1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2015 - 2016 Cavium, Inc.
6 #include <linux/bitfield.h>
7 #include <linux/kernel.h>
8 #include <linux/init.h>
10 #include <linux/of_address.h>
11 #include <linux/of_pci.h>
12 #include <linux/pci-acpi.h>
13 #include <linux/pci-ecam.h>
14 #include <linux/platform_device.h>
17 #if defined(CONFIG_PCI_HOST_THUNDER_PEM) || (defined(CONFIG_ACPI) && defined(CONFIG_PCI_QUIRKS))
19 #define PEM_CFG_WR 0x28
20 #define PEM_CFG_RD 0x30
23 * Enhanced Configuration Access Mechanism (ECAM)
25 * N.B. This is a non-standard platform-specific ECAM bus shift value. For
26 * standard values defined in the PCI Express Base Specification see
27 * include/linux/pci-ecam.h.
29 #define THUNDER_PCIE_ECAM_BUS_SHIFT 24
31 struct thunder_pem_pci
{
33 void __iomem
*pem_reg_base
;
36 static int thunder_pem_bridge_read(struct pci_bus
*bus
, unsigned int devfn
,
37 int where
, int size
, u32
*val
)
39 u64 read_val
, tmp_val
;
40 struct pci_config_window
*cfg
= bus
->sysdata
;
41 struct thunder_pem_pci
*pem_pci
= (struct thunder_pem_pci
*)cfg
->priv
;
43 if (devfn
!= 0 || where
>= 2048) {
45 return PCIBIOS_DEVICE_NOT_FOUND
;
49 * 32-bit accesses only. Write the address to the low order
50 * bits of PEM_CFG_RD, then trigger the read by reading back.
51 * The config data lands in the upper 32-bits of PEM_CFG_RD.
53 read_val
= where
& ~3ull;
54 writeq(read_val
, pem_pci
->pem_reg_base
+ PEM_CFG_RD
);
55 read_val
= readq(pem_pci
->pem_reg_base
+ PEM_CFG_RD
);
59 * The config space contains some garbage, fix it up. Also
60 * synthesize an EA capability for the BAR used by MSI-X.
64 read_val
&= 0xffff00ff;
65 read_val
|= 0x00007000; /* Skip MSI CAP */
67 case 0x70: /* Express Cap */
69 * Change PME interrupt to vector 2 on T88 where it
70 * reads as 0, else leave it alone.
72 if (!(read_val
& (0x1f << 25)))
73 read_val
|= (2u << 25);
75 case 0xb0: /* MSI-X Cap */
76 /* TableSize=2 or 4, Next Cap is EA */
77 read_val
&= 0xc00000ff;
79 * If Express Cap(0x70) raw PME vector reads as 0 we are on
80 * T88 and TableSize is reported as 4, else TableSize
83 writeq(0x70, pem_pci
->pem_reg_base
+ PEM_CFG_RD
);
84 tmp_val
= readq(pem_pci
->pem_reg_base
+ PEM_CFG_RD
);
86 if (!(tmp_val
& (0x1f << 25)))
87 read_val
|= 0x0003bc00;
89 read_val
|= 0x0001bc00;
92 /* Table offset=0, BIR=0 */
93 read_val
= 0x00000000;
96 /* BPA offset=0xf0000, BIR=0 */
97 read_val
= 0x000f0000;
100 /* EA, 1 entry, no next Cap */
101 read_val
= 0x00010014;
105 read_val
= 0x00000000;
108 /* Entry BEI=0, PP=0x00, SP=0xff, ES=3 */
109 read_val
= 0x80ff0003;
112 read_val
= pem_pci
->ea_entry
[0];
115 read_val
= pem_pci
->ea_entry
[1];
118 read_val
= pem_pci
->ea_entry
[2];
123 read_val
>>= (8 * (where
& 3));
135 return PCIBIOS_SUCCESSFUL
;
138 static int thunder_pem_config_read(struct pci_bus
*bus
, unsigned int devfn
,
139 int where
, int size
, u32
*val
)
141 struct pci_config_window
*cfg
= bus
->sysdata
;
143 if (bus
->number
< cfg
->busr
.start
||
144 bus
->number
> cfg
->busr
.end
)
145 return PCIBIOS_DEVICE_NOT_FOUND
;
148 * The first device on the bus is the PEM PCIe bridge.
149 * Special case its config access.
151 if (bus
->number
== cfg
->busr
.start
)
152 return thunder_pem_bridge_read(bus
, devfn
, where
, size
, val
);
154 return pci_generic_config_read(bus
, devfn
, where
, size
, val
);
158 * Some of the w1c_bits below also include read-only or non-writable
159 * reserved bits, this makes the code simpler and is OK as the bits
160 * are not affected by writing zeros to them.
162 static u32
thunder_pem_bridge_w1c_bits(u64 where_aligned
)
166 switch (where_aligned
) {
167 case 0x04: /* Command/Status */
168 case 0x1c: /* Base and I/O Limit/Secondary Status */
169 w1c_bits
= 0xff000000;
171 case 0x44: /* Power Management Control and Status */
172 w1c_bits
= 0xfffffe00;
174 case 0x78: /* Device Control/Device Status */
175 case 0x80: /* Link Control/Link Status */
176 case 0x88: /* Slot Control/Slot Status */
177 case 0x90: /* Root Status */
178 case 0xa0: /* Link Control 2 Registers/Link Status 2 */
179 w1c_bits
= 0xffff0000;
181 case 0x104: /* Uncorrectable Error Status */
182 case 0x110: /* Correctable Error Status */
183 case 0x130: /* Error Status */
184 case 0x160: /* Link Control 4 */
185 w1c_bits
= 0xffffffff;
193 /* Some bits must be written to one so they appear to be read-only. */
194 static u32
thunder_pem_bridge_w1_bits(u64 where_aligned
)
198 switch (where_aligned
) {
199 case 0x1c: /* I/O Base / I/O Limit, Secondary Status */
200 /* Force 32-bit I/O addressing. */
203 case 0x24: /* Prefetchable Memory Base / Prefetchable Memory Limit */
204 /* Force 64-bit addressing */
205 w1_bits
= 0x00010001;
214 static int thunder_pem_bridge_write(struct pci_bus
*bus
, unsigned int devfn
,
215 int where
, int size
, u32 val
)
217 struct pci_config_window
*cfg
= bus
->sysdata
;
218 struct thunder_pem_pci
*pem_pci
= (struct thunder_pem_pci
*)cfg
->priv
;
219 u64 write_val
, read_val
;
220 u64 where_aligned
= where
& ~3ull;
224 if (devfn
!= 0 || where
>= 2048)
225 return PCIBIOS_DEVICE_NOT_FOUND
;
228 * 32-bit accesses only. If the write is for a size smaller
229 * than 32-bits, we must first read the 32-bit value and merge
230 * in the desired bits and then write the whole 32-bits back
235 writeq(where_aligned
, pem_pci
->pem_reg_base
+ PEM_CFG_RD
);
236 read_val
= readq(pem_pci
->pem_reg_base
+ PEM_CFG_RD
);
238 mask
= ~(0xff << (8 * (where
& 3)));
240 val
= (val
& 0xff) << (8 * (where
& 3));
241 val
|= (u32
)read_val
;
244 writeq(where_aligned
, pem_pci
->pem_reg_base
+ PEM_CFG_RD
);
245 read_val
= readq(pem_pci
->pem_reg_base
+ PEM_CFG_RD
);
247 mask
= ~(0xffff << (8 * (where
& 3)));
249 val
= (val
& 0xffff) << (8 * (where
& 3));
250 val
|= (u32
)read_val
;
257 * By expanding the write width to 32 bits, we may
258 * inadvertently hit some W1C bits that were not intended to
259 * be written. Calculate the mask that must be applied to the
260 * data to be written to avoid these cases.
263 u32 w1c_bits
= thunder_pem_bridge_w1c_bits(where
);
272 * Some bits must be read-only with value of one. Since the
273 * access method allows these to be cleared if a zero is
274 * written, force them to one before writing.
276 val
|= thunder_pem_bridge_w1_bits(where_aligned
);
279 * Low order bits are the config address, the high order 32
280 * bits are the data to be written.
282 write_val
= (((u64
)val
) << 32) | where_aligned
;
283 writeq(write_val
, pem_pci
->pem_reg_base
+ PEM_CFG_WR
);
284 return PCIBIOS_SUCCESSFUL
;
287 static int thunder_pem_config_write(struct pci_bus
*bus
, unsigned int devfn
,
288 int where
, int size
, u32 val
)
290 struct pci_config_window
*cfg
= bus
->sysdata
;
292 if (bus
->number
< cfg
->busr
.start
||
293 bus
->number
> cfg
->busr
.end
)
294 return PCIBIOS_DEVICE_NOT_FOUND
;
296 * The first device on the bus is the PEM PCIe bridge.
297 * Special case its config access.
299 if (bus
->number
== cfg
->busr
.start
)
300 return thunder_pem_bridge_write(bus
, devfn
, where
, size
, val
);
303 return pci_generic_config_write(bus
, devfn
, where
, size
, val
);
306 static int thunder_pem_init(struct device
*dev
, struct pci_config_window
*cfg
,
307 struct resource
*res_pem
)
309 struct thunder_pem_pci
*pem_pci
;
310 resource_size_t bar4_start
;
312 pem_pci
= devm_kzalloc(dev
, sizeof(*pem_pci
), GFP_KERNEL
);
316 pem_pci
->pem_reg_base
= devm_ioremap(dev
, res_pem
->start
, 0x10000);
317 if (!pem_pci
->pem_reg_base
)
321 * The MSI-X BAR for the PEM and AER interrupts is located at
322 * a fixed offset from the PEM register base. Generate a
323 * fragment of the synthesized Enhanced Allocation capability
324 * structure here for the BAR.
326 bar4_start
= res_pem
->start
+ 0xf00000;
327 pem_pci
->ea_entry
[0] = (u32
)bar4_start
| 2;
328 pem_pci
->ea_entry
[1] = (u32
)(res_pem
->end
- bar4_start
) & ~3u;
329 pem_pci
->ea_entry
[2] = (u32
)(bar4_start
>> 32);
335 #if defined(CONFIG_ACPI) && defined(CONFIG_PCI_QUIRKS)
337 #define PEM_RES_BASE 0x87e0c0000000UL
338 #define PEM_NODE_MASK GENMASK(45, 44)
339 #define PEM_INDX_MASK GENMASK(26, 24)
340 #define PEM_MIN_DOM_IN_NODE 4
341 #define PEM_MAX_DOM_IN_NODE 10
343 static void thunder_pem_reserve_range(struct device
*dev
, int seg
,
346 resource_size_t start
= r
->start
, end
= r
->end
;
347 struct resource
*res
;
348 const char *regionid
;
350 regionid
= kasprintf(GFP_KERNEL
, "PEM RC:%d", seg
);
354 res
= request_mem_region(start
, end
- start
+ 1, regionid
);
356 res
->flags
&= ~IORESOURCE_BUSY
;
360 dev_info(dev
, "%pR %s reserved\n", r
,
361 res
? "has been" : "could not be");
364 static void thunder_pem_legacy_fw(struct acpi_pci_root
*root
,
365 struct resource
*res_pem
)
367 int node
= acpi_get_node(root
->device
->handle
);
370 if (node
== NUMA_NO_NODE
)
373 index
= root
->segment
- PEM_MIN_DOM_IN_NODE
;
374 index
-= node
* PEM_MAX_DOM_IN_NODE
;
375 res_pem
->start
= PEM_RES_BASE
| FIELD_PREP(PEM_NODE_MASK
, node
) |
376 FIELD_PREP(PEM_INDX_MASK
, index
);
377 res_pem
->flags
= IORESOURCE_MEM
;
380 static int thunder_pem_acpi_init(struct pci_config_window
*cfg
)
382 struct device
*dev
= cfg
->parent
;
383 struct acpi_device
*adev
= to_acpi_device(dev
);
384 struct acpi_pci_root
*root
= acpi_driver_data(adev
);
385 struct resource
*res_pem
;
388 res_pem
= devm_kzalloc(&adev
->dev
, sizeof(*res_pem
), GFP_KERNEL
);
392 ret
= acpi_get_rc_resources(dev
, "CAVA02B", root
->segment
, res_pem
);
395 * If we fail to gather resources it means that we run with old
396 * FW where we need to calculate PEM-specific resources manually.
399 thunder_pem_legacy_fw(root
, res_pem
);
401 * Reserve 64K size PEM specific resources. The full 16M range
402 * size is required for thunder_pem_init() call.
404 res_pem
->end
= res_pem
->start
+ SZ_64K
- 1;
405 thunder_pem_reserve_range(dev
, root
->segment
, res_pem
);
406 res_pem
->end
= res_pem
->start
+ SZ_16M
- 1;
408 /* Reserve PCI configuration space as well. */
409 thunder_pem_reserve_range(dev
, root
->segment
, &cfg
->res
);
412 return thunder_pem_init(dev
, cfg
, res_pem
);
415 const struct pci_ecam_ops thunder_pem_ecam_ops
= {
416 .bus_shift
= THUNDER_PCIE_ECAM_BUS_SHIFT
,
417 .init
= thunder_pem_acpi_init
,
419 .map_bus
= pci_ecam_map_bus
,
420 .read
= thunder_pem_config_read
,
421 .write
= thunder_pem_config_write
,
427 #ifdef CONFIG_PCI_HOST_THUNDER_PEM
429 static int thunder_pem_platform_init(struct pci_config_window
*cfg
)
431 struct device
*dev
= cfg
->parent
;
432 struct platform_device
*pdev
= to_platform_device(dev
);
433 struct resource
*res_pem
;
439 * The second register range is the PEM bridge to the PCIe
440 * bus. It has a different config access method than those
441 * devices behind the bridge.
443 res_pem
= platform_get_resource(pdev
, IORESOURCE_MEM
, 1);
445 dev_err(dev
, "missing \"reg[1]\"property\n");
449 return thunder_pem_init(dev
, cfg
, res_pem
);
452 static const struct pci_ecam_ops pci_thunder_pem_ops
= {
453 .bus_shift
= THUNDER_PCIE_ECAM_BUS_SHIFT
,
454 .init
= thunder_pem_platform_init
,
456 .map_bus
= pci_ecam_map_bus
,
457 .read
= thunder_pem_config_read
,
458 .write
= thunder_pem_config_write
,
462 static const struct of_device_id thunder_pem_of_match
[] = {
464 .compatible
= "cavium,pci-host-thunder-pem",
465 .data
= &pci_thunder_pem_ops
,
470 static struct platform_driver thunder_pem_driver
= {
472 .name
= KBUILD_MODNAME
,
473 .of_match_table
= thunder_pem_of_match
,
474 .suppress_bind_attrs
= true,
476 .probe
= pci_host_common_probe
,
478 builtin_platform_driver(thunder_pem_driver
);