Merge tag 'regmap-fix-v5.11-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux/fpc-iii.git] / drivers / iio / adc / xilinx-xadc-core.c
blobf93c34fe58731dc103d901ab391cb8d51a97e5b6
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Xilinx XADC driver
5 * Copyright 2013-2014 Analog Devices Inc.
6 * Author: Lars-Peter Clausen <lars@metafoo.de>
8 * Documentation for the parts can be found at:
9 * - XADC hardmacro: Xilinx UG480
10 * - ZYNQ XADC interface: Xilinx UG585
11 * - AXI XADC interface: Xilinx PG019
14 #include <linux/clk.h>
15 #include <linux/device.h>
16 #include <linux/err.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/platform_device.h>
23 #include <linux/slab.h>
24 #include <linux/sysfs.h>
26 #include <linux/iio/buffer.h>
27 #include <linux/iio/events.h>
28 #include <linux/iio/iio.h>
29 #include <linux/iio/sysfs.h>
30 #include <linux/iio/trigger.h>
31 #include <linux/iio/trigger_consumer.h>
32 #include <linux/iio/triggered_buffer.h>
34 #include "xilinx-xadc.h"
36 static const unsigned int XADC_ZYNQ_UNMASK_TIMEOUT = 500;
38 /* ZYNQ register definitions */
39 #define XADC_ZYNQ_REG_CFG 0x00
40 #define XADC_ZYNQ_REG_INTSTS 0x04
41 #define XADC_ZYNQ_REG_INTMSK 0x08
42 #define XADC_ZYNQ_REG_STATUS 0x0c
43 #define XADC_ZYNQ_REG_CFIFO 0x10
44 #define XADC_ZYNQ_REG_DFIFO 0x14
45 #define XADC_ZYNQ_REG_CTL 0x18
47 #define XADC_ZYNQ_CFG_ENABLE BIT(31)
48 #define XADC_ZYNQ_CFG_CFIFOTH_MASK (0xf << 20)
49 #define XADC_ZYNQ_CFG_CFIFOTH_OFFSET 20
50 #define XADC_ZYNQ_CFG_DFIFOTH_MASK (0xf << 16)
51 #define XADC_ZYNQ_CFG_DFIFOTH_OFFSET 16
52 #define XADC_ZYNQ_CFG_WEDGE BIT(13)
53 #define XADC_ZYNQ_CFG_REDGE BIT(12)
54 #define XADC_ZYNQ_CFG_TCKRATE_MASK (0x3 << 8)
55 #define XADC_ZYNQ_CFG_TCKRATE_DIV2 (0x0 << 8)
56 #define XADC_ZYNQ_CFG_TCKRATE_DIV4 (0x1 << 8)
57 #define XADC_ZYNQ_CFG_TCKRATE_DIV8 (0x2 << 8)
58 #define XADC_ZYNQ_CFG_TCKRATE_DIV16 (0x3 << 8)
59 #define XADC_ZYNQ_CFG_IGAP_MASK 0x1f
60 #define XADC_ZYNQ_CFG_IGAP(x) (x)
62 #define XADC_ZYNQ_INT_CFIFO_LTH BIT(9)
63 #define XADC_ZYNQ_INT_DFIFO_GTH BIT(8)
64 #define XADC_ZYNQ_INT_ALARM_MASK 0xff
65 #define XADC_ZYNQ_INT_ALARM_OFFSET 0
67 #define XADC_ZYNQ_STATUS_CFIFO_LVL_MASK (0xf << 16)
68 #define XADC_ZYNQ_STATUS_CFIFO_LVL_OFFSET 16
69 #define XADC_ZYNQ_STATUS_DFIFO_LVL_MASK (0xf << 12)
70 #define XADC_ZYNQ_STATUS_DFIFO_LVL_OFFSET 12
71 #define XADC_ZYNQ_STATUS_CFIFOF BIT(11)
72 #define XADC_ZYNQ_STATUS_CFIFOE BIT(10)
73 #define XADC_ZYNQ_STATUS_DFIFOF BIT(9)
74 #define XADC_ZYNQ_STATUS_DFIFOE BIT(8)
75 #define XADC_ZYNQ_STATUS_OT BIT(7)
76 #define XADC_ZYNQ_STATUS_ALM(x) BIT(x)
78 #define XADC_ZYNQ_CTL_RESET BIT(4)
80 #define XADC_ZYNQ_CMD_NOP 0x00
81 #define XADC_ZYNQ_CMD_READ 0x01
82 #define XADC_ZYNQ_CMD_WRITE 0x02
84 #define XADC_ZYNQ_CMD(cmd, addr, data) (((cmd) << 26) | ((addr) << 16) | (data))
86 /* AXI register definitions */
87 #define XADC_AXI_REG_RESET 0x00
88 #define XADC_AXI_REG_STATUS 0x04
89 #define XADC_AXI_REG_ALARM_STATUS 0x08
90 #define XADC_AXI_REG_CONVST 0x0c
91 #define XADC_AXI_REG_XADC_RESET 0x10
92 #define XADC_AXI_REG_GIER 0x5c
93 #define XADC_AXI_REG_IPISR 0x60
94 #define XADC_AXI_REG_IPIER 0x68
95 #define XADC_AXI_ADC_REG_OFFSET 0x200
97 #define XADC_AXI_RESET_MAGIC 0xa
98 #define XADC_AXI_GIER_ENABLE BIT(31)
100 #define XADC_AXI_INT_EOS BIT(4)
101 #define XADC_AXI_INT_ALARM_MASK 0x3c0f
103 #define XADC_FLAGS_BUFFERED BIT(0)
106 * The XADC hardware supports a samplerate of up to 1MSPS. Unfortunately it does
107 * not have a hardware FIFO. Which means an interrupt is generated for each
108 * conversion sequence. At 1MSPS sample rate the CPU in ZYNQ7000 is completely
109 * overloaded by the interrupts that it soft-lockups. For this reason the driver
110 * limits the maximum samplerate 150kSPS. At this rate the CPU is fairly busy,
111 * but still responsive.
113 #define XADC_MAX_SAMPLERATE 150000
115 static void xadc_write_reg(struct xadc *xadc, unsigned int reg,
116 uint32_t val)
118 writel(val, xadc->base + reg);
121 static void xadc_read_reg(struct xadc *xadc, unsigned int reg,
122 uint32_t *val)
124 *val = readl(xadc->base + reg);
128 * The ZYNQ interface uses two asynchronous FIFOs for communication with the
129 * XADC. Reads and writes to the XADC register are performed by submitting a
130 * request to the command FIFO (CFIFO), once the request has been completed the
131 * result can be read from the data FIFO (DFIFO). The method currently used in
132 * this driver is to submit the request for a read/write operation, then go to
133 * sleep and wait for an interrupt that signals that a response is available in
134 * the data FIFO.
137 static void xadc_zynq_write_fifo(struct xadc *xadc, uint32_t *cmd,
138 unsigned int n)
140 unsigned int i;
142 for (i = 0; i < n; i++)
143 xadc_write_reg(xadc, XADC_ZYNQ_REG_CFIFO, cmd[i]);
146 static void xadc_zynq_drain_fifo(struct xadc *xadc)
148 uint32_t status, tmp;
150 xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
152 while (!(status & XADC_ZYNQ_STATUS_DFIFOE)) {
153 xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
154 xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
158 static void xadc_zynq_update_intmsk(struct xadc *xadc, unsigned int mask,
159 unsigned int val)
161 xadc->zynq_intmask &= ~mask;
162 xadc->zynq_intmask |= val;
164 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK,
165 xadc->zynq_intmask | xadc->zynq_masked_alarm);
168 static int xadc_zynq_write_adc_reg(struct xadc *xadc, unsigned int reg,
169 uint16_t val)
171 uint32_t cmd[1];
172 uint32_t tmp;
173 int ret;
175 spin_lock_irq(&xadc->lock);
176 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
177 XADC_ZYNQ_INT_DFIFO_GTH);
179 reinit_completion(&xadc->completion);
181 cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_WRITE, reg, val);
182 xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
183 xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
184 tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
185 tmp |= 0 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
186 xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
188 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
189 spin_unlock_irq(&xadc->lock);
191 ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
192 if (ret == 0)
193 ret = -EIO;
194 else
195 ret = 0;
197 xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
199 return ret;
202 static int xadc_zynq_read_adc_reg(struct xadc *xadc, unsigned int reg,
203 uint16_t *val)
205 uint32_t cmd[2];
206 uint32_t resp, tmp;
207 int ret;
209 cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_READ, reg, 0);
210 cmd[1] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_NOP, 0, 0);
212 spin_lock_irq(&xadc->lock);
213 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
214 XADC_ZYNQ_INT_DFIFO_GTH);
215 xadc_zynq_drain_fifo(xadc);
216 reinit_completion(&xadc->completion);
218 xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
219 xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
220 tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
221 tmp |= 1 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
222 xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
224 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
225 spin_unlock_irq(&xadc->lock);
226 ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
227 if (ret == 0)
228 ret = -EIO;
229 if (ret < 0)
230 return ret;
232 xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
233 xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
235 *val = resp & 0xffff;
237 return 0;
240 static unsigned int xadc_zynq_transform_alarm(unsigned int alarm)
242 return ((alarm & 0x80) >> 4) |
243 ((alarm & 0x78) << 1) |
244 (alarm & 0x07);
248 * The ZYNQ threshold interrupts are level sensitive. Since we can't make the
249 * threshold condition go way from within the interrupt handler, this means as
250 * soon as a threshold condition is present we would enter the interrupt handler
251 * again and again. To work around this we mask all active thresholds interrupts
252 * in the interrupt handler and start a timer. In this timer we poll the
253 * interrupt status and only if the interrupt is inactive we unmask it again.
255 static void xadc_zynq_unmask_worker(struct work_struct *work)
257 struct xadc *xadc = container_of(work, struct xadc, zynq_unmask_work.work);
258 unsigned int misc_sts, unmask;
260 xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &misc_sts);
262 misc_sts &= XADC_ZYNQ_INT_ALARM_MASK;
264 spin_lock_irq(&xadc->lock);
266 /* Clear those bits which are not active anymore */
267 unmask = (xadc->zynq_masked_alarm ^ misc_sts) & xadc->zynq_masked_alarm;
268 xadc->zynq_masked_alarm &= misc_sts;
270 /* Also clear those which are masked out anyway */
271 xadc->zynq_masked_alarm &= ~xadc->zynq_intmask;
273 /* Clear the interrupts before we unmask them */
274 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, unmask);
276 xadc_zynq_update_intmsk(xadc, 0, 0);
278 spin_unlock_irq(&xadc->lock);
280 /* if still pending some alarm re-trigger the timer */
281 if (xadc->zynq_masked_alarm) {
282 schedule_delayed_work(&xadc->zynq_unmask_work,
283 msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
288 static irqreturn_t xadc_zynq_interrupt_handler(int irq, void *devid)
290 struct iio_dev *indio_dev = devid;
291 struct xadc *xadc = iio_priv(indio_dev);
292 uint32_t status;
294 xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
296 status &= ~(xadc->zynq_intmask | xadc->zynq_masked_alarm);
298 if (!status)
299 return IRQ_NONE;
301 spin_lock(&xadc->lock);
303 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status);
305 if (status & XADC_ZYNQ_INT_DFIFO_GTH) {
306 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
307 XADC_ZYNQ_INT_DFIFO_GTH);
308 complete(&xadc->completion);
311 status &= XADC_ZYNQ_INT_ALARM_MASK;
312 if (status) {
313 xadc->zynq_masked_alarm |= status;
315 * mask the current event interrupt,
316 * unmask it when the interrupt is no more active.
318 xadc_zynq_update_intmsk(xadc, 0, 0);
320 xadc_handle_events(indio_dev,
321 xadc_zynq_transform_alarm(status));
323 /* unmask the required interrupts in timer. */
324 schedule_delayed_work(&xadc->zynq_unmask_work,
325 msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
327 spin_unlock(&xadc->lock);
329 return IRQ_HANDLED;
332 #define XADC_ZYNQ_TCK_RATE_MAX 50000000
333 #define XADC_ZYNQ_IGAP_DEFAULT 20
334 #define XADC_ZYNQ_PCAP_RATE_MAX 200000000
336 static int xadc_zynq_setup(struct platform_device *pdev,
337 struct iio_dev *indio_dev, int irq)
339 struct xadc *xadc = iio_priv(indio_dev);
340 unsigned long pcap_rate;
341 unsigned int tck_div;
342 unsigned int div;
343 unsigned int igap;
344 unsigned int tck_rate;
345 int ret;
347 /* TODO: Figure out how to make igap and tck_rate configurable */
348 igap = XADC_ZYNQ_IGAP_DEFAULT;
349 tck_rate = XADC_ZYNQ_TCK_RATE_MAX;
351 xadc->zynq_intmask = ~0;
353 pcap_rate = clk_get_rate(xadc->clk);
354 if (!pcap_rate)
355 return -EINVAL;
357 if (pcap_rate > XADC_ZYNQ_PCAP_RATE_MAX) {
358 ret = clk_set_rate(xadc->clk,
359 (unsigned long)XADC_ZYNQ_PCAP_RATE_MAX);
360 if (ret)
361 return ret;
364 if (tck_rate > pcap_rate / 2) {
365 div = 2;
366 } else {
367 div = pcap_rate / tck_rate;
368 if (pcap_rate / div > XADC_ZYNQ_TCK_RATE_MAX)
369 div++;
372 if (div <= 3)
373 tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV2;
374 else if (div <= 7)
375 tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV4;
376 else if (div <= 15)
377 tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV8;
378 else
379 tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV16;
381 xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, XADC_ZYNQ_CTL_RESET);
382 xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, 0);
383 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, ~0);
384 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK, xadc->zynq_intmask);
385 xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, XADC_ZYNQ_CFG_ENABLE |
386 XADC_ZYNQ_CFG_REDGE | XADC_ZYNQ_CFG_WEDGE |
387 tck_div | XADC_ZYNQ_CFG_IGAP(igap));
389 if (pcap_rate > XADC_ZYNQ_PCAP_RATE_MAX) {
390 ret = clk_set_rate(xadc->clk, pcap_rate);
391 if (ret)
392 return ret;
395 return 0;
398 static unsigned long xadc_zynq_get_dclk_rate(struct xadc *xadc)
400 unsigned int div;
401 uint32_t val;
403 xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &val);
405 switch (val & XADC_ZYNQ_CFG_TCKRATE_MASK) {
406 case XADC_ZYNQ_CFG_TCKRATE_DIV4:
407 div = 4;
408 break;
409 case XADC_ZYNQ_CFG_TCKRATE_DIV8:
410 div = 8;
411 break;
412 case XADC_ZYNQ_CFG_TCKRATE_DIV16:
413 div = 16;
414 break;
415 default:
416 div = 2;
417 break;
420 return clk_get_rate(xadc->clk) / div;
423 static void xadc_zynq_update_alarm(struct xadc *xadc, unsigned int alarm)
425 unsigned long flags;
426 uint32_t status;
428 /* Move OT to bit 7 */
429 alarm = ((alarm & 0x08) << 4) | ((alarm & 0xf0) >> 1) | (alarm & 0x07);
431 spin_lock_irqsave(&xadc->lock, flags);
433 /* Clear previous interrupts if any. */
434 xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
435 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status & alarm);
437 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_ALARM_MASK,
438 ~alarm & XADC_ZYNQ_INT_ALARM_MASK);
440 spin_unlock_irqrestore(&xadc->lock, flags);
443 static const struct xadc_ops xadc_zynq_ops = {
444 .read = xadc_zynq_read_adc_reg,
445 .write = xadc_zynq_write_adc_reg,
446 .setup = xadc_zynq_setup,
447 .get_dclk_rate = xadc_zynq_get_dclk_rate,
448 .interrupt_handler = xadc_zynq_interrupt_handler,
449 .update_alarm = xadc_zynq_update_alarm,
452 static int xadc_axi_read_adc_reg(struct xadc *xadc, unsigned int reg,
453 uint16_t *val)
455 uint32_t val32;
457 xadc_read_reg(xadc, XADC_AXI_ADC_REG_OFFSET + reg * 4, &val32);
458 *val = val32 & 0xffff;
460 return 0;
463 static int xadc_axi_write_adc_reg(struct xadc *xadc, unsigned int reg,
464 uint16_t val)
466 xadc_write_reg(xadc, XADC_AXI_ADC_REG_OFFSET + reg * 4, val);
468 return 0;
471 static int xadc_axi_setup(struct platform_device *pdev,
472 struct iio_dev *indio_dev, int irq)
474 struct xadc *xadc = iio_priv(indio_dev);
476 xadc_write_reg(xadc, XADC_AXI_REG_RESET, XADC_AXI_RESET_MAGIC);
477 xadc_write_reg(xadc, XADC_AXI_REG_GIER, XADC_AXI_GIER_ENABLE);
479 return 0;
482 static irqreturn_t xadc_axi_interrupt_handler(int irq, void *devid)
484 struct iio_dev *indio_dev = devid;
485 struct xadc *xadc = iio_priv(indio_dev);
486 uint32_t status, mask;
487 unsigned int events;
489 xadc_read_reg(xadc, XADC_AXI_REG_IPISR, &status);
490 xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &mask);
491 status &= mask;
493 if (!status)
494 return IRQ_NONE;
496 if ((status & XADC_AXI_INT_EOS) && xadc->trigger)
497 iio_trigger_poll(xadc->trigger);
499 if (status & XADC_AXI_INT_ALARM_MASK) {
501 * The order of the bits in the AXI-XADC status register does
502 * not match the order of the bits in the XADC alarm enable
503 * register. xadc_handle_events() expects the events to be in
504 * the same order as the XADC alarm enable register.
506 events = (status & 0x000e) >> 1;
507 events |= (status & 0x0001) << 3;
508 events |= (status & 0x3c00) >> 6;
509 xadc_handle_events(indio_dev, events);
512 xadc_write_reg(xadc, XADC_AXI_REG_IPISR, status);
514 return IRQ_HANDLED;
517 static void xadc_axi_update_alarm(struct xadc *xadc, unsigned int alarm)
519 uint32_t val;
520 unsigned long flags;
523 * The order of the bits in the AXI-XADC status register does not match
524 * the order of the bits in the XADC alarm enable register. We get
525 * passed the alarm mask in the same order as in the XADC alarm enable
526 * register.
528 alarm = ((alarm & 0x07) << 1) | ((alarm & 0x08) >> 3) |
529 ((alarm & 0xf0) << 6);
531 spin_lock_irqsave(&xadc->lock, flags);
532 xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
533 val &= ~XADC_AXI_INT_ALARM_MASK;
534 val |= alarm;
535 xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
536 spin_unlock_irqrestore(&xadc->lock, flags);
539 static unsigned long xadc_axi_get_dclk(struct xadc *xadc)
541 return clk_get_rate(xadc->clk);
544 static const struct xadc_ops xadc_axi_ops = {
545 .read = xadc_axi_read_adc_reg,
546 .write = xadc_axi_write_adc_reg,
547 .setup = xadc_axi_setup,
548 .get_dclk_rate = xadc_axi_get_dclk,
549 .update_alarm = xadc_axi_update_alarm,
550 .interrupt_handler = xadc_axi_interrupt_handler,
551 .flags = XADC_FLAGS_BUFFERED,
554 static int _xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
555 uint16_t mask, uint16_t val)
557 uint16_t tmp;
558 int ret;
560 ret = _xadc_read_adc_reg(xadc, reg, &tmp);
561 if (ret)
562 return ret;
564 return _xadc_write_adc_reg(xadc, reg, (tmp & ~mask) | val);
567 static int xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
568 uint16_t mask, uint16_t val)
570 int ret;
572 mutex_lock(&xadc->mutex);
573 ret = _xadc_update_adc_reg(xadc, reg, mask, val);
574 mutex_unlock(&xadc->mutex);
576 return ret;
579 static unsigned long xadc_get_dclk_rate(struct xadc *xadc)
581 return xadc->ops->get_dclk_rate(xadc);
584 static int xadc_update_scan_mode(struct iio_dev *indio_dev,
585 const unsigned long *mask)
587 struct xadc *xadc = iio_priv(indio_dev);
588 unsigned int n;
590 n = bitmap_weight(mask, indio_dev->masklength);
592 kfree(xadc->data);
593 xadc->data = kcalloc(n, sizeof(*xadc->data), GFP_KERNEL);
594 if (!xadc->data)
595 return -ENOMEM;
597 return 0;
600 static unsigned int xadc_scan_index_to_channel(unsigned int scan_index)
602 switch (scan_index) {
603 case 5:
604 return XADC_REG_VCCPINT;
605 case 6:
606 return XADC_REG_VCCPAUX;
607 case 7:
608 return XADC_REG_VCCO_DDR;
609 case 8:
610 return XADC_REG_TEMP;
611 case 9:
612 return XADC_REG_VCCINT;
613 case 10:
614 return XADC_REG_VCCAUX;
615 case 11:
616 return XADC_REG_VPVN;
617 case 12:
618 return XADC_REG_VREFP;
619 case 13:
620 return XADC_REG_VREFN;
621 case 14:
622 return XADC_REG_VCCBRAM;
623 default:
624 return XADC_REG_VAUX(scan_index - 16);
628 static irqreturn_t xadc_trigger_handler(int irq, void *p)
630 struct iio_poll_func *pf = p;
631 struct iio_dev *indio_dev = pf->indio_dev;
632 struct xadc *xadc = iio_priv(indio_dev);
633 unsigned int chan;
634 int i, j;
636 if (!xadc->data)
637 goto out;
639 j = 0;
640 for_each_set_bit(i, indio_dev->active_scan_mask,
641 indio_dev->masklength) {
642 chan = xadc_scan_index_to_channel(i);
643 xadc_read_adc_reg(xadc, chan, &xadc->data[j]);
644 j++;
647 iio_push_to_buffers(indio_dev, xadc->data);
649 out:
650 iio_trigger_notify_done(indio_dev->trig);
652 return IRQ_HANDLED;
655 static int xadc_trigger_set_state(struct iio_trigger *trigger, bool state)
657 struct xadc *xadc = iio_trigger_get_drvdata(trigger);
658 unsigned long flags;
659 unsigned int convst;
660 unsigned int val;
661 int ret = 0;
663 mutex_lock(&xadc->mutex);
665 if (state) {
666 /* Only one of the two triggers can be active at a time. */
667 if (xadc->trigger != NULL) {
668 ret = -EBUSY;
669 goto err_out;
670 } else {
671 xadc->trigger = trigger;
672 if (trigger == xadc->convst_trigger)
673 convst = XADC_CONF0_EC;
674 else
675 convst = 0;
677 ret = _xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF0_EC,
678 convst);
679 if (ret)
680 goto err_out;
681 } else {
682 xadc->trigger = NULL;
685 spin_lock_irqsave(&xadc->lock, flags);
686 xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
687 xadc_write_reg(xadc, XADC_AXI_REG_IPISR, XADC_AXI_INT_EOS);
688 if (state)
689 val |= XADC_AXI_INT_EOS;
690 else
691 val &= ~XADC_AXI_INT_EOS;
692 xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
693 spin_unlock_irqrestore(&xadc->lock, flags);
695 err_out:
696 mutex_unlock(&xadc->mutex);
698 return ret;
701 static const struct iio_trigger_ops xadc_trigger_ops = {
702 .set_trigger_state = &xadc_trigger_set_state,
705 static struct iio_trigger *xadc_alloc_trigger(struct iio_dev *indio_dev,
706 const char *name)
708 struct iio_trigger *trig;
709 int ret;
711 trig = iio_trigger_alloc("%s%d-%s", indio_dev->name,
712 indio_dev->id, name);
713 if (trig == NULL)
714 return ERR_PTR(-ENOMEM);
716 trig->dev.parent = indio_dev->dev.parent;
717 trig->ops = &xadc_trigger_ops;
718 iio_trigger_set_drvdata(trig, iio_priv(indio_dev));
720 ret = iio_trigger_register(trig);
721 if (ret)
722 goto error_free_trig;
724 return trig;
726 error_free_trig:
727 iio_trigger_free(trig);
728 return ERR_PTR(ret);
731 static int xadc_power_adc_b(struct xadc *xadc, unsigned int seq_mode)
733 uint16_t val;
735 /* Powerdown the ADC-B when it is not needed. */
736 switch (seq_mode) {
737 case XADC_CONF1_SEQ_SIMULTANEOUS:
738 case XADC_CONF1_SEQ_INDEPENDENT:
739 val = 0;
740 break;
741 default:
742 val = XADC_CONF2_PD_ADC_B;
743 break;
746 return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_PD_MASK,
747 val);
750 static int xadc_get_seq_mode(struct xadc *xadc, unsigned long scan_mode)
752 unsigned int aux_scan_mode = scan_mode >> 16;
754 if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_DUAL)
755 return XADC_CONF1_SEQ_SIMULTANEOUS;
757 if ((aux_scan_mode & 0xff00) == 0 ||
758 (aux_scan_mode & 0x00ff) == 0)
759 return XADC_CONF1_SEQ_CONTINUOUS;
761 return XADC_CONF1_SEQ_SIMULTANEOUS;
764 static int xadc_postdisable(struct iio_dev *indio_dev)
766 struct xadc *xadc = iio_priv(indio_dev);
767 unsigned long scan_mask;
768 int ret;
769 int i;
771 scan_mask = 1; /* Run calibration as part of the sequence */
772 for (i = 0; i < indio_dev->num_channels; i++)
773 scan_mask |= BIT(indio_dev->channels[i].scan_index);
775 /* Enable all channels and calibration */
776 ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
777 if (ret)
778 return ret;
780 ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
781 if (ret)
782 return ret;
784 ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
785 XADC_CONF1_SEQ_CONTINUOUS);
786 if (ret)
787 return ret;
789 return xadc_power_adc_b(xadc, XADC_CONF1_SEQ_CONTINUOUS);
792 static int xadc_preenable(struct iio_dev *indio_dev)
794 struct xadc *xadc = iio_priv(indio_dev);
795 unsigned long scan_mask;
796 int seq_mode;
797 int ret;
799 ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
800 XADC_CONF1_SEQ_DEFAULT);
801 if (ret)
802 goto err;
804 scan_mask = *indio_dev->active_scan_mask;
805 seq_mode = xadc_get_seq_mode(xadc, scan_mask);
807 ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
808 if (ret)
809 goto err;
812 * In simultaneous mode the upper and lower aux channels are samples at
813 * the same time. In this mode the upper 8 bits in the sequencer
814 * register are don't care and the lower 8 bits control two channels
815 * each. As such we must set the bit if either the channel in the lower
816 * group or the upper group is enabled.
818 if (seq_mode == XADC_CONF1_SEQ_SIMULTANEOUS)
819 scan_mask = ((scan_mask >> 8) | scan_mask) & 0xff0000;
821 ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
822 if (ret)
823 goto err;
825 ret = xadc_power_adc_b(xadc, seq_mode);
826 if (ret)
827 goto err;
829 ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
830 seq_mode);
831 if (ret)
832 goto err;
834 return 0;
835 err:
836 xadc_postdisable(indio_dev);
837 return ret;
840 static const struct iio_buffer_setup_ops xadc_buffer_ops = {
841 .preenable = &xadc_preenable,
842 .postdisable = &xadc_postdisable,
845 static int xadc_read_samplerate(struct xadc *xadc)
847 unsigned int div;
848 uint16_t val16;
849 int ret;
851 ret = xadc_read_adc_reg(xadc, XADC_REG_CONF2, &val16);
852 if (ret)
853 return ret;
855 div = (val16 & XADC_CONF2_DIV_MASK) >> XADC_CONF2_DIV_OFFSET;
856 if (div < 2)
857 div = 2;
859 return xadc_get_dclk_rate(xadc) / div / 26;
862 static int xadc_read_raw(struct iio_dev *indio_dev,
863 struct iio_chan_spec const *chan, int *val, int *val2, long info)
865 struct xadc *xadc = iio_priv(indio_dev);
866 uint16_t val16;
867 int ret;
869 switch (info) {
870 case IIO_CHAN_INFO_RAW:
871 if (iio_buffer_enabled(indio_dev))
872 return -EBUSY;
873 ret = xadc_read_adc_reg(xadc, chan->address, &val16);
874 if (ret < 0)
875 return ret;
877 val16 >>= 4;
878 if (chan->scan_type.sign == 'u')
879 *val = val16;
880 else
881 *val = sign_extend32(val16, 11);
883 return IIO_VAL_INT;
884 case IIO_CHAN_INFO_SCALE:
885 switch (chan->type) {
886 case IIO_VOLTAGE:
887 /* V = (val * 3.0) / 4096 */
888 switch (chan->address) {
889 case XADC_REG_VCCINT:
890 case XADC_REG_VCCAUX:
891 case XADC_REG_VREFP:
892 case XADC_REG_VREFN:
893 case XADC_REG_VCCBRAM:
894 case XADC_REG_VCCPINT:
895 case XADC_REG_VCCPAUX:
896 case XADC_REG_VCCO_DDR:
897 *val = 3000;
898 break;
899 default:
900 *val = 1000;
901 break;
903 *val2 = 12;
904 return IIO_VAL_FRACTIONAL_LOG2;
905 case IIO_TEMP:
906 /* Temp in C = (val * 503.975) / 4096 - 273.15 */
907 *val = 503975;
908 *val2 = 12;
909 return IIO_VAL_FRACTIONAL_LOG2;
910 default:
911 return -EINVAL;
913 case IIO_CHAN_INFO_OFFSET:
914 /* Only the temperature channel has an offset */
915 *val = -((273150 << 12) / 503975);
916 return IIO_VAL_INT;
917 case IIO_CHAN_INFO_SAMP_FREQ:
918 ret = xadc_read_samplerate(xadc);
919 if (ret < 0)
920 return ret;
922 *val = ret;
923 return IIO_VAL_INT;
924 default:
925 return -EINVAL;
929 static int xadc_write_samplerate(struct xadc *xadc, int val)
931 unsigned long clk_rate = xadc_get_dclk_rate(xadc);
932 unsigned int div;
934 if (!clk_rate)
935 return -EINVAL;
937 if (val <= 0)
938 return -EINVAL;
940 /* Max. 150 kSPS */
941 if (val > XADC_MAX_SAMPLERATE)
942 val = XADC_MAX_SAMPLERATE;
944 val *= 26;
946 /* Min 1MHz */
947 if (val < 1000000)
948 val = 1000000;
951 * We want to round down, but only if we do not exceed the 150 kSPS
952 * limit.
954 div = clk_rate / val;
955 if (clk_rate / div / 26 > XADC_MAX_SAMPLERATE)
956 div++;
957 if (div < 2)
958 div = 2;
959 else if (div > 0xff)
960 div = 0xff;
962 return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_DIV_MASK,
963 div << XADC_CONF2_DIV_OFFSET);
966 static int xadc_write_raw(struct iio_dev *indio_dev,
967 struct iio_chan_spec const *chan, int val, int val2, long info)
969 struct xadc *xadc = iio_priv(indio_dev);
971 if (info != IIO_CHAN_INFO_SAMP_FREQ)
972 return -EINVAL;
974 return xadc_write_samplerate(xadc, val);
977 static const struct iio_event_spec xadc_temp_events[] = {
979 .type = IIO_EV_TYPE_THRESH,
980 .dir = IIO_EV_DIR_RISING,
981 .mask_separate = BIT(IIO_EV_INFO_ENABLE) |
982 BIT(IIO_EV_INFO_VALUE) |
983 BIT(IIO_EV_INFO_HYSTERESIS),
987 /* Separate values for upper and lower thresholds, but only a shared enabled */
988 static const struct iio_event_spec xadc_voltage_events[] = {
990 .type = IIO_EV_TYPE_THRESH,
991 .dir = IIO_EV_DIR_RISING,
992 .mask_separate = BIT(IIO_EV_INFO_VALUE),
993 }, {
994 .type = IIO_EV_TYPE_THRESH,
995 .dir = IIO_EV_DIR_FALLING,
996 .mask_separate = BIT(IIO_EV_INFO_VALUE),
997 }, {
998 .type = IIO_EV_TYPE_THRESH,
999 .dir = IIO_EV_DIR_EITHER,
1000 .mask_separate = BIT(IIO_EV_INFO_ENABLE),
1004 #define XADC_CHAN_TEMP(_chan, _scan_index, _addr) { \
1005 .type = IIO_TEMP, \
1006 .indexed = 1, \
1007 .channel = (_chan), \
1008 .address = (_addr), \
1009 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
1010 BIT(IIO_CHAN_INFO_SCALE) | \
1011 BIT(IIO_CHAN_INFO_OFFSET), \
1012 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
1013 .event_spec = xadc_temp_events, \
1014 .num_event_specs = ARRAY_SIZE(xadc_temp_events), \
1015 .scan_index = (_scan_index), \
1016 .scan_type = { \
1017 .sign = 'u', \
1018 .realbits = 12, \
1019 .storagebits = 16, \
1020 .shift = 4, \
1021 .endianness = IIO_CPU, \
1022 }, \
1025 #define XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, _ext, _alarm) { \
1026 .type = IIO_VOLTAGE, \
1027 .indexed = 1, \
1028 .channel = (_chan), \
1029 .address = (_addr), \
1030 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
1031 BIT(IIO_CHAN_INFO_SCALE), \
1032 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
1033 .event_spec = (_alarm) ? xadc_voltage_events : NULL, \
1034 .num_event_specs = (_alarm) ? ARRAY_SIZE(xadc_voltage_events) : 0, \
1035 .scan_index = (_scan_index), \
1036 .scan_type = { \
1037 .sign = ((_addr) == XADC_REG_VREFN) ? 's' : 'u', \
1038 .realbits = 12, \
1039 .storagebits = 16, \
1040 .shift = 4, \
1041 .endianness = IIO_CPU, \
1042 }, \
1043 .extend_name = _ext, \
1046 static const struct iio_chan_spec xadc_channels[] = {
1047 XADC_CHAN_TEMP(0, 8, XADC_REG_TEMP),
1048 XADC_CHAN_VOLTAGE(0, 9, XADC_REG_VCCINT, "vccint", true),
1049 XADC_CHAN_VOLTAGE(1, 10, XADC_REG_VCCAUX, "vccaux", true),
1050 XADC_CHAN_VOLTAGE(2, 14, XADC_REG_VCCBRAM, "vccbram", true),
1051 XADC_CHAN_VOLTAGE(3, 5, XADC_REG_VCCPINT, "vccpint", true),
1052 XADC_CHAN_VOLTAGE(4, 6, XADC_REG_VCCPAUX, "vccpaux", true),
1053 XADC_CHAN_VOLTAGE(5, 7, XADC_REG_VCCO_DDR, "vccoddr", true),
1054 XADC_CHAN_VOLTAGE(6, 12, XADC_REG_VREFP, "vrefp", false),
1055 XADC_CHAN_VOLTAGE(7, 13, XADC_REG_VREFN, "vrefn", false),
1056 XADC_CHAN_VOLTAGE(8, 11, XADC_REG_VPVN, NULL, false),
1057 XADC_CHAN_VOLTAGE(9, 16, XADC_REG_VAUX(0), NULL, false),
1058 XADC_CHAN_VOLTAGE(10, 17, XADC_REG_VAUX(1), NULL, false),
1059 XADC_CHAN_VOLTAGE(11, 18, XADC_REG_VAUX(2), NULL, false),
1060 XADC_CHAN_VOLTAGE(12, 19, XADC_REG_VAUX(3), NULL, false),
1061 XADC_CHAN_VOLTAGE(13, 20, XADC_REG_VAUX(4), NULL, false),
1062 XADC_CHAN_VOLTAGE(14, 21, XADC_REG_VAUX(5), NULL, false),
1063 XADC_CHAN_VOLTAGE(15, 22, XADC_REG_VAUX(6), NULL, false),
1064 XADC_CHAN_VOLTAGE(16, 23, XADC_REG_VAUX(7), NULL, false),
1065 XADC_CHAN_VOLTAGE(17, 24, XADC_REG_VAUX(8), NULL, false),
1066 XADC_CHAN_VOLTAGE(18, 25, XADC_REG_VAUX(9), NULL, false),
1067 XADC_CHAN_VOLTAGE(19, 26, XADC_REG_VAUX(10), NULL, false),
1068 XADC_CHAN_VOLTAGE(20, 27, XADC_REG_VAUX(11), NULL, false),
1069 XADC_CHAN_VOLTAGE(21, 28, XADC_REG_VAUX(12), NULL, false),
1070 XADC_CHAN_VOLTAGE(22, 29, XADC_REG_VAUX(13), NULL, false),
1071 XADC_CHAN_VOLTAGE(23, 30, XADC_REG_VAUX(14), NULL, false),
1072 XADC_CHAN_VOLTAGE(24, 31, XADC_REG_VAUX(15), NULL, false),
1075 static const struct iio_info xadc_info = {
1076 .read_raw = &xadc_read_raw,
1077 .write_raw = &xadc_write_raw,
1078 .read_event_config = &xadc_read_event_config,
1079 .write_event_config = &xadc_write_event_config,
1080 .read_event_value = &xadc_read_event_value,
1081 .write_event_value = &xadc_write_event_value,
1082 .update_scan_mode = &xadc_update_scan_mode,
1085 static const struct of_device_id xadc_of_match_table[] = {
1086 { .compatible = "xlnx,zynq-xadc-1.00.a", (void *)&xadc_zynq_ops },
1087 { .compatible = "xlnx,axi-xadc-1.00.a", (void *)&xadc_axi_ops },
1088 { },
1090 MODULE_DEVICE_TABLE(of, xadc_of_match_table);
1092 static int xadc_parse_dt(struct iio_dev *indio_dev, struct device_node *np,
1093 unsigned int *conf)
1095 struct device *dev = indio_dev->dev.parent;
1096 struct xadc *xadc = iio_priv(indio_dev);
1097 struct iio_chan_spec *channels, *chan;
1098 struct device_node *chan_node, *child;
1099 unsigned int num_channels;
1100 const char *external_mux;
1101 u32 ext_mux_chan;
1102 u32 reg;
1103 int ret;
1105 *conf = 0;
1107 ret = of_property_read_string(np, "xlnx,external-mux", &external_mux);
1108 if (ret < 0 || strcasecmp(external_mux, "none") == 0)
1109 xadc->external_mux_mode = XADC_EXTERNAL_MUX_NONE;
1110 else if (strcasecmp(external_mux, "single") == 0)
1111 xadc->external_mux_mode = XADC_EXTERNAL_MUX_SINGLE;
1112 else if (strcasecmp(external_mux, "dual") == 0)
1113 xadc->external_mux_mode = XADC_EXTERNAL_MUX_DUAL;
1114 else
1115 return -EINVAL;
1117 if (xadc->external_mux_mode != XADC_EXTERNAL_MUX_NONE) {
1118 ret = of_property_read_u32(np, "xlnx,external-mux-channel",
1119 &ext_mux_chan);
1120 if (ret < 0)
1121 return ret;
1123 if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_SINGLE) {
1124 if (ext_mux_chan == 0)
1125 ext_mux_chan = XADC_REG_VPVN;
1126 else if (ext_mux_chan <= 16)
1127 ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
1128 else
1129 return -EINVAL;
1130 } else {
1131 if (ext_mux_chan > 0 && ext_mux_chan <= 8)
1132 ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
1133 else
1134 return -EINVAL;
1137 *conf |= XADC_CONF0_MUX | XADC_CONF0_CHAN(ext_mux_chan);
1140 channels = devm_kmemdup(dev, xadc_channels,
1141 sizeof(xadc_channels), GFP_KERNEL);
1142 if (!channels)
1143 return -ENOMEM;
1145 num_channels = 9;
1146 chan = &channels[9];
1148 chan_node = of_get_child_by_name(np, "xlnx,channels");
1149 if (chan_node) {
1150 for_each_child_of_node(chan_node, child) {
1151 if (num_channels >= ARRAY_SIZE(xadc_channels)) {
1152 of_node_put(child);
1153 break;
1156 ret = of_property_read_u32(child, "reg", &reg);
1157 if (ret || reg > 16)
1158 continue;
1160 if (of_property_read_bool(child, "xlnx,bipolar"))
1161 chan->scan_type.sign = 's';
1163 if (reg == 0) {
1164 chan->scan_index = 11;
1165 chan->address = XADC_REG_VPVN;
1166 } else {
1167 chan->scan_index = 15 + reg;
1168 chan->address = XADC_REG_VAUX(reg - 1);
1170 num_channels++;
1171 chan++;
1174 of_node_put(chan_node);
1176 indio_dev->num_channels = num_channels;
1177 indio_dev->channels = devm_krealloc(dev, channels,
1178 sizeof(*channels) * num_channels,
1179 GFP_KERNEL);
1180 /* If we can't resize the channels array, just use the original */
1181 if (!indio_dev->channels)
1182 indio_dev->channels = channels;
1184 return 0;
1187 static int xadc_probe(struct platform_device *pdev)
1189 const struct of_device_id *id;
1190 struct iio_dev *indio_dev;
1191 unsigned int bipolar_mask;
1192 unsigned int conf0;
1193 struct xadc *xadc;
1194 int ret;
1195 int irq;
1196 int i;
1198 if (!pdev->dev.of_node)
1199 return -ENODEV;
1201 id = of_match_node(xadc_of_match_table, pdev->dev.of_node);
1202 if (!id)
1203 return -EINVAL;
1205 irq = platform_get_irq(pdev, 0);
1206 if (irq <= 0)
1207 return -ENXIO;
1209 indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*xadc));
1210 if (!indio_dev)
1211 return -ENOMEM;
1213 xadc = iio_priv(indio_dev);
1214 xadc->ops = id->data;
1215 xadc->irq = irq;
1216 init_completion(&xadc->completion);
1217 mutex_init(&xadc->mutex);
1218 spin_lock_init(&xadc->lock);
1219 INIT_DELAYED_WORK(&xadc->zynq_unmask_work, xadc_zynq_unmask_worker);
1221 xadc->base = devm_platform_ioremap_resource(pdev, 0);
1222 if (IS_ERR(xadc->base))
1223 return PTR_ERR(xadc->base);
1225 indio_dev->name = "xadc";
1226 indio_dev->modes = INDIO_DIRECT_MODE;
1227 indio_dev->info = &xadc_info;
1229 ret = xadc_parse_dt(indio_dev, pdev->dev.of_node, &conf0);
1230 if (ret)
1231 return ret;
1233 if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1234 ret = iio_triggered_buffer_setup(indio_dev,
1235 &iio_pollfunc_store_time, &xadc_trigger_handler,
1236 &xadc_buffer_ops);
1237 if (ret)
1238 return ret;
1240 xadc->convst_trigger = xadc_alloc_trigger(indio_dev, "convst");
1241 if (IS_ERR(xadc->convst_trigger)) {
1242 ret = PTR_ERR(xadc->convst_trigger);
1243 goto err_triggered_buffer_cleanup;
1245 xadc->samplerate_trigger = xadc_alloc_trigger(indio_dev,
1246 "samplerate");
1247 if (IS_ERR(xadc->samplerate_trigger)) {
1248 ret = PTR_ERR(xadc->samplerate_trigger);
1249 goto err_free_convst_trigger;
1253 xadc->clk = devm_clk_get(&pdev->dev, NULL);
1254 if (IS_ERR(xadc->clk)) {
1255 ret = PTR_ERR(xadc->clk);
1256 goto err_free_samplerate_trigger;
1259 ret = clk_prepare_enable(xadc->clk);
1260 if (ret)
1261 goto err_free_samplerate_trigger;
1264 * Make sure not to exceed the maximum samplerate since otherwise the
1265 * resulting interrupt storm will soft-lock the system.
1267 if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1268 ret = xadc_read_samplerate(xadc);
1269 if (ret < 0)
1270 goto err_free_samplerate_trigger;
1271 if (ret > XADC_MAX_SAMPLERATE) {
1272 ret = xadc_write_samplerate(xadc, XADC_MAX_SAMPLERATE);
1273 if (ret < 0)
1274 goto err_free_samplerate_trigger;
1278 ret = request_irq(xadc->irq, xadc->ops->interrupt_handler, 0,
1279 dev_name(&pdev->dev), indio_dev);
1280 if (ret)
1281 goto err_clk_disable_unprepare;
1283 ret = xadc->ops->setup(pdev, indio_dev, xadc->irq);
1284 if (ret)
1285 goto err_free_irq;
1287 for (i = 0; i < 16; i++)
1288 xadc_read_adc_reg(xadc, XADC_REG_THRESHOLD(i),
1289 &xadc->threshold[i]);
1291 ret = xadc_write_adc_reg(xadc, XADC_REG_CONF0, conf0);
1292 if (ret)
1293 goto err_free_irq;
1295 bipolar_mask = 0;
1296 for (i = 0; i < indio_dev->num_channels; i++) {
1297 if (indio_dev->channels[i].scan_type.sign == 's')
1298 bipolar_mask |= BIT(indio_dev->channels[i].scan_index);
1301 ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(0), bipolar_mask);
1302 if (ret)
1303 goto err_free_irq;
1304 ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(1),
1305 bipolar_mask >> 16);
1306 if (ret)
1307 goto err_free_irq;
1309 /* Disable all alarms */
1310 ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_ALARM_MASK,
1311 XADC_CONF1_ALARM_MASK);
1312 if (ret)
1313 goto err_free_irq;
1315 /* Set thresholds to min/max */
1316 for (i = 0; i < 16; i++) {
1318 * Set max voltage threshold and both temperature thresholds to
1319 * 0xffff, min voltage threshold to 0.
1321 if (i % 8 < 4 || i == 7)
1322 xadc->threshold[i] = 0xffff;
1323 else
1324 xadc->threshold[i] = 0;
1325 ret = xadc_write_adc_reg(xadc, XADC_REG_THRESHOLD(i),
1326 xadc->threshold[i]);
1327 if (ret)
1328 goto err_free_irq;
1331 /* Go to non-buffered mode */
1332 xadc_postdisable(indio_dev);
1334 ret = iio_device_register(indio_dev);
1335 if (ret)
1336 goto err_free_irq;
1338 platform_set_drvdata(pdev, indio_dev);
1340 return 0;
1342 err_free_irq:
1343 free_irq(xadc->irq, indio_dev);
1344 cancel_delayed_work_sync(&xadc->zynq_unmask_work);
1345 err_clk_disable_unprepare:
1346 clk_disable_unprepare(xadc->clk);
1347 err_free_samplerate_trigger:
1348 if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
1349 iio_trigger_free(xadc->samplerate_trigger);
1350 err_free_convst_trigger:
1351 if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
1352 iio_trigger_free(xadc->convst_trigger);
1353 err_triggered_buffer_cleanup:
1354 if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
1355 iio_triggered_buffer_cleanup(indio_dev);
1357 return ret;
1360 static int xadc_remove(struct platform_device *pdev)
1362 struct iio_dev *indio_dev = platform_get_drvdata(pdev);
1363 struct xadc *xadc = iio_priv(indio_dev);
1365 iio_device_unregister(indio_dev);
1366 if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1367 iio_trigger_free(xadc->samplerate_trigger);
1368 iio_trigger_free(xadc->convst_trigger);
1369 iio_triggered_buffer_cleanup(indio_dev);
1371 free_irq(xadc->irq, indio_dev);
1372 cancel_delayed_work_sync(&xadc->zynq_unmask_work);
1373 clk_disable_unprepare(xadc->clk);
1374 kfree(xadc->data);
1376 return 0;
1379 static struct platform_driver xadc_driver = {
1380 .probe = xadc_probe,
1381 .remove = xadc_remove,
1382 .driver = {
1383 .name = "xadc",
1384 .of_match_table = xadc_of_match_table,
1387 module_platform_driver(xadc_driver);
1389 MODULE_LICENSE("GPL v2");
1390 MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
1391 MODULE_DESCRIPTION("Xilinx XADC IIO driver");