1 // SPDX-License-Identifier: GPL-2.0
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
18 #include <linux/pci.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
33 #include <linux/aer.h>
36 DEFINE_MUTEX(pci_slot_mutex
);
38 const char *pci_power_names
[] = {
39 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41 EXPORT_SYMBOL_GPL(pci_power_names
);
43 int isa_dma_bridge_buggy
;
44 EXPORT_SYMBOL(isa_dma_bridge_buggy
);
47 EXPORT_SYMBOL(pci_pci_problems
);
49 unsigned int pci_pm_d3hot_delay
;
51 static void pci_pme_list_scan(struct work_struct
*work
);
53 static LIST_HEAD(pci_pme_list
);
54 static DEFINE_MUTEX(pci_pme_list_mutex
);
55 static DECLARE_DELAYED_WORK(pci_pme_work
, pci_pme_list_scan
);
57 struct pci_pme_device
{
58 struct list_head list
;
62 #define PME_TIMEOUT 1000 /* How long between PME checks */
64 static void pci_dev_d3_sleep(struct pci_dev
*dev
)
66 unsigned int delay
= dev
->d3hot_delay
;
68 if (delay
< pci_pm_d3hot_delay
)
69 delay
= pci_pm_d3hot_delay
;
75 #ifdef CONFIG_PCI_DOMAINS
76 int pci_domains_supported
= 1;
79 #define DEFAULT_CARDBUS_IO_SIZE (256)
80 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
81 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
82 unsigned long pci_cardbus_io_size
= DEFAULT_CARDBUS_IO_SIZE
;
83 unsigned long pci_cardbus_mem_size
= DEFAULT_CARDBUS_MEM_SIZE
;
85 #define DEFAULT_HOTPLUG_IO_SIZE (256)
86 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
87 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
88 /* hpiosize=nn can override this */
89 unsigned long pci_hotplug_io_size
= DEFAULT_HOTPLUG_IO_SIZE
;
91 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
92 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
93 * pci=hpmemsize=nnM overrides both
95 unsigned long pci_hotplug_mmio_size
= DEFAULT_HOTPLUG_MMIO_SIZE
;
96 unsigned long pci_hotplug_mmio_pref_size
= DEFAULT_HOTPLUG_MMIO_PREF_SIZE
;
98 #define DEFAULT_HOTPLUG_BUS_SIZE 1
99 unsigned long pci_hotplug_bus_size
= DEFAULT_HOTPLUG_BUS_SIZE
;
102 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
103 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
104 enum pcie_bus_config_types pcie_bus_config
= PCIE_BUS_TUNE_OFF
;
105 #elif defined CONFIG_PCIE_BUS_SAFE
106 enum pcie_bus_config_types pcie_bus_config
= PCIE_BUS_SAFE
;
107 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
108 enum pcie_bus_config_types pcie_bus_config
= PCIE_BUS_PERFORMANCE
;
109 #elif defined CONFIG_PCIE_BUS_PEER2PEER
110 enum pcie_bus_config_types pcie_bus_config
= PCIE_BUS_PEER2PEER
;
112 enum pcie_bus_config_types pcie_bus_config
= PCIE_BUS_DEFAULT
;
116 * The default CLS is used if arch didn't set CLS explicitly and not
117 * all pci devices agree on the same value. Arch can override either
118 * the dfl or actual value as it sees fit. Don't forget this is
119 * measured in 32-bit words, not bytes.
121 u8 pci_dfl_cache_line_size
= L1_CACHE_BYTES
>> 2;
122 u8 pci_cache_line_size
;
125 * If we set up a device for bus mastering, we need to check the latency
126 * timer as certain BIOSes forget to set it properly.
128 unsigned int pcibios_max_latency
= 255;
130 /* If set, the PCIe ARI capability will not be used. */
131 static bool pcie_ari_disabled
;
133 /* If set, the PCIe ATS capability will not be used. */
134 static bool pcie_ats_disabled
;
136 /* If set, the PCI config space of each device is printed during boot. */
139 bool pci_ats_disabled(void)
141 return pcie_ats_disabled
;
143 EXPORT_SYMBOL_GPL(pci_ats_disabled
);
145 /* Disable bridge_d3 for all PCIe ports */
146 static bool pci_bridge_d3_disable
;
147 /* Force bridge_d3 for all PCIe ports */
148 static bool pci_bridge_d3_force
;
150 static int __init
pcie_port_pm_setup(char *str
)
152 if (!strcmp(str
, "off"))
153 pci_bridge_d3_disable
= true;
154 else if (!strcmp(str
, "force"))
155 pci_bridge_d3_force
= true;
158 __setup("pcie_port_pm=", pcie_port_pm_setup
);
160 /* Time to wait after a reset for device to become responsive */
161 #define PCIE_RESET_READY_POLL_MS 60000
164 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
165 * @bus: pointer to PCI bus structure to search
167 * Given a PCI bus, returns the highest PCI bus number present in the set
168 * including the given PCI bus and its list of child PCI buses.
170 unsigned char pci_bus_max_busnr(struct pci_bus
*bus
)
173 unsigned char max
, n
;
175 max
= bus
->busn_res
.end
;
176 list_for_each_entry(tmp
, &bus
->children
, node
) {
177 n
= pci_bus_max_busnr(tmp
);
183 EXPORT_SYMBOL_GPL(pci_bus_max_busnr
);
186 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
187 * @pdev: the PCI device
189 * Returns error bits set in PCI_STATUS and clears them.
191 int pci_status_get_and_clear_errors(struct pci_dev
*pdev
)
196 ret
= pci_read_config_word(pdev
, PCI_STATUS
, &status
);
197 if (ret
!= PCIBIOS_SUCCESSFUL
)
200 status
&= PCI_STATUS_ERROR_BITS
;
202 pci_write_config_word(pdev
, PCI_STATUS
, status
);
206 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors
);
208 #ifdef CONFIG_HAS_IOMEM
209 void __iomem
*pci_ioremap_bar(struct pci_dev
*pdev
, int bar
)
211 struct resource
*res
= &pdev
->resource
[bar
];
214 * Make sure the BAR is actually a memory resource, not an IO resource
216 if (res
->flags
& IORESOURCE_UNSET
|| !(res
->flags
& IORESOURCE_MEM
)) {
217 pci_warn(pdev
, "can't ioremap BAR %d: %pR\n", bar
, res
);
220 return ioremap(res
->start
, resource_size(res
));
222 EXPORT_SYMBOL_GPL(pci_ioremap_bar
);
224 void __iomem
*pci_ioremap_wc_bar(struct pci_dev
*pdev
, int bar
)
227 * Make sure the BAR is actually a memory resource, not an IO resource
229 if (!(pci_resource_flags(pdev
, bar
) & IORESOURCE_MEM
)) {
233 return ioremap_wc(pci_resource_start(pdev
, bar
),
234 pci_resource_len(pdev
, bar
));
236 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar
);
240 * pci_dev_str_match_path - test if a path string matches a device
241 * @dev: the PCI device to test
242 * @path: string to match the device against
243 * @endptr: pointer to the string after the match
245 * Test if a string (typically from a kernel parameter) formatted as a
246 * path of device/function addresses matches a PCI device. The string must
249 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
251 * A path for a device can be obtained using 'lspci -t'. Using a path
252 * is more robust against bus renumbering than using only a single bus,
253 * device and function address.
255 * Returns 1 if the string matches the device, 0 if it does not and
256 * a negative error code if it fails to parse the string.
258 static int pci_dev_str_match_path(struct pci_dev
*dev
, const char *path
,
262 int seg
, bus
, slot
, func
;
266 *endptr
= strchrnul(path
, ';');
268 wpath
= kmemdup_nul(path
, *endptr
- path
, GFP_KERNEL
);
273 p
= strrchr(wpath
, '/');
276 ret
= sscanf(p
, "/%x.%x%c", &slot
, &func
, &end
);
282 if (dev
->devfn
!= PCI_DEVFN(slot
, func
)) {
288 * Note: we don't need to get a reference to the upstream
289 * bridge because we hold a reference to the top level
290 * device which should hold a reference to the bridge,
293 dev
= pci_upstream_bridge(dev
);
302 ret
= sscanf(wpath
, "%x:%x:%x.%x%c", &seg
, &bus
, &slot
,
306 ret
= sscanf(wpath
, "%x:%x.%x%c", &bus
, &slot
, &func
, &end
);
313 ret
= (seg
== pci_domain_nr(dev
->bus
) &&
314 bus
== dev
->bus
->number
&&
315 dev
->devfn
== PCI_DEVFN(slot
, func
));
323 * pci_dev_str_match - test if a string matches a device
324 * @dev: the PCI device to test
325 * @p: string to match the device against
326 * @endptr: pointer to the string after the match
328 * Test if a string (typically from a kernel parameter) matches a specified
329 * PCI device. The string may be of one of the following formats:
331 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
332 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
334 * The first format specifies a PCI bus/device/function address which
335 * may change if new hardware is inserted, if motherboard firmware changes,
336 * or due to changes caused in kernel parameters. If the domain is
337 * left unspecified, it is taken to be 0. In order to be robust against
338 * bus renumbering issues, a path of PCI device/function numbers may be used
339 * to address the specific device. The path for a device can be determined
340 * through the use of 'lspci -t'.
342 * The second format matches devices using IDs in the configuration
343 * space which may match multiple devices in the system. A value of 0
344 * for any field will match all devices. (Note: this differs from
345 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
346 * legacy reasons and convenience so users don't have to specify
347 * FFFFFFFFs on the command line.)
349 * Returns 1 if the string matches the device, 0 if it does not and
350 * a negative error code if the string cannot be parsed.
352 static int pci_dev_str_match(struct pci_dev
*dev
, const char *p
,
357 unsigned short vendor
, device
, subsystem_vendor
, subsystem_device
;
359 if (strncmp(p
, "pci:", 4) == 0) {
360 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
362 ret
= sscanf(p
, "%hx:%hx:%hx:%hx%n", &vendor
, &device
,
363 &subsystem_vendor
, &subsystem_device
, &count
);
365 ret
= sscanf(p
, "%hx:%hx%n", &vendor
, &device
, &count
);
369 subsystem_vendor
= 0;
370 subsystem_device
= 0;
375 if ((!vendor
|| vendor
== dev
->vendor
) &&
376 (!device
|| device
== dev
->device
) &&
377 (!subsystem_vendor
||
378 subsystem_vendor
== dev
->subsystem_vendor
) &&
379 (!subsystem_device
||
380 subsystem_device
== dev
->subsystem_device
))
384 * PCI Bus, Device, Function IDs are specified
385 * (optionally, may include a path of devfns following it)
387 ret
= pci_dev_str_match_path(dev
, p
, &p
);
402 static u8
__pci_find_next_cap_ttl(struct pci_bus
*bus
, unsigned int devfn
,
403 u8 pos
, int cap
, int *ttl
)
408 pci_bus_read_config_byte(bus
, devfn
, pos
, &pos
);
414 pci_bus_read_config_word(bus
, devfn
, pos
, &ent
);
426 static u8
__pci_find_next_cap(struct pci_bus
*bus
, unsigned int devfn
,
429 int ttl
= PCI_FIND_CAP_TTL
;
431 return __pci_find_next_cap_ttl(bus
, devfn
, pos
, cap
, &ttl
);
434 u8
pci_find_next_capability(struct pci_dev
*dev
, u8 pos
, int cap
)
436 return __pci_find_next_cap(dev
->bus
, dev
->devfn
,
437 pos
+ PCI_CAP_LIST_NEXT
, cap
);
439 EXPORT_SYMBOL_GPL(pci_find_next_capability
);
441 static u8
__pci_bus_find_cap_start(struct pci_bus
*bus
,
442 unsigned int devfn
, u8 hdr_type
)
446 pci_bus_read_config_word(bus
, devfn
, PCI_STATUS
, &status
);
447 if (!(status
& PCI_STATUS_CAP_LIST
))
451 case PCI_HEADER_TYPE_NORMAL
:
452 case PCI_HEADER_TYPE_BRIDGE
:
453 return PCI_CAPABILITY_LIST
;
454 case PCI_HEADER_TYPE_CARDBUS
:
455 return PCI_CB_CAPABILITY_LIST
;
462 * pci_find_capability - query for devices' capabilities
463 * @dev: PCI device to query
464 * @cap: capability code
466 * Tell if a device supports a given PCI capability.
467 * Returns the address of the requested capability structure within the
468 * device's PCI configuration space or 0 in case the device does not
469 * support it. Possible values for @cap include:
471 * %PCI_CAP_ID_PM Power Management
472 * %PCI_CAP_ID_AGP Accelerated Graphics Port
473 * %PCI_CAP_ID_VPD Vital Product Data
474 * %PCI_CAP_ID_SLOTID Slot Identification
475 * %PCI_CAP_ID_MSI Message Signalled Interrupts
476 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
477 * %PCI_CAP_ID_PCIX PCI-X
478 * %PCI_CAP_ID_EXP PCI Express
480 u8
pci_find_capability(struct pci_dev
*dev
, int cap
)
484 pos
= __pci_bus_find_cap_start(dev
->bus
, dev
->devfn
, dev
->hdr_type
);
486 pos
= __pci_find_next_cap(dev
->bus
, dev
->devfn
, pos
, cap
);
490 EXPORT_SYMBOL(pci_find_capability
);
493 * pci_bus_find_capability - query for devices' capabilities
494 * @bus: the PCI bus to query
495 * @devfn: PCI device to query
496 * @cap: capability code
498 * Like pci_find_capability() but works for PCI devices that do not have a
499 * pci_dev structure set up yet.
501 * Returns the address of the requested capability structure within the
502 * device's PCI configuration space or 0 in case the device does not
505 u8
pci_bus_find_capability(struct pci_bus
*bus
, unsigned int devfn
, int cap
)
509 pci_bus_read_config_byte(bus
, devfn
, PCI_HEADER_TYPE
, &hdr_type
);
511 pos
= __pci_bus_find_cap_start(bus
, devfn
, hdr_type
& 0x7f);
513 pos
= __pci_find_next_cap(bus
, devfn
, pos
, cap
);
517 EXPORT_SYMBOL(pci_bus_find_capability
);
520 * pci_find_next_ext_capability - Find an extended capability
521 * @dev: PCI device to query
522 * @start: address at which to start looking (0 to start at beginning of list)
523 * @cap: capability code
525 * Returns the address of the next matching extended capability structure
526 * within the device's PCI configuration space or 0 if the device does
527 * not support it. Some capabilities can occur several times, e.g., the
528 * vendor-specific capability, and this provides a way to find them all.
530 u16
pci_find_next_ext_capability(struct pci_dev
*dev
, u16 start
, int cap
)
534 u16 pos
= PCI_CFG_SPACE_SIZE
;
536 /* minimum 8 bytes per capability */
537 ttl
= (PCI_CFG_SPACE_EXP_SIZE
- PCI_CFG_SPACE_SIZE
) / 8;
539 if (dev
->cfg_size
<= PCI_CFG_SPACE_SIZE
)
545 if (pci_read_config_dword(dev
, pos
, &header
) != PCIBIOS_SUCCESSFUL
)
549 * If we have no capabilities, this is indicated by cap ID,
550 * cap version and next pointer all being 0.
556 if (PCI_EXT_CAP_ID(header
) == cap
&& pos
!= start
)
559 pos
= PCI_EXT_CAP_NEXT(header
);
560 if (pos
< PCI_CFG_SPACE_SIZE
)
563 if (pci_read_config_dword(dev
, pos
, &header
) != PCIBIOS_SUCCESSFUL
)
569 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability
);
572 * pci_find_ext_capability - Find an extended capability
573 * @dev: PCI device to query
574 * @cap: capability code
576 * Returns the address of the requested extended capability structure
577 * within the device's PCI configuration space or 0 if the device does
578 * not support it. Possible values for @cap include:
580 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
581 * %PCI_EXT_CAP_ID_VC Virtual Channel
582 * %PCI_EXT_CAP_ID_DSN Device Serial Number
583 * %PCI_EXT_CAP_ID_PWR Power Budgeting
585 u16
pci_find_ext_capability(struct pci_dev
*dev
, int cap
)
587 return pci_find_next_ext_capability(dev
, 0, cap
);
589 EXPORT_SYMBOL_GPL(pci_find_ext_capability
);
592 * pci_get_dsn - Read and return the 8-byte Device Serial Number
593 * @dev: PCI device to query
595 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
598 * Returns the DSN, or zero if the capability does not exist.
600 u64
pci_get_dsn(struct pci_dev
*dev
)
606 pos
= pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_DSN
);
611 * The Device Serial Number is two dwords offset 4 bytes from the
612 * capability position. The specification says that the first dword is
613 * the lower half, and the second dword is the upper half.
616 pci_read_config_dword(dev
, pos
, &dword
);
618 pci_read_config_dword(dev
, pos
+ 4, &dword
);
619 dsn
|= ((u64
)dword
) << 32;
623 EXPORT_SYMBOL_GPL(pci_get_dsn
);
625 static u8
__pci_find_next_ht_cap(struct pci_dev
*dev
, u8 pos
, int ht_cap
)
627 int rc
, ttl
= PCI_FIND_CAP_TTL
;
630 if (ht_cap
== HT_CAPTYPE_SLAVE
|| ht_cap
== HT_CAPTYPE_HOST
)
631 mask
= HT_3BIT_CAP_MASK
;
633 mask
= HT_5BIT_CAP_MASK
;
635 pos
= __pci_find_next_cap_ttl(dev
->bus
, dev
->devfn
, pos
,
636 PCI_CAP_ID_HT
, &ttl
);
638 rc
= pci_read_config_byte(dev
, pos
+ 3, &cap
);
639 if (rc
!= PCIBIOS_SUCCESSFUL
)
642 if ((cap
& mask
) == ht_cap
)
645 pos
= __pci_find_next_cap_ttl(dev
->bus
, dev
->devfn
,
646 pos
+ PCI_CAP_LIST_NEXT
,
647 PCI_CAP_ID_HT
, &ttl
);
654 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
655 * @dev: PCI device to query
656 * @pos: Position from which to continue searching
657 * @ht_cap: HyperTransport capability code
659 * To be used in conjunction with pci_find_ht_capability() to search for
660 * all capabilities matching @ht_cap. @pos should always be a value returned
661 * from pci_find_ht_capability().
663 * NB. To be 100% safe against broken PCI devices, the caller should take
664 * steps to avoid an infinite loop.
666 u8
pci_find_next_ht_capability(struct pci_dev
*dev
, u8 pos
, int ht_cap
)
668 return __pci_find_next_ht_cap(dev
, pos
+ PCI_CAP_LIST_NEXT
, ht_cap
);
670 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability
);
673 * pci_find_ht_capability - query a device's HyperTransport capabilities
674 * @dev: PCI device to query
675 * @ht_cap: HyperTransport capability code
677 * Tell if a device supports a given HyperTransport capability.
678 * Returns an address within the device's PCI configuration space
679 * or 0 in case the device does not support the request capability.
680 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
681 * which has a HyperTransport capability matching @ht_cap.
683 u8
pci_find_ht_capability(struct pci_dev
*dev
, int ht_cap
)
687 pos
= __pci_bus_find_cap_start(dev
->bus
, dev
->devfn
, dev
->hdr_type
);
689 pos
= __pci_find_next_ht_cap(dev
, pos
, ht_cap
);
693 EXPORT_SYMBOL_GPL(pci_find_ht_capability
);
696 * pci_find_parent_resource - return resource region of parent bus of given
698 * @dev: PCI device structure contains resources to be searched
699 * @res: child resource record for which parent is sought
701 * For given resource region of given device, return the resource region of
702 * parent bus the given region is contained in.
704 struct resource
*pci_find_parent_resource(const struct pci_dev
*dev
,
705 struct resource
*res
)
707 const struct pci_bus
*bus
= dev
->bus
;
711 pci_bus_for_each_resource(bus
, r
, i
) {
714 if (resource_contains(r
, res
)) {
717 * If the window is prefetchable but the BAR is
718 * not, the allocator made a mistake.
720 if (r
->flags
& IORESOURCE_PREFETCH
&&
721 !(res
->flags
& IORESOURCE_PREFETCH
))
725 * If we're below a transparent bridge, there may
726 * be both a positively-decoded aperture and a
727 * subtractively-decoded region that contain the BAR.
728 * We want the positively-decoded one, so this depends
729 * on pci_bus_for_each_resource() giving us those
737 EXPORT_SYMBOL(pci_find_parent_resource
);
740 * pci_find_resource - Return matching PCI device resource
741 * @dev: PCI device to query
742 * @res: Resource to look for
744 * Goes over standard PCI resources (BARs) and checks if the given resource
745 * is partially or fully contained in any of them. In that case the
746 * matching resource is returned, %NULL otherwise.
748 struct resource
*pci_find_resource(struct pci_dev
*dev
, struct resource
*res
)
752 for (i
= 0; i
< PCI_STD_NUM_BARS
; i
++) {
753 struct resource
*r
= &dev
->resource
[i
];
755 if (r
->start
&& resource_contains(r
, res
))
761 EXPORT_SYMBOL(pci_find_resource
);
764 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
765 * @dev: the PCI device to operate on
766 * @pos: config space offset of status word
767 * @mask: mask of bit(s) to care about in status word
769 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
771 int pci_wait_for_pending(struct pci_dev
*dev
, int pos
, u16 mask
)
775 /* Wait for Transaction Pending bit clean */
776 for (i
= 0; i
< 4; i
++) {
779 msleep((1 << (i
- 1)) * 100);
781 pci_read_config_word(dev
, pos
, &status
);
782 if (!(status
& mask
))
789 static int pci_acs_enable
;
792 * pci_request_acs - ask for ACS to be enabled if supported
794 void pci_request_acs(void)
799 static const char *disable_acs_redir_param
;
802 * pci_disable_acs_redir - disable ACS redirect capabilities
803 * @dev: the PCI device
805 * For only devices specified in the disable_acs_redir parameter.
807 static void pci_disable_acs_redir(struct pci_dev
*dev
)
814 if (!disable_acs_redir_param
)
817 p
= disable_acs_redir_param
;
819 ret
= pci_dev_str_match(dev
, p
, &p
);
821 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
822 disable_acs_redir_param
);
825 } else if (ret
== 1) {
830 if (*p
!= ';' && *p
!= ',') {
831 /* End of param or invalid format */
840 if (!pci_dev_specific_disable_acs_redir(dev
))
845 pci_warn(dev
, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
849 pci_read_config_word(dev
, pos
+ PCI_ACS_CTRL
, &ctrl
);
851 /* P2P Request & Completion Redirect */
852 ctrl
&= ~(PCI_ACS_RR
| PCI_ACS_CR
| PCI_ACS_EC
);
854 pci_write_config_word(dev
, pos
+ PCI_ACS_CTRL
, ctrl
);
856 pci_info(dev
, "disabled ACS redirect\n");
860 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
861 * @dev: the PCI device
863 static void pci_std_enable_acs(struct pci_dev
*dev
)
873 pci_read_config_word(dev
, pos
+ PCI_ACS_CAP
, &cap
);
874 pci_read_config_word(dev
, pos
+ PCI_ACS_CTRL
, &ctrl
);
876 /* Source Validation */
877 ctrl
|= (cap
& PCI_ACS_SV
);
879 /* P2P Request Redirect */
880 ctrl
|= (cap
& PCI_ACS_RR
);
882 /* P2P Completion Redirect */
883 ctrl
|= (cap
& PCI_ACS_CR
);
885 /* Upstream Forwarding */
886 ctrl
|= (cap
& PCI_ACS_UF
);
888 /* Enable Translation Blocking for external devices */
889 if (dev
->external_facing
|| dev
->untrusted
)
890 ctrl
|= (cap
& PCI_ACS_TB
);
892 pci_write_config_word(dev
, pos
+ PCI_ACS_CTRL
, ctrl
);
896 * pci_enable_acs - enable ACS if hardware support it
897 * @dev: the PCI device
899 static void pci_enable_acs(struct pci_dev
*dev
)
902 goto disable_acs_redir
;
904 if (!pci_dev_specific_enable_acs(dev
))
905 goto disable_acs_redir
;
907 pci_std_enable_acs(dev
);
911 * Note: pci_disable_acs_redir() must be called even if ACS was not
912 * enabled by the kernel because it may have been enabled by
913 * platform firmware. So if we are told to disable it, we should
914 * always disable it after setting the kernel's default
917 pci_disable_acs_redir(dev
);
921 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
922 * @dev: PCI device to have its BARs restored
924 * Restore the BAR values for a given device, so as to make it
925 * accessible by its driver.
927 static void pci_restore_bars(struct pci_dev
*dev
)
931 for (i
= 0; i
< PCI_BRIDGE_RESOURCES
; i
++)
932 pci_update_resource(dev
, i
);
935 static const struct pci_platform_pm_ops
*pci_platform_pm
;
937 int pci_set_platform_pm(const struct pci_platform_pm_ops
*ops
)
939 if (!ops
->is_manageable
|| !ops
->set_state
|| !ops
->get_state
||
940 !ops
->choose_state
|| !ops
->set_wakeup
|| !ops
->need_resume
)
942 pci_platform_pm
= ops
;
946 static inline bool platform_pci_power_manageable(struct pci_dev
*dev
)
948 return pci_platform_pm
? pci_platform_pm
->is_manageable(dev
) : false;
951 static inline int platform_pci_set_power_state(struct pci_dev
*dev
,
954 return pci_platform_pm
? pci_platform_pm
->set_state(dev
, t
) : -ENOSYS
;
957 static inline pci_power_t
platform_pci_get_power_state(struct pci_dev
*dev
)
959 return pci_platform_pm
? pci_platform_pm
->get_state(dev
) : PCI_UNKNOWN
;
962 static inline void platform_pci_refresh_power_state(struct pci_dev
*dev
)
964 if (pci_platform_pm
&& pci_platform_pm
->refresh_state
)
965 pci_platform_pm
->refresh_state(dev
);
968 static inline pci_power_t
platform_pci_choose_state(struct pci_dev
*dev
)
970 return pci_platform_pm
?
971 pci_platform_pm
->choose_state(dev
) : PCI_POWER_ERROR
;
974 static inline int platform_pci_set_wakeup(struct pci_dev
*dev
, bool enable
)
976 return pci_platform_pm
?
977 pci_platform_pm
->set_wakeup(dev
, enable
) : -ENODEV
;
980 static inline bool platform_pci_need_resume(struct pci_dev
*dev
)
982 return pci_platform_pm
? pci_platform_pm
->need_resume(dev
) : false;
985 static inline bool platform_pci_bridge_d3(struct pci_dev
*dev
)
987 if (pci_platform_pm
&& pci_platform_pm
->bridge_d3
)
988 return pci_platform_pm
->bridge_d3(dev
);
993 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
995 * @dev: PCI device to handle.
996 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
999 * -EINVAL if the requested state is invalid.
1000 * -EIO if device does not support PCI PM or its PM capabilities register has a
1001 * wrong version, or device doesn't support the requested state.
1002 * 0 if device already is in the requested state.
1003 * 0 if device's power state has been successfully changed.
1005 static int pci_raw_set_power_state(struct pci_dev
*dev
, pci_power_t state
)
1008 bool need_restore
= false;
1010 /* Check if we're already there */
1011 if (dev
->current_state
== state
)
1017 if (state
< PCI_D0
|| state
> PCI_D3hot
)
1021 * Validate transition: We can enter D0 from any state, but if
1022 * we're already in a low-power state, we can only go deeper. E.g.,
1023 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1024 * we'd have to go from D3 to D0, then to D1.
1026 if (state
!= PCI_D0
&& dev
->current_state
<= PCI_D3cold
1027 && dev
->current_state
> state
) {
1028 pci_err(dev
, "invalid power transition (from %s to %s)\n",
1029 pci_power_name(dev
->current_state
),
1030 pci_power_name(state
));
1034 /* Check if this device supports the desired state */
1035 if ((state
== PCI_D1
&& !dev
->d1_support
)
1036 || (state
== PCI_D2
&& !dev
->d2_support
))
1039 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
1040 if (pmcsr
== (u16
) ~0) {
1041 pci_err(dev
, "can't change power state from %s to %s (config space inaccessible)\n",
1042 pci_power_name(dev
->current_state
),
1043 pci_power_name(state
));
1048 * If we're (effectively) in D3, force entire word to 0.
1049 * This doesn't affect PME_Status, disables PME_En, and
1050 * sets PowerState to 0.
1052 switch (dev
->current_state
) {
1056 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
1061 case PCI_UNKNOWN
: /* Boot-up */
1062 if ((pmcsr
& PCI_PM_CTRL_STATE_MASK
) == PCI_D3hot
1063 && !(pmcsr
& PCI_PM_CTRL_NO_SOFT_RESET
))
1064 need_restore
= true;
1065 fallthrough
; /* force to D0 */
1071 /* Enter specified state */
1072 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, pmcsr
);
1075 * Mandatory power management transition delays; see PCI PM 1.1
1078 if (state
== PCI_D3hot
|| dev
->current_state
== PCI_D3hot
)
1079 pci_dev_d3_sleep(dev
);
1080 else if (state
== PCI_D2
|| dev
->current_state
== PCI_D2
)
1081 udelay(PCI_PM_D2_DELAY
);
1083 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
1084 dev
->current_state
= (pmcsr
& PCI_PM_CTRL_STATE_MASK
);
1085 if (dev
->current_state
!= state
)
1086 pci_info_ratelimited(dev
, "refused to change power state from %s to %s\n",
1087 pci_power_name(dev
->current_state
),
1088 pci_power_name(state
));
1091 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1092 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1093 * from D3hot to D0 _may_ perform an internal reset, thereby
1094 * going to "D0 Uninitialized" rather than "D0 Initialized".
1095 * For example, at least some versions of the 3c905B and the
1096 * 3c556B exhibit this behaviour.
1098 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1099 * devices in a D3hot state at boot. Consequently, we need to
1100 * restore at least the BARs so that the device will be
1101 * accessible to its driver.
1104 pci_restore_bars(dev
);
1107 pcie_aspm_pm_state_change(dev
->bus
->self
);
1113 * pci_update_current_state - Read power state of given device and cache it
1114 * @dev: PCI device to handle.
1115 * @state: State to cache in case the device doesn't have the PM capability
1117 * The power state is read from the PMCSR register, which however is
1118 * inaccessible in D3cold. The platform firmware is therefore queried first
1119 * to detect accessibility of the register. In case the platform firmware
1120 * reports an incorrect state or the device isn't power manageable by the
1121 * platform at all, we try to detect D3cold by testing accessibility of the
1122 * vendor ID in config space.
1124 void pci_update_current_state(struct pci_dev
*dev
, pci_power_t state
)
1126 if (platform_pci_get_power_state(dev
) == PCI_D3cold
||
1127 !pci_device_is_present(dev
)) {
1128 dev
->current_state
= PCI_D3cold
;
1129 } else if (dev
->pm_cap
) {
1132 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
1133 dev
->current_state
= (pmcsr
& PCI_PM_CTRL_STATE_MASK
);
1135 dev
->current_state
= state
;
1140 * pci_refresh_power_state - Refresh the given device's power state data
1141 * @dev: Target PCI device.
1143 * Ask the platform to refresh the devices power state information and invoke
1144 * pci_update_current_state() to update its current PCI power state.
1146 void pci_refresh_power_state(struct pci_dev
*dev
)
1148 if (platform_pci_power_manageable(dev
))
1149 platform_pci_refresh_power_state(dev
);
1151 pci_update_current_state(dev
, dev
->current_state
);
1155 * pci_platform_power_transition - Use platform to change device power state
1156 * @dev: PCI device to handle.
1157 * @state: State to put the device into.
1159 int pci_platform_power_transition(struct pci_dev
*dev
, pci_power_t state
)
1163 if (platform_pci_power_manageable(dev
)) {
1164 error
= platform_pci_set_power_state(dev
, state
);
1166 pci_update_current_state(dev
, state
);
1170 if (error
&& !dev
->pm_cap
) /* Fall back to PCI_D0 */
1171 dev
->current_state
= PCI_D0
;
1175 EXPORT_SYMBOL_GPL(pci_platform_power_transition
);
1177 static int pci_resume_one(struct pci_dev
*pci_dev
, void *ign
)
1179 pm_request_resume(&pci_dev
->dev
);
1184 * pci_resume_bus - Walk given bus and runtime resume devices on it
1185 * @bus: Top bus of the subtree to walk.
1187 void pci_resume_bus(struct pci_bus
*bus
)
1190 pci_walk_bus(bus
, pci_resume_one
, NULL
);
1193 static int pci_dev_wait(struct pci_dev
*dev
, char *reset_type
, int timeout
)
1199 * After reset, the device should not silently discard config
1200 * requests, but it may still indicate that it needs more time by
1201 * responding to them with CRS completions. The Root Port will
1202 * generally synthesize ~0 data to complete the read (except when
1203 * CRS SV is enabled and the read was for the Vendor ID; in that
1204 * case it synthesizes 0x0001 data).
1206 * Wait for the device to return a non-CRS completion. Read the
1207 * Command register instead of Vendor ID so we don't have to
1208 * contend with the CRS SV value.
1210 pci_read_config_dword(dev
, PCI_COMMAND
, &id
);
1212 if (delay
> timeout
) {
1213 pci_warn(dev
, "not ready %dms after %s; giving up\n",
1214 delay
- 1, reset_type
);
1219 pci_info(dev
, "not ready %dms after %s; waiting\n",
1220 delay
- 1, reset_type
);
1224 pci_read_config_dword(dev
, PCI_COMMAND
, &id
);
1228 pci_info(dev
, "ready %dms after %s\n", delay
- 1,
1235 * pci_power_up - Put the given device into D0
1236 * @dev: PCI device to power up
1238 int pci_power_up(struct pci_dev
*dev
)
1240 pci_platform_power_transition(dev
, PCI_D0
);
1243 * Mandatory power management transition delays are handled in
1244 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1245 * corresponding bridge.
1247 if (dev
->runtime_d3cold
) {
1249 * When powering on a bridge from D3cold, the whole hierarchy
1250 * may be powered on into D0uninitialized state, resume them to
1251 * give them a chance to suspend again
1253 pci_resume_bus(dev
->subordinate
);
1256 return pci_raw_set_power_state(dev
, PCI_D0
);
1260 * __pci_dev_set_current_state - Set current state of a PCI device
1261 * @dev: Device to handle
1262 * @data: pointer to state to be set
1264 static int __pci_dev_set_current_state(struct pci_dev
*dev
, void *data
)
1266 pci_power_t state
= *(pci_power_t
*)data
;
1268 dev
->current_state
= state
;
1273 * pci_bus_set_current_state - Walk given bus and set current state of devices
1274 * @bus: Top bus of the subtree to walk.
1275 * @state: state to be set
1277 void pci_bus_set_current_state(struct pci_bus
*bus
, pci_power_t state
)
1280 pci_walk_bus(bus
, __pci_dev_set_current_state
, &state
);
1284 * pci_set_power_state - Set the power state of a PCI device
1285 * @dev: PCI device to handle.
1286 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1288 * Transition a device to a new power state, using the platform firmware and/or
1289 * the device's PCI PM registers.
1292 * -EINVAL if the requested state is invalid.
1293 * -EIO if device does not support PCI PM or its PM capabilities register has a
1294 * wrong version, or device doesn't support the requested state.
1295 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1296 * 0 if device already is in the requested state.
1297 * 0 if the transition is to D3 but D3 is not supported.
1298 * 0 if device's power state has been successfully changed.
1300 int pci_set_power_state(struct pci_dev
*dev
, pci_power_t state
)
1304 /* Bound the state we're entering */
1305 if (state
> PCI_D3cold
)
1307 else if (state
< PCI_D0
)
1309 else if ((state
== PCI_D1
|| state
== PCI_D2
) && pci_no_d1d2(dev
))
1312 * If the device or the parent bridge do not support PCI
1313 * PM, ignore the request if we're doing anything other
1314 * than putting it into D0 (which would only happen on
1319 /* Check if we're already there */
1320 if (dev
->current_state
== state
)
1323 if (state
== PCI_D0
)
1324 return pci_power_up(dev
);
1327 * This device is quirked not to be put into D3, so don't put it in
1330 if (state
>= PCI_D3hot
&& (dev
->dev_flags
& PCI_DEV_FLAGS_NO_D3
))
1334 * To put device in D3cold, we put device into D3hot in native
1335 * way, then put device into D3cold with platform ops
1337 error
= pci_raw_set_power_state(dev
, state
> PCI_D3hot
?
1340 if (pci_platform_power_transition(dev
, state
))
1343 /* Powering off a bridge may power off the whole hierarchy */
1344 if (state
== PCI_D3cold
)
1345 pci_bus_set_current_state(dev
->subordinate
, PCI_D3cold
);
1349 EXPORT_SYMBOL(pci_set_power_state
);
1352 * pci_choose_state - Choose the power state of a PCI device
1353 * @dev: PCI device to be suspended
1354 * @state: target sleep state for the whole system. This is the value
1355 * that is passed to suspend() function.
1357 * Returns PCI power state suitable for given device and given system
1360 pci_power_t
pci_choose_state(struct pci_dev
*dev
, pm_message_t state
)
1367 ret
= platform_pci_choose_state(dev
);
1368 if (ret
!= PCI_POWER_ERROR
)
1371 switch (state
.event
) {
1374 case PM_EVENT_FREEZE
:
1375 case PM_EVENT_PRETHAW
:
1376 /* REVISIT both freeze and pre-thaw "should" use D0 */
1377 case PM_EVENT_SUSPEND
:
1378 case PM_EVENT_HIBERNATE
:
1381 pci_info(dev
, "unrecognized suspend event %d\n",
1387 EXPORT_SYMBOL(pci_choose_state
);
1389 #define PCI_EXP_SAVE_REGS 7
1391 static struct pci_cap_saved_state
*_pci_find_saved_cap(struct pci_dev
*pci_dev
,
1392 u16 cap
, bool extended
)
1394 struct pci_cap_saved_state
*tmp
;
1396 hlist_for_each_entry(tmp
, &pci_dev
->saved_cap_space
, next
) {
1397 if (tmp
->cap
.cap_extended
== extended
&& tmp
->cap
.cap_nr
== cap
)
1403 struct pci_cap_saved_state
*pci_find_saved_cap(struct pci_dev
*dev
, char cap
)
1405 return _pci_find_saved_cap(dev
, cap
, false);
1408 struct pci_cap_saved_state
*pci_find_saved_ext_cap(struct pci_dev
*dev
, u16 cap
)
1410 return _pci_find_saved_cap(dev
, cap
, true);
1413 static int pci_save_pcie_state(struct pci_dev
*dev
)
1416 struct pci_cap_saved_state
*save_state
;
1419 if (!pci_is_pcie(dev
))
1422 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_EXP
);
1424 pci_err(dev
, "buffer not found in %s\n", __func__
);
1428 cap
= (u16
*)&save_state
->cap
.data
[0];
1429 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL
, &cap
[i
++]);
1430 pcie_capability_read_word(dev
, PCI_EXP_LNKCTL
, &cap
[i
++]);
1431 pcie_capability_read_word(dev
, PCI_EXP_SLTCTL
, &cap
[i
++]);
1432 pcie_capability_read_word(dev
, PCI_EXP_RTCTL
, &cap
[i
++]);
1433 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL2
, &cap
[i
++]);
1434 pcie_capability_read_word(dev
, PCI_EXP_LNKCTL2
, &cap
[i
++]);
1435 pcie_capability_read_word(dev
, PCI_EXP_SLTCTL2
, &cap
[i
++]);
1440 static void pci_restore_pcie_state(struct pci_dev
*dev
)
1443 struct pci_cap_saved_state
*save_state
;
1446 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_EXP
);
1450 cap
= (u16
*)&save_state
->cap
.data
[0];
1451 pcie_capability_write_word(dev
, PCI_EXP_DEVCTL
, cap
[i
++]);
1452 pcie_capability_write_word(dev
, PCI_EXP_LNKCTL
, cap
[i
++]);
1453 pcie_capability_write_word(dev
, PCI_EXP_SLTCTL
, cap
[i
++]);
1454 pcie_capability_write_word(dev
, PCI_EXP_RTCTL
, cap
[i
++]);
1455 pcie_capability_write_word(dev
, PCI_EXP_DEVCTL2
, cap
[i
++]);
1456 pcie_capability_write_word(dev
, PCI_EXP_LNKCTL2
, cap
[i
++]);
1457 pcie_capability_write_word(dev
, PCI_EXP_SLTCTL2
, cap
[i
++]);
1460 static int pci_save_pcix_state(struct pci_dev
*dev
)
1463 struct pci_cap_saved_state
*save_state
;
1465 pos
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
1469 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_PCIX
);
1471 pci_err(dev
, "buffer not found in %s\n", __func__
);
1475 pci_read_config_word(dev
, pos
+ PCI_X_CMD
,
1476 (u16
*)save_state
->cap
.data
);
1481 static void pci_restore_pcix_state(struct pci_dev
*dev
)
1484 struct pci_cap_saved_state
*save_state
;
1487 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_PCIX
);
1488 pos
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
1489 if (!save_state
|| !pos
)
1491 cap
= (u16
*)&save_state
->cap
.data
[0];
1493 pci_write_config_word(dev
, pos
+ PCI_X_CMD
, cap
[i
++]);
1496 static void pci_save_ltr_state(struct pci_dev
*dev
)
1499 struct pci_cap_saved_state
*save_state
;
1502 if (!pci_is_pcie(dev
))
1505 ltr
= pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_LTR
);
1509 save_state
= pci_find_saved_ext_cap(dev
, PCI_EXT_CAP_ID_LTR
);
1511 pci_err(dev
, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1515 cap
= (u16
*)&save_state
->cap
.data
[0];
1516 pci_read_config_word(dev
, ltr
+ PCI_LTR_MAX_SNOOP_LAT
, cap
++);
1517 pci_read_config_word(dev
, ltr
+ PCI_LTR_MAX_NOSNOOP_LAT
, cap
++);
1520 static void pci_restore_ltr_state(struct pci_dev
*dev
)
1522 struct pci_cap_saved_state
*save_state
;
1526 save_state
= pci_find_saved_ext_cap(dev
, PCI_EXT_CAP_ID_LTR
);
1527 ltr
= pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_LTR
);
1528 if (!save_state
|| !ltr
)
1531 cap
= (u16
*)&save_state
->cap
.data
[0];
1532 pci_write_config_word(dev
, ltr
+ PCI_LTR_MAX_SNOOP_LAT
, *cap
++);
1533 pci_write_config_word(dev
, ltr
+ PCI_LTR_MAX_NOSNOOP_LAT
, *cap
++);
1537 * pci_save_state - save the PCI configuration space of a device before
1539 * @dev: PCI device that we're dealing with
1541 int pci_save_state(struct pci_dev
*dev
)
1544 /* XXX: 100% dword access ok here? */
1545 for (i
= 0; i
< 16; i
++) {
1546 pci_read_config_dword(dev
, i
* 4, &dev
->saved_config_space
[i
]);
1547 pci_dbg(dev
, "saving config space at offset %#x (reading %#x)\n",
1548 i
* 4, dev
->saved_config_space
[i
]);
1550 dev
->state_saved
= true;
1552 i
= pci_save_pcie_state(dev
);
1556 i
= pci_save_pcix_state(dev
);
1560 pci_save_ltr_state(dev
);
1561 pci_save_aspm_l1ss_state(dev
);
1562 pci_save_dpc_state(dev
);
1563 pci_save_aer_state(dev
);
1564 pci_save_ptm_state(dev
);
1565 return pci_save_vc_state(dev
);
1567 EXPORT_SYMBOL(pci_save_state
);
1569 static void pci_restore_config_dword(struct pci_dev
*pdev
, int offset
,
1570 u32 saved_val
, int retry
, bool force
)
1574 pci_read_config_dword(pdev
, offset
, &val
);
1575 if (!force
&& val
== saved_val
)
1579 pci_dbg(pdev
, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1580 offset
, val
, saved_val
);
1581 pci_write_config_dword(pdev
, offset
, saved_val
);
1585 pci_read_config_dword(pdev
, offset
, &val
);
1586 if (val
== saved_val
)
1593 static void pci_restore_config_space_range(struct pci_dev
*pdev
,
1594 int start
, int end
, int retry
,
1599 for (index
= end
; index
>= start
; index
--)
1600 pci_restore_config_dword(pdev
, 4 * index
,
1601 pdev
->saved_config_space
[index
],
1605 static void pci_restore_config_space(struct pci_dev
*pdev
)
1607 if (pdev
->hdr_type
== PCI_HEADER_TYPE_NORMAL
) {
1608 pci_restore_config_space_range(pdev
, 10, 15, 0, false);
1609 /* Restore BARs before the command register. */
1610 pci_restore_config_space_range(pdev
, 4, 9, 10, false);
1611 pci_restore_config_space_range(pdev
, 0, 3, 0, false);
1612 } else if (pdev
->hdr_type
== PCI_HEADER_TYPE_BRIDGE
) {
1613 pci_restore_config_space_range(pdev
, 12, 15, 0, false);
1616 * Force rewriting of prefetch registers to avoid S3 resume
1617 * issues on Intel PCI bridges that occur when these
1618 * registers are not explicitly written.
1620 pci_restore_config_space_range(pdev
, 9, 11, 0, true);
1621 pci_restore_config_space_range(pdev
, 0, 8, 0, false);
1623 pci_restore_config_space_range(pdev
, 0, 15, 0, false);
1627 static void pci_restore_rebar_state(struct pci_dev
*pdev
)
1629 unsigned int pos
, nbars
, i
;
1632 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_REBAR
);
1636 pci_read_config_dword(pdev
, pos
+ PCI_REBAR_CTRL
, &ctrl
);
1637 nbars
= (ctrl
& PCI_REBAR_CTRL_NBAR_MASK
) >>
1638 PCI_REBAR_CTRL_NBAR_SHIFT
;
1640 for (i
= 0; i
< nbars
; i
++, pos
+= 8) {
1641 struct resource
*res
;
1644 pci_read_config_dword(pdev
, pos
+ PCI_REBAR_CTRL
, &ctrl
);
1645 bar_idx
= ctrl
& PCI_REBAR_CTRL_BAR_IDX
;
1646 res
= pdev
->resource
+ bar_idx
;
1647 size
= ilog2(resource_size(res
)) - 20;
1648 ctrl
&= ~PCI_REBAR_CTRL_BAR_SIZE
;
1649 ctrl
|= size
<< PCI_REBAR_CTRL_BAR_SHIFT
;
1650 pci_write_config_dword(pdev
, pos
+ PCI_REBAR_CTRL
, ctrl
);
1655 * pci_restore_state - Restore the saved state of a PCI device
1656 * @dev: PCI device that we're dealing with
1658 void pci_restore_state(struct pci_dev
*dev
)
1660 if (!dev
->state_saved
)
1664 * Restore max latencies (in the LTR capability) before enabling
1665 * LTR itself (in the PCIe capability).
1667 pci_restore_ltr_state(dev
);
1668 pci_restore_aspm_l1ss_state(dev
);
1670 pci_restore_pcie_state(dev
);
1671 pci_restore_pasid_state(dev
);
1672 pci_restore_pri_state(dev
);
1673 pci_restore_ats_state(dev
);
1674 pci_restore_vc_state(dev
);
1675 pci_restore_rebar_state(dev
);
1676 pci_restore_dpc_state(dev
);
1677 pci_restore_ptm_state(dev
);
1679 pci_aer_clear_status(dev
);
1680 pci_restore_aer_state(dev
);
1682 pci_restore_config_space(dev
);
1684 pci_restore_pcix_state(dev
);
1685 pci_restore_msi_state(dev
);
1687 /* Restore ACS and IOV configuration state */
1688 pci_enable_acs(dev
);
1689 pci_restore_iov_state(dev
);
1691 dev
->state_saved
= false;
1693 EXPORT_SYMBOL(pci_restore_state
);
1695 struct pci_saved_state
{
1696 u32 config_space
[16];
1697 struct pci_cap_saved_data cap
[];
1701 * pci_store_saved_state - Allocate and return an opaque struct containing
1702 * the device saved state.
1703 * @dev: PCI device that we're dealing with
1705 * Return NULL if no state or error.
1707 struct pci_saved_state
*pci_store_saved_state(struct pci_dev
*dev
)
1709 struct pci_saved_state
*state
;
1710 struct pci_cap_saved_state
*tmp
;
1711 struct pci_cap_saved_data
*cap
;
1714 if (!dev
->state_saved
)
1717 size
= sizeof(*state
) + sizeof(struct pci_cap_saved_data
);
1719 hlist_for_each_entry(tmp
, &dev
->saved_cap_space
, next
)
1720 size
+= sizeof(struct pci_cap_saved_data
) + tmp
->cap
.size
;
1722 state
= kzalloc(size
, GFP_KERNEL
);
1726 memcpy(state
->config_space
, dev
->saved_config_space
,
1727 sizeof(state
->config_space
));
1730 hlist_for_each_entry(tmp
, &dev
->saved_cap_space
, next
) {
1731 size_t len
= sizeof(struct pci_cap_saved_data
) + tmp
->cap
.size
;
1732 memcpy(cap
, &tmp
->cap
, len
);
1733 cap
= (struct pci_cap_saved_data
*)((u8
*)cap
+ len
);
1735 /* Empty cap_save terminates list */
1739 EXPORT_SYMBOL_GPL(pci_store_saved_state
);
1742 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1743 * @dev: PCI device that we're dealing with
1744 * @state: Saved state returned from pci_store_saved_state()
1746 int pci_load_saved_state(struct pci_dev
*dev
,
1747 struct pci_saved_state
*state
)
1749 struct pci_cap_saved_data
*cap
;
1751 dev
->state_saved
= false;
1756 memcpy(dev
->saved_config_space
, state
->config_space
,
1757 sizeof(state
->config_space
));
1761 struct pci_cap_saved_state
*tmp
;
1763 tmp
= _pci_find_saved_cap(dev
, cap
->cap_nr
, cap
->cap_extended
);
1764 if (!tmp
|| tmp
->cap
.size
!= cap
->size
)
1767 memcpy(tmp
->cap
.data
, cap
->data
, tmp
->cap
.size
);
1768 cap
= (struct pci_cap_saved_data
*)((u8
*)cap
+
1769 sizeof(struct pci_cap_saved_data
) + cap
->size
);
1772 dev
->state_saved
= true;
1775 EXPORT_SYMBOL_GPL(pci_load_saved_state
);
1778 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1779 * and free the memory allocated for it.
1780 * @dev: PCI device that we're dealing with
1781 * @state: Pointer to saved state returned from pci_store_saved_state()
1783 int pci_load_and_free_saved_state(struct pci_dev
*dev
,
1784 struct pci_saved_state
**state
)
1786 int ret
= pci_load_saved_state(dev
, *state
);
1791 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state
);
1793 int __weak
pcibios_enable_device(struct pci_dev
*dev
, int bars
)
1795 return pci_enable_resources(dev
, bars
);
1798 static int do_pci_enable_device(struct pci_dev
*dev
, int bars
)
1801 struct pci_dev
*bridge
;
1805 err
= pci_set_power_state(dev
, PCI_D0
);
1806 if (err
< 0 && err
!= -EIO
)
1809 bridge
= pci_upstream_bridge(dev
);
1811 pcie_aspm_powersave_config_link(bridge
);
1813 err
= pcibios_enable_device(dev
, bars
);
1816 pci_fixup_device(pci_fixup_enable
, dev
);
1818 if (dev
->msi_enabled
|| dev
->msix_enabled
)
1821 pci_read_config_byte(dev
, PCI_INTERRUPT_PIN
, &pin
);
1823 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
1824 if (cmd
& PCI_COMMAND_INTX_DISABLE
)
1825 pci_write_config_word(dev
, PCI_COMMAND
,
1826 cmd
& ~PCI_COMMAND_INTX_DISABLE
);
1833 * pci_reenable_device - Resume abandoned device
1834 * @dev: PCI device to be resumed
1836 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1837 * to be called by normal code, write proper resume handler and use it instead.
1839 int pci_reenable_device(struct pci_dev
*dev
)
1841 if (pci_is_enabled(dev
))
1842 return do_pci_enable_device(dev
, (1 << PCI_NUM_RESOURCES
) - 1);
1845 EXPORT_SYMBOL(pci_reenable_device
);
1847 static void pci_enable_bridge(struct pci_dev
*dev
)
1849 struct pci_dev
*bridge
;
1852 bridge
= pci_upstream_bridge(dev
);
1854 pci_enable_bridge(bridge
);
1856 if (pci_is_enabled(dev
)) {
1857 if (!dev
->is_busmaster
)
1858 pci_set_master(dev
);
1862 retval
= pci_enable_device(dev
);
1864 pci_err(dev
, "Error enabling bridge (%d), continuing\n",
1866 pci_set_master(dev
);
1869 static int pci_enable_device_flags(struct pci_dev
*dev
, unsigned long flags
)
1871 struct pci_dev
*bridge
;
1876 * Power state could be unknown at this point, either due to a fresh
1877 * boot or a device removal call. So get the current power state
1878 * so that things like MSI message writing will behave as expected
1879 * (e.g. if the device really is in D0 at enable time).
1883 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
1884 dev
->current_state
= (pmcsr
& PCI_PM_CTRL_STATE_MASK
);
1887 if (atomic_inc_return(&dev
->enable_cnt
) > 1)
1888 return 0; /* already enabled */
1890 bridge
= pci_upstream_bridge(dev
);
1892 pci_enable_bridge(bridge
);
1894 /* only skip sriov related */
1895 for (i
= 0; i
<= PCI_ROM_RESOURCE
; i
++)
1896 if (dev
->resource
[i
].flags
& flags
)
1898 for (i
= PCI_BRIDGE_RESOURCES
; i
< DEVICE_COUNT_RESOURCE
; i
++)
1899 if (dev
->resource
[i
].flags
& flags
)
1902 err
= do_pci_enable_device(dev
, bars
);
1904 atomic_dec(&dev
->enable_cnt
);
1909 * pci_enable_device_io - Initialize a device for use with IO space
1910 * @dev: PCI device to be initialized
1912 * Initialize device before it's used by a driver. Ask low-level code
1913 * to enable I/O resources. Wake up the device if it was suspended.
1914 * Beware, this function can fail.
1916 int pci_enable_device_io(struct pci_dev
*dev
)
1918 return pci_enable_device_flags(dev
, IORESOURCE_IO
);
1920 EXPORT_SYMBOL(pci_enable_device_io
);
1923 * pci_enable_device_mem - Initialize a device for use with Memory space
1924 * @dev: PCI device to be initialized
1926 * Initialize device before it's used by a driver. Ask low-level code
1927 * to enable Memory resources. Wake up the device if it was suspended.
1928 * Beware, this function can fail.
1930 int pci_enable_device_mem(struct pci_dev
*dev
)
1932 return pci_enable_device_flags(dev
, IORESOURCE_MEM
);
1934 EXPORT_SYMBOL(pci_enable_device_mem
);
1937 * pci_enable_device - Initialize device before it's used by a driver.
1938 * @dev: PCI device to be initialized
1940 * Initialize device before it's used by a driver. Ask low-level code
1941 * to enable I/O and memory. Wake up the device if it was suspended.
1942 * Beware, this function can fail.
1944 * Note we don't actually enable the device many times if we call
1945 * this function repeatedly (we just increment the count).
1947 int pci_enable_device(struct pci_dev
*dev
)
1949 return pci_enable_device_flags(dev
, IORESOURCE_MEM
| IORESOURCE_IO
);
1951 EXPORT_SYMBOL(pci_enable_device
);
1954 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X
1955 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so
1956 * there's no need to track it separately. pci_devres is initialized
1957 * when a device is enabled using managed PCI device enable interface.
1960 unsigned int enabled
:1;
1961 unsigned int pinned
:1;
1962 unsigned int orig_intx
:1;
1963 unsigned int restore_intx
:1;
1968 static void pcim_release(struct device
*gendev
, void *res
)
1970 struct pci_dev
*dev
= to_pci_dev(gendev
);
1971 struct pci_devres
*this = res
;
1974 if (dev
->msi_enabled
)
1975 pci_disable_msi(dev
);
1976 if (dev
->msix_enabled
)
1977 pci_disable_msix(dev
);
1979 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++)
1980 if (this->region_mask
& (1 << i
))
1981 pci_release_region(dev
, i
);
1986 if (this->restore_intx
)
1987 pci_intx(dev
, this->orig_intx
);
1989 if (this->enabled
&& !this->pinned
)
1990 pci_disable_device(dev
);
1993 static struct pci_devres
*get_pci_dr(struct pci_dev
*pdev
)
1995 struct pci_devres
*dr
, *new_dr
;
1997 dr
= devres_find(&pdev
->dev
, pcim_release
, NULL
, NULL
);
2001 new_dr
= devres_alloc(pcim_release
, sizeof(*new_dr
), GFP_KERNEL
);
2004 return devres_get(&pdev
->dev
, new_dr
, NULL
, NULL
);
2007 static struct pci_devres
*find_pci_dr(struct pci_dev
*pdev
)
2009 if (pci_is_managed(pdev
))
2010 return devres_find(&pdev
->dev
, pcim_release
, NULL
, NULL
);
2015 * pcim_enable_device - Managed pci_enable_device()
2016 * @pdev: PCI device to be initialized
2018 * Managed pci_enable_device().
2020 int pcim_enable_device(struct pci_dev
*pdev
)
2022 struct pci_devres
*dr
;
2025 dr
= get_pci_dr(pdev
);
2031 rc
= pci_enable_device(pdev
);
2033 pdev
->is_managed
= 1;
2038 EXPORT_SYMBOL(pcim_enable_device
);
2041 * pcim_pin_device - Pin managed PCI device
2042 * @pdev: PCI device to pin
2044 * Pin managed PCI device @pdev. Pinned device won't be disabled on
2045 * driver detach. @pdev must have been enabled with
2046 * pcim_enable_device().
2048 void pcim_pin_device(struct pci_dev
*pdev
)
2050 struct pci_devres
*dr
;
2052 dr
= find_pci_dr(pdev
);
2053 WARN_ON(!dr
|| !dr
->enabled
);
2057 EXPORT_SYMBOL(pcim_pin_device
);
2060 * pcibios_add_device - provide arch specific hooks when adding device dev
2061 * @dev: the PCI device being added
2063 * Permits the platform to provide architecture specific functionality when
2064 * devices are added. This is the default implementation. Architecture
2065 * implementations can override this.
2067 int __weak
pcibios_add_device(struct pci_dev
*dev
)
2073 * pcibios_release_device - provide arch specific hooks when releasing
2075 * @dev: the PCI device being released
2077 * Permits the platform to provide architecture specific functionality when
2078 * devices are released. This is the default implementation. Architecture
2079 * implementations can override this.
2081 void __weak
pcibios_release_device(struct pci_dev
*dev
) {}
2084 * pcibios_disable_device - disable arch specific PCI resources for device dev
2085 * @dev: the PCI device to disable
2087 * Disables architecture specific PCI resources for the device. This
2088 * is the default implementation. Architecture implementations can
2091 void __weak
pcibios_disable_device(struct pci_dev
*dev
) {}
2094 * pcibios_penalize_isa_irq - penalize an ISA IRQ
2095 * @irq: ISA IRQ to penalize
2096 * @active: IRQ active or not
2098 * Permits the platform to provide architecture-specific functionality when
2099 * penalizing ISA IRQs. This is the default implementation. Architecture
2100 * implementations can override this.
2102 void __weak
pcibios_penalize_isa_irq(int irq
, int active
) {}
2104 static void do_pci_disable_device(struct pci_dev
*dev
)
2108 pci_read_config_word(dev
, PCI_COMMAND
, &pci_command
);
2109 if (pci_command
& PCI_COMMAND_MASTER
) {
2110 pci_command
&= ~PCI_COMMAND_MASTER
;
2111 pci_write_config_word(dev
, PCI_COMMAND
, pci_command
);
2114 pcibios_disable_device(dev
);
2118 * pci_disable_enabled_device - Disable device without updating enable_cnt
2119 * @dev: PCI device to disable
2121 * NOTE: This function is a backend of PCI power management routines and is
2122 * not supposed to be called drivers.
2124 void pci_disable_enabled_device(struct pci_dev
*dev
)
2126 if (pci_is_enabled(dev
))
2127 do_pci_disable_device(dev
);
2131 * pci_disable_device - Disable PCI device after use
2132 * @dev: PCI device to be disabled
2134 * Signal to the system that the PCI device is not in use by the system
2135 * anymore. This only involves disabling PCI bus-mastering, if active.
2137 * Note we don't actually disable the device until all callers of
2138 * pci_enable_device() have called pci_disable_device().
2140 void pci_disable_device(struct pci_dev
*dev
)
2142 struct pci_devres
*dr
;
2144 dr
= find_pci_dr(dev
);
2148 dev_WARN_ONCE(&dev
->dev
, atomic_read(&dev
->enable_cnt
) <= 0,
2149 "disabling already-disabled device");
2151 if (atomic_dec_return(&dev
->enable_cnt
) != 0)
2154 do_pci_disable_device(dev
);
2156 dev
->is_busmaster
= 0;
2158 EXPORT_SYMBOL(pci_disable_device
);
2161 * pcibios_set_pcie_reset_state - set reset state for device dev
2162 * @dev: the PCIe device reset
2163 * @state: Reset state to enter into
2165 * Set the PCIe reset state for the device. This is the default
2166 * implementation. Architecture implementations can override this.
2168 int __weak
pcibios_set_pcie_reset_state(struct pci_dev
*dev
,
2169 enum pcie_reset_state state
)
2175 * pci_set_pcie_reset_state - set reset state for device dev
2176 * @dev: the PCIe device reset
2177 * @state: Reset state to enter into
2179 * Sets the PCI reset state for the device.
2181 int pci_set_pcie_reset_state(struct pci_dev
*dev
, enum pcie_reset_state state
)
2183 return pcibios_set_pcie_reset_state(dev
, state
);
2185 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state
);
2187 void pcie_clear_device_status(struct pci_dev
*dev
)
2191 pcie_capability_read_word(dev
, PCI_EXP_DEVSTA
, &sta
);
2192 pcie_capability_write_word(dev
, PCI_EXP_DEVSTA
, sta
);
2196 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2197 * @dev: PCIe root port or event collector.
2199 void pcie_clear_root_pme_status(struct pci_dev
*dev
)
2201 pcie_capability_set_dword(dev
, PCI_EXP_RTSTA
, PCI_EXP_RTSTA_PME
);
2205 * pci_check_pme_status - Check if given device has generated PME.
2206 * @dev: Device to check.
2208 * Check the PME status of the device and if set, clear it and clear PME enable
2209 * (if set). Return 'true' if PME status and PME enable were both set or
2210 * 'false' otherwise.
2212 bool pci_check_pme_status(struct pci_dev
*dev
)
2221 pmcsr_pos
= dev
->pm_cap
+ PCI_PM_CTRL
;
2222 pci_read_config_word(dev
, pmcsr_pos
, &pmcsr
);
2223 if (!(pmcsr
& PCI_PM_CTRL_PME_STATUS
))
2226 /* Clear PME status. */
2227 pmcsr
|= PCI_PM_CTRL_PME_STATUS
;
2228 if (pmcsr
& PCI_PM_CTRL_PME_ENABLE
) {
2229 /* Disable PME to avoid interrupt flood. */
2230 pmcsr
&= ~PCI_PM_CTRL_PME_ENABLE
;
2234 pci_write_config_word(dev
, pmcsr_pos
, pmcsr
);
2240 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2241 * @dev: Device to handle.
2242 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2244 * Check if @dev has generated PME and queue a resume request for it in that
2247 static int pci_pme_wakeup(struct pci_dev
*dev
, void *pme_poll_reset
)
2249 if (pme_poll_reset
&& dev
->pme_poll
)
2250 dev
->pme_poll
= false;
2252 if (pci_check_pme_status(dev
)) {
2253 pci_wakeup_event(dev
);
2254 pm_request_resume(&dev
->dev
);
2260 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2261 * @bus: Top bus of the subtree to walk.
2263 void pci_pme_wakeup_bus(struct pci_bus
*bus
)
2266 pci_walk_bus(bus
, pci_pme_wakeup
, (void *)true);
2271 * pci_pme_capable - check the capability of PCI device to generate PME#
2272 * @dev: PCI device to handle.
2273 * @state: PCI state from which device will issue PME#.
2275 bool pci_pme_capable(struct pci_dev
*dev
, pci_power_t state
)
2280 return !!(dev
->pme_support
& (1 << state
));
2282 EXPORT_SYMBOL(pci_pme_capable
);
2284 static void pci_pme_list_scan(struct work_struct
*work
)
2286 struct pci_pme_device
*pme_dev
, *n
;
2288 mutex_lock(&pci_pme_list_mutex
);
2289 list_for_each_entry_safe(pme_dev
, n
, &pci_pme_list
, list
) {
2290 if (pme_dev
->dev
->pme_poll
) {
2291 struct pci_dev
*bridge
;
2293 bridge
= pme_dev
->dev
->bus
->self
;
2295 * If bridge is in low power state, the
2296 * configuration space of subordinate devices
2297 * may be not accessible
2299 if (bridge
&& bridge
->current_state
!= PCI_D0
)
2302 * If the device is in D3cold it should not be
2305 if (pme_dev
->dev
->current_state
== PCI_D3cold
)
2308 pci_pme_wakeup(pme_dev
->dev
, NULL
);
2310 list_del(&pme_dev
->list
);
2314 if (!list_empty(&pci_pme_list
))
2315 queue_delayed_work(system_freezable_wq
, &pci_pme_work
,
2316 msecs_to_jiffies(PME_TIMEOUT
));
2317 mutex_unlock(&pci_pme_list_mutex
);
2320 static void __pci_pme_active(struct pci_dev
*dev
, bool enable
)
2324 if (!dev
->pme_support
)
2327 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
2328 /* Clear PME_Status by writing 1 to it and enable PME# */
2329 pmcsr
|= PCI_PM_CTRL_PME_STATUS
| PCI_PM_CTRL_PME_ENABLE
;
2331 pmcsr
&= ~PCI_PM_CTRL_PME_ENABLE
;
2333 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, pmcsr
);
2337 * pci_pme_restore - Restore PME configuration after config space restore.
2338 * @dev: PCI device to update.
2340 void pci_pme_restore(struct pci_dev
*dev
)
2344 if (!dev
->pme_support
)
2347 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
2348 if (dev
->wakeup_prepared
) {
2349 pmcsr
|= PCI_PM_CTRL_PME_ENABLE
;
2350 pmcsr
&= ~PCI_PM_CTRL_PME_STATUS
;
2352 pmcsr
&= ~PCI_PM_CTRL_PME_ENABLE
;
2353 pmcsr
|= PCI_PM_CTRL_PME_STATUS
;
2355 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, pmcsr
);
2359 * pci_pme_active - enable or disable PCI device's PME# function
2360 * @dev: PCI device to handle.
2361 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2363 * The caller must verify that the device is capable of generating PME# before
2364 * calling this function with @enable equal to 'true'.
2366 void pci_pme_active(struct pci_dev
*dev
, bool enable
)
2368 __pci_pme_active(dev
, enable
);
2371 * PCI (as opposed to PCIe) PME requires that the device have
2372 * its PME# line hooked up correctly. Not all hardware vendors
2373 * do this, so the PME never gets delivered and the device
2374 * remains asleep. The easiest way around this is to
2375 * periodically walk the list of suspended devices and check
2376 * whether any have their PME flag set. The assumption is that
2377 * we'll wake up often enough anyway that this won't be a huge
2378 * hit, and the power savings from the devices will still be a
2381 * Although PCIe uses in-band PME message instead of PME# line
2382 * to report PME, PME does not work for some PCIe devices in
2383 * reality. For example, there are devices that set their PME
2384 * status bits, but don't really bother to send a PME message;
2385 * there are PCI Express Root Ports that don't bother to
2386 * trigger interrupts when they receive PME messages from the
2387 * devices below. So PME poll is used for PCIe devices too.
2390 if (dev
->pme_poll
) {
2391 struct pci_pme_device
*pme_dev
;
2393 pme_dev
= kmalloc(sizeof(struct pci_pme_device
),
2396 pci_warn(dev
, "can't enable PME#\n");
2400 mutex_lock(&pci_pme_list_mutex
);
2401 list_add(&pme_dev
->list
, &pci_pme_list
);
2402 if (list_is_singular(&pci_pme_list
))
2403 queue_delayed_work(system_freezable_wq
,
2405 msecs_to_jiffies(PME_TIMEOUT
));
2406 mutex_unlock(&pci_pme_list_mutex
);
2408 mutex_lock(&pci_pme_list_mutex
);
2409 list_for_each_entry(pme_dev
, &pci_pme_list
, list
) {
2410 if (pme_dev
->dev
== dev
) {
2411 list_del(&pme_dev
->list
);
2416 mutex_unlock(&pci_pme_list_mutex
);
2420 pci_dbg(dev
, "PME# %s\n", enable
? "enabled" : "disabled");
2422 EXPORT_SYMBOL(pci_pme_active
);
2425 * __pci_enable_wake - enable PCI device as wakeup event source
2426 * @dev: PCI device affected
2427 * @state: PCI state from which device will issue wakeup events
2428 * @enable: True to enable event generation; false to disable
2430 * This enables the device as a wakeup event source, or disables it.
2431 * When such events involves platform-specific hooks, those hooks are
2432 * called automatically by this routine.
2434 * Devices with legacy power management (no standard PCI PM capabilities)
2435 * always require such platform hooks.
2438 * 0 is returned on success
2439 * -EINVAL is returned if device is not supposed to wake up the system
2440 * Error code depending on the platform is returned if both the platform and
2441 * the native mechanism fail to enable the generation of wake-up events
2443 static int __pci_enable_wake(struct pci_dev
*dev
, pci_power_t state
, bool enable
)
2448 * Bridges that are not power-manageable directly only signal
2449 * wakeup on behalf of subordinate devices which is set up
2450 * elsewhere, so skip them. However, bridges that are
2451 * power-manageable may signal wakeup for themselves (for example,
2452 * on a hotplug event) and they need to be covered here.
2454 if (!pci_power_manageable(dev
))
2457 /* Don't do the same thing twice in a row for one device. */
2458 if (!!enable
== !!dev
->wakeup_prepared
)
2462 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2463 * Anderson we should be doing PME# wake enable followed by ACPI wake
2464 * enable. To disable wake-up we call the platform first, for symmetry.
2470 if (pci_pme_capable(dev
, state
))
2471 pci_pme_active(dev
, true);
2474 error
= platform_pci_set_wakeup(dev
, true);
2478 dev
->wakeup_prepared
= true;
2480 platform_pci_set_wakeup(dev
, false);
2481 pci_pme_active(dev
, false);
2482 dev
->wakeup_prepared
= false;
2489 * pci_enable_wake - change wakeup settings for a PCI device
2490 * @pci_dev: Target device
2491 * @state: PCI state from which device will issue wakeup events
2492 * @enable: Whether or not to enable event generation
2494 * If @enable is set, check device_may_wakeup() for the device before calling
2495 * __pci_enable_wake() for it.
2497 int pci_enable_wake(struct pci_dev
*pci_dev
, pci_power_t state
, bool enable
)
2499 if (enable
&& !device_may_wakeup(&pci_dev
->dev
))
2502 return __pci_enable_wake(pci_dev
, state
, enable
);
2504 EXPORT_SYMBOL(pci_enable_wake
);
2507 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2508 * @dev: PCI device to prepare
2509 * @enable: True to enable wake-up event generation; false to disable
2511 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2512 * and this function allows them to set that up cleanly - pci_enable_wake()
2513 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2514 * ordering constraints.
2516 * This function only returns error code if the device is not allowed to wake
2517 * up the system from sleep or it is not capable of generating PME# from both
2518 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2520 int pci_wake_from_d3(struct pci_dev
*dev
, bool enable
)
2522 return pci_pme_capable(dev
, PCI_D3cold
) ?
2523 pci_enable_wake(dev
, PCI_D3cold
, enable
) :
2524 pci_enable_wake(dev
, PCI_D3hot
, enable
);
2526 EXPORT_SYMBOL(pci_wake_from_d3
);
2529 * pci_target_state - find an appropriate low power state for a given PCI dev
2531 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2533 * Use underlying platform code to find a supported low power state for @dev.
2534 * If the platform can't manage @dev, return the deepest state from which it
2535 * can generate wake events, based on any available PME info.
2537 static pci_power_t
pci_target_state(struct pci_dev
*dev
, bool wakeup
)
2539 pci_power_t target_state
= PCI_D3hot
;
2541 if (platform_pci_power_manageable(dev
)) {
2543 * Call the platform to find the target state for the device.
2545 pci_power_t state
= platform_pci_choose_state(dev
);
2548 case PCI_POWER_ERROR
:
2553 if (pci_no_d1d2(dev
))
2557 target_state
= state
;
2560 return target_state
;
2564 target_state
= PCI_D0
;
2567 * If the device is in D3cold even though it's not power-manageable by
2568 * the platform, it may have been powered down by non-standard means.
2569 * Best to let it slumber.
2571 if (dev
->current_state
== PCI_D3cold
)
2572 target_state
= PCI_D3cold
;
2576 * Find the deepest state from which the device can generate
2579 if (dev
->pme_support
) {
2581 && !(dev
->pme_support
& (1 << target_state
)))
2586 return target_state
;
2590 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2591 * into a sleep state
2592 * @dev: Device to handle.
2594 * Choose the power state appropriate for the device depending on whether
2595 * it can wake up the system and/or is power manageable by the platform
2596 * (PCI_D3hot is the default) and put the device into that state.
2598 int pci_prepare_to_sleep(struct pci_dev
*dev
)
2600 bool wakeup
= device_may_wakeup(&dev
->dev
);
2601 pci_power_t target_state
= pci_target_state(dev
, wakeup
);
2604 if (target_state
== PCI_POWER_ERROR
)
2608 * There are systems (for example, Intel mobile chips since Coffee
2609 * Lake) where the power drawn while suspended can be significantly
2610 * reduced by disabling PTM on PCIe root ports as this allows the
2611 * port to enter a lower-power PM state and the SoC to reach a
2612 * lower-power idle state as a whole.
2614 if (pci_pcie_type(dev
) == PCI_EXP_TYPE_ROOT_PORT
)
2615 pci_disable_ptm(dev
);
2617 pci_enable_wake(dev
, target_state
, wakeup
);
2619 error
= pci_set_power_state(dev
, target_state
);
2622 pci_enable_wake(dev
, target_state
, false);
2623 pci_restore_ptm_state(dev
);
2628 EXPORT_SYMBOL(pci_prepare_to_sleep
);
2631 * pci_back_from_sleep - turn PCI device on during system-wide transition
2632 * into working state
2633 * @dev: Device to handle.
2635 * Disable device's system wake-up capability and put it into D0.
2637 int pci_back_from_sleep(struct pci_dev
*dev
)
2639 pci_enable_wake(dev
, PCI_D0
, false);
2640 return pci_set_power_state(dev
, PCI_D0
);
2642 EXPORT_SYMBOL(pci_back_from_sleep
);
2645 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2646 * @dev: PCI device being suspended.
2648 * Prepare @dev to generate wake-up events at run time and put it into a low
2651 int pci_finish_runtime_suspend(struct pci_dev
*dev
)
2653 pci_power_t target_state
;
2656 target_state
= pci_target_state(dev
, device_can_wakeup(&dev
->dev
));
2657 if (target_state
== PCI_POWER_ERROR
)
2660 dev
->runtime_d3cold
= target_state
== PCI_D3cold
;
2663 * There are systems (for example, Intel mobile chips since Coffee
2664 * Lake) where the power drawn while suspended can be significantly
2665 * reduced by disabling PTM on PCIe root ports as this allows the
2666 * port to enter a lower-power PM state and the SoC to reach a
2667 * lower-power idle state as a whole.
2669 if (pci_pcie_type(dev
) == PCI_EXP_TYPE_ROOT_PORT
)
2670 pci_disable_ptm(dev
);
2672 __pci_enable_wake(dev
, target_state
, pci_dev_run_wake(dev
));
2674 error
= pci_set_power_state(dev
, target_state
);
2677 pci_enable_wake(dev
, target_state
, false);
2678 pci_restore_ptm_state(dev
);
2679 dev
->runtime_d3cold
= false;
2686 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2687 * @dev: Device to check.
2689 * Return true if the device itself is capable of generating wake-up events
2690 * (through the platform or using the native PCIe PME) or if the device supports
2691 * PME and one of its upstream bridges can generate wake-up events.
2693 bool pci_dev_run_wake(struct pci_dev
*dev
)
2695 struct pci_bus
*bus
= dev
->bus
;
2697 if (!dev
->pme_support
)
2700 /* PME-capable in principle, but not from the target power state */
2701 if (!pci_pme_capable(dev
, pci_target_state(dev
, true)))
2704 if (device_can_wakeup(&dev
->dev
))
2707 while (bus
->parent
) {
2708 struct pci_dev
*bridge
= bus
->self
;
2710 if (device_can_wakeup(&bridge
->dev
))
2716 /* We have reached the root bus. */
2718 return device_can_wakeup(bus
->bridge
);
2722 EXPORT_SYMBOL_GPL(pci_dev_run_wake
);
2725 * pci_dev_need_resume - Check if it is necessary to resume the device.
2726 * @pci_dev: Device to check.
2728 * Return 'true' if the device is not runtime-suspended or it has to be
2729 * reconfigured due to wakeup settings difference between system and runtime
2730 * suspend, or the current power state of it is not suitable for the upcoming
2731 * (system-wide) transition.
2733 bool pci_dev_need_resume(struct pci_dev
*pci_dev
)
2735 struct device
*dev
= &pci_dev
->dev
;
2736 pci_power_t target_state
;
2738 if (!pm_runtime_suspended(dev
) || platform_pci_need_resume(pci_dev
))
2741 target_state
= pci_target_state(pci_dev
, device_may_wakeup(dev
));
2744 * If the earlier platform check has not triggered, D3cold is just power
2745 * removal on top of D3hot, so no need to resume the device in that
2748 return target_state
!= pci_dev
->current_state
&&
2749 target_state
!= PCI_D3cold
&&
2750 pci_dev
->current_state
!= PCI_D3hot
;
2754 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2755 * @pci_dev: Device to check.
2757 * If the device is suspended and it is not configured for system wakeup,
2758 * disable PME for it to prevent it from waking up the system unnecessarily.
2760 * Note that if the device's power state is D3cold and the platform check in
2761 * pci_dev_need_resume() has not triggered, the device's configuration need not
2764 void pci_dev_adjust_pme(struct pci_dev
*pci_dev
)
2766 struct device
*dev
= &pci_dev
->dev
;
2768 spin_lock_irq(&dev
->power
.lock
);
2770 if (pm_runtime_suspended(dev
) && !device_may_wakeup(dev
) &&
2771 pci_dev
->current_state
< PCI_D3cold
)
2772 __pci_pme_active(pci_dev
, false);
2774 spin_unlock_irq(&dev
->power
.lock
);
2778 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2779 * @pci_dev: Device to handle.
2781 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2782 * it might have been disabled during the prepare phase of system suspend if
2783 * the device was not configured for system wakeup.
2785 void pci_dev_complete_resume(struct pci_dev
*pci_dev
)
2787 struct device
*dev
= &pci_dev
->dev
;
2789 if (!pci_dev_run_wake(pci_dev
))
2792 spin_lock_irq(&dev
->power
.lock
);
2794 if (pm_runtime_suspended(dev
) && pci_dev
->current_state
< PCI_D3cold
)
2795 __pci_pme_active(pci_dev
, true);
2797 spin_unlock_irq(&dev
->power
.lock
);
2800 void pci_config_pm_runtime_get(struct pci_dev
*pdev
)
2802 struct device
*dev
= &pdev
->dev
;
2803 struct device
*parent
= dev
->parent
;
2806 pm_runtime_get_sync(parent
);
2807 pm_runtime_get_noresume(dev
);
2809 * pdev->current_state is set to PCI_D3cold during suspending,
2810 * so wait until suspending completes
2812 pm_runtime_barrier(dev
);
2814 * Only need to resume devices in D3cold, because config
2815 * registers are still accessible for devices suspended but
2818 if (pdev
->current_state
== PCI_D3cold
)
2819 pm_runtime_resume(dev
);
2822 void pci_config_pm_runtime_put(struct pci_dev
*pdev
)
2824 struct device
*dev
= &pdev
->dev
;
2825 struct device
*parent
= dev
->parent
;
2827 pm_runtime_put(dev
);
2829 pm_runtime_put_sync(parent
);
2832 static const struct dmi_system_id bridge_d3_blacklist
[] = {
2836 * Gigabyte X299 root port is not marked as hotplug capable
2837 * which allows Linux to power manage it. However, this
2838 * confuses the BIOS SMI handler so don't power manage root
2839 * ports on that system.
2841 .ident
= "X299 DESIGNARE EX-CF",
2843 DMI_MATCH(DMI_BOARD_VENDOR
, "Gigabyte Technology Co., Ltd."),
2844 DMI_MATCH(DMI_BOARD_NAME
, "X299 DESIGNARE EX-CF"),
2852 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2853 * @bridge: Bridge to check
2855 * This function checks if it is possible to move the bridge to D3.
2856 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2858 bool pci_bridge_d3_possible(struct pci_dev
*bridge
)
2860 if (!pci_is_pcie(bridge
))
2863 switch (pci_pcie_type(bridge
)) {
2864 case PCI_EXP_TYPE_ROOT_PORT
:
2865 case PCI_EXP_TYPE_UPSTREAM
:
2866 case PCI_EXP_TYPE_DOWNSTREAM
:
2867 if (pci_bridge_d3_disable
)
2871 * Hotplug ports handled by firmware in System Management Mode
2872 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2874 if (bridge
->is_hotplug_bridge
&& !pciehp_is_native(bridge
))
2877 if (pci_bridge_d3_force
)
2880 /* Even the oldest 2010 Thunderbolt controller supports D3. */
2881 if (bridge
->is_thunderbolt
)
2884 /* Platform might know better if the bridge supports D3 */
2885 if (platform_pci_bridge_d3(bridge
))
2889 * Hotplug ports handled natively by the OS were not validated
2890 * by vendors for runtime D3 at least until 2018 because there
2891 * was no OS support.
2893 if (bridge
->is_hotplug_bridge
)
2896 if (dmi_check_system(bridge_d3_blacklist
))
2900 * It should be safe to put PCIe ports from 2015 or newer
2903 if (dmi_get_bios_year() >= 2015)
2911 static int pci_dev_check_d3cold(struct pci_dev
*dev
, void *data
)
2913 bool *d3cold_ok
= data
;
2915 if (/* The device needs to be allowed to go D3cold ... */
2916 dev
->no_d3cold
|| !dev
->d3cold_allowed
||
2918 /* ... and if it is wakeup capable to do so from D3cold. */
2919 (device_may_wakeup(&dev
->dev
) &&
2920 !pci_pme_capable(dev
, PCI_D3cold
)) ||
2922 /* If it is a bridge it must be allowed to go to D3. */
2923 !pci_power_manageable(dev
))
2931 * pci_bridge_d3_update - Update bridge D3 capabilities
2932 * @dev: PCI device which is changed
2934 * Update upstream bridge PM capabilities accordingly depending on if the
2935 * device PM configuration was changed or the device is being removed. The
2936 * change is also propagated upstream.
2938 void pci_bridge_d3_update(struct pci_dev
*dev
)
2940 bool remove
= !device_is_registered(&dev
->dev
);
2941 struct pci_dev
*bridge
;
2942 bool d3cold_ok
= true;
2944 bridge
= pci_upstream_bridge(dev
);
2945 if (!bridge
|| !pci_bridge_d3_possible(bridge
))
2949 * If D3 is currently allowed for the bridge, removing one of its
2950 * children won't change that.
2952 if (remove
&& bridge
->bridge_d3
)
2956 * If D3 is currently allowed for the bridge and a child is added or
2957 * changed, disallowance of D3 can only be caused by that child, so
2958 * we only need to check that single device, not any of its siblings.
2960 * If D3 is currently not allowed for the bridge, checking the device
2961 * first may allow us to skip checking its siblings.
2964 pci_dev_check_d3cold(dev
, &d3cold_ok
);
2967 * If D3 is currently not allowed for the bridge, this may be caused
2968 * either by the device being changed/removed or any of its siblings,
2969 * so we need to go through all children to find out if one of them
2970 * continues to block D3.
2972 if (d3cold_ok
&& !bridge
->bridge_d3
)
2973 pci_walk_bus(bridge
->subordinate
, pci_dev_check_d3cold
,
2976 if (bridge
->bridge_d3
!= d3cold_ok
) {
2977 bridge
->bridge_d3
= d3cold_ok
;
2978 /* Propagate change to upstream bridges */
2979 pci_bridge_d3_update(bridge
);
2984 * pci_d3cold_enable - Enable D3cold for device
2985 * @dev: PCI device to handle
2987 * This function can be used in drivers to enable D3cold from the device
2988 * they handle. It also updates upstream PCI bridge PM capabilities
2991 void pci_d3cold_enable(struct pci_dev
*dev
)
2993 if (dev
->no_d3cold
) {
2994 dev
->no_d3cold
= false;
2995 pci_bridge_d3_update(dev
);
2998 EXPORT_SYMBOL_GPL(pci_d3cold_enable
);
3001 * pci_d3cold_disable - Disable D3cold for device
3002 * @dev: PCI device to handle
3004 * This function can be used in drivers to disable D3cold from the device
3005 * they handle. It also updates upstream PCI bridge PM capabilities
3008 void pci_d3cold_disable(struct pci_dev
*dev
)
3010 if (!dev
->no_d3cold
) {
3011 dev
->no_d3cold
= true;
3012 pci_bridge_d3_update(dev
);
3015 EXPORT_SYMBOL_GPL(pci_d3cold_disable
);
3018 * pci_pm_init - Initialize PM functions of given PCI device
3019 * @dev: PCI device to handle.
3021 void pci_pm_init(struct pci_dev
*dev
)
3027 pm_runtime_forbid(&dev
->dev
);
3028 pm_runtime_set_active(&dev
->dev
);
3029 pm_runtime_enable(&dev
->dev
);
3030 device_enable_async_suspend(&dev
->dev
);
3031 dev
->wakeup_prepared
= false;
3034 dev
->pme_support
= 0;
3036 /* find PCI PM capability in list */
3037 pm
= pci_find_capability(dev
, PCI_CAP_ID_PM
);
3040 /* Check device's ability to generate PME# */
3041 pci_read_config_word(dev
, pm
+ PCI_PM_PMC
, &pmc
);
3043 if ((pmc
& PCI_PM_CAP_VER_MASK
) > 3) {
3044 pci_err(dev
, "unsupported PM cap regs version (%u)\n",
3045 pmc
& PCI_PM_CAP_VER_MASK
);
3050 dev
->d3hot_delay
= PCI_PM_D3HOT_WAIT
;
3051 dev
->d3cold_delay
= PCI_PM_D3COLD_WAIT
;
3052 dev
->bridge_d3
= pci_bridge_d3_possible(dev
);
3053 dev
->d3cold_allowed
= true;
3055 dev
->d1_support
= false;
3056 dev
->d2_support
= false;
3057 if (!pci_no_d1d2(dev
)) {
3058 if (pmc
& PCI_PM_CAP_D1
)
3059 dev
->d1_support
= true;
3060 if (pmc
& PCI_PM_CAP_D2
)
3061 dev
->d2_support
= true;
3063 if (dev
->d1_support
|| dev
->d2_support
)
3064 pci_info(dev
, "supports%s%s\n",
3065 dev
->d1_support
? " D1" : "",
3066 dev
->d2_support
? " D2" : "");
3069 pmc
&= PCI_PM_CAP_PME_MASK
;
3071 pci_info(dev
, "PME# supported from%s%s%s%s%s\n",
3072 (pmc
& PCI_PM_CAP_PME_D0
) ? " D0" : "",
3073 (pmc
& PCI_PM_CAP_PME_D1
) ? " D1" : "",
3074 (pmc
& PCI_PM_CAP_PME_D2
) ? " D2" : "",
3075 (pmc
& PCI_PM_CAP_PME_D3hot
) ? " D3hot" : "",
3076 (pmc
& PCI_PM_CAP_PME_D3cold
) ? " D3cold" : "");
3077 dev
->pme_support
= pmc
>> PCI_PM_CAP_PME_SHIFT
;
3078 dev
->pme_poll
= true;
3080 * Make device's PM flags reflect the wake-up capability, but
3081 * let the user space enable it to wake up the system as needed.
3083 device_set_wakeup_capable(&dev
->dev
, true);
3084 /* Disable the PME# generation functionality */
3085 pci_pme_active(dev
, false);
3088 pci_read_config_word(dev
, PCI_STATUS
, &status
);
3089 if (status
& PCI_STATUS_IMM_READY
)
3093 static unsigned long pci_ea_flags(struct pci_dev
*dev
, u8 prop
)
3095 unsigned long flags
= IORESOURCE_PCI_FIXED
| IORESOURCE_PCI_EA_BEI
;
3099 case PCI_EA_P_VF_MEM
:
3100 flags
|= IORESOURCE_MEM
;
3102 case PCI_EA_P_MEM_PREFETCH
:
3103 case PCI_EA_P_VF_MEM_PREFETCH
:
3104 flags
|= IORESOURCE_MEM
| IORESOURCE_PREFETCH
;
3107 flags
|= IORESOURCE_IO
;
3116 static struct resource
*pci_ea_get_resource(struct pci_dev
*dev
, u8 bei
,
3119 if (bei
<= PCI_EA_BEI_BAR5
&& prop
<= PCI_EA_P_IO
)
3120 return &dev
->resource
[bei
];
3121 #ifdef CONFIG_PCI_IOV
3122 else if (bei
>= PCI_EA_BEI_VF_BAR0
&& bei
<= PCI_EA_BEI_VF_BAR5
&&
3123 (prop
== PCI_EA_P_VF_MEM
|| prop
== PCI_EA_P_VF_MEM_PREFETCH
))
3124 return &dev
->resource
[PCI_IOV_RESOURCES
+
3125 bei
- PCI_EA_BEI_VF_BAR0
];
3127 else if (bei
== PCI_EA_BEI_ROM
)
3128 return &dev
->resource
[PCI_ROM_RESOURCE
];
3133 /* Read an Enhanced Allocation (EA) entry */
3134 static int pci_ea_read(struct pci_dev
*dev
, int offset
)
3136 struct resource
*res
;
3137 int ent_size
, ent_offset
= offset
;
3138 resource_size_t start
, end
;
3139 unsigned long flags
;
3140 u32 dw0
, bei
, base
, max_offset
;
3142 bool support_64
= (sizeof(resource_size_t
) >= 8);
3144 pci_read_config_dword(dev
, ent_offset
, &dw0
);
3147 /* Entry size field indicates DWORDs after 1st */
3148 ent_size
= ((dw0
& PCI_EA_ES
) + 1) << 2;
3150 if (!(dw0
& PCI_EA_ENABLE
)) /* Entry not enabled */
3153 bei
= (dw0
& PCI_EA_BEI
) >> 4;
3154 prop
= (dw0
& PCI_EA_PP
) >> 8;
3157 * If the Property is in the reserved range, try the Secondary
3160 if (prop
> PCI_EA_P_BRIDGE_IO
&& prop
< PCI_EA_P_MEM_RESERVED
)
3161 prop
= (dw0
& PCI_EA_SP
) >> 16;
3162 if (prop
> PCI_EA_P_BRIDGE_IO
)
3165 res
= pci_ea_get_resource(dev
, bei
, prop
);
3167 pci_err(dev
, "Unsupported EA entry BEI: %u\n", bei
);
3171 flags
= pci_ea_flags(dev
, prop
);
3173 pci_err(dev
, "Unsupported EA properties: %#x\n", prop
);
3178 pci_read_config_dword(dev
, ent_offset
, &base
);
3179 start
= (base
& PCI_EA_FIELD_MASK
);
3182 /* Read MaxOffset */
3183 pci_read_config_dword(dev
, ent_offset
, &max_offset
);
3186 /* Read Base MSBs (if 64-bit entry) */
3187 if (base
& PCI_EA_IS_64
) {
3190 pci_read_config_dword(dev
, ent_offset
, &base_upper
);
3193 flags
|= IORESOURCE_MEM_64
;
3195 /* entry starts above 32-bit boundary, can't use */
3196 if (!support_64
&& base_upper
)
3200 start
|= ((u64
)base_upper
<< 32);
3203 end
= start
+ (max_offset
| 0x03);
3205 /* Read MaxOffset MSBs (if 64-bit entry) */
3206 if (max_offset
& PCI_EA_IS_64
) {
3207 u32 max_offset_upper
;
3209 pci_read_config_dword(dev
, ent_offset
, &max_offset_upper
);
3212 flags
|= IORESOURCE_MEM_64
;
3214 /* entry too big, can't use */
3215 if (!support_64
&& max_offset_upper
)
3219 end
+= ((u64
)max_offset_upper
<< 32);
3223 pci_err(dev
, "EA Entry crosses address boundary\n");
3227 if (ent_size
!= ent_offset
- offset
) {
3228 pci_err(dev
, "EA Entry Size (%d) does not match length read (%d)\n",
3229 ent_size
, ent_offset
- offset
);
3233 res
->name
= pci_name(dev
);
3238 if (bei
<= PCI_EA_BEI_BAR5
)
3239 pci_info(dev
, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3241 else if (bei
== PCI_EA_BEI_ROM
)
3242 pci_info(dev
, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3244 else if (bei
>= PCI_EA_BEI_VF_BAR0
&& bei
<= PCI_EA_BEI_VF_BAR5
)
3245 pci_info(dev
, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3246 bei
- PCI_EA_BEI_VF_BAR0
, res
, prop
);
3248 pci_info(dev
, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3252 return offset
+ ent_size
;
3255 /* Enhanced Allocation Initialization */
3256 void pci_ea_init(struct pci_dev
*dev
)
3263 /* find PCI EA capability in list */
3264 ea
= pci_find_capability(dev
, PCI_CAP_ID_EA
);
3268 /* determine the number of entries */
3269 pci_bus_read_config_byte(dev
->bus
, dev
->devfn
, ea
+ PCI_EA_NUM_ENT
,
3271 num_ent
&= PCI_EA_NUM_ENT_MASK
;
3273 offset
= ea
+ PCI_EA_FIRST_ENT
;
3275 /* Skip DWORD 2 for type 1 functions */
3276 if (dev
->hdr_type
== PCI_HEADER_TYPE_BRIDGE
)
3279 /* parse each EA entry */
3280 for (i
= 0; i
< num_ent
; ++i
)
3281 offset
= pci_ea_read(dev
, offset
);
3284 static void pci_add_saved_cap(struct pci_dev
*pci_dev
,
3285 struct pci_cap_saved_state
*new_cap
)
3287 hlist_add_head(&new_cap
->next
, &pci_dev
->saved_cap_space
);
3291 * _pci_add_cap_save_buffer - allocate buffer for saving given
3292 * capability registers
3293 * @dev: the PCI device
3294 * @cap: the capability to allocate the buffer for
3295 * @extended: Standard or Extended capability ID
3296 * @size: requested size of the buffer
3298 static int _pci_add_cap_save_buffer(struct pci_dev
*dev
, u16 cap
,
3299 bool extended
, unsigned int size
)
3302 struct pci_cap_saved_state
*save_state
;
3305 pos
= pci_find_ext_capability(dev
, cap
);
3307 pos
= pci_find_capability(dev
, cap
);
3312 save_state
= kzalloc(sizeof(*save_state
) + size
, GFP_KERNEL
);
3316 save_state
->cap
.cap_nr
= cap
;
3317 save_state
->cap
.cap_extended
= extended
;
3318 save_state
->cap
.size
= size
;
3319 pci_add_saved_cap(dev
, save_state
);
3324 int pci_add_cap_save_buffer(struct pci_dev
*dev
, char cap
, unsigned int size
)
3326 return _pci_add_cap_save_buffer(dev
, cap
, false, size
);
3329 int pci_add_ext_cap_save_buffer(struct pci_dev
*dev
, u16 cap
, unsigned int size
)
3331 return _pci_add_cap_save_buffer(dev
, cap
, true, size
);
3335 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3336 * @dev: the PCI device
3338 void pci_allocate_cap_save_buffers(struct pci_dev
*dev
)
3342 error
= pci_add_cap_save_buffer(dev
, PCI_CAP_ID_EXP
,
3343 PCI_EXP_SAVE_REGS
* sizeof(u16
));
3345 pci_err(dev
, "unable to preallocate PCI Express save buffer\n");
3347 error
= pci_add_cap_save_buffer(dev
, PCI_CAP_ID_PCIX
, sizeof(u16
));
3349 pci_err(dev
, "unable to preallocate PCI-X save buffer\n");
3351 error
= pci_add_ext_cap_save_buffer(dev
, PCI_EXT_CAP_ID_LTR
,
3354 pci_err(dev
, "unable to allocate suspend buffer for LTR\n");
3356 error
= pci_add_ext_cap_save_buffer(dev
, PCI_EXT_CAP_ID_L1SS
,
3359 pci_err(dev
, "unable to allocate suspend buffer for ASPM-L1SS\n");
3361 pci_allocate_vc_save_buffers(dev
);
3364 void pci_free_cap_save_buffers(struct pci_dev
*dev
)
3366 struct pci_cap_saved_state
*tmp
;
3367 struct hlist_node
*n
;
3369 hlist_for_each_entry_safe(tmp
, n
, &dev
->saved_cap_space
, next
)
3374 * pci_configure_ari - enable or disable ARI forwarding
3375 * @dev: the PCI device
3377 * If @dev and its upstream bridge both support ARI, enable ARI in the
3378 * bridge. Otherwise, disable ARI in the bridge.
3380 void pci_configure_ari(struct pci_dev
*dev
)
3383 struct pci_dev
*bridge
;
3385 if (pcie_ari_disabled
|| !pci_is_pcie(dev
) || dev
->devfn
)
3388 bridge
= dev
->bus
->self
;
3392 pcie_capability_read_dword(bridge
, PCI_EXP_DEVCAP2
, &cap
);
3393 if (!(cap
& PCI_EXP_DEVCAP2_ARI
))
3396 if (pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_ARI
)) {
3397 pcie_capability_set_word(bridge
, PCI_EXP_DEVCTL2
,
3398 PCI_EXP_DEVCTL2_ARI
);
3399 bridge
->ari_enabled
= 1;
3401 pcie_capability_clear_word(bridge
, PCI_EXP_DEVCTL2
,
3402 PCI_EXP_DEVCTL2_ARI
);
3403 bridge
->ari_enabled
= 0;
3407 static bool pci_acs_flags_enabled(struct pci_dev
*pdev
, u16 acs_flags
)
3412 pos
= pdev
->acs_cap
;
3417 * Except for egress control, capabilities are either required
3418 * or only required if controllable. Features missing from the
3419 * capability field can therefore be assumed as hard-wired enabled.
3421 pci_read_config_word(pdev
, pos
+ PCI_ACS_CAP
, &cap
);
3422 acs_flags
&= (cap
| PCI_ACS_EC
);
3424 pci_read_config_word(pdev
, pos
+ PCI_ACS_CTRL
, &ctrl
);
3425 return (ctrl
& acs_flags
) == acs_flags
;
3429 * pci_acs_enabled - test ACS against required flags for a given device
3430 * @pdev: device to test
3431 * @acs_flags: required PCI ACS flags
3433 * Return true if the device supports the provided flags. Automatically
3434 * filters out flags that are not implemented on multifunction devices.
3436 * Note that this interface checks the effective ACS capabilities of the
3437 * device rather than the actual capabilities. For instance, most single
3438 * function endpoints are not required to support ACS because they have no
3439 * opportunity for peer-to-peer access. We therefore return 'true'
3440 * regardless of whether the device exposes an ACS capability. This makes
3441 * it much easier for callers of this function to ignore the actual type
3442 * or topology of the device when testing ACS support.
3444 bool pci_acs_enabled(struct pci_dev
*pdev
, u16 acs_flags
)
3448 ret
= pci_dev_specific_acs_enabled(pdev
, acs_flags
);
3453 * Conventional PCI and PCI-X devices never support ACS, either
3454 * effectively or actually. The shared bus topology implies that
3455 * any device on the bus can receive or snoop DMA.
3457 if (!pci_is_pcie(pdev
))
3460 switch (pci_pcie_type(pdev
)) {
3462 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3463 * but since their primary interface is PCI/X, we conservatively
3464 * handle them as we would a non-PCIe device.
3466 case PCI_EXP_TYPE_PCIE_BRIDGE
:
3468 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3469 * applicable... must never implement an ACS Extended Capability...".
3470 * This seems arbitrary, but we take a conservative interpretation
3471 * of this statement.
3473 case PCI_EXP_TYPE_PCI_BRIDGE
:
3474 case PCI_EXP_TYPE_RC_EC
:
3477 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3478 * implement ACS in order to indicate their peer-to-peer capabilities,
3479 * regardless of whether they are single- or multi-function devices.
3481 case PCI_EXP_TYPE_DOWNSTREAM
:
3482 case PCI_EXP_TYPE_ROOT_PORT
:
3483 return pci_acs_flags_enabled(pdev
, acs_flags
);
3485 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3486 * implemented by the remaining PCIe types to indicate peer-to-peer
3487 * capabilities, but only when they are part of a multifunction
3488 * device. The footnote for section 6.12 indicates the specific
3489 * PCIe types included here.
3491 case PCI_EXP_TYPE_ENDPOINT
:
3492 case PCI_EXP_TYPE_UPSTREAM
:
3493 case PCI_EXP_TYPE_LEG_END
:
3494 case PCI_EXP_TYPE_RC_END
:
3495 if (!pdev
->multifunction
)
3498 return pci_acs_flags_enabled(pdev
, acs_flags
);
3502 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3503 * to single function devices with the exception of downstream ports.
3509 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3510 * @start: starting downstream device
3511 * @end: ending upstream device or NULL to search to the root bus
3512 * @acs_flags: required flags
3514 * Walk up a device tree from start to end testing PCI ACS support. If
3515 * any step along the way does not support the required flags, return false.
3517 bool pci_acs_path_enabled(struct pci_dev
*start
,
3518 struct pci_dev
*end
, u16 acs_flags
)
3520 struct pci_dev
*pdev
, *parent
= start
;
3525 if (!pci_acs_enabled(pdev
, acs_flags
))
3528 if (pci_is_root_bus(pdev
->bus
))
3529 return (end
== NULL
);
3531 parent
= pdev
->bus
->self
;
3532 } while (pdev
!= end
);
3538 * pci_acs_init - Initialize ACS if hardware supports it
3539 * @dev: the PCI device
3541 void pci_acs_init(struct pci_dev
*dev
)
3543 dev
->acs_cap
= pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_ACS
);
3546 * Attempt to enable ACS regardless of capability because some Root
3547 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3548 * the standard ACS capability but still support ACS via those
3551 pci_enable_acs(dev
);
3555 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3559 * Helper to find the position of the ctrl register for a BAR.
3560 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3561 * Returns -ENOENT if no ctrl register for the BAR could be found.
3563 static int pci_rebar_find_pos(struct pci_dev
*pdev
, int bar
)
3565 unsigned int pos
, nbars
, i
;
3568 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_REBAR
);
3572 pci_read_config_dword(pdev
, pos
+ PCI_REBAR_CTRL
, &ctrl
);
3573 nbars
= (ctrl
& PCI_REBAR_CTRL_NBAR_MASK
) >>
3574 PCI_REBAR_CTRL_NBAR_SHIFT
;
3576 for (i
= 0; i
< nbars
; i
++, pos
+= 8) {
3579 pci_read_config_dword(pdev
, pos
+ PCI_REBAR_CTRL
, &ctrl
);
3580 bar_idx
= ctrl
& PCI_REBAR_CTRL_BAR_IDX
;
3589 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3591 * @bar: BAR to query
3593 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3594 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3596 u32
pci_rebar_get_possible_sizes(struct pci_dev
*pdev
, int bar
)
3601 pos
= pci_rebar_find_pos(pdev
, bar
);
3605 pci_read_config_dword(pdev
, pos
+ PCI_REBAR_CAP
, &cap
);
3606 return (cap
& PCI_REBAR_CAP_SIZES
) >> 4;
3610 * pci_rebar_get_current_size - get the current size of a BAR
3612 * @bar: BAR to set size to
3614 * Read the size of a BAR from the resizable BAR config.
3615 * Returns size if found or negative error code.
3617 int pci_rebar_get_current_size(struct pci_dev
*pdev
, int bar
)
3622 pos
= pci_rebar_find_pos(pdev
, bar
);
3626 pci_read_config_dword(pdev
, pos
+ PCI_REBAR_CTRL
, &ctrl
);
3627 return (ctrl
& PCI_REBAR_CTRL_BAR_SIZE
) >> PCI_REBAR_CTRL_BAR_SHIFT
;
3631 * pci_rebar_set_size - set a new size for a BAR
3633 * @bar: BAR to set size to
3634 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3636 * Set the new size of a BAR as defined in the spec.
3637 * Returns zero if resizing was successful, error code otherwise.
3639 int pci_rebar_set_size(struct pci_dev
*pdev
, int bar
, int size
)
3644 pos
= pci_rebar_find_pos(pdev
, bar
);
3648 pci_read_config_dword(pdev
, pos
+ PCI_REBAR_CTRL
, &ctrl
);
3649 ctrl
&= ~PCI_REBAR_CTRL_BAR_SIZE
;
3650 ctrl
|= size
<< PCI_REBAR_CTRL_BAR_SHIFT
;
3651 pci_write_config_dword(pdev
, pos
+ PCI_REBAR_CTRL
, ctrl
);
3656 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3657 * @dev: the PCI device
3658 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3659 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3660 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3661 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3663 * Return 0 if all upstream bridges support AtomicOp routing, egress
3664 * blocking is disabled on all upstream ports, and the root port supports
3665 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3666 * AtomicOp completion), or negative otherwise.
3668 int pci_enable_atomic_ops_to_root(struct pci_dev
*dev
, u32 cap_mask
)
3670 struct pci_bus
*bus
= dev
->bus
;
3671 struct pci_dev
*bridge
;
3674 if (!pci_is_pcie(dev
))
3678 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3679 * AtomicOp requesters. For now, we only support endpoints as
3680 * requesters and root ports as completers. No endpoints as
3681 * completers, and no peer-to-peer.
3684 switch (pci_pcie_type(dev
)) {
3685 case PCI_EXP_TYPE_ENDPOINT
:
3686 case PCI_EXP_TYPE_LEG_END
:
3687 case PCI_EXP_TYPE_RC_END
:
3693 while (bus
->parent
) {
3696 pcie_capability_read_dword(bridge
, PCI_EXP_DEVCAP2
, &cap
);
3698 switch (pci_pcie_type(bridge
)) {
3699 /* Ensure switch ports support AtomicOp routing */
3700 case PCI_EXP_TYPE_UPSTREAM
:
3701 case PCI_EXP_TYPE_DOWNSTREAM
:
3702 if (!(cap
& PCI_EXP_DEVCAP2_ATOMIC_ROUTE
))
3706 /* Ensure root port supports all the sizes we care about */
3707 case PCI_EXP_TYPE_ROOT_PORT
:
3708 if ((cap
& cap_mask
) != cap_mask
)
3713 /* Ensure upstream ports don't block AtomicOps on egress */
3714 if (pci_pcie_type(bridge
) == PCI_EXP_TYPE_UPSTREAM
) {
3715 pcie_capability_read_dword(bridge
, PCI_EXP_DEVCTL2
,
3717 if (ctl2
& PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK
)
3724 pcie_capability_set_word(dev
, PCI_EXP_DEVCTL2
,
3725 PCI_EXP_DEVCTL2_ATOMIC_REQ
);
3728 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root
);
3731 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3732 * @dev: the PCI device
3733 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3735 * Perform INTx swizzling for a device behind one level of bridge. This is
3736 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3737 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3738 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3739 * the PCI Express Base Specification, Revision 2.1)
3741 u8
pci_swizzle_interrupt_pin(const struct pci_dev
*dev
, u8 pin
)
3745 if (pci_ari_enabled(dev
->bus
))
3748 slot
= PCI_SLOT(dev
->devfn
);
3750 return (((pin
- 1) + slot
) % 4) + 1;
3753 int pci_get_interrupt_pin(struct pci_dev
*dev
, struct pci_dev
**bridge
)
3761 while (!pci_is_root_bus(dev
->bus
)) {
3762 pin
= pci_swizzle_interrupt_pin(dev
, pin
);
3763 dev
= dev
->bus
->self
;
3770 * pci_common_swizzle - swizzle INTx all the way to root bridge
3771 * @dev: the PCI device
3772 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3774 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3775 * bridges all the way up to a PCI root bus.
3777 u8
pci_common_swizzle(struct pci_dev
*dev
, u8
*pinp
)
3781 while (!pci_is_root_bus(dev
->bus
)) {
3782 pin
= pci_swizzle_interrupt_pin(dev
, pin
);
3783 dev
= dev
->bus
->self
;
3786 return PCI_SLOT(dev
->devfn
);
3788 EXPORT_SYMBOL_GPL(pci_common_swizzle
);
3791 * pci_release_region - Release a PCI bar
3792 * @pdev: PCI device whose resources were previously reserved by
3793 * pci_request_region()
3794 * @bar: BAR to release
3796 * Releases the PCI I/O and memory resources previously reserved by a
3797 * successful call to pci_request_region(). Call this function only
3798 * after all use of the PCI regions has ceased.
3800 void pci_release_region(struct pci_dev
*pdev
, int bar
)
3802 struct pci_devres
*dr
;
3804 if (pci_resource_len(pdev
, bar
) == 0)
3806 if (pci_resource_flags(pdev
, bar
) & IORESOURCE_IO
)
3807 release_region(pci_resource_start(pdev
, bar
),
3808 pci_resource_len(pdev
, bar
));
3809 else if (pci_resource_flags(pdev
, bar
) & IORESOURCE_MEM
)
3810 release_mem_region(pci_resource_start(pdev
, bar
),
3811 pci_resource_len(pdev
, bar
));
3813 dr
= find_pci_dr(pdev
);
3815 dr
->region_mask
&= ~(1 << bar
);
3817 EXPORT_SYMBOL(pci_release_region
);
3820 * __pci_request_region - Reserved PCI I/O and memory resource
3821 * @pdev: PCI device whose resources are to be reserved
3822 * @bar: BAR to be reserved
3823 * @res_name: Name to be associated with resource.
3824 * @exclusive: whether the region access is exclusive or not
3826 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3827 * being reserved by owner @res_name. Do not access any
3828 * address inside the PCI regions unless this call returns
3831 * If @exclusive is set, then the region is marked so that userspace
3832 * is explicitly not allowed to map the resource via /dev/mem or
3833 * sysfs MMIO access.
3835 * Returns 0 on success, or %EBUSY on error. A warning
3836 * message is also printed on failure.
3838 static int __pci_request_region(struct pci_dev
*pdev
, int bar
,
3839 const char *res_name
, int exclusive
)
3841 struct pci_devres
*dr
;
3843 if (pci_resource_len(pdev
, bar
) == 0)
3846 if (pci_resource_flags(pdev
, bar
) & IORESOURCE_IO
) {
3847 if (!request_region(pci_resource_start(pdev
, bar
),
3848 pci_resource_len(pdev
, bar
), res_name
))
3850 } else if (pci_resource_flags(pdev
, bar
) & IORESOURCE_MEM
) {
3851 if (!__request_mem_region(pci_resource_start(pdev
, bar
),
3852 pci_resource_len(pdev
, bar
), res_name
,
3857 dr
= find_pci_dr(pdev
);
3859 dr
->region_mask
|= 1 << bar
;
3864 pci_warn(pdev
, "BAR %d: can't reserve %pR\n", bar
,
3865 &pdev
->resource
[bar
]);
3870 * pci_request_region - Reserve PCI I/O and memory resource
3871 * @pdev: PCI device whose resources are to be reserved
3872 * @bar: BAR to be reserved
3873 * @res_name: Name to be associated with resource
3875 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3876 * being reserved by owner @res_name. Do not access any
3877 * address inside the PCI regions unless this call returns
3880 * Returns 0 on success, or %EBUSY on error. A warning
3881 * message is also printed on failure.
3883 int pci_request_region(struct pci_dev
*pdev
, int bar
, const char *res_name
)
3885 return __pci_request_region(pdev
, bar
, res_name
, 0);
3887 EXPORT_SYMBOL(pci_request_region
);
3890 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3891 * @pdev: PCI device whose resources were previously reserved
3892 * @bars: Bitmask of BARs to be released
3894 * Release selected PCI I/O and memory resources previously reserved.
3895 * Call this function only after all use of the PCI regions has ceased.
3897 void pci_release_selected_regions(struct pci_dev
*pdev
, int bars
)
3901 for (i
= 0; i
< PCI_STD_NUM_BARS
; i
++)
3902 if (bars
& (1 << i
))
3903 pci_release_region(pdev
, i
);
3905 EXPORT_SYMBOL(pci_release_selected_regions
);
3907 static int __pci_request_selected_regions(struct pci_dev
*pdev
, int bars
,
3908 const char *res_name
, int excl
)
3912 for (i
= 0; i
< PCI_STD_NUM_BARS
; i
++)
3913 if (bars
& (1 << i
))
3914 if (__pci_request_region(pdev
, i
, res_name
, excl
))
3920 if (bars
& (1 << i
))
3921 pci_release_region(pdev
, i
);
3928 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3929 * @pdev: PCI device whose resources are to be reserved
3930 * @bars: Bitmask of BARs to be requested
3931 * @res_name: Name to be associated with resource
3933 int pci_request_selected_regions(struct pci_dev
*pdev
, int bars
,
3934 const char *res_name
)
3936 return __pci_request_selected_regions(pdev
, bars
, res_name
, 0);
3938 EXPORT_SYMBOL(pci_request_selected_regions
);
3940 int pci_request_selected_regions_exclusive(struct pci_dev
*pdev
, int bars
,
3941 const char *res_name
)
3943 return __pci_request_selected_regions(pdev
, bars
, res_name
,
3944 IORESOURCE_EXCLUSIVE
);
3946 EXPORT_SYMBOL(pci_request_selected_regions_exclusive
);
3949 * pci_release_regions - Release reserved PCI I/O and memory resources
3950 * @pdev: PCI device whose resources were previously reserved by
3951 * pci_request_regions()
3953 * Releases all PCI I/O and memory resources previously reserved by a
3954 * successful call to pci_request_regions(). Call this function only
3955 * after all use of the PCI regions has ceased.
3958 void pci_release_regions(struct pci_dev
*pdev
)
3960 pci_release_selected_regions(pdev
, (1 << PCI_STD_NUM_BARS
) - 1);
3962 EXPORT_SYMBOL(pci_release_regions
);
3965 * pci_request_regions - Reserve PCI I/O and memory resources
3966 * @pdev: PCI device whose resources are to be reserved
3967 * @res_name: Name to be associated with resource.
3969 * Mark all PCI regions associated with PCI device @pdev as
3970 * being reserved by owner @res_name. Do not access any
3971 * address inside the PCI regions unless this call returns
3974 * Returns 0 on success, or %EBUSY on error. A warning
3975 * message is also printed on failure.
3977 int pci_request_regions(struct pci_dev
*pdev
, const char *res_name
)
3979 return pci_request_selected_regions(pdev
,
3980 ((1 << PCI_STD_NUM_BARS
) - 1), res_name
);
3982 EXPORT_SYMBOL(pci_request_regions
);
3985 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
3986 * @pdev: PCI device whose resources are to be reserved
3987 * @res_name: Name to be associated with resource.
3989 * Mark all PCI regions associated with PCI device @pdev as being reserved
3990 * by owner @res_name. Do not access any address inside the PCI regions
3991 * unless this call returns successfully.
3993 * pci_request_regions_exclusive() will mark the region so that /dev/mem
3994 * and the sysfs MMIO access will not be allowed.
3996 * Returns 0 on success, or %EBUSY on error. A warning message is also
3997 * printed on failure.
3999 int pci_request_regions_exclusive(struct pci_dev
*pdev
, const char *res_name
)
4001 return pci_request_selected_regions_exclusive(pdev
,
4002 ((1 << PCI_STD_NUM_BARS
) - 1), res_name
);
4004 EXPORT_SYMBOL(pci_request_regions_exclusive
);
4007 * Record the PCI IO range (expressed as CPU physical address + size).
4008 * Return a negative value if an error has occurred, zero otherwise
4010 int pci_register_io_range(struct fwnode_handle
*fwnode
, phys_addr_t addr
,
4011 resource_size_t size
)
4015 struct logic_pio_hwaddr
*range
;
4017 if (!size
|| addr
+ size
< addr
)
4020 range
= kzalloc(sizeof(*range
), GFP_ATOMIC
);
4024 range
->fwnode
= fwnode
;
4026 range
->hw_start
= addr
;
4027 range
->flags
= LOGIC_PIO_CPU_MMIO
;
4029 ret
= logic_pio_register_range(range
);
4037 phys_addr_t
pci_pio_to_address(unsigned long pio
)
4039 phys_addr_t address
= (phys_addr_t
)OF_BAD_ADDR
;
4042 if (pio
>= MMIO_UPPER_LIMIT
)
4045 address
= logic_pio_to_hwaddr(pio
);
4051 unsigned long __weak
pci_address_to_pio(phys_addr_t address
)
4054 return logic_pio_trans_cpuaddr(address
);
4056 if (address
> IO_SPACE_LIMIT
)
4057 return (unsigned long)-1;
4059 return (unsigned long) address
;
4064 * pci_remap_iospace - Remap the memory mapped I/O space
4065 * @res: Resource describing the I/O space
4066 * @phys_addr: physical address of range to be mapped
4068 * Remap the memory mapped I/O space described by the @res and the CPU
4069 * physical address @phys_addr into virtual address space. Only
4070 * architectures that have memory mapped IO functions defined (and the
4071 * PCI_IOBASE value defined) should call this function.
4073 int pci_remap_iospace(const struct resource
*res
, phys_addr_t phys_addr
)
4075 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4076 unsigned long vaddr
= (unsigned long)PCI_IOBASE
+ res
->start
;
4078 if (!(res
->flags
& IORESOURCE_IO
))
4081 if (res
->end
> IO_SPACE_LIMIT
)
4084 return ioremap_page_range(vaddr
, vaddr
+ resource_size(res
), phys_addr
,
4085 pgprot_device(PAGE_KERNEL
));
4088 * This architecture does not have memory mapped I/O space,
4089 * so this function should never be called
4091 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4095 EXPORT_SYMBOL(pci_remap_iospace
);
4098 * pci_unmap_iospace - Unmap the memory mapped I/O space
4099 * @res: resource to be unmapped
4101 * Unmap the CPU virtual address @res from virtual address space. Only
4102 * architectures that have memory mapped IO functions defined (and the
4103 * PCI_IOBASE value defined) should call this function.
4105 void pci_unmap_iospace(struct resource
*res
)
4107 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4108 unsigned long vaddr
= (unsigned long)PCI_IOBASE
+ res
->start
;
4110 unmap_kernel_range(vaddr
, resource_size(res
));
4113 EXPORT_SYMBOL(pci_unmap_iospace
);
4115 static void devm_pci_unmap_iospace(struct device
*dev
, void *ptr
)
4117 struct resource
**res
= ptr
;
4119 pci_unmap_iospace(*res
);
4123 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4124 * @dev: Generic device to remap IO address for
4125 * @res: Resource describing the I/O space
4126 * @phys_addr: physical address of range to be mapped
4128 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
4131 int devm_pci_remap_iospace(struct device
*dev
, const struct resource
*res
,
4132 phys_addr_t phys_addr
)
4134 const struct resource
**ptr
;
4137 ptr
= devres_alloc(devm_pci_unmap_iospace
, sizeof(*ptr
), GFP_KERNEL
);
4141 error
= pci_remap_iospace(res
, phys_addr
);
4146 devres_add(dev
, ptr
);
4151 EXPORT_SYMBOL(devm_pci_remap_iospace
);
4154 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4155 * @dev: Generic device to remap IO address for
4156 * @offset: Resource address to map
4157 * @size: Size of map
4159 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
4162 void __iomem
*devm_pci_remap_cfgspace(struct device
*dev
,
4163 resource_size_t offset
,
4164 resource_size_t size
)
4166 void __iomem
**ptr
, *addr
;
4168 ptr
= devres_alloc(devm_ioremap_release
, sizeof(*ptr
), GFP_KERNEL
);
4172 addr
= pci_remap_cfgspace(offset
, size
);
4175 devres_add(dev
, ptr
);
4181 EXPORT_SYMBOL(devm_pci_remap_cfgspace
);
4184 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4185 * @dev: generic device to handle the resource for
4186 * @res: configuration space resource to be handled
4188 * Checks that a resource is a valid memory region, requests the memory
4189 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4190 * proper PCI configuration space memory attributes are guaranteed.
4192 * All operations are managed and will be undone on driver detach.
4194 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4195 * on failure. Usage example::
4197 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4198 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4200 * return PTR_ERR(base);
4202 void __iomem
*devm_pci_remap_cfg_resource(struct device
*dev
,
4203 struct resource
*res
)
4205 resource_size_t size
;
4207 void __iomem
*dest_ptr
;
4211 if (!res
|| resource_type(res
) != IORESOURCE_MEM
) {
4212 dev_err(dev
, "invalid resource\n");
4213 return IOMEM_ERR_PTR(-EINVAL
);
4216 size
= resource_size(res
);
4219 name
= devm_kasprintf(dev
, GFP_KERNEL
, "%s %s", dev_name(dev
),
4222 name
= devm_kstrdup(dev
, dev_name(dev
), GFP_KERNEL
);
4224 return IOMEM_ERR_PTR(-ENOMEM
);
4226 if (!devm_request_mem_region(dev
, res
->start
, size
, name
)) {
4227 dev_err(dev
, "can't request region for resource %pR\n", res
);
4228 return IOMEM_ERR_PTR(-EBUSY
);
4231 dest_ptr
= devm_pci_remap_cfgspace(dev
, res
->start
, size
);
4233 dev_err(dev
, "ioremap failed for resource %pR\n", res
);
4234 devm_release_mem_region(dev
, res
->start
, size
);
4235 dest_ptr
= IOMEM_ERR_PTR(-ENOMEM
);
4240 EXPORT_SYMBOL(devm_pci_remap_cfg_resource
);
4242 static void __pci_set_master(struct pci_dev
*dev
, bool enable
)
4246 pci_read_config_word(dev
, PCI_COMMAND
, &old_cmd
);
4248 cmd
= old_cmd
| PCI_COMMAND_MASTER
;
4250 cmd
= old_cmd
& ~PCI_COMMAND_MASTER
;
4251 if (cmd
!= old_cmd
) {
4252 pci_dbg(dev
, "%s bus mastering\n",
4253 enable
? "enabling" : "disabling");
4254 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
4256 dev
->is_busmaster
= enable
;
4260 * pcibios_setup - process "pci=" kernel boot arguments
4261 * @str: string used to pass in "pci=" kernel boot arguments
4263 * Process kernel boot arguments. This is the default implementation.
4264 * Architecture specific implementations can override this as necessary.
4266 char * __weak __init
pcibios_setup(char *str
)
4272 * pcibios_set_master - enable PCI bus-mastering for device dev
4273 * @dev: the PCI device to enable
4275 * Enables PCI bus-mastering for the device. This is the default
4276 * implementation. Architecture specific implementations can override
4277 * this if necessary.
4279 void __weak
pcibios_set_master(struct pci_dev
*dev
)
4283 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4284 if (pci_is_pcie(dev
))
4287 pci_read_config_byte(dev
, PCI_LATENCY_TIMER
, &lat
);
4289 lat
= (64 <= pcibios_max_latency
) ? 64 : pcibios_max_latency
;
4290 else if (lat
> pcibios_max_latency
)
4291 lat
= pcibios_max_latency
;
4295 pci_write_config_byte(dev
, PCI_LATENCY_TIMER
, lat
);
4299 * pci_set_master - enables bus-mastering for device dev
4300 * @dev: the PCI device to enable
4302 * Enables bus-mastering on the device and calls pcibios_set_master()
4303 * to do the needed arch specific settings.
4305 void pci_set_master(struct pci_dev
*dev
)
4307 __pci_set_master(dev
, true);
4308 pcibios_set_master(dev
);
4310 EXPORT_SYMBOL(pci_set_master
);
4313 * pci_clear_master - disables bus-mastering for device dev
4314 * @dev: the PCI device to disable
4316 void pci_clear_master(struct pci_dev
*dev
)
4318 __pci_set_master(dev
, false);
4320 EXPORT_SYMBOL(pci_clear_master
);
4323 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4324 * @dev: the PCI device for which MWI is to be enabled
4326 * Helper function for pci_set_mwi.
4327 * Originally copied from drivers/net/acenic.c.
4328 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4330 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4332 int pci_set_cacheline_size(struct pci_dev
*dev
)
4336 if (!pci_cache_line_size
)
4339 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4340 equal to or multiple of the right value. */
4341 pci_read_config_byte(dev
, PCI_CACHE_LINE_SIZE
, &cacheline_size
);
4342 if (cacheline_size
>= pci_cache_line_size
&&
4343 (cacheline_size
% pci_cache_line_size
) == 0)
4346 /* Write the correct value. */
4347 pci_write_config_byte(dev
, PCI_CACHE_LINE_SIZE
, pci_cache_line_size
);
4349 pci_read_config_byte(dev
, PCI_CACHE_LINE_SIZE
, &cacheline_size
);
4350 if (cacheline_size
== pci_cache_line_size
)
4353 pci_dbg(dev
, "cache line size of %d is not supported\n",
4354 pci_cache_line_size
<< 2);
4358 EXPORT_SYMBOL_GPL(pci_set_cacheline_size
);
4361 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4362 * @dev: the PCI device for which MWI is enabled
4364 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4366 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4368 int pci_set_mwi(struct pci_dev
*dev
)
4370 #ifdef PCI_DISABLE_MWI
4376 rc
= pci_set_cacheline_size(dev
);
4380 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
4381 if (!(cmd
& PCI_COMMAND_INVALIDATE
)) {
4382 pci_dbg(dev
, "enabling Mem-Wr-Inval\n");
4383 cmd
|= PCI_COMMAND_INVALIDATE
;
4384 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
4389 EXPORT_SYMBOL(pci_set_mwi
);
4392 * pcim_set_mwi - a device-managed pci_set_mwi()
4393 * @dev: the PCI device for which MWI is enabled
4395 * Managed pci_set_mwi().
4397 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4399 int pcim_set_mwi(struct pci_dev
*dev
)
4401 struct pci_devres
*dr
;
4403 dr
= find_pci_dr(dev
);
4408 return pci_set_mwi(dev
);
4410 EXPORT_SYMBOL(pcim_set_mwi
);
4413 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4414 * @dev: the PCI device for which MWI is enabled
4416 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4417 * Callers are not required to check the return value.
4419 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4421 int pci_try_set_mwi(struct pci_dev
*dev
)
4423 #ifdef PCI_DISABLE_MWI
4426 return pci_set_mwi(dev
);
4429 EXPORT_SYMBOL(pci_try_set_mwi
);
4432 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4433 * @dev: the PCI device to disable
4435 * Disables PCI Memory-Write-Invalidate transaction on the device
4437 void pci_clear_mwi(struct pci_dev
*dev
)
4439 #ifndef PCI_DISABLE_MWI
4442 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
4443 if (cmd
& PCI_COMMAND_INVALIDATE
) {
4444 cmd
&= ~PCI_COMMAND_INVALIDATE
;
4445 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
4449 EXPORT_SYMBOL(pci_clear_mwi
);
4452 * pci_intx - enables/disables PCI INTx for device dev
4453 * @pdev: the PCI device to operate on
4454 * @enable: boolean: whether to enable or disable PCI INTx
4456 * Enables/disables PCI INTx for device @pdev
4458 void pci_intx(struct pci_dev
*pdev
, int enable
)
4460 u16 pci_command
, new;
4462 pci_read_config_word(pdev
, PCI_COMMAND
, &pci_command
);
4465 new = pci_command
& ~PCI_COMMAND_INTX_DISABLE
;
4467 new = pci_command
| PCI_COMMAND_INTX_DISABLE
;
4469 if (new != pci_command
) {
4470 struct pci_devres
*dr
;
4472 pci_write_config_word(pdev
, PCI_COMMAND
, new);
4474 dr
= find_pci_dr(pdev
);
4475 if (dr
&& !dr
->restore_intx
) {
4476 dr
->restore_intx
= 1;
4477 dr
->orig_intx
= !enable
;
4481 EXPORT_SYMBOL_GPL(pci_intx
);
4483 static bool pci_check_and_set_intx_mask(struct pci_dev
*dev
, bool mask
)
4485 struct pci_bus
*bus
= dev
->bus
;
4486 bool mask_updated
= true;
4487 u32 cmd_status_dword
;
4488 u16 origcmd
, newcmd
;
4489 unsigned long flags
;
4493 * We do a single dword read to retrieve both command and status.
4494 * Document assumptions that make this possible.
4496 BUILD_BUG_ON(PCI_COMMAND
% 4);
4497 BUILD_BUG_ON(PCI_COMMAND
+ 2 != PCI_STATUS
);
4499 raw_spin_lock_irqsave(&pci_lock
, flags
);
4501 bus
->ops
->read(bus
, dev
->devfn
, PCI_COMMAND
, 4, &cmd_status_dword
);
4503 irq_pending
= (cmd_status_dword
>> 16) & PCI_STATUS_INTERRUPT
;
4506 * Check interrupt status register to see whether our device
4507 * triggered the interrupt (when masking) or the next IRQ is
4508 * already pending (when unmasking).
4510 if (mask
!= irq_pending
) {
4511 mask_updated
= false;
4515 origcmd
= cmd_status_dword
;
4516 newcmd
= origcmd
& ~PCI_COMMAND_INTX_DISABLE
;
4518 newcmd
|= PCI_COMMAND_INTX_DISABLE
;
4519 if (newcmd
!= origcmd
)
4520 bus
->ops
->write(bus
, dev
->devfn
, PCI_COMMAND
, 2, newcmd
);
4523 raw_spin_unlock_irqrestore(&pci_lock
, flags
);
4525 return mask_updated
;
4529 * pci_check_and_mask_intx - mask INTx on pending interrupt
4530 * @dev: the PCI device to operate on
4532 * Check if the device dev has its INTx line asserted, mask it and return
4533 * true in that case. False is returned if no interrupt was pending.
4535 bool pci_check_and_mask_intx(struct pci_dev
*dev
)
4537 return pci_check_and_set_intx_mask(dev
, true);
4539 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx
);
4542 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4543 * @dev: the PCI device to operate on
4545 * Check if the device dev has its INTx line asserted, unmask it if not and
4546 * return true. False is returned and the mask remains active if there was
4547 * still an interrupt pending.
4549 bool pci_check_and_unmask_intx(struct pci_dev
*dev
)
4551 return pci_check_and_set_intx_mask(dev
, false);
4553 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx
);
4556 * pci_wait_for_pending_transaction - wait for pending transaction
4557 * @dev: the PCI device to operate on
4559 * Return 0 if transaction is pending 1 otherwise.
4561 int pci_wait_for_pending_transaction(struct pci_dev
*dev
)
4563 if (!pci_is_pcie(dev
))
4566 return pci_wait_for_pending(dev
, pci_pcie_cap(dev
) + PCI_EXP_DEVSTA
,
4567 PCI_EXP_DEVSTA_TRPND
);
4569 EXPORT_SYMBOL(pci_wait_for_pending_transaction
);
4572 * pcie_has_flr - check if a device supports function level resets
4573 * @dev: device to check
4575 * Returns true if the device advertises support for PCIe function level
4578 bool pcie_has_flr(struct pci_dev
*dev
)
4582 if (dev
->dev_flags
& PCI_DEV_FLAGS_NO_FLR_RESET
)
4585 pcie_capability_read_dword(dev
, PCI_EXP_DEVCAP
, &cap
);
4586 return cap
& PCI_EXP_DEVCAP_FLR
;
4588 EXPORT_SYMBOL_GPL(pcie_has_flr
);
4591 * pcie_flr - initiate a PCIe function level reset
4592 * @dev: device to reset
4594 * Initiate a function level reset on @dev. The caller should ensure the
4595 * device supports FLR before calling this function, e.g. by using the
4596 * pcie_has_flr() helper.
4598 int pcie_flr(struct pci_dev
*dev
)
4600 if (!pci_wait_for_pending_transaction(dev
))
4601 pci_err(dev
, "timed out waiting for pending transaction; performing function level reset anyway\n");
4603 pcie_capability_set_word(dev
, PCI_EXP_DEVCTL
, PCI_EXP_DEVCTL_BCR_FLR
);
4609 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4610 * 100ms, but may silently discard requests while the FLR is in
4611 * progress. Wait 100ms before trying to access the device.
4615 return pci_dev_wait(dev
, "FLR", PCIE_RESET_READY_POLL_MS
);
4617 EXPORT_SYMBOL_GPL(pcie_flr
);
4619 static int pci_af_flr(struct pci_dev
*dev
, int probe
)
4624 pos
= pci_find_capability(dev
, PCI_CAP_ID_AF
);
4628 if (dev
->dev_flags
& PCI_DEV_FLAGS_NO_FLR_RESET
)
4631 pci_read_config_byte(dev
, pos
+ PCI_AF_CAP
, &cap
);
4632 if (!(cap
& PCI_AF_CAP_TP
) || !(cap
& PCI_AF_CAP_FLR
))
4639 * Wait for Transaction Pending bit to clear. A word-aligned test
4640 * is used, so we use the control offset rather than status and shift
4641 * the test bit to match.
4643 if (!pci_wait_for_pending(dev
, pos
+ PCI_AF_CTRL
,
4644 PCI_AF_STATUS_TP
<< 8))
4645 pci_err(dev
, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4647 pci_write_config_byte(dev
, pos
+ PCI_AF_CTRL
, PCI_AF_CTRL_FLR
);
4653 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4654 * updated 27 July 2006; a device must complete an FLR within
4655 * 100ms, but may silently discard requests while the FLR is in
4656 * progress. Wait 100ms before trying to access the device.
4660 return pci_dev_wait(dev
, "AF_FLR", PCIE_RESET_READY_POLL_MS
);
4664 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4665 * @dev: Device to reset.
4666 * @probe: If set, only check if the device can be reset this way.
4668 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4669 * unset, it will be reinitialized internally when going from PCI_D3hot to
4670 * PCI_D0. If that's the case and the device is not in a low-power state
4671 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4673 * NOTE: This causes the caller to sleep for twice the device power transition
4674 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4675 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4676 * Moreover, only devices in D0 can be reset by this function.
4678 static int pci_pm_reset(struct pci_dev
*dev
, int probe
)
4682 if (!dev
->pm_cap
|| dev
->dev_flags
& PCI_DEV_FLAGS_NO_PM_RESET
)
4685 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &csr
);
4686 if (csr
& PCI_PM_CTRL_NO_SOFT_RESET
)
4692 if (dev
->current_state
!= PCI_D0
)
4695 csr
&= ~PCI_PM_CTRL_STATE_MASK
;
4697 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, csr
);
4698 pci_dev_d3_sleep(dev
);
4700 csr
&= ~PCI_PM_CTRL_STATE_MASK
;
4702 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, csr
);
4703 pci_dev_d3_sleep(dev
);
4705 return pci_dev_wait(dev
, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS
);
4709 * pcie_wait_for_link_delay - Wait until link is active or inactive
4710 * @pdev: Bridge device
4711 * @active: waiting for active or inactive?
4712 * @delay: Delay to wait after link has become active (in ms)
4714 * Use this to wait till link becomes active or inactive.
4716 static bool pcie_wait_for_link_delay(struct pci_dev
*pdev
, bool active
,
4724 * Some controllers might not implement link active reporting. In this
4725 * case, we wait for 1000 ms + any delay requested by the caller.
4727 if (!pdev
->link_active_reporting
) {
4728 msleep(timeout
+ delay
);
4733 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4734 * after which we should expect an link active if the reset was
4735 * successful. If so, software must wait a minimum 100ms before sending
4736 * configuration requests to devices downstream this port.
4738 * If the link fails to activate, either the device was physically
4739 * removed or the link is permanently failed.
4744 pcie_capability_read_word(pdev
, PCI_EXP_LNKSTA
, &lnk_status
);
4745 ret
= !!(lnk_status
& PCI_EXP_LNKSTA_DLLLA
);
4756 return ret
== active
;
4760 * pcie_wait_for_link - Wait until link is active or inactive
4761 * @pdev: Bridge device
4762 * @active: waiting for active or inactive?
4764 * Use this to wait till link becomes active or inactive.
4766 bool pcie_wait_for_link(struct pci_dev
*pdev
, bool active
)
4768 return pcie_wait_for_link_delay(pdev
, active
, 100);
4772 * Find maximum D3cold delay required by all the devices on the bus. The
4773 * spec says 100 ms, but firmware can lower it and we allow drivers to
4774 * increase it as well.
4776 * Called with @pci_bus_sem locked for reading.
4778 static int pci_bus_max_d3cold_delay(const struct pci_bus
*bus
)
4780 const struct pci_dev
*pdev
;
4781 int min_delay
= 100;
4784 list_for_each_entry(pdev
, &bus
->devices
, bus_list
) {
4785 if (pdev
->d3cold_delay
< min_delay
)
4786 min_delay
= pdev
->d3cold_delay
;
4787 if (pdev
->d3cold_delay
> max_delay
)
4788 max_delay
= pdev
->d3cold_delay
;
4791 return max(min_delay
, max_delay
);
4795 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4798 * Handle necessary delays before access to the devices on the secondary
4799 * side of the bridge are permitted after D3cold to D0 transition.
4801 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4802 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4805 void pci_bridge_wait_for_secondary_bus(struct pci_dev
*dev
)
4807 struct pci_dev
*child
;
4810 if (pci_dev_is_disconnected(dev
))
4813 if (!pci_is_bridge(dev
) || !dev
->bridge_d3
)
4816 down_read(&pci_bus_sem
);
4819 * We only deal with devices that are present currently on the bus.
4820 * For any hot-added devices the access delay is handled in pciehp
4821 * board_added(). In case of ACPI hotplug the firmware is expected
4822 * to configure the devices before OS is notified.
4824 if (!dev
->subordinate
|| list_empty(&dev
->subordinate
->devices
)) {
4825 up_read(&pci_bus_sem
);
4829 /* Take d3cold_delay requirements into account */
4830 delay
= pci_bus_max_d3cold_delay(dev
->subordinate
);
4832 up_read(&pci_bus_sem
);
4836 child
= list_first_entry(&dev
->subordinate
->devices
, struct pci_dev
,
4838 up_read(&pci_bus_sem
);
4841 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4842 * accessing the device after reset (that is 1000 ms + 100 ms). In
4843 * practice this should not be needed because we don't do power
4844 * management for them (see pci_bridge_d3_possible()).
4846 if (!pci_is_pcie(dev
)) {
4847 pci_dbg(dev
, "waiting %d ms for secondary bus\n", 1000 + delay
);
4848 msleep(1000 + delay
);
4853 * For PCIe downstream and root ports that do not support speeds
4854 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4855 * speeds (gen3) we need to wait first for the data link layer to
4858 * However, 100 ms is the minimum and the PCIe spec says the
4859 * software must allow at least 1s before it can determine that the
4860 * device that did not respond is a broken device. There is
4861 * evidence that 100 ms is not always enough, for example certain
4862 * Titan Ridge xHCI controller does not always respond to
4863 * configuration requests if we only wait for 100 ms (see
4864 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4866 * Therefore we wait for 100 ms and check for the device presence.
4867 * If it is still not present give it an additional 100 ms.
4869 if (!pcie_downstream_port(dev
))
4872 if (pcie_get_speed_cap(dev
) <= PCIE_SPEED_5_0GT
) {
4873 pci_dbg(dev
, "waiting %d ms for downstream link\n", delay
);
4876 pci_dbg(dev
, "waiting %d ms for downstream link, after activation\n",
4878 if (!pcie_wait_for_link_delay(dev
, true, delay
)) {
4879 /* Did not train, no need to wait any further */
4880 pci_info(dev
, "Data Link Layer Link Active not set in 1000 msec\n");
4885 if (!pci_device_is_present(child
)) {
4886 pci_dbg(child
, "waiting additional %d ms to become accessible\n", delay
);
4891 void pci_reset_secondary_bus(struct pci_dev
*dev
)
4895 pci_read_config_word(dev
, PCI_BRIDGE_CONTROL
, &ctrl
);
4896 ctrl
|= PCI_BRIDGE_CTL_BUS_RESET
;
4897 pci_write_config_word(dev
, PCI_BRIDGE_CONTROL
, ctrl
);
4900 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4901 * this to 2ms to ensure that we meet the minimum requirement.
4905 ctrl
&= ~PCI_BRIDGE_CTL_BUS_RESET
;
4906 pci_write_config_word(dev
, PCI_BRIDGE_CONTROL
, ctrl
);
4909 * Trhfa for conventional PCI is 2^25 clock cycles.
4910 * Assuming a minimum 33MHz clock this results in a 1s
4911 * delay before we can consider subordinate devices to
4912 * be re-initialized. PCIe has some ways to shorten this,
4913 * but we don't make use of them yet.
4918 void __weak
pcibios_reset_secondary_bus(struct pci_dev
*dev
)
4920 pci_reset_secondary_bus(dev
);
4924 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4925 * @dev: Bridge device
4927 * Use the bridge control register to assert reset on the secondary bus.
4928 * Devices on the secondary bus are left in power-on state.
4930 int pci_bridge_secondary_bus_reset(struct pci_dev
*dev
)
4932 pcibios_reset_secondary_bus(dev
);
4934 return pci_dev_wait(dev
, "bus reset", PCIE_RESET_READY_POLL_MS
);
4936 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset
);
4938 static int pci_parent_bus_reset(struct pci_dev
*dev
, int probe
)
4940 struct pci_dev
*pdev
;
4942 if (pci_is_root_bus(dev
->bus
) || dev
->subordinate
||
4943 !dev
->bus
->self
|| dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
)
4946 list_for_each_entry(pdev
, &dev
->bus
->devices
, bus_list
)
4953 return pci_bridge_secondary_bus_reset(dev
->bus
->self
);
4956 static int pci_reset_hotplug_slot(struct hotplug_slot
*hotplug
, int probe
)
4960 if (!hotplug
|| !try_module_get(hotplug
->owner
))
4963 if (hotplug
->ops
->reset_slot
)
4964 rc
= hotplug
->ops
->reset_slot(hotplug
, probe
);
4966 module_put(hotplug
->owner
);
4971 static int pci_dev_reset_slot_function(struct pci_dev
*dev
, int probe
)
4973 if (dev
->multifunction
|| dev
->subordinate
|| !dev
->slot
||
4974 dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
)
4977 return pci_reset_hotplug_slot(dev
->slot
->hotplug
, probe
);
4980 static void pci_dev_lock(struct pci_dev
*dev
)
4982 pci_cfg_access_lock(dev
);
4983 /* block PM suspend, driver probe, etc. */
4984 device_lock(&dev
->dev
);
4987 /* Return 1 on successful lock, 0 on contention */
4988 static int pci_dev_trylock(struct pci_dev
*dev
)
4990 if (pci_cfg_access_trylock(dev
)) {
4991 if (device_trylock(&dev
->dev
))
4993 pci_cfg_access_unlock(dev
);
4999 static void pci_dev_unlock(struct pci_dev
*dev
)
5001 device_unlock(&dev
->dev
);
5002 pci_cfg_access_unlock(dev
);
5005 static void pci_dev_save_and_disable(struct pci_dev
*dev
)
5007 const struct pci_error_handlers
*err_handler
=
5008 dev
->driver
? dev
->driver
->err_handler
: NULL
;
5011 * dev->driver->err_handler->reset_prepare() is protected against
5012 * races with ->remove() by the device lock, which must be held by
5015 if (err_handler
&& err_handler
->reset_prepare
)
5016 err_handler
->reset_prepare(dev
);
5019 * Wake-up device prior to save. PM registers default to D0 after
5020 * reset and a simple register restore doesn't reliably return
5021 * to a non-D0 state anyway.
5023 pci_set_power_state(dev
, PCI_D0
);
5025 pci_save_state(dev
);
5027 * Disable the device by clearing the Command register, except for
5028 * INTx-disable which is set. This not only disables MMIO and I/O port
5029 * BARs, but also prevents the device from being Bus Master, preventing
5030 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
5031 * compliant devices, INTx-disable prevents legacy interrupts.
5033 pci_write_config_word(dev
, PCI_COMMAND
, PCI_COMMAND_INTX_DISABLE
);
5036 static void pci_dev_restore(struct pci_dev
*dev
)
5038 const struct pci_error_handlers
*err_handler
=
5039 dev
->driver
? dev
->driver
->err_handler
: NULL
;
5041 pci_restore_state(dev
);
5044 * dev->driver->err_handler->reset_done() is protected against
5045 * races with ->remove() by the device lock, which must be held by
5048 if (err_handler
&& err_handler
->reset_done
)
5049 err_handler
->reset_done(dev
);
5053 * __pci_reset_function_locked - reset a PCI device function while holding
5054 * the @dev mutex lock.
5055 * @dev: PCI device to reset
5057 * Some devices allow an individual function to be reset without affecting
5058 * other functions in the same device. The PCI device must be responsive
5059 * to PCI config space in order to use this function.
5061 * The device function is presumed to be unused and the caller is holding
5062 * the device mutex lock when this function is called.
5064 * Resetting the device will make the contents of PCI configuration space
5065 * random, so any caller of this must be prepared to reinitialise the
5066 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5069 * Returns 0 if the device function was successfully reset or negative if the
5070 * device doesn't support resetting a single function.
5072 int __pci_reset_function_locked(struct pci_dev
*dev
)
5079 * A reset method returns -ENOTTY if it doesn't support this device
5080 * and we should try the next method.
5082 * If it returns 0 (success), we're finished. If it returns any
5083 * other error, we're also finished: this indicates that further
5084 * reset mechanisms might be broken on the device.
5086 rc
= pci_dev_specific_reset(dev
, 0);
5089 if (pcie_has_flr(dev
)) {
5094 rc
= pci_af_flr(dev
, 0);
5097 rc
= pci_pm_reset(dev
, 0);
5100 rc
= pci_dev_reset_slot_function(dev
, 0);
5103 return pci_parent_bus_reset(dev
, 0);
5105 EXPORT_SYMBOL_GPL(__pci_reset_function_locked
);
5108 * pci_probe_reset_function - check whether the device can be safely reset
5109 * @dev: PCI device to reset
5111 * Some devices allow an individual function to be reset without affecting
5112 * other functions in the same device. The PCI device must be responsive
5113 * to PCI config space in order to use this function.
5115 * Returns 0 if the device function can be reset or negative if the
5116 * device doesn't support resetting a single function.
5118 int pci_probe_reset_function(struct pci_dev
*dev
)
5124 rc
= pci_dev_specific_reset(dev
, 1);
5127 if (pcie_has_flr(dev
))
5129 rc
= pci_af_flr(dev
, 1);
5132 rc
= pci_pm_reset(dev
, 1);
5135 rc
= pci_dev_reset_slot_function(dev
, 1);
5139 return pci_parent_bus_reset(dev
, 1);
5143 * pci_reset_function - quiesce and reset a PCI device function
5144 * @dev: PCI device to reset
5146 * Some devices allow an individual function to be reset without affecting
5147 * other functions in the same device. The PCI device must be responsive
5148 * to PCI config space in order to use this function.
5150 * This function does not just reset the PCI portion of a device, but
5151 * clears all the state associated with the device. This function differs
5152 * from __pci_reset_function_locked() in that it saves and restores device state
5153 * over the reset and takes the PCI device lock.
5155 * Returns 0 if the device function was successfully reset or negative if the
5156 * device doesn't support resetting a single function.
5158 int pci_reset_function(struct pci_dev
*dev
)
5166 pci_dev_save_and_disable(dev
);
5168 rc
= __pci_reset_function_locked(dev
);
5170 pci_dev_restore(dev
);
5171 pci_dev_unlock(dev
);
5175 EXPORT_SYMBOL_GPL(pci_reset_function
);
5178 * pci_reset_function_locked - quiesce and reset a PCI device function
5179 * @dev: PCI device to reset
5181 * Some devices allow an individual function to be reset without affecting
5182 * other functions in the same device. The PCI device must be responsive
5183 * to PCI config space in order to use this function.
5185 * This function does not just reset the PCI portion of a device, but
5186 * clears all the state associated with the device. This function differs
5187 * from __pci_reset_function_locked() in that it saves and restores device state
5188 * over the reset. It also differs from pci_reset_function() in that it
5189 * requires the PCI device lock to be held.
5191 * Returns 0 if the device function was successfully reset or negative if the
5192 * device doesn't support resetting a single function.
5194 int pci_reset_function_locked(struct pci_dev
*dev
)
5201 pci_dev_save_and_disable(dev
);
5203 rc
= __pci_reset_function_locked(dev
);
5205 pci_dev_restore(dev
);
5209 EXPORT_SYMBOL_GPL(pci_reset_function_locked
);
5212 * pci_try_reset_function - quiesce and reset a PCI device function
5213 * @dev: PCI device to reset
5215 * Same as above, except return -EAGAIN if unable to lock device.
5217 int pci_try_reset_function(struct pci_dev
*dev
)
5224 if (!pci_dev_trylock(dev
))
5227 pci_dev_save_and_disable(dev
);
5228 rc
= __pci_reset_function_locked(dev
);
5229 pci_dev_restore(dev
);
5230 pci_dev_unlock(dev
);
5234 EXPORT_SYMBOL_GPL(pci_try_reset_function
);
5236 /* Do any devices on or below this bus prevent a bus reset? */
5237 static bool pci_bus_resetable(struct pci_bus
*bus
)
5239 struct pci_dev
*dev
;
5242 if (bus
->self
&& (bus
->self
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
))
5245 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
5246 if (dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
||
5247 (dev
->subordinate
&& !pci_bus_resetable(dev
->subordinate
)))
5254 /* Lock devices from the top of the tree down */
5255 static void pci_bus_lock(struct pci_bus
*bus
)
5257 struct pci_dev
*dev
;
5259 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
5261 if (dev
->subordinate
)
5262 pci_bus_lock(dev
->subordinate
);
5266 /* Unlock devices from the bottom of the tree up */
5267 static void pci_bus_unlock(struct pci_bus
*bus
)
5269 struct pci_dev
*dev
;
5271 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
5272 if (dev
->subordinate
)
5273 pci_bus_unlock(dev
->subordinate
);
5274 pci_dev_unlock(dev
);
5278 /* Return 1 on successful lock, 0 on contention */
5279 static int pci_bus_trylock(struct pci_bus
*bus
)
5281 struct pci_dev
*dev
;
5283 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
5284 if (!pci_dev_trylock(dev
))
5286 if (dev
->subordinate
) {
5287 if (!pci_bus_trylock(dev
->subordinate
)) {
5288 pci_dev_unlock(dev
);
5296 list_for_each_entry_continue_reverse(dev
, &bus
->devices
, bus_list
) {
5297 if (dev
->subordinate
)
5298 pci_bus_unlock(dev
->subordinate
);
5299 pci_dev_unlock(dev
);
5304 /* Do any devices on or below this slot prevent a bus reset? */
5305 static bool pci_slot_resetable(struct pci_slot
*slot
)
5307 struct pci_dev
*dev
;
5309 if (slot
->bus
->self
&&
5310 (slot
->bus
->self
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
))
5313 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
5314 if (!dev
->slot
|| dev
->slot
!= slot
)
5316 if (dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
||
5317 (dev
->subordinate
&& !pci_bus_resetable(dev
->subordinate
)))
5324 /* Lock devices from the top of the tree down */
5325 static void pci_slot_lock(struct pci_slot
*slot
)
5327 struct pci_dev
*dev
;
5329 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
5330 if (!dev
->slot
|| dev
->slot
!= slot
)
5333 if (dev
->subordinate
)
5334 pci_bus_lock(dev
->subordinate
);
5338 /* Unlock devices from the bottom of the tree up */
5339 static void pci_slot_unlock(struct pci_slot
*slot
)
5341 struct pci_dev
*dev
;
5343 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
5344 if (!dev
->slot
|| dev
->slot
!= slot
)
5346 if (dev
->subordinate
)
5347 pci_bus_unlock(dev
->subordinate
);
5348 pci_dev_unlock(dev
);
5352 /* Return 1 on successful lock, 0 on contention */
5353 static int pci_slot_trylock(struct pci_slot
*slot
)
5355 struct pci_dev
*dev
;
5357 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
5358 if (!dev
->slot
|| dev
->slot
!= slot
)
5360 if (!pci_dev_trylock(dev
))
5362 if (dev
->subordinate
) {
5363 if (!pci_bus_trylock(dev
->subordinate
)) {
5364 pci_dev_unlock(dev
);
5372 list_for_each_entry_continue_reverse(dev
,
5373 &slot
->bus
->devices
, bus_list
) {
5374 if (!dev
->slot
|| dev
->slot
!= slot
)
5376 if (dev
->subordinate
)
5377 pci_bus_unlock(dev
->subordinate
);
5378 pci_dev_unlock(dev
);
5384 * Save and disable devices from the top of the tree down while holding
5385 * the @dev mutex lock for the entire tree.
5387 static void pci_bus_save_and_disable_locked(struct pci_bus
*bus
)
5389 struct pci_dev
*dev
;
5391 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
5392 pci_dev_save_and_disable(dev
);
5393 if (dev
->subordinate
)
5394 pci_bus_save_and_disable_locked(dev
->subordinate
);
5399 * Restore devices from top of the tree down while holding @dev mutex lock
5400 * for the entire tree. Parent bridges need to be restored before we can
5401 * get to subordinate devices.
5403 static void pci_bus_restore_locked(struct pci_bus
*bus
)
5405 struct pci_dev
*dev
;
5407 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
5408 pci_dev_restore(dev
);
5409 if (dev
->subordinate
)
5410 pci_bus_restore_locked(dev
->subordinate
);
5415 * Save and disable devices from the top of the tree down while holding
5416 * the @dev mutex lock for the entire tree.
5418 static void pci_slot_save_and_disable_locked(struct pci_slot
*slot
)
5420 struct pci_dev
*dev
;
5422 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
5423 if (!dev
->slot
|| dev
->slot
!= slot
)
5425 pci_dev_save_and_disable(dev
);
5426 if (dev
->subordinate
)
5427 pci_bus_save_and_disable_locked(dev
->subordinate
);
5432 * Restore devices from top of the tree down while holding @dev mutex lock
5433 * for the entire tree. Parent bridges need to be restored before we can
5434 * get to subordinate devices.
5436 static void pci_slot_restore_locked(struct pci_slot
*slot
)
5438 struct pci_dev
*dev
;
5440 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
5441 if (!dev
->slot
|| dev
->slot
!= slot
)
5443 pci_dev_restore(dev
);
5444 if (dev
->subordinate
)
5445 pci_bus_restore_locked(dev
->subordinate
);
5449 static int pci_slot_reset(struct pci_slot
*slot
, int probe
)
5453 if (!slot
|| !pci_slot_resetable(slot
))
5457 pci_slot_lock(slot
);
5461 rc
= pci_reset_hotplug_slot(slot
->hotplug
, probe
);
5464 pci_slot_unlock(slot
);
5470 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5471 * @slot: PCI slot to probe
5473 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5475 int pci_probe_reset_slot(struct pci_slot
*slot
)
5477 return pci_slot_reset(slot
, 1);
5479 EXPORT_SYMBOL_GPL(pci_probe_reset_slot
);
5482 * __pci_reset_slot - Try to reset a PCI slot
5483 * @slot: PCI slot to reset
5485 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5486 * independent of other slots. For instance, some slots may support slot power
5487 * control. In the case of a 1:1 bus to slot architecture, this function may
5488 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5489 * Generally a slot reset should be attempted before a bus reset. All of the
5490 * function of the slot and any subordinate buses behind the slot are reset
5491 * through this function. PCI config space of all devices in the slot and
5492 * behind the slot is saved before and restored after reset.
5494 * Same as above except return -EAGAIN if the slot cannot be locked
5496 static int __pci_reset_slot(struct pci_slot
*slot
)
5500 rc
= pci_slot_reset(slot
, 1);
5504 if (pci_slot_trylock(slot
)) {
5505 pci_slot_save_and_disable_locked(slot
);
5507 rc
= pci_reset_hotplug_slot(slot
->hotplug
, 0);
5508 pci_slot_restore_locked(slot
);
5509 pci_slot_unlock(slot
);
5516 static int pci_bus_reset(struct pci_bus
*bus
, int probe
)
5520 if (!bus
->self
|| !pci_bus_resetable(bus
))
5530 ret
= pci_bridge_secondary_bus_reset(bus
->self
);
5532 pci_bus_unlock(bus
);
5538 * pci_bus_error_reset - reset the bridge's subordinate bus
5539 * @bridge: The parent device that connects to the bus to reset
5541 * This function will first try to reset the slots on this bus if the method is
5542 * available. If slot reset fails or is not available, this will fall back to a
5543 * secondary bus reset.
5545 int pci_bus_error_reset(struct pci_dev
*bridge
)
5547 struct pci_bus
*bus
= bridge
->subordinate
;
5548 struct pci_slot
*slot
;
5553 mutex_lock(&pci_slot_mutex
);
5554 if (list_empty(&bus
->slots
))
5557 list_for_each_entry(slot
, &bus
->slots
, list
)
5558 if (pci_probe_reset_slot(slot
))
5561 list_for_each_entry(slot
, &bus
->slots
, list
)
5562 if (pci_slot_reset(slot
, 0))
5565 mutex_unlock(&pci_slot_mutex
);
5568 mutex_unlock(&pci_slot_mutex
);
5569 return pci_bus_reset(bridge
->subordinate
, 0);
5573 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5574 * @bus: PCI bus to probe
5576 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5578 int pci_probe_reset_bus(struct pci_bus
*bus
)
5580 return pci_bus_reset(bus
, 1);
5582 EXPORT_SYMBOL_GPL(pci_probe_reset_bus
);
5585 * __pci_reset_bus - Try to reset a PCI bus
5586 * @bus: top level PCI bus to reset
5588 * Same as above except return -EAGAIN if the bus cannot be locked
5590 static int __pci_reset_bus(struct pci_bus
*bus
)
5594 rc
= pci_bus_reset(bus
, 1);
5598 if (pci_bus_trylock(bus
)) {
5599 pci_bus_save_and_disable_locked(bus
);
5601 rc
= pci_bridge_secondary_bus_reset(bus
->self
);
5602 pci_bus_restore_locked(bus
);
5603 pci_bus_unlock(bus
);
5611 * pci_reset_bus - Try to reset a PCI bus
5612 * @pdev: top level PCI device to reset via slot/bus
5614 * Same as above except return -EAGAIN if the bus cannot be locked
5616 int pci_reset_bus(struct pci_dev
*pdev
)
5618 return (!pci_probe_reset_slot(pdev
->slot
)) ?
5619 __pci_reset_slot(pdev
->slot
) : __pci_reset_bus(pdev
->bus
);
5621 EXPORT_SYMBOL_GPL(pci_reset_bus
);
5624 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5625 * @dev: PCI device to query
5627 * Returns mmrbc: maximum designed memory read count in bytes or
5628 * appropriate error value.
5630 int pcix_get_max_mmrbc(struct pci_dev
*dev
)
5635 cap
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
5639 if (pci_read_config_dword(dev
, cap
+ PCI_X_STATUS
, &stat
))
5642 return 512 << ((stat
& PCI_X_STATUS_MAX_READ
) >> 21);
5644 EXPORT_SYMBOL(pcix_get_max_mmrbc
);
5647 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5648 * @dev: PCI device to query
5650 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5653 int pcix_get_mmrbc(struct pci_dev
*dev
)
5658 cap
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
5662 if (pci_read_config_word(dev
, cap
+ PCI_X_CMD
, &cmd
))
5665 return 512 << ((cmd
& PCI_X_CMD_MAX_READ
) >> 2);
5667 EXPORT_SYMBOL(pcix_get_mmrbc
);
5670 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5671 * @dev: PCI device to query
5672 * @mmrbc: maximum memory read count in bytes
5673 * valid values are 512, 1024, 2048, 4096
5675 * If possible sets maximum memory read byte count, some bridges have errata
5676 * that prevent this.
5678 int pcix_set_mmrbc(struct pci_dev
*dev
, int mmrbc
)
5684 if (mmrbc
< 512 || mmrbc
> 4096 || !is_power_of_2(mmrbc
))
5687 v
= ffs(mmrbc
) - 10;
5689 cap
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
5693 if (pci_read_config_dword(dev
, cap
+ PCI_X_STATUS
, &stat
))
5696 if (v
> (stat
& PCI_X_STATUS_MAX_READ
) >> 21)
5699 if (pci_read_config_word(dev
, cap
+ PCI_X_CMD
, &cmd
))
5702 o
= (cmd
& PCI_X_CMD_MAX_READ
) >> 2;
5704 if (v
> o
&& (dev
->bus
->bus_flags
& PCI_BUS_FLAGS_NO_MMRBC
))
5707 cmd
&= ~PCI_X_CMD_MAX_READ
;
5709 if (pci_write_config_word(dev
, cap
+ PCI_X_CMD
, cmd
))
5714 EXPORT_SYMBOL(pcix_set_mmrbc
);
5717 * pcie_get_readrq - get PCI Express read request size
5718 * @dev: PCI device to query
5720 * Returns maximum memory read request in bytes or appropriate error value.
5722 int pcie_get_readrq(struct pci_dev
*dev
)
5726 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL
, &ctl
);
5728 return 128 << ((ctl
& PCI_EXP_DEVCTL_READRQ
) >> 12);
5730 EXPORT_SYMBOL(pcie_get_readrq
);
5733 * pcie_set_readrq - set PCI Express maximum memory read request
5734 * @dev: PCI device to query
5735 * @rq: maximum memory read count in bytes
5736 * valid values are 128, 256, 512, 1024, 2048, 4096
5738 * If possible sets maximum memory read request in bytes
5740 int pcie_set_readrq(struct pci_dev
*dev
, int rq
)
5745 if (rq
< 128 || rq
> 4096 || !is_power_of_2(rq
))
5749 * If using the "performance" PCIe config, we clamp the read rq
5750 * size to the max packet size to keep the host bridge from
5751 * generating requests larger than we can cope with.
5753 if (pcie_bus_config
== PCIE_BUS_PERFORMANCE
) {
5754 int mps
= pcie_get_mps(dev
);
5760 v
= (ffs(rq
) - 8) << 12;
5762 ret
= pcie_capability_clear_and_set_word(dev
, PCI_EXP_DEVCTL
,
5763 PCI_EXP_DEVCTL_READRQ
, v
);
5765 return pcibios_err_to_errno(ret
);
5767 EXPORT_SYMBOL(pcie_set_readrq
);
5770 * pcie_get_mps - get PCI Express maximum payload size
5771 * @dev: PCI device to query
5773 * Returns maximum payload size in bytes
5775 int pcie_get_mps(struct pci_dev
*dev
)
5779 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL
, &ctl
);
5781 return 128 << ((ctl
& PCI_EXP_DEVCTL_PAYLOAD
) >> 5);
5783 EXPORT_SYMBOL(pcie_get_mps
);
5786 * pcie_set_mps - set PCI Express maximum payload size
5787 * @dev: PCI device to query
5788 * @mps: maximum payload size in bytes
5789 * valid values are 128, 256, 512, 1024, 2048, 4096
5791 * If possible sets maximum payload size
5793 int pcie_set_mps(struct pci_dev
*dev
, int mps
)
5798 if (mps
< 128 || mps
> 4096 || !is_power_of_2(mps
))
5802 if (v
> dev
->pcie_mpss
)
5806 ret
= pcie_capability_clear_and_set_word(dev
, PCI_EXP_DEVCTL
,
5807 PCI_EXP_DEVCTL_PAYLOAD
, v
);
5809 return pcibios_err_to_errno(ret
);
5811 EXPORT_SYMBOL(pcie_set_mps
);
5814 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5815 * device and its bandwidth limitation
5816 * @dev: PCI device to query
5817 * @limiting_dev: storage for device causing the bandwidth limitation
5818 * @speed: storage for speed of limiting device
5819 * @width: storage for width of limiting device
5821 * Walk up the PCI device chain and find the point where the minimum
5822 * bandwidth is available. Return the bandwidth available there and (if
5823 * limiting_dev, speed, and width pointers are supplied) information about
5824 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
5827 u32
pcie_bandwidth_available(struct pci_dev
*dev
, struct pci_dev
**limiting_dev
,
5828 enum pci_bus_speed
*speed
,
5829 enum pcie_link_width
*width
)
5832 enum pci_bus_speed next_speed
;
5833 enum pcie_link_width next_width
;
5837 *speed
= PCI_SPEED_UNKNOWN
;
5839 *width
= PCIE_LNK_WIDTH_UNKNOWN
;
5844 pcie_capability_read_word(dev
, PCI_EXP_LNKSTA
, &lnksta
);
5846 next_speed
= pcie_link_speed
[lnksta
& PCI_EXP_LNKSTA_CLS
];
5847 next_width
= (lnksta
& PCI_EXP_LNKSTA_NLW
) >>
5848 PCI_EXP_LNKSTA_NLW_SHIFT
;
5850 next_bw
= next_width
* PCIE_SPEED2MBS_ENC(next_speed
);
5852 /* Check if current device limits the total bandwidth */
5853 if (!bw
|| next_bw
<= bw
) {
5857 *limiting_dev
= dev
;
5859 *speed
= next_speed
;
5861 *width
= next_width
;
5864 dev
= pci_upstream_bridge(dev
);
5869 EXPORT_SYMBOL(pcie_bandwidth_available
);
5872 * pcie_get_speed_cap - query for the PCI device's link speed capability
5873 * @dev: PCI device to query
5875 * Query the PCI device speed capability. Return the maximum link speed
5876 * supported by the device.
5878 enum pci_bus_speed
pcie_get_speed_cap(struct pci_dev
*dev
)
5880 u32 lnkcap2
, lnkcap
;
5883 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
5884 * implementation note there recommends using the Supported Link
5885 * Speeds Vector in Link Capabilities 2 when supported.
5887 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5888 * should use the Supported Link Speeds field in Link Capabilities,
5889 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5891 pcie_capability_read_dword(dev
, PCI_EXP_LNKCAP2
, &lnkcap2
);
5893 /* PCIe r3.0-compliant */
5895 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2
);
5897 pcie_capability_read_dword(dev
, PCI_EXP_LNKCAP
, &lnkcap
);
5898 if ((lnkcap
& PCI_EXP_LNKCAP_SLS
) == PCI_EXP_LNKCAP_SLS_5_0GB
)
5899 return PCIE_SPEED_5_0GT
;
5900 else if ((lnkcap
& PCI_EXP_LNKCAP_SLS
) == PCI_EXP_LNKCAP_SLS_2_5GB
)
5901 return PCIE_SPEED_2_5GT
;
5903 return PCI_SPEED_UNKNOWN
;
5905 EXPORT_SYMBOL(pcie_get_speed_cap
);
5908 * pcie_get_width_cap - query for the PCI device's link width capability
5909 * @dev: PCI device to query
5911 * Query the PCI device width capability. Return the maximum link width
5912 * supported by the device.
5914 enum pcie_link_width
pcie_get_width_cap(struct pci_dev
*dev
)
5918 pcie_capability_read_dword(dev
, PCI_EXP_LNKCAP
, &lnkcap
);
5920 return (lnkcap
& PCI_EXP_LNKCAP_MLW
) >> 4;
5922 return PCIE_LNK_WIDTH_UNKNOWN
;
5924 EXPORT_SYMBOL(pcie_get_width_cap
);
5927 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5929 * @speed: storage for link speed
5930 * @width: storage for link width
5932 * Calculate a PCI device's link bandwidth by querying for its link speed
5933 * and width, multiplying them, and applying encoding overhead. The result
5934 * is in Mb/s, i.e., megabits/second of raw bandwidth.
5936 u32
pcie_bandwidth_capable(struct pci_dev
*dev
, enum pci_bus_speed
*speed
,
5937 enum pcie_link_width
*width
)
5939 *speed
= pcie_get_speed_cap(dev
);
5940 *width
= pcie_get_width_cap(dev
);
5942 if (*speed
== PCI_SPEED_UNKNOWN
|| *width
== PCIE_LNK_WIDTH_UNKNOWN
)
5945 return *width
* PCIE_SPEED2MBS_ENC(*speed
);
5949 * __pcie_print_link_status - Report the PCI device's link speed and width
5950 * @dev: PCI device to query
5951 * @verbose: Print info even when enough bandwidth is available
5953 * If the available bandwidth at the device is less than the device is
5954 * capable of, report the device's maximum possible bandwidth and the
5955 * upstream link that limits its performance. If @verbose, always print
5956 * the available bandwidth, even if the device isn't constrained.
5958 void __pcie_print_link_status(struct pci_dev
*dev
, bool verbose
)
5960 enum pcie_link_width width
, width_cap
;
5961 enum pci_bus_speed speed
, speed_cap
;
5962 struct pci_dev
*limiting_dev
= NULL
;
5963 u32 bw_avail
, bw_cap
;
5965 bw_cap
= pcie_bandwidth_capable(dev
, &speed_cap
, &width_cap
);
5966 bw_avail
= pcie_bandwidth_available(dev
, &limiting_dev
, &speed
, &width
);
5968 if (bw_avail
>= bw_cap
&& verbose
)
5969 pci_info(dev
, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5970 bw_cap
/ 1000, bw_cap
% 1000,
5971 pci_speed_string(speed_cap
), width_cap
);
5972 else if (bw_avail
< bw_cap
)
5973 pci_info(dev
, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5974 bw_avail
/ 1000, bw_avail
% 1000,
5975 pci_speed_string(speed
), width
,
5976 limiting_dev
? pci_name(limiting_dev
) : "<unknown>",
5977 bw_cap
/ 1000, bw_cap
% 1000,
5978 pci_speed_string(speed_cap
), width_cap
);
5982 * pcie_print_link_status - Report the PCI device's link speed and width
5983 * @dev: PCI device to query
5985 * Report the available bandwidth at the device.
5987 void pcie_print_link_status(struct pci_dev
*dev
)
5989 __pcie_print_link_status(dev
, true);
5991 EXPORT_SYMBOL(pcie_print_link_status
);
5994 * pci_select_bars - Make BAR mask from the type of resource
5995 * @dev: the PCI device for which BAR mask is made
5996 * @flags: resource type mask to be selected
5998 * This helper routine makes bar mask from the type of resource.
6000 int pci_select_bars(struct pci_dev
*dev
, unsigned long flags
)
6003 for (i
= 0; i
< PCI_NUM_RESOURCES
; i
++)
6004 if (pci_resource_flags(dev
, i
) & flags
)
6008 EXPORT_SYMBOL(pci_select_bars
);
6010 /* Some architectures require additional programming to enable VGA */
6011 static arch_set_vga_state_t arch_set_vga_state
;
6013 void __init
pci_register_set_vga_state(arch_set_vga_state_t func
)
6015 arch_set_vga_state
= func
; /* NULL disables */
6018 static int pci_set_vga_state_arch(struct pci_dev
*dev
, bool decode
,
6019 unsigned int command_bits
, u32 flags
)
6021 if (arch_set_vga_state
)
6022 return arch_set_vga_state(dev
, decode
, command_bits
,
6028 * pci_set_vga_state - set VGA decode state on device and parents if requested
6029 * @dev: the PCI device
6030 * @decode: true = enable decoding, false = disable decoding
6031 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6032 * @flags: traverse ancestors and change bridges
6033 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6035 int pci_set_vga_state(struct pci_dev
*dev
, bool decode
,
6036 unsigned int command_bits
, u32 flags
)
6038 struct pci_bus
*bus
;
6039 struct pci_dev
*bridge
;
6043 WARN_ON((flags
& PCI_VGA_STATE_CHANGE_DECODES
) && (command_bits
& ~(PCI_COMMAND_IO
|PCI_COMMAND_MEMORY
)));
6045 /* ARCH specific VGA enables */
6046 rc
= pci_set_vga_state_arch(dev
, decode
, command_bits
, flags
);
6050 if (flags
& PCI_VGA_STATE_CHANGE_DECODES
) {
6051 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
6053 cmd
|= command_bits
;
6055 cmd
&= ~command_bits
;
6056 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
6059 if (!(flags
& PCI_VGA_STATE_CHANGE_BRIDGE
))
6066 pci_read_config_word(bridge
, PCI_BRIDGE_CONTROL
,
6069 cmd
|= PCI_BRIDGE_CTL_VGA
;
6071 cmd
&= ~PCI_BRIDGE_CTL_VGA
;
6072 pci_write_config_word(bridge
, PCI_BRIDGE_CONTROL
,
6081 bool pci_pr3_present(struct pci_dev
*pdev
)
6083 struct acpi_device
*adev
;
6088 adev
= ACPI_COMPANION(&pdev
->dev
);
6092 return adev
->power
.flags
.power_resources
&&
6093 acpi_has_method(adev
->handle
, "_PR3");
6095 EXPORT_SYMBOL_GPL(pci_pr3_present
);
6099 * pci_add_dma_alias - Add a DMA devfn alias for a device
6100 * @dev: the PCI device for which alias is added
6101 * @devfn_from: alias slot and function
6102 * @nr_devfns: number of subsequent devfns to alias
6104 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6105 * which is used to program permissible bus-devfn source addresses for DMA
6106 * requests in an IOMMU. These aliases factor into IOMMU group creation
6107 * and are useful for devices generating DMA requests beyond or different
6108 * from their logical bus-devfn. Examples include device quirks where the
6109 * device simply uses the wrong devfn, as well as non-transparent bridges
6110 * where the alias may be a proxy for devices in another domain.
6112 * IOMMU group creation is performed during device discovery or addition,
6113 * prior to any potential DMA mapping and therefore prior to driver probing
6114 * (especially for userspace assigned devices where IOMMU group definition
6115 * cannot be left as a userspace activity). DMA aliases should therefore
6116 * be configured via quirks, such as the PCI fixup header quirk.
6118 void pci_add_dma_alias(struct pci_dev
*dev
, u8 devfn_from
, unsigned nr_devfns
)
6122 nr_devfns
= min(nr_devfns
, (unsigned) MAX_NR_DEVFNS
- devfn_from
);
6123 devfn_to
= devfn_from
+ nr_devfns
- 1;
6125 if (!dev
->dma_alias_mask
)
6126 dev
->dma_alias_mask
= bitmap_zalloc(MAX_NR_DEVFNS
, GFP_KERNEL
);
6127 if (!dev
->dma_alias_mask
) {
6128 pci_warn(dev
, "Unable to allocate DMA alias mask\n");
6132 bitmap_set(dev
->dma_alias_mask
, devfn_from
, nr_devfns
);
6135 pci_info(dev
, "Enabling fixed DMA alias to %02x.%d\n",
6136 PCI_SLOT(devfn_from
), PCI_FUNC(devfn_from
));
6137 else if (nr_devfns
> 1)
6138 pci_info(dev
, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6139 PCI_SLOT(devfn_from
), PCI_FUNC(devfn_from
),
6140 PCI_SLOT(devfn_to
), PCI_FUNC(devfn_to
));
6143 bool pci_devs_are_dma_aliases(struct pci_dev
*dev1
, struct pci_dev
*dev2
)
6145 return (dev1
->dma_alias_mask
&&
6146 test_bit(dev2
->devfn
, dev1
->dma_alias_mask
)) ||
6147 (dev2
->dma_alias_mask
&&
6148 test_bit(dev1
->devfn
, dev2
->dma_alias_mask
)) ||
6149 pci_real_dma_dev(dev1
) == dev2
||
6150 pci_real_dma_dev(dev2
) == dev1
;
6153 bool pci_device_is_present(struct pci_dev
*pdev
)
6157 if (pci_dev_is_disconnected(pdev
))
6159 return pci_bus_read_dev_vendor_id(pdev
->bus
, pdev
->devfn
, &v
, 0);
6161 EXPORT_SYMBOL_GPL(pci_device_is_present
);
6163 void pci_ignore_hotplug(struct pci_dev
*dev
)
6165 struct pci_dev
*bridge
= dev
->bus
->self
;
6167 dev
->ignore_hotplug
= 1;
6168 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6170 bridge
->ignore_hotplug
= 1;
6172 EXPORT_SYMBOL_GPL(pci_ignore_hotplug
);
6175 * pci_real_dma_dev - Get PCI DMA device for PCI device
6176 * @dev: the PCI device that may have a PCI DMA alias
6178 * Permits the platform to provide architecture-specific functionality to
6179 * devices needing to alias DMA to another PCI device on another PCI bus. If
6180 * the PCI device is on the same bus, it is recommended to use
6181 * pci_add_dma_alias(). This is the default implementation. Architecture
6182 * implementations can override this.
6184 struct pci_dev __weak
*pci_real_dma_dev(struct pci_dev
*dev
)
6189 resource_size_t __weak
pcibios_default_alignment(void)
6195 * Arches that don't want to expose struct resource to userland as-is in
6196 * sysfs and /proc can implement their own pci_resource_to_user().
6198 void __weak
pci_resource_to_user(const struct pci_dev
*dev
, int bar
,
6199 const struct resource
*rsrc
,
6200 resource_size_t
*start
, resource_size_t
*end
)
6202 *start
= rsrc
->start
;
6206 static char *resource_alignment_param
;
6207 static DEFINE_SPINLOCK(resource_alignment_lock
);
6210 * pci_specified_resource_alignment - get resource alignment specified by user.
6211 * @dev: the PCI device to get
6212 * @resize: whether or not to change resources' size when reassigning alignment
6214 * RETURNS: Resource alignment if it is specified.
6215 * Zero if it is not specified.
6217 static resource_size_t
pci_specified_resource_alignment(struct pci_dev
*dev
,
6220 int align_order
, count
;
6221 resource_size_t align
= pcibios_default_alignment();
6225 spin_lock(&resource_alignment_lock
);
6226 p
= resource_alignment_param
;
6229 if (pci_has_flag(PCI_PROBE_ONLY
)) {
6231 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6237 if (sscanf(p
, "%d%n", &align_order
, &count
) == 1 &&
6240 if (align_order
> 63) {
6241 pr_err("PCI: Invalid requested alignment (order %d)\n",
6243 align_order
= PAGE_SHIFT
;
6246 align_order
= PAGE_SHIFT
;
6249 ret
= pci_dev_str_match(dev
, p
, &p
);
6252 align
= 1ULL << align_order
;
6254 } else if (ret
< 0) {
6255 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6260 if (*p
!= ';' && *p
!= ',') {
6261 /* End of param or invalid format */
6267 spin_unlock(&resource_alignment_lock
);
6271 static void pci_request_resource_alignment(struct pci_dev
*dev
, int bar
,
6272 resource_size_t align
, bool resize
)
6274 struct resource
*r
= &dev
->resource
[bar
];
6275 resource_size_t size
;
6277 if (!(r
->flags
& IORESOURCE_MEM
))
6280 if (r
->flags
& IORESOURCE_PCI_FIXED
) {
6281 pci_info(dev
, "BAR%d %pR: ignoring requested alignment %#llx\n",
6282 bar
, r
, (unsigned long long)align
);
6286 size
= resource_size(r
);
6291 * Increase the alignment of the resource. There are two ways we
6294 * 1) Increase the size of the resource. BARs are aligned on their
6295 * size, so when we reallocate space for this resource, we'll
6296 * allocate it with the larger alignment. This also prevents
6297 * assignment of any other BARs inside the alignment region, so
6298 * if we're requesting page alignment, this means no other BARs
6299 * will share the page.
6301 * The disadvantage is that this makes the resource larger than
6302 * the hardware BAR, which may break drivers that compute things
6303 * based on the resource size, e.g., to find registers at a
6304 * fixed offset before the end of the BAR.
6306 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6307 * set r->start to the desired alignment. By itself this
6308 * doesn't prevent other BARs being put inside the alignment
6309 * region, but if we realign *every* resource of every device in
6310 * the system, none of them will share an alignment region.
6312 * When the user has requested alignment for only some devices via
6313 * the "pci=resource_alignment" argument, "resize" is true and we
6314 * use the first method. Otherwise we assume we're aligning all
6315 * devices and we use the second.
6318 pci_info(dev
, "BAR%d %pR: requesting alignment to %#llx\n",
6319 bar
, r
, (unsigned long long)align
);
6325 r
->flags
&= ~IORESOURCE_SIZEALIGN
;
6326 r
->flags
|= IORESOURCE_STARTALIGN
;
6328 r
->end
= r
->start
+ size
- 1;
6330 r
->flags
|= IORESOURCE_UNSET
;
6334 * This function disables memory decoding and releases memory resources
6335 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6336 * It also rounds up size to specified alignment.
6337 * Later on, the kernel will assign page-aligned memory resource back
6340 void pci_reassigndev_resource_alignment(struct pci_dev
*dev
)
6344 resource_size_t align
;
6346 bool resize
= false;
6349 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6350 * 3.4.1.11. Their resources are allocated from the space
6351 * described by the VF BARx register in the PF's SR-IOV capability.
6352 * We can't influence their alignment here.
6357 /* check if specified PCI is target device to reassign */
6358 align
= pci_specified_resource_alignment(dev
, &resize
);
6362 if (dev
->hdr_type
== PCI_HEADER_TYPE_NORMAL
&&
6363 (dev
->class >> 8) == PCI_CLASS_BRIDGE_HOST
) {
6364 pci_warn(dev
, "Can't reassign resources to host bridge\n");
6368 pci_read_config_word(dev
, PCI_COMMAND
, &command
);
6369 command
&= ~PCI_COMMAND_MEMORY
;
6370 pci_write_config_word(dev
, PCI_COMMAND
, command
);
6372 for (i
= 0; i
<= PCI_ROM_RESOURCE
; i
++)
6373 pci_request_resource_alignment(dev
, i
, align
, resize
);
6376 * Need to disable bridge's resource window,
6377 * to enable the kernel to reassign new resource
6380 if (dev
->hdr_type
== PCI_HEADER_TYPE_BRIDGE
) {
6381 for (i
= PCI_BRIDGE_RESOURCES
; i
< PCI_NUM_RESOURCES
; i
++) {
6382 r
= &dev
->resource
[i
];
6383 if (!(r
->flags
& IORESOURCE_MEM
))
6385 r
->flags
|= IORESOURCE_UNSET
;
6386 r
->end
= resource_size(r
) - 1;
6389 pci_disable_bridge_window(dev
);
6393 static ssize_t
resource_alignment_show(struct bus_type
*bus
, char *buf
)
6397 spin_lock(&resource_alignment_lock
);
6398 if (resource_alignment_param
)
6399 count
= scnprintf(buf
, PAGE_SIZE
, "%s", resource_alignment_param
);
6400 spin_unlock(&resource_alignment_lock
);
6403 * When set by the command line, resource_alignment_param will not
6404 * have a trailing line feed, which is ugly. So conditionally add
6407 if (count
>= 2 && buf
[count
- 2] != '\n' && count
< PAGE_SIZE
- 1) {
6408 buf
[count
- 1] = '\n';
6415 static ssize_t
resource_alignment_store(struct bus_type
*bus
,
6416 const char *buf
, size_t count
)
6418 char *param
= kstrndup(buf
, count
, GFP_KERNEL
);
6423 spin_lock(&resource_alignment_lock
);
6424 kfree(resource_alignment_param
);
6425 resource_alignment_param
= param
;
6426 spin_unlock(&resource_alignment_lock
);
6430 static BUS_ATTR_RW(resource_alignment
);
6432 static int __init
pci_resource_alignment_sysfs_init(void)
6434 return bus_create_file(&pci_bus_type
,
6435 &bus_attr_resource_alignment
);
6437 late_initcall(pci_resource_alignment_sysfs_init
);
6439 static void pci_no_domains(void)
6441 #ifdef CONFIG_PCI_DOMAINS
6442 pci_domains_supported
= 0;
6446 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6447 static atomic_t __domain_nr
= ATOMIC_INIT(-1);
6449 static int pci_get_new_domain_nr(void)
6451 return atomic_inc_return(&__domain_nr
);
6454 static int of_pci_bus_find_domain_nr(struct device
*parent
)
6456 static int use_dt_domains
= -1;
6460 domain
= of_get_pci_domain_nr(parent
->of_node
);
6463 * Check DT domain and use_dt_domains values.
6465 * If DT domain property is valid (domain >= 0) and
6466 * use_dt_domains != 0, the DT assignment is valid since this means
6467 * we have not previously allocated a domain number by using
6468 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6469 * 1, to indicate that we have just assigned a domain number from
6472 * If DT domain property value is not valid (ie domain < 0), and we
6473 * have not previously assigned a domain number from DT
6474 * (use_dt_domains != 1) we should assign a domain number by
6477 * pci_get_new_domain_nr()
6479 * API and update the use_dt_domains value to keep track of method we
6480 * are using to assign domain numbers (use_dt_domains = 0).
6482 * All other combinations imply we have a platform that is trying
6483 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6484 * which is a recipe for domain mishandling and it is prevented by
6485 * invalidating the domain value (domain = -1) and printing a
6486 * corresponding error.
6488 if (domain
>= 0 && use_dt_domains
) {
6490 } else if (domain
< 0 && use_dt_domains
!= 1) {
6492 domain
= pci_get_new_domain_nr();
6495 pr_err("Node %pOF has ", parent
->of_node
);
6496 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6503 int pci_bus_find_domain_nr(struct pci_bus
*bus
, struct device
*parent
)
6505 return acpi_disabled
? of_pci_bus_find_domain_nr(parent
) :
6506 acpi_pci_bus_find_domain_nr(bus
);
6511 * pci_ext_cfg_avail - can we access extended PCI config space?
6513 * Returns 1 if we can access PCI extended config space (offsets
6514 * greater than 0xff). This is the default implementation. Architecture
6515 * implementations can override this.
6517 int __weak
pci_ext_cfg_avail(void)
6522 void __weak
pci_fixup_cardbus(struct pci_bus
*bus
)
6525 EXPORT_SYMBOL(pci_fixup_cardbus
);
6527 static int __init
pci_setup(char *str
)
6530 char *k
= strchr(str
, ',');
6533 if (*str
&& (str
= pcibios_setup(str
)) && *str
) {
6534 if (!strcmp(str
, "nomsi")) {
6536 } else if (!strncmp(str
, "noats", 5)) {
6537 pr_info("PCIe: ATS is disabled\n");
6538 pcie_ats_disabled
= true;
6539 } else if (!strcmp(str
, "noaer")) {
6541 } else if (!strcmp(str
, "earlydump")) {
6542 pci_early_dump
= true;
6543 } else if (!strncmp(str
, "realloc=", 8)) {
6544 pci_realloc_get_opt(str
+ 8);
6545 } else if (!strncmp(str
, "realloc", 7)) {
6546 pci_realloc_get_opt("on");
6547 } else if (!strcmp(str
, "nodomains")) {
6549 } else if (!strncmp(str
, "noari", 5)) {
6550 pcie_ari_disabled
= true;
6551 } else if (!strncmp(str
, "cbiosize=", 9)) {
6552 pci_cardbus_io_size
= memparse(str
+ 9, &str
);
6553 } else if (!strncmp(str
, "cbmemsize=", 10)) {
6554 pci_cardbus_mem_size
= memparse(str
+ 10, &str
);
6555 } else if (!strncmp(str
, "resource_alignment=", 19)) {
6556 resource_alignment_param
= str
+ 19;
6557 } else if (!strncmp(str
, "ecrc=", 5)) {
6558 pcie_ecrc_get_policy(str
+ 5);
6559 } else if (!strncmp(str
, "hpiosize=", 9)) {
6560 pci_hotplug_io_size
= memparse(str
+ 9, &str
);
6561 } else if (!strncmp(str
, "hpmmiosize=", 11)) {
6562 pci_hotplug_mmio_size
= memparse(str
+ 11, &str
);
6563 } else if (!strncmp(str
, "hpmmioprefsize=", 15)) {
6564 pci_hotplug_mmio_pref_size
= memparse(str
+ 15, &str
);
6565 } else if (!strncmp(str
, "hpmemsize=", 10)) {
6566 pci_hotplug_mmio_size
= memparse(str
+ 10, &str
);
6567 pci_hotplug_mmio_pref_size
= pci_hotplug_mmio_size
;
6568 } else if (!strncmp(str
, "hpbussize=", 10)) {
6569 pci_hotplug_bus_size
=
6570 simple_strtoul(str
+ 10, &str
, 0);
6571 if (pci_hotplug_bus_size
> 0xff)
6572 pci_hotplug_bus_size
= DEFAULT_HOTPLUG_BUS_SIZE
;
6573 } else if (!strncmp(str
, "pcie_bus_tune_off", 17)) {
6574 pcie_bus_config
= PCIE_BUS_TUNE_OFF
;
6575 } else if (!strncmp(str
, "pcie_bus_safe", 13)) {
6576 pcie_bus_config
= PCIE_BUS_SAFE
;
6577 } else if (!strncmp(str
, "pcie_bus_perf", 13)) {
6578 pcie_bus_config
= PCIE_BUS_PERFORMANCE
;
6579 } else if (!strncmp(str
, "pcie_bus_peer2peer", 18)) {
6580 pcie_bus_config
= PCIE_BUS_PEER2PEER
;
6581 } else if (!strncmp(str
, "pcie_scan_all", 13)) {
6582 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS
);
6583 } else if (!strncmp(str
, "disable_acs_redir=", 18)) {
6584 disable_acs_redir_param
= str
+ 18;
6586 pr_err("PCI: Unknown option `%s'\n", str
);
6593 early_param("pci", pci_setup
);
6596 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6597 * in pci_setup(), above, to point to data in the __initdata section which
6598 * will be freed after the init sequence is complete. We can't allocate memory
6599 * in pci_setup() because some architectures do not have any memory allocation
6600 * service available during an early_param() call. So we allocate memory and
6601 * copy the variable here before the init section is freed.
6604 static int __init
pci_realloc_setup_params(void)
6606 resource_alignment_param
= kstrdup(resource_alignment_param
,
6608 disable_acs_redir_param
= kstrdup(disable_acs_redir_param
, GFP_KERNEL
);
6612 pure_initcall(pci_realloc_setup_params
);