1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved
7 #include <linux/cpufreq.h>
8 #include <linux/delay.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/module.h>
12 #include <linux/of_platform.h>
13 #include <linux/platform_device.h>
14 #include <linux/slab.h>
16 #include <asm/smp_plat.h>
18 #include <soc/tegra/bpmp.h>
19 #include <soc/tegra/bpmp-abi.h>
22 #define REF_CLK_MHZ 408 /* 408 MHz */
24 #define CPUFREQ_TBL_STEP_HZ (50 * KHZ * KHZ)
27 /* cpufreq transisition latency */
28 #define TEGRA_CPUFREQ_TRANSITION_LATENCY (300 * 1000) /* unit in nanoseconds */
38 struct tegra194_cpufreq_data
{
41 struct cpufreq_frequency_table
**tables
;
44 struct tegra_cpu_ctr
{
46 u32 coreclk_cnt
, last_coreclk_cnt
;
47 u32 refclk_cnt
, last_refclk_cnt
;
50 struct read_counters_work
{
51 struct work_struct work
;
52 struct tegra_cpu_ctr c
;
55 static struct workqueue_struct
*read_counters_wq
;
57 static void get_cpu_cluster(void *cluster
)
59 u64 mpidr
= read_cpuid_mpidr() & MPIDR_HWID_BITMASK
;
61 *((uint32_t *)cluster
) = MPIDR_AFFINITY_LEVEL(mpidr
, 1);
65 * Read per-core Read-only system register NVFREQ_FEEDBACK_EL1.
66 * The register provides frequency feedback information to
67 * determine the average actual frequency a core has run at over
69 * [31:0] PLLP counter: Counts at fixed frequency (408 MHz)
70 * [63:32] Core clock counter: counts on every core clock cycle
71 * where the core is architecturally clocking
73 static u64
read_freq_feedback(void)
77 asm volatile("mrs %0, s3_0_c15_c0_5" : "=r" (val
) : );
82 static inline u32
map_ndiv_to_freq(struct mrq_cpu_ndiv_limits_response
85 return nltbl
->ref_clk_hz
/ KHZ
* ndiv
/ (nltbl
->pdiv
* nltbl
->mdiv
);
88 static void tegra_read_counters(struct work_struct
*work
)
90 struct read_counters_work
*read_counters_work
;
91 struct tegra_cpu_ctr
*c
;
95 * ref_clk_counter(32 bit counter) runs on constant clk,
97 * It will take = 2 ^ 32 / 408 MHz to overflow ref clk counter
98 * = 10526880 usec = 10.527 sec to overflow
100 * Like wise core_clk_counter(32 bit counter) runs on core clock.
101 * It's synchronized to crab_clk (cpu_crab_clk) which runs at
102 * freq of cluster. Assuming max cluster clock ~2000MHz,
103 * It will take = 2 ^ 32 / 2000 MHz to overflow core clk counter
104 * = ~2.147 sec to overflow
106 read_counters_work
= container_of(work
, struct read_counters_work
,
108 c
= &read_counters_work
->c
;
110 val
= read_freq_feedback();
111 c
->last_refclk_cnt
= lower_32_bits(val
);
112 c
->last_coreclk_cnt
= upper_32_bits(val
);
114 val
= read_freq_feedback();
115 c
->refclk_cnt
= lower_32_bits(val
);
116 c
->coreclk_cnt
= upper_32_bits(val
);
120 * Return instantaneous cpu speed
121 * Instantaneous freq is calculated as -
122 * -Takes sample on every query of getting the freq.
123 * - Read core and ref clock counters;
125 * - Read above cycle counters again
126 * - Calculates freq by subtracting current and previous counters
127 * divided by the delay time or eqv. of ref_clk_counter in delta time
128 * - Return Kcycles/second, freq in KHz
130 * delta time period = x sec
131 * = delta ref_clk_counter / (408 * 10^6) sec
132 * freq in Hz = cycles/sec
133 * = (delta cycles / x sec
134 * = (delta cycles * 408 * 10^6) / delta ref_clk_counter
135 * in KHz = (delta cycles * 408 * 10^3) / delta ref_clk_counter
137 * @cpu - logical cpu whose freq to be updated
138 * Returns freq in KHz on success, 0 if cpu is offline
140 static unsigned int tegra194_calculate_speed(u32 cpu
)
142 struct read_counters_work read_counters_work
;
143 struct tegra_cpu_ctr c
;
149 * udelay() is required to reconstruct cpu frequency over an
150 * observation window. Using workqueue to call udelay() with
151 * interrupts enabled.
153 read_counters_work
.c
.cpu
= cpu
;
154 INIT_WORK_ONSTACK(&read_counters_work
.work
, tegra_read_counters
);
155 queue_work_on(cpu
, read_counters_wq
, &read_counters_work
.work
);
156 flush_work(&read_counters_work
.work
);
157 c
= read_counters_work
.c
;
159 if (c
.coreclk_cnt
< c
.last_coreclk_cnt
)
160 delta_ccnt
= c
.coreclk_cnt
+ (MAX_CNT
- c
.last_coreclk_cnt
);
162 delta_ccnt
= c
.coreclk_cnt
- c
.last_coreclk_cnt
;
166 /* ref clock is 32 bits */
167 if (c
.refclk_cnt
< c
.last_refclk_cnt
)
168 delta_refcnt
= c
.refclk_cnt
+ (MAX_CNT
- c
.last_refclk_cnt
);
170 delta_refcnt
= c
.refclk_cnt
- c
.last_refclk_cnt
;
172 pr_debug("cpufreq: %d is idle, delta_refcnt: 0\n", cpu
);
175 rate_mhz
= ((unsigned long)(delta_ccnt
* REF_CLK_MHZ
)) / delta_refcnt
;
177 return (rate_mhz
* KHZ
); /* in KHz */
180 static void get_cpu_ndiv(void *ndiv
)
184 asm volatile("mrs %0, s3_0_c15_c0_4" : "=r" (ndiv_val
) : );
186 *(u64
*)ndiv
= ndiv_val
;
189 static void set_cpu_ndiv(void *data
)
191 struct cpufreq_frequency_table
*tbl
= data
;
192 u64 ndiv_val
= (u64
)tbl
->driver_data
;
194 asm volatile("msr s3_0_c15_c0_4, %0" : : "r" (ndiv_val
));
197 static unsigned int tegra194_get_speed(u32 cpu
)
199 struct tegra194_cpufreq_data
*data
= cpufreq_get_driver_data();
200 struct cpufreq_frequency_table
*pos
;
206 smp_call_function_single(cpu
, get_cpu_cluster
, &cl
, true);
208 /* reconstruct actual cpu freq using counters */
209 rate
= tegra194_calculate_speed(cpu
);
211 /* get last written ndiv value */
212 ret
= smp_call_function_single(cpu
, get_cpu_ndiv
, &ndiv
, true);
213 if (WARN_ON_ONCE(ret
))
217 * If the reconstructed frequency has acceptable delta from
218 * the last written value, then return freq corresponding
219 * to the last written ndiv value from freq_table. This is
220 * done to return consistent value.
222 cpufreq_for_each_valid_entry(pos
, data
->tables
[cl
]) {
223 if (pos
->driver_data
!= ndiv
)
226 if (abs(pos
->frequency
- rate
) > 115200) {
227 pr_warn("cpufreq: cpu%d,cur:%u,set:%u,set ndiv:%llu\n",
228 cpu
, rate
, pos
->frequency
, ndiv
);
230 rate
= pos
->frequency
;
237 static int tegra194_cpufreq_init(struct cpufreq_policy
*policy
)
239 struct tegra194_cpufreq_data
*data
= cpufreq_get_driver_data();
243 smp_call_function_single(policy
->cpu
, get_cpu_cluster
, &cl
, true);
245 if (cl
>= data
->num_clusters
)
248 /* set same policy for all cpus in a cluster */
249 for (cpu
= (cl
* 2); cpu
< ((cl
+ 1) * 2); cpu
++)
250 cpumask_set_cpu(cpu
, policy
->cpus
);
252 policy
->freq_table
= data
->tables
[cl
];
253 policy
->cpuinfo
.transition_latency
= TEGRA_CPUFREQ_TRANSITION_LATENCY
;
258 static int tegra194_cpufreq_set_target(struct cpufreq_policy
*policy
,
261 struct cpufreq_frequency_table
*tbl
= policy
->freq_table
+ index
;
264 * Each core writes frequency in per core register. Then both cores
265 * in a cluster run at same frequency which is the maximum frequency
266 * request out of the values requested by both cores in that cluster.
268 on_each_cpu_mask(policy
->cpus
, set_cpu_ndiv
, tbl
, true);
273 static struct cpufreq_driver tegra194_cpufreq_driver
= {
275 .flags
= CPUFREQ_STICKY
| CPUFREQ_CONST_LOOPS
|
276 CPUFREQ_NEED_INITIAL_FREQ_CHECK
,
277 .verify
= cpufreq_generic_frequency_table_verify
,
278 .target_index
= tegra194_cpufreq_set_target
,
279 .get
= tegra194_get_speed
,
280 .init
= tegra194_cpufreq_init
,
281 .attr
= cpufreq_generic_attr
,
284 static void tegra194_cpufreq_free_resources(void)
286 destroy_workqueue(read_counters_wq
);
289 static struct cpufreq_frequency_table
*
290 init_freq_table(struct platform_device
*pdev
, struct tegra_bpmp
*bpmp
,
291 unsigned int cluster_id
)
293 struct cpufreq_frequency_table
*freq_table
;
294 struct mrq_cpu_ndiv_limits_response resp
;
295 unsigned int num_freqs
, ndiv
, delta_ndiv
;
296 struct mrq_cpu_ndiv_limits_request req
;
297 struct tegra_bpmp_message msg
;
298 u16 freq_table_step_size
;
301 memset(&req
, 0, sizeof(req
));
302 req
.cluster_id
= cluster_id
;
304 memset(&msg
, 0, sizeof(msg
));
305 msg
.mrq
= MRQ_CPU_NDIV_LIMITS
;
307 msg
.tx
.size
= sizeof(req
);
309 msg
.rx
.size
= sizeof(resp
);
311 err
= tegra_bpmp_transfer(bpmp
, &msg
);
316 * Make sure frequency table step is a multiple of mdiv to match
317 * vhint table granularity.
319 freq_table_step_size
= resp
.mdiv
*
320 DIV_ROUND_UP(CPUFREQ_TBL_STEP_HZ
, resp
.ref_clk_hz
);
322 dev_dbg(&pdev
->dev
, "cluster %d: frequency table step size: %d\n",
323 cluster_id
, freq_table_step_size
);
325 delta_ndiv
= resp
.ndiv_max
- resp
.ndiv_min
;
327 if (unlikely(delta_ndiv
== 0)) {
330 /* We store both ndiv_min and ndiv_max hence the +1 */
331 num_freqs
= delta_ndiv
/ freq_table_step_size
+ 1;
334 num_freqs
+= (delta_ndiv
% freq_table_step_size
) ? 1 : 0;
336 freq_table
= devm_kcalloc(&pdev
->dev
, num_freqs
+ 1,
337 sizeof(*freq_table
), GFP_KERNEL
);
339 return ERR_PTR(-ENOMEM
);
341 for (index
= 0, ndiv
= resp
.ndiv_min
;
342 ndiv
< resp
.ndiv_max
;
343 index
++, ndiv
+= freq_table_step_size
) {
344 freq_table
[index
].driver_data
= ndiv
;
345 freq_table
[index
].frequency
= map_ndiv_to_freq(&resp
, ndiv
);
348 freq_table
[index
].driver_data
= resp
.ndiv_max
;
349 freq_table
[index
++].frequency
= map_ndiv_to_freq(&resp
, resp
.ndiv_max
);
350 freq_table
[index
].frequency
= CPUFREQ_TABLE_END
;
355 static int tegra194_cpufreq_probe(struct platform_device
*pdev
)
357 struct tegra194_cpufreq_data
*data
;
358 struct tegra_bpmp
*bpmp
;
361 data
= devm_kzalloc(&pdev
->dev
, sizeof(*data
), GFP_KERNEL
);
365 data
->num_clusters
= MAX_CLUSTERS
;
366 data
->tables
= devm_kcalloc(&pdev
->dev
, data
->num_clusters
,
367 sizeof(*data
->tables
), GFP_KERNEL
);
371 platform_set_drvdata(pdev
, data
);
373 bpmp
= tegra_bpmp_get(&pdev
->dev
);
375 return PTR_ERR(bpmp
);
377 read_counters_wq
= alloc_workqueue("read_counters_wq", __WQ_LEGACY
, 1);
378 if (!read_counters_wq
) {
379 dev_err(&pdev
->dev
, "fail to create_workqueue\n");
384 for (i
= 0; i
< data
->num_clusters
; i
++) {
385 data
->tables
[i
] = init_freq_table(pdev
, bpmp
, i
);
386 if (IS_ERR(data
->tables
[i
])) {
387 err
= PTR_ERR(data
->tables
[i
]);
392 tegra194_cpufreq_driver
.driver_data
= data
;
394 err
= cpufreq_register_driver(&tegra194_cpufreq_driver
);
399 tegra194_cpufreq_free_resources();
401 tegra_bpmp_put(bpmp
);
405 static int tegra194_cpufreq_remove(struct platform_device
*pdev
)
407 cpufreq_unregister_driver(&tegra194_cpufreq_driver
);
408 tegra194_cpufreq_free_resources();
413 static const struct of_device_id tegra194_cpufreq_of_match
[] = {
414 { .compatible
= "nvidia,tegra194-ccplex", },
417 MODULE_DEVICE_TABLE(of
, tegra194_cpufreq_of_match
);
419 static struct platform_driver tegra194_ccplex_driver
= {
421 .name
= "tegra194-cpufreq",
422 .of_match_table
= tegra194_cpufreq_of_match
,
424 .probe
= tegra194_cpufreq_probe
,
425 .remove
= tegra194_cpufreq_remove
,
427 module_platform_driver(tegra194_ccplex_driver
);
429 MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>");
430 MODULE_AUTHOR("Sumit Gupta <sumitg@nvidia.com>");
431 MODULE_DESCRIPTION("NVIDIA Tegra194 cpufreq driver");
432 MODULE_LICENSE("GPL v2");