Merge tag 'regmap-fix-v5.11-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux/fpc-iii.git] / drivers / acpi / processor_idle.c
blobd93e400940a31b28aa90139e6958cae49abdd703
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * processor_idle - idle state submodule to the ACPI processor driver
5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
8 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9 * - Added processor hotplug support
10 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
11 * - Added support for C3 on SMP
13 #define pr_fmt(fmt) "ACPI: " fmt
15 #include <linux/module.h>
16 #include <linux/acpi.h>
17 #include <linux/dmi.h>
18 #include <linux/sched.h> /* need_resched() */
19 #include <linux/tick.h>
20 #include <linux/cpuidle.h>
21 #include <linux/cpu.h>
22 #include <acpi/processor.h>
25 * Include the apic definitions for x86 to have the APIC timer related defines
26 * available also for UP (on SMP it gets magically included via linux/smp.h).
27 * asm/acpi.h is not an option, as it would require more include magic. Also
28 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
30 #ifdef CONFIG_X86
31 #include <asm/apic.h>
32 #endif
34 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
35 ACPI_MODULE_NAME("processor_idle");
37 #define ACPI_IDLE_STATE_START (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
39 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
40 module_param(max_cstate, uint, 0000);
41 static unsigned int nocst __read_mostly;
42 module_param(nocst, uint, 0000);
43 static int bm_check_disable __read_mostly;
44 module_param(bm_check_disable, uint, 0000);
46 static unsigned int latency_factor __read_mostly = 2;
47 module_param(latency_factor, uint, 0644);
49 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
51 struct cpuidle_driver acpi_idle_driver = {
52 .name = "acpi_idle",
53 .owner = THIS_MODULE,
56 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
57 static
58 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
60 static int disabled_by_idle_boot_param(void)
62 return boot_option_idle_override == IDLE_POLL ||
63 boot_option_idle_override == IDLE_HALT;
67 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
68 * For now disable this. Probably a bug somewhere else.
70 * To skip this limit, boot/load with a large max_cstate limit.
72 static int set_max_cstate(const struct dmi_system_id *id)
74 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
75 return 0;
77 pr_notice("%s detected - limiting to C%ld max_cstate."
78 " Override with \"processor.max_cstate=%d\"\n", id->ident,
79 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
81 max_cstate = (long)id->driver_data;
83 return 0;
86 static const struct dmi_system_id processor_power_dmi_table[] = {
87 { set_max_cstate, "Clevo 5600D", {
88 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
89 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
90 (void *)2},
91 { set_max_cstate, "Pavilion zv5000", {
92 DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
93 DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
94 (void *)1},
95 { set_max_cstate, "Asus L8400B", {
96 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
97 DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
98 (void *)1},
99 {},
104 * Callers should disable interrupts before the call and enable
105 * interrupts after return.
107 static void __cpuidle acpi_safe_halt(void)
109 if (!tif_need_resched()) {
110 safe_halt();
111 local_irq_disable();
115 #ifdef ARCH_APICTIMER_STOPS_ON_C3
118 * Some BIOS implementations switch to C3 in the published C2 state.
119 * This seems to be a common problem on AMD boxen, but other vendors
120 * are affected too. We pick the most conservative approach: we assume
121 * that the local APIC stops in both C2 and C3.
123 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
124 struct acpi_processor_cx *cx)
126 struct acpi_processor_power *pwr = &pr->power;
127 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
129 if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
130 return;
132 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
133 type = ACPI_STATE_C1;
136 * Check, if one of the previous states already marked the lapic
137 * unstable
139 if (pwr->timer_broadcast_on_state < state)
140 return;
142 if (cx->type >= type)
143 pr->power.timer_broadcast_on_state = state;
146 static void __lapic_timer_propagate_broadcast(void *arg)
148 struct acpi_processor *pr = (struct acpi_processor *) arg;
150 if (pr->power.timer_broadcast_on_state < INT_MAX)
151 tick_broadcast_enable();
152 else
153 tick_broadcast_disable();
156 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
158 smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
159 (void *)pr, 1);
162 /* Power(C) State timer broadcast control */
163 static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
164 struct acpi_processor_cx *cx)
166 return cx - pr->power.states >= pr->power.timer_broadcast_on_state;
169 #else
171 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
172 struct acpi_processor_cx *cstate) { }
173 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
175 static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
176 struct acpi_processor_cx *cx)
178 return false;
181 #endif
183 #if defined(CONFIG_X86)
184 static void tsc_check_state(int state)
186 switch (boot_cpu_data.x86_vendor) {
187 case X86_VENDOR_HYGON:
188 case X86_VENDOR_AMD:
189 case X86_VENDOR_INTEL:
190 case X86_VENDOR_CENTAUR:
191 case X86_VENDOR_ZHAOXIN:
193 * AMD Fam10h TSC will tick in all
194 * C/P/S0/S1 states when this bit is set.
196 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
197 return;
198 fallthrough;
199 default:
200 /* TSC could halt in idle, so notify users */
201 if (state > ACPI_STATE_C1)
202 mark_tsc_unstable("TSC halts in idle");
205 #else
206 static void tsc_check_state(int state) { return; }
207 #endif
209 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
212 if (!pr->pblk)
213 return -ENODEV;
215 /* if info is obtained from pblk/fadt, type equals state */
216 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
217 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
219 #ifndef CONFIG_HOTPLUG_CPU
221 * Check for P_LVL2_UP flag before entering C2 and above on
222 * an SMP system.
224 if ((num_online_cpus() > 1) &&
225 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
226 return -ENODEV;
227 #endif
229 /* determine C2 and C3 address from pblk */
230 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
231 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
233 /* determine latencies from FADT */
234 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
235 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
238 * FADT specified C2 latency must be less than or equal to
239 * 100 microseconds.
241 if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
242 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
243 "C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
244 /* invalidate C2 */
245 pr->power.states[ACPI_STATE_C2].address = 0;
249 * FADT supplied C3 latency must be less than or equal to
250 * 1000 microseconds.
252 if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
253 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
254 "C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
255 /* invalidate C3 */
256 pr->power.states[ACPI_STATE_C3].address = 0;
259 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
260 "lvl2[0x%08x] lvl3[0x%08x]\n",
261 pr->power.states[ACPI_STATE_C2].address,
262 pr->power.states[ACPI_STATE_C3].address));
264 snprintf(pr->power.states[ACPI_STATE_C2].desc,
265 ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x",
266 pr->power.states[ACPI_STATE_C2].address);
267 snprintf(pr->power.states[ACPI_STATE_C3].desc,
268 ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x",
269 pr->power.states[ACPI_STATE_C3].address);
271 return 0;
274 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
276 if (!pr->power.states[ACPI_STATE_C1].valid) {
277 /* set the first C-State to C1 */
278 /* all processors need to support C1 */
279 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
280 pr->power.states[ACPI_STATE_C1].valid = 1;
281 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
283 snprintf(pr->power.states[ACPI_STATE_C1].desc,
284 ACPI_CX_DESC_LEN, "ACPI HLT");
286 /* the C0 state only exists as a filler in our array */
287 pr->power.states[ACPI_STATE_C0].valid = 1;
288 return 0;
291 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
293 int ret;
295 if (nocst)
296 return -ENODEV;
298 ret = acpi_processor_evaluate_cst(pr->handle, pr->id, &pr->power);
299 if (ret)
300 return ret;
302 if (!pr->power.count)
303 return -EFAULT;
305 pr->flags.has_cst = 1;
306 return 0;
309 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
310 struct acpi_processor_cx *cx)
312 static int bm_check_flag = -1;
313 static int bm_control_flag = -1;
316 if (!cx->address)
317 return;
320 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
321 * DMA transfers are used by any ISA device to avoid livelock.
322 * Note that we could disable Type-F DMA (as recommended by
323 * the erratum), but this is known to disrupt certain ISA
324 * devices thus we take the conservative approach.
326 else if (errata.piix4.fdma) {
327 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
328 "C3 not supported on PIIX4 with Type-F DMA\n"));
329 return;
332 /* All the logic here assumes flags.bm_check is same across all CPUs */
333 if (bm_check_flag == -1) {
334 /* Determine whether bm_check is needed based on CPU */
335 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
336 bm_check_flag = pr->flags.bm_check;
337 bm_control_flag = pr->flags.bm_control;
338 } else {
339 pr->flags.bm_check = bm_check_flag;
340 pr->flags.bm_control = bm_control_flag;
343 if (pr->flags.bm_check) {
344 if (!pr->flags.bm_control) {
345 if (pr->flags.has_cst != 1) {
346 /* bus mastering control is necessary */
347 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
348 "C3 support requires BM control\n"));
349 return;
350 } else {
351 /* Here we enter C3 without bus mastering */
352 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
353 "C3 support without BM control\n"));
356 } else {
358 * WBINVD should be set in fadt, for C3 state to be
359 * supported on when bm_check is not required.
361 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
362 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
363 "Cache invalidation should work properly"
364 " for C3 to be enabled on SMP systems\n"));
365 return;
370 * Otherwise we've met all of our C3 requirements.
371 * Normalize the C3 latency to expidite policy. Enable
372 * checking of bus mastering status (bm_check) so we can
373 * use this in our C3 policy
375 cx->valid = 1;
378 * On older chipsets, BM_RLD needs to be set
379 * in order for Bus Master activity to wake the
380 * system from C3. Newer chipsets handle DMA
381 * during C3 automatically and BM_RLD is a NOP.
382 * In either case, the proper way to
383 * handle BM_RLD is to set it and leave it set.
385 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
387 return;
390 static int acpi_processor_power_verify(struct acpi_processor *pr)
392 unsigned int i;
393 unsigned int working = 0;
395 pr->power.timer_broadcast_on_state = INT_MAX;
397 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
398 struct acpi_processor_cx *cx = &pr->power.states[i];
400 switch (cx->type) {
401 case ACPI_STATE_C1:
402 cx->valid = 1;
403 break;
405 case ACPI_STATE_C2:
406 if (!cx->address)
407 break;
408 cx->valid = 1;
409 break;
411 case ACPI_STATE_C3:
412 acpi_processor_power_verify_c3(pr, cx);
413 break;
415 if (!cx->valid)
416 continue;
418 lapic_timer_check_state(i, pr, cx);
419 tsc_check_state(cx->type);
420 working++;
423 lapic_timer_propagate_broadcast(pr);
425 return (working);
428 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
430 unsigned int i;
431 int result;
434 /* NOTE: the idle thread may not be running while calling
435 * this function */
437 /* Zero initialize all the C-states info. */
438 memset(pr->power.states, 0, sizeof(pr->power.states));
440 result = acpi_processor_get_power_info_cst(pr);
441 if (result == -ENODEV)
442 result = acpi_processor_get_power_info_fadt(pr);
444 if (result)
445 return result;
447 acpi_processor_get_power_info_default(pr);
449 pr->power.count = acpi_processor_power_verify(pr);
452 * if one state of type C2 or C3 is available, mark this
453 * CPU as being "idle manageable"
455 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
456 if (pr->power.states[i].valid) {
457 pr->power.count = i;
458 pr->flags.power = 1;
462 return 0;
466 * acpi_idle_bm_check - checks if bus master activity was detected
468 static int acpi_idle_bm_check(void)
470 u32 bm_status = 0;
472 if (bm_check_disable)
473 return 0;
475 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
476 if (bm_status)
477 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
479 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
480 * the true state of bus mastering activity; forcing us to
481 * manually check the BMIDEA bit of each IDE channel.
483 else if (errata.piix4.bmisx) {
484 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
485 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
486 bm_status = 1;
488 return bm_status;
491 static void wait_for_freeze(void)
493 #ifdef CONFIG_X86
494 /* No delay is needed if we are in guest */
495 if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
496 return;
497 #endif
498 /* Dummy wait op - must do something useless after P_LVL2 read
499 because chipsets cannot guarantee that STPCLK# signal
500 gets asserted in time to freeze execution properly. */
501 inl(acpi_gbl_FADT.xpm_timer_block.address);
505 * acpi_idle_do_entry - enter idle state using the appropriate method
506 * @cx: cstate data
508 * Caller disables interrupt before call and enables interrupt after return.
510 static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
512 if (cx->entry_method == ACPI_CSTATE_FFH) {
513 /* Call into architectural FFH based C-state */
514 acpi_processor_ffh_cstate_enter(cx);
515 } else if (cx->entry_method == ACPI_CSTATE_HALT) {
516 acpi_safe_halt();
517 } else {
518 /* IO port based C-state */
519 inb(cx->address);
520 wait_for_freeze();
525 * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
526 * @dev: the target CPU
527 * @index: the index of suggested state
529 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
531 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
533 ACPI_FLUSH_CPU_CACHE();
535 while (1) {
537 if (cx->entry_method == ACPI_CSTATE_HALT)
538 safe_halt();
539 else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
540 inb(cx->address);
541 wait_for_freeze();
542 } else
543 return -ENODEV;
546 /* Never reached */
547 return 0;
550 static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
552 return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
553 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
556 static int c3_cpu_count;
557 static DEFINE_RAW_SPINLOCK(c3_lock);
560 * acpi_idle_enter_bm - enters C3 with proper BM handling
561 * @drv: cpuidle driver
562 * @pr: Target processor
563 * @cx: Target state context
564 * @index: index of target state
566 static int acpi_idle_enter_bm(struct cpuidle_driver *drv,
567 struct acpi_processor *pr,
568 struct acpi_processor_cx *cx,
569 int index)
571 static struct acpi_processor_cx safe_cx = {
572 .entry_method = ACPI_CSTATE_HALT,
576 * disable bus master
577 * bm_check implies we need ARB_DIS
578 * bm_control implies whether we can do ARB_DIS
580 * That leaves a case where bm_check is set and bm_control is not set.
581 * In that case we cannot do much, we enter C3 without doing anything.
583 bool dis_bm = pr->flags.bm_control;
585 /* If we can skip BM, demote to a safe state. */
586 if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
587 dis_bm = false;
588 index = drv->safe_state_index;
589 if (index >= 0) {
590 cx = this_cpu_read(acpi_cstate[index]);
591 } else {
592 cx = &safe_cx;
593 index = -EBUSY;
597 if (dis_bm) {
598 raw_spin_lock(&c3_lock);
599 c3_cpu_count++;
600 /* Disable bus master arbitration when all CPUs are in C3 */
601 if (c3_cpu_count == num_online_cpus())
602 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
603 raw_spin_unlock(&c3_lock);
606 rcu_idle_enter();
608 acpi_idle_do_entry(cx);
610 rcu_idle_exit();
612 /* Re-enable bus master arbitration */
613 if (dis_bm) {
614 raw_spin_lock(&c3_lock);
615 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
616 c3_cpu_count--;
617 raw_spin_unlock(&c3_lock);
620 return index;
623 static int acpi_idle_enter(struct cpuidle_device *dev,
624 struct cpuidle_driver *drv, int index)
626 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
627 struct acpi_processor *pr;
629 pr = __this_cpu_read(processors);
630 if (unlikely(!pr))
631 return -EINVAL;
633 if (cx->type != ACPI_STATE_C1) {
634 if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check)
635 return acpi_idle_enter_bm(drv, pr, cx, index);
637 /* C2 to C1 demotion. */
638 if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
639 index = ACPI_IDLE_STATE_START;
640 cx = per_cpu(acpi_cstate[index], dev->cpu);
644 if (cx->type == ACPI_STATE_C3)
645 ACPI_FLUSH_CPU_CACHE();
647 acpi_idle_do_entry(cx);
649 return index;
652 static int acpi_idle_enter_s2idle(struct cpuidle_device *dev,
653 struct cpuidle_driver *drv, int index)
655 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
657 if (cx->type == ACPI_STATE_C3) {
658 struct acpi_processor *pr = __this_cpu_read(processors);
660 if (unlikely(!pr))
661 return 0;
663 if (pr->flags.bm_check) {
664 u8 bm_sts_skip = cx->bm_sts_skip;
666 /* Don't check BM_STS, do an unconditional ARB_DIS for S2IDLE */
667 cx->bm_sts_skip = 1;
668 acpi_idle_enter_bm(drv, pr, cx, index);
669 cx->bm_sts_skip = bm_sts_skip;
671 return 0;
672 } else {
673 ACPI_FLUSH_CPU_CACHE();
676 acpi_idle_do_entry(cx);
678 return 0;
681 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
682 struct cpuidle_device *dev)
684 int i, count = ACPI_IDLE_STATE_START;
685 struct acpi_processor_cx *cx;
686 struct cpuidle_state *state;
688 if (max_cstate == 0)
689 max_cstate = 1;
691 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
692 state = &acpi_idle_driver.states[count];
693 cx = &pr->power.states[i];
695 if (!cx->valid)
696 continue;
698 per_cpu(acpi_cstate[count], dev->cpu) = cx;
700 if (lapic_timer_needs_broadcast(pr, cx))
701 state->flags |= CPUIDLE_FLAG_TIMER_STOP;
703 if (cx->type == ACPI_STATE_C3) {
704 state->flags |= CPUIDLE_FLAG_TLB_FLUSHED;
705 if (pr->flags.bm_check)
706 state->flags |= CPUIDLE_FLAG_RCU_IDLE;
709 count++;
710 if (count == CPUIDLE_STATE_MAX)
711 break;
714 if (!count)
715 return -EINVAL;
717 return 0;
720 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
722 int i, count;
723 struct acpi_processor_cx *cx;
724 struct cpuidle_state *state;
725 struct cpuidle_driver *drv = &acpi_idle_driver;
727 if (max_cstate == 0)
728 max_cstate = 1;
730 if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
731 cpuidle_poll_state_init(drv);
732 count = 1;
733 } else {
734 count = 0;
737 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
738 cx = &pr->power.states[i];
740 if (!cx->valid)
741 continue;
743 state = &drv->states[count];
744 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
745 strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
746 state->exit_latency = cx->latency;
747 state->target_residency = cx->latency * latency_factor;
748 state->enter = acpi_idle_enter;
750 state->flags = 0;
751 if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
752 state->enter_dead = acpi_idle_play_dead;
753 drv->safe_state_index = count;
756 * Halt-induced C1 is not good for ->enter_s2idle, because it
757 * re-enables interrupts on exit. Moreover, C1 is generally not
758 * particularly interesting from the suspend-to-idle angle, so
759 * avoid C1 and the situations in which we may need to fall back
760 * to it altogether.
762 if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
763 state->enter_s2idle = acpi_idle_enter_s2idle;
765 count++;
766 if (count == CPUIDLE_STATE_MAX)
767 break;
770 drv->state_count = count;
772 if (!count)
773 return -EINVAL;
775 return 0;
778 static inline void acpi_processor_cstate_first_run_checks(void)
780 static int first_run;
782 if (first_run)
783 return;
784 dmi_check_system(processor_power_dmi_table);
785 max_cstate = acpi_processor_cstate_check(max_cstate);
786 if (max_cstate < ACPI_C_STATES_MAX)
787 pr_notice("ACPI: processor limited to max C-state %d\n",
788 max_cstate);
789 first_run++;
791 if (nocst)
792 return;
794 acpi_processor_claim_cst_control();
796 #else
798 static inline int disabled_by_idle_boot_param(void) { return 0; }
799 static inline void acpi_processor_cstate_first_run_checks(void) { }
800 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
802 return -ENODEV;
805 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
806 struct cpuidle_device *dev)
808 return -EINVAL;
811 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
813 return -EINVAL;
816 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
818 struct acpi_lpi_states_array {
819 unsigned int size;
820 unsigned int composite_states_size;
821 struct acpi_lpi_state *entries;
822 struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
825 static int obj_get_integer(union acpi_object *obj, u32 *value)
827 if (obj->type != ACPI_TYPE_INTEGER)
828 return -EINVAL;
830 *value = obj->integer.value;
831 return 0;
834 static int acpi_processor_evaluate_lpi(acpi_handle handle,
835 struct acpi_lpi_states_array *info)
837 acpi_status status;
838 int ret = 0;
839 int pkg_count, state_idx = 1, loop;
840 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
841 union acpi_object *lpi_data;
842 struct acpi_lpi_state *lpi_state;
844 status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
845 if (ACPI_FAILURE(status)) {
846 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _LPI, giving up\n"));
847 return -ENODEV;
850 lpi_data = buffer.pointer;
852 /* There must be at least 4 elements = 3 elements + 1 package */
853 if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
854 lpi_data->package.count < 4) {
855 pr_debug("not enough elements in _LPI\n");
856 ret = -ENODATA;
857 goto end;
860 pkg_count = lpi_data->package.elements[2].integer.value;
862 /* Validate number of power states. */
863 if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
864 pr_debug("count given by _LPI is not valid\n");
865 ret = -ENODATA;
866 goto end;
869 lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
870 if (!lpi_state) {
871 ret = -ENOMEM;
872 goto end;
875 info->size = pkg_count;
876 info->entries = lpi_state;
878 /* LPI States start at index 3 */
879 for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
880 union acpi_object *element, *pkg_elem, *obj;
882 element = &lpi_data->package.elements[loop];
883 if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
884 continue;
886 pkg_elem = element->package.elements;
888 obj = pkg_elem + 6;
889 if (obj->type == ACPI_TYPE_BUFFER) {
890 struct acpi_power_register *reg;
892 reg = (struct acpi_power_register *)obj->buffer.pointer;
893 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
894 reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
895 continue;
897 lpi_state->address = reg->address;
898 lpi_state->entry_method =
899 reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
900 ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
901 } else if (obj->type == ACPI_TYPE_INTEGER) {
902 lpi_state->entry_method = ACPI_CSTATE_INTEGER;
903 lpi_state->address = obj->integer.value;
904 } else {
905 continue;
908 /* elements[7,8] skipped for now i.e. Residency/Usage counter*/
910 obj = pkg_elem + 9;
911 if (obj->type == ACPI_TYPE_STRING)
912 strlcpy(lpi_state->desc, obj->string.pointer,
913 ACPI_CX_DESC_LEN);
915 lpi_state->index = state_idx;
916 if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
917 pr_debug("No min. residency found, assuming 10 us\n");
918 lpi_state->min_residency = 10;
921 if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
922 pr_debug("No wakeup residency found, assuming 10 us\n");
923 lpi_state->wake_latency = 10;
926 if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
927 lpi_state->flags = 0;
929 if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
930 lpi_state->arch_flags = 0;
932 if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
933 lpi_state->res_cnt_freq = 1;
935 if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
936 lpi_state->enable_parent_state = 0;
939 acpi_handle_debug(handle, "Found %d power states\n", state_idx);
940 end:
941 kfree(buffer.pointer);
942 return ret;
946 * flat_state_cnt - the number of composite LPI states after the process of flattening
948 static int flat_state_cnt;
951 * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
953 * @local: local LPI state
954 * @parent: parent LPI state
955 * @result: composite LPI state
957 static bool combine_lpi_states(struct acpi_lpi_state *local,
958 struct acpi_lpi_state *parent,
959 struct acpi_lpi_state *result)
961 if (parent->entry_method == ACPI_CSTATE_INTEGER) {
962 if (!parent->address) /* 0 means autopromotable */
963 return false;
964 result->address = local->address + parent->address;
965 } else {
966 result->address = parent->address;
969 result->min_residency = max(local->min_residency, parent->min_residency);
970 result->wake_latency = local->wake_latency + parent->wake_latency;
971 result->enable_parent_state = parent->enable_parent_state;
972 result->entry_method = local->entry_method;
974 result->flags = parent->flags;
975 result->arch_flags = parent->arch_flags;
976 result->index = parent->index;
978 strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
979 strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
980 strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
981 return true;
984 #define ACPI_LPI_STATE_FLAGS_ENABLED BIT(0)
986 static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
987 struct acpi_lpi_state *t)
989 curr_level->composite_states[curr_level->composite_states_size++] = t;
992 static int flatten_lpi_states(struct acpi_processor *pr,
993 struct acpi_lpi_states_array *curr_level,
994 struct acpi_lpi_states_array *prev_level)
996 int i, j, state_count = curr_level->size;
997 struct acpi_lpi_state *p, *t = curr_level->entries;
999 curr_level->composite_states_size = 0;
1000 for (j = 0; j < state_count; j++, t++) {
1001 struct acpi_lpi_state *flpi;
1003 if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1004 continue;
1006 if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1007 pr_warn("Limiting number of LPI states to max (%d)\n",
1008 ACPI_PROCESSOR_MAX_POWER);
1009 pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1010 break;
1013 flpi = &pr->power.lpi_states[flat_state_cnt];
1015 if (!prev_level) { /* leaf/processor node */
1016 memcpy(flpi, t, sizeof(*t));
1017 stash_composite_state(curr_level, flpi);
1018 flat_state_cnt++;
1019 continue;
1022 for (i = 0; i < prev_level->composite_states_size; i++) {
1023 p = prev_level->composite_states[i];
1024 if (t->index <= p->enable_parent_state &&
1025 combine_lpi_states(p, t, flpi)) {
1026 stash_composite_state(curr_level, flpi);
1027 flat_state_cnt++;
1028 flpi++;
1033 kfree(curr_level->entries);
1034 return 0;
1037 static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1039 int ret, i;
1040 acpi_status status;
1041 acpi_handle handle = pr->handle, pr_ahandle;
1042 struct acpi_device *d = NULL;
1043 struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1045 if (!osc_pc_lpi_support_confirmed)
1046 return -EOPNOTSUPP;
1048 if (!acpi_has_method(handle, "_LPI"))
1049 return -EINVAL;
1051 flat_state_cnt = 0;
1052 prev = &info[0];
1053 curr = &info[1];
1054 handle = pr->handle;
1055 ret = acpi_processor_evaluate_lpi(handle, prev);
1056 if (ret)
1057 return ret;
1058 flatten_lpi_states(pr, prev, NULL);
1060 status = acpi_get_parent(handle, &pr_ahandle);
1061 while (ACPI_SUCCESS(status)) {
1062 acpi_bus_get_device(pr_ahandle, &d);
1063 handle = pr_ahandle;
1065 if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1066 break;
1068 /* can be optional ? */
1069 if (!acpi_has_method(handle, "_LPI"))
1070 break;
1072 ret = acpi_processor_evaluate_lpi(handle, curr);
1073 if (ret)
1074 break;
1076 /* flatten all the LPI states in this level of hierarchy */
1077 flatten_lpi_states(pr, curr, prev);
1079 tmp = prev, prev = curr, curr = tmp;
1081 status = acpi_get_parent(handle, &pr_ahandle);
1084 pr->power.count = flat_state_cnt;
1085 /* reset the index after flattening */
1086 for (i = 0; i < pr->power.count; i++)
1087 pr->power.lpi_states[i].index = i;
1089 /* Tell driver that _LPI is supported. */
1090 pr->flags.has_lpi = 1;
1091 pr->flags.power = 1;
1093 return 0;
1096 int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1098 return -ENODEV;
1101 int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1103 return -ENODEV;
1107 * acpi_idle_lpi_enter - enters an ACPI any LPI state
1108 * @dev: the target CPU
1109 * @drv: cpuidle driver containing cpuidle state info
1110 * @index: index of target state
1112 * Return: 0 for success or negative value for error
1114 static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1115 struct cpuidle_driver *drv, int index)
1117 struct acpi_processor *pr;
1118 struct acpi_lpi_state *lpi;
1120 pr = __this_cpu_read(processors);
1122 if (unlikely(!pr))
1123 return -EINVAL;
1125 lpi = &pr->power.lpi_states[index];
1126 if (lpi->entry_method == ACPI_CSTATE_FFH)
1127 return acpi_processor_ffh_lpi_enter(lpi);
1129 return -EINVAL;
1132 static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1134 int i;
1135 struct acpi_lpi_state *lpi;
1136 struct cpuidle_state *state;
1137 struct cpuidle_driver *drv = &acpi_idle_driver;
1139 if (!pr->flags.has_lpi)
1140 return -EOPNOTSUPP;
1142 for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1143 lpi = &pr->power.lpi_states[i];
1145 state = &drv->states[i];
1146 snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1147 strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1148 state->exit_latency = lpi->wake_latency;
1149 state->target_residency = lpi->min_residency;
1150 if (lpi->arch_flags)
1151 state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1152 state->enter = acpi_idle_lpi_enter;
1153 drv->safe_state_index = i;
1156 drv->state_count = i;
1158 return 0;
1162 * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1163 * global state data i.e. idle routines
1165 * @pr: the ACPI processor
1167 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1169 int i;
1170 struct cpuidle_driver *drv = &acpi_idle_driver;
1172 if (!pr->flags.power_setup_done || !pr->flags.power)
1173 return -EINVAL;
1175 drv->safe_state_index = -1;
1176 for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1177 drv->states[i].name[0] = '\0';
1178 drv->states[i].desc[0] = '\0';
1181 if (pr->flags.has_lpi)
1182 return acpi_processor_setup_lpi_states(pr);
1184 return acpi_processor_setup_cstates(pr);
1188 * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1189 * device i.e. per-cpu data
1191 * @pr: the ACPI processor
1192 * @dev : the cpuidle device
1194 static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1195 struct cpuidle_device *dev)
1197 if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1198 return -EINVAL;
1200 dev->cpu = pr->id;
1201 if (pr->flags.has_lpi)
1202 return acpi_processor_ffh_lpi_probe(pr->id);
1204 return acpi_processor_setup_cpuidle_cx(pr, dev);
1207 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1209 int ret;
1211 ret = acpi_processor_get_lpi_info(pr);
1212 if (ret)
1213 ret = acpi_processor_get_cstate_info(pr);
1215 return ret;
1218 int acpi_processor_hotplug(struct acpi_processor *pr)
1220 int ret = 0;
1221 struct cpuidle_device *dev;
1223 if (disabled_by_idle_boot_param())
1224 return 0;
1226 if (!pr->flags.power_setup_done)
1227 return -ENODEV;
1229 dev = per_cpu(acpi_cpuidle_device, pr->id);
1230 cpuidle_pause_and_lock();
1231 cpuidle_disable_device(dev);
1232 ret = acpi_processor_get_power_info(pr);
1233 if (!ret && pr->flags.power) {
1234 acpi_processor_setup_cpuidle_dev(pr, dev);
1235 ret = cpuidle_enable_device(dev);
1237 cpuidle_resume_and_unlock();
1239 return ret;
1242 int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1244 int cpu;
1245 struct acpi_processor *_pr;
1246 struct cpuidle_device *dev;
1248 if (disabled_by_idle_boot_param())
1249 return 0;
1251 if (!pr->flags.power_setup_done)
1252 return -ENODEV;
1255 * FIXME: Design the ACPI notification to make it once per
1256 * system instead of once per-cpu. This condition is a hack
1257 * to make the code that updates C-States be called once.
1260 if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1262 /* Protect against cpu-hotplug */
1263 get_online_cpus();
1264 cpuidle_pause_and_lock();
1266 /* Disable all cpuidle devices */
1267 for_each_online_cpu(cpu) {
1268 _pr = per_cpu(processors, cpu);
1269 if (!_pr || !_pr->flags.power_setup_done)
1270 continue;
1271 dev = per_cpu(acpi_cpuidle_device, cpu);
1272 cpuidle_disable_device(dev);
1275 /* Populate Updated C-state information */
1276 acpi_processor_get_power_info(pr);
1277 acpi_processor_setup_cpuidle_states(pr);
1279 /* Enable all cpuidle devices */
1280 for_each_online_cpu(cpu) {
1281 _pr = per_cpu(processors, cpu);
1282 if (!_pr || !_pr->flags.power_setup_done)
1283 continue;
1284 acpi_processor_get_power_info(_pr);
1285 if (_pr->flags.power) {
1286 dev = per_cpu(acpi_cpuidle_device, cpu);
1287 acpi_processor_setup_cpuidle_dev(_pr, dev);
1288 cpuidle_enable_device(dev);
1291 cpuidle_resume_and_unlock();
1292 put_online_cpus();
1295 return 0;
1298 static int acpi_processor_registered;
1300 int acpi_processor_power_init(struct acpi_processor *pr)
1302 int retval;
1303 struct cpuidle_device *dev;
1305 if (disabled_by_idle_boot_param())
1306 return 0;
1308 acpi_processor_cstate_first_run_checks();
1310 if (!acpi_processor_get_power_info(pr))
1311 pr->flags.power_setup_done = 1;
1314 * Install the idle handler if processor power management is supported.
1315 * Note that we use previously set idle handler will be used on
1316 * platforms that only support C1.
1318 if (pr->flags.power) {
1319 /* Register acpi_idle_driver if not already registered */
1320 if (!acpi_processor_registered) {
1321 acpi_processor_setup_cpuidle_states(pr);
1322 retval = cpuidle_register_driver(&acpi_idle_driver);
1323 if (retval)
1324 return retval;
1325 pr_debug("%s registered with cpuidle\n",
1326 acpi_idle_driver.name);
1329 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1330 if (!dev)
1331 return -ENOMEM;
1332 per_cpu(acpi_cpuidle_device, pr->id) = dev;
1334 acpi_processor_setup_cpuidle_dev(pr, dev);
1336 /* Register per-cpu cpuidle_device. Cpuidle driver
1337 * must already be registered before registering device
1339 retval = cpuidle_register_device(dev);
1340 if (retval) {
1341 if (acpi_processor_registered == 0)
1342 cpuidle_unregister_driver(&acpi_idle_driver);
1343 return retval;
1345 acpi_processor_registered++;
1347 return 0;
1350 int acpi_processor_power_exit(struct acpi_processor *pr)
1352 struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1354 if (disabled_by_idle_boot_param())
1355 return 0;
1357 if (pr->flags.power) {
1358 cpuidle_unregister_device(dev);
1359 acpi_processor_registered--;
1360 if (acpi_processor_registered == 0)
1361 cpuidle_unregister_driver(&acpi_idle_driver);
1364 pr->flags.power_setup_done = 0;
1365 return 0;