1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Freescale MPC85xx, MPC83xx DMA Engine support
5 * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
8 * Zhang Wei <wei.zhang@freescale.com>, Jul 2007
9 * Ebony Zhu <ebony.zhu@freescale.com>, May 2007
12 * DMA engine driver for Freescale MPC8540 DMA controller, which is
13 * also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
14 * The support for MPC8349 DMA controller is also added.
16 * This driver instructs the DMA controller to issue the PCI Read Multiple
17 * command for PCI read operations, instead of using the default PCI Read Line
18 * command. Please be aware that this setting may result in read pre-fetching
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/dmaengine.h>
28 #include <linux/delay.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/dmapool.h>
31 #include <linux/of_address.h>
32 #include <linux/of_irq.h>
33 #include <linux/of_platform.h>
34 #include <linux/fsldma.h>
35 #include "dmaengine.h"
38 #define chan_dbg(chan, fmt, arg...) \
39 dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
40 #define chan_err(chan, fmt, arg...) \
41 dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
43 static const char msg_ld_oom
[] = "No free memory for link descriptor";
49 static void set_sr(struct fsldma_chan
*chan
, u32 val
)
51 FSL_DMA_OUT(chan
, &chan
->regs
->sr
, val
, 32);
54 static u32
get_sr(struct fsldma_chan
*chan
)
56 return FSL_DMA_IN(chan
, &chan
->regs
->sr
, 32);
59 static void set_mr(struct fsldma_chan
*chan
, u32 val
)
61 FSL_DMA_OUT(chan
, &chan
->regs
->mr
, val
, 32);
64 static u32
get_mr(struct fsldma_chan
*chan
)
66 return FSL_DMA_IN(chan
, &chan
->regs
->mr
, 32);
69 static void set_cdar(struct fsldma_chan
*chan
, dma_addr_t addr
)
71 FSL_DMA_OUT(chan
, &chan
->regs
->cdar
, addr
| FSL_DMA_SNEN
, 64);
74 static dma_addr_t
get_cdar(struct fsldma_chan
*chan
)
76 return FSL_DMA_IN(chan
, &chan
->regs
->cdar
, 64) & ~FSL_DMA_SNEN
;
79 static void set_bcr(struct fsldma_chan
*chan
, u32 val
)
81 FSL_DMA_OUT(chan
, &chan
->regs
->bcr
, val
, 32);
84 static u32
get_bcr(struct fsldma_chan
*chan
)
86 return FSL_DMA_IN(chan
, &chan
->regs
->bcr
, 32);
93 static void set_desc_cnt(struct fsldma_chan
*chan
,
94 struct fsl_dma_ld_hw
*hw
, u32 count
)
96 hw
->count
= CPU_TO_DMA(chan
, count
, 32);
99 static void set_desc_src(struct fsldma_chan
*chan
,
100 struct fsl_dma_ld_hw
*hw
, dma_addr_t src
)
104 snoop_bits
= ((chan
->feature
& FSL_DMA_IP_MASK
) == FSL_DMA_IP_85XX
)
105 ? ((u64
)FSL_DMA_SATR_SREADTYPE_SNOOP_READ
<< 32) : 0;
106 hw
->src_addr
= CPU_TO_DMA(chan
, snoop_bits
| src
, 64);
109 static void set_desc_dst(struct fsldma_chan
*chan
,
110 struct fsl_dma_ld_hw
*hw
, dma_addr_t dst
)
114 snoop_bits
= ((chan
->feature
& FSL_DMA_IP_MASK
) == FSL_DMA_IP_85XX
)
115 ? ((u64
)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE
<< 32) : 0;
116 hw
->dst_addr
= CPU_TO_DMA(chan
, snoop_bits
| dst
, 64);
119 static void set_desc_next(struct fsldma_chan
*chan
,
120 struct fsl_dma_ld_hw
*hw
, dma_addr_t next
)
124 snoop_bits
= ((chan
->feature
& FSL_DMA_IP_MASK
) == FSL_DMA_IP_83XX
)
126 hw
->next_ln_addr
= CPU_TO_DMA(chan
, snoop_bits
| next
, 64);
129 static void set_ld_eol(struct fsldma_chan
*chan
, struct fsl_desc_sw
*desc
)
133 snoop_bits
= ((chan
->feature
& FSL_DMA_IP_MASK
) == FSL_DMA_IP_83XX
)
136 desc
->hw
.next_ln_addr
= CPU_TO_DMA(chan
,
137 DMA_TO_CPU(chan
, desc
->hw
.next_ln_addr
, 64) | FSL_DMA_EOL
142 * DMA Engine Hardware Control Helpers
145 static void dma_init(struct fsldma_chan
*chan
)
147 /* Reset the channel */
150 switch (chan
->feature
& FSL_DMA_IP_MASK
) {
151 case FSL_DMA_IP_85XX
:
152 /* Set the channel to below modes:
153 * EIE - Error interrupt enable
154 * EOLNIE - End of links interrupt enable
155 * BWC - Bandwidth sharing among channels
157 set_mr(chan
, FSL_DMA_MR_BWC
| FSL_DMA_MR_EIE
158 | FSL_DMA_MR_EOLNIE
);
160 case FSL_DMA_IP_83XX
:
161 /* Set the channel to below modes:
162 * EOTIE - End-of-transfer interrupt enable
163 * PRC_RM - PCI read multiple
165 set_mr(chan
, FSL_DMA_MR_EOTIE
| FSL_DMA_MR_PRC_RM
);
170 static int dma_is_idle(struct fsldma_chan
*chan
)
172 u32 sr
= get_sr(chan
);
173 return (!(sr
& FSL_DMA_SR_CB
)) || (sr
& FSL_DMA_SR_CH
);
177 * Start the DMA controller
180 * - the CDAR register must point to the start descriptor
181 * - the MRn[CS] bit must be cleared
183 static void dma_start(struct fsldma_chan
*chan
)
189 if (chan
->feature
& FSL_DMA_CHAN_PAUSE_EXT
) {
191 mode
|= FSL_DMA_MR_EMP_EN
;
193 mode
&= ~FSL_DMA_MR_EMP_EN
;
196 if (chan
->feature
& FSL_DMA_CHAN_START_EXT
) {
197 mode
|= FSL_DMA_MR_EMS_EN
;
199 mode
&= ~FSL_DMA_MR_EMS_EN
;
200 mode
|= FSL_DMA_MR_CS
;
206 static void dma_halt(struct fsldma_chan
*chan
)
211 /* read the mode register */
215 * The 85xx controller supports channel abort, which will stop
216 * the current transfer. On 83xx, this bit is the transfer error
217 * mask bit, which should not be changed.
219 if ((chan
->feature
& FSL_DMA_IP_MASK
) == FSL_DMA_IP_85XX
) {
220 mode
|= FSL_DMA_MR_CA
;
223 mode
&= ~FSL_DMA_MR_CA
;
226 /* stop the DMA controller */
227 mode
&= ~(FSL_DMA_MR_CS
| FSL_DMA_MR_EMS_EN
);
230 /* wait for the DMA controller to become idle */
231 for (i
= 0; i
< 100; i
++) {
232 if (dma_is_idle(chan
))
238 if (!dma_is_idle(chan
))
239 chan_err(chan
, "DMA halt timeout!\n");
243 * fsl_chan_set_src_loop_size - Set source address hold transfer size
244 * @chan : Freescale DMA channel
245 * @size : Address loop size, 0 for disable loop
247 * The set source address hold transfer size. The source
248 * address hold or loop transfer size is when the DMA transfer
249 * data from source address (SA), if the loop size is 4, the DMA will
250 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
251 * SA + 1 ... and so on.
253 static void fsl_chan_set_src_loop_size(struct fsldma_chan
*chan
, int size
)
261 mode
&= ~FSL_DMA_MR_SAHE
;
267 mode
&= ~FSL_DMA_MR_SAHTS_MASK
;
268 mode
|= FSL_DMA_MR_SAHE
| (__ilog2(size
) << 14);
276 * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
277 * @chan : Freescale DMA channel
278 * @size : Address loop size, 0 for disable loop
280 * The set destination address hold transfer size. The destination
281 * address hold or loop transfer size is when the DMA transfer
282 * data to destination address (TA), if the loop size is 4, the DMA will
283 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
284 * TA + 1 ... and so on.
286 static void fsl_chan_set_dst_loop_size(struct fsldma_chan
*chan
, int size
)
294 mode
&= ~FSL_DMA_MR_DAHE
;
300 mode
&= ~FSL_DMA_MR_DAHTS_MASK
;
301 mode
|= FSL_DMA_MR_DAHE
| (__ilog2(size
) << 16);
309 * fsl_chan_set_request_count - Set DMA Request Count for external control
310 * @chan : Freescale DMA channel
311 * @size : Number of bytes to transfer in a single request
313 * The Freescale DMA channel can be controlled by the external signal DREQ#.
314 * The DMA request count is how many bytes are allowed to transfer before
315 * pausing the channel, after which a new assertion of DREQ# resumes channel
318 * A size of 0 disables external pause control. The maximum size is 1024.
320 static void fsl_chan_set_request_count(struct fsldma_chan
*chan
, int size
)
327 mode
&= ~FSL_DMA_MR_BWC_MASK
;
328 mode
|= (__ilog2(size
) << 24) & FSL_DMA_MR_BWC_MASK
;
334 * fsl_chan_toggle_ext_pause - Toggle channel external pause status
335 * @chan : Freescale DMA channel
336 * @enable : 0 is disabled, 1 is enabled.
338 * The Freescale DMA channel can be controlled by the external signal DREQ#.
339 * The DMA Request Count feature should be used in addition to this feature
340 * to set the number of bytes to transfer before pausing the channel.
342 static void fsl_chan_toggle_ext_pause(struct fsldma_chan
*chan
, int enable
)
345 chan
->feature
|= FSL_DMA_CHAN_PAUSE_EXT
;
347 chan
->feature
&= ~FSL_DMA_CHAN_PAUSE_EXT
;
351 * fsl_chan_toggle_ext_start - Toggle channel external start status
352 * @chan : Freescale DMA channel
353 * @enable : 0 is disabled, 1 is enabled.
355 * If enable the external start, the channel can be started by an
356 * external DMA start pin. So the dma_start() does not start the
357 * transfer immediately. The DMA channel will wait for the
358 * control pin asserted.
360 static void fsl_chan_toggle_ext_start(struct fsldma_chan
*chan
, int enable
)
363 chan
->feature
|= FSL_DMA_CHAN_START_EXT
;
365 chan
->feature
&= ~FSL_DMA_CHAN_START_EXT
;
368 int fsl_dma_external_start(struct dma_chan
*dchan
, int enable
)
370 struct fsldma_chan
*chan
;
375 chan
= to_fsl_chan(dchan
);
377 fsl_chan_toggle_ext_start(chan
, enable
);
380 EXPORT_SYMBOL_GPL(fsl_dma_external_start
);
382 static void append_ld_queue(struct fsldma_chan
*chan
, struct fsl_desc_sw
*desc
)
384 struct fsl_desc_sw
*tail
= to_fsl_desc(chan
->ld_pending
.prev
);
386 if (list_empty(&chan
->ld_pending
))
390 * Add the hardware descriptor to the chain of hardware descriptors
391 * that already exists in memory.
393 * This will un-set the EOL bit of the existing transaction, and the
394 * last link in this transaction will become the EOL descriptor.
396 set_desc_next(chan
, &tail
->hw
, desc
->async_tx
.phys
);
399 * Add the software descriptor and all children to the list
400 * of pending transactions
403 list_splice_tail_init(&desc
->tx_list
, &chan
->ld_pending
);
406 static dma_cookie_t
fsl_dma_tx_submit(struct dma_async_tx_descriptor
*tx
)
408 struct fsldma_chan
*chan
= to_fsl_chan(tx
->chan
);
409 struct fsl_desc_sw
*desc
= tx_to_fsl_desc(tx
);
410 struct fsl_desc_sw
*child
;
411 dma_cookie_t cookie
= -EINVAL
;
413 spin_lock_bh(&chan
->desc_lock
);
416 if (unlikely(chan
->pm_state
!= RUNNING
)) {
417 chan_dbg(chan
, "cannot submit due to suspend\n");
418 spin_unlock_bh(&chan
->desc_lock
);
424 * assign cookies to all of the software descriptors
425 * that make up this transaction
427 list_for_each_entry(child
, &desc
->tx_list
, node
) {
428 cookie
= dma_cookie_assign(&child
->async_tx
);
431 /* put this transaction onto the tail of the pending queue */
432 append_ld_queue(chan
, desc
);
434 spin_unlock_bh(&chan
->desc_lock
);
440 * fsl_dma_free_descriptor - Free descriptor from channel's DMA pool.
441 * @chan : Freescale DMA channel
442 * @desc: descriptor to be freed
444 static void fsl_dma_free_descriptor(struct fsldma_chan
*chan
,
445 struct fsl_desc_sw
*desc
)
447 list_del(&desc
->node
);
448 chan_dbg(chan
, "LD %p free\n", desc
);
449 dma_pool_free(chan
->desc_pool
, desc
, desc
->async_tx
.phys
);
453 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
454 * @chan : Freescale DMA channel
456 * Return - The descriptor allocated. NULL for failed.
458 static struct fsl_desc_sw
*fsl_dma_alloc_descriptor(struct fsldma_chan
*chan
)
460 struct fsl_desc_sw
*desc
;
463 desc
= dma_pool_zalloc(chan
->desc_pool
, GFP_ATOMIC
, &pdesc
);
465 chan_dbg(chan
, "out of memory for link descriptor\n");
469 INIT_LIST_HEAD(&desc
->tx_list
);
470 dma_async_tx_descriptor_init(&desc
->async_tx
, &chan
->common
);
471 desc
->async_tx
.tx_submit
= fsl_dma_tx_submit
;
472 desc
->async_tx
.phys
= pdesc
;
474 chan_dbg(chan
, "LD %p allocated\n", desc
);
480 * fsldma_clean_completed_descriptor - free all descriptors which
481 * has been completed and acked
482 * @chan: Freescale DMA channel
484 * This function is used on all completed and acked descriptors.
485 * All descriptors should only be freed in this function.
487 static void fsldma_clean_completed_descriptor(struct fsldma_chan
*chan
)
489 struct fsl_desc_sw
*desc
, *_desc
;
491 /* Run the callback for each descriptor, in order */
492 list_for_each_entry_safe(desc
, _desc
, &chan
->ld_completed
, node
)
493 if (async_tx_test_ack(&desc
->async_tx
))
494 fsl_dma_free_descriptor(chan
, desc
);
498 * fsldma_run_tx_complete_actions - cleanup a single link descriptor
499 * @chan: Freescale DMA channel
500 * @desc: descriptor to cleanup and free
501 * @cookie: Freescale DMA transaction identifier
503 * This function is used on a descriptor which has been executed by the DMA
504 * controller. It will run any callbacks, submit any dependencies.
506 static dma_cookie_t
fsldma_run_tx_complete_actions(struct fsldma_chan
*chan
,
507 struct fsl_desc_sw
*desc
, dma_cookie_t cookie
)
509 struct dma_async_tx_descriptor
*txd
= &desc
->async_tx
;
510 dma_cookie_t ret
= cookie
;
512 BUG_ON(txd
->cookie
< 0);
514 if (txd
->cookie
> 0) {
517 dma_descriptor_unmap(txd
);
518 /* Run the link descriptor callback function */
519 dmaengine_desc_get_callback_invoke(txd
, NULL
);
522 /* Run any dependencies */
523 dma_run_dependencies(txd
);
529 * fsldma_clean_running_descriptor - move the completed descriptor from
530 * ld_running to ld_completed
531 * @chan: Freescale DMA channel
532 * @desc: the descriptor which is completed
534 * Free the descriptor directly if acked by async_tx api, or move it to
535 * queue ld_completed.
537 static void fsldma_clean_running_descriptor(struct fsldma_chan
*chan
,
538 struct fsl_desc_sw
*desc
)
540 /* Remove from the list of transactions */
541 list_del(&desc
->node
);
544 * the client is allowed to attach dependent operations
547 if (!async_tx_test_ack(&desc
->async_tx
)) {
549 * Move this descriptor to the list of descriptors which is
550 * completed, but still awaiting the 'ack' bit to be set.
552 list_add_tail(&desc
->node
, &chan
->ld_completed
);
556 dma_pool_free(chan
->desc_pool
, desc
, desc
->async_tx
.phys
);
560 * fsl_chan_xfer_ld_queue - transfer any pending transactions
561 * @chan : Freescale DMA channel
563 * HARDWARE STATE: idle
564 * LOCKING: must hold chan->desc_lock
566 static void fsl_chan_xfer_ld_queue(struct fsldma_chan
*chan
)
568 struct fsl_desc_sw
*desc
;
571 * If the list of pending descriptors is empty, then we
572 * don't need to do any work at all
574 if (list_empty(&chan
->ld_pending
)) {
575 chan_dbg(chan
, "no pending LDs\n");
580 * The DMA controller is not idle, which means that the interrupt
581 * handler will start any queued transactions when it runs after
582 * this transaction finishes
585 chan_dbg(chan
, "DMA controller still busy\n");
590 * If there are some link descriptors which have not been
591 * transferred, we need to start the controller
595 * Move all elements from the queue of pending transactions
596 * onto the list of running transactions
598 chan_dbg(chan
, "idle, starting controller\n");
599 desc
= list_first_entry(&chan
->ld_pending
, struct fsl_desc_sw
, node
);
600 list_splice_tail_init(&chan
->ld_pending
, &chan
->ld_running
);
603 * The 85xx DMA controller doesn't clear the channel start bit
604 * automatically at the end of a transfer. Therefore we must clear
605 * it in software before starting the transfer.
607 if ((chan
->feature
& FSL_DMA_IP_MASK
) == FSL_DMA_IP_85XX
) {
611 mode
&= ~FSL_DMA_MR_CS
;
616 * Program the descriptor's address into the DMA controller,
617 * then start the DMA transaction
619 set_cdar(chan
, desc
->async_tx
.phys
);
627 * fsldma_cleanup_descriptors - cleanup link descriptors which are completed
628 * and move them to ld_completed to free until flag 'ack' is set
629 * @chan: Freescale DMA channel
631 * This function is used on descriptors which have been executed by the DMA
632 * controller. It will run any callbacks, submit any dependencies, then
633 * free these descriptors if flag 'ack' is set.
635 static void fsldma_cleanup_descriptors(struct fsldma_chan
*chan
)
637 struct fsl_desc_sw
*desc
, *_desc
;
638 dma_cookie_t cookie
= 0;
639 dma_addr_t curr_phys
= get_cdar(chan
);
640 int seen_current
= 0;
642 fsldma_clean_completed_descriptor(chan
);
644 /* Run the callback for each descriptor, in order */
645 list_for_each_entry_safe(desc
, _desc
, &chan
->ld_running
, node
) {
647 * do not advance past the current descriptor loaded into the
648 * hardware channel, subsequent descriptors are either in
649 * process or have not been submitted
655 * stop the search if we reach the current descriptor and the
658 if (desc
->async_tx
.phys
== curr_phys
) {
660 if (!dma_is_idle(chan
))
664 cookie
= fsldma_run_tx_complete_actions(chan
, desc
, cookie
);
666 fsldma_clean_running_descriptor(chan
, desc
);
670 * Start any pending transactions automatically
672 * In the ideal case, we keep the DMA controller busy while we go
673 * ahead and free the descriptors below.
675 fsl_chan_xfer_ld_queue(chan
);
678 chan
->common
.completed_cookie
= cookie
;
682 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
683 * @chan : Freescale DMA channel
685 * This function will create a dma pool for descriptor allocation.
687 * Return - The number of descriptors allocated.
689 static int fsl_dma_alloc_chan_resources(struct dma_chan
*dchan
)
691 struct fsldma_chan
*chan
= to_fsl_chan(dchan
);
693 /* Has this channel already been allocated? */
698 * We need the descriptor to be aligned to 32bytes
699 * for meeting FSL DMA specification requirement.
701 chan
->desc_pool
= dma_pool_create(chan
->name
, chan
->dev
,
702 sizeof(struct fsl_desc_sw
),
703 __alignof__(struct fsl_desc_sw
), 0);
704 if (!chan
->desc_pool
) {
705 chan_err(chan
, "unable to allocate descriptor pool\n");
709 /* there is at least one descriptor free to be allocated */
714 * fsldma_free_desc_list - Free all descriptors in a queue
715 * @chan: Freescae DMA channel
716 * @list: the list to free
718 * LOCKING: must hold chan->desc_lock
720 static void fsldma_free_desc_list(struct fsldma_chan
*chan
,
721 struct list_head
*list
)
723 struct fsl_desc_sw
*desc
, *_desc
;
725 list_for_each_entry_safe(desc
, _desc
, list
, node
)
726 fsl_dma_free_descriptor(chan
, desc
);
729 static void fsldma_free_desc_list_reverse(struct fsldma_chan
*chan
,
730 struct list_head
*list
)
732 struct fsl_desc_sw
*desc
, *_desc
;
734 list_for_each_entry_safe_reverse(desc
, _desc
, list
, node
)
735 fsl_dma_free_descriptor(chan
, desc
);
739 * fsl_dma_free_chan_resources - Free all resources of the channel.
740 * @chan : Freescale DMA channel
742 static void fsl_dma_free_chan_resources(struct dma_chan
*dchan
)
744 struct fsldma_chan
*chan
= to_fsl_chan(dchan
);
746 chan_dbg(chan
, "free all channel resources\n");
747 spin_lock_bh(&chan
->desc_lock
);
748 fsldma_cleanup_descriptors(chan
);
749 fsldma_free_desc_list(chan
, &chan
->ld_pending
);
750 fsldma_free_desc_list(chan
, &chan
->ld_running
);
751 fsldma_free_desc_list(chan
, &chan
->ld_completed
);
752 spin_unlock_bh(&chan
->desc_lock
);
754 dma_pool_destroy(chan
->desc_pool
);
755 chan
->desc_pool
= NULL
;
758 static struct dma_async_tx_descriptor
*
759 fsl_dma_prep_memcpy(struct dma_chan
*dchan
,
760 dma_addr_t dma_dst
, dma_addr_t dma_src
,
761 size_t len
, unsigned long flags
)
763 struct fsldma_chan
*chan
;
764 struct fsl_desc_sw
*first
= NULL
, *prev
= NULL
, *new;
773 chan
= to_fsl_chan(dchan
);
777 /* Allocate the link descriptor from DMA pool */
778 new = fsl_dma_alloc_descriptor(chan
);
780 chan_err(chan
, "%s\n", msg_ld_oom
);
784 copy
= min(len
, (size_t)FSL_DMA_BCR_MAX_CNT
);
786 set_desc_cnt(chan
, &new->hw
, copy
);
787 set_desc_src(chan
, &new->hw
, dma_src
);
788 set_desc_dst(chan
, &new->hw
, dma_dst
);
793 set_desc_next(chan
, &prev
->hw
, new->async_tx
.phys
);
795 new->async_tx
.cookie
= 0;
796 async_tx_ack(&new->async_tx
);
803 /* Insert the link descriptor to the LD ring */
804 list_add_tail(&new->node
, &first
->tx_list
);
807 new->async_tx
.flags
= flags
; /* client is in control of this ack */
808 new->async_tx
.cookie
= -EBUSY
;
810 /* Set End-of-link to the last link descriptor of new list */
811 set_ld_eol(chan
, new);
813 return &first
->async_tx
;
819 fsldma_free_desc_list_reverse(chan
, &first
->tx_list
);
823 static int fsl_dma_device_terminate_all(struct dma_chan
*dchan
)
825 struct fsldma_chan
*chan
;
830 chan
= to_fsl_chan(dchan
);
832 spin_lock_bh(&chan
->desc_lock
);
834 /* Halt the DMA engine */
837 /* Remove and free all of the descriptors in the LD queue */
838 fsldma_free_desc_list(chan
, &chan
->ld_pending
);
839 fsldma_free_desc_list(chan
, &chan
->ld_running
);
840 fsldma_free_desc_list(chan
, &chan
->ld_completed
);
843 spin_unlock_bh(&chan
->desc_lock
);
847 static int fsl_dma_device_config(struct dma_chan
*dchan
,
848 struct dma_slave_config
*config
)
850 struct fsldma_chan
*chan
;
856 chan
= to_fsl_chan(dchan
);
858 /* make sure the channel supports setting burst size */
859 if (!chan
->set_request_count
)
862 /* we set the controller burst size depending on direction */
863 if (config
->direction
== DMA_MEM_TO_DEV
)
864 size
= config
->dst_addr_width
* config
->dst_maxburst
;
866 size
= config
->src_addr_width
* config
->src_maxburst
;
868 chan
->set_request_count(chan
, size
);
874 * fsl_dma_memcpy_issue_pending - Issue the DMA start command
875 * @chan : Freescale DMA channel
877 static void fsl_dma_memcpy_issue_pending(struct dma_chan
*dchan
)
879 struct fsldma_chan
*chan
= to_fsl_chan(dchan
);
881 spin_lock_bh(&chan
->desc_lock
);
882 fsl_chan_xfer_ld_queue(chan
);
883 spin_unlock_bh(&chan
->desc_lock
);
887 * fsl_tx_status - Determine the DMA status
888 * @chan : Freescale DMA channel
890 static enum dma_status
fsl_tx_status(struct dma_chan
*dchan
,
892 struct dma_tx_state
*txstate
)
894 struct fsldma_chan
*chan
= to_fsl_chan(dchan
);
897 ret
= dma_cookie_status(dchan
, cookie
, txstate
);
898 if (ret
== DMA_COMPLETE
)
901 spin_lock_bh(&chan
->desc_lock
);
902 fsldma_cleanup_descriptors(chan
);
903 spin_unlock_bh(&chan
->desc_lock
);
905 return dma_cookie_status(dchan
, cookie
, txstate
);
908 /*----------------------------------------------------------------------------*/
909 /* Interrupt Handling */
910 /*----------------------------------------------------------------------------*/
912 static irqreturn_t
fsldma_chan_irq(int irq
, void *data
)
914 struct fsldma_chan
*chan
= data
;
917 /* save and clear the status register */
920 chan_dbg(chan
, "irq: stat = 0x%x\n", stat
);
922 /* check that this was really our device */
923 stat
&= ~(FSL_DMA_SR_CB
| FSL_DMA_SR_CH
);
927 if (stat
& FSL_DMA_SR_TE
)
928 chan_err(chan
, "Transfer Error!\n");
932 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
933 * trigger a PE interrupt.
935 if (stat
& FSL_DMA_SR_PE
) {
936 chan_dbg(chan
, "irq: Programming Error INT\n");
937 stat
&= ~FSL_DMA_SR_PE
;
938 if (get_bcr(chan
) != 0)
939 chan_err(chan
, "Programming Error!\n");
943 * For MPC8349, EOCDI event need to update cookie
944 * and start the next transfer if it exist.
946 if (stat
& FSL_DMA_SR_EOCDI
) {
947 chan_dbg(chan
, "irq: End-of-Chain link INT\n");
948 stat
&= ~FSL_DMA_SR_EOCDI
;
952 * If it current transfer is the end-of-transfer,
953 * we should clear the Channel Start bit for
954 * prepare next transfer.
956 if (stat
& FSL_DMA_SR_EOLNI
) {
957 chan_dbg(chan
, "irq: End-of-link INT\n");
958 stat
&= ~FSL_DMA_SR_EOLNI
;
961 /* check that the DMA controller is really idle */
962 if (!dma_is_idle(chan
))
963 chan_err(chan
, "irq: controller not idle!\n");
965 /* check that we handled all of the bits */
967 chan_err(chan
, "irq: unhandled sr 0x%08x\n", stat
);
970 * Schedule the tasklet to handle all cleanup of the current
971 * transaction. It will start a new transaction if there is
974 tasklet_schedule(&chan
->tasklet
);
975 chan_dbg(chan
, "irq: Exit\n");
979 static void dma_do_tasklet(struct tasklet_struct
*t
)
981 struct fsldma_chan
*chan
= from_tasklet(chan
, t
, tasklet
);
983 chan_dbg(chan
, "tasklet entry\n");
985 spin_lock(&chan
->desc_lock
);
987 /* the hardware is now idle and ready for more */
990 /* Run all cleanup for descriptors which have been completed */
991 fsldma_cleanup_descriptors(chan
);
993 spin_unlock(&chan
->desc_lock
);
995 chan_dbg(chan
, "tasklet exit\n");
998 static irqreturn_t
fsldma_ctrl_irq(int irq
, void *data
)
1000 struct fsldma_device
*fdev
= data
;
1001 struct fsldma_chan
*chan
;
1002 unsigned int handled
= 0;
1006 gsr
= (fdev
->feature
& FSL_DMA_BIG_ENDIAN
) ? in_be32(fdev
->regs
)
1007 : in_le32(fdev
->regs
);
1009 dev_dbg(fdev
->dev
, "IRQ: gsr 0x%.8x\n", gsr
);
1011 for (i
= 0; i
< FSL_DMA_MAX_CHANS_PER_DEVICE
; i
++) {
1012 chan
= fdev
->chan
[i
];
1017 dev_dbg(fdev
->dev
, "IRQ: chan %d\n", chan
->id
);
1018 fsldma_chan_irq(irq
, chan
);
1026 return IRQ_RETVAL(handled
);
1029 static void fsldma_free_irqs(struct fsldma_device
*fdev
)
1031 struct fsldma_chan
*chan
;
1035 dev_dbg(fdev
->dev
, "free per-controller IRQ\n");
1036 free_irq(fdev
->irq
, fdev
);
1040 for (i
= 0; i
< FSL_DMA_MAX_CHANS_PER_DEVICE
; i
++) {
1041 chan
= fdev
->chan
[i
];
1042 if (chan
&& chan
->irq
) {
1043 chan_dbg(chan
, "free per-channel IRQ\n");
1044 free_irq(chan
->irq
, chan
);
1049 static int fsldma_request_irqs(struct fsldma_device
*fdev
)
1051 struct fsldma_chan
*chan
;
1055 /* if we have a per-controller IRQ, use that */
1057 dev_dbg(fdev
->dev
, "request per-controller IRQ\n");
1058 ret
= request_irq(fdev
->irq
, fsldma_ctrl_irq
, IRQF_SHARED
,
1059 "fsldma-controller", fdev
);
1063 /* no per-controller IRQ, use the per-channel IRQs */
1064 for (i
= 0; i
< FSL_DMA_MAX_CHANS_PER_DEVICE
; i
++) {
1065 chan
= fdev
->chan
[i
];
1070 chan_err(chan
, "interrupts property missing in device tree\n");
1075 chan_dbg(chan
, "request per-channel IRQ\n");
1076 ret
= request_irq(chan
->irq
, fsldma_chan_irq
, IRQF_SHARED
,
1077 "fsldma-chan", chan
);
1079 chan_err(chan
, "unable to request per-channel IRQ\n");
1087 for (/* none */; i
>= 0; i
--) {
1088 chan
= fdev
->chan
[i
];
1095 free_irq(chan
->irq
, chan
);
1101 /*----------------------------------------------------------------------------*/
1102 /* OpenFirmware Subsystem */
1103 /*----------------------------------------------------------------------------*/
1105 static int fsl_dma_chan_probe(struct fsldma_device
*fdev
,
1106 struct device_node
*node
, u32 feature
, const char *compatible
)
1108 struct fsldma_chan
*chan
;
1109 struct resource res
;
1113 chan
= kzalloc(sizeof(*chan
), GFP_KERNEL
);
1119 /* ioremap registers for use */
1120 chan
->regs
= of_iomap(node
, 0);
1122 dev_err(fdev
->dev
, "unable to ioremap registers\n");
1127 err
= of_address_to_resource(node
, 0, &res
);
1129 dev_err(fdev
->dev
, "unable to find 'reg' property\n");
1130 goto out_iounmap_regs
;
1133 chan
->feature
= feature
;
1135 fdev
->feature
= chan
->feature
;
1138 * If the DMA device's feature is different than the feature
1139 * of its channels, report the bug
1141 WARN_ON(fdev
->feature
!= chan
->feature
);
1143 chan
->dev
= fdev
->dev
;
1144 chan
->id
= (res
.start
& 0xfff) < 0x300 ?
1145 ((res
.start
- 0x100) & 0xfff) >> 7 :
1146 ((res
.start
- 0x200) & 0xfff) >> 7;
1147 if (chan
->id
>= FSL_DMA_MAX_CHANS_PER_DEVICE
) {
1148 dev_err(fdev
->dev
, "too many channels for device\n");
1150 goto out_iounmap_regs
;
1153 fdev
->chan
[chan
->id
] = chan
;
1154 tasklet_setup(&chan
->tasklet
, dma_do_tasklet
);
1155 snprintf(chan
->name
, sizeof(chan
->name
), "chan%d", chan
->id
);
1157 /* Initialize the channel */
1160 /* Clear cdar registers */
1163 switch (chan
->feature
& FSL_DMA_IP_MASK
) {
1164 case FSL_DMA_IP_85XX
:
1165 chan
->toggle_ext_pause
= fsl_chan_toggle_ext_pause
;
1167 case FSL_DMA_IP_83XX
:
1168 chan
->toggle_ext_start
= fsl_chan_toggle_ext_start
;
1169 chan
->set_src_loop_size
= fsl_chan_set_src_loop_size
;
1170 chan
->set_dst_loop_size
= fsl_chan_set_dst_loop_size
;
1171 chan
->set_request_count
= fsl_chan_set_request_count
;
1174 spin_lock_init(&chan
->desc_lock
);
1175 INIT_LIST_HEAD(&chan
->ld_pending
);
1176 INIT_LIST_HEAD(&chan
->ld_running
);
1177 INIT_LIST_HEAD(&chan
->ld_completed
);
1180 chan
->pm_state
= RUNNING
;
1183 chan
->common
.device
= &fdev
->common
;
1184 dma_cookie_init(&chan
->common
);
1186 /* find the IRQ line, if it exists in the device tree */
1187 chan
->irq
= irq_of_parse_and_map(node
, 0);
1189 /* Add the channel to DMA device channel list */
1190 list_add_tail(&chan
->common
.device_node
, &fdev
->common
.channels
);
1192 dev_info(fdev
->dev
, "#%d (%s), irq %d\n", chan
->id
, compatible
,
1193 chan
->irq
? chan
->irq
: fdev
->irq
);
1198 iounmap(chan
->regs
);
1205 static void fsl_dma_chan_remove(struct fsldma_chan
*chan
)
1207 irq_dispose_mapping(chan
->irq
);
1208 list_del(&chan
->common
.device_node
);
1209 iounmap(chan
->regs
);
1213 static int fsldma_of_probe(struct platform_device
*op
)
1215 struct fsldma_device
*fdev
;
1216 struct device_node
*child
;
1219 fdev
= kzalloc(sizeof(*fdev
), GFP_KERNEL
);
1225 fdev
->dev
= &op
->dev
;
1226 INIT_LIST_HEAD(&fdev
->common
.channels
);
1228 /* ioremap the registers for use */
1229 fdev
->regs
= of_iomap(op
->dev
.of_node
, 0);
1231 dev_err(&op
->dev
, "unable to ioremap registers\n");
1236 /* map the channel IRQ if it exists, but don't hookup the handler yet */
1237 fdev
->irq
= irq_of_parse_and_map(op
->dev
.of_node
, 0);
1239 dma_cap_set(DMA_MEMCPY
, fdev
->common
.cap_mask
);
1240 dma_cap_set(DMA_SLAVE
, fdev
->common
.cap_mask
);
1241 fdev
->common
.device_alloc_chan_resources
= fsl_dma_alloc_chan_resources
;
1242 fdev
->common
.device_free_chan_resources
= fsl_dma_free_chan_resources
;
1243 fdev
->common
.device_prep_dma_memcpy
= fsl_dma_prep_memcpy
;
1244 fdev
->common
.device_tx_status
= fsl_tx_status
;
1245 fdev
->common
.device_issue_pending
= fsl_dma_memcpy_issue_pending
;
1246 fdev
->common
.device_config
= fsl_dma_device_config
;
1247 fdev
->common
.device_terminate_all
= fsl_dma_device_terminate_all
;
1248 fdev
->common
.dev
= &op
->dev
;
1250 fdev
->common
.src_addr_widths
= FSL_DMA_BUSWIDTHS
;
1251 fdev
->common
.dst_addr_widths
= FSL_DMA_BUSWIDTHS
;
1252 fdev
->common
.directions
= BIT(DMA_DEV_TO_MEM
) | BIT(DMA_MEM_TO_DEV
);
1253 fdev
->common
.residue_granularity
= DMA_RESIDUE_GRANULARITY_DESCRIPTOR
;
1255 dma_set_mask(&(op
->dev
), DMA_BIT_MASK(36));
1257 platform_set_drvdata(op
, fdev
);
1260 * We cannot use of_platform_bus_probe() because there is no
1261 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1264 for_each_child_of_node(op
->dev
.of_node
, child
) {
1265 if (of_device_is_compatible(child
, "fsl,eloplus-dma-channel")) {
1266 fsl_dma_chan_probe(fdev
, child
,
1267 FSL_DMA_IP_85XX
| FSL_DMA_BIG_ENDIAN
,
1268 "fsl,eloplus-dma-channel");
1271 if (of_device_is_compatible(child
, "fsl,elo-dma-channel")) {
1272 fsl_dma_chan_probe(fdev
, child
,
1273 FSL_DMA_IP_83XX
| FSL_DMA_LITTLE_ENDIAN
,
1274 "fsl,elo-dma-channel");
1279 * Hookup the IRQ handler(s)
1281 * If we have a per-controller interrupt, we prefer that to the
1282 * per-channel interrupts to reduce the number of shared interrupt
1283 * handlers on the same IRQ line
1285 err
= fsldma_request_irqs(fdev
);
1287 dev_err(fdev
->dev
, "unable to request IRQs\n");
1291 dma_async_device_register(&fdev
->common
);
1295 irq_dispose_mapping(fdev
->irq
);
1296 iounmap(fdev
->regs
);
1303 static int fsldma_of_remove(struct platform_device
*op
)
1305 struct fsldma_device
*fdev
;
1308 fdev
= platform_get_drvdata(op
);
1309 dma_async_device_unregister(&fdev
->common
);
1311 fsldma_free_irqs(fdev
);
1313 for (i
= 0; i
< FSL_DMA_MAX_CHANS_PER_DEVICE
; i
++) {
1315 fsl_dma_chan_remove(fdev
->chan
[i
]);
1318 iounmap(fdev
->regs
);
1325 static int fsldma_suspend_late(struct device
*dev
)
1327 struct fsldma_device
*fdev
= dev_get_drvdata(dev
);
1328 struct fsldma_chan
*chan
;
1331 for (i
= 0; i
< FSL_DMA_MAX_CHANS_PER_DEVICE
; i
++) {
1332 chan
= fdev
->chan
[i
];
1336 spin_lock_bh(&chan
->desc_lock
);
1337 if (unlikely(!chan
->idle
))
1339 chan
->regs_save
.mr
= get_mr(chan
);
1340 chan
->pm_state
= SUSPENDED
;
1341 spin_unlock_bh(&chan
->desc_lock
);
1346 for (; i
>= 0; i
--) {
1347 chan
= fdev
->chan
[i
];
1350 chan
->pm_state
= RUNNING
;
1351 spin_unlock_bh(&chan
->desc_lock
);
1356 static int fsldma_resume_early(struct device
*dev
)
1358 struct fsldma_device
*fdev
= dev_get_drvdata(dev
);
1359 struct fsldma_chan
*chan
;
1363 for (i
= 0; i
< FSL_DMA_MAX_CHANS_PER_DEVICE
; i
++) {
1364 chan
= fdev
->chan
[i
];
1368 spin_lock_bh(&chan
->desc_lock
);
1369 mode
= chan
->regs_save
.mr
1370 & ~FSL_DMA_MR_CS
& ~FSL_DMA_MR_CC
& ~FSL_DMA_MR_CA
;
1372 chan
->pm_state
= RUNNING
;
1373 spin_unlock_bh(&chan
->desc_lock
);
1379 static const struct dev_pm_ops fsldma_pm_ops
= {
1380 .suspend_late
= fsldma_suspend_late
,
1381 .resume_early
= fsldma_resume_early
,
1385 static const struct of_device_id fsldma_of_ids
[] = {
1386 { .compatible
= "fsl,elo3-dma", },
1387 { .compatible
= "fsl,eloplus-dma", },
1388 { .compatible
= "fsl,elo-dma", },
1391 MODULE_DEVICE_TABLE(of
, fsldma_of_ids
);
1393 static struct platform_driver fsldma_of_driver
= {
1395 .name
= "fsl-elo-dma",
1396 .of_match_table
= fsldma_of_ids
,
1398 .pm
= &fsldma_pm_ops
,
1401 .probe
= fsldma_of_probe
,
1402 .remove
= fsldma_of_remove
,
1405 /*----------------------------------------------------------------------------*/
1406 /* Module Init / Exit */
1407 /*----------------------------------------------------------------------------*/
1409 static __init
int fsldma_init(void)
1411 pr_info("Freescale Elo series DMA driver\n");
1412 return platform_driver_register(&fsldma_of_driver
);
1415 static void __exit
fsldma_exit(void)
1417 platform_driver_unregister(&fsldma_of_driver
);
1420 subsys_initcall(fsldma_init
);
1421 module_exit(fsldma_exit
);
1423 MODULE_DESCRIPTION("Freescale Elo series DMA driver");
1424 MODULE_LICENSE("GPL");