Merge tag 'regmap-fix-v5.11-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux/fpc-iii.git] / drivers / hv / vmbus_drv.c
blob502f8cd95f6d46cb6db5923ba877612f886d4a7a
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2009, Microsoft Corporation.
5 * Authors:
6 * Haiyang Zhang <haiyangz@microsoft.com>
7 * Hank Janssen <hjanssen@microsoft.com>
8 * K. Y. Srinivasan <kys@microsoft.com>
9 */
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/device.h>
15 #include <linux/interrupt.h>
16 #include <linux/sysctl.h>
17 #include <linux/slab.h>
18 #include <linux/acpi.h>
19 #include <linux/completion.h>
20 #include <linux/hyperv.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/clockchips.h>
23 #include <linux/cpu.h>
24 #include <linux/sched/task_stack.h>
26 #include <linux/delay.h>
27 #include <linux/notifier.h>
28 #include <linux/ptrace.h>
29 #include <linux/screen_info.h>
30 #include <linux/kdebug.h>
31 #include <linux/efi.h>
32 #include <linux/random.h>
33 #include <linux/kernel.h>
34 #include <linux/syscore_ops.h>
35 #include <clocksource/hyperv_timer.h>
36 #include "hyperv_vmbus.h"
38 struct vmbus_dynid {
39 struct list_head node;
40 struct hv_vmbus_device_id id;
43 static struct acpi_device *hv_acpi_dev;
45 static struct completion probe_event;
47 static int hyperv_cpuhp_online;
49 static void *hv_panic_page;
51 /* Values parsed from ACPI DSDT */
52 static int vmbus_irq;
53 int vmbus_interrupt;
56 * Boolean to control whether to report panic messages over Hyper-V.
58 * It can be set via /proc/sys/kernel/hyperv_record_panic_msg
60 static int sysctl_record_panic_msg = 1;
62 static int hyperv_report_reg(void)
64 return !sysctl_record_panic_msg || !hv_panic_page;
67 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
68 void *args)
70 struct pt_regs *regs;
72 vmbus_initiate_unload(true);
75 * Hyper-V should be notified only once about a panic. If we will be
76 * doing hyperv_report_panic_msg() later with kmsg data, don't do
77 * the notification here.
79 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE
80 && hyperv_report_reg()) {
81 regs = current_pt_regs();
82 hyperv_report_panic(regs, val, false);
84 return NOTIFY_DONE;
87 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
88 void *args)
90 struct die_args *die = args;
91 struct pt_regs *regs = die->regs;
93 /* Don't notify Hyper-V if the die event is other than oops */
94 if (val != DIE_OOPS)
95 return NOTIFY_DONE;
98 * Hyper-V should be notified only once about a panic. If we will be
99 * doing hyperv_report_panic_msg() later with kmsg data, don't do
100 * the notification here.
102 if (hyperv_report_reg())
103 hyperv_report_panic(regs, val, true);
104 return NOTIFY_DONE;
107 static struct notifier_block hyperv_die_block = {
108 .notifier_call = hyperv_die_event,
110 static struct notifier_block hyperv_panic_block = {
111 .notifier_call = hyperv_panic_event,
114 static const char *fb_mmio_name = "fb_range";
115 static struct resource *fb_mmio;
116 static struct resource *hyperv_mmio;
117 static DEFINE_MUTEX(hyperv_mmio_lock);
119 static int vmbus_exists(void)
121 if (hv_acpi_dev == NULL)
122 return -ENODEV;
124 return 0;
127 static u8 channel_monitor_group(const struct vmbus_channel *channel)
129 return (u8)channel->offermsg.monitorid / 32;
132 static u8 channel_monitor_offset(const struct vmbus_channel *channel)
134 return (u8)channel->offermsg.monitorid % 32;
137 static u32 channel_pending(const struct vmbus_channel *channel,
138 const struct hv_monitor_page *monitor_page)
140 u8 monitor_group = channel_monitor_group(channel);
142 return monitor_page->trigger_group[monitor_group].pending;
145 static u32 channel_latency(const struct vmbus_channel *channel,
146 const struct hv_monitor_page *monitor_page)
148 u8 monitor_group = channel_monitor_group(channel);
149 u8 monitor_offset = channel_monitor_offset(channel);
151 return monitor_page->latency[monitor_group][monitor_offset];
154 static u32 channel_conn_id(struct vmbus_channel *channel,
155 struct hv_monitor_page *monitor_page)
157 u8 monitor_group = channel_monitor_group(channel);
158 u8 monitor_offset = channel_monitor_offset(channel);
160 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
163 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
164 char *buf)
166 struct hv_device *hv_dev = device_to_hv_device(dev);
168 if (!hv_dev->channel)
169 return -ENODEV;
170 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
172 static DEVICE_ATTR_RO(id);
174 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
175 char *buf)
177 struct hv_device *hv_dev = device_to_hv_device(dev);
179 if (!hv_dev->channel)
180 return -ENODEV;
181 return sprintf(buf, "%d\n", hv_dev->channel->state);
183 static DEVICE_ATTR_RO(state);
185 static ssize_t monitor_id_show(struct device *dev,
186 struct device_attribute *dev_attr, char *buf)
188 struct hv_device *hv_dev = device_to_hv_device(dev);
190 if (!hv_dev->channel)
191 return -ENODEV;
192 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
194 static DEVICE_ATTR_RO(monitor_id);
196 static ssize_t class_id_show(struct device *dev,
197 struct device_attribute *dev_attr, char *buf)
199 struct hv_device *hv_dev = device_to_hv_device(dev);
201 if (!hv_dev->channel)
202 return -ENODEV;
203 return sprintf(buf, "{%pUl}\n",
204 &hv_dev->channel->offermsg.offer.if_type);
206 static DEVICE_ATTR_RO(class_id);
208 static ssize_t device_id_show(struct device *dev,
209 struct device_attribute *dev_attr, char *buf)
211 struct hv_device *hv_dev = device_to_hv_device(dev);
213 if (!hv_dev->channel)
214 return -ENODEV;
215 return sprintf(buf, "{%pUl}\n",
216 &hv_dev->channel->offermsg.offer.if_instance);
218 static DEVICE_ATTR_RO(device_id);
220 static ssize_t modalias_show(struct device *dev,
221 struct device_attribute *dev_attr, char *buf)
223 struct hv_device *hv_dev = device_to_hv_device(dev);
225 return sprintf(buf, "vmbus:%*phN\n", UUID_SIZE, &hv_dev->dev_type);
227 static DEVICE_ATTR_RO(modalias);
229 #ifdef CONFIG_NUMA
230 static ssize_t numa_node_show(struct device *dev,
231 struct device_attribute *attr, char *buf)
233 struct hv_device *hv_dev = device_to_hv_device(dev);
235 if (!hv_dev->channel)
236 return -ENODEV;
238 return sprintf(buf, "%d\n", cpu_to_node(hv_dev->channel->target_cpu));
240 static DEVICE_ATTR_RO(numa_node);
241 #endif
243 static ssize_t server_monitor_pending_show(struct device *dev,
244 struct device_attribute *dev_attr,
245 char *buf)
247 struct hv_device *hv_dev = device_to_hv_device(dev);
249 if (!hv_dev->channel)
250 return -ENODEV;
251 return sprintf(buf, "%d\n",
252 channel_pending(hv_dev->channel,
253 vmbus_connection.monitor_pages[0]));
255 static DEVICE_ATTR_RO(server_monitor_pending);
257 static ssize_t client_monitor_pending_show(struct device *dev,
258 struct device_attribute *dev_attr,
259 char *buf)
261 struct hv_device *hv_dev = device_to_hv_device(dev);
263 if (!hv_dev->channel)
264 return -ENODEV;
265 return sprintf(buf, "%d\n",
266 channel_pending(hv_dev->channel,
267 vmbus_connection.monitor_pages[1]));
269 static DEVICE_ATTR_RO(client_monitor_pending);
271 static ssize_t server_monitor_latency_show(struct device *dev,
272 struct device_attribute *dev_attr,
273 char *buf)
275 struct hv_device *hv_dev = device_to_hv_device(dev);
277 if (!hv_dev->channel)
278 return -ENODEV;
279 return sprintf(buf, "%d\n",
280 channel_latency(hv_dev->channel,
281 vmbus_connection.monitor_pages[0]));
283 static DEVICE_ATTR_RO(server_monitor_latency);
285 static ssize_t client_monitor_latency_show(struct device *dev,
286 struct device_attribute *dev_attr,
287 char *buf)
289 struct hv_device *hv_dev = device_to_hv_device(dev);
291 if (!hv_dev->channel)
292 return -ENODEV;
293 return sprintf(buf, "%d\n",
294 channel_latency(hv_dev->channel,
295 vmbus_connection.monitor_pages[1]));
297 static DEVICE_ATTR_RO(client_monitor_latency);
299 static ssize_t server_monitor_conn_id_show(struct device *dev,
300 struct device_attribute *dev_attr,
301 char *buf)
303 struct hv_device *hv_dev = device_to_hv_device(dev);
305 if (!hv_dev->channel)
306 return -ENODEV;
307 return sprintf(buf, "%d\n",
308 channel_conn_id(hv_dev->channel,
309 vmbus_connection.monitor_pages[0]));
311 static DEVICE_ATTR_RO(server_monitor_conn_id);
313 static ssize_t client_monitor_conn_id_show(struct device *dev,
314 struct device_attribute *dev_attr,
315 char *buf)
317 struct hv_device *hv_dev = device_to_hv_device(dev);
319 if (!hv_dev->channel)
320 return -ENODEV;
321 return sprintf(buf, "%d\n",
322 channel_conn_id(hv_dev->channel,
323 vmbus_connection.monitor_pages[1]));
325 static DEVICE_ATTR_RO(client_monitor_conn_id);
327 static ssize_t out_intr_mask_show(struct device *dev,
328 struct device_attribute *dev_attr, char *buf)
330 struct hv_device *hv_dev = device_to_hv_device(dev);
331 struct hv_ring_buffer_debug_info outbound;
332 int ret;
334 if (!hv_dev->channel)
335 return -ENODEV;
337 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
338 &outbound);
339 if (ret < 0)
340 return ret;
342 return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
344 static DEVICE_ATTR_RO(out_intr_mask);
346 static ssize_t out_read_index_show(struct device *dev,
347 struct device_attribute *dev_attr, char *buf)
349 struct hv_device *hv_dev = device_to_hv_device(dev);
350 struct hv_ring_buffer_debug_info outbound;
351 int ret;
353 if (!hv_dev->channel)
354 return -ENODEV;
356 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
357 &outbound);
358 if (ret < 0)
359 return ret;
360 return sprintf(buf, "%d\n", outbound.current_read_index);
362 static DEVICE_ATTR_RO(out_read_index);
364 static ssize_t out_write_index_show(struct device *dev,
365 struct device_attribute *dev_attr,
366 char *buf)
368 struct hv_device *hv_dev = device_to_hv_device(dev);
369 struct hv_ring_buffer_debug_info outbound;
370 int ret;
372 if (!hv_dev->channel)
373 return -ENODEV;
375 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
376 &outbound);
377 if (ret < 0)
378 return ret;
379 return sprintf(buf, "%d\n", outbound.current_write_index);
381 static DEVICE_ATTR_RO(out_write_index);
383 static ssize_t out_read_bytes_avail_show(struct device *dev,
384 struct device_attribute *dev_attr,
385 char *buf)
387 struct hv_device *hv_dev = device_to_hv_device(dev);
388 struct hv_ring_buffer_debug_info outbound;
389 int ret;
391 if (!hv_dev->channel)
392 return -ENODEV;
394 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
395 &outbound);
396 if (ret < 0)
397 return ret;
398 return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
400 static DEVICE_ATTR_RO(out_read_bytes_avail);
402 static ssize_t out_write_bytes_avail_show(struct device *dev,
403 struct device_attribute *dev_attr,
404 char *buf)
406 struct hv_device *hv_dev = device_to_hv_device(dev);
407 struct hv_ring_buffer_debug_info outbound;
408 int ret;
410 if (!hv_dev->channel)
411 return -ENODEV;
413 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
414 &outbound);
415 if (ret < 0)
416 return ret;
417 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
419 static DEVICE_ATTR_RO(out_write_bytes_avail);
421 static ssize_t in_intr_mask_show(struct device *dev,
422 struct device_attribute *dev_attr, char *buf)
424 struct hv_device *hv_dev = device_to_hv_device(dev);
425 struct hv_ring_buffer_debug_info inbound;
426 int ret;
428 if (!hv_dev->channel)
429 return -ENODEV;
431 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
432 if (ret < 0)
433 return ret;
435 return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
437 static DEVICE_ATTR_RO(in_intr_mask);
439 static ssize_t in_read_index_show(struct device *dev,
440 struct device_attribute *dev_attr, char *buf)
442 struct hv_device *hv_dev = device_to_hv_device(dev);
443 struct hv_ring_buffer_debug_info inbound;
444 int ret;
446 if (!hv_dev->channel)
447 return -ENODEV;
449 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
450 if (ret < 0)
451 return ret;
453 return sprintf(buf, "%d\n", inbound.current_read_index);
455 static DEVICE_ATTR_RO(in_read_index);
457 static ssize_t in_write_index_show(struct device *dev,
458 struct device_attribute *dev_attr, char *buf)
460 struct hv_device *hv_dev = device_to_hv_device(dev);
461 struct hv_ring_buffer_debug_info inbound;
462 int ret;
464 if (!hv_dev->channel)
465 return -ENODEV;
467 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
468 if (ret < 0)
469 return ret;
471 return sprintf(buf, "%d\n", inbound.current_write_index);
473 static DEVICE_ATTR_RO(in_write_index);
475 static ssize_t in_read_bytes_avail_show(struct device *dev,
476 struct device_attribute *dev_attr,
477 char *buf)
479 struct hv_device *hv_dev = device_to_hv_device(dev);
480 struct hv_ring_buffer_debug_info inbound;
481 int ret;
483 if (!hv_dev->channel)
484 return -ENODEV;
486 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
487 if (ret < 0)
488 return ret;
490 return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
492 static DEVICE_ATTR_RO(in_read_bytes_avail);
494 static ssize_t in_write_bytes_avail_show(struct device *dev,
495 struct device_attribute *dev_attr,
496 char *buf)
498 struct hv_device *hv_dev = device_to_hv_device(dev);
499 struct hv_ring_buffer_debug_info inbound;
500 int ret;
502 if (!hv_dev->channel)
503 return -ENODEV;
505 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
506 if (ret < 0)
507 return ret;
509 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
511 static DEVICE_ATTR_RO(in_write_bytes_avail);
513 static ssize_t channel_vp_mapping_show(struct device *dev,
514 struct device_attribute *dev_attr,
515 char *buf)
517 struct hv_device *hv_dev = device_to_hv_device(dev);
518 struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
519 int buf_size = PAGE_SIZE, n_written, tot_written;
520 struct list_head *cur;
522 if (!channel)
523 return -ENODEV;
525 mutex_lock(&vmbus_connection.channel_mutex);
527 tot_written = snprintf(buf, buf_size, "%u:%u\n",
528 channel->offermsg.child_relid, channel->target_cpu);
530 list_for_each(cur, &channel->sc_list) {
531 if (tot_written >= buf_size - 1)
532 break;
534 cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
535 n_written = scnprintf(buf + tot_written,
536 buf_size - tot_written,
537 "%u:%u\n",
538 cur_sc->offermsg.child_relid,
539 cur_sc->target_cpu);
540 tot_written += n_written;
543 mutex_unlock(&vmbus_connection.channel_mutex);
545 return tot_written;
547 static DEVICE_ATTR_RO(channel_vp_mapping);
549 static ssize_t vendor_show(struct device *dev,
550 struct device_attribute *dev_attr,
551 char *buf)
553 struct hv_device *hv_dev = device_to_hv_device(dev);
555 return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
557 static DEVICE_ATTR_RO(vendor);
559 static ssize_t device_show(struct device *dev,
560 struct device_attribute *dev_attr,
561 char *buf)
563 struct hv_device *hv_dev = device_to_hv_device(dev);
565 return sprintf(buf, "0x%x\n", hv_dev->device_id);
567 static DEVICE_ATTR_RO(device);
569 static ssize_t driver_override_store(struct device *dev,
570 struct device_attribute *attr,
571 const char *buf, size_t count)
573 struct hv_device *hv_dev = device_to_hv_device(dev);
574 char *driver_override, *old, *cp;
576 /* We need to keep extra room for a newline */
577 if (count >= (PAGE_SIZE - 1))
578 return -EINVAL;
580 driver_override = kstrndup(buf, count, GFP_KERNEL);
581 if (!driver_override)
582 return -ENOMEM;
584 cp = strchr(driver_override, '\n');
585 if (cp)
586 *cp = '\0';
588 device_lock(dev);
589 old = hv_dev->driver_override;
590 if (strlen(driver_override)) {
591 hv_dev->driver_override = driver_override;
592 } else {
593 kfree(driver_override);
594 hv_dev->driver_override = NULL;
596 device_unlock(dev);
598 kfree(old);
600 return count;
603 static ssize_t driver_override_show(struct device *dev,
604 struct device_attribute *attr, char *buf)
606 struct hv_device *hv_dev = device_to_hv_device(dev);
607 ssize_t len;
609 device_lock(dev);
610 len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override);
611 device_unlock(dev);
613 return len;
615 static DEVICE_ATTR_RW(driver_override);
617 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
618 static struct attribute *vmbus_dev_attrs[] = {
619 &dev_attr_id.attr,
620 &dev_attr_state.attr,
621 &dev_attr_monitor_id.attr,
622 &dev_attr_class_id.attr,
623 &dev_attr_device_id.attr,
624 &dev_attr_modalias.attr,
625 #ifdef CONFIG_NUMA
626 &dev_attr_numa_node.attr,
627 #endif
628 &dev_attr_server_monitor_pending.attr,
629 &dev_attr_client_monitor_pending.attr,
630 &dev_attr_server_monitor_latency.attr,
631 &dev_attr_client_monitor_latency.attr,
632 &dev_attr_server_monitor_conn_id.attr,
633 &dev_attr_client_monitor_conn_id.attr,
634 &dev_attr_out_intr_mask.attr,
635 &dev_attr_out_read_index.attr,
636 &dev_attr_out_write_index.attr,
637 &dev_attr_out_read_bytes_avail.attr,
638 &dev_attr_out_write_bytes_avail.attr,
639 &dev_attr_in_intr_mask.attr,
640 &dev_attr_in_read_index.attr,
641 &dev_attr_in_write_index.attr,
642 &dev_attr_in_read_bytes_avail.attr,
643 &dev_attr_in_write_bytes_avail.attr,
644 &dev_attr_channel_vp_mapping.attr,
645 &dev_attr_vendor.attr,
646 &dev_attr_device.attr,
647 &dev_attr_driver_override.attr,
648 NULL,
652 * Device-level attribute_group callback function. Returns the permission for
653 * each attribute, and returns 0 if an attribute is not visible.
655 static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj,
656 struct attribute *attr, int idx)
658 struct device *dev = kobj_to_dev(kobj);
659 const struct hv_device *hv_dev = device_to_hv_device(dev);
661 /* Hide the monitor attributes if the monitor mechanism is not used. */
662 if (!hv_dev->channel->offermsg.monitor_allocated &&
663 (attr == &dev_attr_monitor_id.attr ||
664 attr == &dev_attr_server_monitor_pending.attr ||
665 attr == &dev_attr_client_monitor_pending.attr ||
666 attr == &dev_attr_server_monitor_latency.attr ||
667 attr == &dev_attr_client_monitor_latency.attr ||
668 attr == &dev_attr_server_monitor_conn_id.attr ||
669 attr == &dev_attr_client_monitor_conn_id.attr))
670 return 0;
672 return attr->mode;
675 static const struct attribute_group vmbus_dev_group = {
676 .attrs = vmbus_dev_attrs,
677 .is_visible = vmbus_dev_attr_is_visible
679 __ATTRIBUTE_GROUPS(vmbus_dev);
682 * vmbus_uevent - add uevent for our device
684 * This routine is invoked when a device is added or removed on the vmbus to
685 * generate a uevent to udev in the userspace. The udev will then look at its
686 * rule and the uevent generated here to load the appropriate driver
688 * The alias string will be of the form vmbus:guid where guid is the string
689 * representation of the device guid (each byte of the guid will be
690 * represented with two hex characters.
692 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
694 struct hv_device *dev = device_to_hv_device(device);
695 const char *format = "MODALIAS=vmbus:%*phN";
697 return add_uevent_var(env, format, UUID_SIZE, &dev->dev_type);
700 static const struct hv_vmbus_device_id *
701 hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid)
703 if (id == NULL)
704 return NULL; /* empty device table */
706 for (; !guid_is_null(&id->guid); id++)
707 if (guid_equal(&id->guid, guid))
708 return id;
710 return NULL;
713 static const struct hv_vmbus_device_id *
714 hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid)
716 const struct hv_vmbus_device_id *id = NULL;
717 struct vmbus_dynid *dynid;
719 spin_lock(&drv->dynids.lock);
720 list_for_each_entry(dynid, &drv->dynids.list, node) {
721 if (guid_equal(&dynid->id.guid, guid)) {
722 id = &dynid->id;
723 break;
726 spin_unlock(&drv->dynids.lock);
728 return id;
731 static const struct hv_vmbus_device_id vmbus_device_null;
734 * Return a matching hv_vmbus_device_id pointer.
735 * If there is no match, return NULL.
737 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
738 struct hv_device *dev)
740 const guid_t *guid = &dev->dev_type;
741 const struct hv_vmbus_device_id *id;
743 /* When driver_override is set, only bind to the matching driver */
744 if (dev->driver_override && strcmp(dev->driver_override, drv->name))
745 return NULL;
747 /* Look at the dynamic ids first, before the static ones */
748 id = hv_vmbus_dynid_match(drv, guid);
749 if (!id)
750 id = hv_vmbus_dev_match(drv->id_table, guid);
752 /* driver_override will always match, send a dummy id */
753 if (!id && dev->driver_override)
754 id = &vmbus_device_null;
756 return id;
759 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
760 static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid)
762 struct vmbus_dynid *dynid;
764 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
765 if (!dynid)
766 return -ENOMEM;
768 dynid->id.guid = *guid;
770 spin_lock(&drv->dynids.lock);
771 list_add_tail(&dynid->node, &drv->dynids.list);
772 spin_unlock(&drv->dynids.lock);
774 return driver_attach(&drv->driver);
777 static void vmbus_free_dynids(struct hv_driver *drv)
779 struct vmbus_dynid *dynid, *n;
781 spin_lock(&drv->dynids.lock);
782 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
783 list_del(&dynid->node);
784 kfree(dynid);
786 spin_unlock(&drv->dynids.lock);
790 * store_new_id - sysfs frontend to vmbus_add_dynid()
792 * Allow GUIDs to be added to an existing driver via sysfs.
794 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
795 size_t count)
797 struct hv_driver *drv = drv_to_hv_drv(driver);
798 guid_t guid;
799 ssize_t retval;
801 retval = guid_parse(buf, &guid);
802 if (retval)
803 return retval;
805 if (hv_vmbus_dynid_match(drv, &guid))
806 return -EEXIST;
808 retval = vmbus_add_dynid(drv, &guid);
809 if (retval)
810 return retval;
811 return count;
813 static DRIVER_ATTR_WO(new_id);
816 * store_remove_id - remove a PCI device ID from this driver
818 * Removes a dynamic pci device ID to this driver.
820 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
821 size_t count)
823 struct hv_driver *drv = drv_to_hv_drv(driver);
824 struct vmbus_dynid *dynid, *n;
825 guid_t guid;
826 ssize_t retval;
828 retval = guid_parse(buf, &guid);
829 if (retval)
830 return retval;
832 retval = -ENODEV;
833 spin_lock(&drv->dynids.lock);
834 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
835 struct hv_vmbus_device_id *id = &dynid->id;
837 if (guid_equal(&id->guid, &guid)) {
838 list_del(&dynid->node);
839 kfree(dynid);
840 retval = count;
841 break;
844 spin_unlock(&drv->dynids.lock);
846 return retval;
848 static DRIVER_ATTR_WO(remove_id);
850 static struct attribute *vmbus_drv_attrs[] = {
851 &driver_attr_new_id.attr,
852 &driver_attr_remove_id.attr,
853 NULL,
855 ATTRIBUTE_GROUPS(vmbus_drv);
859 * vmbus_match - Attempt to match the specified device to the specified driver
861 static int vmbus_match(struct device *device, struct device_driver *driver)
863 struct hv_driver *drv = drv_to_hv_drv(driver);
864 struct hv_device *hv_dev = device_to_hv_device(device);
866 /* The hv_sock driver handles all hv_sock offers. */
867 if (is_hvsock_channel(hv_dev->channel))
868 return drv->hvsock;
870 if (hv_vmbus_get_id(drv, hv_dev))
871 return 1;
873 return 0;
877 * vmbus_probe - Add the new vmbus's child device
879 static int vmbus_probe(struct device *child_device)
881 int ret = 0;
882 struct hv_driver *drv =
883 drv_to_hv_drv(child_device->driver);
884 struct hv_device *dev = device_to_hv_device(child_device);
885 const struct hv_vmbus_device_id *dev_id;
887 dev_id = hv_vmbus_get_id(drv, dev);
888 if (drv->probe) {
889 ret = drv->probe(dev, dev_id);
890 if (ret != 0)
891 pr_err("probe failed for device %s (%d)\n",
892 dev_name(child_device), ret);
894 } else {
895 pr_err("probe not set for driver %s\n",
896 dev_name(child_device));
897 ret = -ENODEV;
899 return ret;
903 * vmbus_remove - Remove a vmbus device
905 static int vmbus_remove(struct device *child_device)
907 struct hv_driver *drv;
908 struct hv_device *dev = device_to_hv_device(child_device);
910 if (child_device->driver) {
911 drv = drv_to_hv_drv(child_device->driver);
912 if (drv->remove)
913 drv->remove(dev);
916 return 0;
921 * vmbus_shutdown - Shutdown a vmbus device
923 static void vmbus_shutdown(struct device *child_device)
925 struct hv_driver *drv;
926 struct hv_device *dev = device_to_hv_device(child_device);
929 /* The device may not be attached yet */
930 if (!child_device->driver)
931 return;
933 drv = drv_to_hv_drv(child_device->driver);
935 if (drv->shutdown)
936 drv->shutdown(dev);
939 #ifdef CONFIG_PM_SLEEP
941 * vmbus_suspend - Suspend a vmbus device
943 static int vmbus_suspend(struct device *child_device)
945 struct hv_driver *drv;
946 struct hv_device *dev = device_to_hv_device(child_device);
948 /* The device may not be attached yet */
949 if (!child_device->driver)
950 return 0;
952 drv = drv_to_hv_drv(child_device->driver);
953 if (!drv->suspend)
954 return -EOPNOTSUPP;
956 return drv->suspend(dev);
960 * vmbus_resume - Resume a vmbus device
962 static int vmbus_resume(struct device *child_device)
964 struct hv_driver *drv;
965 struct hv_device *dev = device_to_hv_device(child_device);
967 /* The device may not be attached yet */
968 if (!child_device->driver)
969 return 0;
971 drv = drv_to_hv_drv(child_device->driver);
972 if (!drv->resume)
973 return -EOPNOTSUPP;
975 return drv->resume(dev);
977 #else
978 #define vmbus_suspend NULL
979 #define vmbus_resume NULL
980 #endif /* CONFIG_PM_SLEEP */
983 * vmbus_device_release - Final callback release of the vmbus child device
985 static void vmbus_device_release(struct device *device)
987 struct hv_device *hv_dev = device_to_hv_device(device);
988 struct vmbus_channel *channel = hv_dev->channel;
990 hv_debug_rm_dev_dir(hv_dev);
992 mutex_lock(&vmbus_connection.channel_mutex);
993 hv_process_channel_removal(channel);
994 mutex_unlock(&vmbus_connection.channel_mutex);
995 kfree(hv_dev);
999 * Note: we must use the "noirq" ops: see the comment before vmbus_bus_pm.
1001 * suspend_noirq/resume_noirq are set to NULL to support Suspend-to-Idle: we
1002 * shouldn't suspend the vmbus devices upon Suspend-to-Idle, otherwise there
1003 * is no way to wake up a Generation-2 VM.
1005 * The other 4 ops are for hibernation.
1008 static const struct dev_pm_ops vmbus_pm = {
1009 .suspend_noirq = NULL,
1010 .resume_noirq = NULL,
1011 .freeze_noirq = vmbus_suspend,
1012 .thaw_noirq = vmbus_resume,
1013 .poweroff_noirq = vmbus_suspend,
1014 .restore_noirq = vmbus_resume,
1017 /* The one and only one */
1018 static struct bus_type hv_bus = {
1019 .name = "vmbus",
1020 .match = vmbus_match,
1021 .shutdown = vmbus_shutdown,
1022 .remove = vmbus_remove,
1023 .probe = vmbus_probe,
1024 .uevent = vmbus_uevent,
1025 .dev_groups = vmbus_dev_groups,
1026 .drv_groups = vmbus_drv_groups,
1027 .pm = &vmbus_pm,
1030 struct onmessage_work_context {
1031 struct work_struct work;
1032 struct {
1033 struct hv_message_header header;
1034 u8 payload[];
1035 } msg;
1038 static void vmbus_onmessage_work(struct work_struct *work)
1040 struct onmessage_work_context *ctx;
1042 /* Do not process messages if we're in DISCONNECTED state */
1043 if (vmbus_connection.conn_state == DISCONNECTED)
1044 return;
1046 ctx = container_of(work, struct onmessage_work_context,
1047 work);
1048 vmbus_onmessage((struct vmbus_channel_message_header *)
1049 &ctx->msg.payload);
1050 kfree(ctx);
1053 void vmbus_on_msg_dpc(unsigned long data)
1055 struct hv_per_cpu_context *hv_cpu = (void *)data;
1056 void *page_addr = hv_cpu->synic_message_page;
1057 struct hv_message *msg = (struct hv_message *)page_addr +
1058 VMBUS_MESSAGE_SINT;
1059 struct vmbus_channel_message_header *hdr;
1060 const struct vmbus_channel_message_table_entry *entry;
1061 struct onmessage_work_context *ctx;
1062 u32 message_type = msg->header.message_type;
1065 * 'enum vmbus_channel_message_type' is supposed to always be 'u32' as
1066 * it is being used in 'struct vmbus_channel_message_header' definition
1067 * which is supposed to match hypervisor ABI.
1069 BUILD_BUG_ON(sizeof(enum vmbus_channel_message_type) != sizeof(u32));
1071 if (message_type == HVMSG_NONE)
1072 /* no msg */
1073 return;
1075 hdr = (struct vmbus_channel_message_header *)msg->u.payload;
1077 trace_vmbus_on_msg_dpc(hdr);
1079 if (hdr->msgtype >= CHANNELMSG_COUNT) {
1080 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
1081 goto msg_handled;
1084 if (msg->header.payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT) {
1085 WARN_ONCE(1, "payload size is too large (%d)\n",
1086 msg->header.payload_size);
1087 goto msg_handled;
1090 entry = &channel_message_table[hdr->msgtype];
1092 if (!entry->message_handler)
1093 goto msg_handled;
1095 if (msg->header.payload_size < entry->min_payload_len) {
1096 WARN_ONCE(1, "message too short: msgtype=%d len=%d\n",
1097 hdr->msgtype, msg->header.payload_size);
1098 goto msg_handled;
1101 if (entry->handler_type == VMHT_BLOCKING) {
1102 ctx = kmalloc(sizeof(*ctx) + msg->header.payload_size,
1103 GFP_ATOMIC);
1104 if (ctx == NULL)
1105 return;
1107 INIT_WORK(&ctx->work, vmbus_onmessage_work);
1108 memcpy(&ctx->msg, msg, sizeof(msg->header) +
1109 msg->header.payload_size);
1112 * The host can generate a rescind message while we
1113 * may still be handling the original offer. We deal with
1114 * this condition by relying on the synchronization provided
1115 * by offer_in_progress and by channel_mutex. See also the
1116 * inline comments in vmbus_onoffer_rescind().
1118 switch (hdr->msgtype) {
1119 case CHANNELMSG_RESCIND_CHANNELOFFER:
1121 * If we are handling the rescind message;
1122 * schedule the work on the global work queue.
1124 * The OFFER message and the RESCIND message should
1125 * not be handled by the same serialized work queue,
1126 * because the OFFER handler may call vmbus_open(),
1127 * which tries to open the channel by sending an
1128 * OPEN_CHANNEL message to the host and waits for
1129 * the host's response; however, if the host has
1130 * rescinded the channel before it receives the
1131 * OPEN_CHANNEL message, the host just silently
1132 * ignores the OPEN_CHANNEL message; as a result,
1133 * the guest's OFFER handler hangs for ever, if we
1134 * handle the RESCIND message in the same serialized
1135 * work queue: the RESCIND handler can not start to
1136 * run before the OFFER handler finishes.
1138 schedule_work(&ctx->work);
1139 break;
1141 case CHANNELMSG_OFFERCHANNEL:
1143 * The host sends the offer message of a given channel
1144 * before sending the rescind message of the same
1145 * channel. These messages are sent to the guest's
1146 * connect CPU; the guest then starts processing them
1147 * in the tasklet handler on this CPU:
1149 * VMBUS_CONNECT_CPU
1151 * [vmbus_on_msg_dpc()]
1152 * atomic_inc() // CHANNELMSG_OFFERCHANNEL
1153 * queue_work()
1154 * ...
1155 * [vmbus_on_msg_dpc()]
1156 * schedule_work() // CHANNELMSG_RESCIND_CHANNELOFFER
1158 * We rely on the memory-ordering properties of the
1159 * queue_work() and schedule_work() primitives, which
1160 * guarantee that the atomic increment will be visible
1161 * to the CPUs which will execute the offer & rescind
1162 * works by the time these works will start execution.
1164 atomic_inc(&vmbus_connection.offer_in_progress);
1165 fallthrough;
1167 default:
1168 queue_work(vmbus_connection.work_queue, &ctx->work);
1170 } else
1171 entry->message_handler(hdr);
1173 msg_handled:
1174 vmbus_signal_eom(msg, message_type);
1177 #ifdef CONFIG_PM_SLEEP
1179 * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for
1180 * hibernation, because hv_sock connections can not persist across hibernation.
1182 static void vmbus_force_channel_rescinded(struct vmbus_channel *channel)
1184 struct onmessage_work_context *ctx;
1185 struct vmbus_channel_rescind_offer *rescind;
1187 WARN_ON(!is_hvsock_channel(channel));
1190 * Allocation size is small and the allocation should really not fail,
1191 * otherwise the state of the hv_sock connections ends up in limbo.
1193 ctx = kzalloc(sizeof(*ctx) + sizeof(*rescind),
1194 GFP_KERNEL | __GFP_NOFAIL);
1197 * So far, these are not really used by Linux. Just set them to the
1198 * reasonable values conforming to the definitions of the fields.
1200 ctx->msg.header.message_type = 1;
1201 ctx->msg.header.payload_size = sizeof(*rescind);
1203 /* These values are actually used by Linux. */
1204 rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.payload;
1205 rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER;
1206 rescind->child_relid = channel->offermsg.child_relid;
1208 INIT_WORK(&ctx->work, vmbus_onmessage_work);
1210 queue_work(vmbus_connection.work_queue, &ctx->work);
1212 #endif /* CONFIG_PM_SLEEP */
1215 * Schedule all channels with events pending
1217 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
1219 unsigned long *recv_int_page;
1220 u32 maxbits, relid;
1222 if (vmbus_proto_version < VERSION_WIN8) {
1223 maxbits = MAX_NUM_CHANNELS_SUPPORTED;
1224 recv_int_page = vmbus_connection.recv_int_page;
1225 } else {
1227 * When the host is win8 and beyond, the event page
1228 * can be directly checked to get the id of the channel
1229 * that has the interrupt pending.
1231 void *page_addr = hv_cpu->synic_event_page;
1232 union hv_synic_event_flags *event
1233 = (union hv_synic_event_flags *)page_addr +
1234 VMBUS_MESSAGE_SINT;
1236 maxbits = HV_EVENT_FLAGS_COUNT;
1237 recv_int_page = event->flags;
1240 if (unlikely(!recv_int_page))
1241 return;
1243 for_each_set_bit(relid, recv_int_page, maxbits) {
1244 void (*callback_fn)(void *context);
1245 struct vmbus_channel *channel;
1247 if (!sync_test_and_clear_bit(relid, recv_int_page))
1248 continue;
1250 /* Special case - vmbus channel protocol msg */
1251 if (relid == 0)
1252 continue;
1255 * Pairs with the kfree_rcu() in vmbus_chan_release().
1256 * Guarantees that the channel data structure doesn't
1257 * get freed while the channel pointer below is being
1258 * dereferenced.
1260 rcu_read_lock();
1262 /* Find channel based on relid */
1263 channel = relid2channel(relid);
1264 if (channel == NULL)
1265 goto sched_unlock_rcu;
1267 if (channel->rescind)
1268 goto sched_unlock_rcu;
1271 * Make sure that the ring buffer data structure doesn't get
1272 * freed while we dereference the ring buffer pointer. Test
1273 * for the channel's onchannel_callback being NULL within a
1274 * sched_lock critical section. See also the inline comments
1275 * in vmbus_reset_channel_cb().
1277 spin_lock(&channel->sched_lock);
1279 callback_fn = channel->onchannel_callback;
1280 if (unlikely(callback_fn == NULL))
1281 goto sched_unlock;
1283 trace_vmbus_chan_sched(channel);
1285 ++channel->interrupts;
1287 switch (channel->callback_mode) {
1288 case HV_CALL_ISR:
1289 (*callback_fn)(channel->channel_callback_context);
1290 break;
1292 case HV_CALL_BATCHED:
1293 hv_begin_read(&channel->inbound);
1294 fallthrough;
1295 case HV_CALL_DIRECT:
1296 tasklet_schedule(&channel->callback_event);
1299 sched_unlock:
1300 spin_unlock(&channel->sched_lock);
1301 sched_unlock_rcu:
1302 rcu_read_unlock();
1306 static void vmbus_isr(void)
1308 struct hv_per_cpu_context *hv_cpu
1309 = this_cpu_ptr(hv_context.cpu_context);
1310 void *page_addr = hv_cpu->synic_event_page;
1311 struct hv_message *msg;
1312 union hv_synic_event_flags *event;
1313 bool handled = false;
1315 if (unlikely(page_addr == NULL))
1316 return;
1318 event = (union hv_synic_event_flags *)page_addr +
1319 VMBUS_MESSAGE_SINT;
1321 * Check for events before checking for messages. This is the order
1322 * in which events and messages are checked in Windows guests on
1323 * Hyper-V, and the Windows team suggested we do the same.
1326 if ((vmbus_proto_version == VERSION_WS2008) ||
1327 (vmbus_proto_version == VERSION_WIN7)) {
1329 /* Since we are a child, we only need to check bit 0 */
1330 if (sync_test_and_clear_bit(0, event->flags))
1331 handled = true;
1332 } else {
1334 * Our host is win8 or above. The signaling mechanism
1335 * has changed and we can directly look at the event page.
1336 * If bit n is set then we have an interrup on the channel
1337 * whose id is n.
1339 handled = true;
1342 if (handled)
1343 vmbus_chan_sched(hv_cpu);
1345 page_addr = hv_cpu->synic_message_page;
1346 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1348 /* Check if there are actual msgs to be processed */
1349 if (msg->header.message_type != HVMSG_NONE) {
1350 if (msg->header.message_type == HVMSG_TIMER_EXPIRED) {
1351 hv_stimer0_isr();
1352 vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
1353 } else
1354 tasklet_schedule(&hv_cpu->msg_dpc);
1357 add_interrupt_randomness(hv_get_vector(), 0);
1361 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
1362 * buffer and call into Hyper-V to transfer the data.
1364 static void hv_kmsg_dump(struct kmsg_dumper *dumper,
1365 enum kmsg_dump_reason reason)
1367 size_t bytes_written;
1368 phys_addr_t panic_pa;
1370 /* We are only interested in panics. */
1371 if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
1372 return;
1374 panic_pa = virt_to_phys(hv_panic_page);
1377 * Write dump contents to the page. No need to synchronize; panic should
1378 * be single-threaded.
1380 kmsg_dump_get_buffer(dumper, false, hv_panic_page, HV_HYP_PAGE_SIZE,
1381 &bytes_written);
1382 if (bytes_written)
1383 hyperv_report_panic_msg(panic_pa, bytes_written);
1386 static struct kmsg_dumper hv_kmsg_dumper = {
1387 .dump = hv_kmsg_dump,
1390 static void hv_kmsg_dump_register(void)
1392 int ret;
1394 hv_panic_page = hv_alloc_hyperv_zeroed_page();
1395 if (!hv_panic_page) {
1396 pr_err("Hyper-V: panic message page memory allocation failed\n");
1397 return;
1400 ret = kmsg_dump_register(&hv_kmsg_dumper);
1401 if (ret) {
1402 pr_err("Hyper-V: kmsg dump register error 0x%x\n", ret);
1403 hv_free_hyperv_page((unsigned long)hv_panic_page);
1404 hv_panic_page = NULL;
1408 static struct ctl_table_header *hv_ctl_table_hdr;
1411 * sysctl option to allow the user to control whether kmsg data should be
1412 * reported to Hyper-V on panic.
1414 static struct ctl_table hv_ctl_table[] = {
1416 .procname = "hyperv_record_panic_msg",
1417 .data = &sysctl_record_panic_msg,
1418 .maxlen = sizeof(int),
1419 .mode = 0644,
1420 .proc_handler = proc_dointvec_minmax,
1421 .extra1 = SYSCTL_ZERO,
1422 .extra2 = SYSCTL_ONE
1427 static struct ctl_table hv_root_table[] = {
1429 .procname = "kernel",
1430 .mode = 0555,
1431 .child = hv_ctl_table
1437 * vmbus_bus_init -Main vmbus driver initialization routine.
1439 * Here, we
1440 * - initialize the vmbus driver context
1441 * - invoke the vmbus hv main init routine
1442 * - retrieve the channel offers
1444 static int vmbus_bus_init(void)
1446 int ret;
1448 ret = hv_init();
1449 if (ret != 0) {
1450 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1451 return ret;
1454 ret = bus_register(&hv_bus);
1455 if (ret)
1456 return ret;
1458 ret = hv_setup_vmbus_irq(vmbus_irq, vmbus_isr);
1459 if (ret)
1460 goto err_setup;
1462 ret = hv_synic_alloc();
1463 if (ret)
1464 goto err_alloc;
1467 * Initialize the per-cpu interrupt state and stimer state.
1468 * Then connect to the host.
1470 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1471 hv_synic_init, hv_synic_cleanup);
1472 if (ret < 0)
1473 goto err_cpuhp;
1474 hyperv_cpuhp_online = ret;
1476 ret = vmbus_connect();
1477 if (ret)
1478 goto err_connect;
1481 * Only register if the crash MSRs are available
1483 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1484 u64 hyperv_crash_ctl;
1486 * Sysctl registration is not fatal, since by default
1487 * reporting is enabled.
1489 hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
1490 if (!hv_ctl_table_hdr)
1491 pr_err("Hyper-V: sysctl table register error");
1494 * Register for panic kmsg callback only if the right
1495 * capability is supported by the hypervisor.
1497 hv_get_crash_ctl(hyperv_crash_ctl);
1498 if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG)
1499 hv_kmsg_dump_register();
1501 register_die_notifier(&hyperv_die_block);
1505 * Always register the panic notifier because we need to unload
1506 * the VMbus channel connection to prevent any VMbus
1507 * activity after the VM panics.
1509 atomic_notifier_chain_register(&panic_notifier_list,
1510 &hyperv_panic_block);
1512 vmbus_request_offers();
1514 return 0;
1516 err_connect:
1517 cpuhp_remove_state(hyperv_cpuhp_online);
1518 err_cpuhp:
1519 hv_synic_free();
1520 err_alloc:
1521 hv_remove_vmbus_irq();
1522 err_setup:
1523 bus_unregister(&hv_bus);
1524 unregister_sysctl_table(hv_ctl_table_hdr);
1525 hv_ctl_table_hdr = NULL;
1526 return ret;
1530 * __vmbus_child_driver_register() - Register a vmbus's driver
1531 * @hv_driver: Pointer to driver structure you want to register
1532 * @owner: owner module of the drv
1533 * @mod_name: module name string
1535 * Registers the given driver with Linux through the 'driver_register()' call
1536 * and sets up the hyper-v vmbus handling for this driver.
1537 * It will return the state of the 'driver_register()' call.
1540 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1542 int ret;
1544 pr_info("registering driver %s\n", hv_driver->name);
1546 ret = vmbus_exists();
1547 if (ret < 0)
1548 return ret;
1550 hv_driver->driver.name = hv_driver->name;
1551 hv_driver->driver.owner = owner;
1552 hv_driver->driver.mod_name = mod_name;
1553 hv_driver->driver.bus = &hv_bus;
1555 spin_lock_init(&hv_driver->dynids.lock);
1556 INIT_LIST_HEAD(&hv_driver->dynids.list);
1558 ret = driver_register(&hv_driver->driver);
1560 return ret;
1562 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1565 * vmbus_driver_unregister() - Unregister a vmbus's driver
1566 * @hv_driver: Pointer to driver structure you want to
1567 * un-register
1569 * Un-register the given driver that was previous registered with a call to
1570 * vmbus_driver_register()
1572 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1574 pr_info("unregistering driver %s\n", hv_driver->name);
1576 if (!vmbus_exists()) {
1577 driver_unregister(&hv_driver->driver);
1578 vmbus_free_dynids(hv_driver);
1581 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1585 * Called when last reference to channel is gone.
1587 static void vmbus_chan_release(struct kobject *kobj)
1589 struct vmbus_channel *channel
1590 = container_of(kobj, struct vmbus_channel, kobj);
1592 kfree_rcu(channel, rcu);
1595 struct vmbus_chan_attribute {
1596 struct attribute attr;
1597 ssize_t (*show)(struct vmbus_channel *chan, char *buf);
1598 ssize_t (*store)(struct vmbus_channel *chan,
1599 const char *buf, size_t count);
1601 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1602 struct vmbus_chan_attribute chan_attr_##_name \
1603 = __ATTR(_name, _mode, _show, _store)
1604 #define VMBUS_CHAN_ATTR_RW(_name) \
1605 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1606 #define VMBUS_CHAN_ATTR_RO(_name) \
1607 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1608 #define VMBUS_CHAN_ATTR_WO(_name) \
1609 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1611 static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1612 struct attribute *attr, char *buf)
1614 const struct vmbus_chan_attribute *attribute
1615 = container_of(attr, struct vmbus_chan_attribute, attr);
1616 struct vmbus_channel *chan
1617 = container_of(kobj, struct vmbus_channel, kobj);
1619 if (!attribute->show)
1620 return -EIO;
1622 return attribute->show(chan, buf);
1625 static ssize_t vmbus_chan_attr_store(struct kobject *kobj,
1626 struct attribute *attr, const char *buf,
1627 size_t count)
1629 const struct vmbus_chan_attribute *attribute
1630 = container_of(attr, struct vmbus_chan_attribute, attr);
1631 struct vmbus_channel *chan
1632 = container_of(kobj, struct vmbus_channel, kobj);
1634 if (!attribute->store)
1635 return -EIO;
1637 return attribute->store(chan, buf, count);
1640 static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1641 .show = vmbus_chan_attr_show,
1642 .store = vmbus_chan_attr_store,
1645 static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf)
1647 struct hv_ring_buffer_info *rbi = &channel->outbound;
1648 ssize_t ret;
1650 mutex_lock(&rbi->ring_buffer_mutex);
1651 if (!rbi->ring_buffer) {
1652 mutex_unlock(&rbi->ring_buffer_mutex);
1653 return -EINVAL;
1656 ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1657 mutex_unlock(&rbi->ring_buffer_mutex);
1658 return ret;
1660 static VMBUS_CHAN_ATTR_RO(out_mask);
1662 static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf)
1664 struct hv_ring_buffer_info *rbi = &channel->inbound;
1665 ssize_t ret;
1667 mutex_lock(&rbi->ring_buffer_mutex);
1668 if (!rbi->ring_buffer) {
1669 mutex_unlock(&rbi->ring_buffer_mutex);
1670 return -EINVAL;
1673 ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1674 mutex_unlock(&rbi->ring_buffer_mutex);
1675 return ret;
1677 static VMBUS_CHAN_ATTR_RO(in_mask);
1679 static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf)
1681 struct hv_ring_buffer_info *rbi = &channel->inbound;
1682 ssize_t ret;
1684 mutex_lock(&rbi->ring_buffer_mutex);
1685 if (!rbi->ring_buffer) {
1686 mutex_unlock(&rbi->ring_buffer_mutex);
1687 return -EINVAL;
1690 ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1691 mutex_unlock(&rbi->ring_buffer_mutex);
1692 return ret;
1694 static VMBUS_CHAN_ATTR_RO(read_avail);
1696 static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf)
1698 struct hv_ring_buffer_info *rbi = &channel->outbound;
1699 ssize_t ret;
1701 mutex_lock(&rbi->ring_buffer_mutex);
1702 if (!rbi->ring_buffer) {
1703 mutex_unlock(&rbi->ring_buffer_mutex);
1704 return -EINVAL;
1707 ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1708 mutex_unlock(&rbi->ring_buffer_mutex);
1709 return ret;
1711 static VMBUS_CHAN_ATTR_RO(write_avail);
1713 static ssize_t target_cpu_show(struct vmbus_channel *channel, char *buf)
1715 return sprintf(buf, "%u\n", channel->target_cpu);
1717 static ssize_t target_cpu_store(struct vmbus_channel *channel,
1718 const char *buf, size_t count)
1720 u32 target_cpu, origin_cpu;
1721 ssize_t ret = count;
1723 if (vmbus_proto_version < VERSION_WIN10_V4_1)
1724 return -EIO;
1726 if (sscanf(buf, "%uu", &target_cpu) != 1)
1727 return -EIO;
1729 /* Validate target_cpu for the cpumask_test_cpu() operation below. */
1730 if (target_cpu >= nr_cpumask_bits)
1731 return -EINVAL;
1733 /* No CPUs should come up or down during this. */
1734 cpus_read_lock();
1736 if (!cpu_online(target_cpu)) {
1737 cpus_read_unlock();
1738 return -EINVAL;
1742 * Synchronizes target_cpu_store() and channel closure:
1744 * { Initially: state = CHANNEL_OPENED }
1746 * CPU1 CPU2
1748 * [target_cpu_store()] [vmbus_disconnect_ring()]
1750 * LOCK channel_mutex LOCK channel_mutex
1751 * LOAD r1 = state LOAD r2 = state
1752 * IF (r1 == CHANNEL_OPENED) IF (r2 == CHANNEL_OPENED)
1753 * SEND MODIFYCHANNEL STORE state = CHANNEL_OPEN
1754 * [...] SEND CLOSECHANNEL
1755 * UNLOCK channel_mutex UNLOCK channel_mutex
1757 * Forbids: r1 == r2 == CHANNEL_OPENED (i.e., CPU1's LOCK precedes
1758 * CPU2's LOCK) && CPU2's SEND precedes CPU1's SEND
1760 * Note. The host processes the channel messages "sequentially", in
1761 * the order in which they are received on a per-partition basis.
1763 mutex_lock(&vmbus_connection.channel_mutex);
1766 * Hyper-V will ignore MODIFYCHANNEL messages for "non-open" channels;
1767 * avoid sending the message and fail here for such channels.
1769 if (channel->state != CHANNEL_OPENED_STATE) {
1770 ret = -EIO;
1771 goto cpu_store_unlock;
1774 origin_cpu = channel->target_cpu;
1775 if (target_cpu == origin_cpu)
1776 goto cpu_store_unlock;
1778 if (vmbus_send_modifychannel(channel->offermsg.child_relid,
1779 hv_cpu_number_to_vp_number(target_cpu))) {
1780 ret = -EIO;
1781 goto cpu_store_unlock;
1785 * Warning. At this point, there is *no* guarantee that the host will
1786 * have successfully processed the vmbus_send_modifychannel() request.
1787 * See the header comment of vmbus_send_modifychannel() for more info.
1789 * Lags in the processing of the above vmbus_send_modifychannel() can
1790 * result in missed interrupts if the "old" target CPU is taken offline
1791 * before Hyper-V starts sending interrupts to the "new" target CPU.
1792 * But apart from this offlining scenario, the code tolerates such
1793 * lags. It will function correctly even if a channel interrupt comes
1794 * in on a CPU that is different from the channel target_cpu value.
1797 channel->target_cpu = target_cpu;
1799 /* See init_vp_index(). */
1800 if (hv_is_perf_channel(channel))
1801 hv_update_alloced_cpus(origin_cpu, target_cpu);
1803 /* Currently set only for storvsc channels. */
1804 if (channel->change_target_cpu_callback) {
1805 (*channel->change_target_cpu_callback)(channel,
1806 origin_cpu, target_cpu);
1809 cpu_store_unlock:
1810 mutex_unlock(&vmbus_connection.channel_mutex);
1811 cpus_read_unlock();
1812 return ret;
1814 static VMBUS_CHAN_ATTR(cpu, 0644, target_cpu_show, target_cpu_store);
1816 static ssize_t channel_pending_show(struct vmbus_channel *channel,
1817 char *buf)
1819 return sprintf(buf, "%d\n",
1820 channel_pending(channel,
1821 vmbus_connection.monitor_pages[1]));
1823 static VMBUS_CHAN_ATTR(pending, 0444, channel_pending_show, NULL);
1825 static ssize_t channel_latency_show(struct vmbus_channel *channel,
1826 char *buf)
1828 return sprintf(buf, "%d\n",
1829 channel_latency(channel,
1830 vmbus_connection.monitor_pages[1]));
1832 static VMBUS_CHAN_ATTR(latency, 0444, channel_latency_show, NULL);
1834 static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf)
1836 return sprintf(buf, "%llu\n", channel->interrupts);
1838 static VMBUS_CHAN_ATTR(interrupts, 0444, channel_interrupts_show, NULL);
1840 static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf)
1842 return sprintf(buf, "%llu\n", channel->sig_events);
1844 static VMBUS_CHAN_ATTR(events, 0444, channel_events_show, NULL);
1846 static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel,
1847 char *buf)
1849 return sprintf(buf, "%llu\n",
1850 (unsigned long long)channel->intr_in_full);
1852 static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL);
1854 static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel,
1855 char *buf)
1857 return sprintf(buf, "%llu\n",
1858 (unsigned long long)channel->intr_out_empty);
1860 static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL);
1862 static ssize_t channel_out_full_first_show(struct vmbus_channel *channel,
1863 char *buf)
1865 return sprintf(buf, "%llu\n",
1866 (unsigned long long)channel->out_full_first);
1868 static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL);
1870 static ssize_t channel_out_full_total_show(struct vmbus_channel *channel,
1871 char *buf)
1873 return sprintf(buf, "%llu\n",
1874 (unsigned long long)channel->out_full_total);
1876 static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL);
1878 static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel,
1879 char *buf)
1881 return sprintf(buf, "%u\n", channel->offermsg.monitorid);
1883 static VMBUS_CHAN_ATTR(monitor_id, 0444, subchannel_monitor_id_show, NULL);
1885 static ssize_t subchannel_id_show(struct vmbus_channel *channel,
1886 char *buf)
1888 return sprintf(buf, "%u\n",
1889 channel->offermsg.offer.sub_channel_index);
1891 static VMBUS_CHAN_ATTR_RO(subchannel_id);
1893 static struct attribute *vmbus_chan_attrs[] = {
1894 &chan_attr_out_mask.attr,
1895 &chan_attr_in_mask.attr,
1896 &chan_attr_read_avail.attr,
1897 &chan_attr_write_avail.attr,
1898 &chan_attr_cpu.attr,
1899 &chan_attr_pending.attr,
1900 &chan_attr_latency.attr,
1901 &chan_attr_interrupts.attr,
1902 &chan_attr_events.attr,
1903 &chan_attr_intr_in_full.attr,
1904 &chan_attr_intr_out_empty.attr,
1905 &chan_attr_out_full_first.attr,
1906 &chan_attr_out_full_total.attr,
1907 &chan_attr_monitor_id.attr,
1908 &chan_attr_subchannel_id.attr,
1909 NULL
1913 * Channel-level attribute_group callback function. Returns the permission for
1914 * each attribute, and returns 0 if an attribute is not visible.
1916 static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj,
1917 struct attribute *attr, int idx)
1919 const struct vmbus_channel *channel =
1920 container_of(kobj, struct vmbus_channel, kobj);
1922 /* Hide the monitor attributes if the monitor mechanism is not used. */
1923 if (!channel->offermsg.monitor_allocated &&
1924 (attr == &chan_attr_pending.attr ||
1925 attr == &chan_attr_latency.attr ||
1926 attr == &chan_attr_monitor_id.attr))
1927 return 0;
1929 return attr->mode;
1932 static struct attribute_group vmbus_chan_group = {
1933 .attrs = vmbus_chan_attrs,
1934 .is_visible = vmbus_chan_attr_is_visible
1937 static struct kobj_type vmbus_chan_ktype = {
1938 .sysfs_ops = &vmbus_chan_sysfs_ops,
1939 .release = vmbus_chan_release,
1943 * vmbus_add_channel_kobj - setup a sub-directory under device/channels
1945 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
1947 const struct device *device = &dev->device;
1948 struct kobject *kobj = &channel->kobj;
1949 u32 relid = channel->offermsg.child_relid;
1950 int ret;
1952 kobj->kset = dev->channels_kset;
1953 ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
1954 "%u", relid);
1955 if (ret)
1956 return ret;
1958 ret = sysfs_create_group(kobj, &vmbus_chan_group);
1960 if (ret) {
1962 * The calling functions' error handling paths will cleanup the
1963 * empty channel directory.
1965 dev_err(device, "Unable to set up channel sysfs files\n");
1966 return ret;
1969 kobject_uevent(kobj, KOBJ_ADD);
1971 return 0;
1975 * vmbus_remove_channel_attr_group - remove the channel's attribute group
1977 void vmbus_remove_channel_attr_group(struct vmbus_channel *channel)
1979 sysfs_remove_group(&channel->kobj, &vmbus_chan_group);
1983 * vmbus_device_create - Creates and registers a new child device
1984 * on the vmbus.
1986 struct hv_device *vmbus_device_create(const guid_t *type,
1987 const guid_t *instance,
1988 struct vmbus_channel *channel)
1990 struct hv_device *child_device_obj;
1992 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1993 if (!child_device_obj) {
1994 pr_err("Unable to allocate device object for child device\n");
1995 return NULL;
1998 child_device_obj->channel = channel;
1999 guid_copy(&child_device_obj->dev_type, type);
2000 guid_copy(&child_device_obj->dev_instance, instance);
2001 child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
2003 return child_device_obj;
2007 * vmbus_device_register - Register the child device
2009 int vmbus_device_register(struct hv_device *child_device_obj)
2011 struct kobject *kobj = &child_device_obj->device.kobj;
2012 int ret;
2014 dev_set_name(&child_device_obj->device, "%pUl",
2015 &child_device_obj->channel->offermsg.offer.if_instance);
2017 child_device_obj->device.bus = &hv_bus;
2018 child_device_obj->device.parent = &hv_acpi_dev->dev;
2019 child_device_obj->device.release = vmbus_device_release;
2022 * Register with the LDM. This will kick off the driver/device
2023 * binding...which will eventually call vmbus_match() and vmbus_probe()
2025 ret = device_register(&child_device_obj->device);
2026 if (ret) {
2027 pr_err("Unable to register child device\n");
2028 return ret;
2031 child_device_obj->channels_kset = kset_create_and_add("channels",
2032 NULL, kobj);
2033 if (!child_device_obj->channels_kset) {
2034 ret = -ENOMEM;
2035 goto err_dev_unregister;
2038 ret = vmbus_add_channel_kobj(child_device_obj,
2039 child_device_obj->channel);
2040 if (ret) {
2041 pr_err("Unable to register primary channeln");
2042 goto err_kset_unregister;
2044 hv_debug_add_dev_dir(child_device_obj);
2046 return 0;
2048 err_kset_unregister:
2049 kset_unregister(child_device_obj->channels_kset);
2051 err_dev_unregister:
2052 device_unregister(&child_device_obj->device);
2053 return ret;
2057 * vmbus_device_unregister - Remove the specified child device
2058 * from the vmbus.
2060 void vmbus_device_unregister(struct hv_device *device_obj)
2062 pr_debug("child device %s unregistered\n",
2063 dev_name(&device_obj->device));
2065 kset_unregister(device_obj->channels_kset);
2068 * Kick off the process of unregistering the device.
2069 * This will call vmbus_remove() and eventually vmbus_device_release()
2071 device_unregister(&device_obj->device);
2076 * VMBUS is an acpi enumerated device. Get the information we
2077 * need from DSDT.
2079 #define VTPM_BASE_ADDRESS 0xfed40000
2080 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
2082 resource_size_t start = 0;
2083 resource_size_t end = 0;
2084 struct resource *new_res;
2085 struct resource **old_res = &hyperv_mmio;
2086 struct resource **prev_res = NULL;
2087 struct resource r;
2089 switch (res->type) {
2092 * "Address" descriptors are for bus windows. Ignore
2093 * "memory" descriptors, which are for registers on
2094 * devices.
2096 case ACPI_RESOURCE_TYPE_ADDRESS32:
2097 start = res->data.address32.address.minimum;
2098 end = res->data.address32.address.maximum;
2099 break;
2101 case ACPI_RESOURCE_TYPE_ADDRESS64:
2102 start = res->data.address64.address.minimum;
2103 end = res->data.address64.address.maximum;
2104 break;
2107 * The IRQ information is needed only on ARM64, which Hyper-V
2108 * sets up in the extended format. IRQ information is present
2109 * on x86/x64 in the non-extended format but it is not used by
2110 * Linux. So don't bother checking for the non-extended format.
2112 case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
2113 if (!acpi_dev_resource_interrupt(res, 0, &r)) {
2114 pr_err("Unable to parse Hyper-V ACPI interrupt\n");
2115 return AE_ERROR;
2117 /* ARM64 INTID for VMbus */
2118 vmbus_interrupt = res->data.extended_irq.interrupts[0];
2119 /* Linux IRQ number */
2120 vmbus_irq = r.start;
2121 return AE_OK;
2123 default:
2124 /* Unused resource type */
2125 return AE_OK;
2129 * Ignore ranges that are below 1MB, as they're not
2130 * necessary or useful here.
2132 if (end < 0x100000)
2133 return AE_OK;
2135 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
2136 if (!new_res)
2137 return AE_NO_MEMORY;
2139 /* If this range overlaps the virtual TPM, truncate it. */
2140 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
2141 end = VTPM_BASE_ADDRESS;
2143 new_res->name = "hyperv mmio";
2144 new_res->flags = IORESOURCE_MEM;
2145 new_res->start = start;
2146 new_res->end = end;
2149 * If two ranges are adjacent, merge them.
2151 do {
2152 if (!*old_res) {
2153 *old_res = new_res;
2154 break;
2157 if (((*old_res)->end + 1) == new_res->start) {
2158 (*old_res)->end = new_res->end;
2159 kfree(new_res);
2160 break;
2163 if ((*old_res)->start == new_res->end + 1) {
2164 (*old_res)->start = new_res->start;
2165 kfree(new_res);
2166 break;
2169 if ((*old_res)->start > new_res->end) {
2170 new_res->sibling = *old_res;
2171 if (prev_res)
2172 (*prev_res)->sibling = new_res;
2173 *old_res = new_res;
2174 break;
2177 prev_res = old_res;
2178 old_res = &(*old_res)->sibling;
2180 } while (1);
2182 return AE_OK;
2185 static int vmbus_acpi_remove(struct acpi_device *device)
2187 struct resource *cur_res;
2188 struct resource *next_res;
2190 if (hyperv_mmio) {
2191 if (fb_mmio) {
2192 __release_region(hyperv_mmio, fb_mmio->start,
2193 resource_size(fb_mmio));
2194 fb_mmio = NULL;
2197 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
2198 next_res = cur_res->sibling;
2199 kfree(cur_res);
2203 return 0;
2206 static void vmbus_reserve_fb(void)
2208 int size;
2210 * Make a claim for the frame buffer in the resource tree under the
2211 * first node, which will be the one below 4GB. The length seems to
2212 * be underreported, particularly in a Generation 1 VM. So start out
2213 * reserving a larger area and make it smaller until it succeeds.
2216 if (screen_info.lfb_base) {
2217 if (efi_enabled(EFI_BOOT))
2218 size = max_t(__u32, screen_info.lfb_size, 0x800000);
2219 else
2220 size = max_t(__u32, screen_info.lfb_size, 0x4000000);
2222 for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
2223 fb_mmio = __request_region(hyperv_mmio,
2224 screen_info.lfb_base, size,
2225 fb_mmio_name, 0);
2231 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
2232 * @new: If successful, supplied a pointer to the
2233 * allocated MMIO space.
2234 * @device_obj: Identifies the caller
2235 * @min: Minimum guest physical address of the
2236 * allocation
2237 * @max: Maximum guest physical address
2238 * @size: Size of the range to be allocated
2239 * @align: Alignment of the range to be allocated
2240 * @fb_overlap_ok: Whether this allocation can be allowed
2241 * to overlap the video frame buffer.
2243 * This function walks the resources granted to VMBus by the
2244 * _CRS object in the ACPI namespace underneath the parent
2245 * "bridge" whether that's a root PCI bus in the Generation 1
2246 * case or a Module Device in the Generation 2 case. It then
2247 * attempts to allocate from the global MMIO pool in a way that
2248 * matches the constraints supplied in these parameters and by
2249 * that _CRS.
2251 * Return: 0 on success, -errno on failure
2253 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
2254 resource_size_t min, resource_size_t max,
2255 resource_size_t size, resource_size_t align,
2256 bool fb_overlap_ok)
2258 struct resource *iter, *shadow;
2259 resource_size_t range_min, range_max, start;
2260 const char *dev_n = dev_name(&device_obj->device);
2261 int retval;
2263 retval = -ENXIO;
2264 mutex_lock(&hyperv_mmio_lock);
2267 * If overlaps with frame buffers are allowed, then first attempt to
2268 * make the allocation from within the reserved region. Because it
2269 * is already reserved, no shadow allocation is necessary.
2271 if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
2272 !(max < fb_mmio->start)) {
2274 range_min = fb_mmio->start;
2275 range_max = fb_mmio->end;
2276 start = (range_min + align - 1) & ~(align - 1);
2277 for (; start + size - 1 <= range_max; start += align) {
2278 *new = request_mem_region_exclusive(start, size, dev_n);
2279 if (*new) {
2280 retval = 0;
2281 goto exit;
2286 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2287 if ((iter->start >= max) || (iter->end <= min))
2288 continue;
2290 range_min = iter->start;
2291 range_max = iter->end;
2292 start = (range_min + align - 1) & ~(align - 1);
2293 for (; start + size - 1 <= range_max; start += align) {
2294 shadow = __request_region(iter, start, size, NULL,
2295 IORESOURCE_BUSY);
2296 if (!shadow)
2297 continue;
2299 *new = request_mem_region_exclusive(start, size, dev_n);
2300 if (*new) {
2301 shadow->name = (char *)*new;
2302 retval = 0;
2303 goto exit;
2306 __release_region(iter, start, size);
2310 exit:
2311 mutex_unlock(&hyperv_mmio_lock);
2312 return retval;
2314 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
2317 * vmbus_free_mmio() - Free a memory-mapped I/O range.
2318 * @start: Base address of region to release.
2319 * @size: Size of the range to be allocated
2321 * This function releases anything requested by
2322 * vmbus_mmio_allocate().
2324 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
2326 struct resource *iter;
2328 mutex_lock(&hyperv_mmio_lock);
2329 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2330 if ((iter->start >= start + size) || (iter->end <= start))
2331 continue;
2333 __release_region(iter, start, size);
2335 release_mem_region(start, size);
2336 mutex_unlock(&hyperv_mmio_lock);
2339 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
2341 static int vmbus_acpi_add(struct acpi_device *device)
2343 acpi_status result;
2344 int ret_val = -ENODEV;
2345 struct acpi_device *ancestor;
2347 hv_acpi_dev = device;
2349 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
2350 vmbus_walk_resources, NULL);
2352 if (ACPI_FAILURE(result))
2353 goto acpi_walk_err;
2355 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
2356 * firmware) is the VMOD that has the mmio ranges. Get that.
2358 for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
2359 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
2360 vmbus_walk_resources, NULL);
2362 if (ACPI_FAILURE(result))
2363 continue;
2364 if (hyperv_mmio) {
2365 vmbus_reserve_fb();
2366 break;
2369 ret_val = 0;
2371 acpi_walk_err:
2372 complete(&probe_event);
2373 if (ret_val)
2374 vmbus_acpi_remove(device);
2375 return ret_val;
2378 #ifdef CONFIG_PM_SLEEP
2379 static int vmbus_bus_suspend(struct device *dev)
2381 struct vmbus_channel *channel, *sc;
2383 while (atomic_read(&vmbus_connection.offer_in_progress) != 0) {
2385 * We wait here until the completion of any channel
2386 * offers that are currently in progress.
2388 usleep_range(1000, 2000);
2391 mutex_lock(&vmbus_connection.channel_mutex);
2392 list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2393 if (!is_hvsock_channel(channel))
2394 continue;
2396 vmbus_force_channel_rescinded(channel);
2398 mutex_unlock(&vmbus_connection.channel_mutex);
2401 * Wait until all the sub-channels and hv_sock channels have been
2402 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise
2403 * they would conflict with the new sub-channels that will be created
2404 * in the resume path. hv_sock channels should also be destroyed, but
2405 * a hv_sock channel of an established hv_sock connection can not be
2406 * really destroyed since it may still be referenced by the userspace
2407 * application, so we just force the hv_sock channel to be rescinded
2408 * by vmbus_force_channel_rescinded(), and the userspace application
2409 * will thoroughly destroy the channel after hibernation.
2411 * Note: the counter nr_chan_close_on_suspend may never go above 0 if
2412 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM.
2414 if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0)
2415 wait_for_completion(&vmbus_connection.ready_for_suspend_event);
2417 if (atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) != 0) {
2418 pr_err("Can not suspend due to a previous failed resuming\n");
2419 return -EBUSY;
2422 mutex_lock(&vmbus_connection.channel_mutex);
2424 list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2426 * Remove the channel from the array of channels and invalidate
2427 * the channel's relid. Upon resume, vmbus_onoffer() will fix
2428 * up the relid (and other fields, if necessary) and add the
2429 * channel back to the array.
2431 vmbus_channel_unmap_relid(channel);
2432 channel->offermsg.child_relid = INVALID_RELID;
2434 if (is_hvsock_channel(channel)) {
2435 if (!channel->rescind) {
2436 pr_err("hv_sock channel not rescinded!\n");
2437 WARN_ON_ONCE(1);
2439 continue;
2442 list_for_each_entry(sc, &channel->sc_list, sc_list) {
2443 pr_err("Sub-channel not deleted!\n");
2444 WARN_ON_ONCE(1);
2447 atomic_inc(&vmbus_connection.nr_chan_fixup_on_resume);
2450 mutex_unlock(&vmbus_connection.channel_mutex);
2452 vmbus_initiate_unload(false);
2454 /* Reset the event for the next resume. */
2455 reinit_completion(&vmbus_connection.ready_for_resume_event);
2457 return 0;
2460 static int vmbus_bus_resume(struct device *dev)
2462 struct vmbus_channel_msginfo *msginfo;
2463 size_t msgsize;
2464 int ret;
2467 * We only use the 'vmbus_proto_version', which was in use before
2468 * hibernation, to re-negotiate with the host.
2470 if (!vmbus_proto_version) {
2471 pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version);
2472 return -EINVAL;
2475 msgsize = sizeof(*msginfo) +
2476 sizeof(struct vmbus_channel_initiate_contact);
2478 msginfo = kzalloc(msgsize, GFP_KERNEL);
2480 if (msginfo == NULL)
2481 return -ENOMEM;
2483 ret = vmbus_negotiate_version(msginfo, vmbus_proto_version);
2485 kfree(msginfo);
2487 if (ret != 0)
2488 return ret;
2490 WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) == 0);
2492 vmbus_request_offers();
2494 if (wait_for_completion_timeout(
2495 &vmbus_connection.ready_for_resume_event, 10 * HZ) == 0)
2496 pr_err("Some vmbus device is missing after suspending?\n");
2498 /* Reset the event for the next suspend. */
2499 reinit_completion(&vmbus_connection.ready_for_suspend_event);
2501 return 0;
2503 #else
2504 #define vmbus_bus_suspend NULL
2505 #define vmbus_bus_resume NULL
2506 #endif /* CONFIG_PM_SLEEP */
2508 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
2509 {"VMBUS", 0},
2510 {"VMBus", 0},
2511 {"", 0},
2513 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
2516 * Note: we must use the "no_irq" ops, otherwise hibernation can not work with
2517 * PCI device assignment, because "pci_dev_pm_ops" uses the "noirq" ops: in
2518 * the resume path, the pci "noirq" restore op runs before "non-noirq" op (see
2519 * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() ->
2520 * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's
2521 * resume callback must also run via the "noirq" ops.
2523 * Set suspend_noirq/resume_noirq to NULL for Suspend-to-Idle: see the comment
2524 * earlier in this file before vmbus_pm.
2527 static const struct dev_pm_ops vmbus_bus_pm = {
2528 .suspend_noirq = NULL,
2529 .resume_noirq = NULL,
2530 .freeze_noirq = vmbus_bus_suspend,
2531 .thaw_noirq = vmbus_bus_resume,
2532 .poweroff_noirq = vmbus_bus_suspend,
2533 .restore_noirq = vmbus_bus_resume
2536 static struct acpi_driver vmbus_acpi_driver = {
2537 .name = "vmbus",
2538 .ids = vmbus_acpi_device_ids,
2539 .ops = {
2540 .add = vmbus_acpi_add,
2541 .remove = vmbus_acpi_remove,
2543 .drv.pm = &vmbus_bus_pm,
2546 static void hv_kexec_handler(void)
2548 hv_stimer_global_cleanup();
2549 vmbus_initiate_unload(false);
2550 /* Make sure conn_state is set as hv_synic_cleanup checks for it */
2551 mb();
2552 cpuhp_remove_state(hyperv_cpuhp_online);
2553 hyperv_cleanup();
2556 static void hv_crash_handler(struct pt_regs *regs)
2558 int cpu;
2560 vmbus_initiate_unload(true);
2562 * In crash handler we can't schedule synic cleanup for all CPUs,
2563 * doing the cleanup for current CPU only. This should be sufficient
2564 * for kdump.
2566 cpu = smp_processor_id();
2567 hv_stimer_cleanup(cpu);
2568 hv_synic_disable_regs(cpu);
2569 hyperv_cleanup();
2572 static int hv_synic_suspend(void)
2575 * When we reach here, all the non-boot CPUs have been offlined.
2576 * If we're in a legacy configuration where stimer Direct Mode is
2577 * not enabled, the stimers on the non-boot CPUs have been unbound
2578 * in hv_synic_cleanup() -> hv_stimer_legacy_cleanup() ->
2579 * hv_stimer_cleanup() -> clockevents_unbind_device().
2581 * hv_synic_suspend() only runs on CPU0 with interrupts disabled.
2582 * Here we do not call hv_stimer_legacy_cleanup() on CPU0 because:
2583 * 1) it's unnecessary as interrupts remain disabled between
2584 * syscore_suspend() and syscore_resume(): see create_image() and
2585 * resume_target_kernel()
2586 * 2) the stimer on CPU0 is automatically disabled later by
2587 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ...
2588 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown()
2589 * 3) a warning would be triggered if we call
2590 * clockevents_unbind_device(), which may sleep, in an
2591 * interrupts-disabled context.
2594 hv_synic_disable_regs(0);
2596 return 0;
2599 static void hv_synic_resume(void)
2601 hv_synic_enable_regs(0);
2604 * Note: we don't need to call hv_stimer_init(0), because the timer
2605 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is
2606 * automatically re-enabled in timekeeping_resume().
2610 /* The callbacks run only on CPU0, with irqs_disabled. */
2611 static struct syscore_ops hv_synic_syscore_ops = {
2612 .suspend = hv_synic_suspend,
2613 .resume = hv_synic_resume,
2616 static int __init hv_acpi_init(void)
2618 int ret, t;
2620 if (!hv_is_hyperv_initialized())
2621 return -ENODEV;
2623 init_completion(&probe_event);
2626 * Get ACPI resources first.
2628 ret = acpi_bus_register_driver(&vmbus_acpi_driver);
2630 if (ret)
2631 return ret;
2633 t = wait_for_completion_timeout(&probe_event, 5*HZ);
2634 if (t == 0) {
2635 ret = -ETIMEDOUT;
2636 goto cleanup;
2638 hv_debug_init();
2640 ret = vmbus_bus_init();
2641 if (ret)
2642 goto cleanup;
2644 hv_setup_kexec_handler(hv_kexec_handler);
2645 hv_setup_crash_handler(hv_crash_handler);
2647 register_syscore_ops(&hv_synic_syscore_ops);
2649 return 0;
2651 cleanup:
2652 acpi_bus_unregister_driver(&vmbus_acpi_driver);
2653 hv_acpi_dev = NULL;
2654 return ret;
2657 static void __exit vmbus_exit(void)
2659 int cpu;
2661 unregister_syscore_ops(&hv_synic_syscore_ops);
2663 hv_remove_kexec_handler();
2664 hv_remove_crash_handler();
2665 vmbus_connection.conn_state = DISCONNECTED;
2666 hv_stimer_global_cleanup();
2667 vmbus_disconnect();
2668 hv_remove_vmbus_irq();
2669 for_each_online_cpu(cpu) {
2670 struct hv_per_cpu_context *hv_cpu
2671 = per_cpu_ptr(hv_context.cpu_context, cpu);
2673 tasklet_kill(&hv_cpu->msg_dpc);
2675 hv_debug_rm_all_dir();
2677 vmbus_free_channels();
2678 kfree(vmbus_connection.channels);
2680 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
2681 kmsg_dump_unregister(&hv_kmsg_dumper);
2682 unregister_die_notifier(&hyperv_die_block);
2683 atomic_notifier_chain_unregister(&panic_notifier_list,
2684 &hyperv_panic_block);
2687 free_page((unsigned long)hv_panic_page);
2688 unregister_sysctl_table(hv_ctl_table_hdr);
2689 hv_ctl_table_hdr = NULL;
2690 bus_unregister(&hv_bus);
2692 cpuhp_remove_state(hyperv_cpuhp_online);
2693 hv_synic_free();
2694 acpi_bus_unregister_driver(&vmbus_acpi_driver);
2698 MODULE_LICENSE("GPL");
2699 MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver");
2701 subsys_initcall(hv_acpi_init);
2702 module_exit(vmbus_exit);