Merge tag 'regmap-fix-v5.11-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux/fpc-iii.git] / drivers / crypto / nx / nx-sha256.c
blob90d9a37a57f64565a8d5538e74c0eb04f512be6d
1 // SPDX-License-Identifier: GPL-2.0-only
2 /**
3 * SHA-256 routines supporting the Power 7+ Nest Accelerators driver
5 * Copyright (C) 2011-2012 International Business Machines Inc.
7 * Author: Kent Yoder <yoder1@us.ibm.com>
8 */
10 #include <crypto/internal/hash.h>
11 #include <crypto/sha2.h>
12 #include <linux/module.h>
13 #include <asm/vio.h>
14 #include <asm/byteorder.h>
16 #include "nx_csbcpb.h"
17 #include "nx.h"
20 static int nx_crypto_ctx_sha256_init(struct crypto_tfm *tfm)
22 struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm);
23 int err;
25 err = nx_crypto_ctx_sha_init(tfm);
26 if (err)
27 return err;
29 nx_ctx_init(nx_ctx, HCOP_FC_SHA);
31 nx_ctx->ap = &nx_ctx->props[NX_PROPS_SHA256];
33 NX_CPB_SET_DIGEST_SIZE(nx_ctx->csbcpb, NX_DS_SHA256);
35 return 0;
38 static int nx_sha256_init(struct shash_desc *desc) {
39 struct sha256_state *sctx = shash_desc_ctx(desc);
41 memset(sctx, 0, sizeof *sctx);
43 sctx->state[0] = __cpu_to_be32(SHA256_H0);
44 sctx->state[1] = __cpu_to_be32(SHA256_H1);
45 sctx->state[2] = __cpu_to_be32(SHA256_H2);
46 sctx->state[3] = __cpu_to_be32(SHA256_H3);
47 sctx->state[4] = __cpu_to_be32(SHA256_H4);
48 sctx->state[5] = __cpu_to_be32(SHA256_H5);
49 sctx->state[6] = __cpu_to_be32(SHA256_H6);
50 sctx->state[7] = __cpu_to_be32(SHA256_H7);
51 sctx->count = 0;
53 return 0;
56 static int nx_sha256_update(struct shash_desc *desc, const u8 *data,
57 unsigned int len)
59 struct sha256_state *sctx = shash_desc_ctx(desc);
60 struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
61 struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
62 struct nx_sg *out_sg;
63 u64 to_process = 0, leftover, total;
64 unsigned long irq_flags;
65 int rc = 0;
66 int data_len;
67 u32 max_sg_len;
68 u64 buf_len = (sctx->count % SHA256_BLOCK_SIZE);
70 spin_lock_irqsave(&nx_ctx->lock, irq_flags);
72 /* 2 cases for total data len:
73 * 1: < SHA256_BLOCK_SIZE: copy into state, return 0
74 * 2: >= SHA256_BLOCK_SIZE: process X blocks, copy in leftover
76 total = (sctx->count % SHA256_BLOCK_SIZE) + len;
77 if (total < SHA256_BLOCK_SIZE) {
78 memcpy(sctx->buf + buf_len, data, len);
79 sctx->count += len;
80 goto out;
83 memcpy(csbcpb->cpb.sha256.message_digest, sctx->state, SHA256_DIGEST_SIZE);
84 NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
85 NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
87 max_sg_len = min_t(u64, nx_ctx->ap->sglen,
88 nx_driver.of.max_sg_len/sizeof(struct nx_sg));
89 max_sg_len = min_t(u64, max_sg_len,
90 nx_ctx->ap->databytelen/NX_PAGE_SIZE);
92 data_len = SHA256_DIGEST_SIZE;
93 out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state,
94 &data_len, max_sg_len);
95 nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
97 if (data_len != SHA256_DIGEST_SIZE) {
98 rc = -EINVAL;
99 goto out;
102 do {
103 int used_sgs = 0;
104 struct nx_sg *in_sg = nx_ctx->in_sg;
106 if (buf_len) {
107 data_len = buf_len;
108 in_sg = nx_build_sg_list(in_sg,
109 (u8 *) sctx->buf,
110 &data_len,
111 max_sg_len);
113 if (data_len != buf_len) {
114 rc = -EINVAL;
115 goto out;
117 used_sgs = in_sg - nx_ctx->in_sg;
120 /* to_process: SHA256_BLOCK_SIZE aligned chunk to be
121 * processed in this iteration. This value is restricted
122 * by sg list limits and number of sgs we already used
123 * for leftover data. (see above)
124 * In ideal case, we could allow NX_PAGE_SIZE * max_sg_len,
125 * but because data may not be aligned, we need to account
126 * for that too. */
127 to_process = min_t(u64, total,
128 (max_sg_len - 1 - used_sgs) * NX_PAGE_SIZE);
129 to_process = to_process & ~(SHA256_BLOCK_SIZE - 1);
131 data_len = to_process - buf_len;
132 in_sg = nx_build_sg_list(in_sg, (u8 *) data,
133 &data_len, max_sg_len);
135 nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
137 to_process = data_len + buf_len;
138 leftover = total - to_process;
141 * we've hit the nx chip previously and we're updating
142 * again, so copy over the partial digest.
144 memcpy(csbcpb->cpb.sha256.input_partial_digest,
145 csbcpb->cpb.sha256.message_digest,
146 SHA256_DIGEST_SIZE);
148 if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
149 rc = -EINVAL;
150 goto out;
153 rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, 0);
154 if (rc)
155 goto out;
157 atomic_inc(&(nx_ctx->stats->sha256_ops));
159 total -= to_process;
160 data += to_process - buf_len;
161 buf_len = 0;
163 } while (leftover >= SHA256_BLOCK_SIZE);
165 /* copy the leftover back into the state struct */
166 if (leftover)
167 memcpy(sctx->buf, data, leftover);
169 sctx->count += len;
170 memcpy(sctx->state, csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE);
171 out:
172 spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
173 return rc;
176 static int nx_sha256_final(struct shash_desc *desc, u8 *out)
178 struct sha256_state *sctx = shash_desc_ctx(desc);
179 struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
180 struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
181 struct nx_sg *in_sg, *out_sg;
182 unsigned long irq_flags;
183 u32 max_sg_len;
184 int rc = 0;
185 int len;
187 spin_lock_irqsave(&nx_ctx->lock, irq_flags);
189 max_sg_len = min_t(u64, nx_ctx->ap->sglen,
190 nx_driver.of.max_sg_len/sizeof(struct nx_sg));
191 max_sg_len = min_t(u64, max_sg_len,
192 nx_ctx->ap->databytelen/NX_PAGE_SIZE);
194 /* final is represented by continuing the operation and indicating that
195 * this is not an intermediate operation */
196 if (sctx->count >= SHA256_BLOCK_SIZE) {
197 /* we've hit the nx chip previously, now we're finalizing,
198 * so copy over the partial digest */
199 memcpy(csbcpb->cpb.sha256.input_partial_digest, sctx->state, SHA256_DIGEST_SIZE);
200 NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
201 NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
202 } else {
203 NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
204 NX_CPB_FDM(csbcpb) &= ~NX_FDM_CONTINUATION;
207 csbcpb->cpb.sha256.message_bit_length = (u64) (sctx->count * 8);
209 len = sctx->count & (SHA256_BLOCK_SIZE - 1);
210 in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) sctx->buf,
211 &len, max_sg_len);
213 if (len != (sctx->count & (SHA256_BLOCK_SIZE - 1))) {
214 rc = -EINVAL;
215 goto out;
218 len = SHA256_DIGEST_SIZE;
219 out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len, max_sg_len);
221 if (len != SHA256_DIGEST_SIZE) {
222 rc = -EINVAL;
223 goto out;
226 nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
227 nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
228 if (!nx_ctx->op.outlen) {
229 rc = -EINVAL;
230 goto out;
233 rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, 0);
234 if (rc)
235 goto out;
237 atomic_inc(&(nx_ctx->stats->sha256_ops));
239 atomic64_add(sctx->count, &(nx_ctx->stats->sha256_bytes));
240 memcpy(out, csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE);
241 out:
242 spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
243 return rc;
246 static int nx_sha256_export(struct shash_desc *desc, void *out)
248 struct sha256_state *sctx = shash_desc_ctx(desc);
250 memcpy(out, sctx, sizeof(*sctx));
252 return 0;
255 static int nx_sha256_import(struct shash_desc *desc, const void *in)
257 struct sha256_state *sctx = shash_desc_ctx(desc);
259 memcpy(sctx, in, sizeof(*sctx));
261 return 0;
264 struct shash_alg nx_shash_sha256_alg = {
265 .digestsize = SHA256_DIGEST_SIZE,
266 .init = nx_sha256_init,
267 .update = nx_sha256_update,
268 .final = nx_sha256_final,
269 .export = nx_sha256_export,
270 .import = nx_sha256_import,
271 .descsize = sizeof(struct sha256_state),
272 .statesize = sizeof(struct sha256_state),
273 .base = {
274 .cra_name = "sha256",
275 .cra_driver_name = "sha256-nx",
276 .cra_priority = 300,
277 .cra_blocksize = SHA256_BLOCK_SIZE,
278 .cra_module = THIS_MODULE,
279 .cra_ctxsize = sizeof(struct nx_crypto_ctx),
280 .cra_init = nx_crypto_ctx_sha256_init,
281 .cra_exit = nx_crypto_ctx_exit,