Merge remote-tracking branch 'remotes/powerpc/topic/xive' into kvm-ppc-next
[linux/fpc-iii.git] / lib / sbitmap.c
blob60e800e0b5a0d986ec0e2664dd9e4185aa50328a
1 /*
2 * Copyright (C) 2016 Facebook
3 * Copyright (C) 2013-2014 Jens Axboe
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <https://www.gnu.org/licenses/>.
18 #include <linux/sched.h>
19 #include <linux/random.h>
20 #include <linux/sbitmap.h>
21 #include <linux/seq_file.h>
23 int sbitmap_init_node(struct sbitmap *sb, unsigned int depth, int shift,
24 gfp_t flags, int node)
26 unsigned int bits_per_word;
27 unsigned int i;
29 if (shift < 0) {
30 shift = ilog2(BITS_PER_LONG);
32 * If the bitmap is small, shrink the number of bits per word so
33 * we spread over a few cachelines, at least. If less than 4
34 * bits, just forget about it, it's not going to work optimally
35 * anyway.
37 if (depth >= 4) {
38 while ((4U << shift) > depth)
39 shift--;
42 bits_per_word = 1U << shift;
43 if (bits_per_word > BITS_PER_LONG)
44 return -EINVAL;
46 sb->shift = shift;
47 sb->depth = depth;
48 sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word);
50 if (depth == 0) {
51 sb->map = NULL;
52 return 0;
55 sb->map = kzalloc_node(sb->map_nr * sizeof(*sb->map), flags, node);
56 if (!sb->map)
57 return -ENOMEM;
59 for (i = 0; i < sb->map_nr; i++) {
60 sb->map[i].depth = min(depth, bits_per_word);
61 depth -= sb->map[i].depth;
63 return 0;
65 EXPORT_SYMBOL_GPL(sbitmap_init_node);
67 void sbitmap_resize(struct sbitmap *sb, unsigned int depth)
69 unsigned int bits_per_word = 1U << sb->shift;
70 unsigned int i;
72 sb->depth = depth;
73 sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word);
75 for (i = 0; i < sb->map_nr; i++) {
76 sb->map[i].depth = min(depth, bits_per_word);
77 depth -= sb->map[i].depth;
80 EXPORT_SYMBOL_GPL(sbitmap_resize);
82 static int __sbitmap_get_word(struct sbitmap_word *word, unsigned int hint,
83 bool wrap)
85 unsigned int orig_hint = hint;
86 int nr;
88 while (1) {
89 nr = find_next_zero_bit(&word->word, word->depth, hint);
90 if (unlikely(nr >= word->depth)) {
92 * We started with an offset, and we didn't reset the
93 * offset to 0 in a failure case, so start from 0 to
94 * exhaust the map.
96 if (orig_hint && hint && wrap) {
97 hint = orig_hint = 0;
98 continue;
100 return -1;
103 if (!test_and_set_bit(nr, &word->word))
104 break;
106 hint = nr + 1;
107 if (hint >= word->depth - 1)
108 hint = 0;
111 return nr;
114 int sbitmap_get(struct sbitmap *sb, unsigned int alloc_hint, bool round_robin)
116 unsigned int i, index;
117 int nr = -1;
119 index = SB_NR_TO_INDEX(sb, alloc_hint);
121 for (i = 0; i < sb->map_nr; i++) {
122 nr = __sbitmap_get_word(&sb->map[index],
123 SB_NR_TO_BIT(sb, alloc_hint),
124 !round_robin);
125 if (nr != -1) {
126 nr += index << sb->shift;
127 break;
130 /* Jump to next index. */
131 index++;
132 alloc_hint = index << sb->shift;
134 if (index >= sb->map_nr) {
135 index = 0;
136 alloc_hint = 0;
140 return nr;
142 EXPORT_SYMBOL_GPL(sbitmap_get);
144 bool sbitmap_any_bit_set(const struct sbitmap *sb)
146 unsigned int i;
148 for (i = 0; i < sb->map_nr; i++) {
149 if (sb->map[i].word)
150 return true;
152 return false;
154 EXPORT_SYMBOL_GPL(sbitmap_any_bit_set);
156 bool sbitmap_any_bit_clear(const struct sbitmap *sb)
158 unsigned int i;
160 for (i = 0; i < sb->map_nr; i++) {
161 const struct sbitmap_word *word = &sb->map[i];
162 unsigned long ret;
164 ret = find_first_zero_bit(&word->word, word->depth);
165 if (ret < word->depth)
166 return true;
168 return false;
170 EXPORT_SYMBOL_GPL(sbitmap_any_bit_clear);
172 unsigned int sbitmap_weight(const struct sbitmap *sb)
174 unsigned int i, weight = 0;
176 for (i = 0; i < sb->map_nr; i++) {
177 const struct sbitmap_word *word = &sb->map[i];
179 weight += bitmap_weight(&word->word, word->depth);
181 return weight;
183 EXPORT_SYMBOL_GPL(sbitmap_weight);
185 void sbitmap_show(struct sbitmap *sb, struct seq_file *m)
187 seq_printf(m, "depth=%u\n", sb->depth);
188 seq_printf(m, "busy=%u\n", sbitmap_weight(sb));
189 seq_printf(m, "bits_per_word=%u\n", 1U << sb->shift);
190 seq_printf(m, "map_nr=%u\n", sb->map_nr);
192 EXPORT_SYMBOL_GPL(sbitmap_show);
194 static inline void emit_byte(struct seq_file *m, unsigned int offset, u8 byte)
196 if ((offset & 0xf) == 0) {
197 if (offset != 0)
198 seq_putc(m, '\n');
199 seq_printf(m, "%08x:", offset);
201 if ((offset & 0x1) == 0)
202 seq_putc(m, ' ');
203 seq_printf(m, "%02x", byte);
206 void sbitmap_bitmap_show(struct sbitmap *sb, struct seq_file *m)
208 u8 byte = 0;
209 unsigned int byte_bits = 0;
210 unsigned int offset = 0;
211 int i;
213 for (i = 0; i < sb->map_nr; i++) {
214 unsigned long word = READ_ONCE(sb->map[i].word);
215 unsigned int word_bits = READ_ONCE(sb->map[i].depth);
217 while (word_bits > 0) {
218 unsigned int bits = min(8 - byte_bits, word_bits);
220 byte |= (word & (BIT(bits) - 1)) << byte_bits;
221 byte_bits += bits;
222 if (byte_bits == 8) {
223 emit_byte(m, offset, byte);
224 byte = 0;
225 byte_bits = 0;
226 offset++;
228 word >>= bits;
229 word_bits -= bits;
232 if (byte_bits) {
233 emit_byte(m, offset, byte);
234 offset++;
236 if (offset)
237 seq_putc(m, '\n');
239 EXPORT_SYMBOL_GPL(sbitmap_bitmap_show);
241 static unsigned int sbq_calc_wake_batch(unsigned int depth)
243 unsigned int wake_batch;
246 * For each batch, we wake up one queue. We need to make sure that our
247 * batch size is small enough that the full depth of the bitmap is
248 * enough to wake up all of the queues.
250 wake_batch = SBQ_WAKE_BATCH;
251 if (wake_batch > depth / SBQ_WAIT_QUEUES)
252 wake_batch = max(1U, depth / SBQ_WAIT_QUEUES);
254 return wake_batch;
257 int sbitmap_queue_init_node(struct sbitmap_queue *sbq, unsigned int depth,
258 int shift, bool round_robin, gfp_t flags, int node)
260 int ret;
261 int i;
263 ret = sbitmap_init_node(&sbq->sb, depth, shift, flags, node);
264 if (ret)
265 return ret;
267 sbq->alloc_hint = alloc_percpu_gfp(unsigned int, flags);
268 if (!sbq->alloc_hint) {
269 sbitmap_free(&sbq->sb);
270 return -ENOMEM;
273 if (depth && !round_robin) {
274 for_each_possible_cpu(i)
275 *per_cpu_ptr(sbq->alloc_hint, i) = prandom_u32() % depth;
278 sbq->wake_batch = sbq_calc_wake_batch(depth);
279 atomic_set(&sbq->wake_index, 0);
281 sbq->ws = kzalloc_node(SBQ_WAIT_QUEUES * sizeof(*sbq->ws), flags, node);
282 if (!sbq->ws) {
283 free_percpu(sbq->alloc_hint);
284 sbitmap_free(&sbq->sb);
285 return -ENOMEM;
288 for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
289 init_waitqueue_head(&sbq->ws[i].wait);
290 atomic_set(&sbq->ws[i].wait_cnt, sbq->wake_batch);
293 sbq->round_robin = round_robin;
294 return 0;
296 EXPORT_SYMBOL_GPL(sbitmap_queue_init_node);
298 void sbitmap_queue_resize(struct sbitmap_queue *sbq, unsigned int depth)
300 unsigned int wake_batch = sbq_calc_wake_batch(depth);
301 int i;
303 if (sbq->wake_batch != wake_batch) {
304 WRITE_ONCE(sbq->wake_batch, wake_batch);
306 * Pairs with the memory barrier in sbq_wake_up() to ensure that
307 * the batch size is updated before the wait counts.
309 smp_mb__before_atomic();
310 for (i = 0; i < SBQ_WAIT_QUEUES; i++)
311 atomic_set(&sbq->ws[i].wait_cnt, 1);
313 sbitmap_resize(&sbq->sb, depth);
315 EXPORT_SYMBOL_GPL(sbitmap_queue_resize);
317 int __sbitmap_queue_get(struct sbitmap_queue *sbq)
319 unsigned int hint, depth;
320 int nr;
322 hint = this_cpu_read(*sbq->alloc_hint);
323 depth = READ_ONCE(sbq->sb.depth);
324 if (unlikely(hint >= depth)) {
325 hint = depth ? prandom_u32() % depth : 0;
326 this_cpu_write(*sbq->alloc_hint, hint);
328 nr = sbitmap_get(&sbq->sb, hint, sbq->round_robin);
330 if (nr == -1) {
331 /* If the map is full, a hint won't do us much good. */
332 this_cpu_write(*sbq->alloc_hint, 0);
333 } else if (nr == hint || unlikely(sbq->round_robin)) {
334 /* Only update the hint if we used it. */
335 hint = nr + 1;
336 if (hint >= depth - 1)
337 hint = 0;
338 this_cpu_write(*sbq->alloc_hint, hint);
341 return nr;
343 EXPORT_SYMBOL_GPL(__sbitmap_queue_get);
345 static struct sbq_wait_state *sbq_wake_ptr(struct sbitmap_queue *sbq)
347 int i, wake_index;
349 wake_index = atomic_read(&sbq->wake_index);
350 for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
351 struct sbq_wait_state *ws = &sbq->ws[wake_index];
353 if (waitqueue_active(&ws->wait)) {
354 int o = atomic_read(&sbq->wake_index);
356 if (wake_index != o)
357 atomic_cmpxchg(&sbq->wake_index, o, wake_index);
358 return ws;
361 wake_index = sbq_index_inc(wake_index);
364 return NULL;
367 static void sbq_wake_up(struct sbitmap_queue *sbq)
369 struct sbq_wait_state *ws;
370 unsigned int wake_batch;
371 int wait_cnt;
374 * Pairs with the memory barrier in set_current_state() to ensure the
375 * proper ordering of clear_bit()/waitqueue_active() in the waker and
376 * test_and_set_bit()/prepare_to_wait()/finish_wait() in the waiter. See
377 * the comment on waitqueue_active(). This is __after_atomic because we
378 * just did clear_bit() in the caller.
380 smp_mb__after_atomic();
382 ws = sbq_wake_ptr(sbq);
383 if (!ws)
384 return;
386 wait_cnt = atomic_dec_return(&ws->wait_cnt);
387 if (wait_cnt <= 0) {
388 wake_batch = READ_ONCE(sbq->wake_batch);
390 * Pairs with the memory barrier in sbitmap_queue_resize() to
391 * ensure that we see the batch size update before the wait
392 * count is reset.
394 smp_mb__before_atomic();
396 * If there are concurrent callers to sbq_wake_up(), the last
397 * one to decrement the wait count below zero will bump it back
398 * up. If there is a concurrent resize, the count reset will
399 * either cause the cmpxchg to fail or overwrite after the
400 * cmpxchg.
402 atomic_cmpxchg(&ws->wait_cnt, wait_cnt, wait_cnt + wake_batch);
403 sbq_index_atomic_inc(&sbq->wake_index);
404 wake_up(&ws->wait);
408 void sbitmap_queue_clear(struct sbitmap_queue *sbq, unsigned int nr,
409 unsigned int cpu)
411 sbitmap_clear_bit(&sbq->sb, nr);
412 sbq_wake_up(sbq);
413 if (likely(!sbq->round_robin && nr < sbq->sb.depth))
414 *per_cpu_ptr(sbq->alloc_hint, cpu) = nr;
416 EXPORT_SYMBOL_GPL(sbitmap_queue_clear);
418 void sbitmap_queue_wake_all(struct sbitmap_queue *sbq)
420 int i, wake_index;
423 * Pairs with the memory barrier in set_current_state() like in
424 * sbq_wake_up().
426 smp_mb();
427 wake_index = atomic_read(&sbq->wake_index);
428 for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
429 struct sbq_wait_state *ws = &sbq->ws[wake_index];
431 if (waitqueue_active(&ws->wait))
432 wake_up(&ws->wait);
434 wake_index = sbq_index_inc(wake_index);
437 EXPORT_SYMBOL_GPL(sbitmap_queue_wake_all);
439 void sbitmap_queue_show(struct sbitmap_queue *sbq, struct seq_file *m)
441 bool first;
442 int i;
444 sbitmap_show(&sbq->sb, m);
446 seq_puts(m, "alloc_hint={");
447 first = true;
448 for_each_possible_cpu(i) {
449 if (!first)
450 seq_puts(m, ", ");
451 first = false;
452 seq_printf(m, "%u", *per_cpu_ptr(sbq->alloc_hint, i));
454 seq_puts(m, "}\n");
456 seq_printf(m, "wake_batch=%u\n", sbq->wake_batch);
457 seq_printf(m, "wake_index=%d\n", atomic_read(&sbq->wake_index));
459 seq_puts(m, "ws={\n");
460 for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
461 struct sbq_wait_state *ws = &sbq->ws[i];
463 seq_printf(m, "\t{.wait_cnt=%d, .wait=%s},\n",
464 atomic_read(&ws->wait_cnt),
465 waitqueue_active(&ws->wait) ? "active" : "inactive");
467 seq_puts(m, "}\n");
469 seq_printf(m, "round_robin=%d\n", sbq->round_robin);
471 EXPORT_SYMBOL_GPL(sbitmap_queue_show);