KVM: SVM: Implement infrastructure for TSC_RATE_MSR
[linux/fpc-iii.git] / net / rds / ib.c
blobcce19f95c62467471bcc4b752b02b1d6205b14f2
1 /*
2 * Copyright (c) 2006 Oracle. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
33 #include <linux/kernel.h>
34 #include <linux/in.h>
35 #include <linux/if.h>
36 #include <linux/netdevice.h>
37 #include <linux/inetdevice.h>
38 #include <linux/if_arp.h>
39 #include <linux/delay.h>
40 #include <linux/slab.h>
42 #include "rds.h"
43 #include "ib.h"
45 static unsigned int fmr_pool_size = RDS_FMR_POOL_SIZE;
46 unsigned int fmr_message_size = RDS_FMR_SIZE + 1; /* +1 allows for unaligned MRs */
47 unsigned int rds_ib_retry_count = RDS_IB_DEFAULT_RETRY_COUNT;
49 module_param(fmr_pool_size, int, 0444);
50 MODULE_PARM_DESC(fmr_pool_size, " Max number of fmr per HCA");
51 module_param(fmr_message_size, int, 0444);
52 MODULE_PARM_DESC(fmr_message_size, " Max size of a RDMA transfer");
53 module_param(rds_ib_retry_count, int, 0444);
54 MODULE_PARM_DESC(rds_ib_retry_count, " Number of hw retries before reporting an error");
57 * we have a clumsy combination of RCU and a rwsem protecting this list
58 * because it is used both in the get_mr fast path and while blocking in
59 * the FMR flushing path.
61 DECLARE_RWSEM(rds_ib_devices_lock);
62 struct list_head rds_ib_devices;
64 /* NOTE: if also grabbing ibdev lock, grab this first */
65 DEFINE_SPINLOCK(ib_nodev_conns_lock);
66 LIST_HEAD(ib_nodev_conns);
68 static void rds_ib_nodev_connect(void)
70 struct rds_ib_connection *ic;
72 spin_lock(&ib_nodev_conns_lock);
73 list_for_each_entry(ic, &ib_nodev_conns, ib_node)
74 rds_conn_connect_if_down(ic->conn);
75 spin_unlock(&ib_nodev_conns_lock);
78 static void rds_ib_dev_shutdown(struct rds_ib_device *rds_ibdev)
80 struct rds_ib_connection *ic;
81 unsigned long flags;
83 spin_lock_irqsave(&rds_ibdev->spinlock, flags);
84 list_for_each_entry(ic, &rds_ibdev->conn_list, ib_node)
85 rds_conn_drop(ic->conn);
86 spin_unlock_irqrestore(&rds_ibdev->spinlock, flags);
90 * rds_ib_destroy_mr_pool() blocks on a few things and mrs drop references
91 * from interrupt context so we push freing off into a work struct in krdsd.
93 static void rds_ib_dev_free(struct work_struct *work)
95 struct rds_ib_ipaddr *i_ipaddr, *i_next;
96 struct rds_ib_device *rds_ibdev = container_of(work,
97 struct rds_ib_device, free_work);
99 if (rds_ibdev->mr_pool)
100 rds_ib_destroy_mr_pool(rds_ibdev->mr_pool);
101 if (rds_ibdev->mr)
102 ib_dereg_mr(rds_ibdev->mr);
103 if (rds_ibdev->pd)
104 ib_dealloc_pd(rds_ibdev->pd);
106 list_for_each_entry_safe(i_ipaddr, i_next, &rds_ibdev->ipaddr_list, list) {
107 list_del(&i_ipaddr->list);
108 kfree(i_ipaddr);
111 kfree(rds_ibdev);
114 void rds_ib_dev_put(struct rds_ib_device *rds_ibdev)
116 BUG_ON(atomic_read(&rds_ibdev->refcount) <= 0);
117 if (atomic_dec_and_test(&rds_ibdev->refcount))
118 queue_work(rds_wq, &rds_ibdev->free_work);
121 static void rds_ib_add_one(struct ib_device *device)
123 struct rds_ib_device *rds_ibdev;
124 struct ib_device_attr *dev_attr;
126 /* Only handle IB (no iWARP) devices */
127 if (device->node_type != RDMA_NODE_IB_CA)
128 return;
130 dev_attr = kmalloc(sizeof *dev_attr, GFP_KERNEL);
131 if (!dev_attr)
132 return;
134 if (ib_query_device(device, dev_attr)) {
135 rdsdebug("Query device failed for %s\n", device->name);
136 goto free_attr;
139 rds_ibdev = kzalloc_node(sizeof(struct rds_ib_device), GFP_KERNEL,
140 ibdev_to_node(device));
141 if (!rds_ibdev)
142 goto free_attr;
144 spin_lock_init(&rds_ibdev->spinlock);
145 atomic_set(&rds_ibdev->refcount, 1);
146 INIT_WORK(&rds_ibdev->free_work, rds_ib_dev_free);
148 rds_ibdev->max_wrs = dev_attr->max_qp_wr;
149 rds_ibdev->max_sge = min(dev_attr->max_sge, RDS_IB_MAX_SGE);
151 rds_ibdev->fmr_max_remaps = dev_attr->max_map_per_fmr?: 32;
152 rds_ibdev->max_fmrs = dev_attr->max_fmr ?
153 min_t(unsigned int, dev_attr->max_fmr, fmr_pool_size) :
154 fmr_pool_size;
156 rds_ibdev->max_initiator_depth = dev_attr->max_qp_init_rd_atom;
157 rds_ibdev->max_responder_resources = dev_attr->max_qp_rd_atom;
159 rds_ibdev->dev = device;
160 rds_ibdev->pd = ib_alloc_pd(device);
161 if (IS_ERR(rds_ibdev->pd)) {
162 rds_ibdev->pd = NULL;
163 goto put_dev;
166 rds_ibdev->mr = ib_get_dma_mr(rds_ibdev->pd, IB_ACCESS_LOCAL_WRITE);
167 if (IS_ERR(rds_ibdev->mr)) {
168 rds_ibdev->mr = NULL;
169 goto put_dev;
172 rds_ibdev->mr_pool = rds_ib_create_mr_pool(rds_ibdev);
173 if (IS_ERR(rds_ibdev->mr_pool)) {
174 rds_ibdev->mr_pool = NULL;
175 goto put_dev;
178 INIT_LIST_HEAD(&rds_ibdev->ipaddr_list);
179 INIT_LIST_HEAD(&rds_ibdev->conn_list);
181 down_write(&rds_ib_devices_lock);
182 list_add_tail_rcu(&rds_ibdev->list, &rds_ib_devices);
183 up_write(&rds_ib_devices_lock);
184 atomic_inc(&rds_ibdev->refcount);
186 ib_set_client_data(device, &rds_ib_client, rds_ibdev);
187 atomic_inc(&rds_ibdev->refcount);
189 rds_ib_nodev_connect();
191 put_dev:
192 rds_ib_dev_put(rds_ibdev);
193 free_attr:
194 kfree(dev_attr);
198 * New connections use this to find the device to associate with the
199 * connection. It's not in the fast path so we're not concerned about the
200 * performance of the IB call. (As of this writing, it uses an interrupt
201 * blocking spinlock to serialize walking a per-device list of all registered
202 * clients.)
204 * RCU is used to handle incoming connections racing with device teardown.
205 * Rather than use a lock to serialize removal from the client_data and
206 * getting a new reference, we use an RCU grace period. The destruction
207 * path removes the device from client_data and then waits for all RCU
208 * readers to finish.
210 * A new connection can get NULL from this if its arriving on a
211 * device that is in the process of being removed.
213 struct rds_ib_device *rds_ib_get_client_data(struct ib_device *device)
215 struct rds_ib_device *rds_ibdev;
217 rcu_read_lock();
218 rds_ibdev = ib_get_client_data(device, &rds_ib_client);
219 if (rds_ibdev)
220 atomic_inc(&rds_ibdev->refcount);
221 rcu_read_unlock();
222 return rds_ibdev;
226 * The IB stack is letting us know that a device is going away. This can
227 * happen if the underlying HCA driver is removed or if PCI hotplug is removing
228 * the pci function, for example.
230 * This can be called at any time and can be racing with any other RDS path.
232 static void rds_ib_remove_one(struct ib_device *device)
234 struct rds_ib_device *rds_ibdev;
236 rds_ibdev = ib_get_client_data(device, &rds_ib_client);
237 if (!rds_ibdev)
238 return;
240 rds_ib_dev_shutdown(rds_ibdev);
242 /* stop connection attempts from getting a reference to this device. */
243 ib_set_client_data(device, &rds_ib_client, NULL);
245 down_write(&rds_ib_devices_lock);
246 list_del_rcu(&rds_ibdev->list);
247 up_write(&rds_ib_devices_lock);
250 * This synchronize rcu is waiting for readers of both the ib
251 * client data and the devices list to finish before we drop
252 * both of those references.
254 synchronize_rcu();
255 rds_ib_dev_put(rds_ibdev);
256 rds_ib_dev_put(rds_ibdev);
259 struct ib_client rds_ib_client = {
260 .name = "rds_ib",
261 .add = rds_ib_add_one,
262 .remove = rds_ib_remove_one
265 static int rds_ib_conn_info_visitor(struct rds_connection *conn,
266 void *buffer)
268 struct rds_info_rdma_connection *iinfo = buffer;
269 struct rds_ib_connection *ic;
271 /* We will only ever look at IB transports */
272 if (conn->c_trans != &rds_ib_transport)
273 return 0;
275 iinfo->src_addr = conn->c_laddr;
276 iinfo->dst_addr = conn->c_faddr;
278 memset(&iinfo->src_gid, 0, sizeof(iinfo->src_gid));
279 memset(&iinfo->dst_gid, 0, sizeof(iinfo->dst_gid));
280 if (rds_conn_state(conn) == RDS_CONN_UP) {
281 struct rds_ib_device *rds_ibdev;
282 struct rdma_dev_addr *dev_addr;
284 ic = conn->c_transport_data;
285 dev_addr = &ic->i_cm_id->route.addr.dev_addr;
287 rdma_addr_get_sgid(dev_addr, (union ib_gid *) &iinfo->src_gid);
288 rdma_addr_get_dgid(dev_addr, (union ib_gid *) &iinfo->dst_gid);
290 rds_ibdev = ic->rds_ibdev;
291 iinfo->max_send_wr = ic->i_send_ring.w_nr;
292 iinfo->max_recv_wr = ic->i_recv_ring.w_nr;
293 iinfo->max_send_sge = rds_ibdev->max_sge;
294 rds_ib_get_mr_info(rds_ibdev, iinfo);
296 return 1;
299 static void rds_ib_ic_info(struct socket *sock, unsigned int len,
300 struct rds_info_iterator *iter,
301 struct rds_info_lengths *lens)
303 rds_for_each_conn_info(sock, len, iter, lens,
304 rds_ib_conn_info_visitor,
305 sizeof(struct rds_info_rdma_connection));
310 * Early RDS/IB was built to only bind to an address if there is an IPoIB
311 * device with that address set.
313 * If it were me, I'd advocate for something more flexible. Sending and
314 * receiving should be device-agnostic. Transports would try and maintain
315 * connections between peers who have messages queued. Userspace would be
316 * allowed to influence which paths have priority. We could call userspace
317 * asserting this policy "routing".
319 static int rds_ib_laddr_check(__be32 addr)
321 int ret;
322 struct rdma_cm_id *cm_id;
323 struct sockaddr_in sin;
325 /* Create a CMA ID and try to bind it. This catches both
326 * IB and iWARP capable NICs.
328 cm_id = rdma_create_id(NULL, NULL, RDMA_PS_TCP);
329 if (IS_ERR(cm_id))
330 return PTR_ERR(cm_id);
332 memset(&sin, 0, sizeof(sin));
333 sin.sin_family = AF_INET;
334 sin.sin_addr.s_addr = addr;
336 /* rdma_bind_addr will only succeed for IB & iWARP devices */
337 ret = rdma_bind_addr(cm_id, (struct sockaddr *)&sin);
338 /* due to this, we will claim to support iWARP devices unless we
339 check node_type. */
340 if (ret || cm_id->device->node_type != RDMA_NODE_IB_CA)
341 ret = -EADDRNOTAVAIL;
343 rdsdebug("addr %pI4 ret %d node type %d\n",
344 &addr, ret,
345 cm_id->device ? cm_id->device->node_type : -1);
347 rdma_destroy_id(cm_id);
349 return ret;
352 static void rds_ib_unregister_client(void)
354 ib_unregister_client(&rds_ib_client);
355 /* wait for rds_ib_dev_free() to complete */
356 flush_workqueue(rds_wq);
359 void rds_ib_exit(void)
361 rds_info_deregister_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info);
362 rds_ib_unregister_client();
363 rds_ib_destroy_nodev_conns();
364 rds_ib_sysctl_exit();
365 rds_ib_recv_exit();
366 rds_trans_unregister(&rds_ib_transport);
369 struct rds_transport rds_ib_transport = {
370 .laddr_check = rds_ib_laddr_check,
371 .xmit_complete = rds_ib_xmit_complete,
372 .xmit = rds_ib_xmit,
373 .xmit_rdma = rds_ib_xmit_rdma,
374 .xmit_atomic = rds_ib_xmit_atomic,
375 .recv = rds_ib_recv,
376 .conn_alloc = rds_ib_conn_alloc,
377 .conn_free = rds_ib_conn_free,
378 .conn_connect = rds_ib_conn_connect,
379 .conn_shutdown = rds_ib_conn_shutdown,
380 .inc_copy_to_user = rds_ib_inc_copy_to_user,
381 .inc_free = rds_ib_inc_free,
382 .cm_initiate_connect = rds_ib_cm_initiate_connect,
383 .cm_handle_connect = rds_ib_cm_handle_connect,
384 .cm_connect_complete = rds_ib_cm_connect_complete,
385 .stats_info_copy = rds_ib_stats_info_copy,
386 .exit = rds_ib_exit,
387 .get_mr = rds_ib_get_mr,
388 .sync_mr = rds_ib_sync_mr,
389 .free_mr = rds_ib_free_mr,
390 .flush_mrs = rds_ib_flush_mrs,
391 .t_owner = THIS_MODULE,
392 .t_name = "infiniband",
393 .t_type = RDS_TRANS_IB
396 int rds_ib_init(void)
398 int ret;
400 INIT_LIST_HEAD(&rds_ib_devices);
402 ret = ib_register_client(&rds_ib_client);
403 if (ret)
404 goto out;
406 ret = rds_ib_sysctl_init();
407 if (ret)
408 goto out_ibreg;
410 ret = rds_ib_recv_init();
411 if (ret)
412 goto out_sysctl;
414 ret = rds_trans_register(&rds_ib_transport);
415 if (ret)
416 goto out_recv;
418 rds_info_register_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info);
420 goto out;
422 out_recv:
423 rds_ib_recv_exit();
424 out_sysctl:
425 rds_ib_sysctl_exit();
426 out_ibreg:
427 rds_ib_unregister_client();
428 out:
429 return ret;
432 MODULE_LICENSE("GPL");