1 // SPDX-License-Identifier: GPL-2.0-only
3 * SHA-512 routines supporting the Power 7+ Nest Accelerators driver
5 * Copyright (C) 2011-2012 International Business Machines Inc.
7 * Author: Kent Yoder <yoder1@us.ibm.com>
10 #include <crypto/internal/hash.h>
11 #include <crypto/sha2.h>
12 #include <linux/module.h>
15 #include "nx_csbcpb.h"
19 static int nx_crypto_ctx_sha512_init(struct crypto_tfm
*tfm
)
21 struct nx_crypto_ctx
*nx_ctx
= crypto_tfm_ctx(tfm
);
24 err
= nx_crypto_ctx_sha_init(tfm
);
28 nx_ctx_init(nx_ctx
, HCOP_FC_SHA
);
30 nx_ctx
->ap
= &nx_ctx
->props
[NX_PROPS_SHA512
];
32 NX_CPB_SET_DIGEST_SIZE(nx_ctx
->csbcpb
, NX_DS_SHA512
);
37 static int nx_sha512_init(struct shash_desc
*desc
)
39 struct sha512_state
*sctx
= shash_desc_ctx(desc
);
41 memset(sctx
, 0, sizeof *sctx
);
43 sctx
->state
[0] = __cpu_to_be64(SHA512_H0
);
44 sctx
->state
[1] = __cpu_to_be64(SHA512_H1
);
45 sctx
->state
[2] = __cpu_to_be64(SHA512_H2
);
46 sctx
->state
[3] = __cpu_to_be64(SHA512_H3
);
47 sctx
->state
[4] = __cpu_to_be64(SHA512_H4
);
48 sctx
->state
[5] = __cpu_to_be64(SHA512_H5
);
49 sctx
->state
[6] = __cpu_to_be64(SHA512_H6
);
50 sctx
->state
[7] = __cpu_to_be64(SHA512_H7
);
56 static int nx_sha512_update(struct shash_desc
*desc
, const u8
*data
,
59 struct sha512_state
*sctx
= shash_desc_ctx(desc
);
60 struct nx_crypto_ctx
*nx_ctx
= crypto_tfm_ctx(&desc
->tfm
->base
);
61 struct nx_csbcpb
*csbcpb
= (struct nx_csbcpb
*)nx_ctx
->csbcpb
;
63 u64 to_process
, leftover
= 0, total
;
64 unsigned long irq_flags
;
68 u64 buf_len
= (sctx
->count
[0] % SHA512_BLOCK_SIZE
);
70 spin_lock_irqsave(&nx_ctx
->lock
, irq_flags
);
72 /* 2 cases for total data len:
73 * 1: < SHA512_BLOCK_SIZE: copy into state, return 0
74 * 2: >= SHA512_BLOCK_SIZE: process X blocks, copy in leftover
76 total
= (sctx
->count
[0] % SHA512_BLOCK_SIZE
) + len
;
77 if (total
< SHA512_BLOCK_SIZE
) {
78 memcpy(sctx
->buf
+ buf_len
, data
, len
);
79 sctx
->count
[0] += len
;
83 memcpy(csbcpb
->cpb
.sha512
.message_digest
, sctx
->state
, SHA512_DIGEST_SIZE
);
84 NX_CPB_FDM(csbcpb
) |= NX_FDM_INTERMEDIATE
;
85 NX_CPB_FDM(csbcpb
) |= NX_FDM_CONTINUATION
;
87 max_sg_len
= min_t(u64
, nx_ctx
->ap
->sglen
,
88 nx_driver
.of
.max_sg_len
/sizeof(struct nx_sg
));
89 max_sg_len
= min_t(u64
, max_sg_len
,
90 nx_ctx
->ap
->databytelen
/NX_PAGE_SIZE
);
92 data_len
= SHA512_DIGEST_SIZE
;
93 out_sg
= nx_build_sg_list(nx_ctx
->out_sg
, (u8
*)sctx
->state
,
94 &data_len
, max_sg_len
);
95 nx_ctx
->op
.outlen
= (nx_ctx
->out_sg
- out_sg
) * sizeof(struct nx_sg
);
97 if (data_len
!= SHA512_DIGEST_SIZE
) {
104 struct nx_sg
*in_sg
= nx_ctx
->in_sg
;
108 in_sg
= nx_build_sg_list(in_sg
,
110 &data_len
, max_sg_len
);
112 if (data_len
!= buf_len
) {
116 used_sgs
= in_sg
- nx_ctx
->in_sg
;
119 /* to_process: SHA512_BLOCK_SIZE aligned chunk to be
120 * processed in this iteration. This value is restricted
121 * by sg list limits and number of sgs we already used
122 * for leftover data. (see above)
123 * In ideal case, we could allow NX_PAGE_SIZE * max_sg_len,
124 * but because data may not be aligned, we need to account
126 to_process
= min_t(u64
, total
,
127 (max_sg_len
- 1 - used_sgs
) * NX_PAGE_SIZE
);
128 to_process
= to_process
& ~(SHA512_BLOCK_SIZE
- 1);
130 data_len
= to_process
- buf_len
;
131 in_sg
= nx_build_sg_list(in_sg
, (u8
*) data
,
132 &data_len
, max_sg_len
);
134 nx_ctx
->op
.inlen
= (nx_ctx
->in_sg
- in_sg
) * sizeof(struct nx_sg
);
136 if (data_len
!= (to_process
- buf_len
)) {
141 to_process
= data_len
+ buf_len
;
142 leftover
= total
- to_process
;
145 * we've hit the nx chip previously and we're updating
146 * again, so copy over the partial digest.
148 memcpy(csbcpb
->cpb
.sha512
.input_partial_digest
,
149 csbcpb
->cpb
.sha512
.message_digest
,
152 if (!nx_ctx
->op
.inlen
|| !nx_ctx
->op
.outlen
) {
157 rc
= nx_hcall_sync(nx_ctx
, &nx_ctx
->op
, 0);
161 atomic_inc(&(nx_ctx
->stats
->sha512_ops
));
164 data
+= to_process
- buf_len
;
167 } while (leftover
>= SHA512_BLOCK_SIZE
);
169 /* copy the leftover back into the state struct */
171 memcpy(sctx
->buf
, data
, leftover
);
172 sctx
->count
[0] += len
;
173 memcpy(sctx
->state
, csbcpb
->cpb
.sha512
.message_digest
, SHA512_DIGEST_SIZE
);
175 spin_unlock_irqrestore(&nx_ctx
->lock
, irq_flags
);
179 static int nx_sha512_final(struct shash_desc
*desc
, u8
*out
)
181 struct sha512_state
*sctx
= shash_desc_ctx(desc
);
182 struct nx_crypto_ctx
*nx_ctx
= crypto_tfm_ctx(&desc
->tfm
->base
);
183 struct nx_csbcpb
*csbcpb
= (struct nx_csbcpb
*)nx_ctx
->csbcpb
;
184 struct nx_sg
*in_sg
, *out_sg
;
187 unsigned long irq_flags
;
191 spin_lock_irqsave(&nx_ctx
->lock
, irq_flags
);
193 max_sg_len
= min_t(u64
, nx_ctx
->ap
->sglen
,
194 nx_driver
.of
.max_sg_len
/sizeof(struct nx_sg
));
195 max_sg_len
= min_t(u64
, max_sg_len
,
196 nx_ctx
->ap
->databytelen
/NX_PAGE_SIZE
);
198 /* final is represented by continuing the operation and indicating that
199 * this is not an intermediate operation */
200 if (sctx
->count
[0] >= SHA512_BLOCK_SIZE
) {
201 /* we've hit the nx chip previously, now we're finalizing,
202 * so copy over the partial digest */
203 memcpy(csbcpb
->cpb
.sha512
.input_partial_digest
, sctx
->state
,
205 NX_CPB_FDM(csbcpb
) &= ~NX_FDM_INTERMEDIATE
;
206 NX_CPB_FDM(csbcpb
) |= NX_FDM_CONTINUATION
;
208 NX_CPB_FDM(csbcpb
) &= ~NX_FDM_INTERMEDIATE
;
209 NX_CPB_FDM(csbcpb
) &= ~NX_FDM_CONTINUATION
;
212 NX_CPB_FDM(csbcpb
) &= ~NX_FDM_INTERMEDIATE
;
214 count0
= sctx
->count
[0] * 8;
216 csbcpb
->cpb
.sha512
.message_bit_length_lo
= count0
;
218 len
= sctx
->count
[0] & (SHA512_BLOCK_SIZE
- 1);
219 in_sg
= nx_build_sg_list(nx_ctx
->in_sg
, sctx
->buf
, &len
,
222 if (len
!= (sctx
->count
[0] & (SHA512_BLOCK_SIZE
- 1))) {
227 len
= SHA512_DIGEST_SIZE
;
228 out_sg
= nx_build_sg_list(nx_ctx
->out_sg
, out
, &len
,
231 nx_ctx
->op
.inlen
= (nx_ctx
->in_sg
- in_sg
) * sizeof(struct nx_sg
);
232 nx_ctx
->op
.outlen
= (nx_ctx
->out_sg
- out_sg
) * sizeof(struct nx_sg
);
234 if (!nx_ctx
->op
.outlen
) {
239 rc
= nx_hcall_sync(nx_ctx
, &nx_ctx
->op
, 0);
243 atomic_inc(&(nx_ctx
->stats
->sha512_ops
));
244 atomic64_add(sctx
->count
[0], &(nx_ctx
->stats
->sha512_bytes
));
246 memcpy(out
, csbcpb
->cpb
.sha512
.message_digest
, SHA512_DIGEST_SIZE
);
248 spin_unlock_irqrestore(&nx_ctx
->lock
, irq_flags
);
252 static int nx_sha512_export(struct shash_desc
*desc
, void *out
)
254 struct sha512_state
*sctx
= shash_desc_ctx(desc
);
256 memcpy(out
, sctx
, sizeof(*sctx
));
261 static int nx_sha512_import(struct shash_desc
*desc
, const void *in
)
263 struct sha512_state
*sctx
= shash_desc_ctx(desc
);
265 memcpy(sctx
, in
, sizeof(*sctx
));
270 struct shash_alg nx_shash_sha512_alg
= {
271 .digestsize
= SHA512_DIGEST_SIZE
,
272 .init
= nx_sha512_init
,
273 .update
= nx_sha512_update
,
274 .final
= nx_sha512_final
,
275 .export
= nx_sha512_export
,
276 .import
= nx_sha512_import
,
277 .descsize
= sizeof(struct sha512_state
),
278 .statesize
= sizeof(struct sha512_state
),
280 .cra_name
= "sha512",
281 .cra_driver_name
= "sha512-nx",
283 .cra_blocksize
= SHA512_BLOCK_SIZE
,
284 .cra_module
= THIS_MODULE
,
285 .cra_ctxsize
= sizeof(struct nx_crypto_ctx
),
286 .cra_init
= nx_crypto_ctx_sha512_init
,
287 .cra_exit
= nx_crypto_ctx_exit
,