1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright 2013-2014 Analog Devices Inc.
6 * Author: Lars-Peter Clausen <lars@metafoo.de>
8 * Documentation for the parts can be found at:
9 * - XADC hardmacro: Xilinx UG480
10 * - ZYNQ XADC interface: Xilinx UG585
11 * - AXI XADC interface: Xilinx PG019
14 #include <linux/clk.h>
15 #include <linux/device.h>
16 #include <linux/err.h>
17 #include <linux/interrupt.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
22 #include <linux/platform_device.h>
23 #include <linux/slab.h>
24 #include <linux/sysfs.h>
26 #include <linux/iio/buffer.h>
27 #include <linux/iio/events.h>
28 #include <linux/iio/iio.h>
29 #include <linux/iio/sysfs.h>
30 #include <linux/iio/trigger.h>
31 #include <linux/iio/trigger_consumer.h>
32 #include <linux/iio/triggered_buffer.h>
34 #include "xilinx-xadc.h"
36 static const unsigned int XADC_ZYNQ_UNMASK_TIMEOUT
= 500;
38 /* ZYNQ register definitions */
39 #define XADC_ZYNQ_REG_CFG 0x00
40 #define XADC_ZYNQ_REG_INTSTS 0x04
41 #define XADC_ZYNQ_REG_INTMSK 0x08
42 #define XADC_ZYNQ_REG_STATUS 0x0c
43 #define XADC_ZYNQ_REG_CFIFO 0x10
44 #define XADC_ZYNQ_REG_DFIFO 0x14
45 #define XADC_ZYNQ_REG_CTL 0x18
47 #define XADC_ZYNQ_CFG_ENABLE BIT(31)
48 #define XADC_ZYNQ_CFG_CFIFOTH_MASK (0xf << 20)
49 #define XADC_ZYNQ_CFG_CFIFOTH_OFFSET 20
50 #define XADC_ZYNQ_CFG_DFIFOTH_MASK (0xf << 16)
51 #define XADC_ZYNQ_CFG_DFIFOTH_OFFSET 16
52 #define XADC_ZYNQ_CFG_WEDGE BIT(13)
53 #define XADC_ZYNQ_CFG_REDGE BIT(12)
54 #define XADC_ZYNQ_CFG_TCKRATE_MASK (0x3 << 8)
55 #define XADC_ZYNQ_CFG_TCKRATE_DIV2 (0x0 << 8)
56 #define XADC_ZYNQ_CFG_TCKRATE_DIV4 (0x1 << 8)
57 #define XADC_ZYNQ_CFG_TCKRATE_DIV8 (0x2 << 8)
58 #define XADC_ZYNQ_CFG_TCKRATE_DIV16 (0x3 << 8)
59 #define XADC_ZYNQ_CFG_IGAP_MASK 0x1f
60 #define XADC_ZYNQ_CFG_IGAP(x) (x)
62 #define XADC_ZYNQ_INT_CFIFO_LTH BIT(9)
63 #define XADC_ZYNQ_INT_DFIFO_GTH BIT(8)
64 #define XADC_ZYNQ_INT_ALARM_MASK 0xff
65 #define XADC_ZYNQ_INT_ALARM_OFFSET 0
67 #define XADC_ZYNQ_STATUS_CFIFO_LVL_MASK (0xf << 16)
68 #define XADC_ZYNQ_STATUS_CFIFO_LVL_OFFSET 16
69 #define XADC_ZYNQ_STATUS_DFIFO_LVL_MASK (0xf << 12)
70 #define XADC_ZYNQ_STATUS_DFIFO_LVL_OFFSET 12
71 #define XADC_ZYNQ_STATUS_CFIFOF BIT(11)
72 #define XADC_ZYNQ_STATUS_CFIFOE BIT(10)
73 #define XADC_ZYNQ_STATUS_DFIFOF BIT(9)
74 #define XADC_ZYNQ_STATUS_DFIFOE BIT(8)
75 #define XADC_ZYNQ_STATUS_OT BIT(7)
76 #define XADC_ZYNQ_STATUS_ALM(x) BIT(x)
78 #define XADC_ZYNQ_CTL_RESET BIT(4)
80 #define XADC_ZYNQ_CMD_NOP 0x00
81 #define XADC_ZYNQ_CMD_READ 0x01
82 #define XADC_ZYNQ_CMD_WRITE 0x02
84 #define XADC_ZYNQ_CMD(cmd, addr, data) (((cmd) << 26) | ((addr) << 16) | (data))
86 /* AXI register definitions */
87 #define XADC_AXI_REG_RESET 0x00
88 #define XADC_AXI_REG_STATUS 0x04
89 #define XADC_AXI_REG_ALARM_STATUS 0x08
90 #define XADC_AXI_REG_CONVST 0x0c
91 #define XADC_AXI_REG_XADC_RESET 0x10
92 #define XADC_AXI_REG_GIER 0x5c
93 #define XADC_AXI_REG_IPISR 0x60
94 #define XADC_AXI_REG_IPIER 0x68
95 #define XADC_AXI_ADC_REG_OFFSET 0x200
97 #define XADC_AXI_RESET_MAGIC 0xa
98 #define XADC_AXI_GIER_ENABLE BIT(31)
100 #define XADC_AXI_INT_EOS BIT(4)
101 #define XADC_AXI_INT_ALARM_MASK 0x3c0f
103 #define XADC_FLAGS_BUFFERED BIT(0)
106 * The XADC hardware supports a samplerate of up to 1MSPS. Unfortunately it does
107 * not have a hardware FIFO. Which means an interrupt is generated for each
108 * conversion sequence. At 1MSPS sample rate the CPU in ZYNQ7000 is completely
109 * overloaded by the interrupts that it soft-lockups. For this reason the driver
110 * limits the maximum samplerate 150kSPS. At this rate the CPU is fairly busy,
111 * but still responsive.
113 #define XADC_MAX_SAMPLERATE 150000
115 static void xadc_write_reg(struct xadc
*xadc
, unsigned int reg
,
118 writel(val
, xadc
->base
+ reg
);
121 static void xadc_read_reg(struct xadc
*xadc
, unsigned int reg
,
124 *val
= readl(xadc
->base
+ reg
);
128 * The ZYNQ interface uses two asynchronous FIFOs for communication with the
129 * XADC. Reads and writes to the XADC register are performed by submitting a
130 * request to the command FIFO (CFIFO), once the request has been completed the
131 * result can be read from the data FIFO (DFIFO). The method currently used in
132 * this driver is to submit the request for a read/write operation, then go to
133 * sleep and wait for an interrupt that signals that a response is available in
137 static void xadc_zynq_write_fifo(struct xadc
*xadc
, uint32_t *cmd
,
142 for (i
= 0; i
< n
; i
++)
143 xadc_write_reg(xadc
, XADC_ZYNQ_REG_CFIFO
, cmd
[i
]);
146 static void xadc_zynq_drain_fifo(struct xadc
*xadc
)
148 uint32_t status
, tmp
;
150 xadc_read_reg(xadc
, XADC_ZYNQ_REG_STATUS
, &status
);
152 while (!(status
& XADC_ZYNQ_STATUS_DFIFOE
)) {
153 xadc_read_reg(xadc
, XADC_ZYNQ_REG_DFIFO
, &tmp
);
154 xadc_read_reg(xadc
, XADC_ZYNQ_REG_STATUS
, &status
);
158 static void xadc_zynq_update_intmsk(struct xadc
*xadc
, unsigned int mask
,
161 xadc
->zynq_intmask
&= ~mask
;
162 xadc
->zynq_intmask
|= val
;
164 xadc_write_reg(xadc
, XADC_ZYNQ_REG_INTMSK
,
165 xadc
->zynq_intmask
| xadc
->zynq_masked_alarm
);
168 static int xadc_zynq_write_adc_reg(struct xadc
*xadc
, unsigned int reg
,
175 spin_lock_irq(&xadc
->lock
);
176 xadc_zynq_update_intmsk(xadc
, XADC_ZYNQ_INT_DFIFO_GTH
,
177 XADC_ZYNQ_INT_DFIFO_GTH
);
179 reinit_completion(&xadc
->completion
);
181 cmd
[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_WRITE
, reg
, val
);
182 xadc_zynq_write_fifo(xadc
, cmd
, ARRAY_SIZE(cmd
));
183 xadc_read_reg(xadc
, XADC_ZYNQ_REG_CFG
, &tmp
);
184 tmp
&= ~XADC_ZYNQ_CFG_DFIFOTH_MASK
;
185 tmp
|= 0 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET
;
186 xadc_write_reg(xadc
, XADC_ZYNQ_REG_CFG
, tmp
);
188 xadc_zynq_update_intmsk(xadc
, XADC_ZYNQ_INT_DFIFO_GTH
, 0);
189 spin_unlock_irq(&xadc
->lock
);
191 ret
= wait_for_completion_interruptible_timeout(&xadc
->completion
, HZ
);
197 xadc_read_reg(xadc
, XADC_ZYNQ_REG_DFIFO
, &tmp
);
202 static int xadc_zynq_read_adc_reg(struct xadc
*xadc
, unsigned int reg
,
209 cmd
[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_READ
, reg
, 0);
210 cmd
[1] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_NOP
, 0, 0);
212 spin_lock_irq(&xadc
->lock
);
213 xadc_zynq_update_intmsk(xadc
, XADC_ZYNQ_INT_DFIFO_GTH
,
214 XADC_ZYNQ_INT_DFIFO_GTH
);
215 xadc_zynq_drain_fifo(xadc
);
216 reinit_completion(&xadc
->completion
);
218 xadc_zynq_write_fifo(xadc
, cmd
, ARRAY_SIZE(cmd
));
219 xadc_read_reg(xadc
, XADC_ZYNQ_REG_CFG
, &tmp
);
220 tmp
&= ~XADC_ZYNQ_CFG_DFIFOTH_MASK
;
221 tmp
|= 1 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET
;
222 xadc_write_reg(xadc
, XADC_ZYNQ_REG_CFG
, tmp
);
224 xadc_zynq_update_intmsk(xadc
, XADC_ZYNQ_INT_DFIFO_GTH
, 0);
225 spin_unlock_irq(&xadc
->lock
);
226 ret
= wait_for_completion_interruptible_timeout(&xadc
->completion
, HZ
);
232 xadc_read_reg(xadc
, XADC_ZYNQ_REG_DFIFO
, &resp
);
233 xadc_read_reg(xadc
, XADC_ZYNQ_REG_DFIFO
, &resp
);
235 *val
= resp
& 0xffff;
240 static unsigned int xadc_zynq_transform_alarm(unsigned int alarm
)
242 return ((alarm
& 0x80) >> 4) |
243 ((alarm
& 0x78) << 1) |
248 * The ZYNQ threshold interrupts are level sensitive. Since we can't make the
249 * threshold condition go way from within the interrupt handler, this means as
250 * soon as a threshold condition is present we would enter the interrupt handler
251 * again and again. To work around this we mask all active thresholds interrupts
252 * in the interrupt handler and start a timer. In this timer we poll the
253 * interrupt status and only if the interrupt is inactive we unmask it again.
255 static void xadc_zynq_unmask_worker(struct work_struct
*work
)
257 struct xadc
*xadc
= container_of(work
, struct xadc
, zynq_unmask_work
.work
);
258 unsigned int misc_sts
, unmask
;
260 xadc_read_reg(xadc
, XADC_ZYNQ_REG_STATUS
, &misc_sts
);
262 misc_sts
&= XADC_ZYNQ_INT_ALARM_MASK
;
264 spin_lock_irq(&xadc
->lock
);
266 /* Clear those bits which are not active anymore */
267 unmask
= (xadc
->zynq_masked_alarm
^ misc_sts
) & xadc
->zynq_masked_alarm
;
268 xadc
->zynq_masked_alarm
&= misc_sts
;
270 /* Also clear those which are masked out anyway */
271 xadc
->zynq_masked_alarm
&= ~xadc
->zynq_intmask
;
273 /* Clear the interrupts before we unmask them */
274 xadc_write_reg(xadc
, XADC_ZYNQ_REG_INTSTS
, unmask
);
276 xadc_zynq_update_intmsk(xadc
, 0, 0);
278 spin_unlock_irq(&xadc
->lock
);
280 /* if still pending some alarm re-trigger the timer */
281 if (xadc
->zynq_masked_alarm
) {
282 schedule_delayed_work(&xadc
->zynq_unmask_work
,
283 msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT
));
288 static irqreturn_t
xadc_zynq_interrupt_handler(int irq
, void *devid
)
290 struct iio_dev
*indio_dev
= devid
;
291 struct xadc
*xadc
= iio_priv(indio_dev
);
294 xadc_read_reg(xadc
, XADC_ZYNQ_REG_INTSTS
, &status
);
296 status
&= ~(xadc
->zynq_intmask
| xadc
->zynq_masked_alarm
);
301 spin_lock(&xadc
->lock
);
303 xadc_write_reg(xadc
, XADC_ZYNQ_REG_INTSTS
, status
);
305 if (status
& XADC_ZYNQ_INT_DFIFO_GTH
) {
306 xadc_zynq_update_intmsk(xadc
, XADC_ZYNQ_INT_DFIFO_GTH
,
307 XADC_ZYNQ_INT_DFIFO_GTH
);
308 complete(&xadc
->completion
);
311 status
&= XADC_ZYNQ_INT_ALARM_MASK
;
313 xadc
->zynq_masked_alarm
|= status
;
315 * mask the current event interrupt,
316 * unmask it when the interrupt is no more active.
318 xadc_zynq_update_intmsk(xadc
, 0, 0);
320 xadc_handle_events(indio_dev
,
321 xadc_zynq_transform_alarm(status
));
323 /* unmask the required interrupts in timer. */
324 schedule_delayed_work(&xadc
->zynq_unmask_work
,
325 msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT
));
327 spin_unlock(&xadc
->lock
);
332 #define XADC_ZYNQ_TCK_RATE_MAX 50000000
333 #define XADC_ZYNQ_IGAP_DEFAULT 20
334 #define XADC_ZYNQ_PCAP_RATE_MAX 200000000
336 static int xadc_zynq_setup(struct platform_device
*pdev
,
337 struct iio_dev
*indio_dev
, int irq
)
339 struct xadc
*xadc
= iio_priv(indio_dev
);
340 unsigned long pcap_rate
;
341 unsigned int tck_div
;
344 unsigned int tck_rate
;
347 /* TODO: Figure out how to make igap and tck_rate configurable */
348 igap
= XADC_ZYNQ_IGAP_DEFAULT
;
349 tck_rate
= XADC_ZYNQ_TCK_RATE_MAX
;
351 xadc
->zynq_intmask
= ~0;
353 pcap_rate
= clk_get_rate(xadc
->clk
);
357 if (pcap_rate
> XADC_ZYNQ_PCAP_RATE_MAX
) {
358 ret
= clk_set_rate(xadc
->clk
,
359 (unsigned long)XADC_ZYNQ_PCAP_RATE_MAX
);
364 if (tck_rate
> pcap_rate
/ 2) {
367 div
= pcap_rate
/ tck_rate
;
368 if (pcap_rate
/ div
> XADC_ZYNQ_TCK_RATE_MAX
)
373 tck_div
= XADC_ZYNQ_CFG_TCKRATE_DIV2
;
375 tck_div
= XADC_ZYNQ_CFG_TCKRATE_DIV4
;
377 tck_div
= XADC_ZYNQ_CFG_TCKRATE_DIV8
;
379 tck_div
= XADC_ZYNQ_CFG_TCKRATE_DIV16
;
381 xadc_write_reg(xadc
, XADC_ZYNQ_REG_CTL
, XADC_ZYNQ_CTL_RESET
);
382 xadc_write_reg(xadc
, XADC_ZYNQ_REG_CTL
, 0);
383 xadc_write_reg(xadc
, XADC_ZYNQ_REG_INTSTS
, ~0);
384 xadc_write_reg(xadc
, XADC_ZYNQ_REG_INTMSK
, xadc
->zynq_intmask
);
385 xadc_write_reg(xadc
, XADC_ZYNQ_REG_CFG
, XADC_ZYNQ_CFG_ENABLE
|
386 XADC_ZYNQ_CFG_REDGE
| XADC_ZYNQ_CFG_WEDGE
|
387 tck_div
| XADC_ZYNQ_CFG_IGAP(igap
));
389 if (pcap_rate
> XADC_ZYNQ_PCAP_RATE_MAX
) {
390 ret
= clk_set_rate(xadc
->clk
, pcap_rate
);
398 static unsigned long xadc_zynq_get_dclk_rate(struct xadc
*xadc
)
403 xadc_read_reg(xadc
, XADC_ZYNQ_REG_CFG
, &val
);
405 switch (val
& XADC_ZYNQ_CFG_TCKRATE_MASK
) {
406 case XADC_ZYNQ_CFG_TCKRATE_DIV4
:
409 case XADC_ZYNQ_CFG_TCKRATE_DIV8
:
412 case XADC_ZYNQ_CFG_TCKRATE_DIV16
:
420 return clk_get_rate(xadc
->clk
) / div
;
423 static void xadc_zynq_update_alarm(struct xadc
*xadc
, unsigned int alarm
)
428 /* Move OT to bit 7 */
429 alarm
= ((alarm
& 0x08) << 4) | ((alarm
& 0xf0) >> 1) | (alarm
& 0x07);
431 spin_lock_irqsave(&xadc
->lock
, flags
);
433 /* Clear previous interrupts if any. */
434 xadc_read_reg(xadc
, XADC_ZYNQ_REG_INTSTS
, &status
);
435 xadc_write_reg(xadc
, XADC_ZYNQ_REG_INTSTS
, status
& alarm
);
437 xadc_zynq_update_intmsk(xadc
, XADC_ZYNQ_INT_ALARM_MASK
,
438 ~alarm
& XADC_ZYNQ_INT_ALARM_MASK
);
440 spin_unlock_irqrestore(&xadc
->lock
, flags
);
443 static const struct xadc_ops xadc_zynq_ops
= {
444 .read
= xadc_zynq_read_adc_reg
,
445 .write
= xadc_zynq_write_adc_reg
,
446 .setup
= xadc_zynq_setup
,
447 .get_dclk_rate
= xadc_zynq_get_dclk_rate
,
448 .interrupt_handler
= xadc_zynq_interrupt_handler
,
449 .update_alarm
= xadc_zynq_update_alarm
,
452 static int xadc_axi_read_adc_reg(struct xadc
*xadc
, unsigned int reg
,
457 xadc_read_reg(xadc
, XADC_AXI_ADC_REG_OFFSET
+ reg
* 4, &val32
);
458 *val
= val32
& 0xffff;
463 static int xadc_axi_write_adc_reg(struct xadc
*xadc
, unsigned int reg
,
466 xadc_write_reg(xadc
, XADC_AXI_ADC_REG_OFFSET
+ reg
* 4, val
);
471 static int xadc_axi_setup(struct platform_device
*pdev
,
472 struct iio_dev
*indio_dev
, int irq
)
474 struct xadc
*xadc
= iio_priv(indio_dev
);
476 xadc_write_reg(xadc
, XADC_AXI_REG_RESET
, XADC_AXI_RESET_MAGIC
);
477 xadc_write_reg(xadc
, XADC_AXI_REG_GIER
, XADC_AXI_GIER_ENABLE
);
482 static irqreturn_t
xadc_axi_interrupt_handler(int irq
, void *devid
)
484 struct iio_dev
*indio_dev
= devid
;
485 struct xadc
*xadc
= iio_priv(indio_dev
);
486 uint32_t status
, mask
;
489 xadc_read_reg(xadc
, XADC_AXI_REG_IPISR
, &status
);
490 xadc_read_reg(xadc
, XADC_AXI_REG_IPIER
, &mask
);
496 if ((status
& XADC_AXI_INT_EOS
) && xadc
->trigger
)
497 iio_trigger_poll(xadc
->trigger
);
499 if (status
& XADC_AXI_INT_ALARM_MASK
) {
501 * The order of the bits in the AXI-XADC status register does
502 * not match the order of the bits in the XADC alarm enable
503 * register. xadc_handle_events() expects the events to be in
504 * the same order as the XADC alarm enable register.
506 events
= (status
& 0x000e) >> 1;
507 events
|= (status
& 0x0001) << 3;
508 events
|= (status
& 0x3c00) >> 6;
509 xadc_handle_events(indio_dev
, events
);
512 xadc_write_reg(xadc
, XADC_AXI_REG_IPISR
, status
);
517 static void xadc_axi_update_alarm(struct xadc
*xadc
, unsigned int alarm
)
523 * The order of the bits in the AXI-XADC status register does not match
524 * the order of the bits in the XADC alarm enable register. We get
525 * passed the alarm mask in the same order as in the XADC alarm enable
528 alarm
= ((alarm
& 0x07) << 1) | ((alarm
& 0x08) >> 3) |
529 ((alarm
& 0xf0) << 6);
531 spin_lock_irqsave(&xadc
->lock
, flags
);
532 xadc_read_reg(xadc
, XADC_AXI_REG_IPIER
, &val
);
533 val
&= ~XADC_AXI_INT_ALARM_MASK
;
535 xadc_write_reg(xadc
, XADC_AXI_REG_IPIER
, val
);
536 spin_unlock_irqrestore(&xadc
->lock
, flags
);
539 static unsigned long xadc_axi_get_dclk(struct xadc
*xadc
)
541 return clk_get_rate(xadc
->clk
);
544 static const struct xadc_ops xadc_axi_ops
= {
545 .read
= xadc_axi_read_adc_reg
,
546 .write
= xadc_axi_write_adc_reg
,
547 .setup
= xadc_axi_setup
,
548 .get_dclk_rate
= xadc_axi_get_dclk
,
549 .update_alarm
= xadc_axi_update_alarm
,
550 .interrupt_handler
= xadc_axi_interrupt_handler
,
551 .flags
= XADC_FLAGS_BUFFERED
,
554 static int _xadc_update_adc_reg(struct xadc
*xadc
, unsigned int reg
,
555 uint16_t mask
, uint16_t val
)
560 ret
= _xadc_read_adc_reg(xadc
, reg
, &tmp
);
564 return _xadc_write_adc_reg(xadc
, reg
, (tmp
& ~mask
) | val
);
567 static int xadc_update_adc_reg(struct xadc
*xadc
, unsigned int reg
,
568 uint16_t mask
, uint16_t val
)
572 mutex_lock(&xadc
->mutex
);
573 ret
= _xadc_update_adc_reg(xadc
, reg
, mask
, val
);
574 mutex_unlock(&xadc
->mutex
);
579 static unsigned long xadc_get_dclk_rate(struct xadc
*xadc
)
581 return xadc
->ops
->get_dclk_rate(xadc
);
584 static int xadc_update_scan_mode(struct iio_dev
*indio_dev
,
585 const unsigned long *mask
)
587 struct xadc
*xadc
= iio_priv(indio_dev
);
590 n
= bitmap_weight(mask
, indio_dev
->masklength
);
593 xadc
->data
= kcalloc(n
, sizeof(*xadc
->data
), GFP_KERNEL
);
600 static unsigned int xadc_scan_index_to_channel(unsigned int scan_index
)
602 switch (scan_index
) {
604 return XADC_REG_VCCPINT
;
606 return XADC_REG_VCCPAUX
;
608 return XADC_REG_VCCO_DDR
;
610 return XADC_REG_TEMP
;
612 return XADC_REG_VCCINT
;
614 return XADC_REG_VCCAUX
;
616 return XADC_REG_VPVN
;
618 return XADC_REG_VREFP
;
620 return XADC_REG_VREFN
;
622 return XADC_REG_VCCBRAM
;
624 return XADC_REG_VAUX(scan_index
- 16);
628 static irqreturn_t
xadc_trigger_handler(int irq
, void *p
)
630 struct iio_poll_func
*pf
= p
;
631 struct iio_dev
*indio_dev
= pf
->indio_dev
;
632 struct xadc
*xadc
= iio_priv(indio_dev
);
640 for_each_set_bit(i
, indio_dev
->active_scan_mask
,
641 indio_dev
->masklength
) {
642 chan
= xadc_scan_index_to_channel(i
);
643 xadc_read_adc_reg(xadc
, chan
, &xadc
->data
[j
]);
647 iio_push_to_buffers(indio_dev
, xadc
->data
);
650 iio_trigger_notify_done(indio_dev
->trig
);
655 static int xadc_trigger_set_state(struct iio_trigger
*trigger
, bool state
)
657 struct xadc
*xadc
= iio_trigger_get_drvdata(trigger
);
663 mutex_lock(&xadc
->mutex
);
666 /* Only one of the two triggers can be active at a time. */
667 if (xadc
->trigger
!= NULL
) {
671 xadc
->trigger
= trigger
;
672 if (trigger
== xadc
->convst_trigger
)
673 convst
= XADC_CONF0_EC
;
677 ret
= _xadc_update_adc_reg(xadc
, XADC_REG_CONF1
, XADC_CONF0_EC
,
682 xadc
->trigger
= NULL
;
685 spin_lock_irqsave(&xadc
->lock
, flags
);
686 xadc_read_reg(xadc
, XADC_AXI_REG_IPIER
, &val
);
687 xadc_write_reg(xadc
, XADC_AXI_REG_IPISR
, XADC_AXI_INT_EOS
);
689 val
|= XADC_AXI_INT_EOS
;
691 val
&= ~XADC_AXI_INT_EOS
;
692 xadc_write_reg(xadc
, XADC_AXI_REG_IPIER
, val
);
693 spin_unlock_irqrestore(&xadc
->lock
, flags
);
696 mutex_unlock(&xadc
->mutex
);
701 static const struct iio_trigger_ops xadc_trigger_ops
= {
702 .set_trigger_state
= &xadc_trigger_set_state
,
705 static struct iio_trigger
*xadc_alloc_trigger(struct iio_dev
*indio_dev
,
708 struct iio_trigger
*trig
;
711 trig
= iio_trigger_alloc("%s%d-%s", indio_dev
->name
,
712 indio_dev
->id
, name
);
714 return ERR_PTR(-ENOMEM
);
716 trig
->dev
.parent
= indio_dev
->dev
.parent
;
717 trig
->ops
= &xadc_trigger_ops
;
718 iio_trigger_set_drvdata(trig
, iio_priv(indio_dev
));
720 ret
= iio_trigger_register(trig
);
722 goto error_free_trig
;
727 iio_trigger_free(trig
);
731 static int xadc_power_adc_b(struct xadc
*xadc
, unsigned int seq_mode
)
735 /* Powerdown the ADC-B when it is not needed. */
737 case XADC_CONF1_SEQ_SIMULTANEOUS
:
738 case XADC_CONF1_SEQ_INDEPENDENT
:
742 val
= XADC_CONF2_PD_ADC_B
;
746 return xadc_update_adc_reg(xadc
, XADC_REG_CONF2
, XADC_CONF2_PD_MASK
,
750 static int xadc_get_seq_mode(struct xadc
*xadc
, unsigned long scan_mode
)
752 unsigned int aux_scan_mode
= scan_mode
>> 16;
754 if (xadc
->external_mux_mode
== XADC_EXTERNAL_MUX_DUAL
)
755 return XADC_CONF1_SEQ_SIMULTANEOUS
;
757 if ((aux_scan_mode
& 0xff00) == 0 ||
758 (aux_scan_mode
& 0x00ff) == 0)
759 return XADC_CONF1_SEQ_CONTINUOUS
;
761 return XADC_CONF1_SEQ_SIMULTANEOUS
;
764 static int xadc_postdisable(struct iio_dev
*indio_dev
)
766 struct xadc
*xadc
= iio_priv(indio_dev
);
767 unsigned long scan_mask
;
771 scan_mask
= 1; /* Run calibration as part of the sequence */
772 for (i
= 0; i
< indio_dev
->num_channels
; i
++)
773 scan_mask
|= BIT(indio_dev
->channels
[i
].scan_index
);
775 /* Enable all channels and calibration */
776 ret
= xadc_write_adc_reg(xadc
, XADC_REG_SEQ(0), scan_mask
& 0xffff);
780 ret
= xadc_write_adc_reg(xadc
, XADC_REG_SEQ(1), scan_mask
>> 16);
784 ret
= xadc_update_adc_reg(xadc
, XADC_REG_CONF1
, XADC_CONF1_SEQ_MASK
,
785 XADC_CONF1_SEQ_CONTINUOUS
);
789 return xadc_power_adc_b(xadc
, XADC_CONF1_SEQ_CONTINUOUS
);
792 static int xadc_preenable(struct iio_dev
*indio_dev
)
794 struct xadc
*xadc
= iio_priv(indio_dev
);
795 unsigned long scan_mask
;
799 ret
= xadc_update_adc_reg(xadc
, XADC_REG_CONF1
, XADC_CONF1_SEQ_MASK
,
800 XADC_CONF1_SEQ_DEFAULT
);
804 scan_mask
= *indio_dev
->active_scan_mask
;
805 seq_mode
= xadc_get_seq_mode(xadc
, scan_mask
);
807 ret
= xadc_write_adc_reg(xadc
, XADC_REG_SEQ(0), scan_mask
& 0xffff);
812 * In simultaneous mode the upper and lower aux channels are samples at
813 * the same time. In this mode the upper 8 bits in the sequencer
814 * register are don't care and the lower 8 bits control two channels
815 * each. As such we must set the bit if either the channel in the lower
816 * group or the upper group is enabled.
818 if (seq_mode
== XADC_CONF1_SEQ_SIMULTANEOUS
)
819 scan_mask
= ((scan_mask
>> 8) | scan_mask
) & 0xff0000;
821 ret
= xadc_write_adc_reg(xadc
, XADC_REG_SEQ(1), scan_mask
>> 16);
825 ret
= xadc_power_adc_b(xadc
, seq_mode
);
829 ret
= xadc_update_adc_reg(xadc
, XADC_REG_CONF1
, XADC_CONF1_SEQ_MASK
,
836 xadc_postdisable(indio_dev
);
840 static const struct iio_buffer_setup_ops xadc_buffer_ops
= {
841 .preenable
= &xadc_preenable
,
842 .postdisable
= &xadc_postdisable
,
845 static int xadc_read_samplerate(struct xadc
*xadc
)
851 ret
= xadc_read_adc_reg(xadc
, XADC_REG_CONF2
, &val16
);
855 div
= (val16
& XADC_CONF2_DIV_MASK
) >> XADC_CONF2_DIV_OFFSET
;
859 return xadc_get_dclk_rate(xadc
) / div
/ 26;
862 static int xadc_read_raw(struct iio_dev
*indio_dev
,
863 struct iio_chan_spec
const *chan
, int *val
, int *val2
, long info
)
865 struct xadc
*xadc
= iio_priv(indio_dev
);
870 case IIO_CHAN_INFO_RAW
:
871 if (iio_buffer_enabled(indio_dev
))
873 ret
= xadc_read_adc_reg(xadc
, chan
->address
, &val16
);
878 if (chan
->scan_type
.sign
== 'u')
881 *val
= sign_extend32(val16
, 11);
884 case IIO_CHAN_INFO_SCALE
:
885 switch (chan
->type
) {
887 /* V = (val * 3.0) / 4096 */
888 switch (chan
->address
) {
889 case XADC_REG_VCCINT
:
890 case XADC_REG_VCCAUX
:
893 case XADC_REG_VCCBRAM
:
894 case XADC_REG_VCCPINT
:
895 case XADC_REG_VCCPAUX
:
896 case XADC_REG_VCCO_DDR
:
904 return IIO_VAL_FRACTIONAL_LOG2
;
906 /* Temp in C = (val * 503.975) / 4096 - 273.15 */
909 return IIO_VAL_FRACTIONAL_LOG2
;
913 case IIO_CHAN_INFO_OFFSET
:
914 /* Only the temperature channel has an offset */
915 *val
= -((273150 << 12) / 503975);
917 case IIO_CHAN_INFO_SAMP_FREQ
:
918 ret
= xadc_read_samplerate(xadc
);
929 static int xadc_write_samplerate(struct xadc
*xadc
, int val
)
931 unsigned long clk_rate
= xadc_get_dclk_rate(xadc
);
941 if (val
> XADC_MAX_SAMPLERATE
)
942 val
= XADC_MAX_SAMPLERATE
;
951 * We want to round down, but only if we do not exceed the 150 kSPS
954 div
= clk_rate
/ val
;
955 if (clk_rate
/ div
/ 26 > XADC_MAX_SAMPLERATE
)
962 return xadc_update_adc_reg(xadc
, XADC_REG_CONF2
, XADC_CONF2_DIV_MASK
,
963 div
<< XADC_CONF2_DIV_OFFSET
);
966 static int xadc_write_raw(struct iio_dev
*indio_dev
,
967 struct iio_chan_spec
const *chan
, int val
, int val2
, long info
)
969 struct xadc
*xadc
= iio_priv(indio_dev
);
971 if (info
!= IIO_CHAN_INFO_SAMP_FREQ
)
974 return xadc_write_samplerate(xadc
, val
);
977 static const struct iio_event_spec xadc_temp_events
[] = {
979 .type
= IIO_EV_TYPE_THRESH
,
980 .dir
= IIO_EV_DIR_RISING
,
981 .mask_separate
= BIT(IIO_EV_INFO_ENABLE
) |
982 BIT(IIO_EV_INFO_VALUE
) |
983 BIT(IIO_EV_INFO_HYSTERESIS
),
987 /* Separate values for upper and lower thresholds, but only a shared enabled */
988 static const struct iio_event_spec xadc_voltage_events
[] = {
990 .type
= IIO_EV_TYPE_THRESH
,
991 .dir
= IIO_EV_DIR_RISING
,
992 .mask_separate
= BIT(IIO_EV_INFO_VALUE
),
994 .type
= IIO_EV_TYPE_THRESH
,
995 .dir
= IIO_EV_DIR_FALLING
,
996 .mask_separate
= BIT(IIO_EV_INFO_VALUE
),
998 .type
= IIO_EV_TYPE_THRESH
,
999 .dir
= IIO_EV_DIR_EITHER
,
1000 .mask_separate
= BIT(IIO_EV_INFO_ENABLE
),
1004 #define XADC_CHAN_TEMP(_chan, _scan_index, _addr) { \
1007 .channel = (_chan), \
1008 .address = (_addr), \
1009 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
1010 BIT(IIO_CHAN_INFO_SCALE) | \
1011 BIT(IIO_CHAN_INFO_OFFSET), \
1012 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
1013 .event_spec = xadc_temp_events, \
1014 .num_event_specs = ARRAY_SIZE(xadc_temp_events), \
1015 .scan_index = (_scan_index), \
1019 .storagebits = 16, \
1021 .endianness = IIO_CPU, \
1025 #define XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, _ext, _alarm) { \
1026 .type = IIO_VOLTAGE, \
1028 .channel = (_chan), \
1029 .address = (_addr), \
1030 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
1031 BIT(IIO_CHAN_INFO_SCALE), \
1032 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
1033 .event_spec = (_alarm) ? xadc_voltage_events : NULL, \
1034 .num_event_specs = (_alarm) ? ARRAY_SIZE(xadc_voltage_events) : 0, \
1035 .scan_index = (_scan_index), \
1037 .sign = ((_addr) == XADC_REG_VREFN) ? 's' : 'u', \
1039 .storagebits = 16, \
1041 .endianness = IIO_CPU, \
1043 .extend_name = _ext, \
1046 static const struct iio_chan_spec xadc_channels
[] = {
1047 XADC_CHAN_TEMP(0, 8, XADC_REG_TEMP
),
1048 XADC_CHAN_VOLTAGE(0, 9, XADC_REG_VCCINT
, "vccint", true),
1049 XADC_CHAN_VOLTAGE(1, 10, XADC_REG_VCCAUX
, "vccaux", true),
1050 XADC_CHAN_VOLTAGE(2, 14, XADC_REG_VCCBRAM
, "vccbram", true),
1051 XADC_CHAN_VOLTAGE(3, 5, XADC_REG_VCCPINT
, "vccpint", true),
1052 XADC_CHAN_VOLTAGE(4, 6, XADC_REG_VCCPAUX
, "vccpaux", true),
1053 XADC_CHAN_VOLTAGE(5, 7, XADC_REG_VCCO_DDR
, "vccoddr", true),
1054 XADC_CHAN_VOLTAGE(6, 12, XADC_REG_VREFP
, "vrefp", false),
1055 XADC_CHAN_VOLTAGE(7, 13, XADC_REG_VREFN
, "vrefn", false),
1056 XADC_CHAN_VOLTAGE(8, 11, XADC_REG_VPVN
, NULL
, false),
1057 XADC_CHAN_VOLTAGE(9, 16, XADC_REG_VAUX(0), NULL
, false),
1058 XADC_CHAN_VOLTAGE(10, 17, XADC_REG_VAUX(1), NULL
, false),
1059 XADC_CHAN_VOLTAGE(11, 18, XADC_REG_VAUX(2), NULL
, false),
1060 XADC_CHAN_VOLTAGE(12, 19, XADC_REG_VAUX(3), NULL
, false),
1061 XADC_CHAN_VOLTAGE(13, 20, XADC_REG_VAUX(4), NULL
, false),
1062 XADC_CHAN_VOLTAGE(14, 21, XADC_REG_VAUX(5), NULL
, false),
1063 XADC_CHAN_VOLTAGE(15, 22, XADC_REG_VAUX(6), NULL
, false),
1064 XADC_CHAN_VOLTAGE(16, 23, XADC_REG_VAUX(7), NULL
, false),
1065 XADC_CHAN_VOLTAGE(17, 24, XADC_REG_VAUX(8), NULL
, false),
1066 XADC_CHAN_VOLTAGE(18, 25, XADC_REG_VAUX(9), NULL
, false),
1067 XADC_CHAN_VOLTAGE(19, 26, XADC_REG_VAUX(10), NULL
, false),
1068 XADC_CHAN_VOLTAGE(20, 27, XADC_REG_VAUX(11), NULL
, false),
1069 XADC_CHAN_VOLTAGE(21, 28, XADC_REG_VAUX(12), NULL
, false),
1070 XADC_CHAN_VOLTAGE(22, 29, XADC_REG_VAUX(13), NULL
, false),
1071 XADC_CHAN_VOLTAGE(23, 30, XADC_REG_VAUX(14), NULL
, false),
1072 XADC_CHAN_VOLTAGE(24, 31, XADC_REG_VAUX(15), NULL
, false),
1075 static const struct iio_info xadc_info
= {
1076 .read_raw
= &xadc_read_raw
,
1077 .write_raw
= &xadc_write_raw
,
1078 .read_event_config
= &xadc_read_event_config
,
1079 .write_event_config
= &xadc_write_event_config
,
1080 .read_event_value
= &xadc_read_event_value
,
1081 .write_event_value
= &xadc_write_event_value
,
1082 .update_scan_mode
= &xadc_update_scan_mode
,
1085 static const struct of_device_id xadc_of_match_table
[] = {
1086 { .compatible
= "xlnx,zynq-xadc-1.00.a", (void *)&xadc_zynq_ops
},
1087 { .compatible
= "xlnx,axi-xadc-1.00.a", (void *)&xadc_axi_ops
},
1090 MODULE_DEVICE_TABLE(of
, xadc_of_match_table
);
1092 static int xadc_parse_dt(struct iio_dev
*indio_dev
, struct device_node
*np
,
1095 struct device
*dev
= indio_dev
->dev
.parent
;
1096 struct xadc
*xadc
= iio_priv(indio_dev
);
1097 struct iio_chan_spec
*channels
, *chan
;
1098 struct device_node
*chan_node
, *child
;
1099 unsigned int num_channels
;
1100 const char *external_mux
;
1107 ret
= of_property_read_string(np
, "xlnx,external-mux", &external_mux
);
1108 if (ret
< 0 || strcasecmp(external_mux
, "none") == 0)
1109 xadc
->external_mux_mode
= XADC_EXTERNAL_MUX_NONE
;
1110 else if (strcasecmp(external_mux
, "single") == 0)
1111 xadc
->external_mux_mode
= XADC_EXTERNAL_MUX_SINGLE
;
1112 else if (strcasecmp(external_mux
, "dual") == 0)
1113 xadc
->external_mux_mode
= XADC_EXTERNAL_MUX_DUAL
;
1117 if (xadc
->external_mux_mode
!= XADC_EXTERNAL_MUX_NONE
) {
1118 ret
= of_property_read_u32(np
, "xlnx,external-mux-channel",
1123 if (xadc
->external_mux_mode
== XADC_EXTERNAL_MUX_SINGLE
) {
1124 if (ext_mux_chan
== 0)
1125 ext_mux_chan
= XADC_REG_VPVN
;
1126 else if (ext_mux_chan
<= 16)
1127 ext_mux_chan
= XADC_REG_VAUX(ext_mux_chan
- 1);
1131 if (ext_mux_chan
> 0 && ext_mux_chan
<= 8)
1132 ext_mux_chan
= XADC_REG_VAUX(ext_mux_chan
- 1);
1137 *conf
|= XADC_CONF0_MUX
| XADC_CONF0_CHAN(ext_mux_chan
);
1140 channels
= devm_kmemdup(dev
, xadc_channels
,
1141 sizeof(xadc_channels
), GFP_KERNEL
);
1146 chan
= &channels
[9];
1148 chan_node
= of_get_child_by_name(np
, "xlnx,channels");
1150 for_each_child_of_node(chan_node
, child
) {
1151 if (num_channels
>= ARRAY_SIZE(xadc_channels
)) {
1156 ret
= of_property_read_u32(child
, "reg", ®
);
1157 if (ret
|| reg
> 16)
1160 if (of_property_read_bool(child
, "xlnx,bipolar"))
1161 chan
->scan_type
.sign
= 's';
1164 chan
->scan_index
= 11;
1165 chan
->address
= XADC_REG_VPVN
;
1167 chan
->scan_index
= 15 + reg
;
1168 chan
->address
= XADC_REG_VAUX(reg
- 1);
1174 of_node_put(chan_node
);
1176 indio_dev
->num_channels
= num_channels
;
1177 indio_dev
->channels
= devm_krealloc(dev
, channels
,
1178 sizeof(*channels
) * num_channels
,
1180 /* If we can't resize the channels array, just use the original */
1181 if (!indio_dev
->channels
)
1182 indio_dev
->channels
= channels
;
1187 static int xadc_probe(struct platform_device
*pdev
)
1189 const struct of_device_id
*id
;
1190 struct iio_dev
*indio_dev
;
1191 unsigned int bipolar_mask
;
1198 if (!pdev
->dev
.of_node
)
1201 id
= of_match_node(xadc_of_match_table
, pdev
->dev
.of_node
);
1205 irq
= platform_get_irq(pdev
, 0);
1209 indio_dev
= devm_iio_device_alloc(&pdev
->dev
, sizeof(*xadc
));
1213 xadc
= iio_priv(indio_dev
);
1214 xadc
->ops
= id
->data
;
1216 init_completion(&xadc
->completion
);
1217 mutex_init(&xadc
->mutex
);
1218 spin_lock_init(&xadc
->lock
);
1219 INIT_DELAYED_WORK(&xadc
->zynq_unmask_work
, xadc_zynq_unmask_worker
);
1221 xadc
->base
= devm_platform_ioremap_resource(pdev
, 0);
1222 if (IS_ERR(xadc
->base
))
1223 return PTR_ERR(xadc
->base
);
1225 indio_dev
->name
= "xadc";
1226 indio_dev
->modes
= INDIO_DIRECT_MODE
;
1227 indio_dev
->info
= &xadc_info
;
1229 ret
= xadc_parse_dt(indio_dev
, pdev
->dev
.of_node
, &conf0
);
1233 if (xadc
->ops
->flags
& XADC_FLAGS_BUFFERED
) {
1234 ret
= iio_triggered_buffer_setup(indio_dev
,
1235 &iio_pollfunc_store_time
, &xadc_trigger_handler
,
1240 xadc
->convst_trigger
= xadc_alloc_trigger(indio_dev
, "convst");
1241 if (IS_ERR(xadc
->convst_trigger
)) {
1242 ret
= PTR_ERR(xadc
->convst_trigger
);
1243 goto err_triggered_buffer_cleanup
;
1245 xadc
->samplerate_trigger
= xadc_alloc_trigger(indio_dev
,
1247 if (IS_ERR(xadc
->samplerate_trigger
)) {
1248 ret
= PTR_ERR(xadc
->samplerate_trigger
);
1249 goto err_free_convst_trigger
;
1253 xadc
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
1254 if (IS_ERR(xadc
->clk
)) {
1255 ret
= PTR_ERR(xadc
->clk
);
1256 goto err_free_samplerate_trigger
;
1259 ret
= clk_prepare_enable(xadc
->clk
);
1261 goto err_free_samplerate_trigger
;
1264 * Make sure not to exceed the maximum samplerate since otherwise the
1265 * resulting interrupt storm will soft-lock the system.
1267 if (xadc
->ops
->flags
& XADC_FLAGS_BUFFERED
) {
1268 ret
= xadc_read_samplerate(xadc
);
1270 goto err_free_samplerate_trigger
;
1271 if (ret
> XADC_MAX_SAMPLERATE
) {
1272 ret
= xadc_write_samplerate(xadc
, XADC_MAX_SAMPLERATE
);
1274 goto err_free_samplerate_trigger
;
1278 ret
= request_irq(xadc
->irq
, xadc
->ops
->interrupt_handler
, 0,
1279 dev_name(&pdev
->dev
), indio_dev
);
1281 goto err_clk_disable_unprepare
;
1283 ret
= xadc
->ops
->setup(pdev
, indio_dev
, xadc
->irq
);
1287 for (i
= 0; i
< 16; i
++)
1288 xadc_read_adc_reg(xadc
, XADC_REG_THRESHOLD(i
),
1289 &xadc
->threshold
[i
]);
1291 ret
= xadc_write_adc_reg(xadc
, XADC_REG_CONF0
, conf0
);
1296 for (i
= 0; i
< indio_dev
->num_channels
; i
++) {
1297 if (indio_dev
->channels
[i
].scan_type
.sign
== 's')
1298 bipolar_mask
|= BIT(indio_dev
->channels
[i
].scan_index
);
1301 ret
= xadc_write_adc_reg(xadc
, XADC_REG_INPUT_MODE(0), bipolar_mask
);
1304 ret
= xadc_write_adc_reg(xadc
, XADC_REG_INPUT_MODE(1),
1305 bipolar_mask
>> 16);
1309 /* Disable all alarms */
1310 ret
= xadc_update_adc_reg(xadc
, XADC_REG_CONF1
, XADC_CONF1_ALARM_MASK
,
1311 XADC_CONF1_ALARM_MASK
);
1315 /* Set thresholds to min/max */
1316 for (i
= 0; i
< 16; i
++) {
1318 * Set max voltage threshold and both temperature thresholds to
1319 * 0xffff, min voltage threshold to 0.
1321 if (i
% 8 < 4 || i
== 7)
1322 xadc
->threshold
[i
] = 0xffff;
1324 xadc
->threshold
[i
] = 0;
1325 ret
= xadc_write_adc_reg(xadc
, XADC_REG_THRESHOLD(i
),
1326 xadc
->threshold
[i
]);
1331 /* Go to non-buffered mode */
1332 xadc_postdisable(indio_dev
);
1334 ret
= iio_device_register(indio_dev
);
1338 platform_set_drvdata(pdev
, indio_dev
);
1343 free_irq(xadc
->irq
, indio_dev
);
1344 cancel_delayed_work_sync(&xadc
->zynq_unmask_work
);
1345 err_clk_disable_unprepare
:
1346 clk_disable_unprepare(xadc
->clk
);
1347 err_free_samplerate_trigger
:
1348 if (xadc
->ops
->flags
& XADC_FLAGS_BUFFERED
)
1349 iio_trigger_free(xadc
->samplerate_trigger
);
1350 err_free_convst_trigger
:
1351 if (xadc
->ops
->flags
& XADC_FLAGS_BUFFERED
)
1352 iio_trigger_free(xadc
->convst_trigger
);
1353 err_triggered_buffer_cleanup
:
1354 if (xadc
->ops
->flags
& XADC_FLAGS_BUFFERED
)
1355 iio_triggered_buffer_cleanup(indio_dev
);
1360 static int xadc_remove(struct platform_device
*pdev
)
1362 struct iio_dev
*indio_dev
= platform_get_drvdata(pdev
);
1363 struct xadc
*xadc
= iio_priv(indio_dev
);
1365 iio_device_unregister(indio_dev
);
1366 if (xadc
->ops
->flags
& XADC_FLAGS_BUFFERED
) {
1367 iio_trigger_free(xadc
->samplerate_trigger
);
1368 iio_trigger_free(xadc
->convst_trigger
);
1369 iio_triggered_buffer_cleanup(indio_dev
);
1371 free_irq(xadc
->irq
, indio_dev
);
1372 cancel_delayed_work_sync(&xadc
->zynq_unmask_work
);
1373 clk_disable_unprepare(xadc
->clk
);
1379 static struct platform_driver xadc_driver
= {
1380 .probe
= xadc_probe
,
1381 .remove
= xadc_remove
,
1384 .of_match_table
= xadc_of_match_table
,
1387 module_platform_driver(xadc_driver
);
1389 MODULE_LICENSE("GPL v2");
1390 MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
1391 MODULE_DESCRIPTION("Xilinx XADC IIO driver");