1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/dma-iommu.h>
15 #include <linux/efi.h>
16 #include <linux/interrupt.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqdomain.h>
19 #include <linux/list.h>
20 #include <linux/log2.h>
21 #include <linux/memblock.h>
23 #include <linux/msi.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/of_pci.h>
28 #include <linux/of_platform.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/syscore_ops.h>
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35 #include <linux/irqchip/arm-gic-v4.h>
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
40 #include "irq-gic-common.h"
42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0)
43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1)
44 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2)
46 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0)
47 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED (1 << 1)
49 static u32 lpi_id_bits
;
52 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
53 * deal with (one configuration byte per interrupt). PENDBASE has to
54 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
56 #define LPI_NRBITS lpi_id_bits
57 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K)
58 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
60 #define LPI_PROP_DEFAULT_PRIO GICD_INT_DEF_PRI
63 * Collection structure - just an ID, and a redistributor address to
64 * ping. We use one per CPU as a bag of interrupts assigned to this
67 struct its_collection
{
73 * The ITS_BASER structure - contains memory information, cached
74 * value of BASER register configuration and ITS page size.
86 * The ITS structure - contains most of the infrastructure, with the
87 * top-level MSI domain, the command queue, the collections, and the
88 * list of devices writing to it.
90 * dev_alloc_lock has to be taken for device allocations, while the
91 * spinlock must be taken to parse data structures such as the device
96 struct mutex dev_alloc_lock
;
97 struct list_head entry
;
99 void __iomem
*sgir_base
;
100 phys_addr_t phys_base
;
101 struct its_cmd_block
*cmd_base
;
102 struct its_cmd_block
*cmd_write
;
103 struct its_baser tables
[GITS_BASER_NR_REGS
];
104 struct its_collection
*collections
;
105 struct fwnode_handle
*fwnode_handle
;
106 u64 (*get_msi_base
)(struct its_device
*its_dev
);
111 struct list_head its_device_list
;
113 unsigned long list_nr
;
115 unsigned int msi_domain_flags
;
116 u32 pre_its_base
; /* for Socionext Synquacer */
117 int vlpi_redist_offset
;
120 #define is_v4(its) (!!((its)->typer & GITS_TYPER_VLPIS))
121 #define is_v4_1(its) (!!((its)->typer & GITS_TYPER_VMAPP))
122 #define device_ids(its) (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
124 #define ITS_ITT_ALIGN SZ_256
126 /* The maximum number of VPEID bits supported by VLPI commands */
127 #define ITS_MAX_VPEID_BITS \
130 if (gic_rdists->has_rvpeid && \
131 gic_rdists->gicd_typer2 & GICD_TYPER2_VIL) \
132 nvpeid = 1 + (gic_rdists->gicd_typer2 & \
137 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS))
139 /* Convert page order to size in bytes */
140 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o))
142 struct event_lpi_map
{
143 unsigned long *lpi_map
;
145 irq_hw_number_t lpi_base
;
147 raw_spinlock_t vlpi_lock
;
149 struct its_vlpi_map
*vlpi_maps
;
154 * The ITS view of a device - belongs to an ITS, owns an interrupt
155 * translation table, and a list of interrupts. If it some of its
156 * LPIs are injected into a guest (GICv4), the event_map.vm field
157 * indicates which one.
160 struct list_head entry
;
161 struct its_node
*its
;
162 struct event_lpi_map event_map
;
171 struct its_device
*dev
;
172 struct its_vpe
**vpes
;
176 struct cpu_lpi_count
{
181 static DEFINE_PER_CPU(struct cpu_lpi_count
, cpu_lpi_count
);
183 static LIST_HEAD(its_nodes
);
184 static DEFINE_RAW_SPINLOCK(its_lock
);
185 static struct rdists
*gic_rdists
;
186 static struct irq_domain
*its_parent
;
188 static unsigned long its_list_map
;
189 static u16 vmovp_seq_num
;
190 static DEFINE_RAW_SPINLOCK(vmovp_lock
);
192 static DEFINE_IDA(its_vpeid_ida
);
194 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist))
195 #define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu))
196 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
197 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K)
200 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
201 * always have vSGIs mapped.
203 static bool require_its_list_vmovp(struct its_vm
*vm
, struct its_node
*its
)
205 return (gic_rdists
->has_rvpeid
|| vm
->vlpi_count
[its
->list_nr
]);
208 static u16
get_its_list(struct its_vm
*vm
)
210 struct its_node
*its
;
211 unsigned long its_list
= 0;
213 list_for_each_entry(its
, &its_nodes
, entry
) {
217 if (require_its_list_vmovp(vm
, its
))
218 __set_bit(its
->list_nr
, &its_list
);
221 return (u16
)its_list
;
224 static inline u32
its_get_event_id(struct irq_data
*d
)
226 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
227 return d
->hwirq
- its_dev
->event_map
.lpi_base
;
230 static struct its_collection
*dev_event_to_col(struct its_device
*its_dev
,
233 struct its_node
*its
= its_dev
->its
;
235 return its
->collections
+ its_dev
->event_map
.col_map
[event
];
238 static struct its_vlpi_map
*dev_event_to_vlpi_map(struct its_device
*its_dev
,
241 if (WARN_ON_ONCE(event
>= its_dev
->event_map
.nr_lpis
))
244 return &its_dev
->event_map
.vlpi_maps
[event
];
247 static struct its_vlpi_map
*get_vlpi_map(struct irq_data
*d
)
249 if (irqd_is_forwarded_to_vcpu(d
)) {
250 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
251 u32 event
= its_get_event_id(d
);
253 return dev_event_to_vlpi_map(its_dev
, event
);
259 static int vpe_to_cpuid_lock(struct its_vpe
*vpe
, unsigned long *flags
)
261 raw_spin_lock_irqsave(&vpe
->vpe_lock
, *flags
);
265 static void vpe_to_cpuid_unlock(struct its_vpe
*vpe
, unsigned long flags
)
267 raw_spin_unlock_irqrestore(&vpe
->vpe_lock
, flags
);
270 static int irq_to_cpuid_lock(struct irq_data
*d
, unsigned long *flags
)
272 struct its_vlpi_map
*map
= get_vlpi_map(d
);
276 cpu
= vpe_to_cpuid_lock(map
->vpe
, flags
);
278 /* Physical LPIs are already locked via the irq_desc lock */
279 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
280 cpu
= its_dev
->event_map
.col_map
[its_get_event_id(d
)];
281 /* Keep GCC quiet... */
288 static void irq_to_cpuid_unlock(struct irq_data
*d
, unsigned long flags
)
290 struct its_vlpi_map
*map
= get_vlpi_map(d
);
293 vpe_to_cpuid_unlock(map
->vpe
, flags
);
296 static struct its_collection
*valid_col(struct its_collection
*col
)
298 if (WARN_ON_ONCE(col
->target_address
& GENMASK_ULL(15, 0)))
304 static struct its_vpe
*valid_vpe(struct its_node
*its
, struct its_vpe
*vpe
)
306 if (valid_col(its
->collections
+ vpe
->col_idx
))
313 * ITS command descriptors - parameters to be encoded in a command
316 struct its_cmd_desc
{
319 struct its_device
*dev
;
324 struct its_device
*dev
;
329 struct its_device
*dev
;
334 struct its_device
*dev
;
339 struct its_collection
*col
;
344 struct its_device
*dev
;
350 struct its_device
*dev
;
351 struct its_collection
*col
;
356 struct its_device
*dev
;
361 struct its_collection
*col
;
370 struct its_collection
*col
;
376 struct its_device
*dev
;
384 struct its_device
*dev
;
391 struct its_collection
*col
;
412 * The ITS command block, which is what the ITS actually parses.
414 struct its_cmd_block
{
417 __le64 raw_cmd_le
[4];
421 #define ITS_CMD_QUEUE_SZ SZ_64K
422 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
424 typedef struct its_collection
*(*its_cmd_builder_t
)(struct its_node
*,
425 struct its_cmd_block
*,
426 struct its_cmd_desc
*);
428 typedef struct its_vpe
*(*its_cmd_vbuilder_t
)(struct its_node
*,
429 struct its_cmd_block
*,
430 struct its_cmd_desc
*);
432 static void its_mask_encode(u64
*raw_cmd
, u64 val
, int h
, int l
)
434 u64 mask
= GENMASK_ULL(h
, l
);
436 *raw_cmd
|= (val
<< l
) & mask
;
439 static void its_encode_cmd(struct its_cmd_block
*cmd
, u8 cmd_nr
)
441 its_mask_encode(&cmd
->raw_cmd
[0], cmd_nr
, 7, 0);
444 static void its_encode_devid(struct its_cmd_block
*cmd
, u32 devid
)
446 its_mask_encode(&cmd
->raw_cmd
[0], devid
, 63, 32);
449 static void its_encode_event_id(struct its_cmd_block
*cmd
, u32 id
)
451 its_mask_encode(&cmd
->raw_cmd
[1], id
, 31, 0);
454 static void its_encode_phys_id(struct its_cmd_block
*cmd
, u32 phys_id
)
456 its_mask_encode(&cmd
->raw_cmd
[1], phys_id
, 63, 32);
459 static void its_encode_size(struct its_cmd_block
*cmd
, u8 size
)
461 its_mask_encode(&cmd
->raw_cmd
[1], size
, 4, 0);
464 static void its_encode_itt(struct its_cmd_block
*cmd
, u64 itt_addr
)
466 its_mask_encode(&cmd
->raw_cmd
[2], itt_addr
>> 8, 51, 8);
469 static void its_encode_valid(struct its_cmd_block
*cmd
, int valid
)
471 its_mask_encode(&cmd
->raw_cmd
[2], !!valid
, 63, 63);
474 static void its_encode_target(struct its_cmd_block
*cmd
, u64 target_addr
)
476 its_mask_encode(&cmd
->raw_cmd
[2], target_addr
>> 16, 51, 16);
479 static void its_encode_collection(struct its_cmd_block
*cmd
, u16 col
)
481 its_mask_encode(&cmd
->raw_cmd
[2], col
, 15, 0);
484 static void its_encode_vpeid(struct its_cmd_block
*cmd
, u16 vpeid
)
486 its_mask_encode(&cmd
->raw_cmd
[1], vpeid
, 47, 32);
489 static void its_encode_virt_id(struct its_cmd_block
*cmd
, u32 virt_id
)
491 its_mask_encode(&cmd
->raw_cmd
[2], virt_id
, 31, 0);
494 static void its_encode_db_phys_id(struct its_cmd_block
*cmd
, u32 db_phys_id
)
496 its_mask_encode(&cmd
->raw_cmd
[2], db_phys_id
, 63, 32);
499 static void its_encode_db_valid(struct its_cmd_block
*cmd
, bool db_valid
)
501 its_mask_encode(&cmd
->raw_cmd
[2], db_valid
, 0, 0);
504 static void its_encode_seq_num(struct its_cmd_block
*cmd
, u16 seq_num
)
506 its_mask_encode(&cmd
->raw_cmd
[0], seq_num
, 47, 32);
509 static void its_encode_its_list(struct its_cmd_block
*cmd
, u16 its_list
)
511 its_mask_encode(&cmd
->raw_cmd
[1], its_list
, 15, 0);
514 static void its_encode_vpt_addr(struct its_cmd_block
*cmd
, u64 vpt_pa
)
516 its_mask_encode(&cmd
->raw_cmd
[3], vpt_pa
>> 16, 51, 16);
519 static void its_encode_vpt_size(struct its_cmd_block
*cmd
, u8 vpt_size
)
521 its_mask_encode(&cmd
->raw_cmd
[3], vpt_size
, 4, 0);
524 static void its_encode_vconf_addr(struct its_cmd_block
*cmd
, u64 vconf_pa
)
526 its_mask_encode(&cmd
->raw_cmd
[0], vconf_pa
>> 16, 51, 16);
529 static void its_encode_alloc(struct its_cmd_block
*cmd
, bool alloc
)
531 its_mask_encode(&cmd
->raw_cmd
[0], alloc
, 8, 8);
534 static void its_encode_ptz(struct its_cmd_block
*cmd
, bool ptz
)
536 its_mask_encode(&cmd
->raw_cmd
[0], ptz
, 9, 9);
539 static void its_encode_vmapp_default_db(struct its_cmd_block
*cmd
,
542 its_mask_encode(&cmd
->raw_cmd
[1], vpe_db_lpi
, 31, 0);
545 static void its_encode_vmovp_default_db(struct its_cmd_block
*cmd
,
548 its_mask_encode(&cmd
->raw_cmd
[3], vpe_db_lpi
, 31, 0);
551 static void its_encode_db(struct its_cmd_block
*cmd
, bool db
)
553 its_mask_encode(&cmd
->raw_cmd
[2], db
, 63, 63);
556 static void its_encode_sgi_intid(struct its_cmd_block
*cmd
, u8 sgi
)
558 its_mask_encode(&cmd
->raw_cmd
[0], sgi
, 35, 32);
561 static void its_encode_sgi_priority(struct its_cmd_block
*cmd
, u8 prio
)
563 its_mask_encode(&cmd
->raw_cmd
[0], prio
>> 4, 23, 20);
566 static void its_encode_sgi_group(struct its_cmd_block
*cmd
, bool grp
)
568 its_mask_encode(&cmd
->raw_cmd
[0], grp
, 10, 10);
571 static void its_encode_sgi_clear(struct its_cmd_block
*cmd
, bool clr
)
573 its_mask_encode(&cmd
->raw_cmd
[0], clr
, 9, 9);
576 static void its_encode_sgi_enable(struct its_cmd_block
*cmd
, bool en
)
578 its_mask_encode(&cmd
->raw_cmd
[0], en
, 8, 8);
581 static inline void its_fixup_cmd(struct its_cmd_block
*cmd
)
583 /* Let's fixup BE commands */
584 cmd
->raw_cmd_le
[0] = cpu_to_le64(cmd
->raw_cmd
[0]);
585 cmd
->raw_cmd_le
[1] = cpu_to_le64(cmd
->raw_cmd
[1]);
586 cmd
->raw_cmd_le
[2] = cpu_to_le64(cmd
->raw_cmd
[2]);
587 cmd
->raw_cmd_le
[3] = cpu_to_le64(cmd
->raw_cmd
[3]);
590 static struct its_collection
*its_build_mapd_cmd(struct its_node
*its
,
591 struct its_cmd_block
*cmd
,
592 struct its_cmd_desc
*desc
)
594 unsigned long itt_addr
;
595 u8 size
= ilog2(desc
->its_mapd_cmd
.dev
->nr_ites
);
597 itt_addr
= virt_to_phys(desc
->its_mapd_cmd
.dev
->itt
);
598 itt_addr
= ALIGN(itt_addr
, ITS_ITT_ALIGN
);
600 its_encode_cmd(cmd
, GITS_CMD_MAPD
);
601 its_encode_devid(cmd
, desc
->its_mapd_cmd
.dev
->device_id
);
602 its_encode_size(cmd
, size
- 1);
603 its_encode_itt(cmd
, itt_addr
);
604 its_encode_valid(cmd
, desc
->its_mapd_cmd
.valid
);
611 static struct its_collection
*its_build_mapc_cmd(struct its_node
*its
,
612 struct its_cmd_block
*cmd
,
613 struct its_cmd_desc
*desc
)
615 its_encode_cmd(cmd
, GITS_CMD_MAPC
);
616 its_encode_collection(cmd
, desc
->its_mapc_cmd
.col
->col_id
);
617 its_encode_target(cmd
, desc
->its_mapc_cmd
.col
->target_address
);
618 its_encode_valid(cmd
, desc
->its_mapc_cmd
.valid
);
622 return desc
->its_mapc_cmd
.col
;
625 static struct its_collection
*its_build_mapti_cmd(struct its_node
*its
,
626 struct its_cmd_block
*cmd
,
627 struct its_cmd_desc
*desc
)
629 struct its_collection
*col
;
631 col
= dev_event_to_col(desc
->its_mapti_cmd
.dev
,
632 desc
->its_mapti_cmd
.event_id
);
634 its_encode_cmd(cmd
, GITS_CMD_MAPTI
);
635 its_encode_devid(cmd
, desc
->its_mapti_cmd
.dev
->device_id
);
636 its_encode_event_id(cmd
, desc
->its_mapti_cmd
.event_id
);
637 its_encode_phys_id(cmd
, desc
->its_mapti_cmd
.phys_id
);
638 its_encode_collection(cmd
, col
->col_id
);
642 return valid_col(col
);
645 static struct its_collection
*its_build_movi_cmd(struct its_node
*its
,
646 struct its_cmd_block
*cmd
,
647 struct its_cmd_desc
*desc
)
649 struct its_collection
*col
;
651 col
= dev_event_to_col(desc
->its_movi_cmd
.dev
,
652 desc
->its_movi_cmd
.event_id
);
654 its_encode_cmd(cmd
, GITS_CMD_MOVI
);
655 its_encode_devid(cmd
, desc
->its_movi_cmd
.dev
->device_id
);
656 its_encode_event_id(cmd
, desc
->its_movi_cmd
.event_id
);
657 its_encode_collection(cmd
, desc
->its_movi_cmd
.col
->col_id
);
661 return valid_col(col
);
664 static struct its_collection
*its_build_discard_cmd(struct its_node
*its
,
665 struct its_cmd_block
*cmd
,
666 struct its_cmd_desc
*desc
)
668 struct its_collection
*col
;
670 col
= dev_event_to_col(desc
->its_discard_cmd
.dev
,
671 desc
->its_discard_cmd
.event_id
);
673 its_encode_cmd(cmd
, GITS_CMD_DISCARD
);
674 its_encode_devid(cmd
, desc
->its_discard_cmd
.dev
->device_id
);
675 its_encode_event_id(cmd
, desc
->its_discard_cmd
.event_id
);
679 return valid_col(col
);
682 static struct its_collection
*its_build_inv_cmd(struct its_node
*its
,
683 struct its_cmd_block
*cmd
,
684 struct its_cmd_desc
*desc
)
686 struct its_collection
*col
;
688 col
= dev_event_to_col(desc
->its_inv_cmd
.dev
,
689 desc
->its_inv_cmd
.event_id
);
691 its_encode_cmd(cmd
, GITS_CMD_INV
);
692 its_encode_devid(cmd
, desc
->its_inv_cmd
.dev
->device_id
);
693 its_encode_event_id(cmd
, desc
->its_inv_cmd
.event_id
);
697 return valid_col(col
);
700 static struct its_collection
*its_build_int_cmd(struct its_node
*its
,
701 struct its_cmd_block
*cmd
,
702 struct its_cmd_desc
*desc
)
704 struct its_collection
*col
;
706 col
= dev_event_to_col(desc
->its_int_cmd
.dev
,
707 desc
->its_int_cmd
.event_id
);
709 its_encode_cmd(cmd
, GITS_CMD_INT
);
710 its_encode_devid(cmd
, desc
->its_int_cmd
.dev
->device_id
);
711 its_encode_event_id(cmd
, desc
->its_int_cmd
.event_id
);
715 return valid_col(col
);
718 static struct its_collection
*its_build_clear_cmd(struct its_node
*its
,
719 struct its_cmd_block
*cmd
,
720 struct its_cmd_desc
*desc
)
722 struct its_collection
*col
;
724 col
= dev_event_to_col(desc
->its_clear_cmd
.dev
,
725 desc
->its_clear_cmd
.event_id
);
727 its_encode_cmd(cmd
, GITS_CMD_CLEAR
);
728 its_encode_devid(cmd
, desc
->its_clear_cmd
.dev
->device_id
);
729 its_encode_event_id(cmd
, desc
->its_clear_cmd
.event_id
);
733 return valid_col(col
);
736 static struct its_collection
*its_build_invall_cmd(struct its_node
*its
,
737 struct its_cmd_block
*cmd
,
738 struct its_cmd_desc
*desc
)
740 its_encode_cmd(cmd
, GITS_CMD_INVALL
);
741 its_encode_collection(cmd
, desc
->its_invall_cmd
.col
->col_id
);
748 static struct its_vpe
*its_build_vinvall_cmd(struct its_node
*its
,
749 struct its_cmd_block
*cmd
,
750 struct its_cmd_desc
*desc
)
752 its_encode_cmd(cmd
, GITS_CMD_VINVALL
);
753 its_encode_vpeid(cmd
, desc
->its_vinvall_cmd
.vpe
->vpe_id
);
757 return valid_vpe(its
, desc
->its_vinvall_cmd
.vpe
);
760 static struct its_vpe
*its_build_vmapp_cmd(struct its_node
*its
,
761 struct its_cmd_block
*cmd
,
762 struct its_cmd_desc
*desc
)
764 unsigned long vpt_addr
, vconf_addr
;
768 its_encode_cmd(cmd
, GITS_CMD_VMAPP
);
769 its_encode_vpeid(cmd
, desc
->its_vmapp_cmd
.vpe
->vpe_id
);
770 its_encode_valid(cmd
, desc
->its_vmapp_cmd
.valid
);
772 if (!desc
->its_vmapp_cmd
.valid
) {
774 alloc
= !atomic_dec_return(&desc
->its_vmapp_cmd
.vpe
->vmapp_count
);
775 its_encode_alloc(cmd
, alloc
);
781 vpt_addr
= virt_to_phys(page_address(desc
->its_vmapp_cmd
.vpe
->vpt_page
));
782 target
= desc
->its_vmapp_cmd
.col
->target_address
+ its
->vlpi_redist_offset
;
784 its_encode_target(cmd
, target
);
785 its_encode_vpt_addr(cmd
, vpt_addr
);
786 its_encode_vpt_size(cmd
, LPI_NRBITS
- 1);
791 vconf_addr
= virt_to_phys(page_address(desc
->its_vmapp_cmd
.vpe
->its_vm
->vprop_page
));
793 alloc
= !atomic_fetch_inc(&desc
->its_vmapp_cmd
.vpe
->vmapp_count
);
795 its_encode_alloc(cmd
, alloc
);
797 /* We can only signal PTZ when alloc==1. Why do we have two bits? */
798 its_encode_ptz(cmd
, alloc
);
799 its_encode_vconf_addr(cmd
, vconf_addr
);
800 its_encode_vmapp_default_db(cmd
, desc
->its_vmapp_cmd
.vpe
->vpe_db_lpi
);
805 return valid_vpe(its
, desc
->its_vmapp_cmd
.vpe
);
808 static struct its_vpe
*its_build_vmapti_cmd(struct its_node
*its
,
809 struct its_cmd_block
*cmd
,
810 struct its_cmd_desc
*desc
)
814 if (!is_v4_1(its
) && desc
->its_vmapti_cmd
.db_enabled
)
815 db
= desc
->its_vmapti_cmd
.vpe
->vpe_db_lpi
;
819 its_encode_cmd(cmd
, GITS_CMD_VMAPTI
);
820 its_encode_devid(cmd
, desc
->its_vmapti_cmd
.dev
->device_id
);
821 its_encode_vpeid(cmd
, desc
->its_vmapti_cmd
.vpe
->vpe_id
);
822 its_encode_event_id(cmd
, desc
->its_vmapti_cmd
.event_id
);
823 its_encode_db_phys_id(cmd
, db
);
824 its_encode_virt_id(cmd
, desc
->its_vmapti_cmd
.virt_id
);
828 return valid_vpe(its
, desc
->its_vmapti_cmd
.vpe
);
831 static struct its_vpe
*its_build_vmovi_cmd(struct its_node
*its
,
832 struct its_cmd_block
*cmd
,
833 struct its_cmd_desc
*desc
)
837 if (!is_v4_1(its
) && desc
->its_vmovi_cmd
.db_enabled
)
838 db
= desc
->its_vmovi_cmd
.vpe
->vpe_db_lpi
;
842 its_encode_cmd(cmd
, GITS_CMD_VMOVI
);
843 its_encode_devid(cmd
, desc
->its_vmovi_cmd
.dev
->device_id
);
844 its_encode_vpeid(cmd
, desc
->its_vmovi_cmd
.vpe
->vpe_id
);
845 its_encode_event_id(cmd
, desc
->its_vmovi_cmd
.event_id
);
846 its_encode_db_phys_id(cmd
, db
);
847 its_encode_db_valid(cmd
, true);
851 return valid_vpe(its
, desc
->its_vmovi_cmd
.vpe
);
854 static struct its_vpe
*its_build_vmovp_cmd(struct its_node
*its
,
855 struct its_cmd_block
*cmd
,
856 struct its_cmd_desc
*desc
)
860 target
= desc
->its_vmovp_cmd
.col
->target_address
+ its
->vlpi_redist_offset
;
861 its_encode_cmd(cmd
, GITS_CMD_VMOVP
);
862 its_encode_seq_num(cmd
, desc
->its_vmovp_cmd
.seq_num
);
863 its_encode_its_list(cmd
, desc
->its_vmovp_cmd
.its_list
);
864 its_encode_vpeid(cmd
, desc
->its_vmovp_cmd
.vpe
->vpe_id
);
865 its_encode_target(cmd
, target
);
868 its_encode_db(cmd
, true);
869 its_encode_vmovp_default_db(cmd
, desc
->its_vmovp_cmd
.vpe
->vpe_db_lpi
);
874 return valid_vpe(its
, desc
->its_vmovp_cmd
.vpe
);
877 static struct its_vpe
*its_build_vinv_cmd(struct its_node
*its
,
878 struct its_cmd_block
*cmd
,
879 struct its_cmd_desc
*desc
)
881 struct its_vlpi_map
*map
;
883 map
= dev_event_to_vlpi_map(desc
->its_inv_cmd
.dev
,
884 desc
->its_inv_cmd
.event_id
);
886 its_encode_cmd(cmd
, GITS_CMD_INV
);
887 its_encode_devid(cmd
, desc
->its_inv_cmd
.dev
->device_id
);
888 its_encode_event_id(cmd
, desc
->its_inv_cmd
.event_id
);
892 return valid_vpe(its
, map
->vpe
);
895 static struct its_vpe
*its_build_vint_cmd(struct its_node
*its
,
896 struct its_cmd_block
*cmd
,
897 struct its_cmd_desc
*desc
)
899 struct its_vlpi_map
*map
;
901 map
= dev_event_to_vlpi_map(desc
->its_int_cmd
.dev
,
902 desc
->its_int_cmd
.event_id
);
904 its_encode_cmd(cmd
, GITS_CMD_INT
);
905 its_encode_devid(cmd
, desc
->its_int_cmd
.dev
->device_id
);
906 its_encode_event_id(cmd
, desc
->its_int_cmd
.event_id
);
910 return valid_vpe(its
, map
->vpe
);
913 static struct its_vpe
*its_build_vclear_cmd(struct its_node
*its
,
914 struct its_cmd_block
*cmd
,
915 struct its_cmd_desc
*desc
)
917 struct its_vlpi_map
*map
;
919 map
= dev_event_to_vlpi_map(desc
->its_clear_cmd
.dev
,
920 desc
->its_clear_cmd
.event_id
);
922 its_encode_cmd(cmd
, GITS_CMD_CLEAR
);
923 its_encode_devid(cmd
, desc
->its_clear_cmd
.dev
->device_id
);
924 its_encode_event_id(cmd
, desc
->its_clear_cmd
.event_id
);
928 return valid_vpe(its
, map
->vpe
);
931 static struct its_vpe
*its_build_invdb_cmd(struct its_node
*its
,
932 struct its_cmd_block
*cmd
,
933 struct its_cmd_desc
*desc
)
935 if (WARN_ON(!is_v4_1(its
)))
938 its_encode_cmd(cmd
, GITS_CMD_INVDB
);
939 its_encode_vpeid(cmd
, desc
->its_invdb_cmd
.vpe
->vpe_id
);
943 return valid_vpe(its
, desc
->its_invdb_cmd
.vpe
);
946 static struct its_vpe
*its_build_vsgi_cmd(struct its_node
*its
,
947 struct its_cmd_block
*cmd
,
948 struct its_cmd_desc
*desc
)
950 if (WARN_ON(!is_v4_1(its
)))
953 its_encode_cmd(cmd
, GITS_CMD_VSGI
);
954 its_encode_vpeid(cmd
, desc
->its_vsgi_cmd
.vpe
->vpe_id
);
955 its_encode_sgi_intid(cmd
, desc
->its_vsgi_cmd
.sgi
);
956 its_encode_sgi_priority(cmd
, desc
->its_vsgi_cmd
.priority
);
957 its_encode_sgi_group(cmd
, desc
->its_vsgi_cmd
.group
);
958 its_encode_sgi_clear(cmd
, desc
->its_vsgi_cmd
.clear
);
959 its_encode_sgi_enable(cmd
, desc
->its_vsgi_cmd
.enable
);
963 return valid_vpe(its
, desc
->its_vsgi_cmd
.vpe
);
966 static u64
its_cmd_ptr_to_offset(struct its_node
*its
,
967 struct its_cmd_block
*ptr
)
969 return (ptr
- its
->cmd_base
) * sizeof(*ptr
);
972 static int its_queue_full(struct its_node
*its
)
977 widx
= its
->cmd_write
- its
->cmd_base
;
978 ridx
= readl_relaxed(its
->base
+ GITS_CREADR
) / sizeof(struct its_cmd_block
);
980 /* This is incredibly unlikely to happen, unless the ITS locks up. */
981 if (((widx
+ 1) % ITS_CMD_QUEUE_NR_ENTRIES
) == ridx
)
987 static struct its_cmd_block
*its_allocate_entry(struct its_node
*its
)
989 struct its_cmd_block
*cmd
;
990 u32 count
= 1000000; /* 1s! */
992 while (its_queue_full(its
)) {
995 pr_err_ratelimited("ITS queue not draining\n");
1002 cmd
= its
->cmd_write
++;
1004 /* Handle queue wrapping */
1005 if (its
->cmd_write
== (its
->cmd_base
+ ITS_CMD_QUEUE_NR_ENTRIES
))
1006 its
->cmd_write
= its
->cmd_base
;
1009 cmd
->raw_cmd
[0] = 0;
1010 cmd
->raw_cmd
[1] = 0;
1011 cmd
->raw_cmd
[2] = 0;
1012 cmd
->raw_cmd
[3] = 0;
1017 static struct its_cmd_block
*its_post_commands(struct its_node
*its
)
1019 u64 wr
= its_cmd_ptr_to_offset(its
, its
->cmd_write
);
1021 writel_relaxed(wr
, its
->base
+ GITS_CWRITER
);
1023 return its
->cmd_write
;
1026 static void its_flush_cmd(struct its_node
*its
, struct its_cmd_block
*cmd
)
1029 * Make sure the commands written to memory are observable by
1032 if (its
->flags
& ITS_FLAGS_CMDQ_NEEDS_FLUSHING
)
1033 gic_flush_dcache_to_poc(cmd
, sizeof(*cmd
));
1038 static int its_wait_for_range_completion(struct its_node
*its
,
1040 struct its_cmd_block
*to
)
1042 u64 rd_idx
, to_idx
, linear_idx
;
1043 u32 count
= 1000000; /* 1s! */
1045 /* Linearize to_idx if the command set has wrapped around */
1046 to_idx
= its_cmd_ptr_to_offset(its
, to
);
1047 if (to_idx
< prev_idx
)
1048 to_idx
+= ITS_CMD_QUEUE_SZ
;
1050 linear_idx
= prev_idx
;
1055 rd_idx
= readl_relaxed(its
->base
+ GITS_CREADR
);
1058 * Compute the read pointer progress, taking the
1059 * potential wrap-around into account.
1061 delta
= rd_idx
- prev_idx
;
1062 if (rd_idx
< prev_idx
)
1063 delta
+= ITS_CMD_QUEUE_SZ
;
1065 linear_idx
+= delta
;
1066 if (linear_idx
>= to_idx
)
1071 pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1072 to_idx
, linear_idx
);
1083 /* Warning, macro hell follows */
1084 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \
1085 void name(struct its_node *its, \
1086 buildtype builder, \
1087 struct its_cmd_desc *desc) \
1089 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \
1090 synctype *sync_obj; \
1091 unsigned long flags; \
1094 raw_spin_lock_irqsave(&its->lock, flags); \
1096 cmd = its_allocate_entry(its); \
1097 if (!cmd) { /* We're soooooo screewed... */ \
1098 raw_spin_unlock_irqrestore(&its->lock, flags); \
1101 sync_obj = builder(its, cmd, desc); \
1102 its_flush_cmd(its, cmd); \
1105 sync_cmd = its_allocate_entry(its); \
1109 buildfn(its, sync_cmd, sync_obj); \
1110 its_flush_cmd(its, sync_cmd); \
1114 rd_idx = readl_relaxed(its->base + GITS_CREADR); \
1115 next_cmd = its_post_commands(its); \
1116 raw_spin_unlock_irqrestore(&its->lock, flags); \
1118 if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \
1119 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \
1122 static void its_build_sync_cmd(struct its_node
*its
,
1123 struct its_cmd_block
*sync_cmd
,
1124 struct its_collection
*sync_col
)
1126 its_encode_cmd(sync_cmd
, GITS_CMD_SYNC
);
1127 its_encode_target(sync_cmd
, sync_col
->target_address
);
1129 its_fixup_cmd(sync_cmd
);
1132 static BUILD_SINGLE_CMD_FUNC(its_send_single_command
, its_cmd_builder_t
,
1133 struct its_collection
, its_build_sync_cmd
)
1135 static void its_build_vsync_cmd(struct its_node
*its
,
1136 struct its_cmd_block
*sync_cmd
,
1137 struct its_vpe
*sync_vpe
)
1139 its_encode_cmd(sync_cmd
, GITS_CMD_VSYNC
);
1140 its_encode_vpeid(sync_cmd
, sync_vpe
->vpe_id
);
1142 its_fixup_cmd(sync_cmd
);
1145 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand
, its_cmd_vbuilder_t
,
1146 struct its_vpe
, its_build_vsync_cmd
)
1148 static void its_send_int(struct its_device
*dev
, u32 event_id
)
1150 struct its_cmd_desc desc
;
1152 desc
.its_int_cmd
.dev
= dev
;
1153 desc
.its_int_cmd
.event_id
= event_id
;
1155 its_send_single_command(dev
->its
, its_build_int_cmd
, &desc
);
1158 static void its_send_clear(struct its_device
*dev
, u32 event_id
)
1160 struct its_cmd_desc desc
;
1162 desc
.its_clear_cmd
.dev
= dev
;
1163 desc
.its_clear_cmd
.event_id
= event_id
;
1165 its_send_single_command(dev
->its
, its_build_clear_cmd
, &desc
);
1168 static void its_send_inv(struct its_device
*dev
, u32 event_id
)
1170 struct its_cmd_desc desc
;
1172 desc
.its_inv_cmd
.dev
= dev
;
1173 desc
.its_inv_cmd
.event_id
= event_id
;
1175 its_send_single_command(dev
->its
, its_build_inv_cmd
, &desc
);
1178 static void its_send_mapd(struct its_device
*dev
, int valid
)
1180 struct its_cmd_desc desc
;
1182 desc
.its_mapd_cmd
.dev
= dev
;
1183 desc
.its_mapd_cmd
.valid
= !!valid
;
1185 its_send_single_command(dev
->its
, its_build_mapd_cmd
, &desc
);
1188 static void its_send_mapc(struct its_node
*its
, struct its_collection
*col
,
1191 struct its_cmd_desc desc
;
1193 desc
.its_mapc_cmd
.col
= col
;
1194 desc
.its_mapc_cmd
.valid
= !!valid
;
1196 its_send_single_command(its
, its_build_mapc_cmd
, &desc
);
1199 static void its_send_mapti(struct its_device
*dev
, u32 irq_id
, u32 id
)
1201 struct its_cmd_desc desc
;
1203 desc
.its_mapti_cmd
.dev
= dev
;
1204 desc
.its_mapti_cmd
.phys_id
= irq_id
;
1205 desc
.its_mapti_cmd
.event_id
= id
;
1207 its_send_single_command(dev
->its
, its_build_mapti_cmd
, &desc
);
1210 static void its_send_movi(struct its_device
*dev
,
1211 struct its_collection
*col
, u32 id
)
1213 struct its_cmd_desc desc
;
1215 desc
.its_movi_cmd
.dev
= dev
;
1216 desc
.its_movi_cmd
.col
= col
;
1217 desc
.its_movi_cmd
.event_id
= id
;
1219 its_send_single_command(dev
->its
, its_build_movi_cmd
, &desc
);
1222 static void its_send_discard(struct its_device
*dev
, u32 id
)
1224 struct its_cmd_desc desc
;
1226 desc
.its_discard_cmd
.dev
= dev
;
1227 desc
.its_discard_cmd
.event_id
= id
;
1229 its_send_single_command(dev
->its
, its_build_discard_cmd
, &desc
);
1232 static void its_send_invall(struct its_node
*its
, struct its_collection
*col
)
1234 struct its_cmd_desc desc
;
1236 desc
.its_invall_cmd
.col
= col
;
1238 its_send_single_command(its
, its_build_invall_cmd
, &desc
);
1241 static void its_send_vmapti(struct its_device
*dev
, u32 id
)
1243 struct its_vlpi_map
*map
= dev_event_to_vlpi_map(dev
, id
);
1244 struct its_cmd_desc desc
;
1246 desc
.its_vmapti_cmd
.vpe
= map
->vpe
;
1247 desc
.its_vmapti_cmd
.dev
= dev
;
1248 desc
.its_vmapti_cmd
.virt_id
= map
->vintid
;
1249 desc
.its_vmapti_cmd
.event_id
= id
;
1250 desc
.its_vmapti_cmd
.db_enabled
= map
->db_enabled
;
1252 its_send_single_vcommand(dev
->its
, its_build_vmapti_cmd
, &desc
);
1255 static void its_send_vmovi(struct its_device
*dev
, u32 id
)
1257 struct its_vlpi_map
*map
= dev_event_to_vlpi_map(dev
, id
);
1258 struct its_cmd_desc desc
;
1260 desc
.its_vmovi_cmd
.vpe
= map
->vpe
;
1261 desc
.its_vmovi_cmd
.dev
= dev
;
1262 desc
.its_vmovi_cmd
.event_id
= id
;
1263 desc
.its_vmovi_cmd
.db_enabled
= map
->db_enabled
;
1265 its_send_single_vcommand(dev
->its
, its_build_vmovi_cmd
, &desc
);
1268 static void its_send_vmapp(struct its_node
*its
,
1269 struct its_vpe
*vpe
, bool valid
)
1271 struct its_cmd_desc desc
;
1273 desc
.its_vmapp_cmd
.vpe
= vpe
;
1274 desc
.its_vmapp_cmd
.valid
= valid
;
1275 desc
.its_vmapp_cmd
.col
= &its
->collections
[vpe
->col_idx
];
1277 its_send_single_vcommand(its
, its_build_vmapp_cmd
, &desc
);
1280 static void its_send_vmovp(struct its_vpe
*vpe
)
1282 struct its_cmd_desc desc
= {};
1283 struct its_node
*its
;
1284 unsigned long flags
;
1285 int col_id
= vpe
->col_idx
;
1287 desc
.its_vmovp_cmd
.vpe
= vpe
;
1289 if (!its_list_map
) {
1290 its
= list_first_entry(&its_nodes
, struct its_node
, entry
);
1291 desc
.its_vmovp_cmd
.col
= &its
->collections
[col_id
];
1292 its_send_single_vcommand(its
, its_build_vmovp_cmd
, &desc
);
1297 * Yet another marvel of the architecture. If using the
1298 * its_list "feature", we need to make sure that all ITSs
1299 * receive all VMOVP commands in the same order. The only way
1300 * to guarantee this is to make vmovp a serialization point.
1304 raw_spin_lock_irqsave(&vmovp_lock
, flags
);
1306 desc
.its_vmovp_cmd
.seq_num
= vmovp_seq_num
++;
1307 desc
.its_vmovp_cmd
.its_list
= get_its_list(vpe
->its_vm
);
1310 list_for_each_entry(its
, &its_nodes
, entry
) {
1314 if (!require_its_list_vmovp(vpe
->its_vm
, its
))
1317 desc
.its_vmovp_cmd
.col
= &its
->collections
[col_id
];
1318 its_send_single_vcommand(its
, its_build_vmovp_cmd
, &desc
);
1321 raw_spin_unlock_irqrestore(&vmovp_lock
, flags
);
1324 static void its_send_vinvall(struct its_node
*its
, struct its_vpe
*vpe
)
1326 struct its_cmd_desc desc
;
1328 desc
.its_vinvall_cmd
.vpe
= vpe
;
1329 its_send_single_vcommand(its
, its_build_vinvall_cmd
, &desc
);
1332 static void its_send_vinv(struct its_device
*dev
, u32 event_id
)
1334 struct its_cmd_desc desc
;
1337 * There is no real VINV command. This is just a normal INV,
1338 * with a VSYNC instead of a SYNC.
1340 desc
.its_inv_cmd
.dev
= dev
;
1341 desc
.its_inv_cmd
.event_id
= event_id
;
1343 its_send_single_vcommand(dev
->its
, its_build_vinv_cmd
, &desc
);
1346 static void its_send_vint(struct its_device
*dev
, u32 event_id
)
1348 struct its_cmd_desc desc
;
1351 * There is no real VINT command. This is just a normal INT,
1352 * with a VSYNC instead of a SYNC.
1354 desc
.its_int_cmd
.dev
= dev
;
1355 desc
.its_int_cmd
.event_id
= event_id
;
1357 its_send_single_vcommand(dev
->its
, its_build_vint_cmd
, &desc
);
1360 static void its_send_vclear(struct its_device
*dev
, u32 event_id
)
1362 struct its_cmd_desc desc
;
1365 * There is no real VCLEAR command. This is just a normal CLEAR,
1366 * with a VSYNC instead of a SYNC.
1368 desc
.its_clear_cmd
.dev
= dev
;
1369 desc
.its_clear_cmd
.event_id
= event_id
;
1371 its_send_single_vcommand(dev
->its
, its_build_vclear_cmd
, &desc
);
1374 static void its_send_invdb(struct its_node
*its
, struct its_vpe
*vpe
)
1376 struct its_cmd_desc desc
;
1378 desc
.its_invdb_cmd
.vpe
= vpe
;
1379 its_send_single_vcommand(its
, its_build_invdb_cmd
, &desc
);
1383 * irqchip functions - assumes MSI, mostly.
1385 static void lpi_write_config(struct irq_data
*d
, u8 clr
, u8 set
)
1387 struct its_vlpi_map
*map
= get_vlpi_map(d
);
1388 irq_hw_number_t hwirq
;
1393 va
= page_address(map
->vm
->vprop_page
);
1394 hwirq
= map
->vintid
;
1396 /* Remember the updated property */
1397 map
->properties
&= ~clr
;
1398 map
->properties
|= set
| LPI_PROP_GROUP1
;
1400 va
= gic_rdists
->prop_table_va
;
1404 cfg
= va
+ hwirq
- 8192;
1406 *cfg
|= set
| LPI_PROP_GROUP1
;
1409 * Make the above write visible to the redistributors.
1410 * And yes, we're flushing exactly: One. Single. Byte.
1413 if (gic_rdists
->flags
& RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING
)
1414 gic_flush_dcache_to_poc(cfg
, sizeof(*cfg
));
1419 static void wait_for_syncr(void __iomem
*rdbase
)
1421 while (readl_relaxed(rdbase
+ GICR_SYNCR
) & 1)
1425 static void direct_lpi_inv(struct irq_data
*d
)
1427 struct its_vlpi_map
*map
= get_vlpi_map(d
);
1428 void __iomem
*rdbase
;
1429 unsigned long flags
;
1434 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1436 WARN_ON(!is_v4_1(its_dev
->its
));
1438 val
= GICR_INVLPIR_V
;
1439 val
|= FIELD_PREP(GICR_INVLPIR_VPEID
, map
->vpe
->vpe_id
);
1440 val
|= FIELD_PREP(GICR_INVLPIR_INTID
, map
->vintid
);
1445 /* Target the redistributor this LPI is currently routed to */
1446 cpu
= irq_to_cpuid_lock(d
, &flags
);
1447 raw_spin_lock(&gic_data_rdist_cpu(cpu
)->rd_lock
);
1448 rdbase
= per_cpu_ptr(gic_rdists
->rdist
, cpu
)->rd_base
;
1449 gic_write_lpir(val
, rdbase
+ GICR_INVLPIR
);
1451 wait_for_syncr(rdbase
);
1452 raw_spin_unlock(&gic_data_rdist_cpu(cpu
)->rd_lock
);
1453 irq_to_cpuid_unlock(d
, flags
);
1456 static void lpi_update_config(struct irq_data
*d
, u8 clr
, u8 set
)
1458 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1460 lpi_write_config(d
, clr
, set
);
1461 if (gic_rdists
->has_direct_lpi
&&
1462 (is_v4_1(its_dev
->its
) || !irqd_is_forwarded_to_vcpu(d
)))
1464 else if (!irqd_is_forwarded_to_vcpu(d
))
1465 its_send_inv(its_dev
, its_get_event_id(d
));
1467 its_send_vinv(its_dev
, its_get_event_id(d
));
1470 static void its_vlpi_set_doorbell(struct irq_data
*d
, bool enable
)
1472 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1473 u32 event
= its_get_event_id(d
);
1474 struct its_vlpi_map
*map
;
1477 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1480 if (is_v4_1(its_dev
->its
))
1483 map
= dev_event_to_vlpi_map(its_dev
, event
);
1485 if (map
->db_enabled
== enable
)
1488 map
->db_enabled
= enable
;
1491 * More fun with the architecture:
1493 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1494 * value or to 1023, depending on the enable bit. But that
1495 * would be issueing a mapping for an /existing/ DevID+EventID
1496 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1497 * to the /same/ vPE, using this opportunity to adjust the
1498 * doorbell. Mouahahahaha. We loves it, Precious.
1500 its_send_vmovi(its_dev
, event
);
1503 static void its_mask_irq(struct irq_data
*d
)
1505 if (irqd_is_forwarded_to_vcpu(d
))
1506 its_vlpi_set_doorbell(d
, false);
1508 lpi_update_config(d
, LPI_PROP_ENABLED
, 0);
1511 static void its_unmask_irq(struct irq_data
*d
)
1513 if (irqd_is_forwarded_to_vcpu(d
))
1514 its_vlpi_set_doorbell(d
, true);
1516 lpi_update_config(d
, 0, LPI_PROP_ENABLED
);
1519 static __maybe_unused u32
its_read_lpi_count(struct irq_data
*d
, int cpu
)
1521 if (irqd_affinity_is_managed(d
))
1522 return atomic_read(&per_cpu_ptr(&cpu_lpi_count
, cpu
)->managed
);
1524 return atomic_read(&per_cpu_ptr(&cpu_lpi_count
, cpu
)->unmanaged
);
1527 static void its_inc_lpi_count(struct irq_data
*d
, int cpu
)
1529 if (irqd_affinity_is_managed(d
))
1530 atomic_inc(&per_cpu_ptr(&cpu_lpi_count
, cpu
)->managed
);
1532 atomic_inc(&per_cpu_ptr(&cpu_lpi_count
, cpu
)->unmanaged
);
1535 static void its_dec_lpi_count(struct irq_data
*d
, int cpu
)
1537 if (irqd_affinity_is_managed(d
))
1538 atomic_dec(&per_cpu_ptr(&cpu_lpi_count
, cpu
)->managed
);
1540 atomic_dec(&per_cpu_ptr(&cpu_lpi_count
, cpu
)->unmanaged
);
1543 static unsigned int cpumask_pick_least_loaded(struct irq_data
*d
,
1544 const struct cpumask
*cpu_mask
)
1546 unsigned int cpu
= nr_cpu_ids
, tmp
;
1547 int count
= S32_MAX
;
1549 for_each_cpu(tmp
, cpu_mask
) {
1550 int this_count
= its_read_lpi_count(d
, tmp
);
1551 if (this_count
< count
) {
1561 * As suggested by Thomas Gleixner in:
1562 * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1564 static int its_select_cpu(struct irq_data
*d
,
1565 const struct cpumask
*aff_mask
)
1567 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1568 cpumask_var_t tmpmask
;
1571 if (!alloc_cpumask_var(&tmpmask
, GFP_ATOMIC
))
1574 node
= its_dev
->its
->numa_node
;
1576 if (!irqd_affinity_is_managed(d
)) {
1577 /* First try the NUMA node */
1578 if (node
!= NUMA_NO_NODE
) {
1580 * Try the intersection of the affinity mask and the
1581 * node mask (and the online mask, just to be safe).
1583 cpumask_and(tmpmask
, cpumask_of_node(node
), aff_mask
);
1584 cpumask_and(tmpmask
, tmpmask
, cpu_online_mask
);
1587 * Ideally, we would check if the mask is empty, and
1588 * try again on the full node here.
1590 * But it turns out that the way ACPI describes the
1591 * affinity for ITSs only deals about memory, and
1592 * not target CPUs, so it cannot describe a single
1593 * ITS placed next to two NUMA nodes.
1595 * Instead, just fallback on the online mask. This
1596 * diverges from Thomas' suggestion above.
1598 cpu
= cpumask_pick_least_loaded(d
, tmpmask
);
1599 if (cpu
< nr_cpu_ids
)
1602 /* If we can't cross sockets, give up */
1603 if ((its_dev
->its
->flags
& ITS_FLAGS_WORKAROUND_CAVIUM_23144
))
1606 /* If the above failed, expand the search */
1609 /* Try the intersection of the affinity and online masks */
1610 cpumask_and(tmpmask
, aff_mask
, cpu_online_mask
);
1612 /* If that doesn't fly, the online mask is the last resort */
1613 if (cpumask_empty(tmpmask
))
1614 cpumask_copy(tmpmask
, cpu_online_mask
);
1616 cpu
= cpumask_pick_least_loaded(d
, tmpmask
);
1618 cpumask_and(tmpmask
, irq_data_get_affinity_mask(d
), cpu_online_mask
);
1620 /* If we cannot cross sockets, limit the search to that node */
1621 if ((its_dev
->its
->flags
& ITS_FLAGS_WORKAROUND_CAVIUM_23144
) &&
1622 node
!= NUMA_NO_NODE
)
1623 cpumask_and(tmpmask
, tmpmask
, cpumask_of_node(node
));
1625 cpu
= cpumask_pick_least_loaded(d
, tmpmask
);
1628 free_cpumask_var(tmpmask
);
1630 pr_debug("IRQ%d -> %*pbl CPU%d\n", d
->irq
, cpumask_pr_args(aff_mask
), cpu
);
1634 static int its_set_affinity(struct irq_data
*d
, const struct cpumask
*mask_val
,
1637 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1638 struct its_collection
*target_col
;
1639 u32 id
= its_get_event_id(d
);
1642 /* A forwarded interrupt should use irq_set_vcpu_affinity */
1643 if (irqd_is_forwarded_to_vcpu(d
))
1646 prev_cpu
= its_dev
->event_map
.col_map
[id
];
1647 its_dec_lpi_count(d
, prev_cpu
);
1650 cpu
= its_select_cpu(d
, mask_val
);
1652 cpu
= cpumask_pick_least_loaded(d
, mask_val
);
1654 if (cpu
< 0 || cpu
>= nr_cpu_ids
)
1657 /* don't set the affinity when the target cpu is same as current one */
1658 if (cpu
!= prev_cpu
) {
1659 target_col
= &its_dev
->its
->collections
[cpu
];
1660 its_send_movi(its_dev
, target_col
, id
);
1661 its_dev
->event_map
.col_map
[id
] = cpu
;
1662 irq_data_update_effective_affinity(d
, cpumask_of(cpu
));
1665 its_inc_lpi_count(d
, cpu
);
1667 return IRQ_SET_MASK_OK_DONE
;
1670 its_inc_lpi_count(d
, prev_cpu
);
1674 static u64
its_irq_get_msi_base(struct its_device
*its_dev
)
1676 struct its_node
*its
= its_dev
->its
;
1678 return its
->phys_base
+ GITS_TRANSLATER
;
1681 static void its_irq_compose_msi_msg(struct irq_data
*d
, struct msi_msg
*msg
)
1683 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1684 struct its_node
*its
;
1688 addr
= its
->get_msi_base(its_dev
);
1690 msg
->address_lo
= lower_32_bits(addr
);
1691 msg
->address_hi
= upper_32_bits(addr
);
1692 msg
->data
= its_get_event_id(d
);
1694 iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d
), msg
);
1697 static int its_irq_set_irqchip_state(struct irq_data
*d
,
1698 enum irqchip_irq_state which
,
1701 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1702 u32 event
= its_get_event_id(d
);
1704 if (which
!= IRQCHIP_STATE_PENDING
)
1707 if (irqd_is_forwarded_to_vcpu(d
)) {
1709 its_send_vint(its_dev
, event
);
1711 its_send_vclear(its_dev
, event
);
1714 its_send_int(its_dev
, event
);
1716 its_send_clear(its_dev
, event
);
1722 static int its_irq_retrigger(struct irq_data
*d
)
1724 return !its_irq_set_irqchip_state(d
, IRQCHIP_STATE_PENDING
, true);
1728 * Two favourable cases:
1730 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1733 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1734 * and we're better off mapping all VPEs always
1736 * If neither (a) nor (b) is true, then we map vPEs on demand.
1739 static bool gic_requires_eager_mapping(void)
1741 if (!its_list_map
|| gic_rdists
->has_rvpeid
)
1747 static void its_map_vm(struct its_node
*its
, struct its_vm
*vm
)
1749 unsigned long flags
;
1751 if (gic_requires_eager_mapping())
1754 raw_spin_lock_irqsave(&vmovp_lock
, flags
);
1757 * If the VM wasn't mapped yet, iterate over the vpes and get
1760 vm
->vlpi_count
[its
->list_nr
]++;
1762 if (vm
->vlpi_count
[its
->list_nr
] == 1) {
1765 for (i
= 0; i
< vm
->nr_vpes
; i
++) {
1766 struct its_vpe
*vpe
= vm
->vpes
[i
];
1767 struct irq_data
*d
= irq_get_irq_data(vpe
->irq
);
1769 /* Map the VPE to the first possible CPU */
1770 vpe
->col_idx
= cpumask_first(cpu_online_mask
);
1771 its_send_vmapp(its
, vpe
, true);
1772 its_send_vinvall(its
, vpe
);
1773 irq_data_update_effective_affinity(d
, cpumask_of(vpe
->col_idx
));
1777 raw_spin_unlock_irqrestore(&vmovp_lock
, flags
);
1780 static void its_unmap_vm(struct its_node
*its
, struct its_vm
*vm
)
1782 unsigned long flags
;
1784 /* Not using the ITS list? Everything is always mapped. */
1785 if (gic_requires_eager_mapping())
1788 raw_spin_lock_irqsave(&vmovp_lock
, flags
);
1790 if (!--vm
->vlpi_count
[its
->list_nr
]) {
1793 for (i
= 0; i
< vm
->nr_vpes
; i
++)
1794 its_send_vmapp(its
, vm
->vpes
[i
], false);
1797 raw_spin_unlock_irqrestore(&vmovp_lock
, flags
);
1800 static int its_vlpi_map(struct irq_data
*d
, struct its_cmd_info
*info
)
1802 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1803 u32 event
= its_get_event_id(d
);
1809 raw_spin_lock(&its_dev
->event_map
.vlpi_lock
);
1811 if (!its_dev
->event_map
.vm
) {
1812 struct its_vlpi_map
*maps
;
1814 maps
= kcalloc(its_dev
->event_map
.nr_lpis
, sizeof(*maps
),
1821 its_dev
->event_map
.vm
= info
->map
->vm
;
1822 its_dev
->event_map
.vlpi_maps
= maps
;
1823 } else if (its_dev
->event_map
.vm
!= info
->map
->vm
) {
1828 /* Get our private copy of the mapping information */
1829 its_dev
->event_map
.vlpi_maps
[event
] = *info
->map
;
1831 if (irqd_is_forwarded_to_vcpu(d
)) {
1832 /* Already mapped, move it around */
1833 its_send_vmovi(its_dev
, event
);
1835 /* Ensure all the VPEs are mapped on this ITS */
1836 its_map_vm(its_dev
->its
, info
->map
->vm
);
1839 * Flag the interrupt as forwarded so that we can
1840 * start poking the virtual property table.
1842 irqd_set_forwarded_to_vcpu(d
);
1844 /* Write out the property to the prop table */
1845 lpi_write_config(d
, 0xff, info
->map
->properties
);
1847 /* Drop the physical mapping */
1848 its_send_discard(its_dev
, event
);
1850 /* and install the virtual one */
1851 its_send_vmapti(its_dev
, event
);
1853 /* Increment the number of VLPIs */
1854 its_dev
->event_map
.nr_vlpis
++;
1858 raw_spin_unlock(&its_dev
->event_map
.vlpi_lock
);
1862 static int its_vlpi_get(struct irq_data
*d
, struct its_cmd_info
*info
)
1864 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1865 struct its_vlpi_map
*map
;
1868 raw_spin_lock(&its_dev
->event_map
.vlpi_lock
);
1870 map
= get_vlpi_map(d
);
1872 if (!its_dev
->event_map
.vm
|| !map
) {
1877 /* Copy our mapping information to the incoming request */
1881 raw_spin_unlock(&its_dev
->event_map
.vlpi_lock
);
1885 static int its_vlpi_unmap(struct irq_data
*d
)
1887 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1888 u32 event
= its_get_event_id(d
);
1891 raw_spin_lock(&its_dev
->event_map
.vlpi_lock
);
1893 if (!its_dev
->event_map
.vm
|| !irqd_is_forwarded_to_vcpu(d
)) {
1898 /* Drop the virtual mapping */
1899 its_send_discard(its_dev
, event
);
1901 /* and restore the physical one */
1902 irqd_clr_forwarded_to_vcpu(d
);
1903 its_send_mapti(its_dev
, d
->hwirq
, event
);
1904 lpi_update_config(d
, 0xff, (LPI_PROP_DEFAULT_PRIO
|
1908 /* Potentially unmap the VM from this ITS */
1909 its_unmap_vm(its_dev
->its
, its_dev
->event_map
.vm
);
1912 * Drop the refcount and make the device available again if
1913 * this was the last VLPI.
1915 if (!--its_dev
->event_map
.nr_vlpis
) {
1916 its_dev
->event_map
.vm
= NULL
;
1917 kfree(its_dev
->event_map
.vlpi_maps
);
1921 raw_spin_unlock(&its_dev
->event_map
.vlpi_lock
);
1925 static int its_vlpi_prop_update(struct irq_data
*d
, struct its_cmd_info
*info
)
1927 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1929 if (!its_dev
->event_map
.vm
|| !irqd_is_forwarded_to_vcpu(d
))
1932 if (info
->cmd_type
== PROP_UPDATE_AND_INV_VLPI
)
1933 lpi_update_config(d
, 0xff, info
->config
);
1935 lpi_write_config(d
, 0xff, info
->config
);
1936 its_vlpi_set_doorbell(d
, !!(info
->config
& LPI_PROP_ENABLED
));
1941 static int its_irq_set_vcpu_affinity(struct irq_data
*d
, void *vcpu_info
)
1943 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1944 struct its_cmd_info
*info
= vcpu_info
;
1947 if (!is_v4(its_dev
->its
))
1950 /* Unmap request? */
1952 return its_vlpi_unmap(d
);
1954 switch (info
->cmd_type
) {
1956 return its_vlpi_map(d
, info
);
1959 return its_vlpi_get(d
, info
);
1961 case PROP_UPDATE_VLPI
:
1962 case PROP_UPDATE_AND_INV_VLPI
:
1963 return its_vlpi_prop_update(d
, info
);
1970 static struct irq_chip its_irq_chip
= {
1972 .irq_mask
= its_mask_irq
,
1973 .irq_unmask
= its_unmask_irq
,
1974 .irq_eoi
= irq_chip_eoi_parent
,
1975 .irq_set_affinity
= its_set_affinity
,
1976 .irq_compose_msi_msg
= its_irq_compose_msi_msg
,
1977 .irq_set_irqchip_state
= its_irq_set_irqchip_state
,
1978 .irq_retrigger
= its_irq_retrigger
,
1979 .irq_set_vcpu_affinity
= its_irq_set_vcpu_affinity
,
1984 * How we allocate LPIs:
1986 * lpi_range_list contains ranges of LPIs that are to available to
1987 * allocate from. To allocate LPIs, just pick the first range that
1988 * fits the required allocation, and reduce it by the required
1989 * amount. Once empty, remove the range from the list.
1991 * To free a range of LPIs, add a free range to the list, sort it and
1992 * merge the result if the new range happens to be adjacent to an
1993 * already free block.
1995 * The consequence of the above is that allocation is cost is low, but
1996 * freeing is expensive. We assumes that freeing rarely occurs.
1998 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */
2000 static DEFINE_MUTEX(lpi_range_lock
);
2001 static LIST_HEAD(lpi_range_list
);
2004 struct list_head entry
;
2009 static struct lpi_range
*mk_lpi_range(u32 base
, u32 span
)
2011 struct lpi_range
*range
;
2013 range
= kmalloc(sizeof(*range
), GFP_KERNEL
);
2015 range
->base_id
= base
;
2022 static int alloc_lpi_range(u32 nr_lpis
, u32
*base
)
2024 struct lpi_range
*range
, *tmp
;
2027 mutex_lock(&lpi_range_lock
);
2029 list_for_each_entry_safe(range
, tmp
, &lpi_range_list
, entry
) {
2030 if (range
->span
>= nr_lpis
) {
2031 *base
= range
->base_id
;
2032 range
->base_id
+= nr_lpis
;
2033 range
->span
-= nr_lpis
;
2035 if (range
->span
== 0) {
2036 list_del(&range
->entry
);
2045 mutex_unlock(&lpi_range_lock
);
2047 pr_debug("ITS: alloc %u:%u\n", *base
, nr_lpis
);
2051 static void merge_lpi_ranges(struct lpi_range
*a
, struct lpi_range
*b
)
2053 if (&a
->entry
== &lpi_range_list
|| &b
->entry
== &lpi_range_list
)
2055 if (a
->base_id
+ a
->span
!= b
->base_id
)
2057 b
->base_id
= a
->base_id
;
2059 list_del(&a
->entry
);
2063 static int free_lpi_range(u32 base
, u32 nr_lpis
)
2065 struct lpi_range
*new, *old
;
2067 new = mk_lpi_range(base
, nr_lpis
);
2071 mutex_lock(&lpi_range_lock
);
2073 list_for_each_entry_reverse(old
, &lpi_range_list
, entry
) {
2074 if (old
->base_id
< base
)
2078 * old is the last element with ->base_id smaller than base,
2079 * so new goes right after it. If there are no elements with
2080 * ->base_id smaller than base, &old->entry ends up pointing
2081 * at the head of the list, and inserting new it the start of
2082 * the list is the right thing to do in that case as well.
2084 list_add(&new->entry
, &old
->entry
);
2086 * Now check if we can merge with the preceding and/or
2089 merge_lpi_ranges(old
, new);
2090 merge_lpi_ranges(new, list_next_entry(new, entry
));
2092 mutex_unlock(&lpi_range_lock
);
2096 static int __init
its_lpi_init(u32 id_bits
)
2098 u32 lpis
= (1UL << id_bits
) - 8192;
2102 numlpis
= 1UL << GICD_TYPER_NUM_LPIS(gic_rdists
->gicd_typer
);
2104 if (numlpis
> 2 && !WARN_ON(numlpis
> lpis
)) {
2106 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2111 * Initializing the allocator is just the same as freeing the
2112 * full range of LPIs.
2114 err
= free_lpi_range(8192, lpis
);
2115 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis
);
2119 static unsigned long *its_lpi_alloc(int nr_irqs
, u32
*base
, int *nr_ids
)
2121 unsigned long *bitmap
= NULL
;
2125 err
= alloc_lpi_range(nr_irqs
, base
);
2130 } while (nr_irqs
> 0);
2138 bitmap
= kcalloc(BITS_TO_LONGS(nr_irqs
), sizeof (long), GFP_ATOMIC
);
2146 *base
= *nr_ids
= 0;
2151 static void its_lpi_free(unsigned long *bitmap
, u32 base
, u32 nr_ids
)
2153 WARN_ON(free_lpi_range(base
, nr_ids
));
2157 static void gic_reset_prop_table(void *va
)
2159 /* Priority 0xa0, Group-1, disabled */
2160 memset(va
, LPI_PROP_DEFAULT_PRIO
| LPI_PROP_GROUP1
, LPI_PROPBASE_SZ
);
2162 /* Make sure the GIC will observe the written configuration */
2163 gic_flush_dcache_to_poc(va
, LPI_PROPBASE_SZ
);
2166 static struct page
*its_allocate_prop_table(gfp_t gfp_flags
)
2168 struct page
*prop_page
;
2170 prop_page
= alloc_pages(gfp_flags
, get_order(LPI_PROPBASE_SZ
));
2174 gic_reset_prop_table(page_address(prop_page
));
2179 static void its_free_prop_table(struct page
*prop_page
)
2181 free_pages((unsigned long)page_address(prop_page
),
2182 get_order(LPI_PROPBASE_SZ
));
2185 static bool gic_check_reserved_range(phys_addr_t addr
, unsigned long size
)
2187 phys_addr_t start
, end
, addr_end
;
2191 * We don't bother checking for a kdump kernel as by
2192 * construction, the LPI tables are out of this kernel's
2195 if (is_kdump_kernel())
2198 addr_end
= addr
+ size
- 1;
2200 for_each_reserved_mem_range(i
, &start
, &end
) {
2201 if (addr
>= start
&& addr_end
<= end
)
2205 /* Not found, not a good sign... */
2206 pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2208 add_taint(TAINT_CRAP
, LOCKDEP_STILL_OK
);
2212 static int gic_reserve_range(phys_addr_t addr
, unsigned long size
)
2214 if (efi_enabled(EFI_CONFIG_TABLES
))
2215 return efi_mem_reserve_persistent(addr
, size
);
2220 static int __init
its_setup_lpi_prop_table(void)
2222 if (gic_rdists
->flags
& RDIST_FLAGS_RD_TABLES_PREALLOCATED
) {
2225 val
= gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER
);
2226 lpi_id_bits
= (val
& GICR_PROPBASER_IDBITS_MASK
) + 1;
2228 gic_rdists
->prop_table_pa
= val
& GENMASK_ULL(51, 12);
2229 gic_rdists
->prop_table_va
= memremap(gic_rdists
->prop_table_pa
,
2232 gic_reset_prop_table(gic_rdists
->prop_table_va
);
2236 lpi_id_bits
= min_t(u32
,
2237 GICD_TYPER_ID_BITS(gic_rdists
->gicd_typer
),
2238 ITS_MAX_LPI_NRBITS
);
2239 page
= its_allocate_prop_table(GFP_NOWAIT
);
2241 pr_err("Failed to allocate PROPBASE\n");
2245 gic_rdists
->prop_table_pa
= page_to_phys(page
);
2246 gic_rdists
->prop_table_va
= page_address(page
);
2247 WARN_ON(gic_reserve_range(gic_rdists
->prop_table_pa
,
2251 pr_info("GICv3: using LPI property table @%pa\n",
2252 &gic_rdists
->prop_table_pa
);
2254 return its_lpi_init(lpi_id_bits
);
2257 static const char *its_base_type_string
[] = {
2258 [GITS_BASER_TYPE_DEVICE
] = "Devices",
2259 [GITS_BASER_TYPE_VCPU
] = "Virtual CPUs",
2260 [GITS_BASER_TYPE_RESERVED3
] = "Reserved (3)",
2261 [GITS_BASER_TYPE_COLLECTION
] = "Interrupt Collections",
2262 [GITS_BASER_TYPE_RESERVED5
] = "Reserved (5)",
2263 [GITS_BASER_TYPE_RESERVED6
] = "Reserved (6)",
2264 [GITS_BASER_TYPE_RESERVED7
] = "Reserved (7)",
2267 static u64
its_read_baser(struct its_node
*its
, struct its_baser
*baser
)
2269 u32 idx
= baser
- its
->tables
;
2271 return gits_read_baser(its
->base
+ GITS_BASER
+ (idx
<< 3));
2274 static void its_write_baser(struct its_node
*its
, struct its_baser
*baser
,
2277 u32 idx
= baser
- its
->tables
;
2279 gits_write_baser(val
, its
->base
+ GITS_BASER
+ (idx
<< 3));
2280 baser
->val
= its_read_baser(its
, baser
);
2283 static int its_setup_baser(struct its_node
*its
, struct its_baser
*baser
,
2284 u64 cache
, u64 shr
, u32 order
, bool indirect
)
2286 u64 val
= its_read_baser(its
, baser
);
2287 u64 esz
= GITS_BASER_ENTRY_SIZE(val
);
2288 u64 type
= GITS_BASER_TYPE(val
);
2289 u64 baser_phys
, tmp
;
2290 u32 alloc_pages
, psz
;
2295 alloc_pages
= (PAGE_ORDER_TO_SIZE(order
) / psz
);
2296 if (alloc_pages
> GITS_BASER_PAGES_MAX
) {
2297 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2298 &its
->phys_base
, its_base_type_string
[type
],
2299 alloc_pages
, GITS_BASER_PAGES_MAX
);
2300 alloc_pages
= GITS_BASER_PAGES_MAX
;
2301 order
= get_order(GITS_BASER_PAGES_MAX
* psz
);
2304 page
= alloc_pages_node(its
->numa_node
, GFP_KERNEL
| __GFP_ZERO
, order
);
2308 base
= (void *)page_address(page
);
2309 baser_phys
= virt_to_phys(base
);
2311 /* Check if the physical address of the memory is above 48bits */
2312 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES
) && (baser_phys
>> 48)) {
2314 /* 52bit PA is supported only when PageSize=64K */
2315 if (psz
!= SZ_64K
) {
2316 pr_err("ITS: no 52bit PA support when psz=%d\n", psz
);
2317 free_pages((unsigned long)base
, order
);
2321 /* Convert 52bit PA to 48bit field */
2322 baser_phys
= GITS_BASER_PHYS_52_to_48(baser_phys
);
2327 (type
<< GITS_BASER_TYPE_SHIFT
) |
2328 ((esz
- 1) << GITS_BASER_ENTRY_SIZE_SHIFT
) |
2329 ((alloc_pages
- 1) << GITS_BASER_PAGES_SHIFT
) |
2334 val
|= indirect
? GITS_BASER_INDIRECT
: 0x0;
2338 val
|= GITS_BASER_PAGE_SIZE_4K
;
2341 val
|= GITS_BASER_PAGE_SIZE_16K
;
2344 val
|= GITS_BASER_PAGE_SIZE_64K
;
2348 its_write_baser(its
, baser
, val
);
2351 if ((val
^ tmp
) & GITS_BASER_SHAREABILITY_MASK
) {
2353 * Shareability didn't stick. Just use
2354 * whatever the read reported, which is likely
2355 * to be the only thing this redistributor
2356 * supports. If that's zero, make it
2357 * non-cacheable as well.
2359 shr
= tmp
& GITS_BASER_SHAREABILITY_MASK
;
2361 cache
= GITS_BASER_nC
;
2362 gic_flush_dcache_to_poc(base
, PAGE_ORDER_TO_SIZE(order
));
2368 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2369 &its
->phys_base
, its_base_type_string
[type
],
2371 free_pages((unsigned long)base
, order
);
2375 baser
->order
= order
;
2378 tmp
= indirect
? GITS_LVL1_ENTRY_SIZE
: esz
;
2380 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2381 &its
->phys_base
, (int)(PAGE_ORDER_TO_SIZE(order
) / (int)tmp
),
2382 its_base_type_string
[type
],
2383 (unsigned long)virt_to_phys(base
),
2384 indirect
? "indirect" : "flat", (int)esz
,
2385 psz
/ SZ_1K
, (int)shr
>> GITS_BASER_SHAREABILITY_SHIFT
);
2390 static bool its_parse_indirect_baser(struct its_node
*its
,
2391 struct its_baser
*baser
,
2392 u32
*order
, u32 ids
)
2394 u64 tmp
= its_read_baser(its
, baser
);
2395 u64 type
= GITS_BASER_TYPE(tmp
);
2396 u64 esz
= GITS_BASER_ENTRY_SIZE(tmp
);
2397 u64 val
= GITS_BASER_InnerShareable
| GITS_BASER_RaWaWb
;
2398 u32 new_order
= *order
;
2399 u32 psz
= baser
->psz
;
2400 bool indirect
= false;
2402 /* No need to enable Indirection if memory requirement < (psz*2)bytes */
2403 if ((esz
<< ids
) > (psz
* 2)) {
2405 * Find out whether hw supports a single or two-level table by
2406 * table by reading bit at offset '62' after writing '1' to it.
2408 its_write_baser(its
, baser
, val
| GITS_BASER_INDIRECT
);
2409 indirect
= !!(baser
->val
& GITS_BASER_INDIRECT
);
2413 * The size of the lvl2 table is equal to ITS page size
2414 * which is 'psz'. For computing lvl1 table size,
2415 * subtract ID bits that sparse lvl2 table from 'ids'
2416 * which is reported by ITS hardware times lvl1 table
2419 ids
-= ilog2(psz
/ (int)esz
);
2420 esz
= GITS_LVL1_ENTRY_SIZE
;
2425 * Allocate as many entries as required to fit the
2426 * range of device IDs that the ITS can grok... The ID
2427 * space being incredibly sparse, this results in a
2428 * massive waste of memory if two-level device table
2429 * feature is not supported by hardware.
2431 new_order
= max_t(u32
, get_order(esz
<< ids
), new_order
);
2432 if (new_order
>= MAX_ORDER
) {
2433 new_order
= MAX_ORDER
- 1;
2434 ids
= ilog2(PAGE_ORDER_TO_SIZE(new_order
) / (int)esz
);
2435 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2436 &its
->phys_base
, its_base_type_string
[type
],
2437 device_ids(its
), ids
);
2445 static u32
compute_common_aff(u64 val
)
2449 aff
= FIELD_GET(GICR_TYPER_AFFINITY
, val
);
2450 clpiaff
= FIELD_GET(GICR_TYPER_COMMON_LPI_AFF
, val
);
2452 return aff
& ~(GENMASK(31, 0) >> (clpiaff
* 8));
2455 static u32
compute_its_aff(struct its_node
*its
)
2461 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2462 * the resulting affinity. We then use that to see if this match
2465 svpet
= FIELD_GET(GITS_TYPER_SVPET
, its
->typer
);
2466 val
= FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF
, svpet
);
2467 val
|= FIELD_PREP(GICR_TYPER_AFFINITY
, its
->mpidr
);
2468 return compute_common_aff(val
);
2471 static struct its_node
*find_sibling_its(struct its_node
*cur_its
)
2473 struct its_node
*its
;
2476 if (!FIELD_GET(GITS_TYPER_SVPET
, cur_its
->typer
))
2479 aff
= compute_its_aff(cur_its
);
2481 list_for_each_entry(its
, &its_nodes
, entry
) {
2484 if (!is_v4_1(its
) || its
== cur_its
)
2487 if (!FIELD_GET(GITS_TYPER_SVPET
, its
->typer
))
2490 if (aff
!= compute_its_aff(its
))
2493 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2494 baser
= its
->tables
[2].val
;
2495 if (!(baser
& GITS_BASER_VALID
))
2504 static void its_free_tables(struct its_node
*its
)
2508 for (i
= 0; i
< GITS_BASER_NR_REGS
; i
++) {
2509 if (its
->tables
[i
].base
) {
2510 free_pages((unsigned long)its
->tables
[i
].base
,
2511 its
->tables
[i
].order
);
2512 its
->tables
[i
].base
= NULL
;
2517 static int its_probe_baser_psz(struct its_node
*its
, struct its_baser
*baser
)
2524 val
= its_read_baser(its
, baser
);
2525 val
&= ~GITS_BASER_PAGE_SIZE_MASK
;
2529 gpsz
= GITS_BASER_PAGE_SIZE_64K
;
2532 gpsz
= GITS_BASER_PAGE_SIZE_16K
;
2536 gpsz
= GITS_BASER_PAGE_SIZE_4K
;
2540 gpsz
>>= GITS_BASER_PAGE_SIZE_SHIFT
;
2542 val
|= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK
, gpsz
);
2543 its_write_baser(its
, baser
, val
);
2545 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK
, baser
->val
) == gpsz
)
2565 static int its_alloc_tables(struct its_node
*its
)
2567 u64 shr
= GITS_BASER_InnerShareable
;
2568 u64 cache
= GITS_BASER_RaWaWb
;
2571 if (its
->flags
& ITS_FLAGS_WORKAROUND_CAVIUM_22375
)
2572 /* erratum 24313: ignore memory access type */
2573 cache
= GITS_BASER_nCnB
;
2575 for (i
= 0; i
< GITS_BASER_NR_REGS
; i
++) {
2576 struct its_baser
*baser
= its
->tables
+ i
;
2577 u64 val
= its_read_baser(its
, baser
);
2578 u64 type
= GITS_BASER_TYPE(val
);
2579 bool indirect
= false;
2582 if (type
== GITS_BASER_TYPE_NONE
)
2585 if (its_probe_baser_psz(its
, baser
)) {
2586 its_free_tables(its
);
2590 order
= get_order(baser
->psz
);
2593 case GITS_BASER_TYPE_DEVICE
:
2594 indirect
= its_parse_indirect_baser(its
, baser
, &order
,
2598 case GITS_BASER_TYPE_VCPU
:
2600 struct its_node
*sibling
;
2603 if ((sibling
= find_sibling_its(its
))) {
2604 *baser
= sibling
->tables
[2];
2605 its_write_baser(its
, baser
, baser
->val
);
2610 indirect
= its_parse_indirect_baser(its
, baser
, &order
,
2611 ITS_MAX_VPEID_BITS
);
2615 err
= its_setup_baser(its
, baser
, cache
, shr
, order
, indirect
);
2617 its_free_tables(its
);
2621 /* Update settings which will be used for next BASERn */
2622 cache
= baser
->val
& GITS_BASER_CACHEABILITY_MASK
;
2623 shr
= baser
->val
& GITS_BASER_SHAREABILITY_MASK
;
2629 static u64
inherit_vpe_l1_table_from_its(void)
2631 struct its_node
*its
;
2635 val
= gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER
);
2636 aff
= compute_common_aff(val
);
2638 list_for_each_entry(its
, &its_nodes
, entry
) {
2644 if (!FIELD_GET(GITS_TYPER_SVPET
, its
->typer
))
2647 if (aff
!= compute_its_aff(its
))
2650 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2651 baser
= its
->tables
[2].val
;
2652 if (!(baser
& GITS_BASER_VALID
))
2655 /* We have a winner! */
2656 gic_data_rdist()->vpe_l1_base
= its
->tables
[2].base
;
2658 val
= GICR_VPROPBASER_4_1_VALID
;
2659 if (baser
& GITS_BASER_INDIRECT
)
2660 val
|= GICR_VPROPBASER_4_1_INDIRECT
;
2661 val
|= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE
,
2662 FIELD_GET(GITS_BASER_PAGE_SIZE_MASK
, baser
));
2663 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK
, baser
)) {
2664 case GIC_PAGE_SIZE_64K
:
2665 addr
= GITS_BASER_ADDR_48_to_52(baser
);
2668 addr
= baser
& GENMASK_ULL(47, 12);
2671 val
|= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR
, addr
>> 12);
2672 val
|= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK
,
2673 FIELD_GET(GITS_BASER_SHAREABILITY_MASK
, baser
));
2674 val
|= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK
,
2675 FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK
, baser
));
2676 val
|= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE
, GITS_BASER_NR_PAGES(baser
) - 1);
2684 static u64
inherit_vpe_l1_table_from_rd(cpumask_t
**mask
)
2690 val
= gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER
);
2691 aff
= compute_common_aff(val
);
2693 for_each_possible_cpu(cpu
) {
2694 void __iomem
*base
= gic_data_rdist_cpu(cpu
)->rd_base
;
2696 if (!base
|| cpu
== smp_processor_id())
2699 val
= gic_read_typer(base
+ GICR_TYPER
);
2700 if (aff
!= compute_common_aff(val
))
2704 * At this point, we have a victim. This particular CPU
2705 * has already booted, and has an affinity that matches
2706 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2707 * Make sure we don't write the Z bit in that case.
2709 val
= gicr_read_vpropbaser(base
+ SZ_128K
+ GICR_VPROPBASER
);
2710 val
&= ~GICR_VPROPBASER_4_1_Z
;
2712 gic_data_rdist()->vpe_l1_base
= gic_data_rdist_cpu(cpu
)->vpe_l1_base
;
2713 *mask
= gic_data_rdist_cpu(cpu
)->vpe_table_mask
;
2721 static bool allocate_vpe_l2_table(int cpu
, u32 id
)
2723 void __iomem
*base
= gic_data_rdist_cpu(cpu
)->rd_base
;
2724 unsigned int psz
, esz
, idx
, npg
, gpsz
;
2729 if (!gic_rdists
->has_rvpeid
)
2732 /* Skip non-present CPUs */
2736 val
= gicr_read_vpropbaser(base
+ SZ_128K
+ GICR_VPROPBASER
);
2738 esz
= FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE
, val
) + 1;
2739 gpsz
= FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE
, val
);
2740 npg
= FIELD_GET(GICR_VPROPBASER_4_1_SIZE
, val
) + 1;
2746 case GIC_PAGE_SIZE_4K
:
2749 case GIC_PAGE_SIZE_16K
:
2752 case GIC_PAGE_SIZE_64K
:
2757 /* Don't allow vpe_id that exceeds single, flat table limit */
2758 if (!(val
& GICR_VPROPBASER_4_1_INDIRECT
))
2759 return (id
< (npg
* psz
/ (esz
* SZ_8
)));
2761 /* Compute 1st level table index & check if that exceeds table limit */
2762 idx
= id
>> ilog2(psz
/ (esz
* SZ_8
));
2763 if (idx
>= (npg
* psz
/ GITS_LVL1_ENTRY_SIZE
))
2766 table
= gic_data_rdist_cpu(cpu
)->vpe_l1_base
;
2768 /* Allocate memory for 2nd level table */
2770 page
= alloc_pages(GFP_KERNEL
| __GFP_ZERO
, get_order(psz
));
2774 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
2775 if (!(val
& GICR_VPROPBASER_SHAREABILITY_MASK
))
2776 gic_flush_dcache_to_poc(page_address(page
), psz
);
2778 table
[idx
] = cpu_to_le64(page_to_phys(page
) | GITS_BASER_VALID
);
2780 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2781 if (!(val
& GICR_VPROPBASER_SHAREABILITY_MASK
))
2782 gic_flush_dcache_to_poc(table
+ idx
, GITS_LVL1_ENTRY_SIZE
);
2784 /* Ensure updated table contents are visible to RD hardware */
2791 static int allocate_vpe_l1_table(void)
2793 void __iomem
*vlpi_base
= gic_data_rdist_vlpi_base();
2794 u64 val
, gpsz
, npg
, pa
;
2795 unsigned int psz
= SZ_64K
;
2796 unsigned int np
, epp
, esz
;
2799 if (!gic_rdists
->has_rvpeid
)
2803 * if VPENDBASER.Valid is set, disable any previously programmed
2804 * VPE by setting PendingLast while clearing Valid. This has the
2805 * effect of making sure no doorbell will be generated and we can
2806 * then safely clear VPROPBASER.Valid.
2808 if (gicr_read_vpendbaser(vlpi_base
+ GICR_VPENDBASER
) & GICR_VPENDBASER_Valid
)
2809 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast
,
2810 vlpi_base
+ GICR_VPENDBASER
);
2813 * If we can inherit the configuration from another RD, let's do
2814 * so. Otherwise, we have to go through the allocation process. We
2815 * assume that all RDs have the exact same requirements, as
2816 * nothing will work otherwise.
2818 val
= inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask
);
2819 if (val
& GICR_VPROPBASER_4_1_VALID
)
2822 gic_data_rdist()->vpe_table_mask
= kzalloc(sizeof(cpumask_t
), GFP_ATOMIC
);
2823 if (!gic_data_rdist()->vpe_table_mask
)
2826 val
= inherit_vpe_l1_table_from_its();
2827 if (val
& GICR_VPROPBASER_4_1_VALID
)
2830 /* First probe the page size */
2831 val
= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE
, GIC_PAGE_SIZE_64K
);
2832 gicr_write_vpropbaser(val
, vlpi_base
+ GICR_VPROPBASER
);
2833 val
= gicr_read_vpropbaser(vlpi_base
+ GICR_VPROPBASER
);
2834 gpsz
= FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE
, val
);
2835 esz
= FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE
, val
);
2839 gpsz
= GIC_PAGE_SIZE_4K
;
2841 case GIC_PAGE_SIZE_4K
:
2844 case GIC_PAGE_SIZE_16K
:
2847 case GIC_PAGE_SIZE_64K
:
2853 * Start populating the register from scratch, including RO fields
2854 * (which we want to print in debug cases...)
2857 val
|= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE
, gpsz
);
2858 val
|= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE
, esz
);
2860 /* How many entries per GIC page? */
2862 epp
= psz
/ (esz
* SZ_8
);
2865 * If we need more than just a single L1 page, flag the table
2866 * as indirect and compute the number of required L1 pages.
2868 if (epp
< ITS_MAX_VPEID
) {
2871 val
|= GICR_VPROPBASER_4_1_INDIRECT
;
2873 /* Number of L2 pages required to cover the VPEID space */
2874 nl2
= DIV_ROUND_UP(ITS_MAX_VPEID
, epp
);
2876 /* Number of L1 pages to point to the L2 pages */
2877 npg
= DIV_ROUND_UP(nl2
* SZ_8
, psz
);
2882 val
|= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE
, npg
- 1);
2884 /* Right, that's the number of CPU pages we need for L1 */
2885 np
= DIV_ROUND_UP(npg
* psz
, PAGE_SIZE
);
2887 pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2888 np
, npg
, psz
, epp
, esz
);
2889 page
= alloc_pages(GFP_ATOMIC
| __GFP_ZERO
, get_order(np
* PAGE_SIZE
));
2893 gic_data_rdist()->vpe_l1_base
= page_address(page
);
2894 pa
= virt_to_phys(page_address(page
));
2895 WARN_ON(!IS_ALIGNED(pa
, psz
));
2897 val
|= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR
, pa
>> 12);
2898 val
|= GICR_VPROPBASER_RaWb
;
2899 val
|= GICR_VPROPBASER_InnerShareable
;
2900 val
|= GICR_VPROPBASER_4_1_Z
;
2901 val
|= GICR_VPROPBASER_4_1_VALID
;
2904 gicr_write_vpropbaser(val
, vlpi_base
+ GICR_VPROPBASER
);
2905 cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask
);
2907 pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2908 smp_processor_id(), val
,
2909 cpumask_pr_args(gic_data_rdist()->vpe_table_mask
));
2914 static int its_alloc_collections(struct its_node
*its
)
2918 its
->collections
= kcalloc(nr_cpu_ids
, sizeof(*its
->collections
),
2920 if (!its
->collections
)
2923 for (i
= 0; i
< nr_cpu_ids
; i
++)
2924 its
->collections
[i
].target_address
= ~0ULL;
2929 static struct page
*its_allocate_pending_table(gfp_t gfp_flags
)
2931 struct page
*pend_page
;
2933 pend_page
= alloc_pages(gfp_flags
| __GFP_ZERO
,
2934 get_order(LPI_PENDBASE_SZ
));
2938 /* Make sure the GIC will observe the zero-ed page */
2939 gic_flush_dcache_to_poc(page_address(pend_page
), LPI_PENDBASE_SZ
);
2944 static void its_free_pending_table(struct page
*pt
)
2946 free_pages((unsigned long)page_address(pt
), get_order(LPI_PENDBASE_SZ
));
2950 * Booting with kdump and LPIs enabled is generally fine. Any other
2951 * case is wrong in the absence of firmware/EFI support.
2953 static bool enabled_lpis_allowed(void)
2958 /* Check whether the property table is in a reserved region */
2959 val
= gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER
);
2960 addr
= val
& GENMASK_ULL(51, 12);
2962 return gic_check_reserved_range(addr
, LPI_PROPBASE_SZ
);
2965 static int __init
allocate_lpi_tables(void)
2971 * If LPIs are enabled while we run this from the boot CPU,
2972 * flag the RD tables as pre-allocated if the stars do align.
2974 val
= readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR
);
2975 if ((val
& GICR_CTLR_ENABLE_LPIS
) && enabled_lpis_allowed()) {
2976 gic_rdists
->flags
|= (RDIST_FLAGS_RD_TABLES_PREALLOCATED
|
2977 RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING
);
2978 pr_info("GICv3: Using preallocated redistributor tables\n");
2981 err
= its_setup_lpi_prop_table();
2986 * We allocate all the pending tables anyway, as we may have a
2987 * mix of RDs that have had LPIs enabled, and some that
2988 * don't. We'll free the unused ones as each CPU comes online.
2990 for_each_possible_cpu(cpu
) {
2991 struct page
*pend_page
;
2993 pend_page
= its_allocate_pending_table(GFP_NOWAIT
);
2995 pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu
);
2999 gic_data_rdist_cpu(cpu
)->pend_page
= pend_page
;
3005 static u64
its_clear_vpend_valid(void __iomem
*vlpi_base
, u64 clr
, u64 set
)
3007 u32 count
= 1000000; /* 1s! */
3011 val
= gicr_read_vpendbaser(vlpi_base
+ GICR_VPENDBASER
);
3012 val
&= ~GICR_VPENDBASER_Valid
;
3015 gicr_write_vpendbaser(val
, vlpi_base
+ GICR_VPENDBASER
);
3018 val
= gicr_read_vpendbaser(vlpi_base
+ GICR_VPENDBASER
);
3019 clean
= !(val
& GICR_VPENDBASER_Dirty
);
3025 } while (!clean
&& count
);
3027 if (unlikely(val
& GICR_VPENDBASER_Dirty
)) {
3028 pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3029 val
|= GICR_VPENDBASER_PendingLast
;
3035 static void its_cpu_init_lpis(void)
3037 void __iomem
*rbase
= gic_data_rdist_rd_base();
3038 struct page
*pend_page
;
3042 if (gic_data_rdist()->lpi_enabled
)
3045 val
= readl_relaxed(rbase
+ GICR_CTLR
);
3046 if ((gic_rdists
->flags
& RDIST_FLAGS_RD_TABLES_PREALLOCATED
) &&
3047 (val
& GICR_CTLR_ENABLE_LPIS
)) {
3049 * Check that we get the same property table on all
3050 * RDs. If we don't, this is hopeless.
3052 paddr
= gicr_read_propbaser(rbase
+ GICR_PROPBASER
);
3053 paddr
&= GENMASK_ULL(51, 12);
3054 if (WARN_ON(gic_rdists
->prop_table_pa
!= paddr
))
3055 add_taint(TAINT_CRAP
, LOCKDEP_STILL_OK
);
3057 paddr
= gicr_read_pendbaser(rbase
+ GICR_PENDBASER
);
3058 paddr
&= GENMASK_ULL(51, 16);
3060 WARN_ON(!gic_check_reserved_range(paddr
, LPI_PENDBASE_SZ
));
3061 its_free_pending_table(gic_data_rdist()->pend_page
);
3062 gic_data_rdist()->pend_page
= NULL
;
3067 pend_page
= gic_data_rdist()->pend_page
;
3068 paddr
= page_to_phys(pend_page
);
3069 WARN_ON(gic_reserve_range(paddr
, LPI_PENDBASE_SZ
));
3072 val
= (gic_rdists
->prop_table_pa
|
3073 GICR_PROPBASER_InnerShareable
|
3074 GICR_PROPBASER_RaWaWb
|
3075 ((LPI_NRBITS
- 1) & GICR_PROPBASER_IDBITS_MASK
));
3077 gicr_write_propbaser(val
, rbase
+ GICR_PROPBASER
);
3078 tmp
= gicr_read_propbaser(rbase
+ GICR_PROPBASER
);
3080 if ((tmp
^ val
) & GICR_PROPBASER_SHAREABILITY_MASK
) {
3081 if (!(tmp
& GICR_PROPBASER_SHAREABILITY_MASK
)) {
3083 * The HW reports non-shareable, we must
3084 * remove the cacheability attributes as
3087 val
&= ~(GICR_PROPBASER_SHAREABILITY_MASK
|
3088 GICR_PROPBASER_CACHEABILITY_MASK
);
3089 val
|= GICR_PROPBASER_nC
;
3090 gicr_write_propbaser(val
, rbase
+ GICR_PROPBASER
);
3092 pr_info_once("GIC: using cache flushing for LPI property table\n");
3093 gic_rdists
->flags
|= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING
;
3097 val
= (page_to_phys(pend_page
) |
3098 GICR_PENDBASER_InnerShareable
|
3099 GICR_PENDBASER_RaWaWb
);
3101 gicr_write_pendbaser(val
, rbase
+ GICR_PENDBASER
);
3102 tmp
= gicr_read_pendbaser(rbase
+ GICR_PENDBASER
);
3104 if (!(tmp
& GICR_PENDBASER_SHAREABILITY_MASK
)) {
3106 * The HW reports non-shareable, we must remove the
3107 * cacheability attributes as well.
3109 val
&= ~(GICR_PENDBASER_SHAREABILITY_MASK
|
3110 GICR_PENDBASER_CACHEABILITY_MASK
);
3111 val
|= GICR_PENDBASER_nC
;
3112 gicr_write_pendbaser(val
, rbase
+ GICR_PENDBASER
);
3116 val
= readl_relaxed(rbase
+ GICR_CTLR
);
3117 val
|= GICR_CTLR_ENABLE_LPIS
;
3118 writel_relaxed(val
, rbase
+ GICR_CTLR
);
3120 if (gic_rdists
->has_vlpis
&& !gic_rdists
->has_rvpeid
) {
3121 void __iomem
*vlpi_base
= gic_data_rdist_vlpi_base();
3124 * It's possible for CPU to receive VLPIs before it is
3125 * sheduled as a vPE, especially for the first CPU, and the
3126 * VLPI with INTID larger than 2^(IDbits+1) will be considered
3127 * as out of range and dropped by GIC.
3128 * So we initialize IDbits to known value to avoid VLPI drop.
3130 val
= (LPI_NRBITS
- 1) & GICR_VPROPBASER_IDBITS_MASK
;
3131 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3132 smp_processor_id(), val
);
3133 gicr_write_vpropbaser(val
, vlpi_base
+ GICR_VPROPBASER
);
3136 * Also clear Valid bit of GICR_VPENDBASER, in case some
3137 * ancient programming gets left in and has possibility of
3138 * corrupting memory.
3140 val
= its_clear_vpend_valid(vlpi_base
, 0, 0);
3143 if (allocate_vpe_l1_table()) {
3145 * If the allocation has failed, we're in massive trouble.
3146 * Disable direct injection, and pray that no VM was
3147 * already running...
3149 gic_rdists
->has_rvpeid
= false;
3150 gic_rdists
->has_vlpis
= false;
3153 /* Make sure the GIC has seen the above */
3156 gic_data_rdist()->lpi_enabled
= true;
3157 pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3159 gic_data_rdist()->pend_page
? "allocated" : "reserved",
3163 static void its_cpu_init_collection(struct its_node
*its
)
3165 int cpu
= smp_processor_id();
3168 /* avoid cross node collections and its mapping */
3169 if (its
->flags
& ITS_FLAGS_WORKAROUND_CAVIUM_23144
) {
3170 struct device_node
*cpu_node
;
3172 cpu_node
= of_get_cpu_node(cpu
, NULL
);
3173 if (its
->numa_node
!= NUMA_NO_NODE
&&
3174 its
->numa_node
!= of_node_to_nid(cpu_node
))
3179 * We now have to bind each collection to its target
3182 if (gic_read_typer(its
->base
+ GITS_TYPER
) & GITS_TYPER_PTA
) {
3184 * This ITS wants the physical address of the
3187 target
= gic_data_rdist()->phys_base
;
3189 /* This ITS wants a linear CPU number. */
3190 target
= gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER
);
3191 target
= GICR_TYPER_CPU_NUMBER(target
) << 16;
3194 /* Perform collection mapping */
3195 its
->collections
[cpu
].target_address
= target
;
3196 its
->collections
[cpu
].col_id
= cpu
;
3198 its_send_mapc(its
, &its
->collections
[cpu
], 1);
3199 its_send_invall(its
, &its
->collections
[cpu
]);
3202 static void its_cpu_init_collections(void)
3204 struct its_node
*its
;
3206 raw_spin_lock(&its_lock
);
3208 list_for_each_entry(its
, &its_nodes
, entry
)
3209 its_cpu_init_collection(its
);
3211 raw_spin_unlock(&its_lock
);
3214 static struct its_device
*its_find_device(struct its_node
*its
, u32 dev_id
)
3216 struct its_device
*its_dev
= NULL
, *tmp
;
3217 unsigned long flags
;
3219 raw_spin_lock_irqsave(&its
->lock
, flags
);
3221 list_for_each_entry(tmp
, &its
->its_device_list
, entry
) {
3222 if (tmp
->device_id
== dev_id
) {
3228 raw_spin_unlock_irqrestore(&its
->lock
, flags
);
3233 static struct its_baser
*its_get_baser(struct its_node
*its
, u32 type
)
3237 for (i
= 0; i
< GITS_BASER_NR_REGS
; i
++) {
3238 if (GITS_BASER_TYPE(its
->tables
[i
].val
) == type
)
3239 return &its
->tables
[i
];
3245 static bool its_alloc_table_entry(struct its_node
*its
,
3246 struct its_baser
*baser
, u32 id
)
3252 /* Don't allow device id that exceeds single, flat table limit */
3253 esz
= GITS_BASER_ENTRY_SIZE(baser
->val
);
3254 if (!(baser
->val
& GITS_BASER_INDIRECT
))
3255 return (id
< (PAGE_ORDER_TO_SIZE(baser
->order
) / esz
));
3257 /* Compute 1st level table index & check if that exceeds table limit */
3258 idx
= id
>> ilog2(baser
->psz
/ esz
);
3259 if (idx
>= (PAGE_ORDER_TO_SIZE(baser
->order
) / GITS_LVL1_ENTRY_SIZE
))
3262 table
= baser
->base
;
3264 /* Allocate memory for 2nd level table */
3266 page
= alloc_pages_node(its
->numa_node
, GFP_KERNEL
| __GFP_ZERO
,
3267 get_order(baser
->psz
));
3271 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
3272 if (!(baser
->val
& GITS_BASER_SHAREABILITY_MASK
))
3273 gic_flush_dcache_to_poc(page_address(page
), baser
->psz
);
3275 table
[idx
] = cpu_to_le64(page_to_phys(page
) | GITS_BASER_VALID
);
3277 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3278 if (!(baser
->val
& GITS_BASER_SHAREABILITY_MASK
))
3279 gic_flush_dcache_to_poc(table
+ idx
, GITS_LVL1_ENTRY_SIZE
);
3281 /* Ensure updated table contents are visible to ITS hardware */
3288 static bool its_alloc_device_table(struct its_node
*its
, u32 dev_id
)
3290 struct its_baser
*baser
;
3292 baser
= its_get_baser(its
, GITS_BASER_TYPE_DEVICE
);
3294 /* Don't allow device id that exceeds ITS hardware limit */
3296 return (ilog2(dev_id
) < device_ids(its
));
3298 return its_alloc_table_entry(its
, baser
, dev_id
);
3301 static bool its_alloc_vpe_table(u32 vpe_id
)
3303 struct its_node
*its
;
3307 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3308 * could try and only do it on ITSs corresponding to devices
3309 * that have interrupts targeted at this VPE, but the
3310 * complexity becomes crazy (and you have tons of memory
3313 list_for_each_entry(its
, &its_nodes
, entry
) {
3314 struct its_baser
*baser
;
3319 baser
= its_get_baser(its
, GITS_BASER_TYPE_VCPU
);
3323 if (!its_alloc_table_entry(its
, baser
, vpe_id
))
3327 /* Non v4.1? No need to iterate RDs and go back early. */
3328 if (!gic_rdists
->has_rvpeid
)
3332 * Make sure the L2 tables are allocated for all copies of
3333 * the L1 table on *all* v4.1 RDs.
3335 for_each_possible_cpu(cpu
) {
3336 if (!allocate_vpe_l2_table(cpu
, vpe_id
))
3343 static struct its_device
*its_create_device(struct its_node
*its
, u32 dev_id
,
3344 int nvecs
, bool alloc_lpis
)
3346 struct its_device
*dev
;
3347 unsigned long *lpi_map
= NULL
;
3348 unsigned long flags
;
3349 u16
*col_map
= NULL
;
3356 if (!its_alloc_device_table(its
, dev_id
))
3359 if (WARN_ON(!is_power_of_2(nvecs
)))
3360 nvecs
= roundup_pow_of_two(nvecs
);
3362 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
3364 * Even if the device wants a single LPI, the ITT must be
3365 * sized as a power of two (and you need at least one bit...).
3367 nr_ites
= max(2, nvecs
);
3368 sz
= nr_ites
* (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE
, its
->typer
) + 1);
3369 sz
= max(sz
, ITS_ITT_ALIGN
) + ITS_ITT_ALIGN
- 1;
3370 itt
= kzalloc_node(sz
, GFP_KERNEL
, its
->numa_node
);
3372 lpi_map
= its_lpi_alloc(nvecs
, &lpi_base
, &nr_lpis
);
3374 col_map
= kcalloc(nr_lpis
, sizeof(*col_map
),
3377 col_map
= kcalloc(nr_ites
, sizeof(*col_map
), GFP_KERNEL
);
3382 if (!dev
|| !itt
|| !col_map
|| (!lpi_map
&& alloc_lpis
)) {
3390 gic_flush_dcache_to_poc(itt
, sz
);
3394 dev
->nr_ites
= nr_ites
;
3395 dev
->event_map
.lpi_map
= lpi_map
;
3396 dev
->event_map
.col_map
= col_map
;
3397 dev
->event_map
.lpi_base
= lpi_base
;
3398 dev
->event_map
.nr_lpis
= nr_lpis
;
3399 raw_spin_lock_init(&dev
->event_map
.vlpi_lock
);
3400 dev
->device_id
= dev_id
;
3401 INIT_LIST_HEAD(&dev
->entry
);
3403 raw_spin_lock_irqsave(&its
->lock
, flags
);
3404 list_add(&dev
->entry
, &its
->its_device_list
);
3405 raw_spin_unlock_irqrestore(&its
->lock
, flags
);
3407 /* Map device to its ITT */
3408 its_send_mapd(dev
, 1);
3413 static void its_free_device(struct its_device
*its_dev
)
3415 unsigned long flags
;
3417 raw_spin_lock_irqsave(&its_dev
->its
->lock
, flags
);
3418 list_del(&its_dev
->entry
);
3419 raw_spin_unlock_irqrestore(&its_dev
->its
->lock
, flags
);
3420 kfree(its_dev
->event_map
.col_map
);
3421 kfree(its_dev
->itt
);
3425 static int its_alloc_device_irq(struct its_device
*dev
, int nvecs
, irq_hw_number_t
*hwirq
)
3429 /* Find a free LPI region in lpi_map and allocate them. */
3430 idx
= bitmap_find_free_region(dev
->event_map
.lpi_map
,
3431 dev
->event_map
.nr_lpis
,
3432 get_count_order(nvecs
));
3436 *hwirq
= dev
->event_map
.lpi_base
+ idx
;
3441 static int its_msi_prepare(struct irq_domain
*domain
, struct device
*dev
,
3442 int nvec
, msi_alloc_info_t
*info
)
3444 struct its_node
*its
;
3445 struct its_device
*its_dev
;
3446 struct msi_domain_info
*msi_info
;
3451 * We ignore "dev" entirely, and rely on the dev_id that has
3452 * been passed via the scratchpad. This limits this domain's
3453 * usefulness to upper layers that definitely know that they
3454 * are built on top of the ITS.
3456 dev_id
= info
->scratchpad
[0].ul
;
3458 msi_info
= msi_get_domain_info(domain
);
3459 its
= msi_info
->data
;
3461 if (!gic_rdists
->has_direct_lpi
&&
3463 vpe_proxy
.dev
->its
== its
&&
3464 dev_id
== vpe_proxy
.dev
->device_id
) {
3465 /* Bad luck. Get yourself a better implementation */
3466 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3471 mutex_lock(&its
->dev_alloc_lock
);
3472 its_dev
= its_find_device(its
, dev_id
);
3475 * We already have seen this ID, probably through
3476 * another alias (PCI bridge of some sort). No need to
3477 * create the device.
3479 its_dev
->shared
= true;
3480 pr_debug("Reusing ITT for devID %x\n", dev_id
);
3484 its_dev
= its_create_device(its
, dev_id
, nvec
, true);
3490 if (info
->flags
& MSI_ALLOC_FLAGS_PROXY_DEVICE
)
3491 its_dev
->shared
= true;
3493 pr_debug("ITT %d entries, %d bits\n", nvec
, ilog2(nvec
));
3495 mutex_unlock(&its
->dev_alloc_lock
);
3496 info
->scratchpad
[0].ptr
= its_dev
;
3500 static struct msi_domain_ops its_msi_domain_ops
= {
3501 .msi_prepare
= its_msi_prepare
,
3504 static int its_irq_gic_domain_alloc(struct irq_domain
*domain
,
3506 irq_hw_number_t hwirq
)
3508 struct irq_fwspec fwspec
;
3510 if (irq_domain_get_of_node(domain
->parent
)) {
3511 fwspec
.fwnode
= domain
->parent
->fwnode
;
3512 fwspec
.param_count
= 3;
3513 fwspec
.param
[0] = GIC_IRQ_TYPE_LPI
;
3514 fwspec
.param
[1] = hwirq
;
3515 fwspec
.param
[2] = IRQ_TYPE_EDGE_RISING
;
3516 } else if (is_fwnode_irqchip(domain
->parent
->fwnode
)) {
3517 fwspec
.fwnode
= domain
->parent
->fwnode
;
3518 fwspec
.param_count
= 2;
3519 fwspec
.param
[0] = hwirq
;
3520 fwspec
.param
[1] = IRQ_TYPE_EDGE_RISING
;
3525 return irq_domain_alloc_irqs_parent(domain
, virq
, 1, &fwspec
);
3528 static int its_irq_domain_alloc(struct irq_domain
*domain
, unsigned int virq
,
3529 unsigned int nr_irqs
, void *args
)
3531 msi_alloc_info_t
*info
= args
;
3532 struct its_device
*its_dev
= info
->scratchpad
[0].ptr
;
3533 struct its_node
*its
= its_dev
->its
;
3534 struct irq_data
*irqd
;
3535 irq_hw_number_t hwirq
;
3539 err
= its_alloc_device_irq(its_dev
, nr_irqs
, &hwirq
);
3543 err
= iommu_dma_prepare_msi(info
->desc
, its
->get_msi_base(its_dev
));
3547 for (i
= 0; i
< nr_irqs
; i
++) {
3548 err
= its_irq_gic_domain_alloc(domain
, virq
+ i
, hwirq
+ i
);
3552 irq_domain_set_hwirq_and_chip(domain
, virq
+ i
,
3553 hwirq
+ i
, &its_irq_chip
, its_dev
);
3554 irqd
= irq_get_irq_data(virq
+ i
);
3555 irqd_set_single_target(irqd
);
3556 irqd_set_affinity_on_activate(irqd
);
3557 pr_debug("ID:%d pID:%d vID:%d\n",
3558 (int)(hwirq
+ i
- its_dev
->event_map
.lpi_base
),
3559 (int)(hwirq
+ i
), virq
+ i
);
3565 static int its_irq_domain_activate(struct irq_domain
*domain
,
3566 struct irq_data
*d
, bool reserve
)
3568 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
3569 u32 event
= its_get_event_id(d
);
3572 cpu
= its_select_cpu(d
, cpu_online_mask
);
3573 if (cpu
< 0 || cpu
>= nr_cpu_ids
)
3576 its_inc_lpi_count(d
, cpu
);
3577 its_dev
->event_map
.col_map
[event
] = cpu
;
3578 irq_data_update_effective_affinity(d
, cpumask_of(cpu
));
3580 /* Map the GIC IRQ and event to the device */
3581 its_send_mapti(its_dev
, d
->hwirq
, event
);
3585 static void its_irq_domain_deactivate(struct irq_domain
*domain
,
3588 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
3589 u32 event
= its_get_event_id(d
);
3591 its_dec_lpi_count(d
, its_dev
->event_map
.col_map
[event
]);
3592 /* Stop the delivery of interrupts */
3593 its_send_discard(its_dev
, event
);
3596 static void its_irq_domain_free(struct irq_domain
*domain
, unsigned int virq
,
3597 unsigned int nr_irqs
)
3599 struct irq_data
*d
= irq_domain_get_irq_data(domain
, virq
);
3600 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
3601 struct its_node
*its
= its_dev
->its
;
3604 bitmap_release_region(its_dev
->event_map
.lpi_map
,
3605 its_get_event_id(irq_domain_get_irq_data(domain
, virq
)),
3606 get_count_order(nr_irqs
));
3608 for (i
= 0; i
< nr_irqs
; i
++) {
3609 struct irq_data
*data
= irq_domain_get_irq_data(domain
,
3611 /* Nuke the entry in the domain */
3612 irq_domain_reset_irq_data(data
);
3615 mutex_lock(&its
->dev_alloc_lock
);
3618 * If all interrupts have been freed, start mopping the
3619 * floor. This is conditionned on the device not being shared.
3621 if (!its_dev
->shared
&&
3622 bitmap_empty(its_dev
->event_map
.lpi_map
,
3623 its_dev
->event_map
.nr_lpis
)) {
3624 its_lpi_free(its_dev
->event_map
.lpi_map
,
3625 its_dev
->event_map
.lpi_base
,
3626 its_dev
->event_map
.nr_lpis
);
3628 /* Unmap device/itt */
3629 its_send_mapd(its_dev
, 0);
3630 its_free_device(its_dev
);
3633 mutex_unlock(&its
->dev_alloc_lock
);
3635 irq_domain_free_irqs_parent(domain
, virq
, nr_irqs
);
3638 static const struct irq_domain_ops its_domain_ops
= {
3639 .alloc
= its_irq_domain_alloc
,
3640 .free
= its_irq_domain_free
,
3641 .activate
= its_irq_domain_activate
,
3642 .deactivate
= its_irq_domain_deactivate
,
3648 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3649 * likely), the only way to perform an invalidate is to use a fake
3650 * device to issue an INV command, implying that the LPI has first
3651 * been mapped to some event on that device. Since this is not exactly
3652 * cheap, we try to keep that mapping around as long as possible, and
3653 * only issue an UNMAP if we're short on available slots.
3655 * Broken by design(tm).
3657 * GICv4.1, on the other hand, mandates that we're able to invalidate
3658 * by writing to a MMIO register. It doesn't implement the whole of
3659 * DirectLPI, but that's good enough. And most of the time, we don't
3660 * even have to invalidate anything, as the redistributor can be told
3661 * whether to generate a doorbell or not (we thus leave it enabled,
3664 static void its_vpe_db_proxy_unmap_locked(struct its_vpe
*vpe
)
3666 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3667 if (gic_rdists
->has_rvpeid
)
3670 /* Already unmapped? */
3671 if (vpe
->vpe_proxy_event
== -1)
3674 its_send_discard(vpe_proxy
.dev
, vpe
->vpe_proxy_event
);
3675 vpe_proxy
.vpes
[vpe
->vpe_proxy_event
] = NULL
;
3678 * We don't track empty slots at all, so let's move the
3679 * next_victim pointer if we can quickly reuse that slot
3680 * instead of nuking an existing entry. Not clear that this is
3681 * always a win though, and this might just generate a ripple
3682 * effect... Let's just hope VPEs don't migrate too often.
3684 if (vpe_proxy
.vpes
[vpe_proxy
.next_victim
])
3685 vpe_proxy
.next_victim
= vpe
->vpe_proxy_event
;
3687 vpe
->vpe_proxy_event
= -1;
3690 static void its_vpe_db_proxy_unmap(struct its_vpe
*vpe
)
3692 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3693 if (gic_rdists
->has_rvpeid
)
3696 if (!gic_rdists
->has_direct_lpi
) {
3697 unsigned long flags
;
3699 raw_spin_lock_irqsave(&vpe_proxy
.lock
, flags
);
3700 its_vpe_db_proxy_unmap_locked(vpe
);
3701 raw_spin_unlock_irqrestore(&vpe_proxy
.lock
, flags
);
3705 static void its_vpe_db_proxy_map_locked(struct its_vpe
*vpe
)
3707 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3708 if (gic_rdists
->has_rvpeid
)
3711 /* Already mapped? */
3712 if (vpe
->vpe_proxy_event
!= -1)
3715 /* This slot was already allocated. Kick the other VPE out. */
3716 if (vpe_proxy
.vpes
[vpe_proxy
.next_victim
])
3717 its_vpe_db_proxy_unmap_locked(vpe_proxy
.vpes
[vpe_proxy
.next_victim
]);
3719 /* Map the new VPE instead */
3720 vpe_proxy
.vpes
[vpe_proxy
.next_victim
] = vpe
;
3721 vpe
->vpe_proxy_event
= vpe_proxy
.next_victim
;
3722 vpe_proxy
.next_victim
= (vpe_proxy
.next_victim
+ 1) % vpe_proxy
.dev
->nr_ites
;
3724 vpe_proxy
.dev
->event_map
.col_map
[vpe
->vpe_proxy_event
] = vpe
->col_idx
;
3725 its_send_mapti(vpe_proxy
.dev
, vpe
->vpe_db_lpi
, vpe
->vpe_proxy_event
);
3728 static void its_vpe_db_proxy_move(struct its_vpe
*vpe
, int from
, int to
)
3730 unsigned long flags
;
3731 struct its_collection
*target_col
;
3733 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3734 if (gic_rdists
->has_rvpeid
)
3737 if (gic_rdists
->has_direct_lpi
) {
3738 void __iomem
*rdbase
;
3740 rdbase
= per_cpu_ptr(gic_rdists
->rdist
, from
)->rd_base
;
3741 gic_write_lpir(vpe
->vpe_db_lpi
, rdbase
+ GICR_CLRLPIR
);
3742 wait_for_syncr(rdbase
);
3747 raw_spin_lock_irqsave(&vpe_proxy
.lock
, flags
);
3749 its_vpe_db_proxy_map_locked(vpe
);
3751 target_col
= &vpe_proxy
.dev
->its
->collections
[to
];
3752 its_send_movi(vpe_proxy
.dev
, target_col
, vpe
->vpe_proxy_event
);
3753 vpe_proxy
.dev
->event_map
.col_map
[vpe
->vpe_proxy_event
] = to
;
3755 raw_spin_unlock_irqrestore(&vpe_proxy
.lock
, flags
);
3758 static int its_vpe_set_affinity(struct irq_data
*d
,
3759 const struct cpumask
*mask_val
,
3762 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
3763 int from
, cpu
= cpumask_first(mask_val
);
3764 unsigned long flags
;
3767 * Changing affinity is mega expensive, so let's be as lazy as
3768 * we can and only do it if we really have to. Also, if mapped
3769 * into the proxy device, we need to move the doorbell
3770 * interrupt to its new location.
3772 * Another thing is that changing the affinity of a vPE affects
3773 * *other interrupts* such as all the vLPIs that are routed to
3774 * this vPE. This means that the irq_desc lock is not enough to
3775 * protect us, and that we must ensure nobody samples vpe->col_idx
3776 * during the update, hence the lock below which must also be
3777 * taken on any vLPI handling path that evaluates vpe->col_idx.
3779 from
= vpe_to_cpuid_lock(vpe
, &flags
);
3786 * GICv4.1 allows us to skip VMOVP if moving to a cpu whose RD
3787 * is sharing its VPE table with the current one.
3789 if (gic_data_rdist_cpu(cpu
)->vpe_table_mask
&&
3790 cpumask_test_cpu(from
, gic_data_rdist_cpu(cpu
)->vpe_table_mask
))
3793 its_send_vmovp(vpe
);
3794 its_vpe_db_proxy_move(vpe
, from
, cpu
);
3797 irq_data_update_effective_affinity(d
, cpumask_of(cpu
));
3798 vpe_to_cpuid_unlock(vpe
, flags
);
3800 return IRQ_SET_MASK_OK_DONE
;
3803 static void its_wait_vpt_parse_complete(void)
3805 void __iomem
*vlpi_base
= gic_data_rdist_vlpi_base();
3808 if (!gic_rdists
->has_vpend_valid_dirty
)
3811 WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base
+ GICR_VPENDBASER
,
3813 !(val
& GICR_VPENDBASER_Dirty
),
3817 static void its_vpe_schedule(struct its_vpe
*vpe
)
3819 void __iomem
*vlpi_base
= gic_data_rdist_vlpi_base();
3822 /* Schedule the VPE */
3823 val
= virt_to_phys(page_address(vpe
->its_vm
->vprop_page
)) &
3824 GENMASK_ULL(51, 12);
3825 val
|= (LPI_NRBITS
- 1) & GICR_VPROPBASER_IDBITS_MASK
;
3826 val
|= GICR_VPROPBASER_RaWb
;
3827 val
|= GICR_VPROPBASER_InnerShareable
;
3828 gicr_write_vpropbaser(val
, vlpi_base
+ GICR_VPROPBASER
);
3830 val
= virt_to_phys(page_address(vpe
->vpt_page
)) &
3831 GENMASK_ULL(51, 16);
3832 val
|= GICR_VPENDBASER_RaWaWb
;
3833 val
|= GICR_VPENDBASER_InnerShareable
;
3835 * There is no good way of finding out if the pending table is
3836 * empty as we can race against the doorbell interrupt very
3837 * easily. So in the end, vpe->pending_last is only an
3838 * indication that the vcpu has something pending, not one
3839 * that the pending table is empty. A good implementation
3840 * would be able to read its coarse map pretty quickly anyway,
3841 * making this a tolerable issue.
3843 val
|= GICR_VPENDBASER_PendingLast
;
3844 val
|= vpe
->idai
? GICR_VPENDBASER_IDAI
: 0;
3845 val
|= GICR_VPENDBASER_Valid
;
3846 gicr_write_vpendbaser(val
, vlpi_base
+ GICR_VPENDBASER
);
3849 static void its_vpe_deschedule(struct its_vpe
*vpe
)
3851 void __iomem
*vlpi_base
= gic_data_rdist_vlpi_base();
3854 val
= its_clear_vpend_valid(vlpi_base
, 0, 0);
3856 vpe
->idai
= !!(val
& GICR_VPENDBASER_IDAI
);
3857 vpe
->pending_last
= !!(val
& GICR_VPENDBASER_PendingLast
);
3860 static void its_vpe_invall(struct its_vpe
*vpe
)
3862 struct its_node
*its
;
3864 list_for_each_entry(its
, &its_nodes
, entry
) {
3868 if (its_list_map
&& !vpe
->its_vm
->vlpi_count
[its
->list_nr
])
3872 * Sending a VINVALL to a single ITS is enough, as all
3873 * we need is to reach the redistributors.
3875 its_send_vinvall(its
, vpe
);
3880 static int its_vpe_set_vcpu_affinity(struct irq_data
*d
, void *vcpu_info
)
3882 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
3883 struct its_cmd_info
*info
= vcpu_info
;
3885 switch (info
->cmd_type
) {
3887 its_vpe_schedule(vpe
);
3890 case DESCHEDULE_VPE
:
3891 its_vpe_deschedule(vpe
);
3895 its_wait_vpt_parse_complete();
3899 its_vpe_invall(vpe
);
3907 static void its_vpe_send_cmd(struct its_vpe
*vpe
,
3908 void (*cmd
)(struct its_device
*, u32
))
3910 unsigned long flags
;
3912 raw_spin_lock_irqsave(&vpe_proxy
.lock
, flags
);
3914 its_vpe_db_proxy_map_locked(vpe
);
3915 cmd(vpe_proxy
.dev
, vpe
->vpe_proxy_event
);
3917 raw_spin_unlock_irqrestore(&vpe_proxy
.lock
, flags
);
3920 static void its_vpe_send_inv(struct irq_data
*d
)
3922 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
3924 if (gic_rdists
->has_direct_lpi
) {
3925 void __iomem
*rdbase
;
3927 /* Target the redistributor this VPE is currently known on */
3928 raw_spin_lock(&gic_data_rdist_cpu(vpe
->col_idx
)->rd_lock
);
3929 rdbase
= per_cpu_ptr(gic_rdists
->rdist
, vpe
->col_idx
)->rd_base
;
3930 gic_write_lpir(d
->parent_data
->hwirq
, rdbase
+ GICR_INVLPIR
);
3931 wait_for_syncr(rdbase
);
3932 raw_spin_unlock(&gic_data_rdist_cpu(vpe
->col_idx
)->rd_lock
);
3934 its_vpe_send_cmd(vpe
, its_send_inv
);
3938 static void its_vpe_mask_irq(struct irq_data
*d
)
3941 * We need to unmask the LPI, which is described by the parent
3942 * irq_data. Instead of calling into the parent (which won't
3943 * exactly do the right thing, let's simply use the
3944 * parent_data pointer. Yes, I'm naughty.
3946 lpi_write_config(d
->parent_data
, LPI_PROP_ENABLED
, 0);
3947 its_vpe_send_inv(d
);
3950 static void its_vpe_unmask_irq(struct irq_data
*d
)
3952 /* Same hack as above... */
3953 lpi_write_config(d
->parent_data
, 0, LPI_PROP_ENABLED
);
3954 its_vpe_send_inv(d
);
3957 static int its_vpe_set_irqchip_state(struct irq_data
*d
,
3958 enum irqchip_irq_state which
,
3961 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
3963 if (which
!= IRQCHIP_STATE_PENDING
)
3966 if (gic_rdists
->has_direct_lpi
) {
3967 void __iomem
*rdbase
;
3969 rdbase
= per_cpu_ptr(gic_rdists
->rdist
, vpe
->col_idx
)->rd_base
;
3971 gic_write_lpir(vpe
->vpe_db_lpi
, rdbase
+ GICR_SETLPIR
);
3973 gic_write_lpir(vpe
->vpe_db_lpi
, rdbase
+ GICR_CLRLPIR
);
3974 wait_for_syncr(rdbase
);
3978 its_vpe_send_cmd(vpe
, its_send_int
);
3980 its_vpe_send_cmd(vpe
, its_send_clear
);
3986 static int its_vpe_retrigger(struct irq_data
*d
)
3988 return !its_vpe_set_irqchip_state(d
, IRQCHIP_STATE_PENDING
, true);
3991 static struct irq_chip its_vpe_irq_chip
= {
3992 .name
= "GICv4-vpe",
3993 .irq_mask
= its_vpe_mask_irq
,
3994 .irq_unmask
= its_vpe_unmask_irq
,
3995 .irq_eoi
= irq_chip_eoi_parent
,
3996 .irq_set_affinity
= its_vpe_set_affinity
,
3997 .irq_retrigger
= its_vpe_retrigger
,
3998 .irq_set_irqchip_state
= its_vpe_set_irqchip_state
,
3999 .irq_set_vcpu_affinity
= its_vpe_set_vcpu_affinity
,
4002 static struct its_node
*find_4_1_its(void)
4004 static struct its_node
*its
= NULL
;
4007 list_for_each_entry(its
, &its_nodes
, entry
) {
4019 static void its_vpe_4_1_send_inv(struct irq_data
*d
)
4021 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
4022 struct its_node
*its
;
4025 * GICv4.1 wants doorbells to be invalidated using the
4026 * INVDB command in order to be broadcast to all RDs. Send
4027 * it to the first valid ITS, and let the HW do its magic.
4029 its
= find_4_1_its();
4031 its_send_invdb(its
, vpe
);
4034 static void its_vpe_4_1_mask_irq(struct irq_data
*d
)
4036 lpi_write_config(d
->parent_data
, LPI_PROP_ENABLED
, 0);
4037 its_vpe_4_1_send_inv(d
);
4040 static void its_vpe_4_1_unmask_irq(struct irq_data
*d
)
4042 lpi_write_config(d
->parent_data
, 0, LPI_PROP_ENABLED
);
4043 its_vpe_4_1_send_inv(d
);
4046 static void its_vpe_4_1_schedule(struct its_vpe
*vpe
,
4047 struct its_cmd_info
*info
)
4049 void __iomem
*vlpi_base
= gic_data_rdist_vlpi_base();
4052 /* Schedule the VPE */
4053 val
|= GICR_VPENDBASER_Valid
;
4054 val
|= info
->g0en
? GICR_VPENDBASER_4_1_VGRP0EN
: 0;
4055 val
|= info
->g1en
? GICR_VPENDBASER_4_1_VGRP1EN
: 0;
4056 val
|= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID
, vpe
->vpe_id
);
4058 gicr_write_vpendbaser(val
, vlpi_base
+ GICR_VPENDBASER
);
4061 static void its_vpe_4_1_deschedule(struct its_vpe
*vpe
,
4062 struct its_cmd_info
*info
)
4064 void __iomem
*vlpi_base
= gic_data_rdist_vlpi_base();
4068 unsigned long flags
;
4071 * vPE is going to block: make the vPE non-resident with
4072 * PendingLast clear and DB set. The GIC guarantees that if
4073 * we read-back PendingLast clear, then a doorbell will be
4074 * delivered when an interrupt comes.
4076 * Note the locking to deal with the concurrent update of
4077 * pending_last from the doorbell interrupt handler that can
4080 raw_spin_lock_irqsave(&vpe
->vpe_lock
, flags
);
4081 val
= its_clear_vpend_valid(vlpi_base
,
4082 GICR_VPENDBASER_PendingLast
,
4083 GICR_VPENDBASER_4_1_DB
);
4084 vpe
->pending_last
= !!(val
& GICR_VPENDBASER_PendingLast
);
4085 raw_spin_unlock_irqrestore(&vpe
->vpe_lock
, flags
);
4088 * We're not blocking, so just make the vPE non-resident
4089 * with PendingLast set, indicating that we'll be back.
4091 val
= its_clear_vpend_valid(vlpi_base
,
4093 GICR_VPENDBASER_PendingLast
);
4094 vpe
->pending_last
= true;
4098 static void its_vpe_4_1_invall(struct its_vpe
*vpe
)
4100 void __iomem
*rdbase
;
4101 unsigned long flags
;
4105 val
= GICR_INVALLR_V
;
4106 val
|= FIELD_PREP(GICR_INVALLR_VPEID
, vpe
->vpe_id
);
4108 /* Target the redistributor this vPE is currently known on */
4109 cpu
= vpe_to_cpuid_lock(vpe
, &flags
);
4110 raw_spin_lock(&gic_data_rdist_cpu(cpu
)->rd_lock
);
4111 rdbase
= per_cpu_ptr(gic_rdists
->rdist
, cpu
)->rd_base
;
4112 gic_write_lpir(val
, rdbase
+ GICR_INVALLR
);
4114 wait_for_syncr(rdbase
);
4115 raw_spin_unlock(&gic_data_rdist_cpu(cpu
)->rd_lock
);
4116 vpe_to_cpuid_unlock(vpe
, flags
);
4119 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data
*d
, void *vcpu_info
)
4121 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
4122 struct its_cmd_info
*info
= vcpu_info
;
4124 switch (info
->cmd_type
) {
4126 its_vpe_4_1_schedule(vpe
, info
);
4129 case DESCHEDULE_VPE
:
4130 its_vpe_4_1_deschedule(vpe
, info
);
4134 its_wait_vpt_parse_complete();
4138 its_vpe_4_1_invall(vpe
);
4146 static struct irq_chip its_vpe_4_1_irq_chip
= {
4147 .name
= "GICv4.1-vpe",
4148 .irq_mask
= its_vpe_4_1_mask_irq
,
4149 .irq_unmask
= its_vpe_4_1_unmask_irq
,
4150 .irq_eoi
= irq_chip_eoi_parent
,
4151 .irq_set_affinity
= its_vpe_set_affinity
,
4152 .irq_set_vcpu_affinity
= its_vpe_4_1_set_vcpu_affinity
,
4155 static void its_configure_sgi(struct irq_data
*d
, bool clear
)
4157 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
4158 struct its_cmd_desc desc
;
4160 desc
.its_vsgi_cmd
.vpe
= vpe
;
4161 desc
.its_vsgi_cmd
.sgi
= d
->hwirq
;
4162 desc
.its_vsgi_cmd
.priority
= vpe
->sgi_config
[d
->hwirq
].priority
;
4163 desc
.its_vsgi_cmd
.enable
= vpe
->sgi_config
[d
->hwirq
].enabled
;
4164 desc
.its_vsgi_cmd
.group
= vpe
->sgi_config
[d
->hwirq
].group
;
4165 desc
.its_vsgi_cmd
.clear
= clear
;
4168 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4169 * destination VPE is mapped there. Since we map them eagerly at
4170 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4172 its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd
, &desc
);
4175 static void its_sgi_mask_irq(struct irq_data
*d
)
4177 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
4179 vpe
->sgi_config
[d
->hwirq
].enabled
= false;
4180 its_configure_sgi(d
, false);
4183 static void its_sgi_unmask_irq(struct irq_data
*d
)
4185 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
4187 vpe
->sgi_config
[d
->hwirq
].enabled
= true;
4188 its_configure_sgi(d
, false);
4191 static int its_sgi_set_affinity(struct irq_data
*d
,
4192 const struct cpumask
*mask_val
,
4196 * There is no notion of affinity for virtual SGIs, at least
4197 * not on the host (since they can only be targetting a vPE).
4198 * Tell the kernel we've done whatever it asked for.
4200 irq_data_update_effective_affinity(d
, mask_val
);
4201 return IRQ_SET_MASK_OK
;
4204 static int its_sgi_set_irqchip_state(struct irq_data
*d
,
4205 enum irqchip_irq_state which
,
4208 if (which
!= IRQCHIP_STATE_PENDING
)
4212 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
4213 struct its_node
*its
= find_4_1_its();
4216 val
= FIELD_PREP(GITS_SGIR_VPEID
, vpe
->vpe_id
);
4217 val
|= FIELD_PREP(GITS_SGIR_VINTID
, d
->hwirq
);
4218 writeq_relaxed(val
, its
->sgir_base
+ GITS_SGIR
- SZ_128K
);
4220 its_configure_sgi(d
, true);
4226 static int its_sgi_get_irqchip_state(struct irq_data
*d
,
4227 enum irqchip_irq_state which
, bool *val
)
4229 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
4231 unsigned long flags
;
4232 u32 count
= 1000000; /* 1s! */
4236 if (which
!= IRQCHIP_STATE_PENDING
)
4240 * Locking galore! We can race against two different events:
4242 * - Concurent vPE affinity change: we must make sure it cannot
4243 * happen, or we'll talk to the wrong redistributor. This is
4244 * identical to what happens with vLPIs.
4246 * - Concurrent VSGIPENDR access: As it involves accessing two
4247 * MMIO registers, this must be made atomic one way or another.
4249 cpu
= vpe_to_cpuid_lock(vpe
, &flags
);
4250 raw_spin_lock(&gic_data_rdist_cpu(cpu
)->rd_lock
);
4251 base
= gic_data_rdist_cpu(cpu
)->rd_base
+ SZ_128K
;
4252 writel_relaxed(vpe
->vpe_id
, base
+ GICR_VSGIR
);
4254 status
= readl_relaxed(base
+ GICR_VSGIPENDR
);
4255 if (!(status
& GICR_VSGIPENDR_BUSY
))
4260 pr_err_ratelimited("Unable to get SGI status\n");
4268 raw_spin_unlock(&gic_data_rdist_cpu(cpu
)->rd_lock
);
4269 vpe_to_cpuid_unlock(vpe
, flags
);
4274 *val
= !!(status
& (1 << d
->hwirq
));
4279 static int its_sgi_set_vcpu_affinity(struct irq_data
*d
, void *vcpu_info
)
4281 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
4282 struct its_cmd_info
*info
= vcpu_info
;
4284 switch (info
->cmd_type
) {
4285 case PROP_UPDATE_VSGI
:
4286 vpe
->sgi_config
[d
->hwirq
].priority
= info
->priority
;
4287 vpe
->sgi_config
[d
->hwirq
].group
= info
->group
;
4288 its_configure_sgi(d
, false);
4296 static struct irq_chip its_sgi_irq_chip
= {
4297 .name
= "GICv4.1-sgi",
4298 .irq_mask
= its_sgi_mask_irq
,
4299 .irq_unmask
= its_sgi_unmask_irq
,
4300 .irq_set_affinity
= its_sgi_set_affinity
,
4301 .irq_set_irqchip_state
= its_sgi_set_irqchip_state
,
4302 .irq_get_irqchip_state
= its_sgi_get_irqchip_state
,
4303 .irq_set_vcpu_affinity
= its_sgi_set_vcpu_affinity
,
4306 static int its_sgi_irq_domain_alloc(struct irq_domain
*domain
,
4307 unsigned int virq
, unsigned int nr_irqs
,
4310 struct its_vpe
*vpe
= args
;
4313 /* Yes, we do want 16 SGIs */
4314 WARN_ON(nr_irqs
!= 16);
4316 for (i
= 0; i
< 16; i
++) {
4317 vpe
->sgi_config
[i
].priority
= 0;
4318 vpe
->sgi_config
[i
].enabled
= false;
4319 vpe
->sgi_config
[i
].group
= false;
4321 irq_domain_set_hwirq_and_chip(domain
, virq
+ i
, i
,
4322 &its_sgi_irq_chip
, vpe
);
4323 irq_set_status_flags(virq
+ i
, IRQ_DISABLE_UNLAZY
);
4329 static void its_sgi_irq_domain_free(struct irq_domain
*domain
,
4331 unsigned int nr_irqs
)
4336 static int its_sgi_irq_domain_activate(struct irq_domain
*domain
,
4337 struct irq_data
*d
, bool reserve
)
4339 /* Write out the initial SGI configuration */
4340 its_configure_sgi(d
, false);
4344 static void its_sgi_irq_domain_deactivate(struct irq_domain
*domain
,
4347 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
4350 * The VSGI command is awkward:
4352 * - To change the configuration, CLEAR must be set to false,
4353 * leaving the pending bit unchanged.
4354 * - To clear the pending bit, CLEAR must be set to true, leaving
4355 * the configuration unchanged.
4357 * You just can't do both at once, hence the two commands below.
4359 vpe
->sgi_config
[d
->hwirq
].enabled
= false;
4360 its_configure_sgi(d
, false);
4361 its_configure_sgi(d
, true);
4364 static const struct irq_domain_ops its_sgi_domain_ops
= {
4365 .alloc
= its_sgi_irq_domain_alloc
,
4366 .free
= its_sgi_irq_domain_free
,
4367 .activate
= its_sgi_irq_domain_activate
,
4368 .deactivate
= its_sgi_irq_domain_deactivate
,
4371 static int its_vpe_id_alloc(void)
4373 return ida_simple_get(&its_vpeid_ida
, 0, ITS_MAX_VPEID
, GFP_KERNEL
);
4376 static void its_vpe_id_free(u16 id
)
4378 ida_simple_remove(&its_vpeid_ida
, id
);
4381 static int its_vpe_init(struct its_vpe
*vpe
)
4383 struct page
*vpt_page
;
4386 /* Allocate vpe_id */
4387 vpe_id
= its_vpe_id_alloc();
4392 vpt_page
= its_allocate_pending_table(GFP_KERNEL
);
4394 its_vpe_id_free(vpe_id
);
4398 if (!its_alloc_vpe_table(vpe_id
)) {
4399 its_vpe_id_free(vpe_id
);
4400 its_free_pending_table(vpt_page
);
4404 raw_spin_lock_init(&vpe
->vpe_lock
);
4405 vpe
->vpe_id
= vpe_id
;
4406 vpe
->vpt_page
= vpt_page
;
4407 if (gic_rdists
->has_rvpeid
)
4408 atomic_set(&vpe
->vmapp_count
, 0);
4410 vpe
->vpe_proxy_event
= -1;
4415 static void its_vpe_teardown(struct its_vpe
*vpe
)
4417 its_vpe_db_proxy_unmap(vpe
);
4418 its_vpe_id_free(vpe
->vpe_id
);
4419 its_free_pending_table(vpe
->vpt_page
);
4422 static void its_vpe_irq_domain_free(struct irq_domain
*domain
,
4424 unsigned int nr_irqs
)
4426 struct its_vm
*vm
= domain
->host_data
;
4429 irq_domain_free_irqs_parent(domain
, virq
, nr_irqs
);
4431 for (i
= 0; i
< nr_irqs
; i
++) {
4432 struct irq_data
*data
= irq_domain_get_irq_data(domain
,
4434 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(data
);
4436 BUG_ON(vm
!= vpe
->its_vm
);
4438 clear_bit(data
->hwirq
, vm
->db_bitmap
);
4439 its_vpe_teardown(vpe
);
4440 irq_domain_reset_irq_data(data
);
4443 if (bitmap_empty(vm
->db_bitmap
, vm
->nr_db_lpis
)) {
4444 its_lpi_free(vm
->db_bitmap
, vm
->db_lpi_base
, vm
->nr_db_lpis
);
4445 its_free_prop_table(vm
->vprop_page
);
4449 static int its_vpe_irq_domain_alloc(struct irq_domain
*domain
, unsigned int virq
,
4450 unsigned int nr_irqs
, void *args
)
4452 struct irq_chip
*irqchip
= &its_vpe_irq_chip
;
4453 struct its_vm
*vm
= args
;
4454 unsigned long *bitmap
;
4455 struct page
*vprop_page
;
4456 int base
, nr_ids
, i
, err
= 0;
4460 bitmap
= its_lpi_alloc(roundup_pow_of_two(nr_irqs
), &base
, &nr_ids
);
4464 if (nr_ids
< nr_irqs
) {
4465 its_lpi_free(bitmap
, base
, nr_ids
);
4469 vprop_page
= its_allocate_prop_table(GFP_KERNEL
);
4471 its_lpi_free(bitmap
, base
, nr_ids
);
4475 vm
->db_bitmap
= bitmap
;
4476 vm
->db_lpi_base
= base
;
4477 vm
->nr_db_lpis
= nr_ids
;
4478 vm
->vprop_page
= vprop_page
;
4480 if (gic_rdists
->has_rvpeid
)
4481 irqchip
= &its_vpe_4_1_irq_chip
;
4483 for (i
= 0; i
< nr_irqs
; i
++) {
4484 vm
->vpes
[i
]->vpe_db_lpi
= base
+ i
;
4485 err
= its_vpe_init(vm
->vpes
[i
]);
4488 err
= its_irq_gic_domain_alloc(domain
, virq
+ i
,
4489 vm
->vpes
[i
]->vpe_db_lpi
);
4492 irq_domain_set_hwirq_and_chip(domain
, virq
+ i
, i
,
4493 irqchip
, vm
->vpes
[i
]);
4499 its_vpe_irq_domain_free(domain
, virq
, i
- 1);
4501 its_lpi_free(bitmap
, base
, nr_ids
);
4502 its_free_prop_table(vprop_page
);
4508 static int its_vpe_irq_domain_activate(struct irq_domain
*domain
,
4509 struct irq_data
*d
, bool reserve
)
4511 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
4512 struct its_node
*its
;
4515 * If we use the list map, we issue VMAPP on demand... Unless
4516 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4517 * so that VSGIs can work.
4519 if (!gic_requires_eager_mapping())
4522 /* Map the VPE to the first possible CPU */
4523 vpe
->col_idx
= cpumask_first(cpu_online_mask
);
4525 list_for_each_entry(its
, &its_nodes
, entry
) {
4529 its_send_vmapp(its
, vpe
, true);
4530 its_send_vinvall(its
, vpe
);
4533 irq_data_update_effective_affinity(d
, cpumask_of(vpe
->col_idx
));
4538 static void its_vpe_irq_domain_deactivate(struct irq_domain
*domain
,
4541 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
4542 struct its_node
*its
;
4545 * If we use the list map on GICv4.0, we unmap the VPE once no
4546 * VLPIs are associated with the VM.
4548 if (!gic_requires_eager_mapping())
4551 list_for_each_entry(its
, &its_nodes
, entry
) {
4555 its_send_vmapp(its
, vpe
, false);
4559 static const struct irq_domain_ops its_vpe_domain_ops
= {
4560 .alloc
= its_vpe_irq_domain_alloc
,
4561 .free
= its_vpe_irq_domain_free
,
4562 .activate
= its_vpe_irq_domain_activate
,
4563 .deactivate
= its_vpe_irq_domain_deactivate
,
4566 static int its_force_quiescent(void __iomem
*base
)
4568 u32 count
= 1000000; /* 1s */
4571 val
= readl_relaxed(base
+ GITS_CTLR
);
4573 * GIC architecture specification requires the ITS to be both
4574 * disabled and quiescent for writes to GITS_BASER<n> or
4575 * GITS_CBASER to not have UNPREDICTABLE results.
4577 if ((val
& GITS_CTLR_QUIESCENT
) && !(val
& GITS_CTLR_ENABLE
))
4580 /* Disable the generation of all interrupts to this ITS */
4581 val
&= ~(GITS_CTLR_ENABLE
| GITS_CTLR_ImDe
);
4582 writel_relaxed(val
, base
+ GITS_CTLR
);
4584 /* Poll GITS_CTLR and wait until ITS becomes quiescent */
4586 val
= readl_relaxed(base
+ GITS_CTLR
);
4587 if (val
& GITS_CTLR_QUIESCENT
)
4599 static bool __maybe_unused
its_enable_quirk_cavium_22375(void *data
)
4601 struct its_node
*its
= data
;
4603 /* erratum 22375: only alloc 8MB table size (20 bits) */
4604 its
->typer
&= ~GITS_TYPER_DEVBITS
;
4605 its
->typer
|= FIELD_PREP(GITS_TYPER_DEVBITS
, 20 - 1);
4606 its
->flags
|= ITS_FLAGS_WORKAROUND_CAVIUM_22375
;
4611 static bool __maybe_unused
its_enable_quirk_cavium_23144(void *data
)
4613 struct its_node
*its
= data
;
4615 its
->flags
|= ITS_FLAGS_WORKAROUND_CAVIUM_23144
;
4620 static bool __maybe_unused
its_enable_quirk_qdf2400_e0065(void *data
)
4622 struct its_node
*its
= data
;
4624 /* On QDF2400, the size of the ITE is 16Bytes */
4625 its
->typer
&= ~GITS_TYPER_ITT_ENTRY_SIZE
;
4626 its
->typer
|= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE
, 16 - 1);
4631 static u64
its_irq_get_msi_base_pre_its(struct its_device
*its_dev
)
4633 struct its_node
*its
= its_dev
->its
;
4636 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4637 * which maps 32-bit writes targeted at a separate window of
4638 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4639 * with device ID taken from bits [device_id_bits + 1:2] of
4640 * the window offset.
4642 return its
->pre_its_base
+ (its_dev
->device_id
<< 2);
4645 static bool __maybe_unused
its_enable_quirk_socionext_synquacer(void *data
)
4647 struct its_node
*its
= data
;
4648 u32 pre_its_window
[2];
4651 if (!fwnode_property_read_u32_array(its
->fwnode_handle
,
4652 "socionext,synquacer-pre-its",
4654 ARRAY_SIZE(pre_its_window
))) {
4656 its
->pre_its_base
= pre_its_window
[0];
4657 its
->get_msi_base
= its_irq_get_msi_base_pre_its
;
4659 ids
= ilog2(pre_its_window
[1]) - 2;
4660 if (device_ids(its
) > ids
) {
4661 its
->typer
&= ~GITS_TYPER_DEVBITS
;
4662 its
->typer
|= FIELD_PREP(GITS_TYPER_DEVBITS
, ids
- 1);
4665 /* the pre-ITS breaks isolation, so disable MSI remapping */
4666 its
->msi_domain_flags
&= ~IRQ_DOMAIN_FLAG_MSI_REMAP
;
4672 static bool __maybe_unused
its_enable_quirk_hip07_161600802(void *data
)
4674 struct its_node
*its
= data
;
4677 * Hip07 insists on using the wrong address for the VLPI
4678 * page. Trick it into doing the right thing...
4680 its
->vlpi_redist_offset
= SZ_128K
;
4684 static const struct gic_quirk its_quirks
[] = {
4685 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4687 .desc
= "ITS: Cavium errata 22375, 24313",
4688 .iidr
= 0xa100034c, /* ThunderX pass 1.x */
4690 .init
= its_enable_quirk_cavium_22375
,
4693 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4695 .desc
= "ITS: Cavium erratum 23144",
4696 .iidr
= 0xa100034c, /* ThunderX pass 1.x */
4698 .init
= its_enable_quirk_cavium_23144
,
4701 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4703 .desc
= "ITS: QDF2400 erratum 0065",
4704 .iidr
= 0x00001070, /* QDF2400 ITS rev 1.x */
4706 .init
= its_enable_quirk_qdf2400_e0065
,
4709 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4712 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4713 * implementation, but with a 'pre-ITS' added that requires
4714 * special handling in software.
4716 .desc
= "ITS: Socionext Synquacer pre-ITS",
4719 .init
= its_enable_quirk_socionext_synquacer
,
4722 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4724 .desc
= "ITS: Hip07 erratum 161600802",
4727 .init
= its_enable_quirk_hip07_161600802
,
4734 static void its_enable_quirks(struct its_node
*its
)
4736 u32 iidr
= readl_relaxed(its
->base
+ GITS_IIDR
);
4738 gic_enable_quirks(iidr
, its_quirks
, its
);
4741 static int its_save_disable(void)
4743 struct its_node
*its
;
4746 raw_spin_lock(&its_lock
);
4747 list_for_each_entry(its
, &its_nodes
, entry
) {
4751 its
->ctlr_save
= readl_relaxed(base
+ GITS_CTLR
);
4752 err
= its_force_quiescent(base
);
4754 pr_err("ITS@%pa: failed to quiesce: %d\n",
4755 &its
->phys_base
, err
);
4756 writel_relaxed(its
->ctlr_save
, base
+ GITS_CTLR
);
4760 its
->cbaser_save
= gits_read_cbaser(base
+ GITS_CBASER
);
4765 list_for_each_entry_continue_reverse(its
, &its_nodes
, entry
) {
4769 writel_relaxed(its
->ctlr_save
, base
+ GITS_CTLR
);
4772 raw_spin_unlock(&its_lock
);
4777 static void its_restore_enable(void)
4779 struct its_node
*its
;
4782 raw_spin_lock(&its_lock
);
4783 list_for_each_entry(its
, &its_nodes
, entry
) {
4790 * Make sure that the ITS is disabled. If it fails to quiesce,
4791 * don't restore it since writing to CBASER or BASER<n>
4792 * registers is undefined according to the GIC v3 ITS
4795 * Firmware resuming with the ITS enabled is terminally broken.
4797 WARN_ON(readl_relaxed(base
+ GITS_CTLR
) & GITS_CTLR_ENABLE
);
4798 ret
= its_force_quiescent(base
);
4800 pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4801 &its
->phys_base
, ret
);
4805 gits_write_cbaser(its
->cbaser_save
, base
+ GITS_CBASER
);
4808 * Writing CBASER resets CREADR to 0, so make CWRITER and
4809 * cmd_write line up with it.
4811 its
->cmd_write
= its
->cmd_base
;
4812 gits_write_cwriter(0, base
+ GITS_CWRITER
);
4814 /* Restore GITS_BASER from the value cache. */
4815 for (i
= 0; i
< GITS_BASER_NR_REGS
; i
++) {
4816 struct its_baser
*baser
= &its
->tables
[i
];
4818 if (!(baser
->val
& GITS_BASER_VALID
))
4821 its_write_baser(its
, baser
, baser
->val
);
4823 writel_relaxed(its
->ctlr_save
, base
+ GITS_CTLR
);
4826 * Reinit the collection if it's stored in the ITS. This is
4827 * indicated by the col_id being less than the HCC field.
4828 * CID < HCC as specified in the GIC v3 Documentation.
4830 if (its
->collections
[smp_processor_id()].col_id
<
4831 GITS_TYPER_HCC(gic_read_typer(base
+ GITS_TYPER
)))
4832 its_cpu_init_collection(its
);
4834 raw_spin_unlock(&its_lock
);
4837 static struct syscore_ops its_syscore_ops
= {
4838 .suspend
= its_save_disable
,
4839 .resume
= its_restore_enable
,
4842 static int its_init_domain(struct fwnode_handle
*handle
, struct its_node
*its
)
4844 struct irq_domain
*inner_domain
;
4845 struct msi_domain_info
*info
;
4847 info
= kzalloc(sizeof(*info
), GFP_KERNEL
);
4851 inner_domain
= irq_domain_create_tree(handle
, &its_domain_ops
, its
);
4852 if (!inner_domain
) {
4857 inner_domain
->parent
= its_parent
;
4858 irq_domain_update_bus_token(inner_domain
, DOMAIN_BUS_NEXUS
);
4859 inner_domain
->flags
|= its
->msi_domain_flags
;
4860 info
->ops
= &its_msi_domain_ops
;
4862 inner_domain
->host_data
= info
;
4867 static int its_init_vpe_domain(void)
4869 struct its_node
*its
;
4873 if (gic_rdists
->has_direct_lpi
) {
4874 pr_info("ITS: Using DirectLPI for VPE invalidation\n");
4878 /* Any ITS will do, even if not v4 */
4879 its
= list_first_entry(&its_nodes
, struct its_node
, entry
);
4881 entries
= roundup_pow_of_two(nr_cpu_ids
);
4882 vpe_proxy
.vpes
= kcalloc(entries
, sizeof(*vpe_proxy
.vpes
),
4884 if (!vpe_proxy
.vpes
) {
4885 pr_err("ITS: Can't allocate GICv4 proxy device array\n");
4889 /* Use the last possible DevID */
4890 devid
= GENMASK(device_ids(its
) - 1, 0);
4891 vpe_proxy
.dev
= its_create_device(its
, devid
, entries
, false);
4892 if (!vpe_proxy
.dev
) {
4893 kfree(vpe_proxy
.vpes
);
4894 pr_err("ITS: Can't allocate GICv4 proxy device\n");
4898 BUG_ON(entries
> vpe_proxy
.dev
->nr_ites
);
4900 raw_spin_lock_init(&vpe_proxy
.lock
);
4901 vpe_proxy
.next_victim
= 0;
4902 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
4903 devid
, vpe_proxy
.dev
->nr_ites
);
4908 static int __init
its_compute_its_list_map(struct resource
*res
,
4909 void __iomem
*its_base
)
4915 * This is assumed to be done early enough that we're
4916 * guaranteed to be single-threaded, hence no
4917 * locking. Should this change, we should address
4920 its_number
= find_first_zero_bit(&its_list_map
, GICv4_ITS_LIST_MAX
);
4921 if (its_number
>= GICv4_ITS_LIST_MAX
) {
4922 pr_err("ITS@%pa: No ITSList entry available!\n",
4927 ctlr
= readl_relaxed(its_base
+ GITS_CTLR
);
4928 ctlr
&= ~GITS_CTLR_ITS_NUMBER
;
4929 ctlr
|= its_number
<< GITS_CTLR_ITS_NUMBER_SHIFT
;
4930 writel_relaxed(ctlr
, its_base
+ GITS_CTLR
);
4931 ctlr
= readl_relaxed(its_base
+ GITS_CTLR
);
4932 if ((ctlr
& GITS_CTLR_ITS_NUMBER
) != (its_number
<< GITS_CTLR_ITS_NUMBER_SHIFT
)) {
4933 its_number
= ctlr
& GITS_CTLR_ITS_NUMBER
;
4934 its_number
>>= GITS_CTLR_ITS_NUMBER_SHIFT
;
4937 if (test_and_set_bit(its_number
, &its_list_map
)) {
4938 pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
4939 &res
->start
, its_number
);
4946 static int __init
its_probe_one(struct resource
*res
,
4947 struct fwnode_handle
*handle
, int numa_node
)
4949 struct its_node
*its
;
4950 void __iomem
*its_base
;
4952 u64 baser
, tmp
, typer
;
4956 its_base
= ioremap(res
->start
, SZ_64K
);
4958 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res
->start
);
4962 val
= readl_relaxed(its_base
+ GITS_PIDR2
) & GIC_PIDR2_ARCH_MASK
;
4963 if (val
!= 0x30 && val
!= 0x40) {
4964 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res
->start
);
4969 err
= its_force_quiescent(its_base
);
4971 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res
->start
);
4975 pr_info("ITS %pR\n", res
);
4977 its
= kzalloc(sizeof(*its
), GFP_KERNEL
);
4983 raw_spin_lock_init(&its
->lock
);
4984 mutex_init(&its
->dev_alloc_lock
);
4985 INIT_LIST_HEAD(&its
->entry
);
4986 INIT_LIST_HEAD(&its
->its_device_list
);
4987 typer
= gic_read_typer(its_base
+ GITS_TYPER
);
4989 its
->base
= its_base
;
4990 its
->phys_base
= res
->start
;
4992 if (!(typer
& GITS_TYPER_VMOVP
)) {
4993 err
= its_compute_its_list_map(res
, its_base
);
4999 pr_info("ITS@%pa: Using ITS number %d\n",
5002 pr_info("ITS@%pa: Single VMOVP capable\n", &res
->start
);
5006 u32 svpet
= FIELD_GET(GITS_TYPER_SVPET
, typer
);
5008 its
->sgir_base
= ioremap(res
->start
+ SZ_128K
, SZ_64K
);
5009 if (!its
->sgir_base
) {
5014 its
->mpidr
= readl_relaxed(its_base
+ GITS_MPIDR
);
5016 pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5017 &res
->start
, its
->mpidr
, svpet
);
5021 its
->numa_node
= numa_node
;
5023 page
= alloc_pages_node(its
->numa_node
, GFP_KERNEL
| __GFP_ZERO
,
5024 get_order(ITS_CMD_QUEUE_SZ
));
5027 goto out_unmap_sgir
;
5029 its
->cmd_base
= (void *)page_address(page
);
5030 its
->cmd_write
= its
->cmd_base
;
5031 its
->fwnode_handle
= handle
;
5032 its
->get_msi_base
= its_irq_get_msi_base
;
5033 its
->msi_domain_flags
= IRQ_DOMAIN_FLAG_MSI_REMAP
;
5035 its_enable_quirks(its
);
5037 err
= its_alloc_tables(its
);
5041 err
= its_alloc_collections(its
);
5043 goto out_free_tables
;
5045 baser
= (virt_to_phys(its
->cmd_base
) |
5046 GITS_CBASER_RaWaWb
|
5047 GITS_CBASER_InnerShareable
|
5048 (ITS_CMD_QUEUE_SZ
/ SZ_4K
- 1) |
5051 gits_write_cbaser(baser
, its
->base
+ GITS_CBASER
);
5052 tmp
= gits_read_cbaser(its
->base
+ GITS_CBASER
);
5054 if ((tmp
^ baser
) & GITS_CBASER_SHAREABILITY_MASK
) {
5055 if (!(tmp
& GITS_CBASER_SHAREABILITY_MASK
)) {
5057 * The HW reports non-shareable, we must
5058 * remove the cacheability attributes as
5061 baser
&= ~(GITS_CBASER_SHAREABILITY_MASK
|
5062 GITS_CBASER_CACHEABILITY_MASK
);
5063 baser
|= GITS_CBASER_nC
;
5064 gits_write_cbaser(baser
, its
->base
+ GITS_CBASER
);
5066 pr_info("ITS: using cache flushing for cmd queue\n");
5067 its
->flags
|= ITS_FLAGS_CMDQ_NEEDS_FLUSHING
;
5070 gits_write_cwriter(0, its
->base
+ GITS_CWRITER
);
5071 ctlr
= readl_relaxed(its
->base
+ GITS_CTLR
);
5072 ctlr
|= GITS_CTLR_ENABLE
;
5074 ctlr
|= GITS_CTLR_ImDe
;
5075 writel_relaxed(ctlr
, its
->base
+ GITS_CTLR
);
5077 err
= its_init_domain(handle
, its
);
5079 goto out_free_tables
;
5081 raw_spin_lock(&its_lock
);
5082 list_add(&its
->entry
, &its_nodes
);
5083 raw_spin_unlock(&its_lock
);
5088 its_free_tables(its
);
5090 free_pages((unsigned long)its
->cmd_base
, get_order(ITS_CMD_QUEUE_SZ
));
5093 iounmap(its
->sgir_base
);
5098 pr_err("ITS@%pa: failed probing (%d)\n", &res
->start
, err
);
5102 static bool gic_rdists_supports_plpis(void)
5104 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER
) & GICR_TYPER_PLPIS
);
5107 static int redist_disable_lpis(void)
5109 void __iomem
*rbase
= gic_data_rdist_rd_base();
5110 u64 timeout
= USEC_PER_SEC
;
5113 if (!gic_rdists_supports_plpis()) {
5114 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5118 val
= readl_relaxed(rbase
+ GICR_CTLR
);
5119 if (!(val
& GICR_CTLR_ENABLE_LPIS
))
5123 * If coming via a CPU hotplug event, we don't need to disable
5124 * LPIs before trying to re-enable them. They are already
5125 * configured and all is well in the world.
5127 * If running with preallocated tables, there is nothing to do.
5129 if (gic_data_rdist()->lpi_enabled
||
5130 (gic_rdists
->flags
& RDIST_FLAGS_RD_TABLES_PREALLOCATED
))
5134 * From that point on, we only try to do some damage control.
5136 pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5137 smp_processor_id());
5138 add_taint(TAINT_CRAP
, LOCKDEP_STILL_OK
);
5141 val
&= ~GICR_CTLR_ENABLE_LPIS
;
5142 writel_relaxed(val
, rbase
+ GICR_CTLR
);
5144 /* Make sure any change to GICR_CTLR is observable by the GIC */
5148 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5149 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5150 * Error out if we time out waiting for RWP to clear.
5152 while (readl_relaxed(rbase
+ GICR_CTLR
) & GICR_CTLR_RWP
) {
5154 pr_err("CPU%d: Timeout while disabling LPIs\n",
5155 smp_processor_id());
5163 * After it has been written to 1, it is IMPLEMENTATION
5164 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5165 * cleared to 0. Error out if clearing the bit failed.
5167 if (readl_relaxed(rbase
+ GICR_CTLR
) & GICR_CTLR_ENABLE_LPIS
) {
5168 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5175 int its_cpu_init(void)
5177 if (!list_empty(&its_nodes
)) {
5180 ret
= redist_disable_lpis();
5184 its_cpu_init_lpis();
5185 its_cpu_init_collections();
5191 static const struct of_device_id its_device_id
[] = {
5192 { .compatible
= "arm,gic-v3-its", },
5196 static int __init
its_of_probe(struct device_node
*node
)
5198 struct device_node
*np
;
5199 struct resource res
;
5201 for (np
= of_find_matching_node(node
, its_device_id
); np
;
5202 np
= of_find_matching_node(np
, its_device_id
)) {
5203 if (!of_device_is_available(np
))
5205 if (!of_property_read_bool(np
, "msi-controller")) {
5206 pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5211 if (of_address_to_resource(np
, 0, &res
)) {
5212 pr_warn("%pOF: no regs?\n", np
);
5216 its_probe_one(&res
, &np
->fwnode
, of_node_to_nid(np
));
5223 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5225 #ifdef CONFIG_ACPI_NUMA
5226 struct its_srat_map
{
5233 static struct its_srat_map
*its_srat_maps __initdata
;
5234 static int its_in_srat __initdata
;
5236 static int __init
acpi_get_its_numa_node(u32 its_id
)
5240 for (i
= 0; i
< its_in_srat
; i
++) {
5241 if (its_id
== its_srat_maps
[i
].its_id
)
5242 return its_srat_maps
[i
].numa_node
;
5244 return NUMA_NO_NODE
;
5247 static int __init
gic_acpi_match_srat_its(union acpi_subtable_headers
*header
,
5248 const unsigned long end
)
5253 static int __init
gic_acpi_parse_srat_its(union acpi_subtable_headers
*header
,
5254 const unsigned long end
)
5257 struct acpi_srat_gic_its_affinity
*its_affinity
;
5259 its_affinity
= (struct acpi_srat_gic_its_affinity
*)header
;
5263 if (its_affinity
->header
.length
< sizeof(*its_affinity
)) {
5264 pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5265 its_affinity
->header
.length
);
5270 * Note that in theory a new proximity node could be created by this
5271 * entry as it is an SRAT resource allocation structure.
5272 * We do not currently support doing so.
5274 node
= pxm_to_node(its_affinity
->proximity_domain
);
5276 if (node
== NUMA_NO_NODE
|| node
>= MAX_NUMNODES
) {
5277 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node
);
5281 its_srat_maps
[its_in_srat
].numa_node
= node
;
5282 its_srat_maps
[its_in_srat
].its_id
= its_affinity
->its_id
;
5284 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5285 its_affinity
->proximity_domain
, its_affinity
->its_id
, node
);
5290 static void __init
acpi_table_parse_srat_its(void)
5294 count
= acpi_table_parse_entries(ACPI_SIG_SRAT
,
5295 sizeof(struct acpi_table_srat
),
5296 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY
,
5297 gic_acpi_match_srat_its
, 0);
5301 its_srat_maps
= kmalloc_array(count
, sizeof(struct its_srat_map
),
5303 if (!its_srat_maps
) {
5304 pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
5308 acpi_table_parse_entries(ACPI_SIG_SRAT
,
5309 sizeof(struct acpi_table_srat
),
5310 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY
,
5311 gic_acpi_parse_srat_its
, 0);
5314 /* free the its_srat_maps after ITS probing */
5315 static void __init
acpi_its_srat_maps_free(void)
5317 kfree(its_srat_maps
);
5320 static void __init
acpi_table_parse_srat_its(void) { }
5321 static int __init
acpi_get_its_numa_node(u32 its_id
) { return NUMA_NO_NODE
; }
5322 static void __init
acpi_its_srat_maps_free(void) { }
5325 static int __init
gic_acpi_parse_madt_its(union acpi_subtable_headers
*header
,
5326 const unsigned long end
)
5328 struct acpi_madt_generic_translator
*its_entry
;
5329 struct fwnode_handle
*dom_handle
;
5330 struct resource res
;
5333 its_entry
= (struct acpi_madt_generic_translator
*)header
;
5334 memset(&res
, 0, sizeof(res
));
5335 res
.start
= its_entry
->base_address
;
5336 res
.end
= its_entry
->base_address
+ ACPI_GICV3_ITS_MEM_SIZE
- 1;
5337 res
.flags
= IORESOURCE_MEM
;
5339 dom_handle
= irq_domain_alloc_fwnode(&res
.start
);
5341 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5346 err
= iort_register_domain_token(its_entry
->translation_id
, res
.start
,
5349 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5350 &res
.start
, its_entry
->translation_id
);
5354 err
= its_probe_one(&res
, dom_handle
,
5355 acpi_get_its_numa_node(its_entry
->translation_id
));
5359 iort_deregister_domain_token(its_entry
->translation_id
);
5361 irq_domain_free_fwnode(dom_handle
);
5365 static void __init
its_acpi_probe(void)
5367 acpi_table_parse_srat_its();
5368 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR
,
5369 gic_acpi_parse_madt_its
, 0);
5370 acpi_its_srat_maps_free();
5373 static void __init
its_acpi_probe(void) { }
5376 int __init
its_init(struct fwnode_handle
*handle
, struct rdists
*rdists
,
5377 struct irq_domain
*parent_domain
)
5379 struct device_node
*of_node
;
5380 struct its_node
*its
;
5381 bool has_v4
= false;
5382 bool has_v4_1
= false;
5385 gic_rdists
= rdists
;
5387 its_parent
= parent_domain
;
5388 of_node
= to_of_node(handle
);
5390 its_of_probe(of_node
);
5394 if (list_empty(&its_nodes
)) {
5395 pr_warn("ITS: No ITS available, not enabling LPIs\n");
5399 err
= allocate_lpi_tables();
5403 list_for_each_entry(its
, &its_nodes
, entry
) {
5404 has_v4
|= is_v4(its
);
5405 has_v4_1
|= is_v4_1(its
);
5408 /* Don't bother with inconsistent systems */
5409 if (WARN_ON(!has_v4_1
&& rdists
->has_rvpeid
))
5410 rdists
->has_rvpeid
= false;
5412 if (has_v4
& rdists
->has_vlpis
) {
5413 const struct irq_domain_ops
*sgi_ops
;
5416 sgi_ops
= &its_sgi_domain_ops
;
5420 if (its_init_vpe_domain() ||
5421 its_init_v4(parent_domain
, &its_vpe_domain_ops
, sgi_ops
)) {
5422 rdists
->has_vlpis
= false;
5423 pr_err("ITS: Disabling GICv4 support\n");
5427 register_syscore_ops(&its_syscore_ops
);