1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Access SD/MMC cards through SPI master controllers
5 * (C) Copyright 2005, Intec Automation,
6 * Mike Lavender (mike@steroidmicros)
7 * (C) Copyright 2006-2007, David Brownell
8 * (C) Copyright 2007, Axis Communications,
9 * Hans-Peter Nilsson (hp@axis.com)
10 * (C) Copyright 2007, ATRON electronic GmbH,
11 * Jan Nikitenko <jan.nikitenko@gmail.com>
13 #include <linux/sched.h>
14 #include <linux/delay.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/bio.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/crc7.h>
20 #include <linux/crc-itu-t.h>
21 #include <linux/scatterlist.h>
23 #include <linux/mmc/host.h>
24 #include <linux/mmc/mmc.h> /* for R1_SPI_* bit values */
25 #include <linux/mmc/slot-gpio.h>
27 #include <linux/spi/spi.h>
28 #include <linux/spi/mmc_spi.h>
30 #include <asm/unaligned.h>
35 * - For now, we won't try to interoperate with a real mmc/sd/sdio
36 * controller, although some of them do have hardware support for
37 * SPI protocol. The main reason for such configs would be mmc-ish
38 * cards like DataFlash, which don't support that "native" protocol.
40 * We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
41 * switch between driver stacks, and in any case if "native" mode
42 * is available, it will be faster and hence preferable.
44 * - MMC depends on a different chipselect management policy than the
45 * SPI interface currently supports for shared bus segments: it needs
46 * to issue multiple spi_message requests with the chipselect active,
47 * using the results of one message to decide the next one to issue.
49 * Pending updates to the programming interface, this driver expects
50 * that it not share the bus with other drivers (precluding conflicts).
52 * - We tell the controller to keep the chipselect active from the
53 * beginning of an mmc_host_ops.request until the end. So beware
54 * of SPI controller drivers that mis-handle the cs_change flag!
56 * However, many cards seem OK with chipselect flapping up/down
57 * during that time ... at least on unshared bus segments.
62 * Local protocol constants, internal to data block protocols.
65 /* Response tokens used to ack each block written: */
66 #define SPI_MMC_RESPONSE_CODE(x) ((x) & 0x1f)
67 #define SPI_RESPONSE_ACCEPTED ((2 << 1)|1)
68 #define SPI_RESPONSE_CRC_ERR ((5 << 1)|1)
69 #define SPI_RESPONSE_WRITE_ERR ((6 << 1)|1)
71 /* Read and write blocks start with these tokens and end with crc;
72 * on error, read tokens act like a subset of R2_SPI_* values.
74 #define SPI_TOKEN_SINGLE 0xfe /* single block r/w, multiblock read */
75 #define SPI_TOKEN_MULTI_WRITE 0xfc /* multiblock write */
76 #define SPI_TOKEN_STOP_TRAN 0xfd /* terminate multiblock write */
78 #define MMC_SPI_BLOCKSIZE 512
80 #define MMC_SPI_R1B_TIMEOUT_MS 3000
81 #define MMC_SPI_INIT_TIMEOUT_MS 3000
83 /* One of the critical speed parameters is the amount of data which may
84 * be transferred in one command. If this value is too low, the SD card
85 * controller has to do multiple partial block writes (argggh!). With
86 * today (2008) SD cards there is little speed gain if we transfer more
87 * than 64 KBytes at a time. So use this value until there is any indication
88 * that we should do more here.
90 #define MMC_SPI_BLOCKSATONCE 128
92 /****************************************************************************/
95 * Local Data Structures
98 /* "scratch" is per-{command,block} data exchanged with the card */
105 struct mmc_spi_host
{
106 struct mmc_host
*mmc
;
107 struct spi_device
*spi
;
109 unsigned char power_mode
;
112 struct mmc_spi_platform_data
*pdata
;
114 /* for bulk data transfers */
115 struct spi_transfer token
, t
, crc
, early_status
;
116 struct spi_message m
;
118 /* for status readback */
119 struct spi_transfer status
;
120 struct spi_message readback
;
122 /* underlying DMA-aware controller, or null */
123 struct device
*dma_dev
;
125 /* buffer used for commands and for message "overhead" */
126 struct scratch
*data
;
129 /* Specs say to write ones most of the time, even when the card
130 * has no need to read its input data; and many cards won't care.
131 * This is our source of those ones.
138 /****************************************************************************/
141 * MMC-over-SPI protocol glue, used by the MMC stack interface
144 static inline int mmc_cs_off(struct mmc_spi_host
*host
)
146 /* chipselect will always be inactive after setup() */
147 return spi_setup(host
->spi
);
151 mmc_spi_readbytes(struct mmc_spi_host
*host
, unsigned len
)
155 if (len
> sizeof(*host
->data
)) {
160 host
->status
.len
= len
;
163 dma_sync_single_for_device(host
->dma_dev
,
164 host
->data_dma
, sizeof(*host
->data
),
167 status
= spi_sync_locked(host
->spi
, &host
->readback
);
170 dma_sync_single_for_cpu(host
->dma_dev
,
171 host
->data_dma
, sizeof(*host
->data
),
177 static int mmc_spi_skip(struct mmc_spi_host
*host
, unsigned long timeout
,
180 u8
*cp
= host
->data
->status
;
181 unsigned long start
= jiffies
;
187 status
= mmc_spi_readbytes(host
, n
);
191 for (i
= 0; i
< n
; i
++) {
196 if (time_is_before_jiffies(start
+ timeout
))
199 /* If we need long timeouts, we may release the CPU.
200 * We use jiffies here because we want to have a relation
201 * between elapsed time and the blocking of the scheduler.
203 if (time_is_before_jiffies(start
+ 1))
210 mmc_spi_wait_unbusy(struct mmc_spi_host
*host
, unsigned long timeout
)
212 return mmc_spi_skip(host
, timeout
, sizeof(host
->data
->status
), 0);
215 static int mmc_spi_readtoken(struct mmc_spi_host
*host
, unsigned long timeout
)
217 return mmc_spi_skip(host
, timeout
, 1, 0xff);
222 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
223 * hosts return! The low byte holds R1_SPI bits. The next byte may hold
224 * R2_SPI bits ... for SEND_STATUS, or after data read errors.
226 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
227 * newer cards R7 (IF_COND).
230 static char *maptype(struct mmc_command
*cmd
)
232 switch (mmc_spi_resp_type(cmd
)) {
233 case MMC_RSP_SPI_R1
: return "R1";
234 case MMC_RSP_SPI_R1B
: return "R1B";
235 case MMC_RSP_SPI_R2
: return "R2/R5";
236 case MMC_RSP_SPI_R3
: return "R3/R4/R7";
241 /* return zero, else negative errno after setting cmd->error */
242 static int mmc_spi_response_get(struct mmc_spi_host
*host
,
243 struct mmc_command
*cmd
, int cs_on
)
245 unsigned long timeout_ms
;
246 u8
*cp
= host
->data
->status
;
247 u8
*end
= cp
+ host
->t
.len
;
251 unsigned short rotator
;
255 snprintf(tag
, sizeof(tag
), " ... CMD%d response SPI_%s",
256 cmd
->opcode
, maptype(cmd
));
258 /* Except for data block reads, the whole response will already
259 * be stored in the scratch buffer. It's somewhere after the
260 * command and the first byte we read after it. We ignore that
261 * first byte. After STOP_TRANSMISSION command it may include
262 * two data bits, but otherwise it's all ones.
265 while (cp
< end
&& *cp
== 0xff)
268 /* Data block reads (R1 response types) may need more data... */
270 cp
= host
->data
->status
;
273 /* Card sends N(CR) (== 1..8) bytes of all-ones then one
274 * status byte ... and we already scanned 2 bytes.
276 * REVISIT block read paths use nasty byte-at-a-time I/O
277 * so it can always DMA directly into the target buffer.
278 * It'd probably be better to memcpy() the first chunk and
279 * avoid extra i/o calls...
281 * Note we check for more than 8 bytes, because in practice,
282 * some SD cards are slow...
284 for (i
= 2; i
< 16; i
++) {
285 value
= mmc_spi_readbytes(host
, 1);
298 /* Houston, we have an ugly card with a bit-shifted response */
299 rotator
= *cp
++ << 8;
300 /* read the next byte */
302 value
= mmc_spi_readbytes(host
, 1);
305 cp
= host
->data
->status
;
309 while (rotator
& 0x8000) {
313 cmd
->resp
[0] = rotator
>> 8;
316 cmd
->resp
[0] = *cp
++;
320 /* Status byte: the entire seven-bit R1 response. */
321 if (cmd
->resp
[0] != 0) {
322 if ((R1_SPI_PARAMETER
| R1_SPI_ADDRESS
)
324 value
= -EFAULT
; /* Bad address */
325 else if (R1_SPI_ILLEGAL_COMMAND
& cmd
->resp
[0])
326 value
= -ENOSYS
; /* Function not implemented */
327 else if (R1_SPI_COM_CRC
& cmd
->resp
[0])
328 value
= -EILSEQ
; /* Illegal byte sequence */
329 else if ((R1_SPI_ERASE_SEQ
| R1_SPI_ERASE_RESET
)
331 value
= -EIO
; /* I/O error */
332 /* else R1_SPI_IDLE, "it's resetting" */
335 switch (mmc_spi_resp_type(cmd
)) {
337 /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
338 * and less-common stuff like various erase operations.
340 case MMC_RSP_SPI_R1B
:
341 /* maybe we read all the busy tokens already */
342 while (cp
< end
&& *cp
== 0)
345 timeout_ms
= cmd
->busy_timeout
? cmd
->busy_timeout
:
346 MMC_SPI_R1B_TIMEOUT_MS
;
347 mmc_spi_wait_unbusy(host
, msecs_to_jiffies(timeout_ms
));
351 /* SPI R2 == R1 + second status byte; SEND_STATUS
352 * SPI R5 == R1 + data byte; IO_RW_DIRECT
355 /* read the next byte */
357 value
= mmc_spi_readbytes(host
, 1);
360 cp
= host
->data
->status
;
364 rotator
= leftover
<< 8;
365 rotator
|= *cp
<< bitshift
;
366 cmd
->resp
[0] |= (rotator
& 0xFF00);
368 cmd
->resp
[0] |= *cp
<< 8;
372 /* SPI R3, R4, or R7 == R1 + 4 bytes */
374 rotator
= leftover
<< 8;
376 for (i
= 0; i
< 4; i
++) {
378 /* read the next byte */
380 value
= mmc_spi_readbytes(host
, 1);
383 cp
= host
->data
->status
;
387 rotator
|= *cp
++ << bitshift
;
388 cmd
->resp
[1] |= (rotator
>> 8);
391 cmd
->resp
[1] |= *cp
++;
396 /* SPI R1 == just one status byte */
401 dev_dbg(&host
->spi
->dev
, "bad response type %04x\n",
402 mmc_spi_resp_type(cmd
));
409 dev_dbg(&host
->spi
->dev
, "%s: resp %04x %08x\n",
410 tag
, cmd
->resp
[0], cmd
->resp
[1]);
412 /* disable chipselect on errors and some success cases */
413 if (value
>= 0 && cs_on
)
422 /* Issue command and read its response.
423 * Returns zero on success, negative for error.
425 * On error, caller must cope with mmc core retry mechanism. That
426 * means immediate low-level resubmit, which affects the bus lock...
429 mmc_spi_command_send(struct mmc_spi_host
*host
,
430 struct mmc_request
*mrq
,
431 struct mmc_command
*cmd
, int cs_on
)
433 struct scratch
*data
= host
->data
;
434 u8
*cp
= data
->status
;
436 struct spi_transfer
*t
;
438 /* We can handle most commands (except block reads) in one full
439 * duplex I/O operation before either starting the next transfer
440 * (data block or command) or else deselecting the card.
442 * First, write 7 bytes:
443 * - an all-ones byte to ensure the card is ready
444 * - opcode byte (plus start and transmission bits)
445 * - four bytes of big-endian argument
446 * - crc7 (plus end bit) ... always computed, it's cheap
448 * We init the whole buffer to all-ones, which is what we need
449 * to write while we're reading (later) response data.
451 memset(cp
, 0xff, sizeof(data
->status
));
453 cp
[1] = 0x40 | cmd
->opcode
;
454 put_unaligned_be32(cmd
->arg
, cp
+ 2);
455 cp
[6] = crc7_be(0, cp
+ 1, 5) | 0x01;
458 /* Then, read up to 13 bytes (while writing all-ones):
459 * - N(CR) (== 1..8) bytes of all-ones
460 * - status byte (for all response types)
461 * - the rest of the response, either:
462 * + nothing, for R1 or R1B responses
463 * + second status byte, for R2 responses
464 * + four data bytes, for R3 and R7 responses
466 * Finally, read some more bytes ... in the nice cases we know in
467 * advance how many, and reading 1 more is always OK:
468 * - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
469 * - N(RC) (== 1..N) bytes of all-ones, before next command
470 * - N(WR) (== 1..N) bytes of all-ones, before data write
472 * So in those cases one full duplex I/O of at most 21 bytes will
473 * handle the whole command, leaving the card ready to receive a
474 * data block or new command. We do that whenever we can, shaving
475 * CPU and IRQ costs (especially when using DMA or FIFOs).
477 * There are two other cases, where it's not generally practical
478 * to rely on a single I/O:
480 * - R1B responses need at least N(EC) bytes of all-zeroes.
482 * In this case we can *try* to fit it into one I/O, then
483 * maybe read more data later.
485 * - Data block reads are more troublesome, since a variable
486 * number of padding bytes precede the token and data.
487 * + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
488 * + N(AC) (== 1..many) bytes of all-ones
490 * In this case we currently only have minimal speedups here:
491 * when N(CR) == 1 we can avoid I/O in response_get().
493 if (cs_on
&& (mrq
->data
->flags
& MMC_DATA_READ
)) {
494 cp
+= 2; /* min(N(CR)) + status */
497 cp
+= 10; /* max(N(CR)) + status + min(N(RC),N(WR)) */
498 if (cmd
->flags
& MMC_RSP_SPI_S2
) /* R2/R5 */
500 else if (cmd
->flags
& MMC_RSP_SPI_B4
) /* R3/R4/R7 */
502 else if (cmd
->flags
& MMC_RSP_BUSY
) /* R1B */
503 cp
= data
->status
+ sizeof(data
->status
);
504 /* else: R1 (most commands) */
507 dev_dbg(&host
->spi
->dev
, " mmc_spi: CMD%d, resp %s\n",
508 cmd
->opcode
, maptype(cmd
));
510 /* send command, leaving chipselect active */
511 spi_message_init(&host
->m
);
514 memset(t
, 0, sizeof(*t
));
515 t
->tx_buf
= t
->rx_buf
= data
->status
;
516 t
->tx_dma
= t
->rx_dma
= host
->data_dma
;
517 t
->len
= cp
- data
->status
;
519 spi_message_add_tail(t
, &host
->m
);
522 host
->m
.is_dma_mapped
= 1;
523 dma_sync_single_for_device(host
->dma_dev
,
524 host
->data_dma
, sizeof(*host
->data
),
527 status
= spi_sync_locked(host
->spi
, &host
->m
);
530 dma_sync_single_for_cpu(host
->dma_dev
,
531 host
->data_dma
, sizeof(*host
->data
),
534 dev_dbg(&host
->spi
->dev
, " ... write returned %d\n", status
);
539 /* after no-data commands and STOP_TRANSMISSION, chipselect off */
540 return mmc_spi_response_get(host
, cmd
, cs_on
);
543 /* Build data message with up to four separate transfers. For TX, we
544 * start by writing the data token. And in most cases, we finish with
547 * We always provide TX data for data and CRC. The MMC/SD protocol
548 * requires us to write ones; but Linux defaults to writing zeroes;
549 * so we explicitly initialize it to all ones on RX paths.
551 * We also handle DMA mapping, so the underlying SPI controller does
552 * not need to (re)do it for each message.
555 mmc_spi_setup_data_message(
556 struct mmc_spi_host
*host
,
558 enum dma_data_direction direction
)
560 struct spi_transfer
*t
;
561 struct scratch
*scratch
= host
->data
;
562 dma_addr_t dma
= host
->data_dma
;
564 spi_message_init(&host
->m
);
566 host
->m
.is_dma_mapped
= 1;
568 /* for reads, readblock() skips 0xff bytes before finding
569 * the token; for writes, this transfer issues that token.
571 if (direction
== DMA_TO_DEVICE
) {
573 memset(t
, 0, sizeof(*t
));
576 scratch
->data_token
= SPI_TOKEN_MULTI_WRITE
;
578 scratch
->data_token
= SPI_TOKEN_SINGLE
;
579 t
->tx_buf
= &scratch
->data_token
;
581 t
->tx_dma
= dma
+ offsetof(struct scratch
, data_token
);
582 spi_message_add_tail(t
, &host
->m
);
585 /* Body of transfer is buffer, then CRC ...
586 * either TX-only, or RX with TX-ones.
589 memset(t
, 0, sizeof(*t
));
590 t
->tx_buf
= host
->ones
;
591 t
->tx_dma
= host
->ones_dma
;
592 /* length and actual buffer info are written later */
593 spi_message_add_tail(t
, &host
->m
);
596 memset(t
, 0, sizeof(*t
));
598 if (direction
== DMA_TO_DEVICE
) {
599 /* the actual CRC may get written later */
600 t
->tx_buf
= &scratch
->crc_val
;
602 t
->tx_dma
= dma
+ offsetof(struct scratch
, crc_val
);
604 t
->tx_buf
= host
->ones
;
605 t
->tx_dma
= host
->ones_dma
;
606 t
->rx_buf
= &scratch
->crc_val
;
608 t
->rx_dma
= dma
+ offsetof(struct scratch
, crc_val
);
610 spi_message_add_tail(t
, &host
->m
);
613 * A single block read is followed by N(EC) [0+] all-ones bytes
614 * before deselect ... don't bother.
616 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
617 * the next block is read, or a STOP_TRANSMISSION is issued. We'll
618 * collect that single byte, so readblock() doesn't need to.
620 * For a write, the one-byte data response follows immediately, then
621 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
622 * Then single block reads may deselect, and multiblock ones issue
623 * the next token (next data block, or STOP_TRAN). We can try to
624 * minimize I/O ops by using a single read to collect end-of-busy.
626 if (multiple
|| direction
== DMA_TO_DEVICE
) {
627 t
= &host
->early_status
;
628 memset(t
, 0, sizeof(*t
));
629 t
->len
= (direction
== DMA_TO_DEVICE
) ? sizeof(scratch
->status
) : 1;
630 t
->tx_buf
= host
->ones
;
631 t
->tx_dma
= host
->ones_dma
;
632 t
->rx_buf
= scratch
->status
;
634 t
->rx_dma
= dma
+ offsetof(struct scratch
, status
);
636 spi_message_add_tail(t
, &host
->m
);
642 * - caller handled preceding N(WR) [1+] all-ones bytes
647 * - an all-ones byte ... card writes a data-response byte
648 * - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
650 * Return negative errno, else success.
653 mmc_spi_writeblock(struct mmc_spi_host
*host
, struct spi_transfer
*t
,
654 unsigned long timeout
)
656 struct spi_device
*spi
= host
->spi
;
658 struct scratch
*scratch
= host
->data
;
661 if (host
->mmc
->use_spi_crc
)
662 scratch
->crc_val
= cpu_to_be16(crc_itu_t(0, t
->tx_buf
, t
->len
));
664 dma_sync_single_for_device(host
->dma_dev
,
665 host
->data_dma
, sizeof(*scratch
),
668 status
= spi_sync_locked(spi
, &host
->m
);
671 dev_dbg(&spi
->dev
, "write error (%d)\n", status
);
676 dma_sync_single_for_cpu(host
->dma_dev
,
677 host
->data_dma
, sizeof(*scratch
),
681 * Get the transmission data-response reply. It must follow
682 * immediately after the data block we transferred. This reply
683 * doesn't necessarily tell whether the write operation succeeded;
684 * it just says if the transmission was ok and whether *earlier*
685 * writes succeeded; see the standard.
687 * In practice, there are (even modern SDHC-)cards which are late
688 * in sending the response, and miss the time frame by a few bits,
689 * so we have to cope with this situation and check the response
690 * bit-by-bit. Arggh!!!
692 pattern
= get_unaligned_be32(scratch
->status
);
694 /* First 3 bit of pattern are undefined */
695 pattern
|= 0xE0000000;
697 /* left-adjust to leading 0 bit */
698 while (pattern
& 0x80000000)
700 /* right-adjust for pattern matching. Code is in bit 4..0 now. */
704 case SPI_RESPONSE_ACCEPTED
:
707 case SPI_RESPONSE_CRC_ERR
:
708 /* host shall then issue MMC_STOP_TRANSMISSION */
711 case SPI_RESPONSE_WRITE_ERR
:
712 /* host shall then issue MMC_STOP_TRANSMISSION,
713 * and should MMC_SEND_STATUS to sort it out
722 dev_dbg(&spi
->dev
, "write error %02x (%d)\n",
723 scratch
->status
[0], status
);
731 /* Return when not busy. If we didn't collect that status yet,
732 * we'll need some more I/O.
734 for (i
= 4; i
< sizeof(scratch
->status
); i
++) {
735 /* card is non-busy if the most recent bit is 1 */
736 if (scratch
->status
[i
] & 0x01)
739 return mmc_spi_wait_unbusy(host
, timeout
);
744 * - skip leading all-ones bytes ... either
745 * + N(AC) [1..f(clock,CSD)] usually, else
746 * + N(CX) [0..8] when reading CSD or CID
748 * + token ... if error token, no data or crc
752 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
753 * before dropping chipselect.
755 * For multiblock reads, caller either reads the next block or issues a
756 * STOP_TRANSMISSION command.
759 mmc_spi_readblock(struct mmc_spi_host
*host
, struct spi_transfer
*t
,
760 unsigned long timeout
)
762 struct spi_device
*spi
= host
->spi
;
764 struct scratch
*scratch
= host
->data
;
765 unsigned int bitshift
;
768 /* At least one SD card sends an all-zeroes byte when N(CX)
769 * applies, before the all-ones bytes ... just cope with that.
771 status
= mmc_spi_readbytes(host
, 1);
774 status
= scratch
->status
[0];
775 if (status
== 0xff || status
== 0)
776 status
= mmc_spi_readtoken(host
, timeout
);
779 dev_dbg(&spi
->dev
, "read error %02x (%d)\n", status
, status
);
783 /* The token may be bit-shifted...
784 * the first 0-bit precedes the data stream.
787 while (status
& 0x80) {
791 leftover
= status
<< 1;
794 dma_sync_single_for_device(host
->dma_dev
,
795 host
->data_dma
, sizeof(*scratch
),
797 dma_sync_single_for_device(host
->dma_dev
,
802 status
= spi_sync_locked(spi
, &host
->m
);
804 dev_dbg(&spi
->dev
, "read error %d\n", status
);
809 dma_sync_single_for_cpu(host
->dma_dev
,
810 host
->data_dma
, sizeof(*scratch
),
812 dma_sync_single_for_cpu(host
->dma_dev
,
818 /* Walk through the data and the crc and do
819 * all the magic to get byte-aligned data.
823 unsigned int bitright
= 8 - bitshift
;
825 for (len
= t
->len
; len
; len
--) {
827 *cp
++ = leftover
| (temp
>> bitshift
);
828 leftover
= temp
<< bitright
;
830 cp
= (u8
*) &scratch
->crc_val
;
832 *cp
++ = leftover
| (temp
>> bitshift
);
833 leftover
= temp
<< bitright
;
835 *cp
= leftover
| (temp
>> bitshift
);
838 if (host
->mmc
->use_spi_crc
) {
839 u16 crc
= crc_itu_t(0, t
->rx_buf
, t
->len
);
841 be16_to_cpus(&scratch
->crc_val
);
842 if (scratch
->crc_val
!= crc
) {
844 "read - crc error: crc_val=0x%04x, computed=0x%04x len=%d\n",
845 scratch
->crc_val
, crc
, t
->len
);
858 * An MMC/SD data stage includes one or more blocks, optional CRCs,
859 * and inline handshaking. That handhaking makes it unlike most
860 * other SPI protocol stacks.
863 mmc_spi_data_do(struct mmc_spi_host
*host
, struct mmc_command
*cmd
,
864 struct mmc_data
*data
, u32 blk_size
)
866 struct spi_device
*spi
= host
->spi
;
867 struct device
*dma_dev
= host
->dma_dev
;
868 struct spi_transfer
*t
;
869 enum dma_data_direction direction
;
870 struct scatterlist
*sg
;
872 int multiple
= (data
->blocks
> 1);
874 unsigned long timeout
;
876 direction
= mmc_get_dma_dir(data
);
877 mmc_spi_setup_data_message(host
, multiple
, direction
);
881 clock_rate
= t
->speed_hz
;
883 clock_rate
= spi
->max_speed_hz
;
885 timeout
= data
->timeout_ns
/ 1000 +
886 data
->timeout_clks
* 1000000 / clock_rate
;
887 timeout
= usecs_to_jiffies((unsigned int)timeout
) + 1;
889 /* Handle scatterlist segments one at a time, with synch for
890 * each 512-byte block
892 for_each_sg(data
->sg
, sg
, data
->sg_len
, n_sg
) {
894 dma_addr_t dma_addr
= 0;
896 unsigned length
= sg
->length
;
897 enum dma_data_direction dir
= direction
;
899 /* set up dma mapping for controller drivers that might
900 * use DMA ... though they may fall back to PIO
903 /* never invalidate whole *shared* pages ... */
904 if ((sg
->offset
!= 0 || length
!= PAGE_SIZE
)
905 && dir
== DMA_FROM_DEVICE
)
906 dir
= DMA_BIDIRECTIONAL
;
908 dma_addr
= dma_map_page(dma_dev
, sg_page(sg
), 0,
910 if (dma_mapping_error(dma_dev
, dma_addr
)) {
911 data
->error
= -EFAULT
;
914 if (direction
== DMA_TO_DEVICE
)
915 t
->tx_dma
= dma_addr
+ sg
->offset
;
917 t
->rx_dma
= dma_addr
+ sg
->offset
;
920 /* allow pio too; we don't allow highmem */
921 kmap_addr
= kmap(sg_page(sg
));
922 if (direction
== DMA_TO_DEVICE
)
923 t
->tx_buf
= kmap_addr
+ sg
->offset
;
925 t
->rx_buf
= kmap_addr
+ sg
->offset
;
927 /* transfer each block, and update request status */
929 t
->len
= min(length
, blk_size
);
931 dev_dbg(&host
->spi
->dev
,
932 " mmc_spi: %s block, %d bytes\n",
933 (direction
== DMA_TO_DEVICE
) ? "write" : "read",
936 if (direction
== DMA_TO_DEVICE
)
937 status
= mmc_spi_writeblock(host
, t
, timeout
);
939 status
= mmc_spi_readblock(host
, t
, timeout
);
943 data
->bytes_xfered
+= t
->len
;
950 /* discard mappings */
951 if (direction
== DMA_FROM_DEVICE
)
952 flush_kernel_dcache_page(sg_page(sg
));
955 dma_unmap_page(dma_dev
, dma_addr
, PAGE_SIZE
, dir
);
958 data
->error
= status
;
959 dev_dbg(&spi
->dev
, "%s status %d\n",
960 (direction
== DMA_TO_DEVICE
) ? "write" : "read",
966 /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
967 * can be issued before multiblock writes. Unlike its more widely
968 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
969 * that can affect the STOP_TRAN logic. Complete (and current)
970 * MMC specs should sort that out before Linux starts using CMD23.
972 if (direction
== DMA_TO_DEVICE
&& multiple
) {
973 struct scratch
*scratch
= host
->data
;
975 const unsigned statlen
= sizeof(scratch
->status
);
977 dev_dbg(&spi
->dev
, " mmc_spi: STOP_TRAN\n");
979 /* Tweak the per-block message we set up earlier by morphing
980 * it to hold single buffer with the token followed by some
981 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
982 * "not busy any longer" status, and leave chip selected.
984 INIT_LIST_HEAD(&host
->m
.transfers
);
985 list_add(&host
->early_status
.transfer_list
,
988 memset(scratch
->status
, 0xff, statlen
);
989 scratch
->status
[0] = SPI_TOKEN_STOP_TRAN
;
991 host
->early_status
.tx_buf
= host
->early_status
.rx_buf
;
992 host
->early_status
.tx_dma
= host
->early_status
.rx_dma
;
993 host
->early_status
.len
= statlen
;
996 dma_sync_single_for_device(host
->dma_dev
,
997 host
->data_dma
, sizeof(*scratch
),
1000 tmp
= spi_sync_locked(spi
, &host
->m
);
1003 dma_sync_single_for_cpu(host
->dma_dev
,
1004 host
->data_dma
, sizeof(*scratch
),
1013 /* Ideally we collected "not busy" status with one I/O,
1014 * avoiding wasteful byte-at-a-time scanning... but more
1015 * I/O is often needed.
1017 for (tmp
= 2; tmp
< statlen
; tmp
++) {
1018 if (scratch
->status
[tmp
] != 0)
1021 tmp
= mmc_spi_wait_unbusy(host
, timeout
);
1022 if (tmp
< 0 && !data
->error
)
1027 /****************************************************************************/
1030 * MMC driver implementation -- the interface to the MMC stack
1033 static void mmc_spi_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
)
1035 struct mmc_spi_host
*host
= mmc_priv(mmc
);
1036 int status
= -EINVAL
;
1038 struct mmc_command stop
;
1041 /* MMC core and layered drivers *MUST* issue SPI-aware commands */
1043 struct mmc_command
*cmd
;
1047 if (!mmc_spi_resp_type(cmd
)) {
1048 dev_dbg(&host
->spi
->dev
, "bogus command\n");
1049 cmd
->error
= -EINVAL
;
1054 if (cmd
&& !mmc_spi_resp_type(cmd
)) {
1055 dev_dbg(&host
->spi
->dev
, "bogus STOP command\n");
1056 cmd
->error
= -EINVAL
;
1062 mmc_request_done(host
->mmc
, mrq
);
1068 /* request exclusive bus access */
1069 spi_bus_lock(host
->spi
->master
);
1072 /* issue command; then optionally data and stop */
1073 status
= mmc_spi_command_send(host
, mrq
, mrq
->cmd
, mrq
->data
!= NULL
);
1074 if (status
== 0 && mrq
->data
) {
1075 mmc_spi_data_do(host
, mrq
->cmd
, mrq
->data
, mrq
->data
->blksz
);
1078 * The SPI bus is not always reliable for large data transfers.
1079 * If an occasional crc error is reported by the SD device with
1080 * data read/write over SPI, it may be recovered by repeating
1081 * the last SD command again. The retry count is set to 5 to
1082 * ensure the driver passes stress tests.
1084 if (mrq
->data
->error
== -EILSEQ
&& crc_retry
) {
1085 stop
.opcode
= MMC_STOP_TRANSMISSION
;
1087 stop
.flags
= MMC_RSP_SPI_R1B
| MMC_RSP_R1B
| MMC_CMD_AC
;
1088 status
= mmc_spi_command_send(host
, mrq
, &stop
, 0);
1090 mrq
->data
->error
= 0;
1095 status
= mmc_spi_command_send(host
, mrq
, mrq
->stop
, 0);
1100 /* release the bus */
1101 spi_bus_unlock(host
->spi
->master
);
1103 mmc_request_done(host
->mmc
, mrq
);
1106 /* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
1108 * NOTE that here we can't know that the card has just been powered up;
1109 * not all MMC/SD sockets support power switching.
1111 * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
1112 * this doesn't seem to do the right thing at all...
1114 static void mmc_spi_initsequence(struct mmc_spi_host
*host
)
1116 /* Try to be very sure any previous command has completed;
1117 * wait till not-busy, skip debris from any old commands.
1119 mmc_spi_wait_unbusy(host
, msecs_to_jiffies(MMC_SPI_INIT_TIMEOUT_MS
));
1120 mmc_spi_readbytes(host
, 10);
1123 * Do a burst with chipselect active-high. We need to do this to
1124 * meet the requirement of 74 clock cycles with both chipselect
1125 * and CMD (MOSI) high before CMD0 ... after the card has been
1126 * powered up to Vdd(min), and so is ready to take commands.
1128 * Some cards are particularly needy of this (e.g. Viking "SD256")
1129 * while most others don't seem to care.
1131 * Note that this is one of the places MMC/SD plays games with the
1132 * SPI protocol. Another is that when chipselect is released while
1133 * the card returns BUSY status, the clock must issue several cycles
1134 * with chipselect high before the card will stop driving its output.
1136 * SPI_CS_HIGH means "asserted" here. In some cases like when using
1137 * GPIOs for chip select, SPI_CS_HIGH is set but this will be logically
1138 * inverted by gpiolib, so if we want to ascertain to drive it high
1139 * we should toggle the default with an XOR as we do here.
1141 host
->spi
->mode
^= SPI_CS_HIGH
;
1142 if (spi_setup(host
->spi
) != 0) {
1143 /* Just warn; most cards work without it. */
1144 dev_warn(&host
->spi
->dev
,
1145 "can't change chip-select polarity\n");
1146 host
->spi
->mode
^= SPI_CS_HIGH
;
1148 mmc_spi_readbytes(host
, 18);
1150 host
->spi
->mode
^= SPI_CS_HIGH
;
1151 if (spi_setup(host
->spi
) != 0) {
1152 /* Wot, we can't get the same setup we had before? */
1153 dev_err(&host
->spi
->dev
,
1154 "can't restore chip-select polarity\n");
1159 static char *mmc_powerstring(u8 power_mode
)
1161 switch (power_mode
) {
1162 case MMC_POWER_OFF
: return "off";
1163 case MMC_POWER_UP
: return "up";
1164 case MMC_POWER_ON
: return "on";
1169 static void mmc_spi_set_ios(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
1171 struct mmc_spi_host
*host
= mmc_priv(mmc
);
1173 if (host
->power_mode
!= ios
->power_mode
) {
1176 canpower
= host
->pdata
&& host
->pdata
->setpower
;
1178 dev_dbg(&host
->spi
->dev
, "mmc_spi: power %s (%d)%s\n",
1179 mmc_powerstring(ios
->power_mode
),
1181 canpower
? ", can switch" : "");
1183 /* switch power on/off if possible, accounting for
1184 * max 250msec powerup time if needed.
1187 switch (ios
->power_mode
) {
1190 host
->pdata
->setpower(&host
->spi
->dev
,
1192 if (ios
->power_mode
== MMC_POWER_UP
)
1193 msleep(host
->powerup_msecs
);
1197 /* See 6.4.1 in the simplified SD card physical spec 2.0 */
1198 if (ios
->power_mode
== MMC_POWER_ON
)
1199 mmc_spi_initsequence(host
);
1201 /* If powering down, ground all card inputs to avoid power
1202 * delivery from data lines! On a shared SPI bus, this
1203 * will probably be temporary; 6.4.2 of the simplified SD
1204 * spec says this must last at least 1msec.
1206 * - Clock low means CPOL 0, e.g. mode 0
1207 * - MOSI low comes from writing zero
1208 * - Chipselect is usually active low...
1210 if (canpower
&& ios
->power_mode
== MMC_POWER_OFF
) {
1214 host
->spi
->mode
&= ~(SPI_CPOL
|SPI_CPHA
);
1215 mres
= spi_setup(host
->spi
);
1217 dev_dbg(&host
->spi
->dev
,
1218 "switch to SPI mode 0 failed\n");
1220 if (spi_write(host
->spi
, &nullbyte
, 1) < 0)
1221 dev_dbg(&host
->spi
->dev
,
1222 "put spi signals to low failed\n");
1225 * Now clock should be low due to spi mode 0;
1226 * MOSI should be low because of written 0x00;
1227 * chipselect should be low (it is active low)
1228 * power supply is off, so now MMC is off too!
1230 * FIXME no, chipselect can be high since the
1231 * device is inactive and SPI_CS_HIGH is clear...
1235 host
->spi
->mode
|= (SPI_CPOL
|SPI_CPHA
);
1236 mres
= spi_setup(host
->spi
);
1238 dev_dbg(&host
->spi
->dev
,
1239 "switch back to SPI mode 3 failed\n");
1243 host
->power_mode
= ios
->power_mode
;
1246 if (host
->spi
->max_speed_hz
!= ios
->clock
&& ios
->clock
!= 0) {
1249 host
->spi
->max_speed_hz
= ios
->clock
;
1250 status
= spi_setup(host
->spi
);
1251 dev_dbg(&host
->spi
->dev
,
1252 "mmc_spi: clock to %d Hz, %d\n",
1253 host
->spi
->max_speed_hz
, status
);
1257 static const struct mmc_host_ops mmc_spi_ops
= {
1258 .request
= mmc_spi_request
,
1259 .set_ios
= mmc_spi_set_ios
,
1260 .get_ro
= mmc_gpio_get_ro
,
1261 .get_cd
= mmc_gpio_get_cd
,
1265 /****************************************************************************/
1268 * SPI driver implementation
1272 mmc_spi_detect_irq(int irq
, void *mmc
)
1274 struct mmc_spi_host
*host
= mmc_priv(mmc
);
1275 u16 delay_msec
= max(host
->pdata
->detect_delay
, (u16
)100);
1277 mmc_detect_change(mmc
, msecs_to_jiffies(delay_msec
));
1281 #ifdef CONFIG_HAS_DMA
1282 static int mmc_spi_dma_alloc(struct mmc_spi_host
*host
)
1284 struct spi_device
*spi
= host
->spi
;
1287 if (!spi
->master
->dev
.parent
->dma_mask
)
1290 dev
= spi
->master
->dev
.parent
;
1292 host
->ones_dma
= dma_map_single(dev
, host
->ones
, MMC_SPI_BLOCKSIZE
,
1294 if (dma_mapping_error(dev
, host
->ones_dma
))
1297 host
->data_dma
= dma_map_single(dev
, host
->data
, sizeof(*host
->data
),
1299 if (dma_mapping_error(dev
, host
->data_dma
)) {
1300 dma_unmap_single(dev
, host
->ones_dma
, MMC_SPI_BLOCKSIZE
,
1305 dma_sync_single_for_cpu(dev
, host
->data_dma
, sizeof(*host
->data
),
1308 host
->dma_dev
= dev
;
1312 static void mmc_spi_dma_free(struct mmc_spi_host
*host
)
1317 dma_unmap_single(host
->dma_dev
, host
->ones_dma
, MMC_SPI_BLOCKSIZE
,
1319 dma_unmap_single(host
->dma_dev
, host
->data_dma
, sizeof(*host
->data
),
1323 static inline int mmc_spi_dma_alloc(struct mmc_spi_host
*host
) { return 0; }
1324 static inline void mmc_spi_dma_free(struct mmc_spi_host
*host
) {}
1327 static int mmc_spi_probe(struct spi_device
*spi
)
1330 struct mmc_host
*mmc
;
1331 struct mmc_spi_host
*host
;
1333 bool has_ro
= false;
1335 /* We rely on full duplex transfers, mostly to reduce
1336 * per-transfer overheads (by making fewer transfers).
1338 if (spi
->master
->flags
& SPI_MASTER_HALF_DUPLEX
)
1341 /* MMC and SD specs only seem to care that sampling is on the
1342 * rising edge ... meaning SPI modes 0 or 3. So either SPI mode
1343 * should be legit. We'll use mode 0 since the steady state is 0,
1344 * which is appropriate for hotplugging, unless the platform data
1345 * specify mode 3 (if hardware is not compatible to mode 0).
1347 if (spi
->mode
!= SPI_MODE_3
)
1348 spi
->mode
= SPI_MODE_0
;
1349 spi
->bits_per_word
= 8;
1351 status
= spi_setup(spi
);
1353 dev_dbg(&spi
->dev
, "needs SPI mode %02x, %d KHz; %d\n",
1354 spi
->mode
, spi
->max_speed_hz
/ 1000,
1359 /* We need a supply of ones to transmit. This is the only time
1360 * the CPU touches these, so cache coherency isn't a concern.
1362 * NOTE if many systems use more than one MMC-over-SPI connector
1363 * it'd save some memory to share this. That's evidently rare.
1366 ones
= kmalloc(MMC_SPI_BLOCKSIZE
, GFP_KERNEL
);
1369 memset(ones
, 0xff, MMC_SPI_BLOCKSIZE
);
1371 mmc
= mmc_alloc_host(sizeof(*host
), &spi
->dev
);
1375 mmc
->ops
= &mmc_spi_ops
;
1376 mmc
->max_blk_size
= MMC_SPI_BLOCKSIZE
;
1377 mmc
->max_segs
= MMC_SPI_BLOCKSATONCE
;
1378 mmc
->max_req_size
= MMC_SPI_BLOCKSATONCE
* MMC_SPI_BLOCKSIZE
;
1379 mmc
->max_blk_count
= MMC_SPI_BLOCKSATONCE
;
1381 mmc
->caps
= MMC_CAP_SPI
;
1383 /* SPI doesn't need the lowspeed device identification thing for
1384 * MMC or SD cards, since it never comes up in open drain mode.
1385 * That's good; some SPI masters can't handle very low speeds!
1387 * However, low speed SDIO cards need not handle over 400 KHz;
1388 * that's the only reason not to use a few MHz for f_min (until
1389 * the upper layer reads the target frequency from the CSD).
1391 mmc
->f_min
= 400000;
1392 mmc
->f_max
= spi
->max_speed_hz
;
1394 host
= mmc_priv(mmc
);
1400 /* Platform data is used to hook up things like card sensing
1401 * and power switching gpios.
1403 host
->pdata
= mmc_spi_get_pdata(spi
);
1405 mmc
->ocr_avail
= host
->pdata
->ocr_mask
;
1406 if (!mmc
->ocr_avail
) {
1407 dev_warn(&spi
->dev
, "ASSUMING 3.2-3.4 V slot power\n");
1408 mmc
->ocr_avail
= MMC_VDD_32_33
|MMC_VDD_33_34
;
1410 if (host
->pdata
&& host
->pdata
->setpower
) {
1411 host
->powerup_msecs
= host
->pdata
->powerup_msecs
;
1412 if (!host
->powerup_msecs
|| host
->powerup_msecs
> 250)
1413 host
->powerup_msecs
= 250;
1416 dev_set_drvdata(&spi
->dev
, mmc
);
1418 /* preallocate dma buffers */
1419 host
->data
= kmalloc(sizeof(*host
->data
), GFP_KERNEL
);
1423 status
= mmc_spi_dma_alloc(host
);
1427 /* setup message for status/busy readback */
1428 spi_message_init(&host
->readback
);
1429 host
->readback
.is_dma_mapped
= (host
->dma_dev
!= NULL
);
1431 spi_message_add_tail(&host
->status
, &host
->readback
);
1432 host
->status
.tx_buf
= host
->ones
;
1433 host
->status
.tx_dma
= host
->ones_dma
;
1434 host
->status
.rx_buf
= &host
->data
->status
;
1435 host
->status
.rx_dma
= host
->data_dma
+ offsetof(struct scratch
, status
);
1436 host
->status
.cs_change
= 1;
1438 /* register card detect irq */
1439 if (host
->pdata
&& host
->pdata
->init
) {
1440 status
= host
->pdata
->init(&spi
->dev
, mmc_spi_detect_irq
, mmc
);
1442 goto fail_glue_init
;
1445 /* pass platform capabilities, if any */
1447 mmc
->caps
|= host
->pdata
->caps
;
1448 mmc
->caps2
|= host
->pdata
->caps2
;
1451 status
= mmc_add_host(mmc
);
1456 * Index 0 is card detect
1457 * Old boardfiles were specifying 1 ms as debounce
1459 status
= mmc_gpiod_request_cd(mmc
, NULL
, 0, false, 1000);
1460 if (status
== -EPROBE_DEFER
)
1464 * The platform has a CD GPIO signal that may support
1465 * interrupts, so let mmc_gpiod_request_cd_irq() decide
1466 * if polling is needed or not.
1468 mmc
->caps
&= ~MMC_CAP_NEEDS_POLL
;
1469 mmc_gpiod_request_cd_irq(mmc
);
1471 mmc_detect_change(mmc
, 0);
1473 /* Index 1 is write protect/read only */
1474 status
= mmc_gpiod_request_ro(mmc
, NULL
, 1, 0);
1475 if (status
== -EPROBE_DEFER
)
1480 dev_info(&spi
->dev
, "SD/MMC host %s%s%s%s%s\n",
1481 dev_name(&mmc
->class_dev
),
1482 host
->dma_dev
? "" : ", no DMA",
1483 has_ro
? "" : ", no WP",
1484 (host
->pdata
&& host
->pdata
->setpower
)
1485 ? "" : ", no poweroff",
1486 (mmc
->caps
& MMC_CAP_NEEDS_POLL
)
1487 ? ", cd polling" : "");
1491 mmc_remove_host(mmc
);
1493 mmc_spi_dma_free(host
);
1498 mmc_spi_put_pdata(spi
);
1505 static int mmc_spi_remove(struct spi_device
*spi
)
1507 struct mmc_host
*mmc
= dev_get_drvdata(&spi
->dev
);
1508 struct mmc_spi_host
*host
= mmc_priv(mmc
);
1510 /* prevent new mmc_detect_change() calls */
1511 if (host
->pdata
&& host
->pdata
->exit
)
1512 host
->pdata
->exit(&spi
->dev
, mmc
);
1514 mmc_remove_host(mmc
);
1516 mmc_spi_dma_free(host
);
1520 spi
->max_speed_hz
= mmc
->f_max
;
1522 mmc_spi_put_pdata(spi
);
1526 static const struct of_device_id mmc_spi_of_match_table
[] = {
1527 { .compatible
= "mmc-spi-slot", },
1530 MODULE_DEVICE_TABLE(of
, mmc_spi_of_match_table
);
1532 static struct spi_driver mmc_spi_driver
= {
1535 .of_match_table
= mmc_spi_of_match_table
,
1537 .probe
= mmc_spi_probe
,
1538 .remove
= mmc_spi_remove
,
1541 module_spi_driver(mmc_spi_driver
);
1543 MODULE_AUTHOR("Mike Lavender, David Brownell, Hans-Peter Nilsson, Jan Nikitenko");
1544 MODULE_DESCRIPTION("SPI SD/MMC host driver");
1545 MODULE_LICENSE("GPL");
1546 MODULE_ALIAS("spi:mmc_spi");