safe_page(gfp_mask
);
191 static struct page
*alloc_image_page(gfp_t gfp_mask
)
195 page
= alloc_page(gfp_mask
);
197 swsusp_set_page_forbidden(page
);
198 swsusp_set_page_free(page
);
203 static void recycle_safe_page(void *page_address
)
205 struct linked_page
*lp
= page_address
;
207 lp
->next
= safe_pages_list
;
208 safe_pages_list
= lp
;
212 * free_image_page - Free a page allocated for hibernation image.
213 * @addr: Address of the page to free.
214 * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
216 * The page to free should have been allocated by get_image_page() (page flags
217 * set by it are affected).
219 static inline void free_image_page(void *addr
, int clear_nosave_free
)
223 BUG_ON(!virt_addr_valid(addr
));
225 page
= virt_to_page(addr
);
227 swsusp_unset_page_forbidden(page
);
228 if (clear_nosave_free
)
229 swsusp_unset_page_free(page
);
234 static inline void free_list_of_pages(struct linked_page
*list
,
235 int clear_page_nosave
)
238 struct linked_page
*lp
= list
->next
;
240 free_image_page(list
, clear_page_nosave
);
246 * struct chain_allocator is used for allocating small objects out of
247 * a linked list of pages called 'the chain'.
249 * The chain grows each time when there is no room for a new object in
250 * the current page. The allocated objects cannot be freed individually.
251 * It is only possible to free them all at once, by freeing the entire
254 * NOTE: The chain allocator may be inefficient if the allocated objects
255 * are not much smaller than PAGE_SIZE.
257 struct chain_allocator
{
258 struct linked_page
*chain
; /* the chain */
259 unsigned int used_space
; /* total size of objects allocated out
260 of the current page */
261 gfp_t gfp_mask
; /* mask for allocating pages */
262 int safe_needed
; /* if set, only "safe" pages are allocated */
265 static void chain_init(struct chain_allocator
*ca
, gfp_t gfp_mask
,
269 ca
->used_space
= LINKED_PAGE_DATA_SIZE
;
270 ca
->gfp_mask
= gfp_mask
;
271 ca
->safe_needed
= safe_needed
;
274 static void *chain_alloc(struct chain_allocator
*ca
, unsigned int size
)
278 if (LINKED_PAGE_DATA_SIZE
- ca
->used_space
< size
) {
279 struct linked_page
*lp
;
281 lp
= ca
->safe_needed
? __get_safe_page(ca
->gfp_mask
) :
282 get_image_page(ca
->gfp_mask
, PG_ANY
);
286 lp
->next
= ca
->chain
;
290 ret
= ca
->chain
->data
+ ca
->used_space
;
291 ca
->used_space
+= size
;
296 * Data types related to memory bitmaps.
298 * Memory bitmap is a structure consiting of many linked lists of
299 * objects. The main list's elements are of type struct zone_bitmap
300 * and each of them corresonds to one zone. For each zone bitmap
301 * object there is a list of objects of type struct bm_block that
302 * represent each blocks of bitmap in which information is stored.
304 * struct memory_bitmap contains a pointer to the main list of zone
305 * bitmap objects, a struct bm_position used for browsing the bitmap,
306 * and a pointer to the list of pages used for allocating all of the
307 * zone bitmap objects and bitmap block objects.
309 * NOTE: It has to be possible to lay out the bitmap in memory
310 * using only allocations of order 0. Additionally, the bitmap is
311 * designed to work with arbitrary number of zones (this is over the
312 * top for now, but let's avoid making unnecessary assumptions ;-).
314 * struct zone_bitmap contains a pointer to a list of bitmap block
315 * objects and a pointer to the bitmap block object that has been
316 * most recently used for setting bits. Additionally, it contains the
317 * PFNs that correspond to the start and end of the represented zone.
319 * struct bm_block contains a pointer to the memory page in which
320 * information is stored (in the form of a block of bitmap)
321 * It also contains the pfns that correspond to the start and end of
322 * the represented memory area.
324 * The memory bitmap is organized as a radix tree to guarantee fast random
325 * access to the bits. There is one radix tree for each zone (as returned
326 * from create_mem_extents).
328 * One radix tree is represented by one struct mem_zone_bm_rtree. There are
329 * two linked lists for the nodes of the tree, one for the inner nodes and
330 * one for the leave nodes. The linked leave nodes are used for fast linear
331 * access of the memory bitmap.
333 * The struct rtree_node represents one node of the radix tree.
336 #define BM_END_OF_MAP (~0UL)
338 #define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE)
339 #define BM_BLOCK_SHIFT (PAGE_SHIFT + 3)
340 #define BM_BLOCK_MASK ((1UL << BM_BLOCK_SHIFT) - 1)
343 * struct rtree_node is a wrapper struct to link the nodes
344 * of the rtree together for easy linear iteration over
345 * bits and easy freeing
348 struct list_head list
;
353 * struct mem_zone_bm_rtree represents a bitmap used for one
354 * populated memory zone.
356 struct mem_zone_bm_rtree
{
357 struct list_head list
; /* Link Zones together */
358 struct list_head nodes
; /* Radix Tree inner nodes */
359 struct list_head leaves
; /* Radix Tree leaves */
360 unsigned long start_pfn
; /* Zone start page frame */
361 unsigned long end_pfn
; /* Zone end page frame + 1 */
362 struct rtree_node
*rtree
; /* Radix Tree Root */
363 int levels
; /* Number of Radix Tree Levels */
364 unsigned int blocks
; /* Number of Bitmap Blocks */
367 /* strcut bm_position is used for browsing memory bitmaps */
370 struct mem_zone_bm_rtree
*zone
;
371 struct rtree_node
*node
;
372 unsigned long node_pfn
;
376 struct memory_bitmap
{
377 struct list_head zones
;
378 struct linked_page
*p_list
; /* list of pages used to store zone
379 bitmap objects and bitmap block
381 struct bm_position cur
; /* most recently used bit position */
384 /* Functions that operate on memory bitmaps */
386 #define BM_ENTRIES_PER_LEVEL (PAGE_SIZE / sizeof(unsigned long))
387 #if BITS_PER_LONG == 32
388 #define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 2)
390 #define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 3)
392 #define BM_RTREE_LEVEL_MASK ((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
395 * alloc_rtree_node - Allocate a new node and add it to the radix tree.
397 * This function is used to allocate inner nodes as well as the
398 * leave nodes of the radix tree. It also adds the node to the
399 * corresponding linked list passed in by the *list parameter.
401 static struct rtree_node
*alloc_rtree_node(gfp_t gfp_mask
, int safe_needed
,
402 struct chain_allocator
*ca
,
403 struct list_head
*list
)
405 struct rtree_node
*node
;
407 node
= chain_alloc(ca
, sizeof(struct rtree_node
));
411 node
->data
= get_image_page(gfp_mask
, safe_needed
);
415 list_add_tail(&node
->list
, list
);
421 * add_rtree_block - Add a new leave node to the radix tree.
423 * The leave nodes need to be allocated in order to keep the leaves
424 * linked list in order. This is guaranteed by the zone->blocks
427 static int add_rtree_block(struct mem_zone_bm_rtree
*zone
, gfp_t gfp_mask
,
428 int safe_needed
, struct chain_allocator
*ca
)
430 struct rtree_node
*node
, *block
, **dst
;
431 unsigned int levels_needed
, block_nr
;
434 block_nr
= zone
->blocks
;
437 /* How many levels do we need for this block nr? */
440 block_nr
>>= BM_RTREE_LEVEL_SHIFT
;
443 /* Make sure the rtree has enough levels */
444 for (i
= zone
->levels
; i
< levels_needed
; i
++) {
445 node
= alloc_rtree_node(gfp_mask
, safe_needed
, ca
,
450 node
->data
[0] = (unsigned long)zone
->rtree
;
455 /* Allocate new block */
456 block
= alloc_rtree_node(gfp_mask
, safe_needed
, ca
, &zone
->leaves
);
460 /* Now walk the rtree to insert the block */
463 block_nr
= zone
->blocks
;
464 for (i
= zone
->levels
; i
> 0; i
--) {
468 node
= alloc_rtree_node(gfp_mask
, safe_needed
, ca
,
475 index
= block_nr
>> ((i
- 1) * BM_RTREE_LEVEL_SHIFT
);
476 index
&= BM_RTREE_LEVEL_MASK
;
477 dst
= (struct rtree_node
**)&((*dst
)->data
[index
]);
487 static void free_zone_bm_rtree(struct mem_zone_bm_rtree
*zone
,
488 int clear_nosave_free
);
491 * create_zone_bm_rtree - Create a radix tree for one zone.
493 * Allocated the mem_zone_bm_rtree structure and initializes it.
494 * This function also allocated and builds the radix tree for the
497 static struct mem_zone_bm_rtree
*create_zone_bm_rtree(gfp_t gfp_mask
,
499 struct chain_allocator
*ca
,
503 struct mem_zone_bm_rtree
*zone
;
504 unsigned int i
, nr_blocks
;
508 zone
= chain_alloc(ca
, sizeof(struct mem_zone_bm_rtree
));
512 INIT_LIST_HEAD(&zone
->nodes
);
513 INIT_LIST_HEAD(&zone
->leaves
);
514 zone
->start_pfn
= start
;
516 nr_blocks
= DIV_ROUND_UP(pages
, BM_BITS_PER_BLOCK
);
518 for (i
= 0; i
< nr_blocks
; i
++) {
519 if (add_rtree_block(zone
, gfp_mask
, safe_needed
, ca
)) {
520 free_zone_bm_rtree(zone
, PG_UNSAFE_CLEAR
);
529 * free_zone_bm_rtree - Free the memory of the radix tree.
531 * Free all node pages of the radix tree. The mem_zone_bm_rtree
532 * structure itself is not freed here nor are the rtree_node
535 static void free_zone_bm_rtree(struct mem_zone_bm_rtree
*zone
,
536 int clear_nosave_free
)
538 struct rtree_node
*node
;
540 list_for_each_entry(node
, &zone
->nodes
, list
)
541 free_image_page(node
->data
, clear_nosave_free
);
543 list_for_each_entry(node
, &zone
->leaves
, list
)
544 free_image_page(node
->data
, clear_nosave_free
);
547 static void memory_bm_position_reset(struct memory_bitmap
*bm
)
549 bm
->cur
.zone
= list_entry(bm
->zones
.next
, struct mem_zone_bm_rtree
,
551 bm
->cur
.node
= list_entry(bm
->cur
.zone
->leaves
.next
,
552 struct rtree_node
, list
);
553 bm
->cur
.node_pfn
= 0;
554 bm
->cur
.node_bit
= 0;
557 static void memory_bm_free(struct memory_bitmap
*bm
, int clear_nosave_free
);
560 struct list_head hook
;
566 * free_mem_extents - Free a list of memory extents.
567 * @list: List of extents to free.
569 static void free_mem_extents(struct list_head
*list
)
571 struct mem_extent
*ext
, *aux
;
573 list_for_each_entry_safe(ext
, aux
, list
, hook
) {
574 list_del(&ext
->hook
);
580 * create_mem_extents - Create a list of memory extents.
581 * @list: List to put the extents into.
582 * @gfp_mask: Mask to use for memory allocations.
584 * The extents represent contiguous ranges of PFNs.
586 static int create_mem_extents(struct list_head
*list
, gfp_t gfp_mask
)
590 INIT_LIST_HEAD(list
);
592 for_each_populated_zone(zone
) {
593 unsigned long zone_start
, zone_end
;
594 struct mem_extent
*ext
, *cur
, *aux
;
596 zone_start
= zone
->zone_start_pfn
;
597 zone_end
= zone_end_pfn(zone
);
599 list_for_each_entry(ext
, list
, hook
)
600 if (zone_start
<= ext
->end
)
603 if (&ext
->hook
== list
|| zone_end
< ext
->start
) {
604 /* New extent is necessary */
605 struct mem_extent
*new_ext
;
607 new_ext
= kzalloc(sizeof(struct mem_extent
), gfp_mask
);
609 free_mem_extents(list
);
612 new_ext
->start
= zone_start
;
613 new_ext
->end
= zone_end
;
614 list_add_tail(&new_ext
->hook
, &ext
->hook
);
618 /* Merge this zone's range of PFNs with the existing one */
619 if (zone_start
< ext
->start
)
620 ext
->start
= zone_start
;
621 if (zone_end
> ext
->end
)
624 /* More merging may be possible */
626 list_for_each_entry_safe_continue(cur
, aux
, list
, hook
) {
627 if (zone_end
< cur
->start
)
629 if (zone_end
< cur
->end
)
631 list_del(&cur
->hook
);
640 * memory_bm_create - Allocate memory for a memory bitmap.
642 static int memory_bm_create(struct memory_bitmap
*bm
, gfp_t gfp_mask
,
645 struct chain_allocator ca
;
646 struct list_head mem_extents
;
647 struct mem_extent
*ext
;
650 chain_init(&ca
, gfp_mask
, safe_needed
);
651 INIT_LIST_HEAD(&bm
->zones
);
653 error
= create_mem_extents(&mem_extents
, gfp_mask
);
657 list_for_each_entry(ext
, &mem_extents
, hook
) {
658 struct mem_zone_bm_rtree
*zone
;
660 zone
= create_zone_bm_rtree(gfp_mask
, safe_needed
, &ca
,
661 ext
->start
, ext
->end
);
666 list_add_tail(&zone
->list
, &bm
->zones
);
669 bm
->p_list
= ca
.chain
;
670 memory_bm_position_reset(bm
);
672 free_mem_extents(&mem_extents
);
676 bm
->p_list
= ca
.chain
;
677 memory_bm_free(bm
, PG_UNSAFE_CLEAR
);
682 * memory_bm_free - Free memory occupied by the memory bitmap.
683 * @bm: Memory bitmap.
685 static void memory_bm_free(struct memory_bitmap
*bm
, int clear_nosave_free
)
687 struct mem_zone_bm_rtree
*zone
;
689 list_for_each_entry(zone
, &bm
->zones
, list
)
690 free_zone_bm_rtree(zone
, clear_nosave_free
);
692 free_list_of_pages(bm
->p_list
, clear_nosave_free
);
694 INIT_LIST_HEAD(&bm
->zones
);
698 * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
700 * Find the bit in memory bitmap @bm that corresponds to the given PFN.
701 * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
703 * Walk the radix tree to find the page containing the bit that represents @pfn
704 * and return the position of the bit in @addr and @bit_nr.
706 static int memory_bm_find_bit(struct memory_bitmap
*bm
, unsigned long pfn
,
707 void **addr
, unsigned int *bit_nr
)
709 struct mem_zone_bm_rtree
*curr
, *zone
;
710 struct rtree_node
*node
;
715 if (pfn
>= zone
->start_pfn
&& pfn
< zone
->end_pfn
)
720 /* Find the right zone */
721 list_for_each_entry(curr
, &bm
->zones
, list
) {
722 if (pfn
>= curr
->start_pfn
&& pfn
< curr
->end_pfn
) {
733 * We have found the zone. Now walk the radix tree to find the leaf node
737 if (((pfn
- zone
->start_pfn
) & ~BM_BLOCK_MASK
) == bm
->cur
.node_pfn
)
741 block_nr
= (pfn
- zone
->start_pfn
) >> BM_BLOCK_SHIFT
;
743 for (i
= zone
->levels
; i
> 0; i
--) {
746 index
= block_nr
>> ((i
- 1) * BM_RTREE_LEVEL_SHIFT
);
747 index
&= BM_RTREE_LEVEL_MASK
;
748 BUG_ON(node
->data
[index
] == 0);
749 node
= (struct rtree_node
*)node
->data
[index
];
753 /* Update last position */
756 bm
->cur
.node_pfn
= (pfn
- zone
->start_pfn
) & ~BM_BLOCK_MASK
;
758 /* Set return values */
760 *bit_nr
= (pfn
- zone
->start_pfn
) & BM_BLOCK_MASK
;
765 static void memory_bm_set_bit(struct memory_bitmap
*bm
, unsigned long pfn
)
771 error
= memory_bm_find_bit(bm
, pfn
, &addr
, &bit
);
776 static int mem_bm_set_bit_check(struct memory_bitmap
*bm
, unsigned long pfn
)
782 error
= memory_bm_find_bit(bm
, pfn
, &addr
, &bit
);
789 static void memory_bm_clear_bit(struct memory_bitmap
*bm
, unsigned long pfn
)
795 error
= memory_bm_find_bit(bm
, pfn
, &addr
, &bit
);
797 clear_bit(bit
, addr
);
800 static void memory_bm_clear_current(struct memory_bitmap
*bm
)
804 bit
= max(bm
->cur
.node_bit
- 1, 0);
805 clear_bit(bit
, bm
->cur
.node
->data
);
808 static int memory_bm_test_bit(struct memory_bitmap
*bm
, unsigned long pfn
)
814 error
= memory_bm_find_bit(bm
, pfn
, &addr
, &bit
);
816 return test_bit(bit
, addr
);
819 static bool memory_bm_pfn_present(struct memory_bitmap
*bm
, unsigned long pfn
)
824 return !memory_bm_find_bit(bm
, pfn
, &addr
, &bit
);
828 * rtree_next_node - Jump to the next leaf node.
830 * Set the position to the beginning of the next node in the
831 * memory bitmap. This is either the next node in the current
832 * zone's radix tree or the first node in the radix tree of the
835 * Return true if there is a next node, false otherwise.
837 static bool rtree_next_node(struct memory_bitmap
*bm
)
839 if (!list_is_last(&bm
->cur
.node
->list
, &bm
->cur
.zone
->leaves
)) {
840 bm
->cur
.node
= list_entry(bm
->cur
.node
->list
.next
,
841 struct rtree_node
, list
);
842 bm
->cur
.node_pfn
+= BM_BITS_PER_BLOCK
;
843 bm
->cur
.node_bit
= 0;
844 touch_softlockup_watchdog();
848 /* No more nodes, goto next zone */
849 if (!list_is_last(&bm
->cur
.zone
->list
, &bm
->zones
)) {
850 bm
->cur
.zone
= list_entry(bm
->cur
.zone
->list
.next
,
851 struct mem_zone_bm_rtree
, list
);
852 bm
->cur
.node
= list_entry(bm
->cur
.zone
->leaves
.next
,
853 struct rtree_node
, list
);
854 bm
->cur
.node_pfn
= 0;
855 bm
->cur
.node_bit
= 0;
864 * memory_bm_rtree_next_pfn - Find the next set bit in a memory bitmap.
865 * @bm: Memory bitmap.
867 * Starting from the last returned position this function searches for the next
868 * set bit in @bm and returns the PFN represented by it. If no more bits are
869 * set, BM_END_OF_MAP is returned.
871 * It is required to run memory_bm_position_reset() before the first call to
872 * this function for the given memory bitmap.
874 static unsigned long memory_bm_next_pfn(struct memory_bitmap
*bm
)
876 unsigned long bits
, pfn
, pages
;
880 pages
= bm
->cur
.zone
->end_pfn
- bm
->cur
.zone
->start_pfn
;
881 bits
= min(pages
- bm
->cur
.node_pfn
, BM_BITS_PER_BLOCK
);
882 bit
= find_next_bit(bm
->cur
.node
->data
, bits
,
885 pfn
= bm
->cur
.zone
->start_pfn
+ bm
->cur
.node_pfn
+ bit
;
886 bm
->cur
.node_bit
= bit
+ 1;
889 } while (rtree_next_node(bm
));
891 return BM_END_OF_MAP
;
895 * This structure represents a range of page frames the contents of which
896 * should not be saved during hibernation.
898 struct nosave_region
{
899 struct list_head list
;
900 unsigned long start_pfn
;
901 unsigned long end_pfn
;
904 static LIST_HEAD(nosave_regions
);
906 static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree
*zone
)
908 struct rtree_node
*node
;
910 list_for_each_entry(node
, &zone
->nodes
, list
)
911 recycle_safe_page(node
->data
);
913 list_for_each_entry(node
, &zone
->leaves
, list
)
914 recycle_safe_page(node
->data
);
917 static void memory_bm_recycle(struct memory_bitmap
*bm
)
919 struct mem_zone_bm_rtree
*zone
;
920 struct linked_page
*p_list
;
922 list_for_each_entry(zone
, &bm
->zones
, list
)
923 recycle_zone_bm_rtree(zone
);
927 struct linked_page
*lp
= p_list
;
930 recycle_safe_page(lp
);
935 * register_nosave_region - Register a region of unsaveable memory.
937 * Register a range of page frames the contents of which should not be saved
938 * during hibernation (to be used in the early initialization code).
940 void __init
__register_nosave_region(unsigned long start_pfn
,
941 unsigned long end_pfn
, int use_kmalloc
)
943 struct nosave_region
*region
;
945 if (start_pfn
>= end_pfn
)
948 if (!list_empty(&nosave_regions
)) {
949 /* Try to extend the previous region (they should be sorted) */
950 region
= list_entry(nosave_regions
.prev
,
951 struct nosave_region
, list
);
952 if (region
->end_pfn
== start_pfn
) {
953 region
->end_pfn
= end_pfn
;
958 /* During init, this shouldn't fail */
959 region
= kmalloc(sizeof(struct nosave_region
), GFP_KERNEL
);
962 /* This allocation cannot fail */
963 region
= memblock_virt_alloc(sizeof(struct nosave_region
), 0);
965 region
->start_pfn
= start_pfn
;
966 region
->end_pfn
= end_pfn
;
967 list_add_tail(®ion
->list
, &nosave_regions
);
969 printk(KERN_INFO
"PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
970 (unsigned long long) start_pfn
<< PAGE_SHIFT
,
971 ((unsigned long long) end_pfn
<< PAGE_SHIFT
) - 1);
975 * Set bits in this map correspond to the page frames the contents of which
976 * should not be saved during the suspend.
978 static struct memory_bitmap
*forbidden_pages_map
;
980 /* Set bits in this map correspond to free page frames. */
981 static struct memory_bitmap
*free_pages_map
;
984 * Each page frame allocated for creating the image is marked by setting the
985 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
988 void swsusp_set_page_free(struct page
*page
)
991 memory_bm_set_bit(free_pages_map
, page_to_pfn(page
));
994 static int swsusp_page_is_free(struct page
*page
)
996 return free_pages_map
?
997 memory_bm_test_bit(free_pages_map
, page_to_pfn(page
)) : 0;
1000 void swsusp_unset_page_free(struct page
*page
)
1003 memory_bm_clear_bit(free_pages_map
, page_to_pfn(page
));
1006 static void swsusp_set_page_forbidden(struct page
*page
)
1008 if (forbidden_pages_map
)
1009 memory_bm_set_bit(forbidden_pages_map
, page_to_pfn(page
));
1012 int swsusp_page_is_forbidden(struct page
*page
)
1014 return forbidden_pages_map
?
1015 memory_bm_test_bit(forbidden_pages_map
, page_to_pfn(page
)) : 0;
1018 static void swsusp_unset_page_forbidden(struct page
*page
)
1020 if (forbidden_pages_map
)
1021 memory_bm_clear_bit(forbidden_pages_map
, page_to_pfn(page
));
1025 * mark_nosave_pages - Mark pages that should not be saved.
1026 * @bm: Memory bitmap.
1028 * Set the bits in @bm that correspond to the page frames the contents of which
1029 * should not be saved.
1031 static void mark_nosave_pages(struct memory_bitmap
*bm
)
1033 struct nosave_region
*region
;
1035 if (list_empty(&nosave_regions
))
1038 list_for_each_entry(region
, &nosave_regions
, list
) {
1041 pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
1042 (unsigned long long) region
->start_pfn
<< PAGE_SHIFT
,
1043 ((unsigned long long) region
->end_pfn
<< PAGE_SHIFT
)
1046 for (pfn
= region
->start_pfn
; pfn
< region
->end_pfn
; pfn
++)
1047 if (pfn_valid(pfn
)) {
1049 * It is safe to ignore the result of
1050 * mem_bm_set_bit_check() here, since we won't
1051 * touch the PFNs for which the error is
1054 mem_bm_set_bit_check(bm
, pfn
);
1060 * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
1062 * Create bitmaps needed for marking page frames that should not be saved and
1063 * free page frames. The forbidden_pages_map and free_pages_map pointers are
1064 * only modified if everything goes well, because we don't want the bits to be
1065 * touched before both bitmaps are set up.
1067 int create_basic_memory_bitmaps(void)
1069 struct memory_bitmap
*bm1
, *bm2
;
1072 if (forbidden_pages_map
&& free_pages_map
)
1075 BUG_ON(forbidden_pages_map
|| free_pages_map
);
1077 bm1
= kzalloc(sizeof(struct memory_bitmap
), GFP_KERNEL
);
1081 error
= memory_bm_create(bm1
, GFP_KERNEL
, PG_ANY
);
1083 goto Free_first_object
;
1085 bm2
= kzalloc(sizeof(struct memory_bitmap
), GFP_KERNEL
);
1087 goto Free_first_bitmap
;
1089 error
= memory_bm_create(bm2
, GFP_KERNEL
, PG_ANY
);
1091 goto Free_second_object
;
1093 forbidden_pages_map
= bm1
;
1094 free_pages_map
= bm2
;
1095 mark_nosave_pages(forbidden_pages_map
);
1097 pr_debug("PM: Basic memory bitmaps created\n");
1104 memory_bm_free(bm1
, PG_UNSAFE_CLEAR
);
1111 * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
1113 * Free memory bitmaps allocated by create_basic_memory_bitmaps(). The
1114 * auxiliary pointers are necessary so that the bitmaps themselves are not
1115 * referred to while they are being freed.
1117 void free_basic_memory_bitmaps(void)
1119 struct memory_bitmap
*bm1
, *bm2
;
1121 if (WARN_ON(!(forbidden_pages_map
&& free_pages_map
)))
1124 bm1
= forbidden_pages_map
;
1125 bm2
= free_pages_map
;
1126 forbidden_pages_map
= NULL
;
1127 free_pages_map
= NULL
;
1128 memory_bm_free(bm1
, PG_UNSAFE_CLEAR
);
1130 memory_bm_free(bm2
, PG_UNSAFE_CLEAR
);
1133 pr_debug("PM: Basic memory bitmaps freed\n");
1136 void clear_free_pages(void)
1138 #ifdef CONFIG_PAGE_POISONING_ZERO
1139 struct memory_bitmap
*bm
= free_pages_map
;
1142 if (WARN_ON(!(free_pages_map
)))
1145 memory_bm_position_reset(bm
);
1146 pfn
= memory_bm_next_pfn(bm
);
1147 while (pfn
!= BM_END_OF_MAP
) {
1149 clear_highpage(pfn_to_page(pfn
));
1151 pfn
= memory_bm_next_pfn(bm
);
1153 memory_bm_position_reset(bm
);
1154 pr_info("PM: free pages cleared after restore\n");
1155 #endif /* PAGE_POISONING_ZERO */
1159 * snapshot_additional_pages - Estimate the number of extra pages needed.
1160 * @zone: Memory zone to carry out the computation for.
1162 * Estimate the number of additional pages needed for setting up a hibernation
1163 * image data structures for @zone (usually, the returned value is greater than
1164 * the exact number).
1166 unsigned int snapshot_additional_pages(struct zone
*zone
)
1168 unsigned int rtree
, nodes
;
1170 rtree
= nodes
= DIV_ROUND_UP(zone
->spanned_pages
, BM_BITS_PER_BLOCK
);
1171 rtree
+= DIV_ROUND_UP(rtree
* sizeof(struct rtree_node
),
1172 LINKED_PAGE_DATA_SIZE
);
1174 nodes
= DIV_ROUND_UP(nodes
, BM_ENTRIES_PER_LEVEL
);
1181 #ifdef CONFIG_HIGHMEM
1183 * count_free_highmem_pages - Compute the total number of free highmem pages.
1185 * The returned number is system-wide.
1187 static unsigned int count_free_highmem_pages(void)
1190 unsigned int cnt
= 0;
1192 for_each_populated_zone(zone
)
1193 if (is_highmem(zone
))
1194 cnt
+= zone_page_state(zone
, NR_FREE_PAGES
);
1200 * saveable_highmem_page - Check if a highmem page is saveable.
1202 * Determine whether a highmem page should be included in a hibernation image.
1204 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1205 * and it isn't part of a free chunk of pages.
1207 static struct page
*saveable_highmem_page(struct zone
*zone
, unsigned long pfn
)
1211 if (!pfn_valid(pfn
))
1214 page
= pfn_to_page(pfn
);
1215 if (page_zone(page
) != zone
)
1218 BUG_ON(!PageHighMem(page
));
1220 if (swsusp_page_is_forbidden(page
) || swsusp_page_is_free(page
) ||
1224 if (page_is_guard(page
))
1231 * count_highmem_pages - Compute the total number of saveable highmem pages.
1233 static unsigned int count_highmem_pages(void)
1238 for_each_populated_zone(zone
) {
1239 unsigned long pfn
, max_zone_pfn
;
1241 if (!is_highmem(zone
))
1244 mark_free_pages(zone
);
1245 max_zone_pfn
= zone_end_pfn(zone
);
1246 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1247 if (saveable_highmem_page(zone
, pfn
))
1253 static inline void *saveable_highmem_page(struct zone
*z
, unsigned long p
)
1257 #endif /* CONFIG_HIGHMEM */
1260 * saveable_page - Check if the given page is saveable.
1262 * Determine whether a non-highmem page should be included in a hibernation
1265 * We should save the page if it isn't Nosave, and is not in the range
1266 * of pages statically defined as 'unsaveable', and it isn't part of
1267 * a free chunk of pages.
1269 static struct page
*saveable_page(struct zone
*zone
, unsigned long pfn
)
1273 if (!pfn_valid(pfn
))
1276 page
= pfn_to_page(pfn
);
1277 if (page_zone(page
) != zone
)
1280 BUG_ON(PageHighMem(page
));
1282 if (swsusp_page_is_forbidden(page
) || swsusp_page_is_free(page
))
1285 if (PageReserved(page
)
1286 && (!kernel_page_present(page
) || pfn_is_nosave(pfn
)))
1289 if (page_is_guard(page
))
1296 * count_data_pages - Compute the total number of saveable non-highmem pages.
1298 static unsigned int count_data_pages(void)
1301 unsigned long pfn
, max_zone_pfn
;
1304 for_each_populated_zone(zone
) {
1305 if (is_highmem(zone
))
1308 mark_free_pages(zone
);
1309 max_zone_pfn
= zone_end_pfn(zone
);
1310 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1311 if (saveable_page(zone
, pfn
))
1318 * This is needed, because copy_page and memcpy are not usable for copying
1321 static inline void do_copy_page(long *dst
, long *src
)
1325 for (n
= PAGE_SIZE
/ sizeof(long); n
; n
--)
1330 * safe_copy_page - Copy a page in a safe way.
1332 * Check if the page we are going to copy is marked as present in the kernel
1333 * page tables (this always is the case if CONFIG_DEBUG_PAGEALLOC is not set
1334 * and in that case kernel_page_present() always returns 'true').
1336 static void safe_copy_page(void *dst
, struct page
*s_page
)
1338 if (kernel_page_present(s_page
)) {
1339 do_copy_page(dst
, page_address(s_page
));
1341 kernel_map_pages(s_page
, 1, 1);
1342 do_copy_page(dst
, page_address(s_page
));
1343 kernel_map_pages(s_page
, 1, 0);
1347 #ifdef CONFIG_HIGHMEM
1348 static inline struct page
*page_is_saveable(struct zone
*zone
, unsigned long pfn
)
1350 return is_highmem(zone
) ?
1351 saveable_highmem_page(zone
, pfn
) : saveable_page(zone
, pfn
);
1354 static void copy_data_page(unsigned long dst_pfn
, unsigned long src_pfn
)
1356 struct page
*s_page
, *d_page
;
1359 s_page
= pfn_to_page(src_pfn
);
1360 d_page
= pfn_to_page(dst_pfn
);
1361 if (PageHighMem(s_page
)) {
1362 src
= kmap_atomic(s_page
);
1363 dst
= kmap_atomic(d_page
);
1364 do_copy_page(dst
, src
);
1368 if (PageHighMem(d_page
)) {
1370 * The page pointed to by src may contain some kernel
1371 * data modified by kmap_atomic()
1373 safe_copy_page(buffer
, s_page
);
1374 dst
= kmap_atomic(d_page
);
1375 copy_page(dst
, buffer
);
1378 safe_copy_page(page_address(d_page
), s_page
);
1383 #define page_is_saveable(zone, pfn) saveable_page(zone, pfn)
1385 static inline void copy_data_page(unsigned long dst_pfn
, unsigned long src_pfn
)
1387 safe_copy_page(page_address(pfn_to_page(dst_pfn
)),
1388 pfn_to_page(src_pfn
));
1390 #endif /* CONFIG_HIGHMEM */
1392 static void copy_data_pages(struct memory_bitmap
*copy_bm
,
1393 struct memory_bitmap
*orig_bm
)
1398 for_each_populated_zone(zone
) {
1399 unsigned long max_zone_pfn
;
1401 mark_free_pages(zone
);
1402 max_zone_pfn
= zone_end_pfn(zone
);
1403 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1404 if (page_is_saveable(zone
, pfn
))
1405 memory_bm_set_bit(orig_bm
, pfn
);
1407 memory_bm_position_reset(orig_bm
);
1408 memory_bm_position_reset(copy_bm
);
1410 pfn
= memory_bm_next_pfn(orig_bm
);
1411 if (unlikely(pfn
== BM_END_OF_MAP
))
1413 copy_data_page(memory_bm_next_pfn(copy_bm
), pfn
);
1417 /* Total number of image pages */
1418 static unsigned int nr_copy_pages
;
1419 /* Number of pages needed for saving the original pfns of the image pages */
1420 static unsigned int nr_meta_pages
;
1422 * Numbers of normal and highmem page frames allocated for hibernation image
1423 * before suspending devices.
1425 unsigned int alloc_normal
, alloc_highmem
;
1427 * Memory bitmap used for marking saveable pages (during hibernation) or
1428 * hibernation image pages (during restore)
1430 static struct memory_bitmap orig_bm
;
1432 * Memory bitmap used during hibernation for marking allocated page frames that
1433 * will contain copies of saveable pages. During restore it is initially used
1434 * for marking hibernation image pages, but then the set bits from it are
1435 * duplicated in @orig_bm and it is released. On highmem systems it is next
1436 * used for marking "safe" highmem pages, but it has to be reinitialized for
1439 static struct memory_bitmap copy_bm
;
1442 * swsusp_free - Free pages allocated for hibernation image.
1444 * Image pages are alocated before snapshot creation, so they need to be
1445 * released after resume.
1447 void swsusp_free(void)
1449 unsigned long fb_pfn
, fr_pfn
;
1451 if (!forbidden_pages_map
|| !free_pages_map
)
1454 memory_bm_position_reset(forbidden_pages_map
);
1455 memory_bm_position_reset(free_pages_map
);
1458 fr_pfn
= memory_bm_next_pfn(free_pages_map
);
1459 fb_pfn
= memory_bm_next_pfn(forbidden_pages_map
);
1462 * Find the next bit set in both bitmaps. This is guaranteed to
1463 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1466 if (fb_pfn
< fr_pfn
)
1467 fb_pfn
= memory_bm_next_pfn(forbidden_pages_map
);
1468 if (fr_pfn
< fb_pfn
)
1469 fr_pfn
= memory_bm_next_pfn(free_pages_map
);
1470 } while (fb_pfn
!= fr_pfn
);
1472 if (fr_pfn
!= BM_END_OF_MAP
&& pfn_valid(fr_pfn
)) {
1473 struct page
*page
= pfn_to_page(fr_pfn
);
1475 memory_bm_clear_current(forbidden_pages_map
);
1476 memory_bm_clear_current(free_pages_map
);
1477 hibernate_restore_unprotect_page(page_address(page
));
1485 restore_pblist
= NULL
;
1489 hibernate_restore_protection_end();
1492 /* Helper functions used for the shrinking of memory. */
1494 #define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN)
1497 * preallocate_image_pages - Allocate a number of pages for hibernation image.
1498 * @nr_pages: Number of page frames to allocate.
1499 * @mask: GFP flags to use for the allocation.
1501 * Return value: Number of page frames actually allocated
1503 static unsigned long preallocate_image_pages(unsigned long nr_pages
, gfp_t mask
)
1505 unsigned long nr_alloc
= 0;
1507 while (nr_pages
> 0) {
1510 page
= alloc_image_page(mask
);
1513 memory_bm_set_bit(©_bm
, page_to_pfn(page
));
1514 if (PageHighMem(page
))
1525 static unsigned long preallocate_image_memory(unsigned long nr_pages
,
1526 unsigned long avail_normal
)
1528 unsigned long alloc
;
1530 if (avail_normal
<= alloc_normal
)
1533 alloc
= avail_normal
- alloc_normal
;
1534 if (nr_pages
< alloc
)
1537 return preallocate_image_pages(alloc
, GFP_IMAGE
);
1540 #ifdef CONFIG_HIGHMEM
1541 static unsigned long preallocate_image_highmem(unsigned long nr_pages
)
1543 return preallocate_image_pages(nr_pages
, GFP_IMAGE
| __GFP_HIGHMEM
);
1547 * __fraction - Compute (an approximation of) x * (multiplier / base).
1549 static unsigned long __fraction(u64 x
, u64 multiplier
, u64 base
)
1553 return (unsigned long)x
;
1556 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages
,
1557 unsigned long highmem
,
1558 unsigned long total
)
1560 unsigned long alloc
= __fraction(nr_pages
, highmem
, total
);
1562 return preallocate_image_pages(alloc
, GFP_IMAGE
| __GFP_HIGHMEM
);
1564 #else /* CONFIG_HIGHMEM */
1565 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages
)
1570 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages
,
1571 unsigned long highmem
,
1572 unsigned long total
)
1576 #endif /* CONFIG_HIGHMEM */
1579 * free_unnecessary_pages - Release preallocated pages not needed for the image.
1581 static unsigned long free_unnecessary_pages(void)
1583 unsigned long save
, to_free_normal
, to_free_highmem
, free
;
1585 save
= count_data_pages();
1586 if (alloc_normal
>= save
) {
1587 to_free_normal
= alloc_normal
- save
;
1591 save
-= alloc_normal
;
1593 save
+= count_highmem_pages();
1594 if (alloc_highmem
>= save
) {
1595 to_free_highmem
= alloc_highmem
- save
;
1597 to_free_highmem
= 0;
1598 save
-= alloc_highmem
;
1599 if (to_free_normal
> save
)
1600 to_free_normal
-= save
;
1604 free
= to_free_normal
+ to_free_highmem
;
1606 memory_bm_position_reset(©_bm
);
1608 while (to_free_normal
> 0 || to_free_highmem
> 0) {
1609 unsigned long pfn
= memory_bm_next_pfn(©_bm
);
1610 struct page
*page
= pfn_to_page(pfn
);
1612 if (PageHighMem(page
)) {
1613 if (!to_free_highmem
)
1618 if (!to_free_normal
)
1623 memory_bm_clear_bit(©_bm
, pfn
);
1624 swsusp_unset_page_forbidden(page
);
1625 swsusp_unset_page_free(page
);
1633 * minimum_image_size - Estimate the minimum acceptable size of an image.
1634 * @saveable: Number of saveable pages in the system.
1636 * We want to avoid attempting to free too much memory too hard, so estimate the
1637 * minimum acceptable size of a hibernation image to use as the lower limit for
1638 * preallocating memory.
1640 * We assume that the minimum image size should be proportional to
1642 * [number of saveable pages] - [number of pages that can be freed in theory]
1644 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1645 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages,
1646 * minus mapped file pages.
1648 static unsigned long minimum_image_size(unsigned long saveable
)
1652 size
= global_page_state(NR_SLAB_RECLAIMABLE
)
1653 + global_node_page_state(NR_ACTIVE_ANON
)
1654 + global_node_page_state(NR_INACTIVE_ANON
)
1655 + global_node_page_state(NR_ACTIVE_FILE
)
1656 + global_node_page_state(NR_INACTIVE_FILE
)
1657 - global_node_page_state(NR_FILE_MAPPED
);
1659 return saveable
<= size
? 0 : saveable
- size
;
1663 * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1665 * To create a hibernation image it is necessary to make a copy of every page
1666 * frame in use. We also need a number of page frames to be free during
1667 * hibernation for allocations made while saving the image and for device
1668 * drivers, in case they need to allocate memory from their hibernation
1669 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1670 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1671 * /sys/power/reserved_size, respectively). To make this happen, we compute the
1672 * total number of available page frames and allocate at least
1674 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1675 * + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1677 * of them, which corresponds to the maximum size of a hibernation image.
1679 * If image_size is set below the number following from the above formula,
1680 * the preallocation of memory is continued until the total number of saveable
1681 * pages in the system is below the requested image size or the minimum
1682 * acceptable image size returned by minimum_image_size(), whichever is greater.
1684 int hibernate_preallocate_memory(void)
1687 unsigned long saveable
, size
, max_size
, count
, highmem
, pages
= 0;
1688 unsigned long alloc
, save_highmem
, pages_highmem
, avail_normal
;
1689 ktime_t start
, stop
;
1692 printk(KERN_INFO
"PM: Preallocating image memory... ");
1693 start
= ktime_get();
1695 error
= memory_bm_create(&orig_bm
, GFP_IMAGE
, PG_ANY
);
1699 error
= memory_bm_create(©_bm
, GFP_IMAGE
, PG_ANY
);
1706 /* Count the number of saveable data pages. */
1707 save_highmem
= count_highmem_pages();
1708 saveable
= count_data_pages();
1711 * Compute the total number of page frames we can use (count) and the
1712 * number of pages needed for image metadata (size).
1715 saveable
+= save_highmem
;
1716 highmem
= save_highmem
;
1718 for_each_populated_zone(zone
) {
1719 size
+= snapshot_additional_pages(zone
);
1720 if (is_highmem(zone
))
1721 highmem
+= zone_page_state(zone
, NR_FREE_PAGES
);
1723 count
+= zone_page_state(zone
, NR_FREE_PAGES
);
1725 avail_normal
= count
;
1727 count
-= totalreserve_pages
;
1729 /* Add number of pages required for page keys (s390 only). */
1730 size
+= page_key_additional_pages(saveable
);
1732 /* Compute the maximum number of saveable pages to leave in memory. */
1733 max_size
= (count
- (size
+ PAGES_FOR_IO
)) / 2
1734 - 2 * DIV_ROUND_UP(reserved_size
, PAGE_SIZE
);
1735 /* Compute the desired number of image pages specified by image_size. */
1736 size
= DIV_ROUND_UP(image_size
, PAGE_SIZE
);
1737 if (size
> max_size
)
1740 * If the desired number of image pages is at least as large as the
1741 * current number of saveable pages in memory, allocate page frames for
1742 * the image and we're done.
1744 if (size
>= saveable
) {
1745 pages
= preallocate_image_highmem(save_highmem
);
1746 pages
+= preallocate_image_memory(saveable
- pages
, avail_normal
);
1750 /* Estimate the minimum size of the image. */
1751 pages
= minimum_image_size(saveable
);
1753 * To avoid excessive pressure on the normal zone, leave room in it to
1754 * accommodate an image of the minimum size (unless it's already too
1755 * small, in which case don't preallocate pages from it at all).
1757 if (avail_normal
> pages
)
1758 avail_normal
-= pages
;
1762 size
= min_t(unsigned long, pages
, max_size
);
1765 * Let the memory management subsystem know that we're going to need a
1766 * large number of page frames to allocate and make it free some memory.
1767 * NOTE: If this is not done, performance will be hurt badly in some
1770 shrink_all_memory(saveable
- size
);
1773 * The number of saveable pages in memory was too high, so apply some
1774 * pressure to decrease it. First, make room for the largest possible
1775 * image and fail if that doesn't work. Next, try to decrease the size
1776 * of the image as much as indicated by 'size' using allocations from
1777 * highmem and non-highmem zones separately.
1779 pages_highmem
= preallocate_image_highmem(highmem
/ 2);
1780 alloc
= count
- max_size
;
1781 if (alloc
> pages_highmem
)
1782 alloc
-= pages_highmem
;
1785 pages
= preallocate_image_memory(alloc
, avail_normal
);
1786 if (pages
< alloc
) {
1787 /* We have exhausted non-highmem pages, try highmem. */
1789 pages
+= pages_highmem
;
1790 pages_highmem
= preallocate_image_highmem(alloc
);
1791 if (pages_highmem
< alloc
)
1793 pages
+= pages_highmem
;
1795 * size is the desired number of saveable pages to leave in
1796 * memory, so try to preallocate (all memory - size) pages.
1798 alloc
= (count
- pages
) - size
;
1799 pages
+= preallocate_image_highmem(alloc
);
1802 * There are approximately max_size saveable pages at this point
1803 * and we want to reduce this number down to size.
1805 alloc
= max_size
- size
;
1806 size
= preallocate_highmem_fraction(alloc
, highmem
, count
);
1807 pages_highmem
+= size
;
1809 size
= preallocate_image_memory(alloc
, avail_normal
);
1810 pages_highmem
+= preallocate_image_highmem(alloc
- size
);
1811 pages
+= pages_highmem
+ size
;
1815 * We only need as many page frames for the image as there are saveable
1816 * pages in memory, but we have allocated more. Release the excessive
1819 pages
-= free_unnecessary_pages();
1823 printk(KERN_CONT
"done (allocated %lu pages)\n", pages
);
1824 swsusp_show_speed(start
, stop
, pages
, "Allocated");
1829 printk(KERN_CONT
"\n");
1834 #ifdef CONFIG_HIGHMEM
1836 * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
1838 * Compute the number of non-highmem pages that will be necessary for creating
1839 * copies of highmem pages.
1841 static unsigned int count_pages_for_highmem(unsigned int nr_highmem
)
1843 unsigned int free_highmem
= count_free_highmem_pages() + alloc_highmem
;
1845 if (free_highmem
>= nr_highmem
)
1848 nr_highmem
-= free_highmem
;
1853 static unsigned int count_pages_for_highmem(unsigned int nr_highmem
) { return 0; }
1854 #endif /* CONFIG_HIGHMEM */
1857 * enough_free_mem - Check if there is enough free memory for the image.
1859 static int enough_free_mem(unsigned int nr_pages
, unsigned int nr_highmem
)
1862 unsigned int free
= alloc_normal
;
1864 for_each_populated_zone(zone
)
1865 if (!is_highmem(zone
))
1866 free
+= zone_page_state(zone
, NR_FREE_PAGES
);
1868 nr_pages
+= count_pages_for_highmem(nr_highmem
);
1869 pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1870 nr_pages
, PAGES_FOR_IO
, free
);
1872 return free
> nr_pages
+ PAGES_FOR_IO
;
1875 #ifdef CONFIG_HIGHMEM
1877 * get_highmem_buffer - Allocate a buffer for highmem pages.
1879 * If there are some highmem pages in the hibernation image, we may need a
1880 * buffer to copy them and/or load their data.
1882 static inline int get_highmem_buffer(int safe_needed
)
1884 buffer
= get_image_page(GFP_ATOMIC
| __GFP_COLD
, safe_needed
);
1885 return buffer
? 0 : -ENOMEM
;
1889 * alloc_highmem_image_pages - Allocate some highmem pages for the image.
1891 * Try to allocate as many pages as needed, but if the number of free highmem
1892 * pages is less than that, allocate them all.
1894 static inline unsigned int alloc_highmem_pages(struct memory_bitmap
*bm
,
1895 unsigned int nr_highmem
)
1897 unsigned int to_alloc
= count_free_highmem_pages();
1899 if (to_alloc
> nr_highmem
)
1900 to_alloc
= nr_highmem
;
1902 nr_highmem
-= to_alloc
;
1903 while (to_alloc
-- > 0) {
1906 page
= alloc_image_page(__GFP_HIGHMEM
|__GFP_KSWAPD_RECLAIM
);
1907 memory_bm_set_bit(bm
, page_to_pfn(page
));
1912 static inline int get_highmem_buffer(int safe_needed
) { return 0; }
1914 static inline unsigned int alloc_highmem_pages(struct memory_bitmap
*bm
,
1915 unsigned int n
) { return 0; }
1916 #endif /* CONFIG_HIGHMEM */
1919 * swsusp_alloc - Allocate memory for hibernation image.
1921 * We first try to allocate as many highmem pages as there are
1922 * saveable highmem pages in the system. If that fails, we allocate
1923 * non-highmem pages for the copies of the remaining highmem ones.
1925 * In this approach it is likely that the copies of highmem pages will
1926 * also be located in the high memory, because of the way in which
1927 * copy_data_pages() works.
1929 static int swsusp_alloc(struct memory_bitmap
*orig_bm
,
1930 struct memory_bitmap
*copy_bm
,
1931 unsigned int nr_pages
, unsigned int nr_highmem
)
1933 if (nr_highmem
> 0) {
1934 if (get_highmem_buffer(PG_ANY
))
1936 if (nr_highmem
> alloc_highmem
) {
1937 nr_highmem
-= alloc_highmem
;
1938 nr_pages
+= alloc_highmem_pages(copy_bm
, nr_highmem
);
1941 if (nr_pages
> alloc_normal
) {
1942 nr_pages
-= alloc_normal
;
1943 while (nr_pages
-- > 0) {
1946 page
= alloc_image_page(GFP_ATOMIC
| __GFP_COLD
);
1949 memory_bm_set_bit(copy_bm
, page_to_pfn(page
));
1960 asmlinkage __visible
int swsusp_save(void)
1962 unsigned int nr_pages
, nr_highmem
;
1964 printk(KERN_INFO
"PM: Creating hibernation image:\n");
1966 drain_local_pages(NULL
);
1967 nr_pages
= count_data_pages();
1968 nr_highmem
= count_highmem_pages();
1969 printk(KERN_INFO
"PM: Need to copy %u pages\n", nr_pages
+ nr_highmem
);
1971 if (!enough_free_mem(nr_pages
, nr_highmem
)) {
1972 printk(KERN_ERR
"PM: Not enough free memory\n");
1976 if (swsusp_alloc(&orig_bm
, ©_bm
, nr_pages
, nr_highmem
)) {
1977 printk(KERN_ERR
"PM: Memory allocation failed\n");
1982 * During allocating of suspend pagedir, new cold pages may appear.
1985 drain_local_pages(NULL
);
1986 copy_data_pages(©_bm
, &orig_bm
);
1989 * End of critical section. From now on, we can write to memory,
1990 * but we should not touch disk. This specially means we must _not_
1991 * touch swap space! Except we must write out our image of course.
1994 nr_pages
+= nr_highmem
;
1995 nr_copy_pages
= nr_pages
;
1996 nr_meta_pages
= DIV_ROUND_UP(nr_pages
* sizeof(long), PAGE_SIZE
);
1998 printk(KERN_INFO
"PM: Hibernation image created (%d pages copied)\n",
2004 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
2005 static int init_header_complete(struct swsusp_info
*info
)
2007 memcpy(&info
->uts
, init_utsname(), sizeof(struct new_utsname
));
2008 info
->version_code
= LINUX_VERSION_CODE
;
2012 static char *check_image_kernel(struct swsusp_info
*info
)
2014 if (info
->version_code
!= LINUX_VERSION_CODE
)
2015 return "kernel version";
2016 if (strcmp(info
->uts
.sysname
,init_utsname()->sysname
))
2017 return "system type";
2018 if (strcmp(info
->uts
.release
,init_utsname()->release
))
2019 return "kernel release";
2020 if (strcmp(info
->uts
.version
,init_utsname()->version
))
2022 if (strcmp(info
->uts
.machine
,init_utsname()->machine
))
2026 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
2028 unsigned long snapshot_get_image_size(void)
2030 return nr_copy_pages
+ nr_meta_pages
+ 1;
2033 static int init_header(struct swsusp_info
*info
)
2035 memset(info
, 0, sizeof(struct swsusp_info
));
2036 info
->num_physpages
= get_num_physpages();
2037 info
->image_pages
= nr_copy_pages
;
2038 info
->pages
= snapshot_get_image_size();
2039 info
->size
= info
->pages
;
2040 info
->size
<<= PAGE_SHIFT
;
2041 return init_header_complete(info
);
2045 * pack_pfns - Prepare PFNs for saving.
2046 * @bm: Memory bitmap.
2047 * @buf: Memory buffer to store the PFNs in.
2049 * PFNs corresponding to set bits in @bm are stored in the area of memory
2050 * pointed to by @buf (1 page at a time).
2052 static inline void pack_pfns(unsigned long *buf
, struct memory_bitmap
*bm
)
2056 for (j
= 0; j
< PAGE_SIZE
/ sizeof(long); j
++) {
2057 buf
[j
] = memory_bm_next_pfn(bm
);
2058 if (unlikely(buf
[j
] == BM_END_OF_MAP
))
2060 /* Save page key for data page (s390 only). */
2061 page_key_read(buf
+ j
);
2066 * snapshot_read_next - Get the address to read the next image page from.
2067 * @handle: Snapshot handle to be used for the reading.
2069 * On the first call, @handle should point to a zeroed snapshot_handle
2070 * structure. The structure gets populated then and a pointer to it should be
2071 * passed to this function every next time.
2073 * On success, the function returns a positive number. Then, the caller
2074 * is allowed to read up to the returned number of bytes from the memory
2075 * location computed by the data_of() macro.
2077 * The function returns 0 to indicate the end of the data stream condition,
2078 * and negative numbers are returned on errors. If that happens, the structure
2079 * pointed to by @handle is not updated and should not be used any more.
2081 int snapshot_read_next(struct snapshot_handle
*handle
)
2083 if (handle
->cur
> nr_meta_pages
+ nr_copy_pages
)
2087 /* This makes the buffer be freed by swsusp_free() */
2088 buffer
= get_image_page(GFP_ATOMIC
, PG_ANY
);
2095 error
= init_header((struct swsusp_info
*)buffer
);
2098 handle
->buffer
= buffer
;
2099 memory_bm_position_reset(&orig_bm
);
2100 memory_bm_position_reset(©_bm
);
2101 } else if (handle
->cur
<= nr_meta_pages
) {
2103 pack_pfns(buffer
, &orig_bm
);
2107 page
= pfn_to_page(memory_bm_next_pfn(©_bm
));
2108 if (PageHighMem(page
)) {
2110 * Highmem pages are copied to the buffer,
2111 * because we can't return with a kmapped
2112 * highmem page (we may not be called again).
2116 kaddr
= kmap_atomic(page
);
2117 copy_page(buffer
, kaddr
);
2118 kunmap_atomic(kaddr
);
2119 handle
->buffer
= buffer
;
2121 handle
->buffer
= page_address(page
);
2128 static void duplicate_memory_bitmap(struct memory_bitmap
*dst
,
2129 struct memory_bitmap
*src
)
2133 memory_bm_position_reset(src
);
2134 pfn
= memory_bm_next_pfn(src
);
2135 while (pfn
!= BM_END_OF_MAP
) {
2136 memory_bm_set_bit(dst
, pfn
);
2137 pfn
= memory_bm_next_pfn(src
);
2142 * mark_unsafe_pages - Mark pages that were used before hibernation.
2144 * Mark the pages that cannot be used for storing the image during restoration,
2145 * because they conflict with the pages that had been used before hibernation.
2147 static void mark_unsafe_pages(struct memory_bitmap
*bm
)
2151 /* Clear the "free"/"unsafe" bit for all PFNs */
2152 memory_bm_position_reset(free_pages_map
);
2153 pfn
= memory_bm_next_pfn(free_pages_map
);
2154 while (pfn
!= BM_END_OF_MAP
) {
2155 memory_bm_clear_current(free_pages_map
);
2156 pfn
= memory_bm_next_pfn(free_pages_map
);
2159 /* Mark pages that correspond to the "original" PFNs as "unsafe" */
2160 duplicate_memory_bitmap(free_pages_map
, bm
);
2162 allocated_unsafe_pages
= 0;
2165 static int check_header(struct swsusp_info
*info
)
2169 reason
= check_image_kernel(info
);
2170 if (!reason
&& info
->num_physpages
!= get_num_physpages())
2171 reason
= "memory size";
2173 printk(KERN_ERR
"PM: Image mismatch: %s\n", reason
);
2180 * load header - Check the image header and copy the data from it.
2182 static int load_header(struct swsusp_info
*info
)
2186 restore_pblist
= NULL
;
2187 error
= check_header(info
);
2189 nr_copy_pages
= info
->image_pages
;
2190 nr_meta_pages
= info
->pages
- info
->image_pages
- 1;
2196 * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
2197 * @bm: Memory bitmap.
2198 * @buf: Area of memory containing the PFNs.
2200 * For each element of the array pointed to by @buf (1 page at a time), set the
2201 * corresponding bit in @bm.
2203 static int unpack_orig_pfns(unsigned long *buf
, struct memory_bitmap
*bm
)
2207 for (j
= 0; j
< PAGE_SIZE
/ sizeof(long); j
++) {
2208 if (unlikely(buf
[j
] == BM_END_OF_MAP
))
2211 /* Extract and buffer page key for data page (s390 only). */
2212 page_key_memorize(buf
+ j
);
2214 if (pfn_valid(buf
[j
]) && memory_bm_pfn_present(bm
, buf
[j
]))
2215 memory_bm_set_bit(bm
, buf
[j
]);
2223 #ifdef CONFIG_HIGHMEM
2225 * struct highmem_pbe is used for creating the list of highmem pages that
2226 * should be restored atomically during the resume from disk, because the page
2227 * frames they have occupied before the suspend are in use.
2229 struct highmem_pbe
{
2230 struct page
*copy_page
; /* data is here now */
2231 struct page
*orig_page
; /* data was here before the suspend */
2232 struct highmem_pbe
*next
;
2236 * List of highmem PBEs needed for restoring the highmem pages that were
2237 * allocated before the suspend and included in the suspend image, but have
2238 * also been allocated by the "resume" kernel, so their contents cannot be
2239 * written directly to their "original" page frames.
2241 static struct highmem_pbe
*highmem_pblist
;
2244 * count_highmem_image_pages - Compute the number of highmem pages in the image.
2245 * @bm: Memory bitmap.
2247 * The bits in @bm that correspond to image pages are assumed to be set.
2249 static unsigned int count_highmem_image_pages(struct memory_bitmap
*bm
)
2252 unsigned int cnt
= 0;
2254 memory_bm_position_reset(bm
);
2255 pfn
= memory_bm_next_pfn(bm
);
2256 while (pfn
!= BM_END_OF_MAP
) {
2257 if (PageHighMem(pfn_to_page(pfn
)))
2260 pfn
= memory_bm_next_pfn(bm
);
2265 static unsigned int safe_highmem_pages
;
2267 static struct memory_bitmap
*safe_highmem_bm
;
2270 * prepare_highmem_image - Allocate memory for loading highmem data from image.
2271 * @bm: Pointer to an uninitialized memory bitmap structure.
2272 * @nr_highmem_p: Pointer to the number of highmem image pages.
2274 * Try to allocate as many highmem pages as there are highmem image pages
2275 * (@nr_highmem_p points to the variable containing the number of highmem image
2276 * pages). The pages that are "safe" (ie. will not be overwritten when the
2277 * hibernation image is restored entirely) have the corresponding bits set in
2278 * @bm (it must be unitialized).
2280 * NOTE: This function should not be called if there are no highmem image pages.
2282 static int prepare_highmem_image(struct memory_bitmap
*bm
,
2283 unsigned int *nr_highmem_p
)
2285 unsigned int to_alloc
;
2287 if (memory_bm_create(bm
, GFP_ATOMIC
, PG_SAFE
))
2290 if (get_highmem_buffer(PG_SAFE
))
2293 to_alloc
= count_free_highmem_pages();
2294 if (to_alloc
> *nr_highmem_p
)
2295 to_alloc
= *nr_highmem_p
;
2297 *nr_highmem_p
= to_alloc
;
2299 safe_highmem_pages
= 0;
2300 while (to_alloc
-- > 0) {
2303 page
= alloc_page(__GFP_HIGHMEM
);
2304 if (!swsusp_page_is_free(page
)) {
2305 /* The page is "safe", set its bit the bitmap */
2306 memory_bm_set_bit(bm
, page_to_pfn(page
));
2307 safe_highmem_pages
++;
2309 /* Mark the page as allocated */
2310 swsusp_set_page_forbidden(page
);
2311 swsusp_set_page_free(page
);
2313 memory_bm_position_reset(bm
);
2314 safe_highmem_bm
= bm
;
2318 static struct page
*last_highmem_page
;
2321 * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
2323 * For a given highmem image page get a buffer that suspend_write_next() should
2324 * return to its caller to write to.
2326 * If the page is to be saved to its "original" page frame or a copy of
2327 * the page is to be made in the highmem, @buffer is returned. Otherwise,
2328 * the copy of the page is to be made in normal memory, so the address of
2329 * the copy is returned.
2331 * If @buffer is returned, the caller of suspend_write_next() will write
2332 * the page's contents to @buffer, so they will have to be copied to the
2333 * right location on the next call to suspend_write_next() and it is done
2334 * with the help of copy_last_highmem_page(). For this purpose, if
2335 * @buffer is returned, @last_highmem_page is set to the page to which
2336 * the data will have to be copied from @buffer.
2338 static void *get_highmem_page_buffer(struct page
*page
,
2339 struct chain_allocator
*ca
)
2341 struct highmem_pbe
*pbe
;
2344 if (swsusp_page_is_forbidden(page
) && swsusp_page_is_free(page
)) {
2346 * We have allocated the "original" page frame and we can
2347 * use it directly to store the loaded page.
2349 last_highmem_page
= page
;
2353 * The "original" page frame has not been allocated and we have to
2354 * use a "safe" page frame to store the loaded page.
2356 pbe
= chain_alloc(ca
, sizeof(struct highmem_pbe
));
2359 return ERR_PTR(-ENOMEM
);
2361 pbe
->orig_page
= page
;
2362 if (safe_highmem_pages
> 0) {
2365 /* Copy of the page will be stored in high memory */
2367 tmp
= pfn_to_page(memory_bm_next_pfn(safe_highmem_bm
));
2368 safe_highmem_pages
--;
2369 last_highmem_page
= tmp
;
2370 pbe
->copy_page
= tmp
;
2372 /* Copy of the page will be stored in normal memory */
2373 kaddr
= safe_pages_list
;
2374 safe_pages_list
= safe_pages_list
->next
;
2375 pbe
->copy_page
= virt_to_page(kaddr
);
2377 pbe
->next
= highmem_pblist
;
2378 highmem_pblist
= pbe
;
2383 * copy_last_highmem_page - Copy most the most recent highmem image page.
2385 * Copy the contents of a highmem image from @buffer, where the caller of
2386 * snapshot_write_next() has stored them, to the right location represented by
2387 * @last_highmem_page .
2389 static void copy_last_highmem_page(void)
2391 if (last_highmem_page
) {
2394 dst
= kmap_atomic(last_highmem_page
);
2395 copy_page(dst
, buffer
);
2397 last_highmem_page
= NULL
;
2401 static inline int last_highmem_page_copied(void)
2403 return !last_highmem_page
;
2406 static inline void free_highmem_data(void)
2408 if (safe_highmem_bm
)
2409 memory_bm_free(safe_highmem_bm
, PG_UNSAFE_CLEAR
);
2412 free_image_page(buffer
, PG_UNSAFE_CLEAR
);
2415 static unsigned int count_highmem_image_pages(struct memory_bitmap
*bm
) { return 0; }
2417 static inline int prepare_highmem_image(struct memory_bitmap
*bm
,
2418 unsigned int *nr_highmem_p
) { return 0; }
2420 static inline void *get_highmem_page_buffer(struct page
*page
,
2421 struct chain_allocator
*ca
)
2423 return ERR_PTR(-EINVAL
);
2426 static inline void copy_last_highmem_page(void) {}
2427 static inline int last_highmem_page_copied(void) { return 1; }
2428 static inline void free_highmem_data(void) {}
2429 #endif /* CONFIG_HIGHMEM */
2431 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2434 * prepare_image - Make room for loading hibernation image.
2435 * @new_bm: Unitialized memory bitmap structure.
2436 * @bm: Memory bitmap with unsafe pages marked.
2438 * Use @bm to mark the pages that will be overwritten in the process of
2439 * restoring the system memory state from the suspend image ("unsafe" pages)
2440 * and allocate memory for the image.
2442 * The idea is to allocate a new memory bitmap first and then allocate
2443 * as many pages as needed for image data, but without specifying what those
2444 * pages will be used for just yet. Instead, we mark them all as allocated and
2445 * create a lists of "safe" pages to be used later. On systems with high
2446 * memory a list of "safe" highmem pages is created too.
2448 static int prepare_image(struct memory_bitmap
*new_bm
, struct memory_bitmap
*bm
)
2450 unsigned int nr_pages
, nr_highmem
;
2451 struct linked_page
*lp
;
2454 /* If there is no highmem, the buffer will not be necessary */
2455 free_image_page(buffer
, PG_UNSAFE_CLEAR
);
2458 nr_highmem
= count_highmem_image_pages(bm
);
2459 mark_unsafe_pages(bm
);
2461 error
= memory_bm_create(new_bm
, GFP_ATOMIC
, PG_SAFE
);
2465 duplicate_memory_bitmap(new_bm
, bm
);
2466 memory_bm_free(bm
, PG_UNSAFE_KEEP
);
2467 if (nr_highmem
> 0) {
2468 error
= prepare_highmem_image(bm
, &nr_highmem
);
2473 * Reserve some safe pages for potential later use.
2475 * NOTE: This way we make sure there will be enough safe pages for the
2476 * chain_alloc() in get_buffer(). It is a bit wasteful, but
2477 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2479 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2481 nr_pages
= nr_copy_pages
- nr_highmem
- allocated_unsafe_pages
;
2482 nr_pages
= DIV_ROUND_UP(nr_pages
, PBES_PER_LINKED_PAGE
);
2483 while (nr_pages
> 0) {
2484 lp
= get_image_page(GFP_ATOMIC
, PG_SAFE
);
2489 lp
->next
= safe_pages_list
;
2490 safe_pages_list
= lp
;
2493 /* Preallocate memory for the image */
2494 nr_pages
= nr_copy_pages
- nr_highmem
- allocated_unsafe_pages
;
2495 while (nr_pages
> 0) {
2496 lp
= (struct linked_page
*)get_zeroed_page(GFP_ATOMIC
);
2501 if (!swsusp_page_is_free(virt_to_page(lp
))) {
2502 /* The page is "safe", add it to the list */
2503 lp
->next
= safe_pages_list
;
2504 safe_pages_list
= lp
;
2506 /* Mark the page as allocated */
2507 swsusp_set_page_forbidden(virt_to_page(lp
));
2508 swsusp_set_page_free(virt_to_page(lp
));
2519 * get_buffer - Get the address to store the next image data page.
2521 * Get the address that snapshot_write_next() should return to its caller to
2524 static void *get_buffer(struct memory_bitmap
*bm
, struct chain_allocator
*ca
)
2528 unsigned long pfn
= memory_bm_next_pfn(bm
);
2530 if (pfn
== BM_END_OF_MAP
)
2531 return ERR_PTR(-EFAULT
);
2533 page
= pfn_to_page(pfn
);
2534 if (PageHighMem(page
))
2535 return get_highmem_page_buffer(page
, ca
);
2537 if (swsusp_page_is_forbidden(page
) && swsusp_page_is_free(page
))
2539 * We have allocated the "original" page frame and we can
2540 * use it directly to store the loaded page.
2542 return page_address(page
);
2545 * The "original" page frame has not been allocated and we have to
2546 * use a "safe" page frame to store the loaded page.
2548 pbe
= chain_alloc(ca
, sizeof(struct pbe
));
2551 return ERR_PTR(-ENOMEM
);
2553 pbe
->orig_address
= page_address(page
);
2554 pbe
->address
= safe_pages_list
;
2555 safe_pages_list
= safe_pages_list
->next
;
2556 pbe
->next
= restore_pblist
;
2557 restore_pblist
= pbe
;
2558 return pbe
->address
;
2562 * snapshot_write_next - Get the address to store the next image page.
2563 * @handle: Snapshot handle structure to guide the writing.
2565 * On the first call, @handle should point to a zeroed snapshot_handle
2566 * structure. The structure gets populated then and a pointer to it should be
2567 * passed to this function every next time.
2569 * On success, the function returns a positive number. Then, the caller
2570 * is allowed to write up to the returned number of bytes to the memory
2571 * location computed by the data_of() macro.
2573 * The function returns 0 to indicate the "end of file" condition. Negative
2574 * numbers are returned on errors, in which cases the structure pointed to by
2575 * @handle is not updated and should not be used any more.
2577 int snapshot_write_next(struct snapshot_handle
*handle
)
2579 static struct chain_allocator ca
;
2582 /* Check if we have already loaded the entire image */
2583 if (handle
->cur
> 1 && handle
->cur
> nr_meta_pages
+ nr_copy_pages
)
2586 handle
->sync_read
= 1;
2590 /* This makes the buffer be freed by swsusp_free() */
2591 buffer
= get_image_page(GFP_ATOMIC
, PG_ANY
);
2596 handle
->buffer
= buffer
;
2597 } else if (handle
->cur
== 1) {
2598 error
= load_header(buffer
);
2602 safe_pages_list
= NULL
;
2604 error
= memory_bm_create(©_bm
, GFP_ATOMIC
, PG_ANY
);
2608 /* Allocate buffer for page keys. */
2609 error
= page_key_alloc(nr_copy_pages
);
2613 hibernate_restore_protection_begin();
2614 } else if (handle
->cur
<= nr_meta_pages
+ 1) {
2615 error
= unpack_orig_pfns(buffer
, ©_bm
);
2619 if (handle
->cur
== nr_meta_pages
+ 1) {
2620 error
= prepare_image(&orig_bm
, ©_bm
);
2624 chain_init(&ca
, GFP_ATOMIC
, PG_SAFE
);
2625 memory_bm_position_reset(&orig_bm
);
2626 restore_pblist
= NULL
;
2627 handle
->buffer
= get_buffer(&orig_bm
, &ca
);
2628 handle
->sync_read
= 0;
2629 if (IS_ERR(handle
->buffer
))
2630 return PTR_ERR(handle
->buffer
);
2633 copy_last_highmem_page();
2634 /* Restore page key for data page (s390 only). */
2635 page_key_write(handle
->buffer
);
2636 hibernate_restore_protect_page(handle
->buffer
);
2637 handle
->buffer
= get_buffer(&orig_bm
, &ca
);
2638 if (IS_ERR(handle
->buffer
))
2639 return PTR_ERR(handle
->buffer
);
2640 if (handle
->buffer
!= buffer
)
2641 handle
->sync_read
= 0;
2648 * snapshot_write_finalize - Complete the loading of a hibernation image.
2650 * Must be called after the last call to snapshot_write_next() in case the last
2651 * page in the image happens to be a highmem page and its contents should be
2652 * stored in highmem. Additionally, it recycles bitmap memory that's not
2653 * necessary any more.
2655 void snapshot_write_finalize(struct snapshot_handle
*handle
)
2657 copy_last_highmem_page();
2658 /* Restore page key for data page (s390 only). */
2659 page_key_write(handle
->buffer
);
2661 hibernate_restore_protect_page(handle
->buffer
);
2662 /* Do that only if we have loaded the image entirely */
2663 if (handle
->cur
> 1 && handle
->cur
> nr_meta_pages
+ nr_copy_pages
) {
2664 memory_bm_recycle(&orig_bm
);
2665 free_highmem_data();
2669 int snapshot_image_loaded(struct snapshot_handle
*handle
)
2671 return !(!nr_copy_pages
|| !last_highmem_page_copied() ||
2672 handle
->cur
<= nr_meta_pages
+ nr_copy_pages
);
2675 #ifdef CONFIG_HIGHMEM
2676 /* Assumes that @buf is ready and points to a "safe" page */
2677 static inline void swap_two_pages_data(struct page
*p1
, struct page
*p2
,
2680 void *kaddr1
, *kaddr2
;
2682 kaddr1
= kmap_atomic(p1
);
2683 kaddr2
= kmap_atomic(p2
);
2684 copy_page(buf
, kaddr1
);
2685 copy_page(kaddr1
, kaddr2
);
2686 copy_page(kaddr2
, buf
);
2687 kunmap_atomic(kaddr2
);
2688 kunmap_atomic(kaddr1
);
2692 * restore_highmem - Put highmem image pages into their original locations.
2694 * For each highmem page that was in use before hibernation and is included in
2695 * the image, and also has been allocated by the "restore" kernel, swap its
2696 * current contents with the previous (ie. "before hibernation") ones.
2698 * If the restore eventually fails, we can call this function once again and
2699 * restore the highmem state as seen by the restore kernel.
2701 int restore_highmem(void)
2703 struct highmem_pbe
*pbe
= highmem_pblist
;
2709 buf
= get_image_page(GFP_ATOMIC
, PG_SAFE
);
2714 swap_two_pages_data(pbe
->copy_page
, pbe
->orig_page
, buf
);
2717 free_image_page(buf
, PG_UNSAFE_CLEAR
);
2720 #endif /* CONFIG_HIGHMEM */