wireless: allow 40 MHz on world roaming channels 12/13
[linux/fpc-iii.git] / net / wireless / reg.c
blob0b08905ea259187815fe206c6651837c40321640
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 /**
13 * DOC: Wireless regulatory infrastructure
15 * The usual implementation is for a driver to read a device EEPROM to
16 * determine which regulatory domain it should be operating under, then
17 * looking up the allowable channels in a driver-local table and finally
18 * registering those channels in the wiphy structure.
20 * Another set of compliance enforcement is for drivers to use their
21 * own compliance limits which can be stored on the EEPROM. The host
22 * driver or firmware may ensure these are used.
24 * In addition to all this we provide an extra layer of regulatory
25 * conformance. For drivers which do not have any regulatory
26 * information CRDA provides the complete regulatory solution.
27 * For others it provides a community effort on further restrictions
28 * to enhance compliance.
30 * Note: When number of rules --> infinity we will not be able to
31 * index on alpha2 any more, instead we'll probably have to
32 * rely on some SHA1 checksum of the regdomain for example.
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
38 #include <linux/kernel.h>
39 #include <linux/export.h>
40 #include <linux/slab.h>
41 #include <linux/list.h>
42 #include <linux/random.h>
43 #include <linux/ctype.h>
44 #include <linux/nl80211.h>
45 #include <linux/platform_device.h>
46 #include <linux/moduleparam.h>
47 #include <net/cfg80211.h>
48 #include "core.h"
49 #include "reg.h"
50 #include "regdb.h"
51 #include "nl80211.h"
53 #ifdef CONFIG_CFG80211_REG_DEBUG
54 #define REG_DBG_PRINT(format, args...) \
55 printk(KERN_DEBUG pr_fmt(format), ##args)
56 #else
57 #define REG_DBG_PRINT(args...)
58 #endif
60 static struct regulatory_request core_request_world = {
61 .initiator = NL80211_REGDOM_SET_BY_CORE,
62 .alpha2[0] = '0',
63 .alpha2[1] = '0',
64 .intersect = false,
65 .processed = true,
66 .country_ie_env = ENVIRON_ANY,
69 /* Receipt of information from last regulatory request */
70 static struct regulatory_request *last_request = &core_request_world;
72 /* To trigger userspace events */
73 static struct platform_device *reg_pdev;
75 static struct device_type reg_device_type = {
76 .uevent = reg_device_uevent,
80 * Central wireless core regulatory domains, we only need two,
81 * the current one and a world regulatory domain in case we have no
82 * information to give us an alpha2
84 const struct ieee80211_regdomain *cfg80211_regdomain;
87 * Protects static reg.c components:
88 * - cfg80211_world_regdom
89 * - cfg80211_regdom
90 * - last_request
92 static DEFINE_MUTEX(reg_mutex);
94 static inline void assert_reg_lock(void)
96 lockdep_assert_held(&reg_mutex);
99 /* Used to queue up regulatory hints */
100 static LIST_HEAD(reg_requests_list);
101 static spinlock_t reg_requests_lock;
103 /* Used to queue up beacon hints for review */
104 static LIST_HEAD(reg_pending_beacons);
105 static spinlock_t reg_pending_beacons_lock;
107 /* Used to keep track of processed beacon hints */
108 static LIST_HEAD(reg_beacon_list);
110 struct reg_beacon {
111 struct list_head list;
112 struct ieee80211_channel chan;
115 static void reg_todo(struct work_struct *work);
116 static DECLARE_WORK(reg_work, reg_todo);
118 static void reg_timeout_work(struct work_struct *work);
119 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
121 /* We keep a static world regulatory domain in case of the absence of CRDA */
122 static const struct ieee80211_regdomain world_regdom = {
123 .n_reg_rules = 5,
124 .alpha2 = "00",
125 .reg_rules = {
126 /* IEEE 802.11b/g, channels 1..11 */
127 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
128 /* IEEE 802.11b/g, channels 12..13. */
129 REG_RULE(2467-10, 2472+10, 40, 6, 20,
130 NL80211_RRF_PASSIVE_SCAN |
131 NL80211_RRF_NO_IBSS),
132 /* IEEE 802.11 channel 14 - Only JP enables
133 * this and for 802.11b only */
134 REG_RULE(2484-10, 2484+10, 20, 6, 20,
135 NL80211_RRF_PASSIVE_SCAN |
136 NL80211_RRF_NO_IBSS |
137 NL80211_RRF_NO_OFDM),
138 /* IEEE 802.11a, channel 36..48 */
139 REG_RULE(5180-10, 5240+10, 40, 6, 20,
140 NL80211_RRF_PASSIVE_SCAN |
141 NL80211_RRF_NO_IBSS),
143 /* NB: 5260 MHz - 5700 MHz requies DFS */
145 /* IEEE 802.11a, channel 149..165 */
146 REG_RULE(5745-10, 5825+10, 40, 6, 20,
147 NL80211_RRF_PASSIVE_SCAN |
148 NL80211_RRF_NO_IBSS),
152 static const struct ieee80211_regdomain *cfg80211_world_regdom =
153 &world_regdom;
155 static char *ieee80211_regdom = "00";
156 static char user_alpha2[2];
158 module_param(ieee80211_regdom, charp, 0444);
159 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
161 static void reset_regdomains(bool full_reset)
163 /* avoid freeing static information or freeing something twice */
164 if (cfg80211_regdomain == cfg80211_world_regdom)
165 cfg80211_regdomain = NULL;
166 if (cfg80211_world_regdom == &world_regdom)
167 cfg80211_world_regdom = NULL;
168 if (cfg80211_regdomain == &world_regdom)
169 cfg80211_regdomain = NULL;
171 kfree(cfg80211_regdomain);
172 kfree(cfg80211_world_regdom);
174 cfg80211_world_regdom = &world_regdom;
175 cfg80211_regdomain = NULL;
177 if (!full_reset)
178 return;
180 if (last_request != &core_request_world)
181 kfree(last_request);
182 last_request = &core_request_world;
186 * Dynamic world regulatory domain requested by the wireless
187 * core upon initialization
189 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
191 BUG_ON(!last_request);
193 reset_regdomains(false);
195 cfg80211_world_regdom = rd;
196 cfg80211_regdomain = rd;
199 bool is_world_regdom(const char *alpha2)
201 if (!alpha2)
202 return false;
203 if (alpha2[0] == '0' && alpha2[1] == '0')
204 return true;
205 return false;
208 static bool is_alpha2_set(const char *alpha2)
210 if (!alpha2)
211 return false;
212 if (alpha2[0] != 0 && alpha2[1] != 0)
213 return true;
214 return false;
217 static bool is_unknown_alpha2(const char *alpha2)
219 if (!alpha2)
220 return false;
222 * Special case where regulatory domain was built by driver
223 * but a specific alpha2 cannot be determined
225 if (alpha2[0] == '9' && alpha2[1] == '9')
226 return true;
227 return false;
230 static bool is_intersected_alpha2(const char *alpha2)
232 if (!alpha2)
233 return false;
235 * Special case where regulatory domain is the
236 * result of an intersection between two regulatory domain
237 * structures
239 if (alpha2[0] == '9' && alpha2[1] == '8')
240 return true;
241 return false;
244 static bool is_an_alpha2(const char *alpha2)
246 if (!alpha2)
247 return false;
248 if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
249 return true;
250 return false;
253 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
255 if (!alpha2_x || !alpha2_y)
256 return false;
257 if (alpha2_x[0] == alpha2_y[0] &&
258 alpha2_x[1] == alpha2_y[1])
259 return true;
260 return false;
263 static bool regdom_changes(const char *alpha2)
265 assert_cfg80211_lock();
267 if (!cfg80211_regdomain)
268 return true;
269 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
270 return false;
271 return true;
275 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
276 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
277 * has ever been issued.
279 static bool is_user_regdom_saved(void)
281 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
282 return false;
284 /* This would indicate a mistake on the design */
285 if (WARN((!is_world_regdom(user_alpha2) &&
286 !is_an_alpha2(user_alpha2)),
287 "Unexpected user alpha2: %c%c\n",
288 user_alpha2[0],
289 user_alpha2[1]))
290 return false;
292 return true;
295 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
296 const struct ieee80211_regdomain *src_regd)
298 struct ieee80211_regdomain *regd;
299 int size_of_regd = 0;
300 unsigned int i;
302 size_of_regd = sizeof(struct ieee80211_regdomain) +
303 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
305 regd = kzalloc(size_of_regd, GFP_KERNEL);
306 if (!regd)
307 return -ENOMEM;
309 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
311 for (i = 0; i < src_regd->n_reg_rules; i++)
312 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
313 sizeof(struct ieee80211_reg_rule));
315 *dst_regd = regd;
316 return 0;
319 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
320 struct reg_regdb_search_request {
321 char alpha2[2];
322 struct list_head list;
325 static LIST_HEAD(reg_regdb_search_list);
326 static DEFINE_MUTEX(reg_regdb_search_mutex);
328 static void reg_regdb_search(struct work_struct *work)
330 struct reg_regdb_search_request *request;
331 const struct ieee80211_regdomain *curdom, *regdom;
332 int i, r;
333 bool set_reg = false;
335 mutex_lock(&cfg80211_mutex);
337 mutex_lock(&reg_regdb_search_mutex);
338 while (!list_empty(&reg_regdb_search_list)) {
339 request = list_first_entry(&reg_regdb_search_list,
340 struct reg_regdb_search_request,
341 list);
342 list_del(&request->list);
344 for (i=0; i<reg_regdb_size; i++) {
345 curdom = reg_regdb[i];
347 if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
348 r = reg_copy_regd(&regdom, curdom);
349 if (r)
350 break;
351 set_reg = true;
352 break;
356 kfree(request);
358 mutex_unlock(&reg_regdb_search_mutex);
360 if (set_reg)
361 set_regdom(regdom);
363 mutex_unlock(&cfg80211_mutex);
366 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
368 static void reg_regdb_query(const char *alpha2)
370 struct reg_regdb_search_request *request;
372 if (!alpha2)
373 return;
375 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
376 if (!request)
377 return;
379 memcpy(request->alpha2, alpha2, 2);
381 mutex_lock(&reg_regdb_search_mutex);
382 list_add_tail(&request->list, &reg_regdb_search_list);
383 mutex_unlock(&reg_regdb_search_mutex);
385 schedule_work(&reg_regdb_work);
388 /* Feel free to add any other sanity checks here */
389 static void reg_regdb_size_check(void)
391 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
392 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
394 #else
395 static inline void reg_regdb_size_check(void) {}
396 static inline void reg_regdb_query(const char *alpha2) {}
397 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
400 * This lets us keep regulatory code which is updated on a regulatory
401 * basis in userspace. Country information is filled in by
402 * reg_device_uevent
404 static int call_crda(const char *alpha2)
406 if (!is_world_regdom((char *) alpha2))
407 pr_info("Calling CRDA for country: %c%c\n",
408 alpha2[0], alpha2[1]);
409 else
410 pr_info("Calling CRDA to update world regulatory domain\n");
412 /* query internal regulatory database (if it exists) */
413 reg_regdb_query(alpha2);
415 return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
418 /* Used by nl80211 before kmalloc'ing our regulatory domain */
419 bool reg_is_valid_request(const char *alpha2)
421 assert_cfg80211_lock();
423 if (!last_request)
424 return false;
426 return alpha2_equal(last_request->alpha2, alpha2);
429 /* Sanity check on a regulatory rule */
430 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
432 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
433 u32 freq_diff;
435 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
436 return false;
438 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
439 return false;
441 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
443 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
444 freq_range->max_bandwidth_khz > freq_diff)
445 return false;
447 return true;
450 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
452 const struct ieee80211_reg_rule *reg_rule = NULL;
453 unsigned int i;
455 if (!rd->n_reg_rules)
456 return false;
458 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
459 return false;
461 for (i = 0; i < rd->n_reg_rules; i++) {
462 reg_rule = &rd->reg_rules[i];
463 if (!is_valid_reg_rule(reg_rule))
464 return false;
467 return true;
470 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
471 u32 center_freq_khz,
472 u32 bw_khz)
474 u32 start_freq_khz, end_freq_khz;
476 start_freq_khz = center_freq_khz - (bw_khz/2);
477 end_freq_khz = center_freq_khz + (bw_khz/2);
479 if (start_freq_khz >= freq_range->start_freq_khz &&
480 end_freq_khz <= freq_range->end_freq_khz)
481 return true;
483 return false;
487 * freq_in_rule_band - tells us if a frequency is in a frequency band
488 * @freq_range: frequency rule we want to query
489 * @freq_khz: frequency we are inquiring about
491 * This lets us know if a specific frequency rule is or is not relevant to
492 * a specific frequency's band. Bands are device specific and artificial
493 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
494 * safe for now to assume that a frequency rule should not be part of a
495 * frequency's band if the start freq or end freq are off by more than 2 GHz.
496 * This resolution can be lowered and should be considered as we add
497 * regulatory rule support for other "bands".
499 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
500 u32 freq_khz)
502 #define ONE_GHZ_IN_KHZ 1000000
503 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
504 return true;
505 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
506 return true;
507 return false;
508 #undef ONE_GHZ_IN_KHZ
512 * Helper for regdom_intersect(), this does the real
513 * mathematical intersection fun
515 static int reg_rules_intersect(
516 const struct ieee80211_reg_rule *rule1,
517 const struct ieee80211_reg_rule *rule2,
518 struct ieee80211_reg_rule *intersected_rule)
520 const struct ieee80211_freq_range *freq_range1, *freq_range2;
521 struct ieee80211_freq_range *freq_range;
522 const struct ieee80211_power_rule *power_rule1, *power_rule2;
523 struct ieee80211_power_rule *power_rule;
524 u32 freq_diff;
526 freq_range1 = &rule1->freq_range;
527 freq_range2 = &rule2->freq_range;
528 freq_range = &intersected_rule->freq_range;
530 power_rule1 = &rule1->power_rule;
531 power_rule2 = &rule2->power_rule;
532 power_rule = &intersected_rule->power_rule;
534 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
535 freq_range2->start_freq_khz);
536 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
537 freq_range2->end_freq_khz);
538 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
539 freq_range2->max_bandwidth_khz);
541 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
542 if (freq_range->max_bandwidth_khz > freq_diff)
543 freq_range->max_bandwidth_khz = freq_diff;
545 power_rule->max_eirp = min(power_rule1->max_eirp,
546 power_rule2->max_eirp);
547 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
548 power_rule2->max_antenna_gain);
550 intersected_rule->flags = (rule1->flags | rule2->flags);
552 if (!is_valid_reg_rule(intersected_rule))
553 return -EINVAL;
555 return 0;
559 * regdom_intersect - do the intersection between two regulatory domains
560 * @rd1: first regulatory domain
561 * @rd2: second regulatory domain
563 * Use this function to get the intersection between two regulatory domains.
564 * Once completed we will mark the alpha2 for the rd as intersected, "98",
565 * as no one single alpha2 can represent this regulatory domain.
567 * Returns a pointer to the regulatory domain structure which will hold the
568 * resulting intersection of rules between rd1 and rd2. We will
569 * kzalloc() this structure for you.
571 static struct ieee80211_regdomain *regdom_intersect(
572 const struct ieee80211_regdomain *rd1,
573 const struct ieee80211_regdomain *rd2)
575 int r, size_of_regd;
576 unsigned int x, y;
577 unsigned int num_rules = 0, rule_idx = 0;
578 const struct ieee80211_reg_rule *rule1, *rule2;
579 struct ieee80211_reg_rule *intersected_rule;
580 struct ieee80211_regdomain *rd;
581 /* This is just a dummy holder to help us count */
582 struct ieee80211_reg_rule irule;
584 /* Uses the stack temporarily for counter arithmetic */
585 intersected_rule = &irule;
587 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
589 if (!rd1 || !rd2)
590 return NULL;
593 * First we get a count of the rules we'll need, then we actually
594 * build them. This is to so we can malloc() and free() a
595 * regdomain once. The reason we use reg_rules_intersect() here
596 * is it will return -EINVAL if the rule computed makes no sense.
597 * All rules that do check out OK are valid.
600 for (x = 0; x < rd1->n_reg_rules; x++) {
601 rule1 = &rd1->reg_rules[x];
602 for (y = 0; y < rd2->n_reg_rules; y++) {
603 rule2 = &rd2->reg_rules[y];
604 if (!reg_rules_intersect(rule1, rule2,
605 intersected_rule))
606 num_rules++;
607 memset(intersected_rule, 0,
608 sizeof(struct ieee80211_reg_rule));
612 if (!num_rules)
613 return NULL;
615 size_of_regd = sizeof(struct ieee80211_regdomain) +
616 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
618 rd = kzalloc(size_of_regd, GFP_KERNEL);
619 if (!rd)
620 return NULL;
622 for (x = 0; x < rd1->n_reg_rules; x++) {
623 rule1 = &rd1->reg_rules[x];
624 for (y = 0; y < rd2->n_reg_rules; y++) {
625 rule2 = &rd2->reg_rules[y];
627 * This time around instead of using the stack lets
628 * write to the target rule directly saving ourselves
629 * a memcpy()
631 intersected_rule = &rd->reg_rules[rule_idx];
632 r = reg_rules_intersect(rule1, rule2,
633 intersected_rule);
635 * No need to memset here the intersected rule here as
636 * we're not using the stack anymore
638 if (r)
639 continue;
640 rule_idx++;
644 if (rule_idx != num_rules) {
645 kfree(rd);
646 return NULL;
649 rd->n_reg_rules = num_rules;
650 rd->alpha2[0] = '9';
651 rd->alpha2[1] = '8';
653 return rd;
657 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
658 * want to just have the channel structure use these
660 static u32 map_regdom_flags(u32 rd_flags)
662 u32 channel_flags = 0;
663 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
664 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
665 if (rd_flags & NL80211_RRF_NO_IBSS)
666 channel_flags |= IEEE80211_CHAN_NO_IBSS;
667 if (rd_flags & NL80211_RRF_DFS)
668 channel_flags |= IEEE80211_CHAN_RADAR;
669 return channel_flags;
672 static int freq_reg_info_regd(struct wiphy *wiphy,
673 u32 center_freq,
674 u32 desired_bw_khz,
675 const struct ieee80211_reg_rule **reg_rule,
676 const struct ieee80211_regdomain *custom_regd)
678 int i;
679 bool band_rule_found = false;
680 const struct ieee80211_regdomain *regd;
681 bool bw_fits = false;
683 if (!desired_bw_khz)
684 desired_bw_khz = MHZ_TO_KHZ(20);
686 regd = custom_regd ? custom_regd : cfg80211_regdomain;
689 * Follow the driver's regulatory domain, if present, unless a country
690 * IE has been processed or a user wants to help complaince further
692 if (!custom_regd &&
693 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
694 last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
695 wiphy->regd)
696 regd = wiphy->regd;
698 if (!regd)
699 return -EINVAL;
701 for (i = 0; i < regd->n_reg_rules; i++) {
702 const struct ieee80211_reg_rule *rr;
703 const struct ieee80211_freq_range *fr = NULL;
705 rr = &regd->reg_rules[i];
706 fr = &rr->freq_range;
709 * We only need to know if one frequency rule was
710 * was in center_freq's band, that's enough, so lets
711 * not overwrite it once found
713 if (!band_rule_found)
714 band_rule_found = freq_in_rule_band(fr, center_freq);
716 bw_fits = reg_does_bw_fit(fr,
717 center_freq,
718 desired_bw_khz);
720 if (band_rule_found && bw_fits) {
721 *reg_rule = rr;
722 return 0;
726 if (!band_rule_found)
727 return -ERANGE;
729 return -EINVAL;
732 int freq_reg_info(struct wiphy *wiphy,
733 u32 center_freq,
734 u32 desired_bw_khz,
735 const struct ieee80211_reg_rule **reg_rule)
737 assert_cfg80211_lock();
738 return freq_reg_info_regd(wiphy,
739 center_freq,
740 desired_bw_khz,
741 reg_rule,
742 NULL);
744 EXPORT_SYMBOL(freq_reg_info);
746 #ifdef CONFIG_CFG80211_REG_DEBUG
747 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
749 switch (initiator) {
750 case NL80211_REGDOM_SET_BY_CORE:
751 return "Set by core";
752 case NL80211_REGDOM_SET_BY_USER:
753 return "Set by user";
754 case NL80211_REGDOM_SET_BY_DRIVER:
755 return "Set by driver";
756 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
757 return "Set by country IE";
758 default:
759 WARN_ON(1);
760 return "Set by bug";
764 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
765 u32 desired_bw_khz,
766 const struct ieee80211_reg_rule *reg_rule)
768 const struct ieee80211_power_rule *power_rule;
769 const struct ieee80211_freq_range *freq_range;
770 char max_antenna_gain[32];
772 power_rule = &reg_rule->power_rule;
773 freq_range = &reg_rule->freq_range;
775 if (!power_rule->max_antenna_gain)
776 snprintf(max_antenna_gain, 32, "N/A");
777 else
778 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
780 REG_DBG_PRINT("Updating information on frequency %d MHz "
781 "for a %d MHz width channel with regulatory rule:\n",
782 chan->center_freq,
783 KHZ_TO_MHZ(desired_bw_khz));
785 REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
786 freq_range->start_freq_khz,
787 freq_range->end_freq_khz,
788 freq_range->max_bandwidth_khz,
789 max_antenna_gain,
790 power_rule->max_eirp);
792 #else
793 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
794 u32 desired_bw_khz,
795 const struct ieee80211_reg_rule *reg_rule)
797 return;
799 #endif
802 * Note that right now we assume the desired channel bandwidth
803 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
804 * per channel, the primary and the extension channel). To support
805 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
806 * new ieee80211_channel.target_bw and re run the regulatory check
807 * on the wiphy with the target_bw specified. Then we can simply use
808 * that below for the desired_bw_khz below.
810 static void handle_channel(struct wiphy *wiphy,
811 enum nl80211_reg_initiator initiator,
812 enum ieee80211_band band,
813 unsigned int chan_idx)
815 int r;
816 u32 flags, bw_flags = 0;
817 u32 desired_bw_khz = MHZ_TO_KHZ(20);
818 const struct ieee80211_reg_rule *reg_rule = NULL;
819 const struct ieee80211_power_rule *power_rule = NULL;
820 const struct ieee80211_freq_range *freq_range = NULL;
821 struct ieee80211_supported_band *sband;
822 struct ieee80211_channel *chan;
823 struct wiphy *request_wiphy = NULL;
825 assert_cfg80211_lock();
827 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
829 sband = wiphy->bands[band];
830 BUG_ON(chan_idx >= sband->n_channels);
831 chan = &sband->channels[chan_idx];
833 flags = chan->orig_flags;
835 r = freq_reg_info(wiphy,
836 MHZ_TO_KHZ(chan->center_freq),
837 desired_bw_khz,
838 &reg_rule);
840 if (r) {
842 * We will disable all channels that do not match our
843 * received regulatory rule unless the hint is coming
844 * from a Country IE and the Country IE had no information
845 * about a band. The IEEE 802.11 spec allows for an AP
846 * to send only a subset of the regulatory rules allowed,
847 * so an AP in the US that only supports 2.4 GHz may only send
848 * a country IE with information for the 2.4 GHz band
849 * while 5 GHz is still supported.
851 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
852 r == -ERANGE)
853 return;
855 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
856 chan->flags = IEEE80211_CHAN_DISABLED;
857 return;
860 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
862 power_rule = &reg_rule->power_rule;
863 freq_range = &reg_rule->freq_range;
865 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
866 bw_flags = IEEE80211_CHAN_NO_HT40;
868 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
869 request_wiphy && request_wiphy == wiphy &&
870 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
872 * This guarantees the driver's requested regulatory domain
873 * will always be used as a base for further regulatory
874 * settings
876 chan->flags = chan->orig_flags =
877 map_regdom_flags(reg_rule->flags) | bw_flags;
878 chan->max_antenna_gain = chan->orig_mag =
879 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
880 chan->max_power = chan->orig_mpwr =
881 (int) MBM_TO_DBM(power_rule->max_eirp);
882 return;
885 chan->beacon_found = false;
886 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
887 chan->max_antenna_gain = min(chan->orig_mag,
888 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
889 if (chan->orig_mpwr)
890 chan->max_power = min(chan->orig_mpwr,
891 (int) MBM_TO_DBM(power_rule->max_eirp));
892 else
893 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
896 static void handle_band(struct wiphy *wiphy,
897 enum ieee80211_band band,
898 enum nl80211_reg_initiator initiator)
900 unsigned int i;
901 struct ieee80211_supported_band *sband;
903 BUG_ON(!wiphy->bands[band]);
904 sband = wiphy->bands[band];
906 for (i = 0; i < sband->n_channels; i++)
907 handle_channel(wiphy, initiator, band, i);
910 static bool ignore_reg_update(struct wiphy *wiphy,
911 enum nl80211_reg_initiator initiator)
913 if (!last_request) {
914 REG_DBG_PRINT("Ignoring regulatory request %s since "
915 "last_request is not set\n",
916 reg_initiator_name(initiator));
917 return true;
920 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
921 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
922 REG_DBG_PRINT("Ignoring regulatory request %s "
923 "since the driver uses its own custom "
924 "regulatory domain\n",
925 reg_initiator_name(initiator));
926 return true;
930 * wiphy->regd will be set once the device has its own
931 * desired regulatory domain set
933 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
934 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
935 !is_world_regdom(last_request->alpha2)) {
936 REG_DBG_PRINT("Ignoring regulatory request %s "
937 "since the driver requires its own regulatory "
938 "domain to be set first\n",
939 reg_initiator_name(initiator));
940 return true;
943 return false;
946 static void handle_reg_beacon(struct wiphy *wiphy,
947 unsigned int chan_idx,
948 struct reg_beacon *reg_beacon)
950 struct ieee80211_supported_band *sband;
951 struct ieee80211_channel *chan;
952 bool channel_changed = false;
953 struct ieee80211_channel chan_before;
955 assert_cfg80211_lock();
957 sband = wiphy->bands[reg_beacon->chan.band];
958 chan = &sband->channels[chan_idx];
960 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
961 return;
963 if (chan->beacon_found)
964 return;
966 chan->beacon_found = true;
968 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
969 return;
971 chan_before.center_freq = chan->center_freq;
972 chan_before.flags = chan->flags;
974 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
975 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
976 channel_changed = true;
979 if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
980 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
981 channel_changed = true;
984 if (channel_changed)
985 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
989 * Called when a scan on a wiphy finds a beacon on
990 * new channel
992 static void wiphy_update_new_beacon(struct wiphy *wiphy,
993 struct reg_beacon *reg_beacon)
995 unsigned int i;
996 struct ieee80211_supported_band *sband;
998 assert_cfg80211_lock();
1000 if (!wiphy->bands[reg_beacon->chan.band])
1001 return;
1003 sband = wiphy->bands[reg_beacon->chan.band];
1005 for (i = 0; i < sband->n_channels; i++)
1006 handle_reg_beacon(wiphy, i, reg_beacon);
1010 * Called upon reg changes or a new wiphy is added
1012 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1014 unsigned int i;
1015 struct ieee80211_supported_band *sband;
1016 struct reg_beacon *reg_beacon;
1018 assert_cfg80211_lock();
1020 if (list_empty(&reg_beacon_list))
1021 return;
1023 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1024 if (!wiphy->bands[reg_beacon->chan.band])
1025 continue;
1026 sband = wiphy->bands[reg_beacon->chan.band];
1027 for (i = 0; i < sband->n_channels; i++)
1028 handle_reg_beacon(wiphy, i, reg_beacon);
1032 static bool reg_is_world_roaming(struct wiphy *wiphy)
1034 if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1035 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1036 return true;
1037 if (last_request &&
1038 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1039 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1040 return true;
1041 return false;
1044 /* Reap the advantages of previously found beacons */
1045 static void reg_process_beacons(struct wiphy *wiphy)
1048 * Means we are just firing up cfg80211, so no beacons would
1049 * have been processed yet.
1051 if (!last_request)
1052 return;
1053 if (!reg_is_world_roaming(wiphy))
1054 return;
1055 wiphy_update_beacon_reg(wiphy);
1058 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1060 if (!chan)
1061 return true;
1062 if (chan->flags & IEEE80211_CHAN_DISABLED)
1063 return true;
1064 /* This would happen when regulatory rules disallow HT40 completely */
1065 if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1066 return true;
1067 return false;
1070 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1071 enum ieee80211_band band,
1072 unsigned int chan_idx)
1074 struct ieee80211_supported_band *sband;
1075 struct ieee80211_channel *channel;
1076 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1077 unsigned int i;
1079 assert_cfg80211_lock();
1081 sband = wiphy->bands[band];
1082 BUG_ON(chan_idx >= sband->n_channels);
1083 channel = &sband->channels[chan_idx];
1085 if (is_ht40_not_allowed(channel)) {
1086 channel->flags |= IEEE80211_CHAN_NO_HT40;
1087 return;
1091 * We need to ensure the extension channels exist to
1092 * be able to use HT40- or HT40+, this finds them (or not)
1094 for (i = 0; i < sband->n_channels; i++) {
1095 struct ieee80211_channel *c = &sband->channels[i];
1096 if (c->center_freq == (channel->center_freq - 20))
1097 channel_before = c;
1098 if (c->center_freq == (channel->center_freq + 20))
1099 channel_after = c;
1103 * Please note that this assumes target bandwidth is 20 MHz,
1104 * if that ever changes we also need to change the below logic
1105 * to include that as well.
1107 if (is_ht40_not_allowed(channel_before))
1108 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1109 else
1110 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1112 if (is_ht40_not_allowed(channel_after))
1113 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1114 else
1115 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1118 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1119 enum ieee80211_band band)
1121 unsigned int i;
1122 struct ieee80211_supported_band *sband;
1124 BUG_ON(!wiphy->bands[band]);
1125 sband = wiphy->bands[band];
1127 for (i = 0; i < sband->n_channels; i++)
1128 reg_process_ht_flags_channel(wiphy, band, i);
1131 static void reg_process_ht_flags(struct wiphy *wiphy)
1133 enum ieee80211_band band;
1135 if (!wiphy)
1136 return;
1138 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1139 if (wiphy->bands[band])
1140 reg_process_ht_flags_band(wiphy, band);
1145 static void wiphy_update_regulatory(struct wiphy *wiphy,
1146 enum nl80211_reg_initiator initiator)
1148 enum ieee80211_band band;
1150 assert_reg_lock();
1152 if (ignore_reg_update(wiphy, initiator))
1153 return;
1155 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1156 if (wiphy->bands[band])
1157 handle_band(wiphy, band, initiator);
1160 reg_process_beacons(wiphy);
1161 reg_process_ht_flags(wiphy);
1162 if (wiphy->reg_notifier)
1163 wiphy->reg_notifier(wiphy, last_request);
1166 void regulatory_update(struct wiphy *wiphy,
1167 enum nl80211_reg_initiator setby)
1169 mutex_lock(&reg_mutex);
1170 wiphy_update_regulatory(wiphy, setby);
1171 mutex_unlock(&reg_mutex);
1174 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1176 struct cfg80211_registered_device *rdev;
1178 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1179 wiphy_update_regulatory(&rdev->wiphy, initiator);
1182 static void handle_channel_custom(struct wiphy *wiphy,
1183 enum ieee80211_band band,
1184 unsigned int chan_idx,
1185 const struct ieee80211_regdomain *regd)
1187 int r;
1188 u32 desired_bw_khz = MHZ_TO_KHZ(20);
1189 u32 bw_flags = 0;
1190 const struct ieee80211_reg_rule *reg_rule = NULL;
1191 const struct ieee80211_power_rule *power_rule = NULL;
1192 const struct ieee80211_freq_range *freq_range = NULL;
1193 struct ieee80211_supported_band *sband;
1194 struct ieee80211_channel *chan;
1196 assert_reg_lock();
1198 sband = wiphy->bands[band];
1199 BUG_ON(chan_idx >= sband->n_channels);
1200 chan = &sband->channels[chan_idx];
1202 r = freq_reg_info_regd(wiphy,
1203 MHZ_TO_KHZ(chan->center_freq),
1204 desired_bw_khz,
1205 &reg_rule,
1206 regd);
1208 if (r) {
1209 REG_DBG_PRINT("Disabling freq %d MHz as custom "
1210 "regd has no rule that fits a %d MHz "
1211 "wide channel\n",
1212 chan->center_freq,
1213 KHZ_TO_MHZ(desired_bw_khz));
1214 chan->flags = IEEE80211_CHAN_DISABLED;
1215 return;
1218 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1220 power_rule = &reg_rule->power_rule;
1221 freq_range = &reg_rule->freq_range;
1223 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1224 bw_flags = IEEE80211_CHAN_NO_HT40;
1226 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1227 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1228 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1231 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1232 const struct ieee80211_regdomain *regd)
1234 unsigned int i;
1235 struct ieee80211_supported_band *sband;
1237 BUG_ON(!wiphy->bands[band]);
1238 sband = wiphy->bands[band];
1240 for (i = 0; i < sband->n_channels; i++)
1241 handle_channel_custom(wiphy, band, i, regd);
1244 /* Used by drivers prior to wiphy registration */
1245 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1246 const struct ieee80211_regdomain *regd)
1248 enum ieee80211_band band;
1249 unsigned int bands_set = 0;
1251 mutex_lock(&reg_mutex);
1252 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1253 if (!wiphy->bands[band])
1254 continue;
1255 handle_band_custom(wiphy, band, regd);
1256 bands_set++;
1258 mutex_unlock(&reg_mutex);
1261 * no point in calling this if it won't have any effect
1262 * on your device's supportd bands.
1264 WARN_ON(!bands_set);
1266 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1269 * Return value which can be used by ignore_request() to indicate
1270 * it has been determined we should intersect two regulatory domains
1272 #define REG_INTERSECT 1
1274 /* This has the logic which determines when a new request
1275 * should be ignored. */
1276 static int ignore_request(struct wiphy *wiphy,
1277 struct regulatory_request *pending_request)
1279 struct wiphy *last_wiphy = NULL;
1281 assert_cfg80211_lock();
1283 /* All initial requests are respected */
1284 if (!last_request)
1285 return 0;
1287 switch (pending_request->initiator) {
1288 case NL80211_REGDOM_SET_BY_CORE:
1289 return 0;
1290 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1292 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1294 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1295 return -EINVAL;
1296 if (last_request->initiator ==
1297 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1298 if (last_wiphy != wiphy) {
1300 * Two cards with two APs claiming different
1301 * Country IE alpha2s. We could
1302 * intersect them, but that seems unlikely
1303 * to be correct. Reject second one for now.
1305 if (regdom_changes(pending_request->alpha2))
1306 return -EOPNOTSUPP;
1307 return -EALREADY;
1310 * Two consecutive Country IE hints on the same wiphy.
1311 * This should be picked up early by the driver/stack
1313 if (WARN_ON(regdom_changes(pending_request->alpha2)))
1314 return 0;
1315 return -EALREADY;
1317 return 0;
1318 case NL80211_REGDOM_SET_BY_DRIVER:
1319 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1320 if (regdom_changes(pending_request->alpha2))
1321 return 0;
1322 return -EALREADY;
1326 * This would happen if you unplug and plug your card
1327 * back in or if you add a new device for which the previously
1328 * loaded card also agrees on the regulatory domain.
1330 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1331 !regdom_changes(pending_request->alpha2))
1332 return -EALREADY;
1334 return REG_INTERSECT;
1335 case NL80211_REGDOM_SET_BY_USER:
1336 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1337 return REG_INTERSECT;
1339 * If the user knows better the user should set the regdom
1340 * to their country before the IE is picked up
1342 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1343 last_request->intersect)
1344 return -EOPNOTSUPP;
1346 * Process user requests only after previous user/driver/core
1347 * requests have been processed
1349 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1350 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1351 last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1352 if (regdom_changes(last_request->alpha2))
1353 return -EAGAIN;
1356 if (!regdom_changes(pending_request->alpha2))
1357 return -EALREADY;
1359 return 0;
1362 return -EINVAL;
1365 static void reg_set_request_processed(void)
1367 bool need_more_processing = false;
1369 last_request->processed = true;
1371 spin_lock(&reg_requests_lock);
1372 if (!list_empty(&reg_requests_list))
1373 need_more_processing = true;
1374 spin_unlock(&reg_requests_lock);
1376 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1377 cancel_delayed_work(&reg_timeout);
1379 if (need_more_processing)
1380 schedule_work(&reg_work);
1384 * __regulatory_hint - hint to the wireless core a regulatory domain
1385 * @wiphy: if the hint comes from country information from an AP, this
1386 * is required to be set to the wiphy that received the information
1387 * @pending_request: the regulatory request currently being processed
1389 * The Wireless subsystem can use this function to hint to the wireless core
1390 * what it believes should be the current regulatory domain.
1392 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1393 * already been set or other standard error codes.
1395 * Caller must hold &cfg80211_mutex and &reg_mutex
1397 static int __regulatory_hint(struct wiphy *wiphy,
1398 struct regulatory_request *pending_request)
1400 bool intersect = false;
1401 int r = 0;
1403 assert_cfg80211_lock();
1405 r = ignore_request(wiphy, pending_request);
1407 if (r == REG_INTERSECT) {
1408 if (pending_request->initiator ==
1409 NL80211_REGDOM_SET_BY_DRIVER) {
1410 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1411 if (r) {
1412 kfree(pending_request);
1413 return r;
1416 intersect = true;
1417 } else if (r) {
1419 * If the regulatory domain being requested by the
1420 * driver has already been set just copy it to the
1421 * wiphy
1423 if (r == -EALREADY &&
1424 pending_request->initiator ==
1425 NL80211_REGDOM_SET_BY_DRIVER) {
1426 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1427 if (r) {
1428 kfree(pending_request);
1429 return r;
1431 r = -EALREADY;
1432 goto new_request;
1434 kfree(pending_request);
1435 return r;
1438 new_request:
1439 if (last_request != &core_request_world)
1440 kfree(last_request);
1442 last_request = pending_request;
1443 last_request->intersect = intersect;
1445 pending_request = NULL;
1447 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1448 user_alpha2[0] = last_request->alpha2[0];
1449 user_alpha2[1] = last_request->alpha2[1];
1452 /* When r == REG_INTERSECT we do need to call CRDA */
1453 if (r < 0) {
1455 * Since CRDA will not be called in this case as we already
1456 * have applied the requested regulatory domain before we just
1457 * inform userspace we have processed the request
1459 if (r == -EALREADY) {
1460 nl80211_send_reg_change_event(last_request);
1461 reg_set_request_processed();
1463 return r;
1466 return call_crda(last_request->alpha2);
1469 /* This processes *all* regulatory hints */
1470 static void reg_process_hint(struct regulatory_request *reg_request)
1472 int r = 0;
1473 struct wiphy *wiphy = NULL;
1474 enum nl80211_reg_initiator initiator = reg_request->initiator;
1476 BUG_ON(!reg_request->alpha2);
1478 if (wiphy_idx_valid(reg_request->wiphy_idx))
1479 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1481 if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1482 !wiphy) {
1483 kfree(reg_request);
1484 return;
1487 r = __regulatory_hint(wiphy, reg_request);
1488 /* This is required so that the orig_* parameters are saved */
1489 if (r == -EALREADY && wiphy &&
1490 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1491 wiphy_update_regulatory(wiphy, initiator);
1492 return;
1496 * We only time out user hints, given that they should be the only
1497 * source of bogus requests.
1499 if (r != -EALREADY &&
1500 reg_request->initiator == NL80211_REGDOM_SET_BY_USER)
1501 schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1505 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1506 * Regulatory hints come on a first come first serve basis and we
1507 * must process each one atomically.
1509 static void reg_process_pending_hints(void)
1511 struct regulatory_request *reg_request;
1513 mutex_lock(&cfg80211_mutex);
1514 mutex_lock(&reg_mutex);
1516 /* When last_request->processed becomes true this will be rescheduled */
1517 if (last_request && !last_request->processed) {
1518 REG_DBG_PRINT("Pending regulatory request, waiting "
1519 "for it to be processed...\n");
1520 goto out;
1523 spin_lock(&reg_requests_lock);
1525 if (list_empty(&reg_requests_list)) {
1526 spin_unlock(&reg_requests_lock);
1527 goto out;
1530 reg_request = list_first_entry(&reg_requests_list,
1531 struct regulatory_request,
1532 list);
1533 list_del_init(&reg_request->list);
1535 spin_unlock(&reg_requests_lock);
1537 reg_process_hint(reg_request);
1539 out:
1540 mutex_unlock(&reg_mutex);
1541 mutex_unlock(&cfg80211_mutex);
1544 /* Processes beacon hints -- this has nothing to do with country IEs */
1545 static void reg_process_pending_beacon_hints(void)
1547 struct cfg80211_registered_device *rdev;
1548 struct reg_beacon *pending_beacon, *tmp;
1551 * No need to hold the reg_mutex here as we just touch wiphys
1552 * and do not read or access regulatory variables.
1554 mutex_lock(&cfg80211_mutex);
1556 /* This goes through the _pending_ beacon list */
1557 spin_lock_bh(&reg_pending_beacons_lock);
1559 if (list_empty(&reg_pending_beacons)) {
1560 spin_unlock_bh(&reg_pending_beacons_lock);
1561 goto out;
1564 list_for_each_entry_safe(pending_beacon, tmp,
1565 &reg_pending_beacons, list) {
1567 list_del_init(&pending_beacon->list);
1569 /* Applies the beacon hint to current wiphys */
1570 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1571 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1573 /* Remembers the beacon hint for new wiphys or reg changes */
1574 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1577 spin_unlock_bh(&reg_pending_beacons_lock);
1578 out:
1579 mutex_unlock(&cfg80211_mutex);
1582 static void reg_todo(struct work_struct *work)
1584 reg_process_pending_hints();
1585 reg_process_pending_beacon_hints();
1588 static void queue_regulatory_request(struct regulatory_request *request)
1590 if (isalpha(request->alpha2[0]))
1591 request->alpha2[0] = toupper(request->alpha2[0]);
1592 if (isalpha(request->alpha2[1]))
1593 request->alpha2[1] = toupper(request->alpha2[1]);
1595 spin_lock(&reg_requests_lock);
1596 list_add_tail(&request->list, &reg_requests_list);
1597 spin_unlock(&reg_requests_lock);
1599 schedule_work(&reg_work);
1603 * Core regulatory hint -- happens during cfg80211_init()
1604 * and when we restore regulatory settings.
1606 static int regulatory_hint_core(const char *alpha2)
1608 struct regulatory_request *request;
1610 request = kzalloc(sizeof(struct regulatory_request),
1611 GFP_KERNEL);
1612 if (!request)
1613 return -ENOMEM;
1615 request->alpha2[0] = alpha2[0];
1616 request->alpha2[1] = alpha2[1];
1617 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1619 queue_regulatory_request(request);
1621 return 0;
1624 /* User hints */
1625 int regulatory_hint_user(const char *alpha2)
1627 struct regulatory_request *request;
1629 BUG_ON(!alpha2);
1631 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1632 if (!request)
1633 return -ENOMEM;
1635 request->wiphy_idx = WIPHY_IDX_STALE;
1636 request->alpha2[0] = alpha2[0];
1637 request->alpha2[1] = alpha2[1];
1638 request->initiator = NL80211_REGDOM_SET_BY_USER;
1640 queue_regulatory_request(request);
1642 return 0;
1645 /* Driver hints */
1646 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1648 struct regulatory_request *request;
1650 BUG_ON(!alpha2);
1651 BUG_ON(!wiphy);
1653 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1654 if (!request)
1655 return -ENOMEM;
1657 request->wiphy_idx = get_wiphy_idx(wiphy);
1659 /* Must have registered wiphy first */
1660 BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1662 request->alpha2[0] = alpha2[0];
1663 request->alpha2[1] = alpha2[1];
1664 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1666 queue_regulatory_request(request);
1668 return 0;
1670 EXPORT_SYMBOL(regulatory_hint);
1673 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1674 * therefore cannot iterate over the rdev list here.
1676 void regulatory_hint_11d(struct wiphy *wiphy,
1677 enum ieee80211_band band,
1678 u8 *country_ie,
1679 u8 country_ie_len)
1681 char alpha2[2];
1682 enum environment_cap env = ENVIRON_ANY;
1683 struct regulatory_request *request;
1685 mutex_lock(&reg_mutex);
1687 if (unlikely(!last_request))
1688 goto out;
1690 /* IE len must be evenly divisible by 2 */
1691 if (country_ie_len & 0x01)
1692 goto out;
1694 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1695 goto out;
1697 alpha2[0] = country_ie[0];
1698 alpha2[1] = country_ie[1];
1700 if (country_ie[2] == 'I')
1701 env = ENVIRON_INDOOR;
1702 else if (country_ie[2] == 'O')
1703 env = ENVIRON_OUTDOOR;
1706 * We will run this only upon a successful connection on cfg80211.
1707 * We leave conflict resolution to the workqueue, where can hold
1708 * cfg80211_mutex.
1710 if (likely(last_request->initiator ==
1711 NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1712 wiphy_idx_valid(last_request->wiphy_idx)))
1713 goto out;
1715 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1716 if (!request)
1717 goto out;
1719 request->wiphy_idx = get_wiphy_idx(wiphy);
1720 request->alpha2[0] = alpha2[0];
1721 request->alpha2[1] = alpha2[1];
1722 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1723 request->country_ie_env = env;
1725 mutex_unlock(&reg_mutex);
1727 queue_regulatory_request(request);
1729 return;
1731 out:
1732 mutex_unlock(&reg_mutex);
1735 static void restore_alpha2(char *alpha2, bool reset_user)
1737 /* indicates there is no alpha2 to consider for restoration */
1738 alpha2[0] = '9';
1739 alpha2[1] = '7';
1741 /* The user setting has precedence over the module parameter */
1742 if (is_user_regdom_saved()) {
1743 /* Unless we're asked to ignore it and reset it */
1744 if (reset_user) {
1745 REG_DBG_PRINT("Restoring regulatory settings "
1746 "including user preference\n");
1747 user_alpha2[0] = '9';
1748 user_alpha2[1] = '7';
1751 * If we're ignoring user settings, we still need to
1752 * check the module parameter to ensure we put things
1753 * back as they were for a full restore.
1755 if (!is_world_regdom(ieee80211_regdom)) {
1756 REG_DBG_PRINT("Keeping preference on "
1757 "module parameter ieee80211_regdom: %c%c\n",
1758 ieee80211_regdom[0],
1759 ieee80211_regdom[1]);
1760 alpha2[0] = ieee80211_regdom[0];
1761 alpha2[1] = ieee80211_regdom[1];
1763 } else {
1764 REG_DBG_PRINT("Restoring regulatory settings "
1765 "while preserving user preference for: %c%c\n",
1766 user_alpha2[0],
1767 user_alpha2[1]);
1768 alpha2[0] = user_alpha2[0];
1769 alpha2[1] = user_alpha2[1];
1771 } else if (!is_world_regdom(ieee80211_regdom)) {
1772 REG_DBG_PRINT("Keeping preference on "
1773 "module parameter ieee80211_regdom: %c%c\n",
1774 ieee80211_regdom[0],
1775 ieee80211_regdom[1]);
1776 alpha2[0] = ieee80211_regdom[0];
1777 alpha2[1] = ieee80211_regdom[1];
1778 } else
1779 REG_DBG_PRINT("Restoring regulatory settings\n");
1783 * Restoring regulatory settings involves ingoring any
1784 * possibly stale country IE information and user regulatory
1785 * settings if so desired, this includes any beacon hints
1786 * learned as we could have traveled outside to another country
1787 * after disconnection. To restore regulatory settings we do
1788 * exactly what we did at bootup:
1790 * - send a core regulatory hint
1791 * - send a user regulatory hint if applicable
1793 * Device drivers that send a regulatory hint for a specific country
1794 * keep their own regulatory domain on wiphy->regd so that does does
1795 * not need to be remembered.
1797 static void restore_regulatory_settings(bool reset_user)
1799 char alpha2[2];
1800 struct reg_beacon *reg_beacon, *btmp;
1801 struct regulatory_request *reg_request, *tmp;
1802 LIST_HEAD(tmp_reg_req_list);
1804 mutex_lock(&cfg80211_mutex);
1805 mutex_lock(&reg_mutex);
1807 reset_regdomains(true);
1808 restore_alpha2(alpha2, reset_user);
1811 * If there's any pending requests we simply
1812 * stash them to a temporary pending queue and
1813 * add then after we've restored regulatory
1814 * settings.
1816 spin_lock(&reg_requests_lock);
1817 if (!list_empty(&reg_requests_list)) {
1818 list_for_each_entry_safe(reg_request, tmp,
1819 &reg_requests_list, list) {
1820 if (reg_request->initiator !=
1821 NL80211_REGDOM_SET_BY_USER)
1822 continue;
1823 list_del(&reg_request->list);
1824 list_add_tail(&reg_request->list, &tmp_reg_req_list);
1827 spin_unlock(&reg_requests_lock);
1829 /* Clear beacon hints */
1830 spin_lock_bh(&reg_pending_beacons_lock);
1831 if (!list_empty(&reg_pending_beacons)) {
1832 list_for_each_entry_safe(reg_beacon, btmp,
1833 &reg_pending_beacons, list) {
1834 list_del(&reg_beacon->list);
1835 kfree(reg_beacon);
1838 spin_unlock_bh(&reg_pending_beacons_lock);
1840 if (!list_empty(&reg_beacon_list)) {
1841 list_for_each_entry_safe(reg_beacon, btmp,
1842 &reg_beacon_list, list) {
1843 list_del(&reg_beacon->list);
1844 kfree(reg_beacon);
1848 /* First restore to the basic regulatory settings */
1849 cfg80211_regdomain = cfg80211_world_regdom;
1851 mutex_unlock(&reg_mutex);
1852 mutex_unlock(&cfg80211_mutex);
1854 regulatory_hint_core(cfg80211_regdomain->alpha2);
1857 * This restores the ieee80211_regdom module parameter
1858 * preference or the last user requested regulatory
1859 * settings, user regulatory settings takes precedence.
1861 if (is_an_alpha2(alpha2))
1862 regulatory_hint_user(user_alpha2);
1864 if (list_empty(&tmp_reg_req_list))
1865 return;
1867 mutex_lock(&cfg80211_mutex);
1868 mutex_lock(&reg_mutex);
1870 spin_lock(&reg_requests_lock);
1871 list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
1872 REG_DBG_PRINT("Adding request for country %c%c back "
1873 "into the queue\n",
1874 reg_request->alpha2[0],
1875 reg_request->alpha2[1]);
1876 list_del(&reg_request->list);
1877 list_add_tail(&reg_request->list, &reg_requests_list);
1879 spin_unlock(&reg_requests_lock);
1881 mutex_unlock(&reg_mutex);
1882 mutex_unlock(&cfg80211_mutex);
1884 REG_DBG_PRINT("Kicking the queue\n");
1886 schedule_work(&reg_work);
1889 void regulatory_hint_disconnect(void)
1891 REG_DBG_PRINT("All devices are disconnected, going to "
1892 "restore regulatory settings\n");
1893 restore_regulatory_settings(false);
1896 static bool freq_is_chan_12_13_14(u16 freq)
1898 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1899 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1900 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1901 return true;
1902 return false;
1905 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1906 struct ieee80211_channel *beacon_chan,
1907 gfp_t gfp)
1909 struct reg_beacon *reg_beacon;
1911 if (likely((beacon_chan->beacon_found ||
1912 (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1913 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1914 !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1915 return 0;
1917 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1918 if (!reg_beacon)
1919 return -ENOMEM;
1921 REG_DBG_PRINT("Found new beacon on "
1922 "frequency: %d MHz (Ch %d) on %s\n",
1923 beacon_chan->center_freq,
1924 ieee80211_frequency_to_channel(beacon_chan->center_freq),
1925 wiphy_name(wiphy));
1927 memcpy(&reg_beacon->chan, beacon_chan,
1928 sizeof(struct ieee80211_channel));
1932 * Since we can be called from BH or and non-BH context
1933 * we must use spin_lock_bh()
1935 spin_lock_bh(&reg_pending_beacons_lock);
1936 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1937 spin_unlock_bh(&reg_pending_beacons_lock);
1939 schedule_work(&reg_work);
1941 return 0;
1944 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1946 unsigned int i;
1947 const struct ieee80211_reg_rule *reg_rule = NULL;
1948 const struct ieee80211_freq_range *freq_range = NULL;
1949 const struct ieee80211_power_rule *power_rule = NULL;
1951 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1953 for (i = 0; i < rd->n_reg_rules; i++) {
1954 reg_rule = &rd->reg_rules[i];
1955 freq_range = &reg_rule->freq_range;
1956 power_rule = &reg_rule->power_rule;
1959 * There may not be documentation for max antenna gain
1960 * in certain regions
1962 if (power_rule->max_antenna_gain)
1963 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
1964 freq_range->start_freq_khz,
1965 freq_range->end_freq_khz,
1966 freq_range->max_bandwidth_khz,
1967 power_rule->max_antenna_gain,
1968 power_rule->max_eirp);
1969 else
1970 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
1971 freq_range->start_freq_khz,
1972 freq_range->end_freq_khz,
1973 freq_range->max_bandwidth_khz,
1974 power_rule->max_eirp);
1978 static void print_regdomain(const struct ieee80211_regdomain *rd)
1981 if (is_intersected_alpha2(rd->alpha2)) {
1983 if (last_request->initiator ==
1984 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1985 struct cfg80211_registered_device *rdev;
1986 rdev = cfg80211_rdev_by_wiphy_idx(
1987 last_request->wiphy_idx);
1988 if (rdev) {
1989 pr_info("Current regulatory domain updated by AP to: %c%c\n",
1990 rdev->country_ie_alpha2[0],
1991 rdev->country_ie_alpha2[1]);
1992 } else
1993 pr_info("Current regulatory domain intersected:\n");
1994 } else
1995 pr_info("Current regulatory domain intersected:\n");
1996 } else if (is_world_regdom(rd->alpha2))
1997 pr_info("World regulatory domain updated:\n");
1998 else {
1999 if (is_unknown_alpha2(rd->alpha2))
2000 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2001 else
2002 pr_info("Regulatory domain changed to country: %c%c\n",
2003 rd->alpha2[0], rd->alpha2[1]);
2005 print_rd_rules(rd);
2008 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2010 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2011 print_rd_rules(rd);
2014 /* Takes ownership of rd only if it doesn't fail */
2015 static int __set_regdom(const struct ieee80211_regdomain *rd)
2017 const struct ieee80211_regdomain *intersected_rd = NULL;
2018 struct cfg80211_registered_device *rdev = NULL;
2019 struct wiphy *request_wiphy;
2020 /* Some basic sanity checks first */
2022 if (is_world_regdom(rd->alpha2)) {
2023 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2024 return -EINVAL;
2025 update_world_regdomain(rd);
2026 return 0;
2029 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2030 !is_unknown_alpha2(rd->alpha2))
2031 return -EINVAL;
2033 if (!last_request)
2034 return -EINVAL;
2037 * Lets only bother proceeding on the same alpha2 if the current
2038 * rd is non static (it means CRDA was present and was used last)
2039 * and the pending request came in from a country IE
2041 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2043 * If someone else asked us to change the rd lets only bother
2044 * checking if the alpha2 changes if CRDA was already called
2046 if (!regdom_changes(rd->alpha2))
2047 return -EINVAL;
2051 * Now lets set the regulatory domain, update all driver channels
2052 * and finally inform them of what we have done, in case they want
2053 * to review or adjust their own settings based on their own
2054 * internal EEPROM data
2057 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2058 return -EINVAL;
2060 if (!is_valid_rd(rd)) {
2061 pr_err("Invalid regulatory domain detected:\n");
2062 print_regdomain_info(rd);
2063 return -EINVAL;
2066 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2067 if (!request_wiphy &&
2068 (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2069 last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2070 schedule_delayed_work(&reg_timeout, 0);
2071 return -ENODEV;
2074 if (!last_request->intersect) {
2075 int r;
2077 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2078 reset_regdomains(false);
2079 cfg80211_regdomain = rd;
2080 return 0;
2084 * For a driver hint, lets copy the regulatory domain the
2085 * driver wanted to the wiphy to deal with conflicts
2089 * Userspace could have sent two replies with only
2090 * one kernel request.
2092 if (request_wiphy->regd)
2093 return -EALREADY;
2095 r = reg_copy_regd(&request_wiphy->regd, rd);
2096 if (r)
2097 return r;
2099 reset_regdomains(false);
2100 cfg80211_regdomain = rd;
2101 return 0;
2104 /* Intersection requires a bit more work */
2106 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2108 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2109 if (!intersected_rd)
2110 return -EINVAL;
2113 * We can trash what CRDA provided now.
2114 * However if a driver requested this specific regulatory
2115 * domain we keep it for its private use
2117 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2118 request_wiphy->regd = rd;
2119 else
2120 kfree(rd);
2122 rd = NULL;
2124 reset_regdomains(false);
2125 cfg80211_regdomain = intersected_rd;
2127 return 0;
2130 if (!intersected_rd)
2131 return -EINVAL;
2133 rdev = wiphy_to_dev(request_wiphy);
2135 rdev->country_ie_alpha2[0] = rd->alpha2[0];
2136 rdev->country_ie_alpha2[1] = rd->alpha2[1];
2137 rdev->env = last_request->country_ie_env;
2139 BUG_ON(intersected_rd == rd);
2141 kfree(rd);
2142 rd = NULL;
2144 reset_regdomains(false);
2145 cfg80211_regdomain = intersected_rd;
2147 return 0;
2152 * Use this call to set the current regulatory domain. Conflicts with
2153 * multiple drivers can be ironed out later. Caller must've already
2154 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2156 int set_regdom(const struct ieee80211_regdomain *rd)
2158 int r;
2160 assert_cfg80211_lock();
2162 mutex_lock(&reg_mutex);
2164 /* Note that this doesn't update the wiphys, this is done below */
2165 r = __set_regdom(rd);
2166 if (r) {
2167 kfree(rd);
2168 mutex_unlock(&reg_mutex);
2169 return r;
2172 /* This would make this whole thing pointless */
2173 if (!last_request->intersect)
2174 BUG_ON(rd != cfg80211_regdomain);
2176 /* update all wiphys now with the new established regulatory domain */
2177 update_all_wiphy_regulatory(last_request->initiator);
2179 print_regdomain(cfg80211_regdomain);
2181 nl80211_send_reg_change_event(last_request);
2183 reg_set_request_processed();
2185 mutex_unlock(&reg_mutex);
2187 return r;
2190 #ifdef CONFIG_HOTPLUG
2191 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2193 if (last_request && !last_request->processed) {
2194 if (add_uevent_var(env, "COUNTRY=%c%c",
2195 last_request->alpha2[0],
2196 last_request->alpha2[1]))
2197 return -ENOMEM;
2200 return 0;
2202 #else
2203 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2205 return -ENODEV;
2207 #endif /* CONFIG_HOTPLUG */
2209 /* Caller must hold cfg80211_mutex */
2210 void reg_device_remove(struct wiphy *wiphy)
2212 struct wiphy *request_wiphy = NULL;
2214 assert_cfg80211_lock();
2216 mutex_lock(&reg_mutex);
2218 kfree(wiphy->regd);
2220 if (last_request)
2221 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2223 if (!request_wiphy || request_wiphy != wiphy)
2224 goto out;
2226 last_request->wiphy_idx = WIPHY_IDX_STALE;
2227 last_request->country_ie_env = ENVIRON_ANY;
2228 out:
2229 mutex_unlock(&reg_mutex);
2232 static void reg_timeout_work(struct work_struct *work)
2234 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2235 "restoring regulatory settings\n");
2236 restore_regulatory_settings(true);
2239 int __init regulatory_init(void)
2241 int err = 0;
2243 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2244 if (IS_ERR(reg_pdev))
2245 return PTR_ERR(reg_pdev);
2247 reg_pdev->dev.type = &reg_device_type;
2249 spin_lock_init(&reg_requests_lock);
2250 spin_lock_init(&reg_pending_beacons_lock);
2252 reg_regdb_size_check();
2254 cfg80211_regdomain = cfg80211_world_regdom;
2256 user_alpha2[0] = '9';
2257 user_alpha2[1] = '7';
2259 /* We always try to get an update for the static regdomain */
2260 err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2261 if (err) {
2262 if (err == -ENOMEM)
2263 return err;
2265 * N.B. kobject_uevent_env() can fail mainly for when we're out
2266 * memory which is handled and propagated appropriately above
2267 * but it can also fail during a netlink_broadcast() or during
2268 * early boot for call_usermodehelper(). For now treat these
2269 * errors as non-fatal.
2271 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2272 #ifdef CONFIG_CFG80211_REG_DEBUG
2273 /* We want to find out exactly why when debugging */
2274 WARN_ON(err);
2275 #endif
2279 * Finally, if the user set the module parameter treat it
2280 * as a user hint.
2282 if (!is_world_regdom(ieee80211_regdom))
2283 regulatory_hint_user(ieee80211_regdom);
2285 return 0;
2288 void /* __init_or_exit */ regulatory_exit(void)
2290 struct regulatory_request *reg_request, *tmp;
2291 struct reg_beacon *reg_beacon, *btmp;
2293 cancel_work_sync(&reg_work);
2294 cancel_delayed_work_sync(&reg_timeout);
2296 mutex_lock(&cfg80211_mutex);
2297 mutex_lock(&reg_mutex);
2299 reset_regdomains(true);
2301 dev_set_uevent_suppress(&reg_pdev->dev, true);
2303 platform_device_unregister(reg_pdev);
2305 spin_lock_bh(&reg_pending_beacons_lock);
2306 if (!list_empty(&reg_pending_beacons)) {
2307 list_for_each_entry_safe(reg_beacon, btmp,
2308 &reg_pending_beacons, list) {
2309 list_del(&reg_beacon->list);
2310 kfree(reg_beacon);
2313 spin_unlock_bh(&reg_pending_beacons_lock);
2315 if (!list_empty(&reg_beacon_list)) {
2316 list_for_each_entry_safe(reg_beacon, btmp,
2317 &reg_beacon_list, list) {
2318 list_del(&reg_beacon->list);
2319 kfree(reg_beacon);
2323 spin_lock(&reg_requests_lock);
2324 if (!list_empty(&reg_requests_list)) {
2325 list_for_each_entry_safe(reg_request, tmp,
2326 &reg_requests_list, list) {
2327 list_del(&reg_request->list);
2328 kfree(reg_request);
2331 spin_unlock(&reg_requests_lock);
2333 mutex_unlock(&reg_mutex);
2334 mutex_unlock(&cfg80211_mutex);