powerpc/fadump: Do not allow hot-remove memory from fadump reserved area.
[linux/fpc-iii.git] / drivers / clocksource / timer-fttmr010.c
blobcf93f6419b5142e397747be406138dacf3278a5c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Faraday Technology FTTMR010 timer driver
4 * Copyright (C) 2017 Linus Walleij <linus.walleij@linaro.org>
6 * Based on a rewrite of arch/arm/mach-gemini/timer.c:
7 * Copyright (C) 2001-2006 Storlink, Corp.
8 * Copyright (C) 2008-2009 Paulius Zaleckas <paulius.zaleckas@teltonika.lt>
9 */
10 #include <linux/interrupt.h>
11 #include <linux/io.h>
12 #include <linux/of.h>
13 #include <linux/of_address.h>
14 #include <linux/of_irq.h>
15 #include <linux/clockchips.h>
16 #include <linux/clocksource.h>
17 #include <linux/sched_clock.h>
18 #include <linux/clk.h>
19 #include <linux/slab.h>
20 #include <linux/bitops.h>
21 #include <linux/delay.h>
24 * Register definitions for the timers
26 #define TIMER1_COUNT (0x00)
27 #define TIMER1_LOAD (0x04)
28 #define TIMER1_MATCH1 (0x08)
29 #define TIMER1_MATCH2 (0x0c)
30 #define TIMER2_COUNT (0x10)
31 #define TIMER2_LOAD (0x14)
32 #define TIMER2_MATCH1 (0x18)
33 #define TIMER2_MATCH2 (0x1c)
34 #define TIMER3_COUNT (0x20)
35 #define TIMER3_LOAD (0x24)
36 #define TIMER3_MATCH1 (0x28)
37 #define TIMER3_MATCH2 (0x2c)
38 #define TIMER_CR (0x30)
39 #define TIMER_INTR_STATE (0x34)
40 #define TIMER_INTR_MASK (0x38)
42 #define TIMER_1_CR_ENABLE BIT(0)
43 #define TIMER_1_CR_CLOCK BIT(1)
44 #define TIMER_1_CR_INT BIT(2)
45 #define TIMER_2_CR_ENABLE BIT(3)
46 #define TIMER_2_CR_CLOCK BIT(4)
47 #define TIMER_2_CR_INT BIT(5)
48 #define TIMER_3_CR_ENABLE BIT(6)
49 #define TIMER_3_CR_CLOCK BIT(7)
50 #define TIMER_3_CR_INT BIT(8)
51 #define TIMER_1_CR_UPDOWN BIT(9)
52 #define TIMER_2_CR_UPDOWN BIT(10)
53 #define TIMER_3_CR_UPDOWN BIT(11)
56 * The Aspeed AST2400 moves bits around in the control register
57 * and lacks bits for setting the timer to count upwards.
59 #define TIMER_1_CR_ASPEED_ENABLE BIT(0)
60 #define TIMER_1_CR_ASPEED_CLOCK BIT(1)
61 #define TIMER_1_CR_ASPEED_INT BIT(2)
62 #define TIMER_2_CR_ASPEED_ENABLE BIT(4)
63 #define TIMER_2_CR_ASPEED_CLOCK BIT(5)
64 #define TIMER_2_CR_ASPEED_INT BIT(6)
65 #define TIMER_3_CR_ASPEED_ENABLE BIT(8)
66 #define TIMER_3_CR_ASPEED_CLOCK BIT(9)
67 #define TIMER_3_CR_ASPEED_INT BIT(10)
69 #define TIMER_1_INT_MATCH1 BIT(0)
70 #define TIMER_1_INT_MATCH2 BIT(1)
71 #define TIMER_1_INT_OVERFLOW BIT(2)
72 #define TIMER_2_INT_MATCH1 BIT(3)
73 #define TIMER_2_INT_MATCH2 BIT(4)
74 #define TIMER_2_INT_OVERFLOW BIT(5)
75 #define TIMER_3_INT_MATCH1 BIT(6)
76 #define TIMER_3_INT_MATCH2 BIT(7)
77 #define TIMER_3_INT_OVERFLOW BIT(8)
78 #define TIMER_INT_ALL_MASK 0x1ff
80 struct fttmr010 {
81 void __iomem *base;
82 unsigned int tick_rate;
83 bool count_down;
84 u32 t1_enable_val;
85 struct clock_event_device clkevt;
86 #ifdef CONFIG_ARM
87 struct delay_timer delay_timer;
88 #endif
92 * A local singleton used by sched_clock and delay timer reads, which are
93 * fast and stateless
95 static struct fttmr010 *local_fttmr;
97 static inline struct fttmr010 *to_fttmr010(struct clock_event_device *evt)
99 return container_of(evt, struct fttmr010, clkevt);
102 static unsigned long fttmr010_read_current_timer_up(void)
104 return readl(local_fttmr->base + TIMER2_COUNT);
107 static unsigned long fttmr010_read_current_timer_down(void)
109 return ~readl(local_fttmr->base + TIMER2_COUNT);
112 static u64 notrace fttmr010_read_sched_clock_up(void)
114 return fttmr010_read_current_timer_up();
117 static u64 notrace fttmr010_read_sched_clock_down(void)
119 return fttmr010_read_current_timer_down();
122 static int fttmr010_timer_set_next_event(unsigned long cycles,
123 struct clock_event_device *evt)
125 struct fttmr010 *fttmr010 = to_fttmr010(evt);
126 u32 cr;
128 /* Stop */
129 cr = readl(fttmr010->base + TIMER_CR);
130 cr &= ~fttmr010->t1_enable_val;
131 writel(cr, fttmr010->base + TIMER_CR);
133 if (fttmr010->count_down) {
135 * ASPEED Timer Controller will load TIMER1_LOAD register
136 * into TIMER1_COUNT register when the timer is re-enabled.
138 writel(cycles, fttmr010->base + TIMER1_LOAD);
139 } else {
140 /* Setup the match register forward in time */
141 cr = readl(fttmr010->base + TIMER1_COUNT);
142 writel(cr + cycles, fttmr010->base + TIMER1_MATCH1);
145 /* Start */
146 cr = readl(fttmr010->base + TIMER_CR);
147 cr |= fttmr010->t1_enable_val;
148 writel(cr, fttmr010->base + TIMER_CR);
150 return 0;
153 static int fttmr010_timer_shutdown(struct clock_event_device *evt)
155 struct fttmr010 *fttmr010 = to_fttmr010(evt);
156 u32 cr;
158 /* Stop */
159 cr = readl(fttmr010->base + TIMER_CR);
160 cr &= ~fttmr010->t1_enable_val;
161 writel(cr, fttmr010->base + TIMER_CR);
163 return 0;
166 static int fttmr010_timer_set_oneshot(struct clock_event_device *evt)
168 struct fttmr010 *fttmr010 = to_fttmr010(evt);
169 u32 cr;
171 /* Stop */
172 cr = readl(fttmr010->base + TIMER_CR);
173 cr &= ~fttmr010->t1_enable_val;
174 writel(cr, fttmr010->base + TIMER_CR);
176 /* Setup counter start from 0 or ~0 */
177 writel(0, fttmr010->base + TIMER1_COUNT);
178 if (fttmr010->count_down)
179 writel(~0, fttmr010->base + TIMER1_LOAD);
180 else
181 writel(0, fttmr010->base + TIMER1_LOAD);
183 /* Enable interrupt */
184 cr = readl(fttmr010->base + TIMER_INTR_MASK);
185 cr &= ~(TIMER_1_INT_OVERFLOW | TIMER_1_INT_MATCH2);
186 cr |= TIMER_1_INT_MATCH1;
187 writel(cr, fttmr010->base + TIMER_INTR_MASK);
189 return 0;
192 static int fttmr010_timer_set_periodic(struct clock_event_device *evt)
194 struct fttmr010 *fttmr010 = to_fttmr010(evt);
195 u32 period = DIV_ROUND_CLOSEST(fttmr010->tick_rate, HZ);
196 u32 cr;
198 /* Stop */
199 cr = readl(fttmr010->base + TIMER_CR);
200 cr &= ~fttmr010->t1_enable_val;
201 writel(cr, fttmr010->base + TIMER_CR);
203 /* Setup timer to fire at 1/HZ intervals. */
204 if (fttmr010->count_down) {
205 writel(period, fttmr010->base + TIMER1_LOAD);
206 writel(0, fttmr010->base + TIMER1_MATCH1);
207 } else {
208 cr = 0xffffffff - (period - 1);
209 writel(cr, fttmr010->base + TIMER1_COUNT);
210 writel(cr, fttmr010->base + TIMER1_LOAD);
212 /* Enable interrupt on overflow */
213 cr = readl(fttmr010->base + TIMER_INTR_MASK);
214 cr &= ~(TIMER_1_INT_MATCH1 | TIMER_1_INT_MATCH2);
215 cr |= TIMER_1_INT_OVERFLOW;
216 writel(cr, fttmr010->base + TIMER_INTR_MASK);
219 /* Start the timer */
220 cr = readl(fttmr010->base + TIMER_CR);
221 cr |= fttmr010->t1_enable_val;
222 writel(cr, fttmr010->base + TIMER_CR);
224 return 0;
228 * IRQ handler for the timer
230 static irqreturn_t fttmr010_timer_interrupt(int irq, void *dev_id)
232 struct clock_event_device *evt = dev_id;
234 evt->event_handler(evt);
235 return IRQ_HANDLED;
238 static int __init fttmr010_common_init(struct device_node *np, bool is_aspeed)
240 struct fttmr010 *fttmr010;
241 int irq;
242 struct clk *clk;
243 int ret;
244 u32 val;
247 * These implementations require a clock reference.
248 * FIXME: we currently only support clocking using PCLK
249 * and using EXTCLK is not supported in the driver.
251 clk = of_clk_get_by_name(np, "PCLK");
252 if (IS_ERR(clk)) {
253 pr_err("could not get PCLK\n");
254 return PTR_ERR(clk);
256 ret = clk_prepare_enable(clk);
257 if (ret) {
258 pr_err("failed to enable PCLK\n");
259 return ret;
262 fttmr010 = kzalloc(sizeof(*fttmr010), GFP_KERNEL);
263 if (!fttmr010) {
264 ret = -ENOMEM;
265 goto out_disable_clock;
267 fttmr010->tick_rate = clk_get_rate(clk);
269 fttmr010->base = of_iomap(np, 0);
270 if (!fttmr010->base) {
271 pr_err("Can't remap registers\n");
272 ret = -ENXIO;
273 goto out_free;
275 /* IRQ for timer 1 */
276 irq = irq_of_parse_and_map(np, 0);
277 if (irq <= 0) {
278 pr_err("Can't parse IRQ\n");
279 ret = -EINVAL;
280 goto out_unmap;
284 * The Aspeed AST2400 moves bits around in the control register,
285 * otherwise it works the same.
287 if (is_aspeed) {
288 fttmr010->t1_enable_val = TIMER_1_CR_ASPEED_ENABLE |
289 TIMER_1_CR_ASPEED_INT;
290 /* Downward not available */
291 fttmr010->count_down = true;
292 } else {
293 fttmr010->t1_enable_val = TIMER_1_CR_ENABLE | TIMER_1_CR_INT;
297 * Reset the interrupt mask and status
299 writel(TIMER_INT_ALL_MASK, fttmr010->base + TIMER_INTR_MASK);
300 writel(0, fttmr010->base + TIMER_INTR_STATE);
303 * Enable timer 1 count up, timer 2 count up, except on Aspeed,
304 * where everything just counts down.
306 if (is_aspeed)
307 val = TIMER_2_CR_ASPEED_ENABLE;
308 else {
309 val = TIMER_2_CR_ENABLE;
310 if (!fttmr010->count_down)
311 val |= TIMER_1_CR_UPDOWN | TIMER_2_CR_UPDOWN;
313 writel(val, fttmr010->base + TIMER_CR);
316 * Setup free-running clocksource timer (interrupts
317 * disabled.)
319 local_fttmr = fttmr010;
320 writel(0, fttmr010->base + TIMER2_COUNT);
321 writel(0, fttmr010->base + TIMER2_MATCH1);
322 writel(0, fttmr010->base + TIMER2_MATCH2);
324 if (fttmr010->count_down) {
325 writel(~0, fttmr010->base + TIMER2_LOAD);
326 clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
327 "FTTMR010-TIMER2",
328 fttmr010->tick_rate,
329 300, 32, clocksource_mmio_readl_down);
330 sched_clock_register(fttmr010_read_sched_clock_down, 32,
331 fttmr010->tick_rate);
332 } else {
333 writel(0, fttmr010->base + TIMER2_LOAD);
334 clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
335 "FTTMR010-TIMER2",
336 fttmr010->tick_rate,
337 300, 32, clocksource_mmio_readl_up);
338 sched_clock_register(fttmr010_read_sched_clock_up, 32,
339 fttmr010->tick_rate);
343 * Setup clockevent timer (interrupt-driven) on timer 1.
345 writel(0, fttmr010->base + TIMER1_COUNT);
346 writel(0, fttmr010->base + TIMER1_LOAD);
347 writel(0, fttmr010->base + TIMER1_MATCH1);
348 writel(0, fttmr010->base + TIMER1_MATCH2);
349 ret = request_irq(irq, fttmr010_timer_interrupt, IRQF_TIMER,
350 "FTTMR010-TIMER1", &fttmr010->clkevt);
351 if (ret) {
352 pr_err("FTTMR010-TIMER1 no IRQ\n");
353 goto out_unmap;
356 fttmr010->clkevt.name = "FTTMR010-TIMER1";
357 /* Reasonably fast and accurate clock event */
358 fttmr010->clkevt.rating = 300;
359 fttmr010->clkevt.features = CLOCK_EVT_FEAT_PERIODIC |
360 CLOCK_EVT_FEAT_ONESHOT;
361 fttmr010->clkevt.set_next_event = fttmr010_timer_set_next_event;
362 fttmr010->clkevt.set_state_shutdown = fttmr010_timer_shutdown;
363 fttmr010->clkevt.set_state_periodic = fttmr010_timer_set_periodic;
364 fttmr010->clkevt.set_state_oneshot = fttmr010_timer_set_oneshot;
365 fttmr010->clkevt.tick_resume = fttmr010_timer_shutdown;
366 fttmr010->clkevt.cpumask = cpumask_of(0);
367 fttmr010->clkevt.irq = irq;
368 clockevents_config_and_register(&fttmr010->clkevt,
369 fttmr010->tick_rate,
370 1, 0xffffffff);
372 #ifdef CONFIG_ARM
373 /* Also use this timer for delays */
374 if (fttmr010->count_down)
375 fttmr010->delay_timer.read_current_timer =
376 fttmr010_read_current_timer_down;
377 else
378 fttmr010->delay_timer.read_current_timer =
379 fttmr010_read_current_timer_up;
380 fttmr010->delay_timer.freq = fttmr010->tick_rate;
381 register_current_timer_delay(&fttmr010->delay_timer);
382 #endif
384 return 0;
386 out_unmap:
387 iounmap(fttmr010->base);
388 out_free:
389 kfree(fttmr010);
390 out_disable_clock:
391 clk_disable_unprepare(clk);
393 return ret;
396 static __init int aspeed_timer_init(struct device_node *np)
398 return fttmr010_common_init(np, true);
401 static __init int fttmr010_timer_init(struct device_node *np)
403 return fttmr010_common_init(np, false);
406 TIMER_OF_DECLARE(fttmr010, "faraday,fttmr010", fttmr010_timer_init);
407 TIMER_OF_DECLARE(gemini, "cortina,gemini-timer", fttmr010_timer_init);
408 TIMER_OF_DECLARE(moxart, "moxa,moxart-timer", fttmr010_timer_init);
409 TIMER_OF_DECLARE(ast2400, "aspeed,ast2400-timer", aspeed_timer_init);
410 TIMER_OF_DECLARE(ast2500, "aspeed,ast2500-timer", aspeed_timer_init);