Merge tag 'regmap-fix-v5.11-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux/fpc-iii.git] / drivers / dma / sh / rcar-dmac.c
bloba57705356e8bb796a3a375540afe5e7e4030777c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Renesas R-Car Gen2/Gen3 DMA Controller Driver
5 * Copyright (C) 2014-2019 Renesas Electronics Inc.
7 * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
8 */
10 #include <linux/delay.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/interrupt.h>
14 #include <linux/list.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/of.h>
18 #include <linux/of_dma.h>
19 #include <linux/of_platform.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/slab.h>
23 #include <linux/spinlock.h>
25 #include "../dmaengine.h"
28 * struct rcar_dmac_xfer_chunk - Descriptor for a hardware transfer
29 * @node: entry in the parent's chunks list
30 * @src_addr: device source address
31 * @dst_addr: device destination address
32 * @size: transfer size in bytes
34 struct rcar_dmac_xfer_chunk {
35 struct list_head node;
37 dma_addr_t src_addr;
38 dma_addr_t dst_addr;
39 u32 size;
43 * struct rcar_dmac_hw_desc - Hardware descriptor for a transfer chunk
44 * @sar: value of the SAR register (source address)
45 * @dar: value of the DAR register (destination address)
46 * @tcr: value of the TCR register (transfer count)
48 struct rcar_dmac_hw_desc {
49 u32 sar;
50 u32 dar;
51 u32 tcr;
52 u32 reserved;
53 } __attribute__((__packed__));
56 * struct rcar_dmac_desc - R-Car Gen2 DMA Transfer Descriptor
57 * @async_tx: base DMA asynchronous transaction descriptor
58 * @direction: direction of the DMA transfer
59 * @xfer_shift: log2 of the transfer size
60 * @chcr: value of the channel configuration register for this transfer
61 * @node: entry in the channel's descriptors lists
62 * @chunks: list of transfer chunks for this transfer
63 * @running: the transfer chunk being currently processed
64 * @nchunks: number of transfer chunks for this transfer
65 * @hwdescs.use: whether the transfer descriptor uses hardware descriptors
66 * @hwdescs.mem: hardware descriptors memory for the transfer
67 * @hwdescs.dma: device address of the hardware descriptors memory
68 * @hwdescs.size: size of the hardware descriptors in bytes
69 * @size: transfer size in bytes
70 * @cyclic: when set indicates that the DMA transfer is cyclic
72 struct rcar_dmac_desc {
73 struct dma_async_tx_descriptor async_tx;
74 enum dma_transfer_direction direction;
75 unsigned int xfer_shift;
76 u32 chcr;
78 struct list_head node;
79 struct list_head chunks;
80 struct rcar_dmac_xfer_chunk *running;
81 unsigned int nchunks;
83 struct {
84 bool use;
85 struct rcar_dmac_hw_desc *mem;
86 dma_addr_t dma;
87 size_t size;
88 } hwdescs;
90 unsigned int size;
91 bool cyclic;
94 #define to_rcar_dmac_desc(d) container_of(d, struct rcar_dmac_desc, async_tx)
97 * struct rcar_dmac_desc_page - One page worth of descriptors
98 * @node: entry in the channel's pages list
99 * @descs: array of DMA descriptors
100 * @chunks: array of transfer chunk descriptors
102 struct rcar_dmac_desc_page {
103 struct list_head node;
105 union {
106 struct rcar_dmac_desc descs[0];
107 struct rcar_dmac_xfer_chunk chunks[0];
111 #define RCAR_DMAC_DESCS_PER_PAGE \
112 ((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, descs)) / \
113 sizeof(struct rcar_dmac_desc))
114 #define RCAR_DMAC_XFER_CHUNKS_PER_PAGE \
115 ((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, chunks)) / \
116 sizeof(struct rcar_dmac_xfer_chunk))
119 * struct rcar_dmac_chan_slave - Slave configuration
120 * @slave_addr: slave memory address
121 * @xfer_size: size (in bytes) of hardware transfers
123 struct rcar_dmac_chan_slave {
124 phys_addr_t slave_addr;
125 unsigned int xfer_size;
129 * struct rcar_dmac_chan_map - Map of slave device phys to dma address
130 * @addr: slave dma address
131 * @dir: direction of mapping
132 * @slave: slave configuration that is mapped
134 struct rcar_dmac_chan_map {
135 dma_addr_t addr;
136 enum dma_data_direction dir;
137 struct rcar_dmac_chan_slave slave;
141 * struct rcar_dmac_chan - R-Car Gen2 DMA Controller Channel
142 * @chan: base DMA channel object
143 * @iomem: channel I/O memory base
144 * @index: index of this channel in the controller
145 * @irq: channel IRQ
146 * @src: slave memory address and size on the source side
147 * @dst: slave memory address and size on the destination side
148 * @mid_rid: hardware MID/RID for the DMA client using this channel
149 * @lock: protects the channel CHCR register and the desc members
150 * @desc.free: list of free descriptors
151 * @desc.pending: list of pending descriptors (submitted with tx_submit)
152 * @desc.active: list of active descriptors (activated with issue_pending)
153 * @desc.done: list of completed descriptors
154 * @desc.wait: list of descriptors waiting for an ack
155 * @desc.running: the descriptor being processed (a member of the active list)
156 * @desc.chunks_free: list of free transfer chunk descriptors
157 * @desc.pages: list of pages used by allocated descriptors
159 struct rcar_dmac_chan {
160 struct dma_chan chan;
161 void __iomem *iomem;
162 unsigned int index;
163 int irq;
165 struct rcar_dmac_chan_slave src;
166 struct rcar_dmac_chan_slave dst;
167 struct rcar_dmac_chan_map map;
168 int mid_rid;
170 spinlock_t lock;
172 struct {
173 struct list_head free;
174 struct list_head pending;
175 struct list_head active;
176 struct list_head done;
177 struct list_head wait;
178 struct rcar_dmac_desc *running;
180 struct list_head chunks_free;
182 struct list_head pages;
183 } desc;
186 #define to_rcar_dmac_chan(c) container_of(c, struct rcar_dmac_chan, chan)
189 * struct rcar_dmac - R-Car Gen2 DMA Controller
190 * @engine: base DMA engine object
191 * @dev: the hardware device
192 * @iomem: remapped I/O memory base
193 * @n_channels: number of available channels
194 * @channels: array of DMAC channels
195 * @channels_mask: bitfield of which DMA channels are managed by this driver
196 * @modules: bitmask of client modules in use
198 struct rcar_dmac {
199 struct dma_device engine;
200 struct device *dev;
201 void __iomem *iomem;
203 unsigned int n_channels;
204 struct rcar_dmac_chan *channels;
205 u32 channels_mask;
207 DECLARE_BITMAP(modules, 256);
210 #define to_rcar_dmac(d) container_of(d, struct rcar_dmac, engine)
213 * struct rcar_dmac_of_data - This driver's OF data
214 * @chan_offset_base: DMAC channels base offset
215 * @chan_offset_stride: DMAC channels offset stride
217 struct rcar_dmac_of_data {
218 u32 chan_offset_base;
219 u32 chan_offset_stride;
222 /* -----------------------------------------------------------------------------
223 * Registers
226 #define RCAR_DMAISTA 0x0020
227 #define RCAR_DMASEC 0x0030
228 #define RCAR_DMAOR 0x0060
229 #define RCAR_DMAOR_PRI_FIXED (0 << 8)
230 #define RCAR_DMAOR_PRI_ROUND_ROBIN (3 << 8)
231 #define RCAR_DMAOR_AE (1 << 2)
232 #define RCAR_DMAOR_DME (1 << 0)
233 #define RCAR_DMACHCLR 0x0080
234 #define RCAR_DMADPSEC 0x00a0
236 #define RCAR_DMASAR 0x0000
237 #define RCAR_DMADAR 0x0004
238 #define RCAR_DMATCR 0x0008
239 #define RCAR_DMATCR_MASK 0x00ffffff
240 #define RCAR_DMATSR 0x0028
241 #define RCAR_DMACHCR 0x000c
242 #define RCAR_DMACHCR_CAE (1 << 31)
243 #define RCAR_DMACHCR_CAIE (1 << 30)
244 #define RCAR_DMACHCR_DPM_DISABLED (0 << 28)
245 #define RCAR_DMACHCR_DPM_ENABLED (1 << 28)
246 #define RCAR_DMACHCR_DPM_REPEAT (2 << 28)
247 #define RCAR_DMACHCR_DPM_INFINITE (3 << 28)
248 #define RCAR_DMACHCR_RPT_SAR (1 << 27)
249 #define RCAR_DMACHCR_RPT_DAR (1 << 26)
250 #define RCAR_DMACHCR_RPT_TCR (1 << 25)
251 #define RCAR_DMACHCR_DPB (1 << 22)
252 #define RCAR_DMACHCR_DSE (1 << 19)
253 #define RCAR_DMACHCR_DSIE (1 << 18)
254 #define RCAR_DMACHCR_TS_1B ((0 << 20) | (0 << 3))
255 #define RCAR_DMACHCR_TS_2B ((0 << 20) | (1 << 3))
256 #define RCAR_DMACHCR_TS_4B ((0 << 20) | (2 << 3))
257 #define RCAR_DMACHCR_TS_16B ((0 << 20) | (3 << 3))
258 #define RCAR_DMACHCR_TS_32B ((1 << 20) | (0 << 3))
259 #define RCAR_DMACHCR_TS_64B ((1 << 20) | (1 << 3))
260 #define RCAR_DMACHCR_TS_8B ((1 << 20) | (3 << 3))
261 #define RCAR_DMACHCR_DM_FIXED (0 << 14)
262 #define RCAR_DMACHCR_DM_INC (1 << 14)
263 #define RCAR_DMACHCR_DM_DEC (2 << 14)
264 #define RCAR_DMACHCR_SM_FIXED (0 << 12)
265 #define RCAR_DMACHCR_SM_INC (1 << 12)
266 #define RCAR_DMACHCR_SM_DEC (2 << 12)
267 #define RCAR_DMACHCR_RS_AUTO (4 << 8)
268 #define RCAR_DMACHCR_RS_DMARS (8 << 8)
269 #define RCAR_DMACHCR_IE (1 << 2)
270 #define RCAR_DMACHCR_TE (1 << 1)
271 #define RCAR_DMACHCR_DE (1 << 0)
272 #define RCAR_DMATCRB 0x0018
273 #define RCAR_DMATSRB 0x0038
274 #define RCAR_DMACHCRB 0x001c
275 #define RCAR_DMACHCRB_DCNT(n) ((n) << 24)
276 #define RCAR_DMACHCRB_DPTR_MASK (0xff << 16)
277 #define RCAR_DMACHCRB_DPTR_SHIFT 16
278 #define RCAR_DMACHCRB_DRST (1 << 15)
279 #define RCAR_DMACHCRB_DTS (1 << 8)
280 #define RCAR_DMACHCRB_SLM_NORMAL (0 << 4)
281 #define RCAR_DMACHCRB_SLM_CLK(n) ((8 | (n)) << 4)
282 #define RCAR_DMACHCRB_PRI(n) ((n) << 0)
283 #define RCAR_DMARS 0x0040
284 #define RCAR_DMABUFCR 0x0048
285 #define RCAR_DMABUFCR_MBU(n) ((n) << 16)
286 #define RCAR_DMABUFCR_ULB(n) ((n) << 0)
287 #define RCAR_DMADPBASE 0x0050
288 #define RCAR_DMADPBASE_MASK 0xfffffff0
289 #define RCAR_DMADPBASE_SEL (1 << 0)
290 #define RCAR_DMADPCR 0x0054
291 #define RCAR_DMADPCR_DIPT(n) ((n) << 24)
292 #define RCAR_DMAFIXSAR 0x0010
293 #define RCAR_DMAFIXDAR 0x0014
294 #define RCAR_DMAFIXDPBASE 0x0060
296 /* Hardcode the MEMCPY transfer size to 4 bytes. */
297 #define RCAR_DMAC_MEMCPY_XFER_SIZE 4
299 /* -----------------------------------------------------------------------------
300 * Device access
303 static void rcar_dmac_write(struct rcar_dmac *dmac, u32 reg, u32 data)
305 if (reg == RCAR_DMAOR)
306 writew(data, dmac->iomem + reg);
307 else
308 writel(data, dmac->iomem + reg);
311 static u32 rcar_dmac_read(struct rcar_dmac *dmac, u32 reg)
313 if (reg == RCAR_DMAOR)
314 return readw(dmac->iomem + reg);
315 else
316 return readl(dmac->iomem + reg);
319 static u32 rcar_dmac_chan_read(struct rcar_dmac_chan *chan, u32 reg)
321 if (reg == RCAR_DMARS)
322 return readw(chan->iomem + reg);
323 else
324 return readl(chan->iomem + reg);
327 static void rcar_dmac_chan_write(struct rcar_dmac_chan *chan, u32 reg, u32 data)
329 if (reg == RCAR_DMARS)
330 writew(data, chan->iomem + reg);
331 else
332 writel(data, chan->iomem + reg);
335 /* -----------------------------------------------------------------------------
336 * Initialization and configuration
339 static bool rcar_dmac_chan_is_busy(struct rcar_dmac_chan *chan)
341 u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
343 return !!(chcr & (RCAR_DMACHCR_DE | RCAR_DMACHCR_TE));
346 static void rcar_dmac_chan_start_xfer(struct rcar_dmac_chan *chan)
348 struct rcar_dmac_desc *desc = chan->desc.running;
349 u32 chcr = desc->chcr;
351 WARN_ON_ONCE(rcar_dmac_chan_is_busy(chan));
353 if (chan->mid_rid >= 0)
354 rcar_dmac_chan_write(chan, RCAR_DMARS, chan->mid_rid);
356 if (desc->hwdescs.use) {
357 struct rcar_dmac_xfer_chunk *chunk =
358 list_first_entry(&desc->chunks,
359 struct rcar_dmac_xfer_chunk, node);
361 dev_dbg(chan->chan.device->dev,
362 "chan%u: queue desc %p: %u@%pad\n",
363 chan->index, desc, desc->nchunks, &desc->hwdescs.dma);
365 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
366 rcar_dmac_chan_write(chan, RCAR_DMAFIXSAR,
367 chunk->src_addr >> 32);
368 rcar_dmac_chan_write(chan, RCAR_DMAFIXDAR,
369 chunk->dst_addr >> 32);
370 rcar_dmac_chan_write(chan, RCAR_DMAFIXDPBASE,
371 desc->hwdescs.dma >> 32);
372 #endif
373 rcar_dmac_chan_write(chan, RCAR_DMADPBASE,
374 (desc->hwdescs.dma & 0xfffffff0) |
375 RCAR_DMADPBASE_SEL);
376 rcar_dmac_chan_write(chan, RCAR_DMACHCRB,
377 RCAR_DMACHCRB_DCNT(desc->nchunks - 1) |
378 RCAR_DMACHCRB_DRST);
381 * Errata: When descriptor memory is accessed through an IOMMU
382 * the DMADAR register isn't initialized automatically from the
383 * first descriptor at beginning of transfer by the DMAC like it
384 * should. Initialize it manually with the destination address
385 * of the first chunk.
387 rcar_dmac_chan_write(chan, RCAR_DMADAR,
388 chunk->dst_addr & 0xffffffff);
391 * Program the descriptor stage interrupt to occur after the end
392 * of the first stage.
394 rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(1));
396 chcr |= RCAR_DMACHCR_RPT_SAR | RCAR_DMACHCR_RPT_DAR
397 | RCAR_DMACHCR_RPT_TCR | RCAR_DMACHCR_DPB;
400 * If the descriptor isn't cyclic enable normal descriptor mode
401 * and the transfer completion interrupt.
403 if (!desc->cyclic)
404 chcr |= RCAR_DMACHCR_DPM_ENABLED | RCAR_DMACHCR_IE;
406 * If the descriptor is cyclic and has a callback enable the
407 * descriptor stage interrupt in infinite repeat mode.
409 else if (desc->async_tx.callback)
410 chcr |= RCAR_DMACHCR_DPM_INFINITE | RCAR_DMACHCR_DSIE;
412 * Otherwise just select infinite repeat mode without any
413 * interrupt.
415 else
416 chcr |= RCAR_DMACHCR_DPM_INFINITE;
417 } else {
418 struct rcar_dmac_xfer_chunk *chunk = desc->running;
420 dev_dbg(chan->chan.device->dev,
421 "chan%u: queue chunk %p: %u@%pad -> %pad\n",
422 chan->index, chunk, chunk->size, &chunk->src_addr,
423 &chunk->dst_addr);
425 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
426 rcar_dmac_chan_write(chan, RCAR_DMAFIXSAR,
427 chunk->src_addr >> 32);
428 rcar_dmac_chan_write(chan, RCAR_DMAFIXDAR,
429 chunk->dst_addr >> 32);
430 #endif
431 rcar_dmac_chan_write(chan, RCAR_DMASAR,
432 chunk->src_addr & 0xffffffff);
433 rcar_dmac_chan_write(chan, RCAR_DMADAR,
434 chunk->dst_addr & 0xffffffff);
435 rcar_dmac_chan_write(chan, RCAR_DMATCR,
436 chunk->size >> desc->xfer_shift);
438 chcr |= RCAR_DMACHCR_DPM_DISABLED | RCAR_DMACHCR_IE;
441 rcar_dmac_chan_write(chan, RCAR_DMACHCR,
442 chcr | RCAR_DMACHCR_DE | RCAR_DMACHCR_CAIE);
445 static int rcar_dmac_init(struct rcar_dmac *dmac)
447 u16 dmaor;
449 /* Clear all channels and enable the DMAC globally. */
450 rcar_dmac_write(dmac, RCAR_DMACHCLR, dmac->channels_mask);
451 rcar_dmac_write(dmac, RCAR_DMAOR,
452 RCAR_DMAOR_PRI_FIXED | RCAR_DMAOR_DME);
454 dmaor = rcar_dmac_read(dmac, RCAR_DMAOR);
455 if ((dmaor & (RCAR_DMAOR_AE | RCAR_DMAOR_DME)) != RCAR_DMAOR_DME) {
456 dev_warn(dmac->dev, "DMAOR initialization failed.\n");
457 return -EIO;
460 return 0;
463 /* -----------------------------------------------------------------------------
464 * Descriptors submission
467 static dma_cookie_t rcar_dmac_tx_submit(struct dma_async_tx_descriptor *tx)
469 struct rcar_dmac_chan *chan = to_rcar_dmac_chan(tx->chan);
470 struct rcar_dmac_desc *desc = to_rcar_dmac_desc(tx);
471 unsigned long flags;
472 dma_cookie_t cookie;
474 spin_lock_irqsave(&chan->lock, flags);
476 cookie = dma_cookie_assign(tx);
478 dev_dbg(chan->chan.device->dev, "chan%u: submit #%d@%p\n",
479 chan->index, tx->cookie, desc);
481 list_add_tail(&desc->node, &chan->desc.pending);
482 desc->running = list_first_entry(&desc->chunks,
483 struct rcar_dmac_xfer_chunk, node);
485 spin_unlock_irqrestore(&chan->lock, flags);
487 return cookie;
490 /* -----------------------------------------------------------------------------
491 * Descriptors allocation and free
495 * rcar_dmac_desc_alloc - Allocate a page worth of DMA descriptors
496 * @chan: the DMA channel
497 * @gfp: allocation flags
499 static int rcar_dmac_desc_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
501 struct rcar_dmac_desc_page *page;
502 unsigned long flags;
503 LIST_HEAD(list);
504 unsigned int i;
506 page = (void *)get_zeroed_page(gfp);
507 if (!page)
508 return -ENOMEM;
510 for (i = 0; i < RCAR_DMAC_DESCS_PER_PAGE; ++i) {
511 struct rcar_dmac_desc *desc = &page->descs[i];
513 dma_async_tx_descriptor_init(&desc->async_tx, &chan->chan);
514 desc->async_tx.tx_submit = rcar_dmac_tx_submit;
515 INIT_LIST_HEAD(&desc->chunks);
517 list_add_tail(&desc->node, &list);
520 spin_lock_irqsave(&chan->lock, flags);
521 list_splice_tail(&list, &chan->desc.free);
522 list_add_tail(&page->node, &chan->desc.pages);
523 spin_unlock_irqrestore(&chan->lock, flags);
525 return 0;
529 * rcar_dmac_desc_put - Release a DMA transfer descriptor
530 * @chan: the DMA channel
531 * @desc: the descriptor
533 * Put the descriptor and its transfer chunk descriptors back in the channel's
534 * free descriptors lists. The descriptor's chunks list will be reinitialized to
535 * an empty list as a result.
537 * The descriptor must have been removed from the channel's lists before calling
538 * this function.
540 static void rcar_dmac_desc_put(struct rcar_dmac_chan *chan,
541 struct rcar_dmac_desc *desc)
543 unsigned long flags;
545 spin_lock_irqsave(&chan->lock, flags);
546 list_splice_tail_init(&desc->chunks, &chan->desc.chunks_free);
547 list_add(&desc->node, &chan->desc.free);
548 spin_unlock_irqrestore(&chan->lock, flags);
551 static void rcar_dmac_desc_recycle_acked(struct rcar_dmac_chan *chan)
553 struct rcar_dmac_desc *desc, *_desc;
554 unsigned long flags;
555 LIST_HEAD(list);
558 * We have to temporarily move all descriptors from the wait list to a
559 * local list as iterating over the wait list, even with
560 * list_for_each_entry_safe, isn't safe if we release the channel lock
561 * around the rcar_dmac_desc_put() call.
563 spin_lock_irqsave(&chan->lock, flags);
564 list_splice_init(&chan->desc.wait, &list);
565 spin_unlock_irqrestore(&chan->lock, flags);
567 list_for_each_entry_safe(desc, _desc, &list, node) {
568 if (async_tx_test_ack(&desc->async_tx)) {
569 list_del(&desc->node);
570 rcar_dmac_desc_put(chan, desc);
574 if (list_empty(&list))
575 return;
577 /* Put the remaining descriptors back in the wait list. */
578 spin_lock_irqsave(&chan->lock, flags);
579 list_splice(&list, &chan->desc.wait);
580 spin_unlock_irqrestore(&chan->lock, flags);
584 * rcar_dmac_desc_get - Allocate a descriptor for a DMA transfer
585 * @chan: the DMA channel
587 * Locking: This function must be called in a non-atomic context.
589 * Return: A pointer to the allocated descriptor or NULL if no descriptor can
590 * be allocated.
592 static struct rcar_dmac_desc *rcar_dmac_desc_get(struct rcar_dmac_chan *chan)
594 struct rcar_dmac_desc *desc;
595 unsigned long flags;
596 int ret;
598 /* Recycle acked descriptors before attempting allocation. */
599 rcar_dmac_desc_recycle_acked(chan);
601 spin_lock_irqsave(&chan->lock, flags);
603 while (list_empty(&chan->desc.free)) {
605 * No free descriptors, allocate a page worth of them and try
606 * again, as someone else could race us to get the newly
607 * allocated descriptors. If the allocation fails return an
608 * error.
610 spin_unlock_irqrestore(&chan->lock, flags);
611 ret = rcar_dmac_desc_alloc(chan, GFP_NOWAIT);
612 if (ret < 0)
613 return NULL;
614 spin_lock_irqsave(&chan->lock, flags);
617 desc = list_first_entry(&chan->desc.free, struct rcar_dmac_desc, node);
618 list_del(&desc->node);
620 spin_unlock_irqrestore(&chan->lock, flags);
622 return desc;
626 * rcar_dmac_xfer_chunk_alloc - Allocate a page worth of transfer chunks
627 * @chan: the DMA channel
628 * @gfp: allocation flags
630 static int rcar_dmac_xfer_chunk_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
632 struct rcar_dmac_desc_page *page;
633 unsigned long flags;
634 LIST_HEAD(list);
635 unsigned int i;
637 page = (void *)get_zeroed_page(gfp);
638 if (!page)
639 return -ENOMEM;
641 for (i = 0; i < RCAR_DMAC_XFER_CHUNKS_PER_PAGE; ++i) {
642 struct rcar_dmac_xfer_chunk *chunk = &page->chunks[i];
644 list_add_tail(&chunk->node, &list);
647 spin_lock_irqsave(&chan->lock, flags);
648 list_splice_tail(&list, &chan->desc.chunks_free);
649 list_add_tail(&page->node, &chan->desc.pages);
650 spin_unlock_irqrestore(&chan->lock, flags);
652 return 0;
656 * rcar_dmac_xfer_chunk_get - Allocate a transfer chunk for a DMA transfer
657 * @chan: the DMA channel
659 * Locking: This function must be called in a non-atomic context.
661 * Return: A pointer to the allocated transfer chunk descriptor or NULL if no
662 * descriptor can be allocated.
664 static struct rcar_dmac_xfer_chunk *
665 rcar_dmac_xfer_chunk_get(struct rcar_dmac_chan *chan)
667 struct rcar_dmac_xfer_chunk *chunk;
668 unsigned long flags;
669 int ret;
671 spin_lock_irqsave(&chan->lock, flags);
673 while (list_empty(&chan->desc.chunks_free)) {
675 * No free descriptors, allocate a page worth of them and try
676 * again, as someone else could race us to get the newly
677 * allocated descriptors. If the allocation fails return an
678 * error.
680 spin_unlock_irqrestore(&chan->lock, flags);
681 ret = rcar_dmac_xfer_chunk_alloc(chan, GFP_NOWAIT);
682 if (ret < 0)
683 return NULL;
684 spin_lock_irqsave(&chan->lock, flags);
687 chunk = list_first_entry(&chan->desc.chunks_free,
688 struct rcar_dmac_xfer_chunk, node);
689 list_del(&chunk->node);
691 spin_unlock_irqrestore(&chan->lock, flags);
693 return chunk;
696 static void rcar_dmac_realloc_hwdesc(struct rcar_dmac_chan *chan,
697 struct rcar_dmac_desc *desc, size_t size)
700 * dma_alloc_coherent() allocates memory in page size increments. To
701 * avoid reallocating the hardware descriptors when the allocated size
702 * wouldn't change align the requested size to a multiple of the page
703 * size.
705 size = PAGE_ALIGN(size);
707 if (desc->hwdescs.size == size)
708 return;
710 if (desc->hwdescs.mem) {
711 dma_free_coherent(chan->chan.device->dev, desc->hwdescs.size,
712 desc->hwdescs.mem, desc->hwdescs.dma);
713 desc->hwdescs.mem = NULL;
714 desc->hwdescs.size = 0;
717 if (!size)
718 return;
720 desc->hwdescs.mem = dma_alloc_coherent(chan->chan.device->dev, size,
721 &desc->hwdescs.dma, GFP_NOWAIT);
722 if (!desc->hwdescs.mem)
723 return;
725 desc->hwdescs.size = size;
728 static int rcar_dmac_fill_hwdesc(struct rcar_dmac_chan *chan,
729 struct rcar_dmac_desc *desc)
731 struct rcar_dmac_xfer_chunk *chunk;
732 struct rcar_dmac_hw_desc *hwdesc;
734 rcar_dmac_realloc_hwdesc(chan, desc, desc->nchunks * sizeof(*hwdesc));
736 hwdesc = desc->hwdescs.mem;
737 if (!hwdesc)
738 return -ENOMEM;
740 list_for_each_entry(chunk, &desc->chunks, node) {
741 hwdesc->sar = chunk->src_addr;
742 hwdesc->dar = chunk->dst_addr;
743 hwdesc->tcr = chunk->size >> desc->xfer_shift;
744 hwdesc++;
747 return 0;
750 /* -----------------------------------------------------------------------------
751 * Stop and reset
753 static void rcar_dmac_chcr_de_barrier(struct rcar_dmac_chan *chan)
755 u32 chcr;
756 unsigned int i;
759 * Ensure that the setting of the DE bit is actually 0 after
760 * clearing it.
762 for (i = 0; i < 1024; i++) {
763 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
764 if (!(chcr & RCAR_DMACHCR_DE))
765 return;
766 udelay(1);
769 dev_err(chan->chan.device->dev, "CHCR DE check error\n");
772 static void rcar_dmac_clear_chcr_de(struct rcar_dmac_chan *chan)
774 u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
776 /* set DE=0 and flush remaining data */
777 rcar_dmac_chan_write(chan, RCAR_DMACHCR, (chcr & ~RCAR_DMACHCR_DE));
779 /* make sure all remaining data was flushed */
780 rcar_dmac_chcr_de_barrier(chan);
783 static void rcar_dmac_chan_halt(struct rcar_dmac_chan *chan)
785 u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
787 chcr &= ~(RCAR_DMACHCR_DSE | RCAR_DMACHCR_DSIE | RCAR_DMACHCR_IE |
788 RCAR_DMACHCR_TE | RCAR_DMACHCR_DE |
789 RCAR_DMACHCR_CAE | RCAR_DMACHCR_CAIE);
790 rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr);
791 rcar_dmac_chcr_de_barrier(chan);
794 static void rcar_dmac_chan_reinit(struct rcar_dmac_chan *chan)
796 struct rcar_dmac_desc *desc, *_desc;
797 unsigned long flags;
798 LIST_HEAD(descs);
800 spin_lock_irqsave(&chan->lock, flags);
802 /* Move all non-free descriptors to the local lists. */
803 list_splice_init(&chan->desc.pending, &descs);
804 list_splice_init(&chan->desc.active, &descs);
805 list_splice_init(&chan->desc.done, &descs);
806 list_splice_init(&chan->desc.wait, &descs);
808 chan->desc.running = NULL;
810 spin_unlock_irqrestore(&chan->lock, flags);
812 list_for_each_entry_safe(desc, _desc, &descs, node) {
813 list_del(&desc->node);
814 rcar_dmac_desc_put(chan, desc);
818 static void rcar_dmac_stop_all_chan(struct rcar_dmac *dmac)
820 unsigned int i;
822 /* Stop all channels. */
823 for (i = 0; i < dmac->n_channels; ++i) {
824 struct rcar_dmac_chan *chan = &dmac->channels[i];
826 if (!(dmac->channels_mask & BIT(i)))
827 continue;
829 /* Stop and reinitialize the channel. */
830 spin_lock_irq(&chan->lock);
831 rcar_dmac_chan_halt(chan);
832 spin_unlock_irq(&chan->lock);
836 static int rcar_dmac_chan_pause(struct dma_chan *chan)
838 unsigned long flags;
839 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
841 spin_lock_irqsave(&rchan->lock, flags);
842 rcar_dmac_clear_chcr_de(rchan);
843 spin_unlock_irqrestore(&rchan->lock, flags);
845 return 0;
848 /* -----------------------------------------------------------------------------
849 * Descriptors preparation
852 static void rcar_dmac_chan_configure_desc(struct rcar_dmac_chan *chan,
853 struct rcar_dmac_desc *desc)
855 static const u32 chcr_ts[] = {
856 RCAR_DMACHCR_TS_1B, RCAR_DMACHCR_TS_2B,
857 RCAR_DMACHCR_TS_4B, RCAR_DMACHCR_TS_8B,
858 RCAR_DMACHCR_TS_16B, RCAR_DMACHCR_TS_32B,
859 RCAR_DMACHCR_TS_64B,
862 unsigned int xfer_size;
863 u32 chcr;
865 switch (desc->direction) {
866 case DMA_DEV_TO_MEM:
867 chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_FIXED
868 | RCAR_DMACHCR_RS_DMARS;
869 xfer_size = chan->src.xfer_size;
870 break;
872 case DMA_MEM_TO_DEV:
873 chcr = RCAR_DMACHCR_DM_FIXED | RCAR_DMACHCR_SM_INC
874 | RCAR_DMACHCR_RS_DMARS;
875 xfer_size = chan->dst.xfer_size;
876 break;
878 case DMA_MEM_TO_MEM:
879 default:
880 chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_INC
881 | RCAR_DMACHCR_RS_AUTO;
882 xfer_size = RCAR_DMAC_MEMCPY_XFER_SIZE;
883 break;
886 desc->xfer_shift = ilog2(xfer_size);
887 desc->chcr = chcr | chcr_ts[desc->xfer_shift];
891 * rcar_dmac_chan_prep_sg - prepare transfer descriptors from an SG list
893 * Common routine for public (MEMCPY) and slave DMA. The MEMCPY case is also
894 * converted to scatter-gather to guarantee consistent locking and a correct
895 * list manipulation. For slave DMA direction carries the usual meaning, and,
896 * logically, the SG list is RAM and the addr variable contains slave address,
897 * e.g., the FIFO I/O register. For MEMCPY direction equals DMA_MEM_TO_MEM
898 * and the SG list contains only one element and points at the source buffer.
900 static struct dma_async_tx_descriptor *
901 rcar_dmac_chan_prep_sg(struct rcar_dmac_chan *chan, struct scatterlist *sgl,
902 unsigned int sg_len, dma_addr_t dev_addr,
903 enum dma_transfer_direction dir, unsigned long dma_flags,
904 bool cyclic)
906 struct rcar_dmac_xfer_chunk *chunk;
907 struct rcar_dmac_desc *desc;
908 struct scatterlist *sg;
909 unsigned int nchunks = 0;
910 unsigned int max_chunk_size;
911 unsigned int full_size = 0;
912 bool cross_boundary = false;
913 unsigned int i;
914 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
915 u32 high_dev_addr;
916 u32 high_mem_addr;
917 #endif
919 desc = rcar_dmac_desc_get(chan);
920 if (!desc)
921 return NULL;
923 desc->async_tx.flags = dma_flags;
924 desc->async_tx.cookie = -EBUSY;
926 desc->cyclic = cyclic;
927 desc->direction = dir;
929 rcar_dmac_chan_configure_desc(chan, desc);
931 max_chunk_size = RCAR_DMATCR_MASK << desc->xfer_shift;
934 * Allocate and fill the transfer chunk descriptors. We own the only
935 * reference to the DMA descriptor, there's no need for locking.
937 for_each_sg(sgl, sg, sg_len, i) {
938 dma_addr_t mem_addr = sg_dma_address(sg);
939 unsigned int len = sg_dma_len(sg);
941 full_size += len;
943 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
944 if (i == 0) {
945 high_dev_addr = dev_addr >> 32;
946 high_mem_addr = mem_addr >> 32;
949 if ((dev_addr >> 32 != high_dev_addr) ||
950 (mem_addr >> 32 != high_mem_addr))
951 cross_boundary = true;
952 #endif
953 while (len) {
954 unsigned int size = min(len, max_chunk_size);
956 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
958 * Prevent individual transfers from crossing 4GB
959 * boundaries.
961 if (dev_addr >> 32 != (dev_addr + size - 1) >> 32) {
962 size = ALIGN(dev_addr, 1ULL << 32) - dev_addr;
963 cross_boundary = true;
965 if (mem_addr >> 32 != (mem_addr + size - 1) >> 32) {
966 size = ALIGN(mem_addr, 1ULL << 32) - mem_addr;
967 cross_boundary = true;
969 #endif
971 chunk = rcar_dmac_xfer_chunk_get(chan);
972 if (!chunk) {
973 rcar_dmac_desc_put(chan, desc);
974 return NULL;
977 if (dir == DMA_DEV_TO_MEM) {
978 chunk->src_addr = dev_addr;
979 chunk->dst_addr = mem_addr;
980 } else {
981 chunk->src_addr = mem_addr;
982 chunk->dst_addr = dev_addr;
985 chunk->size = size;
987 dev_dbg(chan->chan.device->dev,
988 "chan%u: chunk %p/%p sgl %u@%p, %u/%u %pad -> %pad\n",
989 chan->index, chunk, desc, i, sg, size, len,
990 &chunk->src_addr, &chunk->dst_addr);
992 mem_addr += size;
993 if (dir == DMA_MEM_TO_MEM)
994 dev_addr += size;
996 len -= size;
998 list_add_tail(&chunk->node, &desc->chunks);
999 nchunks++;
1003 desc->nchunks = nchunks;
1004 desc->size = full_size;
1007 * Use hardware descriptor lists if possible when more than one chunk
1008 * needs to be transferred (otherwise they don't make much sense).
1010 * Source/Destination address should be located in same 4GiB region
1011 * in the 40bit address space when it uses Hardware descriptor,
1012 * and cross_boundary is checking it.
1014 desc->hwdescs.use = !cross_boundary && nchunks > 1;
1015 if (desc->hwdescs.use) {
1016 if (rcar_dmac_fill_hwdesc(chan, desc) < 0)
1017 desc->hwdescs.use = false;
1020 return &desc->async_tx;
1023 /* -----------------------------------------------------------------------------
1024 * DMA engine operations
1027 static int rcar_dmac_alloc_chan_resources(struct dma_chan *chan)
1029 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1030 int ret;
1032 INIT_LIST_HEAD(&rchan->desc.chunks_free);
1033 INIT_LIST_HEAD(&rchan->desc.pages);
1035 /* Preallocate descriptors. */
1036 ret = rcar_dmac_xfer_chunk_alloc(rchan, GFP_KERNEL);
1037 if (ret < 0)
1038 return -ENOMEM;
1040 ret = rcar_dmac_desc_alloc(rchan, GFP_KERNEL);
1041 if (ret < 0)
1042 return -ENOMEM;
1044 return pm_runtime_get_sync(chan->device->dev);
1047 static void rcar_dmac_free_chan_resources(struct dma_chan *chan)
1049 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1050 struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
1051 struct rcar_dmac_chan_map *map = &rchan->map;
1052 struct rcar_dmac_desc_page *page, *_page;
1053 struct rcar_dmac_desc *desc;
1054 LIST_HEAD(list);
1056 /* Protect against ISR */
1057 spin_lock_irq(&rchan->lock);
1058 rcar_dmac_chan_halt(rchan);
1059 spin_unlock_irq(&rchan->lock);
1062 * Now no new interrupts will occur, but one might already be
1063 * running. Wait for it to finish before freeing resources.
1065 synchronize_irq(rchan->irq);
1067 if (rchan->mid_rid >= 0) {
1068 /* The caller is holding dma_list_mutex */
1069 clear_bit(rchan->mid_rid, dmac->modules);
1070 rchan->mid_rid = -EINVAL;
1073 list_splice_init(&rchan->desc.free, &list);
1074 list_splice_init(&rchan->desc.pending, &list);
1075 list_splice_init(&rchan->desc.active, &list);
1076 list_splice_init(&rchan->desc.done, &list);
1077 list_splice_init(&rchan->desc.wait, &list);
1079 rchan->desc.running = NULL;
1081 list_for_each_entry(desc, &list, node)
1082 rcar_dmac_realloc_hwdesc(rchan, desc, 0);
1084 list_for_each_entry_safe(page, _page, &rchan->desc.pages, node) {
1085 list_del(&page->node);
1086 free_page((unsigned long)page);
1089 /* Remove slave mapping if present. */
1090 if (map->slave.xfer_size) {
1091 dma_unmap_resource(chan->device->dev, map->addr,
1092 map->slave.xfer_size, map->dir, 0);
1093 map->slave.xfer_size = 0;
1096 pm_runtime_put(chan->device->dev);
1099 static struct dma_async_tx_descriptor *
1100 rcar_dmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dma_dest,
1101 dma_addr_t dma_src, size_t len, unsigned long flags)
1103 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1104 struct scatterlist sgl;
1106 if (!len)
1107 return NULL;
1109 sg_init_table(&sgl, 1);
1110 sg_set_page(&sgl, pfn_to_page(PFN_DOWN(dma_src)), len,
1111 offset_in_page(dma_src));
1112 sg_dma_address(&sgl) = dma_src;
1113 sg_dma_len(&sgl) = len;
1115 return rcar_dmac_chan_prep_sg(rchan, &sgl, 1, dma_dest,
1116 DMA_MEM_TO_MEM, flags, false);
1119 static int rcar_dmac_map_slave_addr(struct dma_chan *chan,
1120 enum dma_transfer_direction dir)
1122 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1123 struct rcar_dmac_chan_map *map = &rchan->map;
1124 phys_addr_t dev_addr;
1125 size_t dev_size;
1126 enum dma_data_direction dev_dir;
1128 if (dir == DMA_DEV_TO_MEM) {
1129 dev_addr = rchan->src.slave_addr;
1130 dev_size = rchan->src.xfer_size;
1131 dev_dir = DMA_TO_DEVICE;
1132 } else {
1133 dev_addr = rchan->dst.slave_addr;
1134 dev_size = rchan->dst.xfer_size;
1135 dev_dir = DMA_FROM_DEVICE;
1138 /* Reuse current map if possible. */
1139 if (dev_addr == map->slave.slave_addr &&
1140 dev_size == map->slave.xfer_size &&
1141 dev_dir == map->dir)
1142 return 0;
1144 /* Remove old mapping if present. */
1145 if (map->slave.xfer_size)
1146 dma_unmap_resource(chan->device->dev, map->addr,
1147 map->slave.xfer_size, map->dir, 0);
1148 map->slave.xfer_size = 0;
1150 /* Create new slave address map. */
1151 map->addr = dma_map_resource(chan->device->dev, dev_addr, dev_size,
1152 dev_dir, 0);
1154 if (dma_mapping_error(chan->device->dev, map->addr)) {
1155 dev_err(chan->device->dev,
1156 "chan%u: failed to map %zx@%pap", rchan->index,
1157 dev_size, &dev_addr);
1158 return -EIO;
1161 dev_dbg(chan->device->dev, "chan%u: map %zx@%pap to %pad dir: %s\n",
1162 rchan->index, dev_size, &dev_addr, &map->addr,
1163 dev_dir == DMA_TO_DEVICE ? "DMA_TO_DEVICE" : "DMA_FROM_DEVICE");
1165 map->slave.slave_addr = dev_addr;
1166 map->slave.xfer_size = dev_size;
1167 map->dir = dev_dir;
1169 return 0;
1172 static struct dma_async_tx_descriptor *
1173 rcar_dmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1174 unsigned int sg_len, enum dma_transfer_direction dir,
1175 unsigned long flags, void *context)
1177 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1179 /* Someone calling slave DMA on a generic channel? */
1180 if (rchan->mid_rid < 0 || !sg_len || !sg_dma_len(sgl)) {
1181 dev_warn(chan->device->dev,
1182 "%s: bad parameter: len=%d, id=%d\n",
1183 __func__, sg_len, rchan->mid_rid);
1184 return NULL;
1187 if (rcar_dmac_map_slave_addr(chan, dir))
1188 return NULL;
1190 return rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, rchan->map.addr,
1191 dir, flags, false);
1194 #define RCAR_DMAC_MAX_SG_LEN 32
1196 static struct dma_async_tx_descriptor *
1197 rcar_dmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr,
1198 size_t buf_len, size_t period_len,
1199 enum dma_transfer_direction dir, unsigned long flags)
1201 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1202 struct dma_async_tx_descriptor *desc;
1203 struct scatterlist *sgl;
1204 unsigned int sg_len;
1205 unsigned int i;
1207 /* Someone calling slave DMA on a generic channel? */
1208 if (rchan->mid_rid < 0 || buf_len < period_len) {
1209 dev_warn(chan->device->dev,
1210 "%s: bad parameter: buf_len=%zu, period_len=%zu, id=%d\n",
1211 __func__, buf_len, period_len, rchan->mid_rid);
1212 return NULL;
1215 if (rcar_dmac_map_slave_addr(chan, dir))
1216 return NULL;
1218 sg_len = buf_len / period_len;
1219 if (sg_len > RCAR_DMAC_MAX_SG_LEN) {
1220 dev_err(chan->device->dev,
1221 "chan%u: sg length %d exceeds limit %d",
1222 rchan->index, sg_len, RCAR_DMAC_MAX_SG_LEN);
1223 return NULL;
1227 * Allocate the sg list dynamically as it would consume too much stack
1228 * space.
1230 sgl = kmalloc_array(sg_len, sizeof(*sgl), GFP_NOWAIT);
1231 if (!sgl)
1232 return NULL;
1234 sg_init_table(sgl, sg_len);
1236 for (i = 0; i < sg_len; ++i) {
1237 dma_addr_t src = buf_addr + (period_len * i);
1239 sg_set_page(&sgl[i], pfn_to_page(PFN_DOWN(src)), period_len,
1240 offset_in_page(src));
1241 sg_dma_address(&sgl[i]) = src;
1242 sg_dma_len(&sgl[i]) = period_len;
1245 desc = rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, rchan->map.addr,
1246 dir, flags, true);
1248 kfree(sgl);
1249 return desc;
1252 static int rcar_dmac_device_config(struct dma_chan *chan,
1253 struct dma_slave_config *cfg)
1255 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1258 * We could lock this, but you shouldn't be configuring the
1259 * channel, while using it...
1261 rchan->src.slave_addr = cfg->src_addr;
1262 rchan->dst.slave_addr = cfg->dst_addr;
1263 rchan->src.xfer_size = cfg->src_addr_width;
1264 rchan->dst.xfer_size = cfg->dst_addr_width;
1266 return 0;
1269 static int rcar_dmac_chan_terminate_all(struct dma_chan *chan)
1271 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1272 unsigned long flags;
1274 spin_lock_irqsave(&rchan->lock, flags);
1275 rcar_dmac_chan_halt(rchan);
1276 spin_unlock_irqrestore(&rchan->lock, flags);
1279 * FIXME: No new interrupt can occur now, but the IRQ thread might still
1280 * be running.
1283 rcar_dmac_chan_reinit(rchan);
1285 return 0;
1288 static unsigned int rcar_dmac_chan_get_residue(struct rcar_dmac_chan *chan,
1289 dma_cookie_t cookie)
1291 struct rcar_dmac_desc *desc = chan->desc.running;
1292 struct rcar_dmac_xfer_chunk *running = NULL;
1293 struct rcar_dmac_xfer_chunk *chunk;
1294 enum dma_status status;
1295 unsigned int residue = 0;
1296 unsigned int dptr = 0;
1297 unsigned int chcrb;
1298 unsigned int tcrb;
1299 unsigned int i;
1301 if (!desc)
1302 return 0;
1305 * If the cookie corresponds to a descriptor that has been completed
1306 * there is no residue. The same check has already been performed by the
1307 * caller but without holding the channel lock, so the descriptor could
1308 * now be complete.
1310 status = dma_cookie_status(&chan->chan, cookie, NULL);
1311 if (status == DMA_COMPLETE)
1312 return 0;
1315 * If the cookie doesn't correspond to the currently running transfer
1316 * then the descriptor hasn't been processed yet, and the residue is
1317 * equal to the full descriptor size.
1318 * Also, a client driver is possible to call this function before
1319 * rcar_dmac_isr_channel_thread() runs. In this case, the "desc.running"
1320 * will be the next descriptor, and the done list will appear. So, if
1321 * the argument cookie matches the done list's cookie, we can assume
1322 * the residue is zero.
1324 if (cookie != desc->async_tx.cookie) {
1325 list_for_each_entry(desc, &chan->desc.done, node) {
1326 if (cookie == desc->async_tx.cookie)
1327 return 0;
1329 list_for_each_entry(desc, &chan->desc.pending, node) {
1330 if (cookie == desc->async_tx.cookie)
1331 return desc->size;
1333 list_for_each_entry(desc, &chan->desc.active, node) {
1334 if (cookie == desc->async_tx.cookie)
1335 return desc->size;
1339 * No descriptor found for the cookie, there's thus no residue.
1340 * This shouldn't happen if the calling driver passes a correct
1341 * cookie value.
1343 WARN(1, "No descriptor for cookie!");
1344 return 0;
1348 * We need to read two registers.
1349 * Make sure the control register does not skip to next chunk
1350 * while reading the counter.
1351 * Trying it 3 times should be enough: Initial read, retry, retry
1352 * for the paranoid.
1354 for (i = 0; i < 3; i++) {
1355 chcrb = rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1356 RCAR_DMACHCRB_DPTR_MASK;
1357 tcrb = rcar_dmac_chan_read(chan, RCAR_DMATCRB);
1358 /* Still the same? */
1359 if (chcrb == (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1360 RCAR_DMACHCRB_DPTR_MASK))
1361 break;
1363 WARN_ONCE(i >= 3, "residue might be not continuous!");
1366 * In descriptor mode the descriptor running pointer is not maintained
1367 * by the interrupt handler, find the running descriptor from the
1368 * descriptor pointer field in the CHCRB register. In non-descriptor
1369 * mode just use the running descriptor pointer.
1371 if (desc->hwdescs.use) {
1372 dptr = chcrb >> RCAR_DMACHCRB_DPTR_SHIFT;
1373 if (dptr == 0)
1374 dptr = desc->nchunks;
1375 dptr--;
1376 WARN_ON(dptr >= desc->nchunks);
1377 } else {
1378 running = desc->running;
1381 /* Compute the size of all chunks still to be transferred. */
1382 list_for_each_entry_reverse(chunk, &desc->chunks, node) {
1383 if (chunk == running || ++dptr == desc->nchunks)
1384 break;
1386 residue += chunk->size;
1389 /* Add the residue for the current chunk. */
1390 residue += tcrb << desc->xfer_shift;
1392 return residue;
1395 static enum dma_status rcar_dmac_tx_status(struct dma_chan *chan,
1396 dma_cookie_t cookie,
1397 struct dma_tx_state *txstate)
1399 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1400 enum dma_status status;
1401 unsigned long flags;
1402 unsigned int residue;
1403 bool cyclic;
1405 status = dma_cookie_status(chan, cookie, txstate);
1406 if (status == DMA_COMPLETE || !txstate)
1407 return status;
1409 spin_lock_irqsave(&rchan->lock, flags);
1410 residue = rcar_dmac_chan_get_residue(rchan, cookie);
1411 cyclic = rchan->desc.running ? rchan->desc.running->cyclic : false;
1412 spin_unlock_irqrestore(&rchan->lock, flags);
1414 /* if there's no residue, the cookie is complete */
1415 if (!residue && !cyclic)
1416 return DMA_COMPLETE;
1418 dma_set_residue(txstate, residue);
1420 return status;
1423 static void rcar_dmac_issue_pending(struct dma_chan *chan)
1425 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1426 unsigned long flags;
1428 spin_lock_irqsave(&rchan->lock, flags);
1430 if (list_empty(&rchan->desc.pending))
1431 goto done;
1433 /* Append the pending list to the active list. */
1434 list_splice_tail_init(&rchan->desc.pending, &rchan->desc.active);
1437 * If no transfer is running pick the first descriptor from the active
1438 * list and start the transfer.
1440 if (!rchan->desc.running) {
1441 struct rcar_dmac_desc *desc;
1443 desc = list_first_entry(&rchan->desc.active,
1444 struct rcar_dmac_desc, node);
1445 rchan->desc.running = desc;
1447 rcar_dmac_chan_start_xfer(rchan);
1450 done:
1451 spin_unlock_irqrestore(&rchan->lock, flags);
1454 static void rcar_dmac_device_synchronize(struct dma_chan *chan)
1456 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1458 synchronize_irq(rchan->irq);
1461 /* -----------------------------------------------------------------------------
1462 * IRQ handling
1465 static irqreturn_t rcar_dmac_isr_desc_stage_end(struct rcar_dmac_chan *chan)
1467 struct rcar_dmac_desc *desc = chan->desc.running;
1468 unsigned int stage;
1470 if (WARN_ON(!desc || !desc->cyclic)) {
1472 * This should never happen, there should always be a running
1473 * cyclic descriptor when a descriptor stage end interrupt is
1474 * triggered. Warn and return.
1476 return IRQ_NONE;
1479 /* Program the interrupt pointer to the next stage. */
1480 stage = (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1481 RCAR_DMACHCRB_DPTR_MASK) >> RCAR_DMACHCRB_DPTR_SHIFT;
1482 rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(stage));
1484 return IRQ_WAKE_THREAD;
1487 static irqreturn_t rcar_dmac_isr_transfer_end(struct rcar_dmac_chan *chan)
1489 struct rcar_dmac_desc *desc = chan->desc.running;
1490 irqreturn_t ret = IRQ_WAKE_THREAD;
1492 if (WARN_ON_ONCE(!desc)) {
1494 * This should never happen, there should always be a running
1495 * descriptor when a transfer end interrupt is triggered. Warn
1496 * and return.
1498 return IRQ_NONE;
1502 * The transfer end interrupt isn't generated for each chunk when using
1503 * descriptor mode. Only update the running chunk pointer in
1504 * non-descriptor mode.
1506 if (!desc->hwdescs.use) {
1508 * If we haven't completed the last transfer chunk simply move
1509 * to the next one. Only wake the IRQ thread if the transfer is
1510 * cyclic.
1512 if (!list_is_last(&desc->running->node, &desc->chunks)) {
1513 desc->running = list_next_entry(desc->running, node);
1514 if (!desc->cyclic)
1515 ret = IRQ_HANDLED;
1516 goto done;
1520 * We've completed the last transfer chunk. If the transfer is
1521 * cyclic, move back to the first one.
1523 if (desc->cyclic) {
1524 desc->running =
1525 list_first_entry(&desc->chunks,
1526 struct rcar_dmac_xfer_chunk,
1527 node);
1528 goto done;
1532 /* The descriptor is complete, move it to the done list. */
1533 list_move_tail(&desc->node, &chan->desc.done);
1535 /* Queue the next descriptor, if any. */
1536 if (!list_empty(&chan->desc.active))
1537 chan->desc.running = list_first_entry(&chan->desc.active,
1538 struct rcar_dmac_desc,
1539 node);
1540 else
1541 chan->desc.running = NULL;
1543 done:
1544 if (chan->desc.running)
1545 rcar_dmac_chan_start_xfer(chan);
1547 return ret;
1550 static irqreturn_t rcar_dmac_isr_channel(int irq, void *dev)
1552 u32 mask = RCAR_DMACHCR_DSE | RCAR_DMACHCR_TE;
1553 struct rcar_dmac_chan *chan = dev;
1554 irqreturn_t ret = IRQ_NONE;
1555 bool reinit = false;
1556 u32 chcr;
1558 spin_lock(&chan->lock);
1560 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
1561 if (chcr & RCAR_DMACHCR_CAE) {
1562 struct rcar_dmac *dmac = to_rcar_dmac(chan->chan.device);
1565 * We don't need to call rcar_dmac_chan_halt()
1566 * because channel is already stopped in error case.
1567 * We need to clear register and check DE bit as recovery.
1569 rcar_dmac_write(dmac, RCAR_DMACHCLR, 1 << chan->index);
1570 rcar_dmac_chcr_de_barrier(chan);
1571 reinit = true;
1572 goto spin_lock_end;
1575 if (chcr & RCAR_DMACHCR_TE)
1576 mask |= RCAR_DMACHCR_DE;
1577 rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr & ~mask);
1578 if (mask & RCAR_DMACHCR_DE)
1579 rcar_dmac_chcr_de_barrier(chan);
1581 if (chcr & RCAR_DMACHCR_DSE)
1582 ret |= rcar_dmac_isr_desc_stage_end(chan);
1584 if (chcr & RCAR_DMACHCR_TE)
1585 ret |= rcar_dmac_isr_transfer_end(chan);
1587 spin_lock_end:
1588 spin_unlock(&chan->lock);
1590 if (reinit) {
1591 dev_err(chan->chan.device->dev, "Channel Address Error\n");
1593 rcar_dmac_chan_reinit(chan);
1594 ret = IRQ_HANDLED;
1597 return ret;
1600 static irqreturn_t rcar_dmac_isr_channel_thread(int irq, void *dev)
1602 struct rcar_dmac_chan *chan = dev;
1603 struct rcar_dmac_desc *desc;
1604 struct dmaengine_desc_callback cb;
1606 spin_lock_irq(&chan->lock);
1608 /* For cyclic transfers notify the user after every chunk. */
1609 if (chan->desc.running && chan->desc.running->cyclic) {
1610 desc = chan->desc.running;
1611 dmaengine_desc_get_callback(&desc->async_tx, &cb);
1613 if (dmaengine_desc_callback_valid(&cb)) {
1614 spin_unlock_irq(&chan->lock);
1615 dmaengine_desc_callback_invoke(&cb, NULL);
1616 spin_lock_irq(&chan->lock);
1621 * Call the callback function for all descriptors on the done list and
1622 * move them to the ack wait list.
1624 while (!list_empty(&chan->desc.done)) {
1625 desc = list_first_entry(&chan->desc.done, struct rcar_dmac_desc,
1626 node);
1627 dma_cookie_complete(&desc->async_tx);
1628 list_del(&desc->node);
1630 dmaengine_desc_get_callback(&desc->async_tx, &cb);
1631 if (dmaengine_desc_callback_valid(&cb)) {
1632 spin_unlock_irq(&chan->lock);
1634 * We own the only reference to this descriptor, we can
1635 * safely dereference it without holding the channel
1636 * lock.
1638 dmaengine_desc_callback_invoke(&cb, NULL);
1639 spin_lock_irq(&chan->lock);
1642 list_add_tail(&desc->node, &chan->desc.wait);
1645 spin_unlock_irq(&chan->lock);
1647 /* Recycle all acked descriptors. */
1648 rcar_dmac_desc_recycle_acked(chan);
1650 return IRQ_HANDLED;
1653 /* -----------------------------------------------------------------------------
1654 * OF xlate and channel filter
1657 static bool rcar_dmac_chan_filter(struct dma_chan *chan, void *arg)
1659 struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
1660 struct of_phandle_args *dma_spec = arg;
1663 * FIXME: Using a filter on OF platforms is a nonsense. The OF xlate
1664 * function knows from which device it wants to allocate a channel from,
1665 * and would be perfectly capable of selecting the channel it wants.
1666 * Forcing it to call dma_request_channel() and iterate through all
1667 * channels from all controllers is just pointless.
1669 if (chan->device->device_config != rcar_dmac_device_config)
1670 return false;
1672 return !test_and_set_bit(dma_spec->args[0], dmac->modules);
1675 static struct dma_chan *rcar_dmac_of_xlate(struct of_phandle_args *dma_spec,
1676 struct of_dma *ofdma)
1678 struct rcar_dmac_chan *rchan;
1679 struct dma_chan *chan;
1680 dma_cap_mask_t mask;
1682 if (dma_spec->args_count != 1)
1683 return NULL;
1685 /* Only slave DMA channels can be allocated via DT */
1686 dma_cap_zero(mask);
1687 dma_cap_set(DMA_SLAVE, mask);
1689 chan = __dma_request_channel(&mask, rcar_dmac_chan_filter, dma_spec,
1690 ofdma->of_node);
1691 if (!chan)
1692 return NULL;
1694 rchan = to_rcar_dmac_chan(chan);
1695 rchan->mid_rid = dma_spec->args[0];
1697 return chan;
1700 /* -----------------------------------------------------------------------------
1701 * Power management
1704 #ifdef CONFIG_PM
1705 static int rcar_dmac_runtime_suspend(struct device *dev)
1707 return 0;
1710 static int rcar_dmac_runtime_resume(struct device *dev)
1712 struct rcar_dmac *dmac = dev_get_drvdata(dev);
1714 return rcar_dmac_init(dmac);
1716 #endif
1718 static const struct dev_pm_ops rcar_dmac_pm = {
1720 * TODO for system sleep/resume:
1721 * - Wait for the current transfer to complete and stop the device,
1722 * - Resume transfers, if any.
1724 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1725 pm_runtime_force_resume)
1726 SET_RUNTIME_PM_OPS(rcar_dmac_runtime_suspend, rcar_dmac_runtime_resume,
1727 NULL)
1730 /* -----------------------------------------------------------------------------
1731 * Probe and remove
1734 static int rcar_dmac_chan_probe(struct rcar_dmac *dmac,
1735 struct rcar_dmac_chan *rchan,
1736 const struct rcar_dmac_of_data *data,
1737 unsigned int index)
1739 struct platform_device *pdev = to_platform_device(dmac->dev);
1740 struct dma_chan *chan = &rchan->chan;
1741 char pdev_irqname[5];
1742 char *irqname;
1743 int ret;
1745 rchan->index = index;
1746 rchan->iomem = dmac->iomem + data->chan_offset_base +
1747 data->chan_offset_stride * index;
1748 rchan->mid_rid = -EINVAL;
1750 spin_lock_init(&rchan->lock);
1752 INIT_LIST_HEAD(&rchan->desc.free);
1753 INIT_LIST_HEAD(&rchan->desc.pending);
1754 INIT_LIST_HEAD(&rchan->desc.active);
1755 INIT_LIST_HEAD(&rchan->desc.done);
1756 INIT_LIST_HEAD(&rchan->desc.wait);
1758 /* Request the channel interrupt. */
1759 sprintf(pdev_irqname, "ch%u", index);
1760 rchan->irq = platform_get_irq_byname(pdev, pdev_irqname);
1761 if (rchan->irq < 0)
1762 return -ENODEV;
1764 irqname = devm_kasprintf(dmac->dev, GFP_KERNEL, "%s:%u",
1765 dev_name(dmac->dev), index);
1766 if (!irqname)
1767 return -ENOMEM;
1770 * Initialize the DMA engine channel and add it to the DMA engine
1771 * channels list.
1773 chan->device = &dmac->engine;
1774 dma_cookie_init(chan);
1776 list_add_tail(&chan->device_node, &dmac->engine.channels);
1778 ret = devm_request_threaded_irq(dmac->dev, rchan->irq,
1779 rcar_dmac_isr_channel,
1780 rcar_dmac_isr_channel_thread, 0,
1781 irqname, rchan);
1782 if (ret) {
1783 dev_err(dmac->dev, "failed to request IRQ %u (%d)\n",
1784 rchan->irq, ret);
1785 return ret;
1788 return 0;
1791 #define RCAR_DMAC_MAX_CHANNELS 32
1793 static int rcar_dmac_parse_of(struct device *dev, struct rcar_dmac *dmac)
1795 struct device_node *np = dev->of_node;
1796 int ret;
1798 ret = of_property_read_u32(np, "dma-channels", &dmac->n_channels);
1799 if (ret < 0) {
1800 dev_err(dev, "unable to read dma-channels property\n");
1801 return ret;
1804 /* The hardware and driver don't support more than 32 bits in CHCLR */
1805 if (dmac->n_channels <= 0 ||
1806 dmac->n_channels >= RCAR_DMAC_MAX_CHANNELS) {
1807 dev_err(dev, "invalid number of channels %u\n",
1808 dmac->n_channels);
1809 return -EINVAL;
1813 * If the driver is unable to read dma-channel-mask property,
1814 * the driver assumes that it can use all channels.
1816 dmac->channels_mask = GENMASK(dmac->n_channels - 1, 0);
1817 of_property_read_u32(np, "dma-channel-mask", &dmac->channels_mask);
1819 /* If the property has out-of-channel mask, this driver clears it */
1820 dmac->channels_mask &= GENMASK(dmac->n_channels - 1, 0);
1822 return 0;
1825 static int rcar_dmac_probe(struct platform_device *pdev)
1827 const enum dma_slave_buswidth widths = DMA_SLAVE_BUSWIDTH_1_BYTE |
1828 DMA_SLAVE_BUSWIDTH_2_BYTES | DMA_SLAVE_BUSWIDTH_4_BYTES |
1829 DMA_SLAVE_BUSWIDTH_8_BYTES | DMA_SLAVE_BUSWIDTH_16_BYTES |
1830 DMA_SLAVE_BUSWIDTH_32_BYTES | DMA_SLAVE_BUSWIDTH_64_BYTES;
1831 struct dma_device *engine;
1832 struct rcar_dmac *dmac;
1833 const struct rcar_dmac_of_data *data;
1834 unsigned int i;
1835 int ret;
1837 data = of_device_get_match_data(&pdev->dev);
1838 if (!data)
1839 return -EINVAL;
1841 dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL);
1842 if (!dmac)
1843 return -ENOMEM;
1845 dmac->dev = &pdev->dev;
1846 platform_set_drvdata(pdev, dmac);
1847 dma_set_max_seg_size(dmac->dev, RCAR_DMATCR_MASK);
1848 dma_set_mask_and_coherent(dmac->dev, DMA_BIT_MASK(40));
1850 ret = rcar_dmac_parse_of(&pdev->dev, dmac);
1851 if (ret < 0)
1852 return ret;
1855 * A still unconfirmed hardware bug prevents the IPMMU microTLB 0 to be
1856 * flushed correctly, resulting in memory corruption. DMAC 0 channel 0
1857 * is connected to microTLB 0 on currently supported platforms, so we
1858 * can't use it with the IPMMU. As the IOMMU API operates at the device
1859 * level we can't disable it selectively, so ignore channel 0 for now if
1860 * the device is part of an IOMMU group.
1862 if (device_iommu_mapped(&pdev->dev))
1863 dmac->channels_mask &= ~BIT(0);
1865 dmac->channels = devm_kcalloc(&pdev->dev, dmac->n_channels,
1866 sizeof(*dmac->channels), GFP_KERNEL);
1867 if (!dmac->channels)
1868 return -ENOMEM;
1870 /* Request resources. */
1871 dmac->iomem = devm_platform_ioremap_resource(pdev, 0);
1872 if (IS_ERR(dmac->iomem))
1873 return PTR_ERR(dmac->iomem);
1875 /* Enable runtime PM and initialize the device. */
1876 pm_runtime_enable(&pdev->dev);
1877 ret = pm_runtime_get_sync(&pdev->dev);
1878 if (ret < 0) {
1879 dev_err(&pdev->dev, "runtime PM get sync failed (%d)\n", ret);
1880 return ret;
1883 ret = rcar_dmac_init(dmac);
1884 pm_runtime_put(&pdev->dev);
1886 if (ret) {
1887 dev_err(&pdev->dev, "failed to reset device\n");
1888 goto error;
1891 /* Initialize engine */
1892 engine = &dmac->engine;
1894 dma_cap_set(DMA_MEMCPY, engine->cap_mask);
1895 dma_cap_set(DMA_SLAVE, engine->cap_mask);
1897 engine->dev = &pdev->dev;
1898 engine->copy_align = ilog2(RCAR_DMAC_MEMCPY_XFER_SIZE);
1900 engine->src_addr_widths = widths;
1901 engine->dst_addr_widths = widths;
1902 engine->directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
1903 engine->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1905 engine->device_alloc_chan_resources = rcar_dmac_alloc_chan_resources;
1906 engine->device_free_chan_resources = rcar_dmac_free_chan_resources;
1907 engine->device_prep_dma_memcpy = rcar_dmac_prep_dma_memcpy;
1908 engine->device_prep_slave_sg = rcar_dmac_prep_slave_sg;
1909 engine->device_prep_dma_cyclic = rcar_dmac_prep_dma_cyclic;
1910 engine->device_config = rcar_dmac_device_config;
1911 engine->device_pause = rcar_dmac_chan_pause;
1912 engine->device_terminate_all = rcar_dmac_chan_terminate_all;
1913 engine->device_tx_status = rcar_dmac_tx_status;
1914 engine->device_issue_pending = rcar_dmac_issue_pending;
1915 engine->device_synchronize = rcar_dmac_device_synchronize;
1917 INIT_LIST_HEAD(&engine->channels);
1919 for (i = 0; i < dmac->n_channels; ++i) {
1920 if (!(dmac->channels_mask & BIT(i)))
1921 continue;
1923 ret = rcar_dmac_chan_probe(dmac, &dmac->channels[i], data, i);
1924 if (ret < 0)
1925 goto error;
1928 /* Register the DMAC as a DMA provider for DT. */
1929 ret = of_dma_controller_register(pdev->dev.of_node, rcar_dmac_of_xlate,
1930 NULL);
1931 if (ret < 0)
1932 goto error;
1935 * Register the DMA engine device.
1937 * Default transfer size of 32 bytes requires 32-byte alignment.
1939 ret = dma_async_device_register(engine);
1940 if (ret < 0)
1941 goto error;
1943 return 0;
1945 error:
1946 of_dma_controller_free(pdev->dev.of_node);
1947 pm_runtime_disable(&pdev->dev);
1948 return ret;
1951 static int rcar_dmac_remove(struct platform_device *pdev)
1953 struct rcar_dmac *dmac = platform_get_drvdata(pdev);
1955 of_dma_controller_free(pdev->dev.of_node);
1956 dma_async_device_unregister(&dmac->engine);
1958 pm_runtime_disable(&pdev->dev);
1960 return 0;
1963 static void rcar_dmac_shutdown(struct platform_device *pdev)
1965 struct rcar_dmac *dmac = platform_get_drvdata(pdev);
1967 rcar_dmac_stop_all_chan(dmac);
1970 static const struct rcar_dmac_of_data rcar_dmac_data = {
1971 .chan_offset_base = 0x8000,
1972 .chan_offset_stride = 0x80,
1975 static const struct of_device_id rcar_dmac_of_ids[] = {
1977 .compatible = "renesas,rcar-dmac",
1978 .data = &rcar_dmac_data,
1980 { /* Sentinel */ }
1982 MODULE_DEVICE_TABLE(of, rcar_dmac_of_ids);
1984 static struct platform_driver rcar_dmac_driver = {
1985 .driver = {
1986 .pm = &rcar_dmac_pm,
1987 .name = "rcar-dmac",
1988 .of_match_table = rcar_dmac_of_ids,
1990 .probe = rcar_dmac_probe,
1991 .remove = rcar_dmac_remove,
1992 .shutdown = rcar_dmac_shutdown,
1995 module_platform_driver(rcar_dmac_driver);
1997 MODULE_DESCRIPTION("R-Car Gen2 DMA Controller Driver");
1998 MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
1999 MODULE_LICENSE("GPL v2");