Merge tag 'regmap-fix-v5.11-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux/fpc-iii.git] / drivers / iio / gyro / mpu3050-core.c
blobdfa31a23500f0d622f026a9991eec23e1054818a
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * MPU3050 gyroscope driver
5 * Copyright (C) 2016 Linaro Ltd.
6 * Author: Linus Walleij <linus.walleij@linaro.org>
8 * Based on the input subsystem driver, Copyright (C) 2011 Wistron Co.Ltd
9 * Joseph Lai <joseph_lai@wistron.com> and trimmed down by
10 * Alan Cox <alan@linux.intel.com> in turn based on bma023.c.
11 * Device behaviour based on a misc driver posted by Nathan Royer in 2011.
13 * TODO: add support for setting up the low pass 3dB frequency.
16 #include <linux/bitfield.h>
17 #include <linux/bitops.h>
18 #include <linux/delay.h>
19 #include <linux/err.h>
20 #include <linux/iio/buffer.h>
21 #include <linux/iio/iio.h>
22 #include <linux/iio/sysfs.h>
23 #include <linux/iio/trigger.h>
24 #include <linux/iio/trigger_consumer.h>
25 #include <linux/iio/triggered_buffer.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
32 #include "mpu3050.h"
34 #define MPU3050_CHIP_ID 0x68
35 #define MPU3050_CHIP_ID_MASK 0x7E
38 * Register map: anything suffixed *_H is a big-endian high byte and always
39 * followed by the corresponding low byte (*_L) even though these are not
40 * explicitly included in the register definitions.
42 #define MPU3050_CHIP_ID_REG 0x00
43 #define MPU3050_PRODUCT_ID_REG 0x01
44 #define MPU3050_XG_OFFS_TC 0x05
45 #define MPU3050_YG_OFFS_TC 0x08
46 #define MPU3050_ZG_OFFS_TC 0x0B
47 #define MPU3050_X_OFFS_USR_H 0x0C
48 #define MPU3050_Y_OFFS_USR_H 0x0E
49 #define MPU3050_Z_OFFS_USR_H 0x10
50 #define MPU3050_FIFO_EN 0x12
51 #define MPU3050_AUX_VDDIO 0x13
52 #define MPU3050_SLV_ADDR 0x14
53 #define MPU3050_SMPLRT_DIV 0x15
54 #define MPU3050_DLPF_FS_SYNC 0x16
55 #define MPU3050_INT_CFG 0x17
56 #define MPU3050_AUX_ADDR 0x18
57 #define MPU3050_INT_STATUS 0x1A
58 #define MPU3050_TEMP_H 0x1B
59 #define MPU3050_XOUT_H 0x1D
60 #define MPU3050_YOUT_H 0x1F
61 #define MPU3050_ZOUT_H 0x21
62 #define MPU3050_DMP_CFG1 0x35
63 #define MPU3050_DMP_CFG2 0x36
64 #define MPU3050_BANK_SEL 0x37
65 #define MPU3050_MEM_START_ADDR 0x38
66 #define MPU3050_MEM_R_W 0x39
67 #define MPU3050_FIFO_COUNT_H 0x3A
68 #define MPU3050_FIFO_R 0x3C
69 #define MPU3050_USR_CTRL 0x3D
70 #define MPU3050_PWR_MGM 0x3E
72 /* MPU memory bank read options */
73 #define MPU3050_MEM_PRFTCH BIT(5)
74 #define MPU3050_MEM_USER_BANK BIT(4)
75 /* Bits 8-11 select memory bank */
76 #define MPU3050_MEM_RAM_BANK_0 0
77 #define MPU3050_MEM_RAM_BANK_1 1
78 #define MPU3050_MEM_RAM_BANK_2 2
79 #define MPU3050_MEM_RAM_BANK_3 3
80 #define MPU3050_MEM_OTP_BANK_0 4
82 #define MPU3050_AXIS_REGS(axis) (MPU3050_XOUT_H + (axis * 2))
84 /* Register bits */
86 /* FIFO Enable */
87 #define MPU3050_FIFO_EN_FOOTER BIT(0)
88 #define MPU3050_FIFO_EN_AUX_ZOUT BIT(1)
89 #define MPU3050_FIFO_EN_AUX_YOUT BIT(2)
90 #define MPU3050_FIFO_EN_AUX_XOUT BIT(3)
91 #define MPU3050_FIFO_EN_GYRO_ZOUT BIT(4)
92 #define MPU3050_FIFO_EN_GYRO_YOUT BIT(5)
93 #define MPU3050_FIFO_EN_GYRO_XOUT BIT(6)
94 #define MPU3050_FIFO_EN_TEMP_OUT BIT(7)
97 * Digital Low Pass filter (DLPF)
98 * Full Scale (FS)
99 * and Synchronization
101 #define MPU3050_EXT_SYNC_NONE 0x00
102 #define MPU3050_EXT_SYNC_TEMP 0x20
103 #define MPU3050_EXT_SYNC_GYROX 0x40
104 #define MPU3050_EXT_SYNC_GYROY 0x60
105 #define MPU3050_EXT_SYNC_GYROZ 0x80
106 #define MPU3050_EXT_SYNC_ACCELX 0xA0
107 #define MPU3050_EXT_SYNC_ACCELY 0xC0
108 #define MPU3050_EXT_SYNC_ACCELZ 0xE0
109 #define MPU3050_EXT_SYNC_MASK 0xE0
110 #define MPU3050_EXT_SYNC_SHIFT 5
112 #define MPU3050_FS_250DPS 0x00
113 #define MPU3050_FS_500DPS 0x08
114 #define MPU3050_FS_1000DPS 0x10
115 #define MPU3050_FS_2000DPS 0x18
116 #define MPU3050_FS_MASK 0x18
117 #define MPU3050_FS_SHIFT 3
119 #define MPU3050_DLPF_CFG_256HZ_NOLPF2 0x00
120 #define MPU3050_DLPF_CFG_188HZ 0x01
121 #define MPU3050_DLPF_CFG_98HZ 0x02
122 #define MPU3050_DLPF_CFG_42HZ 0x03
123 #define MPU3050_DLPF_CFG_20HZ 0x04
124 #define MPU3050_DLPF_CFG_10HZ 0x05
125 #define MPU3050_DLPF_CFG_5HZ 0x06
126 #define MPU3050_DLPF_CFG_2100HZ_NOLPF 0x07
127 #define MPU3050_DLPF_CFG_MASK 0x07
128 #define MPU3050_DLPF_CFG_SHIFT 0
130 /* Interrupt config */
131 #define MPU3050_INT_RAW_RDY_EN BIT(0)
132 #define MPU3050_INT_DMP_DONE_EN BIT(1)
133 #define MPU3050_INT_MPU_RDY_EN BIT(2)
134 #define MPU3050_INT_ANYRD_2CLEAR BIT(4)
135 #define MPU3050_INT_LATCH_EN BIT(5)
136 #define MPU3050_INT_OPEN BIT(6)
137 #define MPU3050_INT_ACTL BIT(7)
138 /* Interrupt status */
139 #define MPU3050_INT_STATUS_RAW_RDY BIT(0)
140 #define MPU3050_INT_STATUS_DMP_DONE BIT(1)
141 #define MPU3050_INT_STATUS_MPU_RDY BIT(2)
142 #define MPU3050_INT_STATUS_FIFO_OVFLW BIT(7)
143 /* USR_CTRL */
144 #define MPU3050_USR_CTRL_FIFO_EN BIT(6)
145 #define MPU3050_USR_CTRL_AUX_IF_EN BIT(5)
146 #define MPU3050_USR_CTRL_AUX_IF_RST BIT(3)
147 #define MPU3050_USR_CTRL_FIFO_RST BIT(1)
148 #define MPU3050_USR_CTRL_GYRO_RST BIT(0)
149 /* PWR_MGM */
150 #define MPU3050_PWR_MGM_PLL_X 0x01
151 #define MPU3050_PWR_MGM_PLL_Y 0x02
152 #define MPU3050_PWR_MGM_PLL_Z 0x03
153 #define MPU3050_PWR_MGM_CLKSEL_MASK 0x07
154 #define MPU3050_PWR_MGM_STBY_ZG BIT(3)
155 #define MPU3050_PWR_MGM_STBY_YG BIT(4)
156 #define MPU3050_PWR_MGM_STBY_XG BIT(5)
157 #define MPU3050_PWR_MGM_SLEEP BIT(6)
158 #define MPU3050_PWR_MGM_RESET BIT(7)
159 #define MPU3050_PWR_MGM_MASK 0xff
162 * Fullscale precision is (for finest precision) +/- 250 deg/s, so the full
163 * scale is actually 500 deg/s. All 16 bits are then used to cover this scale,
164 * in two's complement.
166 static unsigned int mpu3050_fs_precision[] = {
167 IIO_DEGREE_TO_RAD(250),
168 IIO_DEGREE_TO_RAD(500),
169 IIO_DEGREE_TO_RAD(1000),
170 IIO_DEGREE_TO_RAD(2000)
174 * Regulator names
176 static const char mpu3050_reg_vdd[] = "vdd";
177 static const char mpu3050_reg_vlogic[] = "vlogic";
179 static unsigned int mpu3050_get_freq(struct mpu3050 *mpu3050)
181 unsigned int freq;
183 if (mpu3050->lpf == MPU3050_DLPF_CFG_256HZ_NOLPF2)
184 freq = 8000;
185 else
186 freq = 1000;
187 freq /= (mpu3050->divisor + 1);
189 return freq;
192 static int mpu3050_start_sampling(struct mpu3050 *mpu3050)
194 __be16 raw_val[3];
195 int ret;
196 int i;
198 /* Reset */
199 ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
200 MPU3050_PWR_MGM_RESET, MPU3050_PWR_MGM_RESET);
201 if (ret)
202 return ret;
204 /* Turn on the Z-axis PLL */
205 ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
206 MPU3050_PWR_MGM_CLKSEL_MASK,
207 MPU3050_PWR_MGM_PLL_Z);
208 if (ret)
209 return ret;
211 /* Write calibration offset registers */
212 for (i = 0; i < 3; i++)
213 raw_val[i] = cpu_to_be16(mpu3050->calibration[i]);
215 ret = regmap_bulk_write(mpu3050->map, MPU3050_X_OFFS_USR_H, raw_val,
216 sizeof(raw_val));
217 if (ret)
218 return ret;
220 /* Set low pass filter (sample rate), sync and full scale */
221 ret = regmap_write(mpu3050->map, MPU3050_DLPF_FS_SYNC,
222 MPU3050_EXT_SYNC_NONE << MPU3050_EXT_SYNC_SHIFT |
223 mpu3050->fullscale << MPU3050_FS_SHIFT |
224 mpu3050->lpf << MPU3050_DLPF_CFG_SHIFT);
225 if (ret)
226 return ret;
228 /* Set up sampling frequency */
229 ret = regmap_write(mpu3050->map, MPU3050_SMPLRT_DIV, mpu3050->divisor);
230 if (ret)
231 return ret;
234 * Max 50 ms start-up time after setting DLPF_FS_SYNC
235 * according to the data sheet, then wait for the next sample
236 * at this frequency T = 1000/f ms.
238 msleep(50 + 1000 / mpu3050_get_freq(mpu3050));
240 return 0;
243 static int mpu3050_set_8khz_samplerate(struct mpu3050 *mpu3050)
245 int ret;
246 u8 divisor;
247 enum mpu3050_lpf lpf;
249 lpf = mpu3050->lpf;
250 divisor = mpu3050->divisor;
252 mpu3050->lpf = LPF_256_HZ_NOLPF; /* 8 kHz base frequency */
253 mpu3050->divisor = 0; /* Divide by 1 */
254 ret = mpu3050_start_sampling(mpu3050);
256 mpu3050->lpf = lpf;
257 mpu3050->divisor = divisor;
259 return ret;
262 static int mpu3050_read_raw(struct iio_dev *indio_dev,
263 struct iio_chan_spec const *chan,
264 int *val, int *val2,
265 long mask)
267 struct mpu3050 *mpu3050 = iio_priv(indio_dev);
268 int ret;
269 __be16 raw_val;
271 switch (mask) {
272 case IIO_CHAN_INFO_OFFSET:
273 switch (chan->type) {
274 case IIO_TEMP:
275 /* The temperature scaling is (x+23000)/280 Celsius */
276 *val = 23000;
277 return IIO_VAL_INT;
278 default:
279 return -EINVAL;
281 case IIO_CHAN_INFO_CALIBBIAS:
282 switch (chan->type) {
283 case IIO_ANGL_VEL:
284 *val = mpu3050->calibration[chan->scan_index-1];
285 return IIO_VAL_INT;
286 default:
287 return -EINVAL;
289 case IIO_CHAN_INFO_SAMP_FREQ:
290 *val = mpu3050_get_freq(mpu3050);
291 return IIO_VAL_INT;
292 case IIO_CHAN_INFO_SCALE:
293 switch (chan->type) {
294 case IIO_TEMP:
295 /* Millidegrees, see about temperature scaling above */
296 *val = 1000;
297 *val2 = 280;
298 return IIO_VAL_FRACTIONAL;
299 case IIO_ANGL_VEL:
301 * Convert to the corresponding full scale in
302 * radians. All 16 bits are used with sign to
303 * span the available scale: to account for the one
304 * missing value if we multiply by 1/S16_MAX, instead
305 * multiply with 2/U16_MAX.
307 *val = mpu3050_fs_precision[mpu3050->fullscale] * 2;
308 *val2 = U16_MAX;
309 return IIO_VAL_FRACTIONAL;
310 default:
311 return -EINVAL;
313 case IIO_CHAN_INFO_RAW:
314 /* Resume device */
315 pm_runtime_get_sync(mpu3050->dev);
316 mutex_lock(&mpu3050->lock);
318 ret = mpu3050_set_8khz_samplerate(mpu3050);
319 if (ret)
320 goto out_read_raw_unlock;
322 switch (chan->type) {
323 case IIO_TEMP:
324 ret = regmap_bulk_read(mpu3050->map, MPU3050_TEMP_H,
325 &raw_val, sizeof(raw_val));
326 if (ret) {
327 dev_err(mpu3050->dev,
328 "error reading temperature\n");
329 goto out_read_raw_unlock;
332 *val = be16_to_cpu(raw_val);
333 ret = IIO_VAL_INT;
335 goto out_read_raw_unlock;
336 case IIO_ANGL_VEL:
337 ret = regmap_bulk_read(mpu3050->map,
338 MPU3050_AXIS_REGS(chan->scan_index-1),
339 &raw_val,
340 sizeof(raw_val));
341 if (ret) {
342 dev_err(mpu3050->dev,
343 "error reading axis data\n");
344 goto out_read_raw_unlock;
347 *val = be16_to_cpu(raw_val);
348 ret = IIO_VAL_INT;
350 goto out_read_raw_unlock;
351 default:
352 ret = -EINVAL;
353 goto out_read_raw_unlock;
355 default:
356 break;
359 return -EINVAL;
361 out_read_raw_unlock:
362 mutex_unlock(&mpu3050->lock);
363 pm_runtime_mark_last_busy(mpu3050->dev);
364 pm_runtime_put_autosuspend(mpu3050->dev);
366 return ret;
369 static int mpu3050_write_raw(struct iio_dev *indio_dev,
370 const struct iio_chan_spec *chan,
371 int val, int val2, long mask)
373 struct mpu3050 *mpu3050 = iio_priv(indio_dev);
375 * Couldn't figure out a way to precalculate these at compile time.
377 unsigned int fs250 =
378 DIV_ROUND_CLOSEST(mpu3050_fs_precision[0] * 1000000 * 2,
379 U16_MAX);
380 unsigned int fs500 =
381 DIV_ROUND_CLOSEST(mpu3050_fs_precision[1] * 1000000 * 2,
382 U16_MAX);
383 unsigned int fs1000 =
384 DIV_ROUND_CLOSEST(mpu3050_fs_precision[2] * 1000000 * 2,
385 U16_MAX);
386 unsigned int fs2000 =
387 DIV_ROUND_CLOSEST(mpu3050_fs_precision[3] * 1000000 * 2,
388 U16_MAX);
390 switch (mask) {
391 case IIO_CHAN_INFO_CALIBBIAS:
392 if (chan->type != IIO_ANGL_VEL)
393 return -EINVAL;
394 mpu3050->calibration[chan->scan_index-1] = val;
395 return 0;
396 case IIO_CHAN_INFO_SAMP_FREQ:
398 * The max samplerate is 8000 Hz, the minimum
399 * 1000 / 256 ~= 4 Hz
401 if (val < 4 || val > 8000)
402 return -EINVAL;
405 * Above 1000 Hz we must turn off the digital low pass filter
406 * so we get a base frequency of 8kHz to the divider
408 if (val > 1000) {
409 mpu3050->lpf = LPF_256_HZ_NOLPF;
410 mpu3050->divisor = DIV_ROUND_CLOSEST(8000, val) - 1;
411 return 0;
414 mpu3050->lpf = LPF_188_HZ;
415 mpu3050->divisor = DIV_ROUND_CLOSEST(1000, val) - 1;
416 return 0;
417 case IIO_CHAN_INFO_SCALE:
418 if (chan->type != IIO_ANGL_VEL)
419 return -EINVAL;
421 * We support +/-250, +/-500, +/-1000 and +/2000 deg/s
422 * which means we need to round to the closest radians
423 * which will be roughly +/-4.3, +/-8.7, +/-17.5, +/-35
424 * rad/s. The scale is then for the 16 bits used to cover
425 * it 2/(2^16) of that.
428 /* Just too large, set the max range */
429 if (val != 0) {
430 mpu3050->fullscale = FS_2000_DPS;
431 return 0;
435 * Now we're dealing with fractions below zero in millirad/s
436 * do some integer interpolation and match with the closest
437 * fullscale in the table.
439 if (val2 <= fs250 ||
440 val2 < ((fs500 + fs250) / 2))
441 mpu3050->fullscale = FS_250_DPS;
442 else if (val2 <= fs500 ||
443 val2 < ((fs1000 + fs500) / 2))
444 mpu3050->fullscale = FS_500_DPS;
445 else if (val2 <= fs1000 ||
446 val2 < ((fs2000 + fs1000) / 2))
447 mpu3050->fullscale = FS_1000_DPS;
448 else
449 /* Catch-all */
450 mpu3050->fullscale = FS_2000_DPS;
451 return 0;
452 default:
453 break;
456 return -EINVAL;
459 static irqreturn_t mpu3050_trigger_handler(int irq, void *p)
461 const struct iio_poll_func *pf = p;
462 struct iio_dev *indio_dev = pf->indio_dev;
463 struct mpu3050 *mpu3050 = iio_priv(indio_dev);
464 int ret;
466 * Temperature 1*16 bits
467 * Three axes 3*16 bits
468 * Timestamp 64 bits (4*16 bits)
469 * Sum total 8*16 bits
471 __be16 hw_values[8];
472 s64 timestamp;
473 unsigned int datums_from_fifo = 0;
476 * If we're using the hardware trigger, get the precise timestamp from
477 * the top half of the threaded IRQ handler. Otherwise get the
478 * timestamp here so it will be close in time to the actual values
479 * read from the registers.
481 if (iio_trigger_using_own(indio_dev))
482 timestamp = mpu3050->hw_timestamp;
483 else
484 timestamp = iio_get_time_ns(indio_dev);
486 mutex_lock(&mpu3050->lock);
488 /* Using the hardware IRQ trigger? Check the buffer then. */
489 if (mpu3050->hw_irq_trigger) {
490 __be16 raw_fifocnt;
491 u16 fifocnt;
492 /* X, Y, Z + temperature */
493 unsigned int bytes_per_datum = 8;
494 bool fifo_overflow = false;
496 ret = regmap_bulk_read(mpu3050->map,
497 MPU3050_FIFO_COUNT_H,
498 &raw_fifocnt,
499 sizeof(raw_fifocnt));
500 if (ret)
501 goto out_trigger_unlock;
502 fifocnt = be16_to_cpu(raw_fifocnt);
504 if (fifocnt == 512) {
505 dev_info(mpu3050->dev,
506 "FIFO overflow! Emptying and resetting FIFO\n");
507 fifo_overflow = true;
508 /* Reset and enable the FIFO */
509 ret = regmap_update_bits(mpu3050->map,
510 MPU3050_USR_CTRL,
511 MPU3050_USR_CTRL_FIFO_EN |
512 MPU3050_USR_CTRL_FIFO_RST,
513 MPU3050_USR_CTRL_FIFO_EN |
514 MPU3050_USR_CTRL_FIFO_RST);
515 if (ret) {
516 dev_info(mpu3050->dev, "error resetting FIFO\n");
517 goto out_trigger_unlock;
519 mpu3050->pending_fifo_footer = false;
522 if (fifocnt)
523 dev_dbg(mpu3050->dev,
524 "%d bytes in the FIFO\n",
525 fifocnt);
527 while (!fifo_overflow && fifocnt > bytes_per_datum) {
528 unsigned int toread;
529 unsigned int offset;
530 __be16 fifo_values[5];
533 * If there is a FIFO footer in the pipe, first clear
534 * that out. This follows the complex algorithm in the
535 * datasheet that states that you may never leave the
536 * FIFO empty after the first reading: you have to
537 * always leave two footer bytes in it. The footer is
538 * in practice just two zero bytes.
540 if (mpu3050->pending_fifo_footer) {
541 toread = bytes_per_datum + 2;
542 offset = 0;
543 } else {
544 toread = bytes_per_datum;
545 offset = 1;
546 /* Put in some dummy value */
547 fifo_values[0] = cpu_to_be16(0xAAAA);
550 ret = regmap_bulk_read(mpu3050->map,
551 MPU3050_FIFO_R,
552 &fifo_values[offset],
553 toread);
555 dev_dbg(mpu3050->dev,
556 "%04x %04x %04x %04x %04x\n",
557 fifo_values[0],
558 fifo_values[1],
559 fifo_values[2],
560 fifo_values[3],
561 fifo_values[4]);
563 /* Index past the footer (fifo_values[0]) and push */
564 iio_push_to_buffers_with_timestamp(indio_dev,
565 &fifo_values[1],
566 timestamp);
568 fifocnt -= toread;
569 datums_from_fifo++;
570 mpu3050->pending_fifo_footer = true;
573 * If we're emptying the FIFO, just make sure to
574 * check if something new appeared.
576 if (fifocnt < bytes_per_datum) {
577 ret = regmap_bulk_read(mpu3050->map,
578 MPU3050_FIFO_COUNT_H,
579 &raw_fifocnt,
580 sizeof(raw_fifocnt));
581 if (ret)
582 goto out_trigger_unlock;
583 fifocnt = be16_to_cpu(raw_fifocnt);
586 if (fifocnt < bytes_per_datum)
587 dev_dbg(mpu3050->dev,
588 "%d bytes left in the FIFO\n",
589 fifocnt);
592 * At this point, the timestamp that triggered the
593 * hardware interrupt is no longer valid for what
594 * we are reading (the interrupt likely fired for
595 * the value on the top of the FIFO), so set the
596 * timestamp to zero and let userspace deal with it.
598 timestamp = 0;
603 * If we picked some datums from the FIFO that's enough, else
604 * fall through and just read from the current value registers.
605 * This happens in two cases:
607 * - We are using some other trigger (external, like an HRTimer)
608 * than the sensor's own sample generator. In this case the
609 * sensor is just set to the max sampling frequency and we give
610 * the trigger a copy of the latest value every time we get here.
612 * - The hardware trigger is active but unused and we actually use
613 * another trigger which calls here with a frequency higher
614 * than what the device provides data. We will then just read
615 * duplicate values directly from the hardware registers.
617 if (datums_from_fifo) {
618 dev_dbg(mpu3050->dev,
619 "read %d datums from the FIFO\n",
620 datums_from_fifo);
621 goto out_trigger_unlock;
624 ret = regmap_bulk_read(mpu3050->map, MPU3050_TEMP_H, &hw_values,
625 sizeof(hw_values));
626 if (ret) {
627 dev_err(mpu3050->dev,
628 "error reading axis data\n");
629 goto out_trigger_unlock;
632 iio_push_to_buffers_with_timestamp(indio_dev, hw_values, timestamp);
634 out_trigger_unlock:
635 mutex_unlock(&mpu3050->lock);
636 iio_trigger_notify_done(indio_dev->trig);
638 return IRQ_HANDLED;
641 static int mpu3050_buffer_preenable(struct iio_dev *indio_dev)
643 struct mpu3050 *mpu3050 = iio_priv(indio_dev);
645 pm_runtime_get_sync(mpu3050->dev);
647 /* Unless we have OUR trigger active, run at full speed */
648 if (!mpu3050->hw_irq_trigger)
649 return mpu3050_set_8khz_samplerate(mpu3050);
651 return 0;
654 static int mpu3050_buffer_postdisable(struct iio_dev *indio_dev)
656 struct mpu3050 *mpu3050 = iio_priv(indio_dev);
658 pm_runtime_mark_last_busy(mpu3050->dev);
659 pm_runtime_put_autosuspend(mpu3050->dev);
661 return 0;
664 static const struct iio_buffer_setup_ops mpu3050_buffer_setup_ops = {
665 .preenable = mpu3050_buffer_preenable,
666 .postdisable = mpu3050_buffer_postdisable,
669 static const struct iio_mount_matrix *
670 mpu3050_get_mount_matrix(const struct iio_dev *indio_dev,
671 const struct iio_chan_spec *chan)
673 struct mpu3050 *mpu3050 = iio_priv(indio_dev);
675 return &mpu3050->orientation;
678 static const struct iio_chan_spec_ext_info mpu3050_ext_info[] = {
679 IIO_MOUNT_MATRIX(IIO_SHARED_BY_TYPE, mpu3050_get_mount_matrix),
680 { },
683 #define MPU3050_AXIS_CHANNEL(axis, index) \
685 .type = IIO_ANGL_VEL, \
686 .modified = 1, \
687 .channel2 = IIO_MOD_##axis, \
688 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
689 BIT(IIO_CHAN_INFO_CALIBBIAS), \
690 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
691 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\
692 .ext_info = mpu3050_ext_info, \
693 .scan_index = index, \
694 .scan_type = { \
695 .sign = 's', \
696 .realbits = 16, \
697 .storagebits = 16, \
698 .endianness = IIO_BE, \
699 }, \
702 static const struct iio_chan_spec mpu3050_channels[] = {
704 .type = IIO_TEMP,
705 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
706 BIT(IIO_CHAN_INFO_SCALE) |
707 BIT(IIO_CHAN_INFO_OFFSET),
708 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
709 .scan_index = 0,
710 .scan_type = {
711 .sign = 's',
712 .realbits = 16,
713 .storagebits = 16,
714 .endianness = IIO_BE,
717 MPU3050_AXIS_CHANNEL(X, 1),
718 MPU3050_AXIS_CHANNEL(Y, 2),
719 MPU3050_AXIS_CHANNEL(Z, 3),
720 IIO_CHAN_SOFT_TIMESTAMP(4),
723 /* Four channels apart from timestamp, scan mask = 0x0f */
724 static const unsigned long mpu3050_scan_masks[] = { 0xf, 0 };
727 * These are just the hardcoded factors resulting from the more elaborate
728 * calculations done with fractions in the scale raw get/set functions.
730 static IIO_CONST_ATTR(anglevel_scale_available,
731 "0.000122070 "
732 "0.000274658 "
733 "0.000518798 "
734 "0.001068115");
736 static struct attribute *mpu3050_attributes[] = {
737 &iio_const_attr_anglevel_scale_available.dev_attr.attr,
738 NULL,
741 static const struct attribute_group mpu3050_attribute_group = {
742 .attrs = mpu3050_attributes,
745 static const struct iio_info mpu3050_info = {
746 .read_raw = mpu3050_read_raw,
747 .write_raw = mpu3050_write_raw,
748 .attrs = &mpu3050_attribute_group,
752 * mpu3050_read_mem() - read MPU-3050 internal memory
753 * @mpu3050: device to read from
754 * @bank: target bank
755 * @addr: target address
756 * @len: number of bytes
757 * @buf: the buffer to store the read bytes in
759 static int mpu3050_read_mem(struct mpu3050 *mpu3050,
760 u8 bank,
761 u8 addr,
762 u8 len,
763 u8 *buf)
765 int ret;
767 ret = regmap_write(mpu3050->map,
768 MPU3050_BANK_SEL,
769 bank);
770 if (ret)
771 return ret;
773 ret = regmap_write(mpu3050->map,
774 MPU3050_MEM_START_ADDR,
775 addr);
776 if (ret)
777 return ret;
779 return regmap_bulk_read(mpu3050->map,
780 MPU3050_MEM_R_W,
781 buf,
782 len);
785 static int mpu3050_hw_init(struct mpu3050 *mpu3050)
787 int ret;
788 __le64 otp_le;
789 u64 otp;
791 /* Reset */
792 ret = regmap_update_bits(mpu3050->map,
793 MPU3050_PWR_MGM,
794 MPU3050_PWR_MGM_RESET,
795 MPU3050_PWR_MGM_RESET);
796 if (ret)
797 return ret;
799 /* Turn on the PLL */
800 ret = regmap_update_bits(mpu3050->map,
801 MPU3050_PWR_MGM,
802 MPU3050_PWR_MGM_CLKSEL_MASK,
803 MPU3050_PWR_MGM_PLL_Z);
804 if (ret)
805 return ret;
807 /* Disable IRQs */
808 ret = regmap_write(mpu3050->map,
809 MPU3050_INT_CFG,
811 if (ret)
812 return ret;
814 /* Read out the 8 bytes of OTP (one-time-programmable) memory */
815 ret = mpu3050_read_mem(mpu3050,
816 (MPU3050_MEM_PRFTCH |
817 MPU3050_MEM_USER_BANK |
818 MPU3050_MEM_OTP_BANK_0),
820 sizeof(otp_le),
821 (u8 *)&otp_le);
822 if (ret)
823 return ret;
825 /* This is device-unique data so it goes into the entropy pool */
826 add_device_randomness(&otp_le, sizeof(otp_le));
828 otp = le64_to_cpu(otp_le);
830 dev_info(mpu3050->dev,
831 "die ID: %04llX, wafer ID: %02llX, A lot ID: %04llX, "
832 "W lot ID: %03llX, WP ID: %01llX, rev ID: %02llX\n",
833 /* Die ID, bits 0-12 */
834 FIELD_GET(GENMASK_ULL(12, 0), otp),
835 /* Wafer ID, bits 13-17 */
836 FIELD_GET(GENMASK_ULL(17, 13), otp),
837 /* A lot ID, bits 18-33 */
838 FIELD_GET(GENMASK_ULL(33, 18), otp),
839 /* W lot ID, bits 34-45 */
840 FIELD_GET(GENMASK_ULL(45, 34), otp),
841 /* WP ID, bits 47-49 */
842 FIELD_GET(GENMASK_ULL(49, 47), otp),
843 /* rev ID, bits 50-55 */
844 FIELD_GET(GENMASK_ULL(55, 50), otp));
846 return 0;
849 static int mpu3050_power_up(struct mpu3050 *mpu3050)
851 int ret;
853 ret = regulator_bulk_enable(ARRAY_SIZE(mpu3050->regs), mpu3050->regs);
854 if (ret) {
855 dev_err(mpu3050->dev, "cannot enable regulators\n");
856 return ret;
859 * 20-100 ms start-up time for register read/write according to
860 * the datasheet, be on the safe side and wait 200 ms.
862 msleep(200);
864 /* Take device out of sleep mode */
865 ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
866 MPU3050_PWR_MGM_SLEEP, 0);
867 if (ret) {
868 dev_err(mpu3050->dev, "error setting power mode\n");
869 return ret;
871 usleep_range(10000, 20000);
873 return 0;
876 static int mpu3050_power_down(struct mpu3050 *mpu3050)
878 int ret;
881 * Put MPU-3050 into sleep mode before cutting regulators.
882 * This is important, because we may not be the sole user
883 * of the regulator so the power may stay on after this, and
884 * then we would be wasting power unless we go to sleep mode
885 * first.
887 ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
888 MPU3050_PWR_MGM_SLEEP, MPU3050_PWR_MGM_SLEEP);
889 if (ret)
890 dev_err(mpu3050->dev, "error putting to sleep\n");
892 ret = regulator_bulk_disable(ARRAY_SIZE(mpu3050->regs), mpu3050->regs);
893 if (ret)
894 dev_err(mpu3050->dev, "error disabling regulators\n");
896 return 0;
899 static irqreturn_t mpu3050_irq_handler(int irq, void *p)
901 struct iio_trigger *trig = p;
902 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
903 struct mpu3050 *mpu3050 = iio_priv(indio_dev);
905 if (!mpu3050->hw_irq_trigger)
906 return IRQ_NONE;
908 /* Get the time stamp as close in time as possible */
909 mpu3050->hw_timestamp = iio_get_time_ns(indio_dev);
911 return IRQ_WAKE_THREAD;
914 static irqreturn_t mpu3050_irq_thread(int irq, void *p)
916 struct iio_trigger *trig = p;
917 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
918 struct mpu3050 *mpu3050 = iio_priv(indio_dev);
919 unsigned int val;
920 int ret;
922 /* ACK IRQ and check if it was from us */
923 ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val);
924 if (ret) {
925 dev_err(mpu3050->dev, "error reading IRQ status\n");
926 return IRQ_HANDLED;
928 if (!(val & MPU3050_INT_STATUS_RAW_RDY))
929 return IRQ_NONE;
931 iio_trigger_poll_chained(p);
933 return IRQ_HANDLED;
937 * mpu3050_drdy_trigger_set_state() - set data ready interrupt state
938 * @trig: trigger instance
939 * @enable: true if trigger should be enabled, false to disable
941 static int mpu3050_drdy_trigger_set_state(struct iio_trigger *trig,
942 bool enable)
944 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
945 struct mpu3050 *mpu3050 = iio_priv(indio_dev);
946 unsigned int val;
947 int ret;
949 /* Disabling trigger: disable interrupt and return */
950 if (!enable) {
951 /* Disable all interrupts */
952 ret = regmap_write(mpu3050->map,
953 MPU3050_INT_CFG,
955 if (ret)
956 dev_err(mpu3050->dev, "error disabling IRQ\n");
958 /* Clear IRQ flag */
959 ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val);
960 if (ret)
961 dev_err(mpu3050->dev, "error clearing IRQ status\n");
963 /* Disable all things in the FIFO and reset it */
964 ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN, 0);
965 if (ret)
966 dev_err(mpu3050->dev, "error disabling FIFO\n");
968 ret = regmap_write(mpu3050->map, MPU3050_USR_CTRL,
969 MPU3050_USR_CTRL_FIFO_RST);
970 if (ret)
971 dev_err(mpu3050->dev, "error resetting FIFO\n");
973 pm_runtime_mark_last_busy(mpu3050->dev);
974 pm_runtime_put_autosuspend(mpu3050->dev);
975 mpu3050->hw_irq_trigger = false;
977 return 0;
978 } else {
979 /* Else we're enabling the trigger from this point */
980 pm_runtime_get_sync(mpu3050->dev);
981 mpu3050->hw_irq_trigger = true;
983 /* Disable all things in the FIFO */
984 ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN, 0);
985 if (ret)
986 return ret;
988 /* Reset and enable the FIFO */
989 ret = regmap_update_bits(mpu3050->map, MPU3050_USR_CTRL,
990 MPU3050_USR_CTRL_FIFO_EN |
991 MPU3050_USR_CTRL_FIFO_RST,
992 MPU3050_USR_CTRL_FIFO_EN |
993 MPU3050_USR_CTRL_FIFO_RST);
994 if (ret)
995 return ret;
997 mpu3050->pending_fifo_footer = false;
999 /* Turn on the FIFO for temp+X+Y+Z */
1000 ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN,
1001 MPU3050_FIFO_EN_TEMP_OUT |
1002 MPU3050_FIFO_EN_GYRO_XOUT |
1003 MPU3050_FIFO_EN_GYRO_YOUT |
1004 MPU3050_FIFO_EN_GYRO_ZOUT |
1005 MPU3050_FIFO_EN_FOOTER);
1006 if (ret)
1007 return ret;
1009 /* Configure the sample engine */
1010 ret = mpu3050_start_sampling(mpu3050);
1011 if (ret)
1012 return ret;
1014 /* Clear IRQ flag */
1015 ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val);
1016 if (ret)
1017 dev_err(mpu3050->dev, "error clearing IRQ status\n");
1019 /* Give us interrupts whenever there is new data ready */
1020 val = MPU3050_INT_RAW_RDY_EN;
1022 if (mpu3050->irq_actl)
1023 val |= MPU3050_INT_ACTL;
1024 if (mpu3050->irq_latch)
1025 val |= MPU3050_INT_LATCH_EN;
1026 if (mpu3050->irq_opendrain)
1027 val |= MPU3050_INT_OPEN;
1029 ret = regmap_write(mpu3050->map, MPU3050_INT_CFG, val);
1030 if (ret)
1031 return ret;
1034 return 0;
1037 static const struct iio_trigger_ops mpu3050_trigger_ops = {
1038 .set_trigger_state = mpu3050_drdy_trigger_set_state,
1041 static int mpu3050_trigger_probe(struct iio_dev *indio_dev, int irq)
1043 struct mpu3050 *mpu3050 = iio_priv(indio_dev);
1044 unsigned long irq_trig;
1045 int ret;
1047 mpu3050->trig = devm_iio_trigger_alloc(&indio_dev->dev,
1048 "%s-dev%d",
1049 indio_dev->name,
1050 indio_dev->id);
1051 if (!mpu3050->trig)
1052 return -ENOMEM;
1054 /* Check if IRQ is open drain */
1055 if (of_property_read_bool(mpu3050->dev->of_node, "drive-open-drain"))
1056 mpu3050->irq_opendrain = true;
1058 irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq));
1060 * Configure the interrupt generator hardware to supply whatever
1061 * the interrupt is configured for, edges low/high level low/high,
1062 * we can provide it all.
1064 switch (irq_trig) {
1065 case IRQF_TRIGGER_RISING:
1066 dev_info(&indio_dev->dev,
1067 "pulse interrupts on the rising edge\n");
1068 break;
1069 case IRQF_TRIGGER_FALLING:
1070 mpu3050->irq_actl = true;
1071 dev_info(&indio_dev->dev,
1072 "pulse interrupts on the falling edge\n");
1073 break;
1074 case IRQF_TRIGGER_HIGH:
1075 mpu3050->irq_latch = true;
1076 dev_info(&indio_dev->dev,
1077 "interrupts active high level\n");
1079 * With level IRQs, we mask the IRQ until it is processed,
1080 * but with edge IRQs (pulses) we can queue several interrupts
1081 * in the top half.
1083 irq_trig |= IRQF_ONESHOT;
1084 break;
1085 case IRQF_TRIGGER_LOW:
1086 mpu3050->irq_latch = true;
1087 mpu3050->irq_actl = true;
1088 irq_trig |= IRQF_ONESHOT;
1089 dev_info(&indio_dev->dev,
1090 "interrupts active low level\n");
1091 break;
1092 default:
1093 /* This is the most preferred mode, if possible */
1094 dev_err(&indio_dev->dev,
1095 "unsupported IRQ trigger specified (%lx), enforce "
1096 "rising edge\n", irq_trig);
1097 irq_trig = IRQF_TRIGGER_RISING;
1098 break;
1101 /* An open drain line can be shared with several devices */
1102 if (mpu3050->irq_opendrain)
1103 irq_trig |= IRQF_SHARED;
1105 ret = request_threaded_irq(irq,
1106 mpu3050_irq_handler,
1107 mpu3050_irq_thread,
1108 irq_trig,
1109 mpu3050->trig->name,
1110 mpu3050->trig);
1111 if (ret) {
1112 dev_err(mpu3050->dev,
1113 "can't get IRQ %d, error %d\n", irq, ret);
1114 return ret;
1117 mpu3050->irq = irq;
1118 mpu3050->trig->dev.parent = mpu3050->dev;
1119 mpu3050->trig->ops = &mpu3050_trigger_ops;
1120 iio_trigger_set_drvdata(mpu3050->trig, indio_dev);
1122 ret = iio_trigger_register(mpu3050->trig);
1123 if (ret)
1124 return ret;
1126 indio_dev->trig = iio_trigger_get(mpu3050->trig);
1128 return 0;
1131 int mpu3050_common_probe(struct device *dev,
1132 struct regmap *map,
1133 int irq,
1134 const char *name)
1136 struct iio_dev *indio_dev;
1137 struct mpu3050 *mpu3050;
1138 unsigned int val;
1139 int ret;
1141 indio_dev = devm_iio_device_alloc(dev, sizeof(*mpu3050));
1142 if (!indio_dev)
1143 return -ENOMEM;
1144 mpu3050 = iio_priv(indio_dev);
1146 mpu3050->dev = dev;
1147 mpu3050->map = map;
1148 mutex_init(&mpu3050->lock);
1149 /* Default fullscale: 2000 degrees per second */
1150 mpu3050->fullscale = FS_2000_DPS;
1151 /* 1 kHz, divide by 100, default frequency = 10 Hz */
1152 mpu3050->lpf = MPU3050_DLPF_CFG_188HZ;
1153 mpu3050->divisor = 99;
1155 /* Read the mounting matrix, if present */
1156 ret = iio_read_mount_matrix(dev, "mount-matrix", &mpu3050->orientation);
1157 if (ret)
1158 return ret;
1160 /* Fetch and turn on regulators */
1161 mpu3050->regs[0].supply = mpu3050_reg_vdd;
1162 mpu3050->regs[1].supply = mpu3050_reg_vlogic;
1163 ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(mpu3050->regs),
1164 mpu3050->regs);
1165 if (ret) {
1166 dev_err(dev, "Cannot get regulators\n");
1167 return ret;
1170 ret = mpu3050_power_up(mpu3050);
1171 if (ret)
1172 return ret;
1174 ret = regmap_read(map, MPU3050_CHIP_ID_REG, &val);
1175 if (ret) {
1176 dev_err(dev, "could not read device ID\n");
1177 ret = -ENODEV;
1179 goto err_power_down;
1182 if ((val & MPU3050_CHIP_ID_MASK) != MPU3050_CHIP_ID) {
1183 dev_err(dev, "unsupported chip id %02x\n",
1184 (u8)(val & MPU3050_CHIP_ID_MASK));
1185 ret = -ENODEV;
1186 goto err_power_down;
1189 ret = regmap_read(map, MPU3050_PRODUCT_ID_REG, &val);
1190 if (ret) {
1191 dev_err(dev, "could not read device ID\n");
1192 ret = -ENODEV;
1194 goto err_power_down;
1196 dev_info(dev, "found MPU-3050 part no: %d, version: %d\n",
1197 ((val >> 4) & 0xf), (val & 0xf));
1199 ret = mpu3050_hw_init(mpu3050);
1200 if (ret)
1201 goto err_power_down;
1203 indio_dev->channels = mpu3050_channels;
1204 indio_dev->num_channels = ARRAY_SIZE(mpu3050_channels);
1205 indio_dev->info = &mpu3050_info;
1206 indio_dev->available_scan_masks = mpu3050_scan_masks;
1207 indio_dev->modes = INDIO_DIRECT_MODE;
1208 indio_dev->name = name;
1210 ret = iio_triggered_buffer_setup(indio_dev, iio_pollfunc_store_time,
1211 mpu3050_trigger_handler,
1212 &mpu3050_buffer_setup_ops);
1213 if (ret) {
1214 dev_err(dev, "triggered buffer setup failed\n");
1215 goto err_power_down;
1218 ret = iio_device_register(indio_dev);
1219 if (ret) {
1220 dev_err(dev, "device register failed\n");
1221 goto err_cleanup_buffer;
1224 dev_set_drvdata(dev, indio_dev);
1226 /* Check if we have an assigned IRQ to use as trigger */
1227 if (irq) {
1228 ret = mpu3050_trigger_probe(indio_dev, irq);
1229 if (ret)
1230 dev_err(dev, "failed to register trigger\n");
1233 /* Enable runtime PM */
1234 pm_runtime_get_noresume(dev);
1235 pm_runtime_set_active(dev);
1236 pm_runtime_enable(dev);
1238 * Set autosuspend to two orders of magnitude larger than the
1239 * start-up time. 100ms start-up time means 10000ms autosuspend,
1240 * i.e. 10 seconds.
1242 pm_runtime_set_autosuspend_delay(dev, 10000);
1243 pm_runtime_use_autosuspend(dev);
1244 pm_runtime_put(dev);
1246 return 0;
1248 err_cleanup_buffer:
1249 iio_triggered_buffer_cleanup(indio_dev);
1250 err_power_down:
1251 mpu3050_power_down(mpu3050);
1253 return ret;
1255 EXPORT_SYMBOL(mpu3050_common_probe);
1257 int mpu3050_common_remove(struct device *dev)
1259 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1260 struct mpu3050 *mpu3050 = iio_priv(indio_dev);
1262 pm_runtime_get_sync(dev);
1263 pm_runtime_put_noidle(dev);
1264 pm_runtime_disable(dev);
1265 iio_triggered_buffer_cleanup(indio_dev);
1266 if (mpu3050->irq)
1267 free_irq(mpu3050->irq, mpu3050);
1268 iio_device_unregister(indio_dev);
1269 mpu3050_power_down(mpu3050);
1271 return 0;
1273 EXPORT_SYMBOL(mpu3050_common_remove);
1275 #ifdef CONFIG_PM
1276 static int mpu3050_runtime_suspend(struct device *dev)
1278 return mpu3050_power_down(iio_priv(dev_get_drvdata(dev)));
1281 static int mpu3050_runtime_resume(struct device *dev)
1283 return mpu3050_power_up(iio_priv(dev_get_drvdata(dev)));
1285 #endif /* CONFIG_PM */
1287 const struct dev_pm_ops mpu3050_dev_pm_ops = {
1288 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1289 pm_runtime_force_resume)
1290 SET_RUNTIME_PM_OPS(mpu3050_runtime_suspend,
1291 mpu3050_runtime_resume, NULL)
1293 EXPORT_SYMBOL(mpu3050_dev_pm_ops);
1295 MODULE_AUTHOR("Linus Walleij");
1296 MODULE_DESCRIPTION("MPU3050 gyroscope driver");
1297 MODULE_LICENSE("GPL");