1 // SPDX-License-Identifier: GPL-2.0-only
3 * MPU3050 gyroscope driver
5 * Copyright (C) 2016 Linaro Ltd.
6 * Author: Linus Walleij <linus.walleij@linaro.org>
8 * Based on the input subsystem driver, Copyright (C) 2011 Wistron Co.Ltd
9 * Joseph Lai <joseph_lai@wistron.com> and trimmed down by
10 * Alan Cox <alan@linux.intel.com> in turn based on bma023.c.
11 * Device behaviour based on a misc driver posted by Nathan Royer in 2011.
13 * TODO: add support for setting up the low pass 3dB frequency.
16 #include <linux/bitfield.h>
17 #include <linux/bitops.h>
18 #include <linux/delay.h>
19 #include <linux/err.h>
20 #include <linux/iio/buffer.h>
21 #include <linux/iio/iio.h>
22 #include <linux/iio/sysfs.h>
23 #include <linux/iio/trigger.h>
24 #include <linux/iio/trigger_consumer.h>
25 #include <linux/iio/triggered_buffer.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
34 #define MPU3050_CHIP_ID 0x68
35 #define MPU3050_CHIP_ID_MASK 0x7E
38 * Register map: anything suffixed *_H is a big-endian high byte and always
39 * followed by the corresponding low byte (*_L) even though these are not
40 * explicitly included in the register definitions.
42 #define MPU3050_CHIP_ID_REG 0x00
43 #define MPU3050_PRODUCT_ID_REG 0x01
44 #define MPU3050_XG_OFFS_TC 0x05
45 #define MPU3050_YG_OFFS_TC 0x08
46 #define MPU3050_ZG_OFFS_TC 0x0B
47 #define MPU3050_X_OFFS_USR_H 0x0C
48 #define MPU3050_Y_OFFS_USR_H 0x0E
49 #define MPU3050_Z_OFFS_USR_H 0x10
50 #define MPU3050_FIFO_EN 0x12
51 #define MPU3050_AUX_VDDIO 0x13
52 #define MPU3050_SLV_ADDR 0x14
53 #define MPU3050_SMPLRT_DIV 0x15
54 #define MPU3050_DLPF_FS_SYNC 0x16
55 #define MPU3050_INT_CFG 0x17
56 #define MPU3050_AUX_ADDR 0x18
57 #define MPU3050_INT_STATUS 0x1A
58 #define MPU3050_TEMP_H 0x1B
59 #define MPU3050_XOUT_H 0x1D
60 #define MPU3050_YOUT_H 0x1F
61 #define MPU3050_ZOUT_H 0x21
62 #define MPU3050_DMP_CFG1 0x35
63 #define MPU3050_DMP_CFG2 0x36
64 #define MPU3050_BANK_SEL 0x37
65 #define MPU3050_MEM_START_ADDR 0x38
66 #define MPU3050_MEM_R_W 0x39
67 #define MPU3050_FIFO_COUNT_H 0x3A
68 #define MPU3050_FIFO_R 0x3C
69 #define MPU3050_USR_CTRL 0x3D
70 #define MPU3050_PWR_MGM 0x3E
72 /* MPU memory bank read options */
73 #define MPU3050_MEM_PRFTCH BIT(5)
74 #define MPU3050_MEM_USER_BANK BIT(4)
75 /* Bits 8-11 select memory bank */
76 #define MPU3050_MEM_RAM_BANK_0 0
77 #define MPU3050_MEM_RAM_BANK_1 1
78 #define MPU3050_MEM_RAM_BANK_2 2
79 #define MPU3050_MEM_RAM_BANK_3 3
80 #define MPU3050_MEM_OTP_BANK_0 4
82 #define MPU3050_AXIS_REGS(axis) (MPU3050_XOUT_H + (axis * 2))
87 #define MPU3050_FIFO_EN_FOOTER BIT(0)
88 #define MPU3050_FIFO_EN_AUX_ZOUT BIT(1)
89 #define MPU3050_FIFO_EN_AUX_YOUT BIT(2)
90 #define MPU3050_FIFO_EN_AUX_XOUT BIT(3)
91 #define MPU3050_FIFO_EN_GYRO_ZOUT BIT(4)
92 #define MPU3050_FIFO_EN_GYRO_YOUT BIT(5)
93 #define MPU3050_FIFO_EN_GYRO_XOUT BIT(6)
94 #define MPU3050_FIFO_EN_TEMP_OUT BIT(7)
97 * Digital Low Pass filter (DLPF)
101 #define MPU3050_EXT_SYNC_NONE 0x00
102 #define MPU3050_EXT_SYNC_TEMP 0x20
103 #define MPU3050_EXT_SYNC_GYROX 0x40
104 #define MPU3050_EXT_SYNC_GYROY 0x60
105 #define MPU3050_EXT_SYNC_GYROZ 0x80
106 #define MPU3050_EXT_SYNC_ACCELX 0xA0
107 #define MPU3050_EXT_SYNC_ACCELY 0xC0
108 #define MPU3050_EXT_SYNC_ACCELZ 0xE0
109 #define MPU3050_EXT_SYNC_MASK 0xE0
110 #define MPU3050_EXT_SYNC_SHIFT 5
112 #define MPU3050_FS_250DPS 0x00
113 #define MPU3050_FS_500DPS 0x08
114 #define MPU3050_FS_1000DPS 0x10
115 #define MPU3050_FS_2000DPS 0x18
116 #define MPU3050_FS_MASK 0x18
117 #define MPU3050_FS_SHIFT 3
119 #define MPU3050_DLPF_CFG_256HZ_NOLPF2 0x00
120 #define MPU3050_DLPF_CFG_188HZ 0x01
121 #define MPU3050_DLPF_CFG_98HZ 0x02
122 #define MPU3050_DLPF_CFG_42HZ 0x03
123 #define MPU3050_DLPF_CFG_20HZ 0x04
124 #define MPU3050_DLPF_CFG_10HZ 0x05
125 #define MPU3050_DLPF_CFG_5HZ 0x06
126 #define MPU3050_DLPF_CFG_2100HZ_NOLPF 0x07
127 #define MPU3050_DLPF_CFG_MASK 0x07
128 #define MPU3050_DLPF_CFG_SHIFT 0
130 /* Interrupt config */
131 #define MPU3050_INT_RAW_RDY_EN BIT(0)
132 #define MPU3050_INT_DMP_DONE_EN BIT(1)
133 #define MPU3050_INT_MPU_RDY_EN BIT(2)
134 #define MPU3050_INT_ANYRD_2CLEAR BIT(4)
135 #define MPU3050_INT_LATCH_EN BIT(5)
136 #define MPU3050_INT_OPEN BIT(6)
137 #define MPU3050_INT_ACTL BIT(7)
138 /* Interrupt status */
139 #define MPU3050_INT_STATUS_RAW_RDY BIT(0)
140 #define MPU3050_INT_STATUS_DMP_DONE BIT(1)
141 #define MPU3050_INT_STATUS_MPU_RDY BIT(2)
142 #define MPU3050_INT_STATUS_FIFO_OVFLW BIT(7)
144 #define MPU3050_USR_CTRL_FIFO_EN BIT(6)
145 #define MPU3050_USR_CTRL_AUX_IF_EN BIT(5)
146 #define MPU3050_USR_CTRL_AUX_IF_RST BIT(3)
147 #define MPU3050_USR_CTRL_FIFO_RST BIT(1)
148 #define MPU3050_USR_CTRL_GYRO_RST BIT(0)
150 #define MPU3050_PWR_MGM_PLL_X 0x01
151 #define MPU3050_PWR_MGM_PLL_Y 0x02
152 #define MPU3050_PWR_MGM_PLL_Z 0x03
153 #define MPU3050_PWR_MGM_CLKSEL_MASK 0x07
154 #define MPU3050_PWR_MGM_STBY_ZG BIT(3)
155 #define MPU3050_PWR_MGM_STBY_YG BIT(4)
156 #define MPU3050_PWR_MGM_STBY_XG BIT(5)
157 #define MPU3050_PWR_MGM_SLEEP BIT(6)
158 #define MPU3050_PWR_MGM_RESET BIT(7)
159 #define MPU3050_PWR_MGM_MASK 0xff
162 * Fullscale precision is (for finest precision) +/- 250 deg/s, so the full
163 * scale is actually 500 deg/s. All 16 bits are then used to cover this scale,
164 * in two's complement.
166 static unsigned int mpu3050_fs_precision
[] = {
167 IIO_DEGREE_TO_RAD(250),
168 IIO_DEGREE_TO_RAD(500),
169 IIO_DEGREE_TO_RAD(1000),
170 IIO_DEGREE_TO_RAD(2000)
176 static const char mpu3050_reg_vdd
[] = "vdd";
177 static const char mpu3050_reg_vlogic
[] = "vlogic";
179 static unsigned int mpu3050_get_freq(struct mpu3050
*mpu3050
)
183 if (mpu3050
->lpf
== MPU3050_DLPF_CFG_256HZ_NOLPF2
)
187 freq
/= (mpu3050
->divisor
+ 1);
192 static int mpu3050_start_sampling(struct mpu3050
*mpu3050
)
199 ret
= regmap_update_bits(mpu3050
->map
, MPU3050_PWR_MGM
,
200 MPU3050_PWR_MGM_RESET
, MPU3050_PWR_MGM_RESET
);
204 /* Turn on the Z-axis PLL */
205 ret
= regmap_update_bits(mpu3050
->map
, MPU3050_PWR_MGM
,
206 MPU3050_PWR_MGM_CLKSEL_MASK
,
207 MPU3050_PWR_MGM_PLL_Z
);
211 /* Write calibration offset registers */
212 for (i
= 0; i
< 3; i
++)
213 raw_val
[i
] = cpu_to_be16(mpu3050
->calibration
[i
]);
215 ret
= regmap_bulk_write(mpu3050
->map
, MPU3050_X_OFFS_USR_H
, raw_val
,
220 /* Set low pass filter (sample rate), sync and full scale */
221 ret
= regmap_write(mpu3050
->map
, MPU3050_DLPF_FS_SYNC
,
222 MPU3050_EXT_SYNC_NONE
<< MPU3050_EXT_SYNC_SHIFT
|
223 mpu3050
->fullscale
<< MPU3050_FS_SHIFT
|
224 mpu3050
->lpf
<< MPU3050_DLPF_CFG_SHIFT
);
228 /* Set up sampling frequency */
229 ret
= regmap_write(mpu3050
->map
, MPU3050_SMPLRT_DIV
, mpu3050
->divisor
);
234 * Max 50 ms start-up time after setting DLPF_FS_SYNC
235 * according to the data sheet, then wait for the next sample
236 * at this frequency T = 1000/f ms.
238 msleep(50 + 1000 / mpu3050_get_freq(mpu3050
));
243 static int mpu3050_set_8khz_samplerate(struct mpu3050
*mpu3050
)
247 enum mpu3050_lpf lpf
;
250 divisor
= mpu3050
->divisor
;
252 mpu3050
->lpf
= LPF_256_HZ_NOLPF
; /* 8 kHz base frequency */
253 mpu3050
->divisor
= 0; /* Divide by 1 */
254 ret
= mpu3050_start_sampling(mpu3050
);
257 mpu3050
->divisor
= divisor
;
262 static int mpu3050_read_raw(struct iio_dev
*indio_dev
,
263 struct iio_chan_spec
const *chan
,
267 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
272 case IIO_CHAN_INFO_OFFSET
:
273 switch (chan
->type
) {
275 /* The temperature scaling is (x+23000)/280 Celsius */
281 case IIO_CHAN_INFO_CALIBBIAS
:
282 switch (chan
->type
) {
284 *val
= mpu3050
->calibration
[chan
->scan_index
-1];
289 case IIO_CHAN_INFO_SAMP_FREQ
:
290 *val
= mpu3050_get_freq(mpu3050
);
292 case IIO_CHAN_INFO_SCALE
:
293 switch (chan
->type
) {
295 /* Millidegrees, see about temperature scaling above */
298 return IIO_VAL_FRACTIONAL
;
301 * Convert to the corresponding full scale in
302 * radians. All 16 bits are used with sign to
303 * span the available scale: to account for the one
304 * missing value if we multiply by 1/S16_MAX, instead
305 * multiply with 2/U16_MAX.
307 *val
= mpu3050_fs_precision
[mpu3050
->fullscale
] * 2;
309 return IIO_VAL_FRACTIONAL
;
313 case IIO_CHAN_INFO_RAW
:
315 pm_runtime_get_sync(mpu3050
->dev
);
316 mutex_lock(&mpu3050
->lock
);
318 ret
= mpu3050_set_8khz_samplerate(mpu3050
);
320 goto out_read_raw_unlock
;
322 switch (chan
->type
) {
324 ret
= regmap_bulk_read(mpu3050
->map
, MPU3050_TEMP_H
,
325 &raw_val
, sizeof(raw_val
));
327 dev_err(mpu3050
->dev
,
328 "error reading temperature\n");
329 goto out_read_raw_unlock
;
332 *val
= be16_to_cpu(raw_val
);
335 goto out_read_raw_unlock
;
337 ret
= regmap_bulk_read(mpu3050
->map
,
338 MPU3050_AXIS_REGS(chan
->scan_index
-1),
342 dev_err(mpu3050
->dev
,
343 "error reading axis data\n");
344 goto out_read_raw_unlock
;
347 *val
= be16_to_cpu(raw_val
);
350 goto out_read_raw_unlock
;
353 goto out_read_raw_unlock
;
362 mutex_unlock(&mpu3050
->lock
);
363 pm_runtime_mark_last_busy(mpu3050
->dev
);
364 pm_runtime_put_autosuspend(mpu3050
->dev
);
369 static int mpu3050_write_raw(struct iio_dev
*indio_dev
,
370 const struct iio_chan_spec
*chan
,
371 int val
, int val2
, long mask
)
373 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
375 * Couldn't figure out a way to precalculate these at compile time.
378 DIV_ROUND_CLOSEST(mpu3050_fs_precision
[0] * 1000000 * 2,
381 DIV_ROUND_CLOSEST(mpu3050_fs_precision
[1] * 1000000 * 2,
383 unsigned int fs1000
=
384 DIV_ROUND_CLOSEST(mpu3050_fs_precision
[2] * 1000000 * 2,
386 unsigned int fs2000
=
387 DIV_ROUND_CLOSEST(mpu3050_fs_precision
[3] * 1000000 * 2,
391 case IIO_CHAN_INFO_CALIBBIAS
:
392 if (chan
->type
!= IIO_ANGL_VEL
)
394 mpu3050
->calibration
[chan
->scan_index
-1] = val
;
396 case IIO_CHAN_INFO_SAMP_FREQ
:
398 * The max samplerate is 8000 Hz, the minimum
401 if (val
< 4 || val
> 8000)
405 * Above 1000 Hz we must turn off the digital low pass filter
406 * so we get a base frequency of 8kHz to the divider
409 mpu3050
->lpf
= LPF_256_HZ_NOLPF
;
410 mpu3050
->divisor
= DIV_ROUND_CLOSEST(8000, val
) - 1;
414 mpu3050
->lpf
= LPF_188_HZ
;
415 mpu3050
->divisor
= DIV_ROUND_CLOSEST(1000, val
) - 1;
417 case IIO_CHAN_INFO_SCALE
:
418 if (chan
->type
!= IIO_ANGL_VEL
)
421 * We support +/-250, +/-500, +/-1000 and +/2000 deg/s
422 * which means we need to round to the closest radians
423 * which will be roughly +/-4.3, +/-8.7, +/-17.5, +/-35
424 * rad/s. The scale is then for the 16 bits used to cover
425 * it 2/(2^16) of that.
428 /* Just too large, set the max range */
430 mpu3050
->fullscale
= FS_2000_DPS
;
435 * Now we're dealing with fractions below zero in millirad/s
436 * do some integer interpolation and match with the closest
437 * fullscale in the table.
440 val2
< ((fs500
+ fs250
) / 2))
441 mpu3050
->fullscale
= FS_250_DPS
;
442 else if (val2
<= fs500
||
443 val2
< ((fs1000
+ fs500
) / 2))
444 mpu3050
->fullscale
= FS_500_DPS
;
445 else if (val2
<= fs1000
||
446 val2
< ((fs2000
+ fs1000
) / 2))
447 mpu3050
->fullscale
= FS_1000_DPS
;
450 mpu3050
->fullscale
= FS_2000_DPS
;
459 static irqreturn_t
mpu3050_trigger_handler(int irq
, void *p
)
461 const struct iio_poll_func
*pf
= p
;
462 struct iio_dev
*indio_dev
= pf
->indio_dev
;
463 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
466 * Temperature 1*16 bits
467 * Three axes 3*16 bits
468 * Timestamp 64 bits (4*16 bits)
469 * Sum total 8*16 bits
473 unsigned int datums_from_fifo
= 0;
476 * If we're using the hardware trigger, get the precise timestamp from
477 * the top half of the threaded IRQ handler. Otherwise get the
478 * timestamp here so it will be close in time to the actual values
479 * read from the registers.
481 if (iio_trigger_using_own(indio_dev
))
482 timestamp
= mpu3050
->hw_timestamp
;
484 timestamp
= iio_get_time_ns(indio_dev
);
486 mutex_lock(&mpu3050
->lock
);
488 /* Using the hardware IRQ trigger? Check the buffer then. */
489 if (mpu3050
->hw_irq_trigger
) {
492 /* X, Y, Z + temperature */
493 unsigned int bytes_per_datum
= 8;
494 bool fifo_overflow
= false;
496 ret
= regmap_bulk_read(mpu3050
->map
,
497 MPU3050_FIFO_COUNT_H
,
499 sizeof(raw_fifocnt
));
501 goto out_trigger_unlock
;
502 fifocnt
= be16_to_cpu(raw_fifocnt
);
504 if (fifocnt
== 512) {
505 dev_info(mpu3050
->dev
,
506 "FIFO overflow! Emptying and resetting FIFO\n");
507 fifo_overflow
= true;
508 /* Reset and enable the FIFO */
509 ret
= regmap_update_bits(mpu3050
->map
,
511 MPU3050_USR_CTRL_FIFO_EN
|
512 MPU3050_USR_CTRL_FIFO_RST
,
513 MPU3050_USR_CTRL_FIFO_EN
|
514 MPU3050_USR_CTRL_FIFO_RST
);
516 dev_info(mpu3050
->dev
, "error resetting FIFO\n");
517 goto out_trigger_unlock
;
519 mpu3050
->pending_fifo_footer
= false;
523 dev_dbg(mpu3050
->dev
,
524 "%d bytes in the FIFO\n",
527 while (!fifo_overflow
&& fifocnt
> bytes_per_datum
) {
530 __be16 fifo_values
[5];
533 * If there is a FIFO footer in the pipe, first clear
534 * that out. This follows the complex algorithm in the
535 * datasheet that states that you may never leave the
536 * FIFO empty after the first reading: you have to
537 * always leave two footer bytes in it. The footer is
538 * in practice just two zero bytes.
540 if (mpu3050
->pending_fifo_footer
) {
541 toread
= bytes_per_datum
+ 2;
544 toread
= bytes_per_datum
;
546 /* Put in some dummy value */
547 fifo_values
[0] = cpu_to_be16(0xAAAA);
550 ret
= regmap_bulk_read(mpu3050
->map
,
552 &fifo_values
[offset
],
555 dev_dbg(mpu3050
->dev
,
556 "%04x %04x %04x %04x %04x\n",
563 /* Index past the footer (fifo_values[0]) and push */
564 iio_push_to_buffers_with_timestamp(indio_dev
,
570 mpu3050
->pending_fifo_footer
= true;
573 * If we're emptying the FIFO, just make sure to
574 * check if something new appeared.
576 if (fifocnt
< bytes_per_datum
) {
577 ret
= regmap_bulk_read(mpu3050
->map
,
578 MPU3050_FIFO_COUNT_H
,
580 sizeof(raw_fifocnt
));
582 goto out_trigger_unlock
;
583 fifocnt
= be16_to_cpu(raw_fifocnt
);
586 if (fifocnt
< bytes_per_datum
)
587 dev_dbg(mpu3050
->dev
,
588 "%d bytes left in the FIFO\n",
592 * At this point, the timestamp that triggered the
593 * hardware interrupt is no longer valid for what
594 * we are reading (the interrupt likely fired for
595 * the value on the top of the FIFO), so set the
596 * timestamp to zero and let userspace deal with it.
603 * If we picked some datums from the FIFO that's enough, else
604 * fall through and just read from the current value registers.
605 * This happens in two cases:
607 * - We are using some other trigger (external, like an HRTimer)
608 * than the sensor's own sample generator. In this case the
609 * sensor is just set to the max sampling frequency and we give
610 * the trigger a copy of the latest value every time we get here.
612 * - The hardware trigger is active but unused and we actually use
613 * another trigger which calls here with a frequency higher
614 * than what the device provides data. We will then just read
615 * duplicate values directly from the hardware registers.
617 if (datums_from_fifo
) {
618 dev_dbg(mpu3050
->dev
,
619 "read %d datums from the FIFO\n",
621 goto out_trigger_unlock
;
624 ret
= regmap_bulk_read(mpu3050
->map
, MPU3050_TEMP_H
, &hw_values
,
627 dev_err(mpu3050
->dev
,
628 "error reading axis data\n");
629 goto out_trigger_unlock
;
632 iio_push_to_buffers_with_timestamp(indio_dev
, hw_values
, timestamp
);
635 mutex_unlock(&mpu3050
->lock
);
636 iio_trigger_notify_done(indio_dev
->trig
);
641 static int mpu3050_buffer_preenable(struct iio_dev
*indio_dev
)
643 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
645 pm_runtime_get_sync(mpu3050
->dev
);
647 /* Unless we have OUR trigger active, run at full speed */
648 if (!mpu3050
->hw_irq_trigger
)
649 return mpu3050_set_8khz_samplerate(mpu3050
);
654 static int mpu3050_buffer_postdisable(struct iio_dev
*indio_dev
)
656 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
658 pm_runtime_mark_last_busy(mpu3050
->dev
);
659 pm_runtime_put_autosuspend(mpu3050
->dev
);
664 static const struct iio_buffer_setup_ops mpu3050_buffer_setup_ops
= {
665 .preenable
= mpu3050_buffer_preenable
,
666 .postdisable
= mpu3050_buffer_postdisable
,
669 static const struct iio_mount_matrix
*
670 mpu3050_get_mount_matrix(const struct iio_dev
*indio_dev
,
671 const struct iio_chan_spec
*chan
)
673 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
675 return &mpu3050
->orientation
;
678 static const struct iio_chan_spec_ext_info mpu3050_ext_info
[] = {
679 IIO_MOUNT_MATRIX(IIO_SHARED_BY_TYPE
, mpu3050_get_mount_matrix
),
683 #define MPU3050_AXIS_CHANNEL(axis, index) \
685 .type = IIO_ANGL_VEL, \
687 .channel2 = IIO_MOD_##axis, \
688 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
689 BIT(IIO_CHAN_INFO_CALIBBIAS), \
690 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
691 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\
692 .ext_info = mpu3050_ext_info, \
693 .scan_index = index, \
698 .endianness = IIO_BE, \
702 static const struct iio_chan_spec mpu3050_channels
[] = {
705 .info_mask_separate
= BIT(IIO_CHAN_INFO_RAW
) |
706 BIT(IIO_CHAN_INFO_SCALE
) |
707 BIT(IIO_CHAN_INFO_OFFSET
),
708 .info_mask_shared_by_all
= BIT(IIO_CHAN_INFO_SAMP_FREQ
),
714 .endianness
= IIO_BE
,
717 MPU3050_AXIS_CHANNEL(X
, 1),
718 MPU3050_AXIS_CHANNEL(Y
, 2),
719 MPU3050_AXIS_CHANNEL(Z
, 3),
720 IIO_CHAN_SOFT_TIMESTAMP(4),
723 /* Four channels apart from timestamp, scan mask = 0x0f */
724 static const unsigned long mpu3050_scan_masks
[] = { 0xf, 0 };
727 * These are just the hardcoded factors resulting from the more elaborate
728 * calculations done with fractions in the scale raw get/set functions.
730 static IIO_CONST_ATTR(anglevel_scale_available
,
736 static struct attribute
*mpu3050_attributes
[] = {
737 &iio_const_attr_anglevel_scale_available
.dev_attr
.attr
,
741 static const struct attribute_group mpu3050_attribute_group
= {
742 .attrs
= mpu3050_attributes
,
745 static const struct iio_info mpu3050_info
= {
746 .read_raw
= mpu3050_read_raw
,
747 .write_raw
= mpu3050_write_raw
,
748 .attrs
= &mpu3050_attribute_group
,
752 * mpu3050_read_mem() - read MPU-3050 internal memory
753 * @mpu3050: device to read from
755 * @addr: target address
756 * @len: number of bytes
757 * @buf: the buffer to store the read bytes in
759 static int mpu3050_read_mem(struct mpu3050
*mpu3050
,
767 ret
= regmap_write(mpu3050
->map
,
773 ret
= regmap_write(mpu3050
->map
,
774 MPU3050_MEM_START_ADDR
,
779 return regmap_bulk_read(mpu3050
->map
,
785 static int mpu3050_hw_init(struct mpu3050
*mpu3050
)
792 ret
= regmap_update_bits(mpu3050
->map
,
794 MPU3050_PWR_MGM_RESET
,
795 MPU3050_PWR_MGM_RESET
);
799 /* Turn on the PLL */
800 ret
= regmap_update_bits(mpu3050
->map
,
802 MPU3050_PWR_MGM_CLKSEL_MASK
,
803 MPU3050_PWR_MGM_PLL_Z
);
808 ret
= regmap_write(mpu3050
->map
,
814 /* Read out the 8 bytes of OTP (one-time-programmable) memory */
815 ret
= mpu3050_read_mem(mpu3050
,
816 (MPU3050_MEM_PRFTCH
|
817 MPU3050_MEM_USER_BANK
|
818 MPU3050_MEM_OTP_BANK_0
),
825 /* This is device-unique data so it goes into the entropy pool */
826 add_device_randomness(&otp_le
, sizeof(otp_le
));
828 otp
= le64_to_cpu(otp_le
);
830 dev_info(mpu3050
->dev
,
831 "die ID: %04llX, wafer ID: %02llX, A lot ID: %04llX, "
832 "W lot ID: %03llX, WP ID: %01llX, rev ID: %02llX\n",
833 /* Die ID, bits 0-12 */
834 FIELD_GET(GENMASK_ULL(12, 0), otp
),
835 /* Wafer ID, bits 13-17 */
836 FIELD_GET(GENMASK_ULL(17, 13), otp
),
837 /* A lot ID, bits 18-33 */
838 FIELD_GET(GENMASK_ULL(33, 18), otp
),
839 /* W lot ID, bits 34-45 */
840 FIELD_GET(GENMASK_ULL(45, 34), otp
),
841 /* WP ID, bits 47-49 */
842 FIELD_GET(GENMASK_ULL(49, 47), otp
),
843 /* rev ID, bits 50-55 */
844 FIELD_GET(GENMASK_ULL(55, 50), otp
));
849 static int mpu3050_power_up(struct mpu3050
*mpu3050
)
853 ret
= regulator_bulk_enable(ARRAY_SIZE(mpu3050
->regs
), mpu3050
->regs
);
855 dev_err(mpu3050
->dev
, "cannot enable regulators\n");
859 * 20-100 ms start-up time for register read/write according to
860 * the datasheet, be on the safe side and wait 200 ms.
864 /* Take device out of sleep mode */
865 ret
= regmap_update_bits(mpu3050
->map
, MPU3050_PWR_MGM
,
866 MPU3050_PWR_MGM_SLEEP
, 0);
868 dev_err(mpu3050
->dev
, "error setting power mode\n");
871 usleep_range(10000, 20000);
876 static int mpu3050_power_down(struct mpu3050
*mpu3050
)
881 * Put MPU-3050 into sleep mode before cutting regulators.
882 * This is important, because we may not be the sole user
883 * of the regulator so the power may stay on after this, and
884 * then we would be wasting power unless we go to sleep mode
887 ret
= regmap_update_bits(mpu3050
->map
, MPU3050_PWR_MGM
,
888 MPU3050_PWR_MGM_SLEEP
, MPU3050_PWR_MGM_SLEEP
);
890 dev_err(mpu3050
->dev
, "error putting to sleep\n");
892 ret
= regulator_bulk_disable(ARRAY_SIZE(mpu3050
->regs
), mpu3050
->regs
);
894 dev_err(mpu3050
->dev
, "error disabling regulators\n");
899 static irqreturn_t
mpu3050_irq_handler(int irq
, void *p
)
901 struct iio_trigger
*trig
= p
;
902 struct iio_dev
*indio_dev
= iio_trigger_get_drvdata(trig
);
903 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
905 if (!mpu3050
->hw_irq_trigger
)
908 /* Get the time stamp as close in time as possible */
909 mpu3050
->hw_timestamp
= iio_get_time_ns(indio_dev
);
911 return IRQ_WAKE_THREAD
;
914 static irqreturn_t
mpu3050_irq_thread(int irq
, void *p
)
916 struct iio_trigger
*trig
= p
;
917 struct iio_dev
*indio_dev
= iio_trigger_get_drvdata(trig
);
918 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
922 /* ACK IRQ and check if it was from us */
923 ret
= regmap_read(mpu3050
->map
, MPU3050_INT_STATUS
, &val
);
925 dev_err(mpu3050
->dev
, "error reading IRQ status\n");
928 if (!(val
& MPU3050_INT_STATUS_RAW_RDY
))
931 iio_trigger_poll_chained(p
);
937 * mpu3050_drdy_trigger_set_state() - set data ready interrupt state
938 * @trig: trigger instance
939 * @enable: true if trigger should be enabled, false to disable
941 static int mpu3050_drdy_trigger_set_state(struct iio_trigger
*trig
,
944 struct iio_dev
*indio_dev
= iio_trigger_get_drvdata(trig
);
945 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
949 /* Disabling trigger: disable interrupt and return */
951 /* Disable all interrupts */
952 ret
= regmap_write(mpu3050
->map
,
956 dev_err(mpu3050
->dev
, "error disabling IRQ\n");
959 ret
= regmap_read(mpu3050
->map
, MPU3050_INT_STATUS
, &val
);
961 dev_err(mpu3050
->dev
, "error clearing IRQ status\n");
963 /* Disable all things in the FIFO and reset it */
964 ret
= regmap_write(mpu3050
->map
, MPU3050_FIFO_EN
, 0);
966 dev_err(mpu3050
->dev
, "error disabling FIFO\n");
968 ret
= regmap_write(mpu3050
->map
, MPU3050_USR_CTRL
,
969 MPU3050_USR_CTRL_FIFO_RST
);
971 dev_err(mpu3050
->dev
, "error resetting FIFO\n");
973 pm_runtime_mark_last_busy(mpu3050
->dev
);
974 pm_runtime_put_autosuspend(mpu3050
->dev
);
975 mpu3050
->hw_irq_trigger
= false;
979 /* Else we're enabling the trigger from this point */
980 pm_runtime_get_sync(mpu3050
->dev
);
981 mpu3050
->hw_irq_trigger
= true;
983 /* Disable all things in the FIFO */
984 ret
= regmap_write(mpu3050
->map
, MPU3050_FIFO_EN
, 0);
988 /* Reset and enable the FIFO */
989 ret
= regmap_update_bits(mpu3050
->map
, MPU3050_USR_CTRL
,
990 MPU3050_USR_CTRL_FIFO_EN
|
991 MPU3050_USR_CTRL_FIFO_RST
,
992 MPU3050_USR_CTRL_FIFO_EN
|
993 MPU3050_USR_CTRL_FIFO_RST
);
997 mpu3050
->pending_fifo_footer
= false;
999 /* Turn on the FIFO for temp+X+Y+Z */
1000 ret
= regmap_write(mpu3050
->map
, MPU3050_FIFO_EN
,
1001 MPU3050_FIFO_EN_TEMP_OUT
|
1002 MPU3050_FIFO_EN_GYRO_XOUT
|
1003 MPU3050_FIFO_EN_GYRO_YOUT
|
1004 MPU3050_FIFO_EN_GYRO_ZOUT
|
1005 MPU3050_FIFO_EN_FOOTER
);
1009 /* Configure the sample engine */
1010 ret
= mpu3050_start_sampling(mpu3050
);
1014 /* Clear IRQ flag */
1015 ret
= regmap_read(mpu3050
->map
, MPU3050_INT_STATUS
, &val
);
1017 dev_err(mpu3050
->dev
, "error clearing IRQ status\n");
1019 /* Give us interrupts whenever there is new data ready */
1020 val
= MPU3050_INT_RAW_RDY_EN
;
1022 if (mpu3050
->irq_actl
)
1023 val
|= MPU3050_INT_ACTL
;
1024 if (mpu3050
->irq_latch
)
1025 val
|= MPU3050_INT_LATCH_EN
;
1026 if (mpu3050
->irq_opendrain
)
1027 val
|= MPU3050_INT_OPEN
;
1029 ret
= regmap_write(mpu3050
->map
, MPU3050_INT_CFG
, val
);
1037 static const struct iio_trigger_ops mpu3050_trigger_ops
= {
1038 .set_trigger_state
= mpu3050_drdy_trigger_set_state
,
1041 static int mpu3050_trigger_probe(struct iio_dev
*indio_dev
, int irq
)
1043 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
1044 unsigned long irq_trig
;
1047 mpu3050
->trig
= devm_iio_trigger_alloc(&indio_dev
->dev
,
1054 /* Check if IRQ is open drain */
1055 if (of_property_read_bool(mpu3050
->dev
->of_node
, "drive-open-drain"))
1056 mpu3050
->irq_opendrain
= true;
1058 irq_trig
= irqd_get_trigger_type(irq_get_irq_data(irq
));
1060 * Configure the interrupt generator hardware to supply whatever
1061 * the interrupt is configured for, edges low/high level low/high,
1062 * we can provide it all.
1065 case IRQF_TRIGGER_RISING
:
1066 dev_info(&indio_dev
->dev
,
1067 "pulse interrupts on the rising edge\n");
1069 case IRQF_TRIGGER_FALLING
:
1070 mpu3050
->irq_actl
= true;
1071 dev_info(&indio_dev
->dev
,
1072 "pulse interrupts on the falling edge\n");
1074 case IRQF_TRIGGER_HIGH
:
1075 mpu3050
->irq_latch
= true;
1076 dev_info(&indio_dev
->dev
,
1077 "interrupts active high level\n");
1079 * With level IRQs, we mask the IRQ until it is processed,
1080 * but with edge IRQs (pulses) we can queue several interrupts
1083 irq_trig
|= IRQF_ONESHOT
;
1085 case IRQF_TRIGGER_LOW
:
1086 mpu3050
->irq_latch
= true;
1087 mpu3050
->irq_actl
= true;
1088 irq_trig
|= IRQF_ONESHOT
;
1089 dev_info(&indio_dev
->dev
,
1090 "interrupts active low level\n");
1093 /* This is the most preferred mode, if possible */
1094 dev_err(&indio_dev
->dev
,
1095 "unsupported IRQ trigger specified (%lx), enforce "
1096 "rising edge\n", irq_trig
);
1097 irq_trig
= IRQF_TRIGGER_RISING
;
1101 /* An open drain line can be shared with several devices */
1102 if (mpu3050
->irq_opendrain
)
1103 irq_trig
|= IRQF_SHARED
;
1105 ret
= request_threaded_irq(irq
,
1106 mpu3050_irq_handler
,
1109 mpu3050
->trig
->name
,
1112 dev_err(mpu3050
->dev
,
1113 "can't get IRQ %d, error %d\n", irq
, ret
);
1118 mpu3050
->trig
->dev
.parent
= mpu3050
->dev
;
1119 mpu3050
->trig
->ops
= &mpu3050_trigger_ops
;
1120 iio_trigger_set_drvdata(mpu3050
->trig
, indio_dev
);
1122 ret
= iio_trigger_register(mpu3050
->trig
);
1126 indio_dev
->trig
= iio_trigger_get(mpu3050
->trig
);
1131 int mpu3050_common_probe(struct device
*dev
,
1136 struct iio_dev
*indio_dev
;
1137 struct mpu3050
*mpu3050
;
1141 indio_dev
= devm_iio_device_alloc(dev
, sizeof(*mpu3050
));
1144 mpu3050
= iio_priv(indio_dev
);
1148 mutex_init(&mpu3050
->lock
);
1149 /* Default fullscale: 2000 degrees per second */
1150 mpu3050
->fullscale
= FS_2000_DPS
;
1151 /* 1 kHz, divide by 100, default frequency = 10 Hz */
1152 mpu3050
->lpf
= MPU3050_DLPF_CFG_188HZ
;
1153 mpu3050
->divisor
= 99;
1155 /* Read the mounting matrix, if present */
1156 ret
= iio_read_mount_matrix(dev
, "mount-matrix", &mpu3050
->orientation
);
1160 /* Fetch and turn on regulators */
1161 mpu3050
->regs
[0].supply
= mpu3050_reg_vdd
;
1162 mpu3050
->regs
[1].supply
= mpu3050_reg_vlogic
;
1163 ret
= devm_regulator_bulk_get(dev
, ARRAY_SIZE(mpu3050
->regs
),
1166 dev_err(dev
, "Cannot get regulators\n");
1170 ret
= mpu3050_power_up(mpu3050
);
1174 ret
= regmap_read(map
, MPU3050_CHIP_ID_REG
, &val
);
1176 dev_err(dev
, "could not read device ID\n");
1179 goto err_power_down
;
1182 if ((val
& MPU3050_CHIP_ID_MASK
) != MPU3050_CHIP_ID
) {
1183 dev_err(dev
, "unsupported chip id %02x\n",
1184 (u8
)(val
& MPU3050_CHIP_ID_MASK
));
1186 goto err_power_down
;
1189 ret
= regmap_read(map
, MPU3050_PRODUCT_ID_REG
, &val
);
1191 dev_err(dev
, "could not read device ID\n");
1194 goto err_power_down
;
1196 dev_info(dev
, "found MPU-3050 part no: %d, version: %d\n",
1197 ((val
>> 4) & 0xf), (val
& 0xf));
1199 ret
= mpu3050_hw_init(mpu3050
);
1201 goto err_power_down
;
1203 indio_dev
->channels
= mpu3050_channels
;
1204 indio_dev
->num_channels
= ARRAY_SIZE(mpu3050_channels
);
1205 indio_dev
->info
= &mpu3050_info
;
1206 indio_dev
->available_scan_masks
= mpu3050_scan_masks
;
1207 indio_dev
->modes
= INDIO_DIRECT_MODE
;
1208 indio_dev
->name
= name
;
1210 ret
= iio_triggered_buffer_setup(indio_dev
, iio_pollfunc_store_time
,
1211 mpu3050_trigger_handler
,
1212 &mpu3050_buffer_setup_ops
);
1214 dev_err(dev
, "triggered buffer setup failed\n");
1215 goto err_power_down
;
1218 ret
= iio_device_register(indio_dev
);
1220 dev_err(dev
, "device register failed\n");
1221 goto err_cleanup_buffer
;
1224 dev_set_drvdata(dev
, indio_dev
);
1226 /* Check if we have an assigned IRQ to use as trigger */
1228 ret
= mpu3050_trigger_probe(indio_dev
, irq
);
1230 dev_err(dev
, "failed to register trigger\n");
1233 /* Enable runtime PM */
1234 pm_runtime_get_noresume(dev
);
1235 pm_runtime_set_active(dev
);
1236 pm_runtime_enable(dev
);
1238 * Set autosuspend to two orders of magnitude larger than the
1239 * start-up time. 100ms start-up time means 10000ms autosuspend,
1242 pm_runtime_set_autosuspend_delay(dev
, 10000);
1243 pm_runtime_use_autosuspend(dev
);
1244 pm_runtime_put(dev
);
1249 iio_triggered_buffer_cleanup(indio_dev
);
1251 mpu3050_power_down(mpu3050
);
1255 EXPORT_SYMBOL(mpu3050_common_probe
);
1257 int mpu3050_common_remove(struct device
*dev
)
1259 struct iio_dev
*indio_dev
= dev_get_drvdata(dev
);
1260 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
1262 pm_runtime_get_sync(dev
);
1263 pm_runtime_put_noidle(dev
);
1264 pm_runtime_disable(dev
);
1265 iio_triggered_buffer_cleanup(indio_dev
);
1267 free_irq(mpu3050
->irq
, mpu3050
);
1268 iio_device_unregister(indio_dev
);
1269 mpu3050_power_down(mpu3050
);
1273 EXPORT_SYMBOL(mpu3050_common_remove
);
1276 static int mpu3050_runtime_suspend(struct device
*dev
)
1278 return mpu3050_power_down(iio_priv(dev_get_drvdata(dev
)));
1281 static int mpu3050_runtime_resume(struct device
*dev
)
1283 return mpu3050_power_up(iio_priv(dev_get_drvdata(dev
)));
1285 #endif /* CONFIG_PM */
1287 const struct dev_pm_ops mpu3050_dev_pm_ops
= {
1288 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend
,
1289 pm_runtime_force_resume
)
1290 SET_RUNTIME_PM_OPS(mpu3050_runtime_suspend
,
1291 mpu3050_runtime_resume
, NULL
)
1293 EXPORT_SYMBOL(mpu3050_dev_pm_ops
);
1295 MODULE_AUTHOR("Linus Walleij");
1296 MODULE_DESCRIPTION("MPU3050 gyroscope driver");
1297 MODULE_LICENSE("GPL");