Merge tag 'regmap-fix-v5.11-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux/fpc-iii.git] / drivers / pci / pci.c
blobb9fecc25d21316f8d7c1076d2d126305c58db82c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 * David Mosberger-Tang
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9 */
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include "pci.h"
36 DEFINE_MUTEX(pci_slot_mutex);
38 const char *pci_power_names[] = {
39 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41 EXPORT_SYMBOL_GPL(pci_power_names);
43 int isa_dma_bridge_buggy;
44 EXPORT_SYMBOL(isa_dma_bridge_buggy);
46 int pci_pci_problems;
47 EXPORT_SYMBOL(pci_pci_problems);
49 unsigned int pci_pm_d3hot_delay;
51 static void pci_pme_list_scan(struct work_struct *work);
53 static LIST_HEAD(pci_pme_list);
54 static DEFINE_MUTEX(pci_pme_list_mutex);
55 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
57 struct pci_pme_device {
58 struct list_head list;
59 struct pci_dev *dev;
62 #define PME_TIMEOUT 1000 /* How long between PME checks */
64 static void pci_dev_d3_sleep(struct pci_dev *dev)
66 unsigned int delay = dev->d3hot_delay;
68 if (delay < pci_pm_d3hot_delay)
69 delay = pci_pm_d3hot_delay;
71 if (delay)
72 msleep(delay);
75 #ifdef CONFIG_PCI_DOMAINS
76 int pci_domains_supported = 1;
77 #endif
79 #define DEFAULT_CARDBUS_IO_SIZE (256)
80 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
81 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
82 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
83 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
85 #define DEFAULT_HOTPLUG_IO_SIZE (256)
86 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
87 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
88 /* hpiosize=nn can override this */
89 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
91 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
92 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
93 * pci=hpmemsize=nnM overrides both
95 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
96 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
98 #define DEFAULT_HOTPLUG_BUS_SIZE 1
99 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
102 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
103 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
104 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
105 #elif defined CONFIG_PCIE_BUS_SAFE
106 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
107 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
108 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
109 #elif defined CONFIG_PCIE_BUS_PEER2PEER
110 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
111 #else
112 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
113 #endif
116 * The default CLS is used if arch didn't set CLS explicitly and not
117 * all pci devices agree on the same value. Arch can override either
118 * the dfl or actual value as it sees fit. Don't forget this is
119 * measured in 32-bit words, not bytes.
121 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
122 u8 pci_cache_line_size;
125 * If we set up a device for bus mastering, we need to check the latency
126 * timer as certain BIOSes forget to set it properly.
128 unsigned int pcibios_max_latency = 255;
130 /* If set, the PCIe ARI capability will not be used. */
131 static bool pcie_ari_disabled;
133 /* If set, the PCIe ATS capability will not be used. */
134 static bool pcie_ats_disabled;
136 /* If set, the PCI config space of each device is printed during boot. */
137 bool pci_early_dump;
139 bool pci_ats_disabled(void)
141 return pcie_ats_disabled;
143 EXPORT_SYMBOL_GPL(pci_ats_disabled);
145 /* Disable bridge_d3 for all PCIe ports */
146 static bool pci_bridge_d3_disable;
147 /* Force bridge_d3 for all PCIe ports */
148 static bool pci_bridge_d3_force;
150 static int __init pcie_port_pm_setup(char *str)
152 if (!strcmp(str, "off"))
153 pci_bridge_d3_disable = true;
154 else if (!strcmp(str, "force"))
155 pci_bridge_d3_force = true;
156 return 1;
158 __setup("pcie_port_pm=", pcie_port_pm_setup);
160 /* Time to wait after a reset for device to become responsive */
161 #define PCIE_RESET_READY_POLL_MS 60000
164 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
165 * @bus: pointer to PCI bus structure to search
167 * Given a PCI bus, returns the highest PCI bus number present in the set
168 * including the given PCI bus and its list of child PCI buses.
170 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
172 struct pci_bus *tmp;
173 unsigned char max, n;
175 max = bus->busn_res.end;
176 list_for_each_entry(tmp, &bus->children, node) {
177 n = pci_bus_max_busnr(tmp);
178 if (n > max)
179 max = n;
181 return max;
183 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
186 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
187 * @pdev: the PCI device
189 * Returns error bits set in PCI_STATUS and clears them.
191 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
193 u16 status;
194 int ret;
196 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
197 if (ret != PCIBIOS_SUCCESSFUL)
198 return -EIO;
200 status &= PCI_STATUS_ERROR_BITS;
201 if (status)
202 pci_write_config_word(pdev, PCI_STATUS, status);
204 return status;
206 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
208 #ifdef CONFIG_HAS_IOMEM
209 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
211 struct resource *res = &pdev->resource[bar];
214 * Make sure the BAR is actually a memory resource, not an IO resource
216 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
217 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
218 return NULL;
220 return ioremap(res->start, resource_size(res));
222 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
224 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
227 * Make sure the BAR is actually a memory resource, not an IO resource
229 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
230 WARN_ON(1);
231 return NULL;
233 return ioremap_wc(pci_resource_start(pdev, bar),
234 pci_resource_len(pdev, bar));
236 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
237 #endif
240 * pci_dev_str_match_path - test if a path string matches a device
241 * @dev: the PCI device to test
242 * @path: string to match the device against
243 * @endptr: pointer to the string after the match
245 * Test if a string (typically from a kernel parameter) formatted as a
246 * path of device/function addresses matches a PCI device. The string must
247 * be of the form:
249 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
251 * A path for a device can be obtained using 'lspci -t'. Using a path
252 * is more robust against bus renumbering than using only a single bus,
253 * device and function address.
255 * Returns 1 if the string matches the device, 0 if it does not and
256 * a negative error code if it fails to parse the string.
258 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
259 const char **endptr)
261 int ret;
262 int seg, bus, slot, func;
263 char *wpath, *p;
264 char end;
266 *endptr = strchrnul(path, ';');
268 wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
269 if (!wpath)
270 return -ENOMEM;
272 while (1) {
273 p = strrchr(wpath, '/');
274 if (!p)
275 break;
276 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
277 if (ret != 2) {
278 ret = -EINVAL;
279 goto free_and_exit;
282 if (dev->devfn != PCI_DEVFN(slot, func)) {
283 ret = 0;
284 goto free_and_exit;
288 * Note: we don't need to get a reference to the upstream
289 * bridge because we hold a reference to the top level
290 * device which should hold a reference to the bridge,
291 * and so on.
293 dev = pci_upstream_bridge(dev);
294 if (!dev) {
295 ret = 0;
296 goto free_and_exit;
299 *p = 0;
302 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
303 &func, &end);
304 if (ret != 4) {
305 seg = 0;
306 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
307 if (ret != 3) {
308 ret = -EINVAL;
309 goto free_and_exit;
313 ret = (seg == pci_domain_nr(dev->bus) &&
314 bus == dev->bus->number &&
315 dev->devfn == PCI_DEVFN(slot, func));
317 free_and_exit:
318 kfree(wpath);
319 return ret;
323 * pci_dev_str_match - test if a string matches a device
324 * @dev: the PCI device to test
325 * @p: string to match the device against
326 * @endptr: pointer to the string after the match
328 * Test if a string (typically from a kernel parameter) matches a specified
329 * PCI device. The string may be of one of the following formats:
331 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
332 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
334 * The first format specifies a PCI bus/device/function address which
335 * may change if new hardware is inserted, if motherboard firmware changes,
336 * or due to changes caused in kernel parameters. If the domain is
337 * left unspecified, it is taken to be 0. In order to be robust against
338 * bus renumbering issues, a path of PCI device/function numbers may be used
339 * to address the specific device. The path for a device can be determined
340 * through the use of 'lspci -t'.
342 * The second format matches devices using IDs in the configuration
343 * space which may match multiple devices in the system. A value of 0
344 * for any field will match all devices. (Note: this differs from
345 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
346 * legacy reasons and convenience so users don't have to specify
347 * FFFFFFFFs on the command line.)
349 * Returns 1 if the string matches the device, 0 if it does not and
350 * a negative error code if the string cannot be parsed.
352 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
353 const char **endptr)
355 int ret;
356 int count;
357 unsigned short vendor, device, subsystem_vendor, subsystem_device;
359 if (strncmp(p, "pci:", 4) == 0) {
360 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
361 p += 4;
362 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
363 &subsystem_vendor, &subsystem_device, &count);
364 if (ret != 4) {
365 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
366 if (ret != 2)
367 return -EINVAL;
369 subsystem_vendor = 0;
370 subsystem_device = 0;
373 p += count;
375 if ((!vendor || vendor == dev->vendor) &&
376 (!device || device == dev->device) &&
377 (!subsystem_vendor ||
378 subsystem_vendor == dev->subsystem_vendor) &&
379 (!subsystem_device ||
380 subsystem_device == dev->subsystem_device))
381 goto found;
382 } else {
384 * PCI Bus, Device, Function IDs are specified
385 * (optionally, may include a path of devfns following it)
387 ret = pci_dev_str_match_path(dev, p, &p);
388 if (ret < 0)
389 return ret;
390 else if (ret)
391 goto found;
394 *endptr = p;
395 return 0;
397 found:
398 *endptr = p;
399 return 1;
402 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
403 u8 pos, int cap, int *ttl)
405 u8 id;
406 u16 ent;
408 pci_bus_read_config_byte(bus, devfn, pos, &pos);
410 while ((*ttl)--) {
411 if (pos < 0x40)
412 break;
413 pos &= ~3;
414 pci_bus_read_config_word(bus, devfn, pos, &ent);
416 id = ent & 0xff;
417 if (id == 0xff)
418 break;
419 if (id == cap)
420 return pos;
421 pos = (ent >> 8);
423 return 0;
426 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
427 u8 pos, int cap)
429 int ttl = PCI_FIND_CAP_TTL;
431 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
434 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
436 return __pci_find_next_cap(dev->bus, dev->devfn,
437 pos + PCI_CAP_LIST_NEXT, cap);
439 EXPORT_SYMBOL_GPL(pci_find_next_capability);
441 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
442 unsigned int devfn, u8 hdr_type)
444 u16 status;
446 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
447 if (!(status & PCI_STATUS_CAP_LIST))
448 return 0;
450 switch (hdr_type) {
451 case PCI_HEADER_TYPE_NORMAL:
452 case PCI_HEADER_TYPE_BRIDGE:
453 return PCI_CAPABILITY_LIST;
454 case PCI_HEADER_TYPE_CARDBUS:
455 return PCI_CB_CAPABILITY_LIST;
458 return 0;
462 * pci_find_capability - query for devices' capabilities
463 * @dev: PCI device to query
464 * @cap: capability code
466 * Tell if a device supports a given PCI capability.
467 * Returns the address of the requested capability structure within the
468 * device's PCI configuration space or 0 in case the device does not
469 * support it. Possible values for @cap include:
471 * %PCI_CAP_ID_PM Power Management
472 * %PCI_CAP_ID_AGP Accelerated Graphics Port
473 * %PCI_CAP_ID_VPD Vital Product Data
474 * %PCI_CAP_ID_SLOTID Slot Identification
475 * %PCI_CAP_ID_MSI Message Signalled Interrupts
476 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
477 * %PCI_CAP_ID_PCIX PCI-X
478 * %PCI_CAP_ID_EXP PCI Express
480 u8 pci_find_capability(struct pci_dev *dev, int cap)
482 u8 pos;
484 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
485 if (pos)
486 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
488 return pos;
490 EXPORT_SYMBOL(pci_find_capability);
493 * pci_bus_find_capability - query for devices' capabilities
494 * @bus: the PCI bus to query
495 * @devfn: PCI device to query
496 * @cap: capability code
498 * Like pci_find_capability() but works for PCI devices that do not have a
499 * pci_dev structure set up yet.
501 * Returns the address of the requested capability structure within the
502 * device's PCI configuration space or 0 in case the device does not
503 * support it.
505 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
507 u8 hdr_type, pos;
509 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
511 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
512 if (pos)
513 pos = __pci_find_next_cap(bus, devfn, pos, cap);
515 return pos;
517 EXPORT_SYMBOL(pci_bus_find_capability);
520 * pci_find_next_ext_capability - Find an extended capability
521 * @dev: PCI device to query
522 * @start: address at which to start looking (0 to start at beginning of list)
523 * @cap: capability code
525 * Returns the address of the next matching extended capability structure
526 * within the device's PCI configuration space or 0 if the device does
527 * not support it. Some capabilities can occur several times, e.g., the
528 * vendor-specific capability, and this provides a way to find them all.
530 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
532 u32 header;
533 int ttl;
534 u16 pos = PCI_CFG_SPACE_SIZE;
536 /* minimum 8 bytes per capability */
537 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
539 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
540 return 0;
542 if (start)
543 pos = start;
545 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
546 return 0;
549 * If we have no capabilities, this is indicated by cap ID,
550 * cap version and next pointer all being 0.
552 if (header == 0)
553 return 0;
555 while (ttl-- > 0) {
556 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
557 return pos;
559 pos = PCI_EXT_CAP_NEXT(header);
560 if (pos < PCI_CFG_SPACE_SIZE)
561 break;
563 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
564 break;
567 return 0;
569 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
572 * pci_find_ext_capability - Find an extended capability
573 * @dev: PCI device to query
574 * @cap: capability code
576 * Returns the address of the requested extended capability structure
577 * within the device's PCI configuration space or 0 if the device does
578 * not support it. Possible values for @cap include:
580 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
581 * %PCI_EXT_CAP_ID_VC Virtual Channel
582 * %PCI_EXT_CAP_ID_DSN Device Serial Number
583 * %PCI_EXT_CAP_ID_PWR Power Budgeting
585 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
587 return pci_find_next_ext_capability(dev, 0, cap);
589 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
592 * pci_get_dsn - Read and return the 8-byte Device Serial Number
593 * @dev: PCI device to query
595 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
596 * Number.
598 * Returns the DSN, or zero if the capability does not exist.
600 u64 pci_get_dsn(struct pci_dev *dev)
602 u32 dword;
603 u64 dsn;
604 int pos;
606 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
607 if (!pos)
608 return 0;
611 * The Device Serial Number is two dwords offset 4 bytes from the
612 * capability position. The specification says that the first dword is
613 * the lower half, and the second dword is the upper half.
615 pos += 4;
616 pci_read_config_dword(dev, pos, &dword);
617 dsn = (u64)dword;
618 pci_read_config_dword(dev, pos + 4, &dword);
619 dsn |= ((u64)dword) << 32;
621 return dsn;
623 EXPORT_SYMBOL_GPL(pci_get_dsn);
625 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
627 int rc, ttl = PCI_FIND_CAP_TTL;
628 u8 cap, mask;
630 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
631 mask = HT_3BIT_CAP_MASK;
632 else
633 mask = HT_5BIT_CAP_MASK;
635 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
636 PCI_CAP_ID_HT, &ttl);
637 while (pos) {
638 rc = pci_read_config_byte(dev, pos + 3, &cap);
639 if (rc != PCIBIOS_SUCCESSFUL)
640 return 0;
642 if ((cap & mask) == ht_cap)
643 return pos;
645 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
646 pos + PCI_CAP_LIST_NEXT,
647 PCI_CAP_ID_HT, &ttl);
650 return 0;
654 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
655 * @dev: PCI device to query
656 * @pos: Position from which to continue searching
657 * @ht_cap: HyperTransport capability code
659 * To be used in conjunction with pci_find_ht_capability() to search for
660 * all capabilities matching @ht_cap. @pos should always be a value returned
661 * from pci_find_ht_capability().
663 * NB. To be 100% safe against broken PCI devices, the caller should take
664 * steps to avoid an infinite loop.
666 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
668 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
670 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
673 * pci_find_ht_capability - query a device's HyperTransport capabilities
674 * @dev: PCI device to query
675 * @ht_cap: HyperTransport capability code
677 * Tell if a device supports a given HyperTransport capability.
678 * Returns an address within the device's PCI configuration space
679 * or 0 in case the device does not support the request capability.
680 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
681 * which has a HyperTransport capability matching @ht_cap.
683 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
685 u8 pos;
687 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
688 if (pos)
689 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
691 return pos;
693 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
696 * pci_find_parent_resource - return resource region of parent bus of given
697 * region
698 * @dev: PCI device structure contains resources to be searched
699 * @res: child resource record for which parent is sought
701 * For given resource region of given device, return the resource region of
702 * parent bus the given region is contained in.
704 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
705 struct resource *res)
707 const struct pci_bus *bus = dev->bus;
708 struct resource *r;
709 int i;
711 pci_bus_for_each_resource(bus, r, i) {
712 if (!r)
713 continue;
714 if (resource_contains(r, res)) {
717 * If the window is prefetchable but the BAR is
718 * not, the allocator made a mistake.
720 if (r->flags & IORESOURCE_PREFETCH &&
721 !(res->flags & IORESOURCE_PREFETCH))
722 return NULL;
725 * If we're below a transparent bridge, there may
726 * be both a positively-decoded aperture and a
727 * subtractively-decoded region that contain the BAR.
728 * We want the positively-decoded one, so this depends
729 * on pci_bus_for_each_resource() giving us those
730 * first.
732 return r;
735 return NULL;
737 EXPORT_SYMBOL(pci_find_parent_resource);
740 * pci_find_resource - Return matching PCI device resource
741 * @dev: PCI device to query
742 * @res: Resource to look for
744 * Goes over standard PCI resources (BARs) and checks if the given resource
745 * is partially or fully contained in any of them. In that case the
746 * matching resource is returned, %NULL otherwise.
748 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
750 int i;
752 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
753 struct resource *r = &dev->resource[i];
755 if (r->start && resource_contains(r, res))
756 return r;
759 return NULL;
761 EXPORT_SYMBOL(pci_find_resource);
764 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
765 * @dev: the PCI device to operate on
766 * @pos: config space offset of status word
767 * @mask: mask of bit(s) to care about in status word
769 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
771 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
773 int i;
775 /* Wait for Transaction Pending bit clean */
776 for (i = 0; i < 4; i++) {
777 u16 status;
778 if (i)
779 msleep((1 << (i - 1)) * 100);
781 pci_read_config_word(dev, pos, &status);
782 if (!(status & mask))
783 return 1;
786 return 0;
789 static int pci_acs_enable;
792 * pci_request_acs - ask for ACS to be enabled if supported
794 void pci_request_acs(void)
796 pci_acs_enable = 1;
799 static const char *disable_acs_redir_param;
802 * pci_disable_acs_redir - disable ACS redirect capabilities
803 * @dev: the PCI device
805 * For only devices specified in the disable_acs_redir parameter.
807 static void pci_disable_acs_redir(struct pci_dev *dev)
809 int ret = 0;
810 const char *p;
811 int pos;
812 u16 ctrl;
814 if (!disable_acs_redir_param)
815 return;
817 p = disable_acs_redir_param;
818 while (*p) {
819 ret = pci_dev_str_match(dev, p, &p);
820 if (ret < 0) {
821 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
822 disable_acs_redir_param);
824 break;
825 } else if (ret == 1) {
826 /* Found a match */
827 break;
830 if (*p != ';' && *p != ',') {
831 /* End of param or invalid format */
832 break;
834 p++;
837 if (ret != 1)
838 return;
840 if (!pci_dev_specific_disable_acs_redir(dev))
841 return;
843 pos = dev->acs_cap;
844 if (!pos) {
845 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
846 return;
849 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
851 /* P2P Request & Completion Redirect */
852 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
854 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
856 pci_info(dev, "disabled ACS redirect\n");
860 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
861 * @dev: the PCI device
863 static void pci_std_enable_acs(struct pci_dev *dev)
865 int pos;
866 u16 cap;
867 u16 ctrl;
869 pos = dev->acs_cap;
870 if (!pos)
871 return;
873 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
874 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
876 /* Source Validation */
877 ctrl |= (cap & PCI_ACS_SV);
879 /* P2P Request Redirect */
880 ctrl |= (cap & PCI_ACS_RR);
882 /* P2P Completion Redirect */
883 ctrl |= (cap & PCI_ACS_CR);
885 /* Upstream Forwarding */
886 ctrl |= (cap & PCI_ACS_UF);
888 /* Enable Translation Blocking for external devices */
889 if (dev->external_facing || dev->untrusted)
890 ctrl |= (cap & PCI_ACS_TB);
892 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
896 * pci_enable_acs - enable ACS if hardware support it
897 * @dev: the PCI device
899 static void pci_enable_acs(struct pci_dev *dev)
901 if (!pci_acs_enable)
902 goto disable_acs_redir;
904 if (!pci_dev_specific_enable_acs(dev))
905 goto disable_acs_redir;
907 pci_std_enable_acs(dev);
909 disable_acs_redir:
911 * Note: pci_disable_acs_redir() must be called even if ACS was not
912 * enabled by the kernel because it may have been enabled by
913 * platform firmware. So if we are told to disable it, we should
914 * always disable it after setting the kernel's default
915 * preferences.
917 pci_disable_acs_redir(dev);
921 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
922 * @dev: PCI device to have its BARs restored
924 * Restore the BAR values for a given device, so as to make it
925 * accessible by its driver.
927 static void pci_restore_bars(struct pci_dev *dev)
929 int i;
931 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
932 pci_update_resource(dev, i);
935 static const struct pci_platform_pm_ops *pci_platform_pm;
937 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
939 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
940 !ops->choose_state || !ops->set_wakeup || !ops->need_resume)
941 return -EINVAL;
942 pci_platform_pm = ops;
943 return 0;
946 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
948 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
951 static inline int platform_pci_set_power_state(struct pci_dev *dev,
952 pci_power_t t)
954 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
957 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
959 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
962 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
964 if (pci_platform_pm && pci_platform_pm->refresh_state)
965 pci_platform_pm->refresh_state(dev);
968 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
970 return pci_platform_pm ?
971 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
974 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
976 return pci_platform_pm ?
977 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
980 static inline bool platform_pci_need_resume(struct pci_dev *dev)
982 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
985 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
987 if (pci_platform_pm && pci_platform_pm->bridge_d3)
988 return pci_platform_pm->bridge_d3(dev);
989 return false;
993 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
994 * given PCI device
995 * @dev: PCI device to handle.
996 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
998 * RETURN VALUE:
999 * -EINVAL if the requested state is invalid.
1000 * -EIO if device does not support PCI PM or its PM capabilities register has a
1001 * wrong version, or device doesn't support the requested state.
1002 * 0 if device already is in the requested state.
1003 * 0 if device's power state has been successfully changed.
1005 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
1007 u16 pmcsr;
1008 bool need_restore = false;
1010 /* Check if we're already there */
1011 if (dev->current_state == state)
1012 return 0;
1014 if (!dev->pm_cap)
1015 return -EIO;
1017 if (state < PCI_D0 || state > PCI_D3hot)
1018 return -EINVAL;
1021 * Validate transition: We can enter D0 from any state, but if
1022 * we're already in a low-power state, we can only go deeper. E.g.,
1023 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1024 * we'd have to go from D3 to D0, then to D1.
1026 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
1027 && dev->current_state > state) {
1028 pci_err(dev, "invalid power transition (from %s to %s)\n",
1029 pci_power_name(dev->current_state),
1030 pci_power_name(state));
1031 return -EINVAL;
1034 /* Check if this device supports the desired state */
1035 if ((state == PCI_D1 && !dev->d1_support)
1036 || (state == PCI_D2 && !dev->d2_support))
1037 return -EIO;
1039 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1040 if (pmcsr == (u16) ~0) {
1041 pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
1042 pci_power_name(dev->current_state),
1043 pci_power_name(state));
1044 return -EIO;
1048 * If we're (effectively) in D3, force entire word to 0.
1049 * This doesn't affect PME_Status, disables PME_En, and
1050 * sets PowerState to 0.
1052 switch (dev->current_state) {
1053 case PCI_D0:
1054 case PCI_D1:
1055 case PCI_D2:
1056 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1057 pmcsr |= state;
1058 break;
1059 case PCI_D3hot:
1060 case PCI_D3cold:
1061 case PCI_UNKNOWN: /* Boot-up */
1062 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
1063 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
1064 need_restore = true;
1065 fallthrough; /* force to D0 */
1066 default:
1067 pmcsr = 0;
1068 break;
1071 /* Enter specified state */
1072 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1075 * Mandatory power management transition delays; see PCI PM 1.1
1076 * 5.6.1 table 18
1078 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
1079 pci_dev_d3_sleep(dev);
1080 else if (state == PCI_D2 || dev->current_state == PCI_D2)
1081 udelay(PCI_PM_D2_DELAY);
1083 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1084 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1085 if (dev->current_state != state)
1086 pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
1087 pci_power_name(dev->current_state),
1088 pci_power_name(state));
1091 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1092 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1093 * from D3hot to D0 _may_ perform an internal reset, thereby
1094 * going to "D0 Uninitialized" rather than "D0 Initialized".
1095 * For example, at least some versions of the 3c905B and the
1096 * 3c556B exhibit this behaviour.
1098 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1099 * devices in a D3hot state at boot. Consequently, we need to
1100 * restore at least the BARs so that the device will be
1101 * accessible to its driver.
1103 if (need_restore)
1104 pci_restore_bars(dev);
1106 if (dev->bus->self)
1107 pcie_aspm_pm_state_change(dev->bus->self);
1109 return 0;
1113 * pci_update_current_state - Read power state of given device and cache it
1114 * @dev: PCI device to handle.
1115 * @state: State to cache in case the device doesn't have the PM capability
1117 * The power state is read from the PMCSR register, which however is
1118 * inaccessible in D3cold. The platform firmware is therefore queried first
1119 * to detect accessibility of the register. In case the platform firmware
1120 * reports an incorrect state or the device isn't power manageable by the
1121 * platform at all, we try to detect D3cold by testing accessibility of the
1122 * vendor ID in config space.
1124 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1126 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
1127 !pci_device_is_present(dev)) {
1128 dev->current_state = PCI_D3cold;
1129 } else if (dev->pm_cap) {
1130 u16 pmcsr;
1132 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1133 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1134 } else {
1135 dev->current_state = state;
1140 * pci_refresh_power_state - Refresh the given device's power state data
1141 * @dev: Target PCI device.
1143 * Ask the platform to refresh the devices power state information and invoke
1144 * pci_update_current_state() to update its current PCI power state.
1146 void pci_refresh_power_state(struct pci_dev *dev)
1148 if (platform_pci_power_manageable(dev))
1149 platform_pci_refresh_power_state(dev);
1151 pci_update_current_state(dev, dev->current_state);
1155 * pci_platform_power_transition - Use platform to change device power state
1156 * @dev: PCI device to handle.
1157 * @state: State to put the device into.
1159 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1161 int error;
1163 if (platform_pci_power_manageable(dev)) {
1164 error = platform_pci_set_power_state(dev, state);
1165 if (!error)
1166 pci_update_current_state(dev, state);
1167 } else
1168 error = -ENODEV;
1170 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
1171 dev->current_state = PCI_D0;
1173 return error;
1175 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1177 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1179 pm_request_resume(&pci_dev->dev);
1180 return 0;
1184 * pci_resume_bus - Walk given bus and runtime resume devices on it
1185 * @bus: Top bus of the subtree to walk.
1187 void pci_resume_bus(struct pci_bus *bus)
1189 if (bus)
1190 pci_walk_bus(bus, pci_resume_one, NULL);
1193 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1195 int delay = 1;
1196 u32 id;
1199 * After reset, the device should not silently discard config
1200 * requests, but it may still indicate that it needs more time by
1201 * responding to them with CRS completions. The Root Port will
1202 * generally synthesize ~0 data to complete the read (except when
1203 * CRS SV is enabled and the read was for the Vendor ID; in that
1204 * case it synthesizes 0x0001 data).
1206 * Wait for the device to return a non-CRS completion. Read the
1207 * Command register instead of Vendor ID so we don't have to
1208 * contend with the CRS SV value.
1210 pci_read_config_dword(dev, PCI_COMMAND, &id);
1211 while (id == ~0) {
1212 if (delay > timeout) {
1213 pci_warn(dev, "not ready %dms after %s; giving up\n",
1214 delay - 1, reset_type);
1215 return -ENOTTY;
1218 if (delay > 1000)
1219 pci_info(dev, "not ready %dms after %s; waiting\n",
1220 delay - 1, reset_type);
1222 msleep(delay);
1223 delay *= 2;
1224 pci_read_config_dword(dev, PCI_COMMAND, &id);
1227 if (delay > 1000)
1228 pci_info(dev, "ready %dms after %s\n", delay - 1,
1229 reset_type);
1231 return 0;
1235 * pci_power_up - Put the given device into D0
1236 * @dev: PCI device to power up
1238 int pci_power_up(struct pci_dev *dev)
1240 pci_platform_power_transition(dev, PCI_D0);
1243 * Mandatory power management transition delays are handled in
1244 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1245 * corresponding bridge.
1247 if (dev->runtime_d3cold) {
1249 * When powering on a bridge from D3cold, the whole hierarchy
1250 * may be powered on into D0uninitialized state, resume them to
1251 * give them a chance to suspend again
1253 pci_resume_bus(dev->subordinate);
1256 return pci_raw_set_power_state(dev, PCI_D0);
1260 * __pci_dev_set_current_state - Set current state of a PCI device
1261 * @dev: Device to handle
1262 * @data: pointer to state to be set
1264 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1266 pci_power_t state = *(pci_power_t *)data;
1268 dev->current_state = state;
1269 return 0;
1273 * pci_bus_set_current_state - Walk given bus and set current state of devices
1274 * @bus: Top bus of the subtree to walk.
1275 * @state: state to be set
1277 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1279 if (bus)
1280 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1284 * pci_set_power_state - Set the power state of a PCI device
1285 * @dev: PCI device to handle.
1286 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1288 * Transition a device to a new power state, using the platform firmware and/or
1289 * the device's PCI PM registers.
1291 * RETURN VALUE:
1292 * -EINVAL if the requested state is invalid.
1293 * -EIO if device does not support PCI PM or its PM capabilities register has a
1294 * wrong version, or device doesn't support the requested state.
1295 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1296 * 0 if device already is in the requested state.
1297 * 0 if the transition is to D3 but D3 is not supported.
1298 * 0 if device's power state has been successfully changed.
1300 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1302 int error;
1304 /* Bound the state we're entering */
1305 if (state > PCI_D3cold)
1306 state = PCI_D3cold;
1307 else if (state < PCI_D0)
1308 state = PCI_D0;
1309 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1312 * If the device or the parent bridge do not support PCI
1313 * PM, ignore the request if we're doing anything other
1314 * than putting it into D0 (which would only happen on
1315 * boot).
1317 return 0;
1319 /* Check if we're already there */
1320 if (dev->current_state == state)
1321 return 0;
1323 if (state == PCI_D0)
1324 return pci_power_up(dev);
1327 * This device is quirked not to be put into D3, so don't put it in
1328 * D3
1330 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1331 return 0;
1334 * To put device in D3cold, we put device into D3hot in native
1335 * way, then put device into D3cold with platform ops
1337 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1338 PCI_D3hot : state);
1340 if (pci_platform_power_transition(dev, state))
1341 return error;
1343 /* Powering off a bridge may power off the whole hierarchy */
1344 if (state == PCI_D3cold)
1345 pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1347 return 0;
1349 EXPORT_SYMBOL(pci_set_power_state);
1352 * pci_choose_state - Choose the power state of a PCI device
1353 * @dev: PCI device to be suspended
1354 * @state: target sleep state for the whole system. This is the value
1355 * that is passed to suspend() function.
1357 * Returns PCI power state suitable for given device and given system
1358 * message.
1360 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1362 pci_power_t ret;
1364 if (!dev->pm_cap)
1365 return PCI_D0;
1367 ret = platform_pci_choose_state(dev);
1368 if (ret != PCI_POWER_ERROR)
1369 return ret;
1371 switch (state.event) {
1372 case PM_EVENT_ON:
1373 return PCI_D0;
1374 case PM_EVENT_FREEZE:
1375 case PM_EVENT_PRETHAW:
1376 /* REVISIT both freeze and pre-thaw "should" use D0 */
1377 case PM_EVENT_SUSPEND:
1378 case PM_EVENT_HIBERNATE:
1379 return PCI_D3hot;
1380 default:
1381 pci_info(dev, "unrecognized suspend event %d\n",
1382 state.event);
1383 BUG();
1385 return PCI_D0;
1387 EXPORT_SYMBOL(pci_choose_state);
1389 #define PCI_EXP_SAVE_REGS 7
1391 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1392 u16 cap, bool extended)
1394 struct pci_cap_saved_state *tmp;
1396 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1397 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1398 return tmp;
1400 return NULL;
1403 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1405 return _pci_find_saved_cap(dev, cap, false);
1408 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1410 return _pci_find_saved_cap(dev, cap, true);
1413 static int pci_save_pcie_state(struct pci_dev *dev)
1415 int i = 0;
1416 struct pci_cap_saved_state *save_state;
1417 u16 *cap;
1419 if (!pci_is_pcie(dev))
1420 return 0;
1422 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1423 if (!save_state) {
1424 pci_err(dev, "buffer not found in %s\n", __func__);
1425 return -ENOMEM;
1428 cap = (u16 *)&save_state->cap.data[0];
1429 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1430 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1431 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1432 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1433 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1434 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1435 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1437 return 0;
1440 static void pci_restore_pcie_state(struct pci_dev *dev)
1442 int i = 0;
1443 struct pci_cap_saved_state *save_state;
1444 u16 *cap;
1446 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1447 if (!save_state)
1448 return;
1450 cap = (u16 *)&save_state->cap.data[0];
1451 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1452 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1453 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1454 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1455 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1456 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1457 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1460 static int pci_save_pcix_state(struct pci_dev *dev)
1462 int pos;
1463 struct pci_cap_saved_state *save_state;
1465 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1466 if (!pos)
1467 return 0;
1469 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1470 if (!save_state) {
1471 pci_err(dev, "buffer not found in %s\n", __func__);
1472 return -ENOMEM;
1475 pci_read_config_word(dev, pos + PCI_X_CMD,
1476 (u16 *)save_state->cap.data);
1478 return 0;
1481 static void pci_restore_pcix_state(struct pci_dev *dev)
1483 int i = 0, pos;
1484 struct pci_cap_saved_state *save_state;
1485 u16 *cap;
1487 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1488 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1489 if (!save_state || !pos)
1490 return;
1491 cap = (u16 *)&save_state->cap.data[0];
1493 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1496 static void pci_save_ltr_state(struct pci_dev *dev)
1498 int ltr;
1499 struct pci_cap_saved_state *save_state;
1500 u16 *cap;
1502 if (!pci_is_pcie(dev))
1503 return;
1505 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1506 if (!ltr)
1507 return;
1509 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1510 if (!save_state) {
1511 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1512 return;
1515 cap = (u16 *)&save_state->cap.data[0];
1516 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1517 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1520 static void pci_restore_ltr_state(struct pci_dev *dev)
1522 struct pci_cap_saved_state *save_state;
1523 int ltr;
1524 u16 *cap;
1526 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1527 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1528 if (!save_state || !ltr)
1529 return;
1531 cap = (u16 *)&save_state->cap.data[0];
1532 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1533 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1537 * pci_save_state - save the PCI configuration space of a device before
1538 * suspending
1539 * @dev: PCI device that we're dealing with
1541 int pci_save_state(struct pci_dev *dev)
1543 int i;
1544 /* XXX: 100% dword access ok here? */
1545 for (i = 0; i < 16; i++) {
1546 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1547 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1548 i * 4, dev->saved_config_space[i]);
1550 dev->state_saved = true;
1552 i = pci_save_pcie_state(dev);
1553 if (i != 0)
1554 return i;
1556 i = pci_save_pcix_state(dev);
1557 if (i != 0)
1558 return i;
1560 pci_save_ltr_state(dev);
1561 pci_save_aspm_l1ss_state(dev);
1562 pci_save_dpc_state(dev);
1563 pci_save_aer_state(dev);
1564 pci_save_ptm_state(dev);
1565 return pci_save_vc_state(dev);
1567 EXPORT_SYMBOL(pci_save_state);
1569 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1570 u32 saved_val, int retry, bool force)
1572 u32 val;
1574 pci_read_config_dword(pdev, offset, &val);
1575 if (!force && val == saved_val)
1576 return;
1578 for (;;) {
1579 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1580 offset, val, saved_val);
1581 pci_write_config_dword(pdev, offset, saved_val);
1582 if (retry-- <= 0)
1583 return;
1585 pci_read_config_dword(pdev, offset, &val);
1586 if (val == saved_val)
1587 return;
1589 mdelay(1);
1593 static void pci_restore_config_space_range(struct pci_dev *pdev,
1594 int start, int end, int retry,
1595 bool force)
1597 int index;
1599 for (index = end; index >= start; index--)
1600 pci_restore_config_dword(pdev, 4 * index,
1601 pdev->saved_config_space[index],
1602 retry, force);
1605 static void pci_restore_config_space(struct pci_dev *pdev)
1607 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1608 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1609 /* Restore BARs before the command register. */
1610 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1611 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1612 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1613 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1616 * Force rewriting of prefetch registers to avoid S3 resume
1617 * issues on Intel PCI bridges that occur when these
1618 * registers are not explicitly written.
1620 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1621 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1622 } else {
1623 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1627 static void pci_restore_rebar_state(struct pci_dev *pdev)
1629 unsigned int pos, nbars, i;
1630 u32 ctrl;
1632 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1633 if (!pos)
1634 return;
1636 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1637 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1638 PCI_REBAR_CTRL_NBAR_SHIFT;
1640 for (i = 0; i < nbars; i++, pos += 8) {
1641 struct resource *res;
1642 int bar_idx, size;
1644 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1645 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1646 res = pdev->resource + bar_idx;
1647 size = ilog2(resource_size(res)) - 20;
1648 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1649 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1650 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1655 * pci_restore_state - Restore the saved state of a PCI device
1656 * @dev: PCI device that we're dealing with
1658 void pci_restore_state(struct pci_dev *dev)
1660 if (!dev->state_saved)
1661 return;
1664 * Restore max latencies (in the LTR capability) before enabling
1665 * LTR itself (in the PCIe capability).
1667 pci_restore_ltr_state(dev);
1668 pci_restore_aspm_l1ss_state(dev);
1670 pci_restore_pcie_state(dev);
1671 pci_restore_pasid_state(dev);
1672 pci_restore_pri_state(dev);
1673 pci_restore_ats_state(dev);
1674 pci_restore_vc_state(dev);
1675 pci_restore_rebar_state(dev);
1676 pci_restore_dpc_state(dev);
1677 pci_restore_ptm_state(dev);
1679 pci_aer_clear_status(dev);
1680 pci_restore_aer_state(dev);
1682 pci_restore_config_space(dev);
1684 pci_restore_pcix_state(dev);
1685 pci_restore_msi_state(dev);
1687 /* Restore ACS and IOV configuration state */
1688 pci_enable_acs(dev);
1689 pci_restore_iov_state(dev);
1691 dev->state_saved = false;
1693 EXPORT_SYMBOL(pci_restore_state);
1695 struct pci_saved_state {
1696 u32 config_space[16];
1697 struct pci_cap_saved_data cap[];
1701 * pci_store_saved_state - Allocate and return an opaque struct containing
1702 * the device saved state.
1703 * @dev: PCI device that we're dealing with
1705 * Return NULL if no state or error.
1707 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1709 struct pci_saved_state *state;
1710 struct pci_cap_saved_state *tmp;
1711 struct pci_cap_saved_data *cap;
1712 size_t size;
1714 if (!dev->state_saved)
1715 return NULL;
1717 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1719 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1720 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1722 state = kzalloc(size, GFP_KERNEL);
1723 if (!state)
1724 return NULL;
1726 memcpy(state->config_space, dev->saved_config_space,
1727 sizeof(state->config_space));
1729 cap = state->cap;
1730 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1731 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1732 memcpy(cap, &tmp->cap, len);
1733 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1735 /* Empty cap_save terminates list */
1737 return state;
1739 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1742 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1743 * @dev: PCI device that we're dealing with
1744 * @state: Saved state returned from pci_store_saved_state()
1746 int pci_load_saved_state(struct pci_dev *dev,
1747 struct pci_saved_state *state)
1749 struct pci_cap_saved_data *cap;
1751 dev->state_saved = false;
1753 if (!state)
1754 return 0;
1756 memcpy(dev->saved_config_space, state->config_space,
1757 sizeof(state->config_space));
1759 cap = state->cap;
1760 while (cap->size) {
1761 struct pci_cap_saved_state *tmp;
1763 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1764 if (!tmp || tmp->cap.size != cap->size)
1765 return -EINVAL;
1767 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1768 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1769 sizeof(struct pci_cap_saved_data) + cap->size);
1772 dev->state_saved = true;
1773 return 0;
1775 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1778 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1779 * and free the memory allocated for it.
1780 * @dev: PCI device that we're dealing with
1781 * @state: Pointer to saved state returned from pci_store_saved_state()
1783 int pci_load_and_free_saved_state(struct pci_dev *dev,
1784 struct pci_saved_state **state)
1786 int ret = pci_load_saved_state(dev, *state);
1787 kfree(*state);
1788 *state = NULL;
1789 return ret;
1791 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1793 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1795 return pci_enable_resources(dev, bars);
1798 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1800 int err;
1801 struct pci_dev *bridge;
1802 u16 cmd;
1803 u8 pin;
1805 err = pci_set_power_state(dev, PCI_D0);
1806 if (err < 0 && err != -EIO)
1807 return err;
1809 bridge = pci_upstream_bridge(dev);
1810 if (bridge)
1811 pcie_aspm_powersave_config_link(bridge);
1813 err = pcibios_enable_device(dev, bars);
1814 if (err < 0)
1815 return err;
1816 pci_fixup_device(pci_fixup_enable, dev);
1818 if (dev->msi_enabled || dev->msix_enabled)
1819 return 0;
1821 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1822 if (pin) {
1823 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1824 if (cmd & PCI_COMMAND_INTX_DISABLE)
1825 pci_write_config_word(dev, PCI_COMMAND,
1826 cmd & ~PCI_COMMAND_INTX_DISABLE);
1829 return 0;
1833 * pci_reenable_device - Resume abandoned device
1834 * @dev: PCI device to be resumed
1836 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1837 * to be called by normal code, write proper resume handler and use it instead.
1839 int pci_reenable_device(struct pci_dev *dev)
1841 if (pci_is_enabled(dev))
1842 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1843 return 0;
1845 EXPORT_SYMBOL(pci_reenable_device);
1847 static void pci_enable_bridge(struct pci_dev *dev)
1849 struct pci_dev *bridge;
1850 int retval;
1852 bridge = pci_upstream_bridge(dev);
1853 if (bridge)
1854 pci_enable_bridge(bridge);
1856 if (pci_is_enabled(dev)) {
1857 if (!dev->is_busmaster)
1858 pci_set_master(dev);
1859 return;
1862 retval = pci_enable_device(dev);
1863 if (retval)
1864 pci_err(dev, "Error enabling bridge (%d), continuing\n",
1865 retval);
1866 pci_set_master(dev);
1869 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1871 struct pci_dev *bridge;
1872 int err;
1873 int i, bars = 0;
1876 * Power state could be unknown at this point, either due to a fresh
1877 * boot or a device removal call. So get the current power state
1878 * so that things like MSI message writing will behave as expected
1879 * (e.g. if the device really is in D0 at enable time).
1881 if (dev->pm_cap) {
1882 u16 pmcsr;
1883 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1884 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1887 if (atomic_inc_return(&dev->enable_cnt) > 1)
1888 return 0; /* already enabled */
1890 bridge = pci_upstream_bridge(dev);
1891 if (bridge)
1892 pci_enable_bridge(bridge);
1894 /* only skip sriov related */
1895 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1896 if (dev->resource[i].flags & flags)
1897 bars |= (1 << i);
1898 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1899 if (dev->resource[i].flags & flags)
1900 bars |= (1 << i);
1902 err = do_pci_enable_device(dev, bars);
1903 if (err < 0)
1904 atomic_dec(&dev->enable_cnt);
1905 return err;
1909 * pci_enable_device_io - Initialize a device for use with IO space
1910 * @dev: PCI device to be initialized
1912 * Initialize device before it's used by a driver. Ask low-level code
1913 * to enable I/O resources. Wake up the device if it was suspended.
1914 * Beware, this function can fail.
1916 int pci_enable_device_io(struct pci_dev *dev)
1918 return pci_enable_device_flags(dev, IORESOURCE_IO);
1920 EXPORT_SYMBOL(pci_enable_device_io);
1923 * pci_enable_device_mem - Initialize a device for use with Memory space
1924 * @dev: PCI device to be initialized
1926 * Initialize device before it's used by a driver. Ask low-level code
1927 * to enable Memory resources. Wake up the device if it was suspended.
1928 * Beware, this function can fail.
1930 int pci_enable_device_mem(struct pci_dev *dev)
1932 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1934 EXPORT_SYMBOL(pci_enable_device_mem);
1937 * pci_enable_device - Initialize device before it's used by a driver.
1938 * @dev: PCI device to be initialized
1940 * Initialize device before it's used by a driver. Ask low-level code
1941 * to enable I/O and memory. Wake up the device if it was suspended.
1942 * Beware, this function can fail.
1944 * Note we don't actually enable the device many times if we call
1945 * this function repeatedly (we just increment the count).
1947 int pci_enable_device(struct pci_dev *dev)
1949 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1951 EXPORT_SYMBOL(pci_enable_device);
1954 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X
1955 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so
1956 * there's no need to track it separately. pci_devres is initialized
1957 * when a device is enabled using managed PCI device enable interface.
1959 struct pci_devres {
1960 unsigned int enabled:1;
1961 unsigned int pinned:1;
1962 unsigned int orig_intx:1;
1963 unsigned int restore_intx:1;
1964 unsigned int mwi:1;
1965 u32 region_mask;
1968 static void pcim_release(struct device *gendev, void *res)
1970 struct pci_dev *dev = to_pci_dev(gendev);
1971 struct pci_devres *this = res;
1972 int i;
1974 if (dev->msi_enabled)
1975 pci_disable_msi(dev);
1976 if (dev->msix_enabled)
1977 pci_disable_msix(dev);
1979 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1980 if (this->region_mask & (1 << i))
1981 pci_release_region(dev, i);
1983 if (this->mwi)
1984 pci_clear_mwi(dev);
1986 if (this->restore_intx)
1987 pci_intx(dev, this->orig_intx);
1989 if (this->enabled && !this->pinned)
1990 pci_disable_device(dev);
1993 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1995 struct pci_devres *dr, *new_dr;
1997 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1998 if (dr)
1999 return dr;
2001 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2002 if (!new_dr)
2003 return NULL;
2004 return devres_get(&pdev->dev, new_dr, NULL, NULL);
2007 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2009 if (pci_is_managed(pdev))
2010 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2011 return NULL;
2015 * pcim_enable_device - Managed pci_enable_device()
2016 * @pdev: PCI device to be initialized
2018 * Managed pci_enable_device().
2020 int pcim_enable_device(struct pci_dev *pdev)
2022 struct pci_devres *dr;
2023 int rc;
2025 dr = get_pci_dr(pdev);
2026 if (unlikely(!dr))
2027 return -ENOMEM;
2028 if (dr->enabled)
2029 return 0;
2031 rc = pci_enable_device(pdev);
2032 if (!rc) {
2033 pdev->is_managed = 1;
2034 dr->enabled = 1;
2036 return rc;
2038 EXPORT_SYMBOL(pcim_enable_device);
2041 * pcim_pin_device - Pin managed PCI device
2042 * @pdev: PCI device to pin
2044 * Pin managed PCI device @pdev. Pinned device won't be disabled on
2045 * driver detach. @pdev must have been enabled with
2046 * pcim_enable_device().
2048 void pcim_pin_device(struct pci_dev *pdev)
2050 struct pci_devres *dr;
2052 dr = find_pci_dr(pdev);
2053 WARN_ON(!dr || !dr->enabled);
2054 if (dr)
2055 dr->pinned = 1;
2057 EXPORT_SYMBOL(pcim_pin_device);
2060 * pcibios_add_device - provide arch specific hooks when adding device dev
2061 * @dev: the PCI device being added
2063 * Permits the platform to provide architecture specific functionality when
2064 * devices are added. This is the default implementation. Architecture
2065 * implementations can override this.
2067 int __weak pcibios_add_device(struct pci_dev *dev)
2069 return 0;
2073 * pcibios_release_device - provide arch specific hooks when releasing
2074 * device dev
2075 * @dev: the PCI device being released
2077 * Permits the platform to provide architecture specific functionality when
2078 * devices are released. This is the default implementation. Architecture
2079 * implementations can override this.
2081 void __weak pcibios_release_device(struct pci_dev *dev) {}
2084 * pcibios_disable_device - disable arch specific PCI resources for device dev
2085 * @dev: the PCI device to disable
2087 * Disables architecture specific PCI resources for the device. This
2088 * is the default implementation. Architecture implementations can
2089 * override this.
2091 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2094 * pcibios_penalize_isa_irq - penalize an ISA IRQ
2095 * @irq: ISA IRQ to penalize
2096 * @active: IRQ active or not
2098 * Permits the platform to provide architecture-specific functionality when
2099 * penalizing ISA IRQs. This is the default implementation. Architecture
2100 * implementations can override this.
2102 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2104 static void do_pci_disable_device(struct pci_dev *dev)
2106 u16 pci_command;
2108 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2109 if (pci_command & PCI_COMMAND_MASTER) {
2110 pci_command &= ~PCI_COMMAND_MASTER;
2111 pci_write_config_word(dev, PCI_COMMAND, pci_command);
2114 pcibios_disable_device(dev);
2118 * pci_disable_enabled_device - Disable device without updating enable_cnt
2119 * @dev: PCI device to disable
2121 * NOTE: This function is a backend of PCI power management routines and is
2122 * not supposed to be called drivers.
2124 void pci_disable_enabled_device(struct pci_dev *dev)
2126 if (pci_is_enabled(dev))
2127 do_pci_disable_device(dev);
2131 * pci_disable_device - Disable PCI device after use
2132 * @dev: PCI device to be disabled
2134 * Signal to the system that the PCI device is not in use by the system
2135 * anymore. This only involves disabling PCI bus-mastering, if active.
2137 * Note we don't actually disable the device until all callers of
2138 * pci_enable_device() have called pci_disable_device().
2140 void pci_disable_device(struct pci_dev *dev)
2142 struct pci_devres *dr;
2144 dr = find_pci_dr(dev);
2145 if (dr)
2146 dr->enabled = 0;
2148 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2149 "disabling already-disabled device");
2151 if (atomic_dec_return(&dev->enable_cnt) != 0)
2152 return;
2154 do_pci_disable_device(dev);
2156 dev->is_busmaster = 0;
2158 EXPORT_SYMBOL(pci_disable_device);
2161 * pcibios_set_pcie_reset_state - set reset state for device dev
2162 * @dev: the PCIe device reset
2163 * @state: Reset state to enter into
2165 * Set the PCIe reset state for the device. This is the default
2166 * implementation. Architecture implementations can override this.
2168 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2169 enum pcie_reset_state state)
2171 return -EINVAL;
2175 * pci_set_pcie_reset_state - set reset state for device dev
2176 * @dev: the PCIe device reset
2177 * @state: Reset state to enter into
2179 * Sets the PCI reset state for the device.
2181 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2183 return pcibios_set_pcie_reset_state(dev, state);
2185 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2187 void pcie_clear_device_status(struct pci_dev *dev)
2189 u16 sta;
2191 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2192 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2196 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2197 * @dev: PCIe root port or event collector.
2199 void pcie_clear_root_pme_status(struct pci_dev *dev)
2201 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2205 * pci_check_pme_status - Check if given device has generated PME.
2206 * @dev: Device to check.
2208 * Check the PME status of the device and if set, clear it and clear PME enable
2209 * (if set). Return 'true' if PME status and PME enable were both set or
2210 * 'false' otherwise.
2212 bool pci_check_pme_status(struct pci_dev *dev)
2214 int pmcsr_pos;
2215 u16 pmcsr;
2216 bool ret = false;
2218 if (!dev->pm_cap)
2219 return false;
2221 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2222 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2223 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2224 return false;
2226 /* Clear PME status. */
2227 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2228 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2229 /* Disable PME to avoid interrupt flood. */
2230 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2231 ret = true;
2234 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2236 return ret;
2240 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2241 * @dev: Device to handle.
2242 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2244 * Check if @dev has generated PME and queue a resume request for it in that
2245 * case.
2247 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2249 if (pme_poll_reset && dev->pme_poll)
2250 dev->pme_poll = false;
2252 if (pci_check_pme_status(dev)) {
2253 pci_wakeup_event(dev);
2254 pm_request_resume(&dev->dev);
2256 return 0;
2260 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2261 * @bus: Top bus of the subtree to walk.
2263 void pci_pme_wakeup_bus(struct pci_bus *bus)
2265 if (bus)
2266 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2271 * pci_pme_capable - check the capability of PCI device to generate PME#
2272 * @dev: PCI device to handle.
2273 * @state: PCI state from which device will issue PME#.
2275 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2277 if (!dev->pm_cap)
2278 return false;
2280 return !!(dev->pme_support & (1 << state));
2282 EXPORT_SYMBOL(pci_pme_capable);
2284 static void pci_pme_list_scan(struct work_struct *work)
2286 struct pci_pme_device *pme_dev, *n;
2288 mutex_lock(&pci_pme_list_mutex);
2289 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2290 if (pme_dev->dev->pme_poll) {
2291 struct pci_dev *bridge;
2293 bridge = pme_dev->dev->bus->self;
2295 * If bridge is in low power state, the
2296 * configuration space of subordinate devices
2297 * may be not accessible
2299 if (bridge && bridge->current_state != PCI_D0)
2300 continue;
2302 * If the device is in D3cold it should not be
2303 * polled either.
2305 if (pme_dev->dev->current_state == PCI_D3cold)
2306 continue;
2308 pci_pme_wakeup(pme_dev->dev, NULL);
2309 } else {
2310 list_del(&pme_dev->list);
2311 kfree(pme_dev);
2314 if (!list_empty(&pci_pme_list))
2315 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2316 msecs_to_jiffies(PME_TIMEOUT));
2317 mutex_unlock(&pci_pme_list_mutex);
2320 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2322 u16 pmcsr;
2324 if (!dev->pme_support)
2325 return;
2327 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2328 /* Clear PME_Status by writing 1 to it and enable PME# */
2329 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2330 if (!enable)
2331 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2333 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2337 * pci_pme_restore - Restore PME configuration after config space restore.
2338 * @dev: PCI device to update.
2340 void pci_pme_restore(struct pci_dev *dev)
2342 u16 pmcsr;
2344 if (!dev->pme_support)
2345 return;
2347 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2348 if (dev->wakeup_prepared) {
2349 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2350 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2351 } else {
2352 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2353 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2355 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2359 * pci_pme_active - enable or disable PCI device's PME# function
2360 * @dev: PCI device to handle.
2361 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2363 * The caller must verify that the device is capable of generating PME# before
2364 * calling this function with @enable equal to 'true'.
2366 void pci_pme_active(struct pci_dev *dev, bool enable)
2368 __pci_pme_active(dev, enable);
2371 * PCI (as opposed to PCIe) PME requires that the device have
2372 * its PME# line hooked up correctly. Not all hardware vendors
2373 * do this, so the PME never gets delivered and the device
2374 * remains asleep. The easiest way around this is to
2375 * periodically walk the list of suspended devices and check
2376 * whether any have their PME flag set. The assumption is that
2377 * we'll wake up often enough anyway that this won't be a huge
2378 * hit, and the power savings from the devices will still be a
2379 * win.
2381 * Although PCIe uses in-band PME message instead of PME# line
2382 * to report PME, PME does not work for some PCIe devices in
2383 * reality. For example, there are devices that set their PME
2384 * status bits, but don't really bother to send a PME message;
2385 * there are PCI Express Root Ports that don't bother to
2386 * trigger interrupts when they receive PME messages from the
2387 * devices below. So PME poll is used for PCIe devices too.
2390 if (dev->pme_poll) {
2391 struct pci_pme_device *pme_dev;
2392 if (enable) {
2393 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2394 GFP_KERNEL);
2395 if (!pme_dev) {
2396 pci_warn(dev, "can't enable PME#\n");
2397 return;
2399 pme_dev->dev = dev;
2400 mutex_lock(&pci_pme_list_mutex);
2401 list_add(&pme_dev->list, &pci_pme_list);
2402 if (list_is_singular(&pci_pme_list))
2403 queue_delayed_work(system_freezable_wq,
2404 &pci_pme_work,
2405 msecs_to_jiffies(PME_TIMEOUT));
2406 mutex_unlock(&pci_pme_list_mutex);
2407 } else {
2408 mutex_lock(&pci_pme_list_mutex);
2409 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2410 if (pme_dev->dev == dev) {
2411 list_del(&pme_dev->list);
2412 kfree(pme_dev);
2413 break;
2416 mutex_unlock(&pci_pme_list_mutex);
2420 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2422 EXPORT_SYMBOL(pci_pme_active);
2425 * __pci_enable_wake - enable PCI device as wakeup event source
2426 * @dev: PCI device affected
2427 * @state: PCI state from which device will issue wakeup events
2428 * @enable: True to enable event generation; false to disable
2430 * This enables the device as a wakeup event source, or disables it.
2431 * When such events involves platform-specific hooks, those hooks are
2432 * called automatically by this routine.
2434 * Devices with legacy power management (no standard PCI PM capabilities)
2435 * always require such platform hooks.
2437 * RETURN VALUE:
2438 * 0 is returned on success
2439 * -EINVAL is returned if device is not supposed to wake up the system
2440 * Error code depending on the platform is returned if both the platform and
2441 * the native mechanism fail to enable the generation of wake-up events
2443 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2445 int ret = 0;
2448 * Bridges that are not power-manageable directly only signal
2449 * wakeup on behalf of subordinate devices which is set up
2450 * elsewhere, so skip them. However, bridges that are
2451 * power-manageable may signal wakeup for themselves (for example,
2452 * on a hotplug event) and they need to be covered here.
2454 if (!pci_power_manageable(dev))
2455 return 0;
2457 /* Don't do the same thing twice in a row for one device. */
2458 if (!!enable == !!dev->wakeup_prepared)
2459 return 0;
2462 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2463 * Anderson we should be doing PME# wake enable followed by ACPI wake
2464 * enable. To disable wake-up we call the platform first, for symmetry.
2467 if (enable) {
2468 int error;
2470 if (pci_pme_capable(dev, state))
2471 pci_pme_active(dev, true);
2472 else
2473 ret = 1;
2474 error = platform_pci_set_wakeup(dev, true);
2475 if (ret)
2476 ret = error;
2477 if (!ret)
2478 dev->wakeup_prepared = true;
2479 } else {
2480 platform_pci_set_wakeup(dev, false);
2481 pci_pme_active(dev, false);
2482 dev->wakeup_prepared = false;
2485 return ret;
2489 * pci_enable_wake - change wakeup settings for a PCI device
2490 * @pci_dev: Target device
2491 * @state: PCI state from which device will issue wakeup events
2492 * @enable: Whether or not to enable event generation
2494 * If @enable is set, check device_may_wakeup() for the device before calling
2495 * __pci_enable_wake() for it.
2497 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2499 if (enable && !device_may_wakeup(&pci_dev->dev))
2500 return -EINVAL;
2502 return __pci_enable_wake(pci_dev, state, enable);
2504 EXPORT_SYMBOL(pci_enable_wake);
2507 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2508 * @dev: PCI device to prepare
2509 * @enable: True to enable wake-up event generation; false to disable
2511 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2512 * and this function allows them to set that up cleanly - pci_enable_wake()
2513 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2514 * ordering constraints.
2516 * This function only returns error code if the device is not allowed to wake
2517 * up the system from sleep or it is not capable of generating PME# from both
2518 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2520 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2522 return pci_pme_capable(dev, PCI_D3cold) ?
2523 pci_enable_wake(dev, PCI_D3cold, enable) :
2524 pci_enable_wake(dev, PCI_D3hot, enable);
2526 EXPORT_SYMBOL(pci_wake_from_d3);
2529 * pci_target_state - find an appropriate low power state for a given PCI dev
2530 * @dev: PCI device
2531 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2533 * Use underlying platform code to find a supported low power state for @dev.
2534 * If the platform can't manage @dev, return the deepest state from which it
2535 * can generate wake events, based on any available PME info.
2537 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2539 pci_power_t target_state = PCI_D3hot;
2541 if (platform_pci_power_manageable(dev)) {
2543 * Call the platform to find the target state for the device.
2545 pci_power_t state = platform_pci_choose_state(dev);
2547 switch (state) {
2548 case PCI_POWER_ERROR:
2549 case PCI_UNKNOWN:
2550 break;
2551 case PCI_D1:
2552 case PCI_D2:
2553 if (pci_no_d1d2(dev))
2554 break;
2555 fallthrough;
2556 default:
2557 target_state = state;
2560 return target_state;
2563 if (!dev->pm_cap)
2564 target_state = PCI_D0;
2567 * If the device is in D3cold even though it's not power-manageable by
2568 * the platform, it may have been powered down by non-standard means.
2569 * Best to let it slumber.
2571 if (dev->current_state == PCI_D3cold)
2572 target_state = PCI_D3cold;
2574 if (wakeup) {
2576 * Find the deepest state from which the device can generate
2577 * PME#.
2579 if (dev->pme_support) {
2580 while (target_state
2581 && !(dev->pme_support & (1 << target_state)))
2582 target_state--;
2586 return target_state;
2590 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2591 * into a sleep state
2592 * @dev: Device to handle.
2594 * Choose the power state appropriate for the device depending on whether
2595 * it can wake up the system and/or is power manageable by the platform
2596 * (PCI_D3hot is the default) and put the device into that state.
2598 int pci_prepare_to_sleep(struct pci_dev *dev)
2600 bool wakeup = device_may_wakeup(&dev->dev);
2601 pci_power_t target_state = pci_target_state(dev, wakeup);
2602 int error;
2604 if (target_state == PCI_POWER_ERROR)
2605 return -EIO;
2608 * There are systems (for example, Intel mobile chips since Coffee
2609 * Lake) where the power drawn while suspended can be significantly
2610 * reduced by disabling PTM on PCIe root ports as this allows the
2611 * port to enter a lower-power PM state and the SoC to reach a
2612 * lower-power idle state as a whole.
2614 if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2615 pci_disable_ptm(dev);
2617 pci_enable_wake(dev, target_state, wakeup);
2619 error = pci_set_power_state(dev, target_state);
2621 if (error) {
2622 pci_enable_wake(dev, target_state, false);
2623 pci_restore_ptm_state(dev);
2626 return error;
2628 EXPORT_SYMBOL(pci_prepare_to_sleep);
2631 * pci_back_from_sleep - turn PCI device on during system-wide transition
2632 * into working state
2633 * @dev: Device to handle.
2635 * Disable device's system wake-up capability and put it into D0.
2637 int pci_back_from_sleep(struct pci_dev *dev)
2639 pci_enable_wake(dev, PCI_D0, false);
2640 return pci_set_power_state(dev, PCI_D0);
2642 EXPORT_SYMBOL(pci_back_from_sleep);
2645 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2646 * @dev: PCI device being suspended.
2648 * Prepare @dev to generate wake-up events at run time and put it into a low
2649 * power state.
2651 int pci_finish_runtime_suspend(struct pci_dev *dev)
2653 pci_power_t target_state;
2654 int error;
2656 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2657 if (target_state == PCI_POWER_ERROR)
2658 return -EIO;
2660 dev->runtime_d3cold = target_state == PCI_D3cold;
2663 * There are systems (for example, Intel mobile chips since Coffee
2664 * Lake) where the power drawn while suspended can be significantly
2665 * reduced by disabling PTM on PCIe root ports as this allows the
2666 * port to enter a lower-power PM state and the SoC to reach a
2667 * lower-power idle state as a whole.
2669 if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2670 pci_disable_ptm(dev);
2672 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2674 error = pci_set_power_state(dev, target_state);
2676 if (error) {
2677 pci_enable_wake(dev, target_state, false);
2678 pci_restore_ptm_state(dev);
2679 dev->runtime_d3cold = false;
2682 return error;
2686 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2687 * @dev: Device to check.
2689 * Return true if the device itself is capable of generating wake-up events
2690 * (through the platform or using the native PCIe PME) or if the device supports
2691 * PME and one of its upstream bridges can generate wake-up events.
2693 bool pci_dev_run_wake(struct pci_dev *dev)
2695 struct pci_bus *bus = dev->bus;
2697 if (!dev->pme_support)
2698 return false;
2700 /* PME-capable in principle, but not from the target power state */
2701 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2702 return false;
2704 if (device_can_wakeup(&dev->dev))
2705 return true;
2707 while (bus->parent) {
2708 struct pci_dev *bridge = bus->self;
2710 if (device_can_wakeup(&bridge->dev))
2711 return true;
2713 bus = bus->parent;
2716 /* We have reached the root bus. */
2717 if (bus->bridge)
2718 return device_can_wakeup(bus->bridge);
2720 return false;
2722 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2725 * pci_dev_need_resume - Check if it is necessary to resume the device.
2726 * @pci_dev: Device to check.
2728 * Return 'true' if the device is not runtime-suspended or it has to be
2729 * reconfigured due to wakeup settings difference between system and runtime
2730 * suspend, or the current power state of it is not suitable for the upcoming
2731 * (system-wide) transition.
2733 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2735 struct device *dev = &pci_dev->dev;
2736 pci_power_t target_state;
2738 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2739 return true;
2741 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2744 * If the earlier platform check has not triggered, D3cold is just power
2745 * removal on top of D3hot, so no need to resume the device in that
2746 * case.
2748 return target_state != pci_dev->current_state &&
2749 target_state != PCI_D3cold &&
2750 pci_dev->current_state != PCI_D3hot;
2754 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2755 * @pci_dev: Device to check.
2757 * If the device is suspended and it is not configured for system wakeup,
2758 * disable PME for it to prevent it from waking up the system unnecessarily.
2760 * Note that if the device's power state is D3cold and the platform check in
2761 * pci_dev_need_resume() has not triggered, the device's configuration need not
2762 * be changed.
2764 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2766 struct device *dev = &pci_dev->dev;
2768 spin_lock_irq(&dev->power.lock);
2770 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2771 pci_dev->current_state < PCI_D3cold)
2772 __pci_pme_active(pci_dev, false);
2774 spin_unlock_irq(&dev->power.lock);
2778 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2779 * @pci_dev: Device to handle.
2781 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2782 * it might have been disabled during the prepare phase of system suspend if
2783 * the device was not configured for system wakeup.
2785 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2787 struct device *dev = &pci_dev->dev;
2789 if (!pci_dev_run_wake(pci_dev))
2790 return;
2792 spin_lock_irq(&dev->power.lock);
2794 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2795 __pci_pme_active(pci_dev, true);
2797 spin_unlock_irq(&dev->power.lock);
2800 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2802 struct device *dev = &pdev->dev;
2803 struct device *parent = dev->parent;
2805 if (parent)
2806 pm_runtime_get_sync(parent);
2807 pm_runtime_get_noresume(dev);
2809 * pdev->current_state is set to PCI_D3cold during suspending,
2810 * so wait until suspending completes
2812 pm_runtime_barrier(dev);
2814 * Only need to resume devices in D3cold, because config
2815 * registers are still accessible for devices suspended but
2816 * not in D3cold.
2818 if (pdev->current_state == PCI_D3cold)
2819 pm_runtime_resume(dev);
2822 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2824 struct device *dev = &pdev->dev;
2825 struct device *parent = dev->parent;
2827 pm_runtime_put(dev);
2828 if (parent)
2829 pm_runtime_put_sync(parent);
2832 static const struct dmi_system_id bridge_d3_blacklist[] = {
2833 #ifdef CONFIG_X86
2836 * Gigabyte X299 root port is not marked as hotplug capable
2837 * which allows Linux to power manage it. However, this
2838 * confuses the BIOS SMI handler so don't power manage root
2839 * ports on that system.
2841 .ident = "X299 DESIGNARE EX-CF",
2842 .matches = {
2843 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2844 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2847 #endif
2852 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2853 * @bridge: Bridge to check
2855 * This function checks if it is possible to move the bridge to D3.
2856 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2858 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2860 if (!pci_is_pcie(bridge))
2861 return false;
2863 switch (pci_pcie_type(bridge)) {
2864 case PCI_EXP_TYPE_ROOT_PORT:
2865 case PCI_EXP_TYPE_UPSTREAM:
2866 case PCI_EXP_TYPE_DOWNSTREAM:
2867 if (pci_bridge_d3_disable)
2868 return false;
2871 * Hotplug ports handled by firmware in System Management Mode
2872 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2874 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2875 return false;
2877 if (pci_bridge_d3_force)
2878 return true;
2880 /* Even the oldest 2010 Thunderbolt controller supports D3. */
2881 if (bridge->is_thunderbolt)
2882 return true;
2884 /* Platform might know better if the bridge supports D3 */
2885 if (platform_pci_bridge_d3(bridge))
2886 return true;
2889 * Hotplug ports handled natively by the OS were not validated
2890 * by vendors for runtime D3 at least until 2018 because there
2891 * was no OS support.
2893 if (bridge->is_hotplug_bridge)
2894 return false;
2896 if (dmi_check_system(bridge_d3_blacklist))
2897 return false;
2900 * It should be safe to put PCIe ports from 2015 or newer
2901 * to D3.
2903 if (dmi_get_bios_year() >= 2015)
2904 return true;
2905 break;
2908 return false;
2911 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2913 bool *d3cold_ok = data;
2915 if (/* The device needs to be allowed to go D3cold ... */
2916 dev->no_d3cold || !dev->d3cold_allowed ||
2918 /* ... and if it is wakeup capable to do so from D3cold. */
2919 (device_may_wakeup(&dev->dev) &&
2920 !pci_pme_capable(dev, PCI_D3cold)) ||
2922 /* If it is a bridge it must be allowed to go to D3. */
2923 !pci_power_manageable(dev))
2925 *d3cold_ok = false;
2927 return !*d3cold_ok;
2931 * pci_bridge_d3_update - Update bridge D3 capabilities
2932 * @dev: PCI device which is changed
2934 * Update upstream bridge PM capabilities accordingly depending on if the
2935 * device PM configuration was changed or the device is being removed. The
2936 * change is also propagated upstream.
2938 void pci_bridge_d3_update(struct pci_dev *dev)
2940 bool remove = !device_is_registered(&dev->dev);
2941 struct pci_dev *bridge;
2942 bool d3cold_ok = true;
2944 bridge = pci_upstream_bridge(dev);
2945 if (!bridge || !pci_bridge_d3_possible(bridge))
2946 return;
2949 * If D3 is currently allowed for the bridge, removing one of its
2950 * children won't change that.
2952 if (remove && bridge->bridge_d3)
2953 return;
2956 * If D3 is currently allowed for the bridge and a child is added or
2957 * changed, disallowance of D3 can only be caused by that child, so
2958 * we only need to check that single device, not any of its siblings.
2960 * If D3 is currently not allowed for the bridge, checking the device
2961 * first may allow us to skip checking its siblings.
2963 if (!remove)
2964 pci_dev_check_d3cold(dev, &d3cold_ok);
2967 * If D3 is currently not allowed for the bridge, this may be caused
2968 * either by the device being changed/removed or any of its siblings,
2969 * so we need to go through all children to find out if one of them
2970 * continues to block D3.
2972 if (d3cold_ok && !bridge->bridge_d3)
2973 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2974 &d3cold_ok);
2976 if (bridge->bridge_d3 != d3cold_ok) {
2977 bridge->bridge_d3 = d3cold_ok;
2978 /* Propagate change to upstream bridges */
2979 pci_bridge_d3_update(bridge);
2984 * pci_d3cold_enable - Enable D3cold for device
2985 * @dev: PCI device to handle
2987 * This function can be used in drivers to enable D3cold from the device
2988 * they handle. It also updates upstream PCI bridge PM capabilities
2989 * accordingly.
2991 void pci_d3cold_enable(struct pci_dev *dev)
2993 if (dev->no_d3cold) {
2994 dev->no_d3cold = false;
2995 pci_bridge_d3_update(dev);
2998 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3001 * pci_d3cold_disable - Disable D3cold for device
3002 * @dev: PCI device to handle
3004 * This function can be used in drivers to disable D3cold from the device
3005 * they handle. It also updates upstream PCI bridge PM capabilities
3006 * accordingly.
3008 void pci_d3cold_disable(struct pci_dev *dev)
3010 if (!dev->no_d3cold) {
3011 dev->no_d3cold = true;
3012 pci_bridge_d3_update(dev);
3015 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3018 * pci_pm_init - Initialize PM functions of given PCI device
3019 * @dev: PCI device to handle.
3021 void pci_pm_init(struct pci_dev *dev)
3023 int pm;
3024 u16 status;
3025 u16 pmc;
3027 pm_runtime_forbid(&dev->dev);
3028 pm_runtime_set_active(&dev->dev);
3029 pm_runtime_enable(&dev->dev);
3030 device_enable_async_suspend(&dev->dev);
3031 dev->wakeup_prepared = false;
3033 dev->pm_cap = 0;
3034 dev->pme_support = 0;
3036 /* find PCI PM capability in list */
3037 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3038 if (!pm)
3039 return;
3040 /* Check device's ability to generate PME# */
3041 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3043 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3044 pci_err(dev, "unsupported PM cap regs version (%u)\n",
3045 pmc & PCI_PM_CAP_VER_MASK);
3046 return;
3049 dev->pm_cap = pm;
3050 dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3051 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3052 dev->bridge_d3 = pci_bridge_d3_possible(dev);
3053 dev->d3cold_allowed = true;
3055 dev->d1_support = false;
3056 dev->d2_support = false;
3057 if (!pci_no_d1d2(dev)) {
3058 if (pmc & PCI_PM_CAP_D1)
3059 dev->d1_support = true;
3060 if (pmc & PCI_PM_CAP_D2)
3061 dev->d2_support = true;
3063 if (dev->d1_support || dev->d2_support)
3064 pci_info(dev, "supports%s%s\n",
3065 dev->d1_support ? " D1" : "",
3066 dev->d2_support ? " D2" : "");
3069 pmc &= PCI_PM_CAP_PME_MASK;
3070 if (pmc) {
3071 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3072 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3073 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3074 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3075 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3076 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3077 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3078 dev->pme_poll = true;
3080 * Make device's PM flags reflect the wake-up capability, but
3081 * let the user space enable it to wake up the system as needed.
3083 device_set_wakeup_capable(&dev->dev, true);
3084 /* Disable the PME# generation functionality */
3085 pci_pme_active(dev, false);
3088 pci_read_config_word(dev, PCI_STATUS, &status);
3089 if (status & PCI_STATUS_IMM_READY)
3090 dev->imm_ready = 1;
3093 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3095 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3097 switch (prop) {
3098 case PCI_EA_P_MEM:
3099 case PCI_EA_P_VF_MEM:
3100 flags |= IORESOURCE_MEM;
3101 break;
3102 case PCI_EA_P_MEM_PREFETCH:
3103 case PCI_EA_P_VF_MEM_PREFETCH:
3104 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3105 break;
3106 case PCI_EA_P_IO:
3107 flags |= IORESOURCE_IO;
3108 break;
3109 default:
3110 return 0;
3113 return flags;
3116 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3117 u8 prop)
3119 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3120 return &dev->resource[bei];
3121 #ifdef CONFIG_PCI_IOV
3122 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3123 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3124 return &dev->resource[PCI_IOV_RESOURCES +
3125 bei - PCI_EA_BEI_VF_BAR0];
3126 #endif
3127 else if (bei == PCI_EA_BEI_ROM)
3128 return &dev->resource[PCI_ROM_RESOURCE];
3129 else
3130 return NULL;
3133 /* Read an Enhanced Allocation (EA) entry */
3134 static int pci_ea_read(struct pci_dev *dev, int offset)
3136 struct resource *res;
3137 int ent_size, ent_offset = offset;
3138 resource_size_t start, end;
3139 unsigned long flags;
3140 u32 dw0, bei, base, max_offset;
3141 u8 prop;
3142 bool support_64 = (sizeof(resource_size_t) >= 8);
3144 pci_read_config_dword(dev, ent_offset, &dw0);
3145 ent_offset += 4;
3147 /* Entry size field indicates DWORDs after 1st */
3148 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3150 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3151 goto out;
3153 bei = (dw0 & PCI_EA_BEI) >> 4;
3154 prop = (dw0 & PCI_EA_PP) >> 8;
3157 * If the Property is in the reserved range, try the Secondary
3158 * Property instead.
3160 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3161 prop = (dw0 & PCI_EA_SP) >> 16;
3162 if (prop > PCI_EA_P_BRIDGE_IO)
3163 goto out;
3165 res = pci_ea_get_resource(dev, bei, prop);
3166 if (!res) {
3167 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3168 goto out;
3171 flags = pci_ea_flags(dev, prop);
3172 if (!flags) {
3173 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3174 goto out;
3177 /* Read Base */
3178 pci_read_config_dword(dev, ent_offset, &base);
3179 start = (base & PCI_EA_FIELD_MASK);
3180 ent_offset += 4;
3182 /* Read MaxOffset */
3183 pci_read_config_dword(dev, ent_offset, &max_offset);
3184 ent_offset += 4;
3186 /* Read Base MSBs (if 64-bit entry) */
3187 if (base & PCI_EA_IS_64) {
3188 u32 base_upper;
3190 pci_read_config_dword(dev, ent_offset, &base_upper);
3191 ent_offset += 4;
3193 flags |= IORESOURCE_MEM_64;
3195 /* entry starts above 32-bit boundary, can't use */
3196 if (!support_64 && base_upper)
3197 goto out;
3199 if (support_64)
3200 start |= ((u64)base_upper << 32);
3203 end = start + (max_offset | 0x03);
3205 /* Read MaxOffset MSBs (if 64-bit entry) */
3206 if (max_offset & PCI_EA_IS_64) {
3207 u32 max_offset_upper;
3209 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3210 ent_offset += 4;
3212 flags |= IORESOURCE_MEM_64;
3214 /* entry too big, can't use */
3215 if (!support_64 && max_offset_upper)
3216 goto out;
3218 if (support_64)
3219 end += ((u64)max_offset_upper << 32);
3222 if (end < start) {
3223 pci_err(dev, "EA Entry crosses address boundary\n");
3224 goto out;
3227 if (ent_size != ent_offset - offset) {
3228 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3229 ent_size, ent_offset - offset);
3230 goto out;
3233 res->name = pci_name(dev);
3234 res->start = start;
3235 res->end = end;
3236 res->flags = flags;
3238 if (bei <= PCI_EA_BEI_BAR5)
3239 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3240 bei, res, prop);
3241 else if (bei == PCI_EA_BEI_ROM)
3242 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3243 res, prop);
3244 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3245 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3246 bei - PCI_EA_BEI_VF_BAR0, res, prop);
3247 else
3248 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3249 bei, res, prop);
3251 out:
3252 return offset + ent_size;
3255 /* Enhanced Allocation Initialization */
3256 void pci_ea_init(struct pci_dev *dev)
3258 int ea;
3259 u8 num_ent;
3260 int offset;
3261 int i;
3263 /* find PCI EA capability in list */
3264 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3265 if (!ea)
3266 return;
3268 /* determine the number of entries */
3269 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3270 &num_ent);
3271 num_ent &= PCI_EA_NUM_ENT_MASK;
3273 offset = ea + PCI_EA_FIRST_ENT;
3275 /* Skip DWORD 2 for type 1 functions */
3276 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3277 offset += 4;
3279 /* parse each EA entry */
3280 for (i = 0; i < num_ent; ++i)
3281 offset = pci_ea_read(dev, offset);
3284 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3285 struct pci_cap_saved_state *new_cap)
3287 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3291 * _pci_add_cap_save_buffer - allocate buffer for saving given
3292 * capability registers
3293 * @dev: the PCI device
3294 * @cap: the capability to allocate the buffer for
3295 * @extended: Standard or Extended capability ID
3296 * @size: requested size of the buffer
3298 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3299 bool extended, unsigned int size)
3301 int pos;
3302 struct pci_cap_saved_state *save_state;
3304 if (extended)
3305 pos = pci_find_ext_capability(dev, cap);
3306 else
3307 pos = pci_find_capability(dev, cap);
3309 if (!pos)
3310 return 0;
3312 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3313 if (!save_state)
3314 return -ENOMEM;
3316 save_state->cap.cap_nr = cap;
3317 save_state->cap.cap_extended = extended;
3318 save_state->cap.size = size;
3319 pci_add_saved_cap(dev, save_state);
3321 return 0;
3324 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3326 return _pci_add_cap_save_buffer(dev, cap, false, size);
3329 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3331 return _pci_add_cap_save_buffer(dev, cap, true, size);
3335 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3336 * @dev: the PCI device
3338 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3340 int error;
3342 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3343 PCI_EXP_SAVE_REGS * sizeof(u16));
3344 if (error)
3345 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3347 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3348 if (error)
3349 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3351 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3352 2 * sizeof(u16));
3353 if (error)
3354 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3356 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_L1SS,
3357 2 * sizeof(u32));
3358 if (error)
3359 pci_err(dev, "unable to allocate suspend buffer for ASPM-L1SS\n");
3361 pci_allocate_vc_save_buffers(dev);
3364 void pci_free_cap_save_buffers(struct pci_dev *dev)
3366 struct pci_cap_saved_state *tmp;
3367 struct hlist_node *n;
3369 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3370 kfree(tmp);
3374 * pci_configure_ari - enable or disable ARI forwarding
3375 * @dev: the PCI device
3377 * If @dev and its upstream bridge both support ARI, enable ARI in the
3378 * bridge. Otherwise, disable ARI in the bridge.
3380 void pci_configure_ari(struct pci_dev *dev)
3382 u32 cap;
3383 struct pci_dev *bridge;
3385 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3386 return;
3388 bridge = dev->bus->self;
3389 if (!bridge)
3390 return;
3392 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3393 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3394 return;
3396 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3397 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3398 PCI_EXP_DEVCTL2_ARI);
3399 bridge->ari_enabled = 1;
3400 } else {
3401 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3402 PCI_EXP_DEVCTL2_ARI);
3403 bridge->ari_enabled = 0;
3407 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3409 int pos;
3410 u16 cap, ctrl;
3412 pos = pdev->acs_cap;
3413 if (!pos)
3414 return false;
3417 * Except for egress control, capabilities are either required
3418 * or only required if controllable. Features missing from the
3419 * capability field can therefore be assumed as hard-wired enabled.
3421 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3422 acs_flags &= (cap | PCI_ACS_EC);
3424 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3425 return (ctrl & acs_flags) == acs_flags;
3429 * pci_acs_enabled - test ACS against required flags for a given device
3430 * @pdev: device to test
3431 * @acs_flags: required PCI ACS flags
3433 * Return true if the device supports the provided flags. Automatically
3434 * filters out flags that are not implemented on multifunction devices.
3436 * Note that this interface checks the effective ACS capabilities of the
3437 * device rather than the actual capabilities. For instance, most single
3438 * function endpoints are not required to support ACS because they have no
3439 * opportunity for peer-to-peer access. We therefore return 'true'
3440 * regardless of whether the device exposes an ACS capability. This makes
3441 * it much easier for callers of this function to ignore the actual type
3442 * or topology of the device when testing ACS support.
3444 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3446 int ret;
3448 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3449 if (ret >= 0)
3450 return ret > 0;
3453 * Conventional PCI and PCI-X devices never support ACS, either
3454 * effectively or actually. The shared bus topology implies that
3455 * any device on the bus can receive or snoop DMA.
3457 if (!pci_is_pcie(pdev))
3458 return false;
3460 switch (pci_pcie_type(pdev)) {
3462 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3463 * but since their primary interface is PCI/X, we conservatively
3464 * handle them as we would a non-PCIe device.
3466 case PCI_EXP_TYPE_PCIE_BRIDGE:
3468 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3469 * applicable... must never implement an ACS Extended Capability...".
3470 * This seems arbitrary, but we take a conservative interpretation
3471 * of this statement.
3473 case PCI_EXP_TYPE_PCI_BRIDGE:
3474 case PCI_EXP_TYPE_RC_EC:
3475 return false;
3477 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3478 * implement ACS in order to indicate their peer-to-peer capabilities,
3479 * regardless of whether they are single- or multi-function devices.
3481 case PCI_EXP_TYPE_DOWNSTREAM:
3482 case PCI_EXP_TYPE_ROOT_PORT:
3483 return pci_acs_flags_enabled(pdev, acs_flags);
3485 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3486 * implemented by the remaining PCIe types to indicate peer-to-peer
3487 * capabilities, but only when they are part of a multifunction
3488 * device. The footnote for section 6.12 indicates the specific
3489 * PCIe types included here.
3491 case PCI_EXP_TYPE_ENDPOINT:
3492 case PCI_EXP_TYPE_UPSTREAM:
3493 case PCI_EXP_TYPE_LEG_END:
3494 case PCI_EXP_TYPE_RC_END:
3495 if (!pdev->multifunction)
3496 break;
3498 return pci_acs_flags_enabled(pdev, acs_flags);
3502 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3503 * to single function devices with the exception of downstream ports.
3505 return true;
3509 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3510 * @start: starting downstream device
3511 * @end: ending upstream device or NULL to search to the root bus
3512 * @acs_flags: required flags
3514 * Walk up a device tree from start to end testing PCI ACS support. If
3515 * any step along the way does not support the required flags, return false.
3517 bool pci_acs_path_enabled(struct pci_dev *start,
3518 struct pci_dev *end, u16 acs_flags)
3520 struct pci_dev *pdev, *parent = start;
3522 do {
3523 pdev = parent;
3525 if (!pci_acs_enabled(pdev, acs_flags))
3526 return false;
3528 if (pci_is_root_bus(pdev->bus))
3529 return (end == NULL);
3531 parent = pdev->bus->self;
3532 } while (pdev != end);
3534 return true;
3538 * pci_acs_init - Initialize ACS if hardware supports it
3539 * @dev: the PCI device
3541 void pci_acs_init(struct pci_dev *dev)
3543 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3546 * Attempt to enable ACS regardless of capability because some Root
3547 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3548 * the standard ACS capability but still support ACS via those
3549 * quirks.
3551 pci_enable_acs(dev);
3555 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3556 * @pdev: PCI device
3557 * @bar: BAR to find
3559 * Helper to find the position of the ctrl register for a BAR.
3560 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3561 * Returns -ENOENT if no ctrl register for the BAR could be found.
3563 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3565 unsigned int pos, nbars, i;
3566 u32 ctrl;
3568 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3569 if (!pos)
3570 return -ENOTSUPP;
3572 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3573 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3574 PCI_REBAR_CTRL_NBAR_SHIFT;
3576 for (i = 0; i < nbars; i++, pos += 8) {
3577 int bar_idx;
3579 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3580 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3581 if (bar_idx == bar)
3582 return pos;
3585 return -ENOENT;
3589 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3590 * @pdev: PCI device
3591 * @bar: BAR to query
3593 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3594 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3596 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3598 int pos;
3599 u32 cap;
3601 pos = pci_rebar_find_pos(pdev, bar);
3602 if (pos < 0)
3603 return 0;
3605 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3606 return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3610 * pci_rebar_get_current_size - get the current size of a BAR
3611 * @pdev: PCI device
3612 * @bar: BAR to set size to
3614 * Read the size of a BAR from the resizable BAR config.
3615 * Returns size if found or negative error code.
3617 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3619 int pos;
3620 u32 ctrl;
3622 pos = pci_rebar_find_pos(pdev, bar);
3623 if (pos < 0)
3624 return pos;
3626 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3627 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3631 * pci_rebar_set_size - set a new size for a BAR
3632 * @pdev: PCI device
3633 * @bar: BAR to set size to
3634 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3636 * Set the new size of a BAR as defined in the spec.
3637 * Returns zero if resizing was successful, error code otherwise.
3639 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3641 int pos;
3642 u32 ctrl;
3644 pos = pci_rebar_find_pos(pdev, bar);
3645 if (pos < 0)
3646 return pos;
3648 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3649 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3650 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3651 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3652 return 0;
3656 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3657 * @dev: the PCI device
3658 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3659 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3660 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3661 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3663 * Return 0 if all upstream bridges support AtomicOp routing, egress
3664 * blocking is disabled on all upstream ports, and the root port supports
3665 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3666 * AtomicOp completion), or negative otherwise.
3668 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3670 struct pci_bus *bus = dev->bus;
3671 struct pci_dev *bridge;
3672 u32 cap, ctl2;
3674 if (!pci_is_pcie(dev))
3675 return -EINVAL;
3678 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3679 * AtomicOp requesters. For now, we only support endpoints as
3680 * requesters and root ports as completers. No endpoints as
3681 * completers, and no peer-to-peer.
3684 switch (pci_pcie_type(dev)) {
3685 case PCI_EXP_TYPE_ENDPOINT:
3686 case PCI_EXP_TYPE_LEG_END:
3687 case PCI_EXP_TYPE_RC_END:
3688 break;
3689 default:
3690 return -EINVAL;
3693 while (bus->parent) {
3694 bridge = bus->self;
3696 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3698 switch (pci_pcie_type(bridge)) {
3699 /* Ensure switch ports support AtomicOp routing */
3700 case PCI_EXP_TYPE_UPSTREAM:
3701 case PCI_EXP_TYPE_DOWNSTREAM:
3702 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3703 return -EINVAL;
3704 break;
3706 /* Ensure root port supports all the sizes we care about */
3707 case PCI_EXP_TYPE_ROOT_PORT:
3708 if ((cap & cap_mask) != cap_mask)
3709 return -EINVAL;
3710 break;
3713 /* Ensure upstream ports don't block AtomicOps on egress */
3714 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3715 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3716 &ctl2);
3717 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3718 return -EINVAL;
3721 bus = bus->parent;
3724 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3725 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3726 return 0;
3728 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3731 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3732 * @dev: the PCI device
3733 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3735 * Perform INTx swizzling for a device behind one level of bridge. This is
3736 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3737 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3738 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3739 * the PCI Express Base Specification, Revision 2.1)
3741 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3743 int slot;
3745 if (pci_ari_enabled(dev->bus))
3746 slot = 0;
3747 else
3748 slot = PCI_SLOT(dev->devfn);
3750 return (((pin - 1) + slot) % 4) + 1;
3753 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3755 u8 pin;
3757 pin = dev->pin;
3758 if (!pin)
3759 return -1;
3761 while (!pci_is_root_bus(dev->bus)) {
3762 pin = pci_swizzle_interrupt_pin(dev, pin);
3763 dev = dev->bus->self;
3765 *bridge = dev;
3766 return pin;
3770 * pci_common_swizzle - swizzle INTx all the way to root bridge
3771 * @dev: the PCI device
3772 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3774 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3775 * bridges all the way up to a PCI root bus.
3777 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3779 u8 pin = *pinp;
3781 while (!pci_is_root_bus(dev->bus)) {
3782 pin = pci_swizzle_interrupt_pin(dev, pin);
3783 dev = dev->bus->self;
3785 *pinp = pin;
3786 return PCI_SLOT(dev->devfn);
3788 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3791 * pci_release_region - Release a PCI bar
3792 * @pdev: PCI device whose resources were previously reserved by
3793 * pci_request_region()
3794 * @bar: BAR to release
3796 * Releases the PCI I/O and memory resources previously reserved by a
3797 * successful call to pci_request_region(). Call this function only
3798 * after all use of the PCI regions has ceased.
3800 void pci_release_region(struct pci_dev *pdev, int bar)
3802 struct pci_devres *dr;
3804 if (pci_resource_len(pdev, bar) == 0)
3805 return;
3806 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3807 release_region(pci_resource_start(pdev, bar),
3808 pci_resource_len(pdev, bar));
3809 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3810 release_mem_region(pci_resource_start(pdev, bar),
3811 pci_resource_len(pdev, bar));
3813 dr = find_pci_dr(pdev);
3814 if (dr)
3815 dr->region_mask &= ~(1 << bar);
3817 EXPORT_SYMBOL(pci_release_region);
3820 * __pci_request_region - Reserved PCI I/O and memory resource
3821 * @pdev: PCI device whose resources are to be reserved
3822 * @bar: BAR to be reserved
3823 * @res_name: Name to be associated with resource.
3824 * @exclusive: whether the region access is exclusive or not
3826 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3827 * being reserved by owner @res_name. Do not access any
3828 * address inside the PCI regions unless this call returns
3829 * successfully.
3831 * If @exclusive is set, then the region is marked so that userspace
3832 * is explicitly not allowed to map the resource via /dev/mem or
3833 * sysfs MMIO access.
3835 * Returns 0 on success, or %EBUSY on error. A warning
3836 * message is also printed on failure.
3838 static int __pci_request_region(struct pci_dev *pdev, int bar,
3839 const char *res_name, int exclusive)
3841 struct pci_devres *dr;
3843 if (pci_resource_len(pdev, bar) == 0)
3844 return 0;
3846 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3847 if (!request_region(pci_resource_start(pdev, bar),
3848 pci_resource_len(pdev, bar), res_name))
3849 goto err_out;
3850 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3851 if (!__request_mem_region(pci_resource_start(pdev, bar),
3852 pci_resource_len(pdev, bar), res_name,
3853 exclusive))
3854 goto err_out;
3857 dr = find_pci_dr(pdev);
3858 if (dr)
3859 dr->region_mask |= 1 << bar;
3861 return 0;
3863 err_out:
3864 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3865 &pdev->resource[bar]);
3866 return -EBUSY;
3870 * pci_request_region - Reserve PCI I/O and memory resource
3871 * @pdev: PCI device whose resources are to be reserved
3872 * @bar: BAR to be reserved
3873 * @res_name: Name to be associated with resource
3875 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3876 * being reserved by owner @res_name. Do not access any
3877 * address inside the PCI regions unless this call returns
3878 * successfully.
3880 * Returns 0 on success, or %EBUSY on error. A warning
3881 * message is also printed on failure.
3883 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3885 return __pci_request_region(pdev, bar, res_name, 0);
3887 EXPORT_SYMBOL(pci_request_region);
3890 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3891 * @pdev: PCI device whose resources were previously reserved
3892 * @bars: Bitmask of BARs to be released
3894 * Release selected PCI I/O and memory resources previously reserved.
3895 * Call this function only after all use of the PCI regions has ceased.
3897 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3899 int i;
3901 for (i = 0; i < PCI_STD_NUM_BARS; i++)
3902 if (bars & (1 << i))
3903 pci_release_region(pdev, i);
3905 EXPORT_SYMBOL(pci_release_selected_regions);
3907 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3908 const char *res_name, int excl)
3910 int i;
3912 for (i = 0; i < PCI_STD_NUM_BARS; i++)
3913 if (bars & (1 << i))
3914 if (__pci_request_region(pdev, i, res_name, excl))
3915 goto err_out;
3916 return 0;
3918 err_out:
3919 while (--i >= 0)
3920 if (bars & (1 << i))
3921 pci_release_region(pdev, i);
3923 return -EBUSY;
3928 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3929 * @pdev: PCI device whose resources are to be reserved
3930 * @bars: Bitmask of BARs to be requested
3931 * @res_name: Name to be associated with resource
3933 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3934 const char *res_name)
3936 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3938 EXPORT_SYMBOL(pci_request_selected_regions);
3940 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3941 const char *res_name)
3943 return __pci_request_selected_regions(pdev, bars, res_name,
3944 IORESOURCE_EXCLUSIVE);
3946 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3949 * pci_release_regions - Release reserved PCI I/O and memory resources
3950 * @pdev: PCI device whose resources were previously reserved by
3951 * pci_request_regions()
3953 * Releases all PCI I/O and memory resources previously reserved by a
3954 * successful call to pci_request_regions(). Call this function only
3955 * after all use of the PCI regions has ceased.
3958 void pci_release_regions(struct pci_dev *pdev)
3960 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
3962 EXPORT_SYMBOL(pci_release_regions);
3965 * pci_request_regions - Reserve PCI I/O and memory resources
3966 * @pdev: PCI device whose resources are to be reserved
3967 * @res_name: Name to be associated with resource.
3969 * Mark all PCI regions associated with PCI device @pdev as
3970 * being reserved by owner @res_name. Do not access any
3971 * address inside the PCI regions unless this call returns
3972 * successfully.
3974 * Returns 0 on success, or %EBUSY on error. A warning
3975 * message is also printed on failure.
3977 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3979 return pci_request_selected_regions(pdev,
3980 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
3982 EXPORT_SYMBOL(pci_request_regions);
3985 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
3986 * @pdev: PCI device whose resources are to be reserved
3987 * @res_name: Name to be associated with resource.
3989 * Mark all PCI regions associated with PCI device @pdev as being reserved
3990 * by owner @res_name. Do not access any address inside the PCI regions
3991 * unless this call returns successfully.
3993 * pci_request_regions_exclusive() will mark the region so that /dev/mem
3994 * and the sysfs MMIO access will not be allowed.
3996 * Returns 0 on success, or %EBUSY on error. A warning message is also
3997 * printed on failure.
3999 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4001 return pci_request_selected_regions_exclusive(pdev,
4002 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4004 EXPORT_SYMBOL(pci_request_regions_exclusive);
4007 * Record the PCI IO range (expressed as CPU physical address + size).
4008 * Return a negative value if an error has occurred, zero otherwise
4010 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4011 resource_size_t size)
4013 int ret = 0;
4014 #ifdef PCI_IOBASE
4015 struct logic_pio_hwaddr *range;
4017 if (!size || addr + size < addr)
4018 return -EINVAL;
4020 range = kzalloc(sizeof(*range), GFP_ATOMIC);
4021 if (!range)
4022 return -ENOMEM;
4024 range->fwnode = fwnode;
4025 range->size = size;
4026 range->hw_start = addr;
4027 range->flags = LOGIC_PIO_CPU_MMIO;
4029 ret = logic_pio_register_range(range);
4030 if (ret)
4031 kfree(range);
4032 #endif
4034 return ret;
4037 phys_addr_t pci_pio_to_address(unsigned long pio)
4039 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4041 #ifdef PCI_IOBASE
4042 if (pio >= MMIO_UPPER_LIMIT)
4043 return address;
4045 address = logic_pio_to_hwaddr(pio);
4046 #endif
4048 return address;
4051 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4053 #ifdef PCI_IOBASE
4054 return logic_pio_trans_cpuaddr(address);
4055 #else
4056 if (address > IO_SPACE_LIMIT)
4057 return (unsigned long)-1;
4059 return (unsigned long) address;
4060 #endif
4064 * pci_remap_iospace - Remap the memory mapped I/O space
4065 * @res: Resource describing the I/O space
4066 * @phys_addr: physical address of range to be mapped
4068 * Remap the memory mapped I/O space described by the @res and the CPU
4069 * physical address @phys_addr into virtual address space. Only
4070 * architectures that have memory mapped IO functions defined (and the
4071 * PCI_IOBASE value defined) should call this function.
4073 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4075 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4076 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4078 if (!(res->flags & IORESOURCE_IO))
4079 return -EINVAL;
4081 if (res->end > IO_SPACE_LIMIT)
4082 return -EINVAL;
4084 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4085 pgprot_device(PAGE_KERNEL));
4086 #else
4088 * This architecture does not have memory mapped I/O space,
4089 * so this function should never be called
4091 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4092 return -ENODEV;
4093 #endif
4095 EXPORT_SYMBOL(pci_remap_iospace);
4098 * pci_unmap_iospace - Unmap the memory mapped I/O space
4099 * @res: resource to be unmapped
4101 * Unmap the CPU virtual address @res from virtual address space. Only
4102 * architectures that have memory mapped IO functions defined (and the
4103 * PCI_IOBASE value defined) should call this function.
4105 void pci_unmap_iospace(struct resource *res)
4107 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4108 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4110 unmap_kernel_range(vaddr, resource_size(res));
4111 #endif
4113 EXPORT_SYMBOL(pci_unmap_iospace);
4115 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4117 struct resource **res = ptr;
4119 pci_unmap_iospace(*res);
4123 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4124 * @dev: Generic device to remap IO address for
4125 * @res: Resource describing the I/O space
4126 * @phys_addr: physical address of range to be mapped
4128 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
4129 * detach.
4131 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4132 phys_addr_t phys_addr)
4134 const struct resource **ptr;
4135 int error;
4137 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4138 if (!ptr)
4139 return -ENOMEM;
4141 error = pci_remap_iospace(res, phys_addr);
4142 if (error) {
4143 devres_free(ptr);
4144 } else {
4145 *ptr = res;
4146 devres_add(dev, ptr);
4149 return error;
4151 EXPORT_SYMBOL(devm_pci_remap_iospace);
4154 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4155 * @dev: Generic device to remap IO address for
4156 * @offset: Resource address to map
4157 * @size: Size of map
4159 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
4160 * detach.
4162 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4163 resource_size_t offset,
4164 resource_size_t size)
4166 void __iomem **ptr, *addr;
4168 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4169 if (!ptr)
4170 return NULL;
4172 addr = pci_remap_cfgspace(offset, size);
4173 if (addr) {
4174 *ptr = addr;
4175 devres_add(dev, ptr);
4176 } else
4177 devres_free(ptr);
4179 return addr;
4181 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4184 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4185 * @dev: generic device to handle the resource for
4186 * @res: configuration space resource to be handled
4188 * Checks that a resource is a valid memory region, requests the memory
4189 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4190 * proper PCI configuration space memory attributes are guaranteed.
4192 * All operations are managed and will be undone on driver detach.
4194 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4195 * on failure. Usage example::
4197 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4198 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4199 * if (IS_ERR(base))
4200 * return PTR_ERR(base);
4202 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4203 struct resource *res)
4205 resource_size_t size;
4206 const char *name;
4207 void __iomem *dest_ptr;
4209 BUG_ON(!dev);
4211 if (!res || resource_type(res) != IORESOURCE_MEM) {
4212 dev_err(dev, "invalid resource\n");
4213 return IOMEM_ERR_PTR(-EINVAL);
4216 size = resource_size(res);
4218 if (res->name)
4219 name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4220 res->name);
4221 else
4222 name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4223 if (!name)
4224 return IOMEM_ERR_PTR(-ENOMEM);
4226 if (!devm_request_mem_region(dev, res->start, size, name)) {
4227 dev_err(dev, "can't request region for resource %pR\n", res);
4228 return IOMEM_ERR_PTR(-EBUSY);
4231 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4232 if (!dest_ptr) {
4233 dev_err(dev, "ioremap failed for resource %pR\n", res);
4234 devm_release_mem_region(dev, res->start, size);
4235 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4238 return dest_ptr;
4240 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4242 static void __pci_set_master(struct pci_dev *dev, bool enable)
4244 u16 old_cmd, cmd;
4246 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4247 if (enable)
4248 cmd = old_cmd | PCI_COMMAND_MASTER;
4249 else
4250 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4251 if (cmd != old_cmd) {
4252 pci_dbg(dev, "%s bus mastering\n",
4253 enable ? "enabling" : "disabling");
4254 pci_write_config_word(dev, PCI_COMMAND, cmd);
4256 dev->is_busmaster = enable;
4260 * pcibios_setup - process "pci=" kernel boot arguments
4261 * @str: string used to pass in "pci=" kernel boot arguments
4263 * Process kernel boot arguments. This is the default implementation.
4264 * Architecture specific implementations can override this as necessary.
4266 char * __weak __init pcibios_setup(char *str)
4268 return str;
4272 * pcibios_set_master - enable PCI bus-mastering for device dev
4273 * @dev: the PCI device to enable
4275 * Enables PCI bus-mastering for the device. This is the default
4276 * implementation. Architecture specific implementations can override
4277 * this if necessary.
4279 void __weak pcibios_set_master(struct pci_dev *dev)
4281 u8 lat;
4283 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4284 if (pci_is_pcie(dev))
4285 return;
4287 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4288 if (lat < 16)
4289 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4290 else if (lat > pcibios_max_latency)
4291 lat = pcibios_max_latency;
4292 else
4293 return;
4295 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4299 * pci_set_master - enables bus-mastering for device dev
4300 * @dev: the PCI device to enable
4302 * Enables bus-mastering on the device and calls pcibios_set_master()
4303 * to do the needed arch specific settings.
4305 void pci_set_master(struct pci_dev *dev)
4307 __pci_set_master(dev, true);
4308 pcibios_set_master(dev);
4310 EXPORT_SYMBOL(pci_set_master);
4313 * pci_clear_master - disables bus-mastering for device dev
4314 * @dev: the PCI device to disable
4316 void pci_clear_master(struct pci_dev *dev)
4318 __pci_set_master(dev, false);
4320 EXPORT_SYMBOL(pci_clear_master);
4323 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4324 * @dev: the PCI device for which MWI is to be enabled
4326 * Helper function for pci_set_mwi.
4327 * Originally copied from drivers/net/acenic.c.
4328 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4330 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4332 int pci_set_cacheline_size(struct pci_dev *dev)
4334 u8 cacheline_size;
4336 if (!pci_cache_line_size)
4337 return -EINVAL;
4339 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4340 equal to or multiple of the right value. */
4341 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4342 if (cacheline_size >= pci_cache_line_size &&
4343 (cacheline_size % pci_cache_line_size) == 0)
4344 return 0;
4346 /* Write the correct value. */
4347 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4348 /* Read it back. */
4349 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4350 if (cacheline_size == pci_cache_line_size)
4351 return 0;
4353 pci_dbg(dev, "cache line size of %d is not supported\n",
4354 pci_cache_line_size << 2);
4356 return -EINVAL;
4358 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4361 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4362 * @dev: the PCI device for which MWI is enabled
4364 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4366 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4368 int pci_set_mwi(struct pci_dev *dev)
4370 #ifdef PCI_DISABLE_MWI
4371 return 0;
4372 #else
4373 int rc;
4374 u16 cmd;
4376 rc = pci_set_cacheline_size(dev);
4377 if (rc)
4378 return rc;
4380 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4381 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4382 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4383 cmd |= PCI_COMMAND_INVALIDATE;
4384 pci_write_config_word(dev, PCI_COMMAND, cmd);
4386 return 0;
4387 #endif
4389 EXPORT_SYMBOL(pci_set_mwi);
4392 * pcim_set_mwi - a device-managed pci_set_mwi()
4393 * @dev: the PCI device for which MWI is enabled
4395 * Managed pci_set_mwi().
4397 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4399 int pcim_set_mwi(struct pci_dev *dev)
4401 struct pci_devres *dr;
4403 dr = find_pci_dr(dev);
4404 if (!dr)
4405 return -ENOMEM;
4407 dr->mwi = 1;
4408 return pci_set_mwi(dev);
4410 EXPORT_SYMBOL(pcim_set_mwi);
4413 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4414 * @dev: the PCI device for which MWI is enabled
4416 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4417 * Callers are not required to check the return value.
4419 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4421 int pci_try_set_mwi(struct pci_dev *dev)
4423 #ifdef PCI_DISABLE_MWI
4424 return 0;
4425 #else
4426 return pci_set_mwi(dev);
4427 #endif
4429 EXPORT_SYMBOL(pci_try_set_mwi);
4432 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4433 * @dev: the PCI device to disable
4435 * Disables PCI Memory-Write-Invalidate transaction on the device
4437 void pci_clear_mwi(struct pci_dev *dev)
4439 #ifndef PCI_DISABLE_MWI
4440 u16 cmd;
4442 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4443 if (cmd & PCI_COMMAND_INVALIDATE) {
4444 cmd &= ~PCI_COMMAND_INVALIDATE;
4445 pci_write_config_word(dev, PCI_COMMAND, cmd);
4447 #endif
4449 EXPORT_SYMBOL(pci_clear_mwi);
4452 * pci_intx - enables/disables PCI INTx for device dev
4453 * @pdev: the PCI device to operate on
4454 * @enable: boolean: whether to enable or disable PCI INTx
4456 * Enables/disables PCI INTx for device @pdev
4458 void pci_intx(struct pci_dev *pdev, int enable)
4460 u16 pci_command, new;
4462 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4464 if (enable)
4465 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4466 else
4467 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4469 if (new != pci_command) {
4470 struct pci_devres *dr;
4472 pci_write_config_word(pdev, PCI_COMMAND, new);
4474 dr = find_pci_dr(pdev);
4475 if (dr && !dr->restore_intx) {
4476 dr->restore_intx = 1;
4477 dr->orig_intx = !enable;
4481 EXPORT_SYMBOL_GPL(pci_intx);
4483 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4485 struct pci_bus *bus = dev->bus;
4486 bool mask_updated = true;
4487 u32 cmd_status_dword;
4488 u16 origcmd, newcmd;
4489 unsigned long flags;
4490 bool irq_pending;
4493 * We do a single dword read to retrieve both command and status.
4494 * Document assumptions that make this possible.
4496 BUILD_BUG_ON(PCI_COMMAND % 4);
4497 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4499 raw_spin_lock_irqsave(&pci_lock, flags);
4501 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4503 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4506 * Check interrupt status register to see whether our device
4507 * triggered the interrupt (when masking) or the next IRQ is
4508 * already pending (when unmasking).
4510 if (mask != irq_pending) {
4511 mask_updated = false;
4512 goto done;
4515 origcmd = cmd_status_dword;
4516 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4517 if (mask)
4518 newcmd |= PCI_COMMAND_INTX_DISABLE;
4519 if (newcmd != origcmd)
4520 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4522 done:
4523 raw_spin_unlock_irqrestore(&pci_lock, flags);
4525 return mask_updated;
4529 * pci_check_and_mask_intx - mask INTx on pending interrupt
4530 * @dev: the PCI device to operate on
4532 * Check if the device dev has its INTx line asserted, mask it and return
4533 * true in that case. False is returned if no interrupt was pending.
4535 bool pci_check_and_mask_intx(struct pci_dev *dev)
4537 return pci_check_and_set_intx_mask(dev, true);
4539 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4542 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4543 * @dev: the PCI device to operate on
4545 * Check if the device dev has its INTx line asserted, unmask it if not and
4546 * return true. False is returned and the mask remains active if there was
4547 * still an interrupt pending.
4549 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4551 return pci_check_and_set_intx_mask(dev, false);
4553 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4556 * pci_wait_for_pending_transaction - wait for pending transaction
4557 * @dev: the PCI device to operate on
4559 * Return 0 if transaction is pending 1 otherwise.
4561 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4563 if (!pci_is_pcie(dev))
4564 return 1;
4566 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4567 PCI_EXP_DEVSTA_TRPND);
4569 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4572 * pcie_has_flr - check if a device supports function level resets
4573 * @dev: device to check
4575 * Returns true if the device advertises support for PCIe function level
4576 * resets.
4578 bool pcie_has_flr(struct pci_dev *dev)
4580 u32 cap;
4582 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4583 return false;
4585 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4586 return cap & PCI_EXP_DEVCAP_FLR;
4588 EXPORT_SYMBOL_GPL(pcie_has_flr);
4591 * pcie_flr - initiate a PCIe function level reset
4592 * @dev: device to reset
4594 * Initiate a function level reset on @dev. The caller should ensure the
4595 * device supports FLR before calling this function, e.g. by using the
4596 * pcie_has_flr() helper.
4598 int pcie_flr(struct pci_dev *dev)
4600 if (!pci_wait_for_pending_transaction(dev))
4601 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4603 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4605 if (dev->imm_ready)
4606 return 0;
4609 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4610 * 100ms, but may silently discard requests while the FLR is in
4611 * progress. Wait 100ms before trying to access the device.
4613 msleep(100);
4615 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4617 EXPORT_SYMBOL_GPL(pcie_flr);
4619 static int pci_af_flr(struct pci_dev *dev, int probe)
4621 int pos;
4622 u8 cap;
4624 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4625 if (!pos)
4626 return -ENOTTY;
4628 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4629 return -ENOTTY;
4631 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4632 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4633 return -ENOTTY;
4635 if (probe)
4636 return 0;
4639 * Wait for Transaction Pending bit to clear. A word-aligned test
4640 * is used, so we use the control offset rather than status and shift
4641 * the test bit to match.
4643 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4644 PCI_AF_STATUS_TP << 8))
4645 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4647 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4649 if (dev->imm_ready)
4650 return 0;
4653 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4654 * updated 27 July 2006; a device must complete an FLR within
4655 * 100ms, but may silently discard requests while the FLR is in
4656 * progress. Wait 100ms before trying to access the device.
4658 msleep(100);
4660 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4664 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4665 * @dev: Device to reset.
4666 * @probe: If set, only check if the device can be reset this way.
4668 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4669 * unset, it will be reinitialized internally when going from PCI_D3hot to
4670 * PCI_D0. If that's the case and the device is not in a low-power state
4671 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4673 * NOTE: This causes the caller to sleep for twice the device power transition
4674 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4675 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4676 * Moreover, only devices in D0 can be reset by this function.
4678 static int pci_pm_reset(struct pci_dev *dev, int probe)
4680 u16 csr;
4682 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4683 return -ENOTTY;
4685 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4686 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4687 return -ENOTTY;
4689 if (probe)
4690 return 0;
4692 if (dev->current_state != PCI_D0)
4693 return -EINVAL;
4695 csr &= ~PCI_PM_CTRL_STATE_MASK;
4696 csr |= PCI_D3hot;
4697 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4698 pci_dev_d3_sleep(dev);
4700 csr &= ~PCI_PM_CTRL_STATE_MASK;
4701 csr |= PCI_D0;
4702 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4703 pci_dev_d3_sleep(dev);
4705 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4709 * pcie_wait_for_link_delay - Wait until link is active or inactive
4710 * @pdev: Bridge device
4711 * @active: waiting for active or inactive?
4712 * @delay: Delay to wait after link has become active (in ms)
4714 * Use this to wait till link becomes active or inactive.
4716 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4717 int delay)
4719 int timeout = 1000;
4720 bool ret;
4721 u16 lnk_status;
4724 * Some controllers might not implement link active reporting. In this
4725 * case, we wait for 1000 ms + any delay requested by the caller.
4727 if (!pdev->link_active_reporting) {
4728 msleep(timeout + delay);
4729 return true;
4733 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4734 * after which we should expect an link active if the reset was
4735 * successful. If so, software must wait a minimum 100ms before sending
4736 * configuration requests to devices downstream this port.
4738 * If the link fails to activate, either the device was physically
4739 * removed or the link is permanently failed.
4741 if (active)
4742 msleep(20);
4743 for (;;) {
4744 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4745 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4746 if (ret == active)
4747 break;
4748 if (timeout <= 0)
4749 break;
4750 msleep(10);
4751 timeout -= 10;
4753 if (active && ret)
4754 msleep(delay);
4756 return ret == active;
4760 * pcie_wait_for_link - Wait until link is active or inactive
4761 * @pdev: Bridge device
4762 * @active: waiting for active or inactive?
4764 * Use this to wait till link becomes active or inactive.
4766 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4768 return pcie_wait_for_link_delay(pdev, active, 100);
4772 * Find maximum D3cold delay required by all the devices on the bus. The
4773 * spec says 100 ms, but firmware can lower it and we allow drivers to
4774 * increase it as well.
4776 * Called with @pci_bus_sem locked for reading.
4778 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4780 const struct pci_dev *pdev;
4781 int min_delay = 100;
4782 int max_delay = 0;
4784 list_for_each_entry(pdev, &bus->devices, bus_list) {
4785 if (pdev->d3cold_delay < min_delay)
4786 min_delay = pdev->d3cold_delay;
4787 if (pdev->d3cold_delay > max_delay)
4788 max_delay = pdev->d3cold_delay;
4791 return max(min_delay, max_delay);
4795 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4796 * @dev: PCI bridge
4798 * Handle necessary delays before access to the devices on the secondary
4799 * side of the bridge are permitted after D3cold to D0 transition.
4801 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4802 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4803 * 4.3.2.
4805 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4807 struct pci_dev *child;
4808 int delay;
4810 if (pci_dev_is_disconnected(dev))
4811 return;
4813 if (!pci_is_bridge(dev) || !dev->bridge_d3)
4814 return;
4816 down_read(&pci_bus_sem);
4819 * We only deal with devices that are present currently on the bus.
4820 * For any hot-added devices the access delay is handled in pciehp
4821 * board_added(). In case of ACPI hotplug the firmware is expected
4822 * to configure the devices before OS is notified.
4824 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4825 up_read(&pci_bus_sem);
4826 return;
4829 /* Take d3cold_delay requirements into account */
4830 delay = pci_bus_max_d3cold_delay(dev->subordinate);
4831 if (!delay) {
4832 up_read(&pci_bus_sem);
4833 return;
4836 child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4837 bus_list);
4838 up_read(&pci_bus_sem);
4841 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4842 * accessing the device after reset (that is 1000 ms + 100 ms). In
4843 * practice this should not be needed because we don't do power
4844 * management for them (see pci_bridge_d3_possible()).
4846 if (!pci_is_pcie(dev)) {
4847 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4848 msleep(1000 + delay);
4849 return;
4853 * For PCIe downstream and root ports that do not support speeds
4854 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4855 * speeds (gen3) we need to wait first for the data link layer to
4856 * become active.
4858 * However, 100 ms is the minimum and the PCIe spec says the
4859 * software must allow at least 1s before it can determine that the
4860 * device that did not respond is a broken device. There is
4861 * evidence that 100 ms is not always enough, for example certain
4862 * Titan Ridge xHCI controller does not always respond to
4863 * configuration requests if we only wait for 100 ms (see
4864 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4866 * Therefore we wait for 100 ms and check for the device presence.
4867 * If it is still not present give it an additional 100 ms.
4869 if (!pcie_downstream_port(dev))
4870 return;
4872 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4873 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4874 msleep(delay);
4875 } else {
4876 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4877 delay);
4878 if (!pcie_wait_for_link_delay(dev, true, delay)) {
4879 /* Did not train, no need to wait any further */
4880 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
4881 return;
4885 if (!pci_device_is_present(child)) {
4886 pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
4887 msleep(delay);
4891 void pci_reset_secondary_bus(struct pci_dev *dev)
4893 u16 ctrl;
4895 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4896 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4897 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4900 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4901 * this to 2ms to ensure that we meet the minimum requirement.
4903 msleep(2);
4905 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4906 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4909 * Trhfa for conventional PCI is 2^25 clock cycles.
4910 * Assuming a minimum 33MHz clock this results in a 1s
4911 * delay before we can consider subordinate devices to
4912 * be re-initialized. PCIe has some ways to shorten this,
4913 * but we don't make use of them yet.
4915 ssleep(1);
4918 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4920 pci_reset_secondary_bus(dev);
4924 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4925 * @dev: Bridge device
4927 * Use the bridge control register to assert reset on the secondary bus.
4928 * Devices on the secondary bus are left in power-on state.
4930 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4932 pcibios_reset_secondary_bus(dev);
4934 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4936 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4938 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4940 struct pci_dev *pdev;
4942 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4943 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4944 return -ENOTTY;
4946 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4947 if (pdev != dev)
4948 return -ENOTTY;
4950 if (probe)
4951 return 0;
4953 return pci_bridge_secondary_bus_reset(dev->bus->self);
4956 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4958 int rc = -ENOTTY;
4960 if (!hotplug || !try_module_get(hotplug->owner))
4961 return rc;
4963 if (hotplug->ops->reset_slot)
4964 rc = hotplug->ops->reset_slot(hotplug, probe);
4966 module_put(hotplug->owner);
4968 return rc;
4971 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4973 if (dev->multifunction || dev->subordinate || !dev->slot ||
4974 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4975 return -ENOTTY;
4977 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4980 static void pci_dev_lock(struct pci_dev *dev)
4982 pci_cfg_access_lock(dev);
4983 /* block PM suspend, driver probe, etc. */
4984 device_lock(&dev->dev);
4987 /* Return 1 on successful lock, 0 on contention */
4988 static int pci_dev_trylock(struct pci_dev *dev)
4990 if (pci_cfg_access_trylock(dev)) {
4991 if (device_trylock(&dev->dev))
4992 return 1;
4993 pci_cfg_access_unlock(dev);
4996 return 0;
4999 static void pci_dev_unlock(struct pci_dev *dev)
5001 device_unlock(&dev->dev);
5002 pci_cfg_access_unlock(dev);
5005 static void pci_dev_save_and_disable(struct pci_dev *dev)
5007 const struct pci_error_handlers *err_handler =
5008 dev->driver ? dev->driver->err_handler : NULL;
5011 * dev->driver->err_handler->reset_prepare() is protected against
5012 * races with ->remove() by the device lock, which must be held by
5013 * the caller.
5015 if (err_handler && err_handler->reset_prepare)
5016 err_handler->reset_prepare(dev);
5019 * Wake-up device prior to save. PM registers default to D0 after
5020 * reset and a simple register restore doesn't reliably return
5021 * to a non-D0 state anyway.
5023 pci_set_power_state(dev, PCI_D0);
5025 pci_save_state(dev);
5027 * Disable the device by clearing the Command register, except for
5028 * INTx-disable which is set. This not only disables MMIO and I/O port
5029 * BARs, but also prevents the device from being Bus Master, preventing
5030 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
5031 * compliant devices, INTx-disable prevents legacy interrupts.
5033 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5036 static void pci_dev_restore(struct pci_dev *dev)
5038 const struct pci_error_handlers *err_handler =
5039 dev->driver ? dev->driver->err_handler : NULL;
5041 pci_restore_state(dev);
5044 * dev->driver->err_handler->reset_done() is protected against
5045 * races with ->remove() by the device lock, which must be held by
5046 * the caller.
5048 if (err_handler && err_handler->reset_done)
5049 err_handler->reset_done(dev);
5053 * __pci_reset_function_locked - reset a PCI device function while holding
5054 * the @dev mutex lock.
5055 * @dev: PCI device to reset
5057 * Some devices allow an individual function to be reset without affecting
5058 * other functions in the same device. The PCI device must be responsive
5059 * to PCI config space in order to use this function.
5061 * The device function is presumed to be unused and the caller is holding
5062 * the device mutex lock when this function is called.
5064 * Resetting the device will make the contents of PCI configuration space
5065 * random, so any caller of this must be prepared to reinitialise the
5066 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5067 * etc.
5069 * Returns 0 if the device function was successfully reset or negative if the
5070 * device doesn't support resetting a single function.
5072 int __pci_reset_function_locked(struct pci_dev *dev)
5074 int rc;
5076 might_sleep();
5079 * A reset method returns -ENOTTY if it doesn't support this device
5080 * and we should try the next method.
5082 * If it returns 0 (success), we're finished. If it returns any
5083 * other error, we're also finished: this indicates that further
5084 * reset mechanisms might be broken on the device.
5086 rc = pci_dev_specific_reset(dev, 0);
5087 if (rc != -ENOTTY)
5088 return rc;
5089 if (pcie_has_flr(dev)) {
5090 rc = pcie_flr(dev);
5091 if (rc != -ENOTTY)
5092 return rc;
5094 rc = pci_af_flr(dev, 0);
5095 if (rc != -ENOTTY)
5096 return rc;
5097 rc = pci_pm_reset(dev, 0);
5098 if (rc != -ENOTTY)
5099 return rc;
5100 rc = pci_dev_reset_slot_function(dev, 0);
5101 if (rc != -ENOTTY)
5102 return rc;
5103 return pci_parent_bus_reset(dev, 0);
5105 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5108 * pci_probe_reset_function - check whether the device can be safely reset
5109 * @dev: PCI device to reset
5111 * Some devices allow an individual function to be reset without affecting
5112 * other functions in the same device. The PCI device must be responsive
5113 * to PCI config space in order to use this function.
5115 * Returns 0 if the device function can be reset or negative if the
5116 * device doesn't support resetting a single function.
5118 int pci_probe_reset_function(struct pci_dev *dev)
5120 int rc;
5122 might_sleep();
5124 rc = pci_dev_specific_reset(dev, 1);
5125 if (rc != -ENOTTY)
5126 return rc;
5127 if (pcie_has_flr(dev))
5128 return 0;
5129 rc = pci_af_flr(dev, 1);
5130 if (rc != -ENOTTY)
5131 return rc;
5132 rc = pci_pm_reset(dev, 1);
5133 if (rc != -ENOTTY)
5134 return rc;
5135 rc = pci_dev_reset_slot_function(dev, 1);
5136 if (rc != -ENOTTY)
5137 return rc;
5139 return pci_parent_bus_reset(dev, 1);
5143 * pci_reset_function - quiesce and reset a PCI device function
5144 * @dev: PCI device to reset
5146 * Some devices allow an individual function to be reset without affecting
5147 * other functions in the same device. The PCI device must be responsive
5148 * to PCI config space in order to use this function.
5150 * This function does not just reset the PCI portion of a device, but
5151 * clears all the state associated with the device. This function differs
5152 * from __pci_reset_function_locked() in that it saves and restores device state
5153 * over the reset and takes the PCI device lock.
5155 * Returns 0 if the device function was successfully reset or negative if the
5156 * device doesn't support resetting a single function.
5158 int pci_reset_function(struct pci_dev *dev)
5160 int rc;
5162 if (!dev->reset_fn)
5163 return -ENOTTY;
5165 pci_dev_lock(dev);
5166 pci_dev_save_and_disable(dev);
5168 rc = __pci_reset_function_locked(dev);
5170 pci_dev_restore(dev);
5171 pci_dev_unlock(dev);
5173 return rc;
5175 EXPORT_SYMBOL_GPL(pci_reset_function);
5178 * pci_reset_function_locked - quiesce and reset a PCI device function
5179 * @dev: PCI device to reset
5181 * Some devices allow an individual function to be reset without affecting
5182 * other functions in the same device. The PCI device must be responsive
5183 * to PCI config space in order to use this function.
5185 * This function does not just reset the PCI portion of a device, but
5186 * clears all the state associated with the device. This function differs
5187 * from __pci_reset_function_locked() in that it saves and restores device state
5188 * over the reset. It also differs from pci_reset_function() in that it
5189 * requires the PCI device lock to be held.
5191 * Returns 0 if the device function was successfully reset or negative if the
5192 * device doesn't support resetting a single function.
5194 int pci_reset_function_locked(struct pci_dev *dev)
5196 int rc;
5198 if (!dev->reset_fn)
5199 return -ENOTTY;
5201 pci_dev_save_and_disable(dev);
5203 rc = __pci_reset_function_locked(dev);
5205 pci_dev_restore(dev);
5207 return rc;
5209 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5212 * pci_try_reset_function - quiesce and reset a PCI device function
5213 * @dev: PCI device to reset
5215 * Same as above, except return -EAGAIN if unable to lock device.
5217 int pci_try_reset_function(struct pci_dev *dev)
5219 int rc;
5221 if (!dev->reset_fn)
5222 return -ENOTTY;
5224 if (!pci_dev_trylock(dev))
5225 return -EAGAIN;
5227 pci_dev_save_and_disable(dev);
5228 rc = __pci_reset_function_locked(dev);
5229 pci_dev_restore(dev);
5230 pci_dev_unlock(dev);
5232 return rc;
5234 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5236 /* Do any devices on or below this bus prevent a bus reset? */
5237 static bool pci_bus_resetable(struct pci_bus *bus)
5239 struct pci_dev *dev;
5242 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5243 return false;
5245 list_for_each_entry(dev, &bus->devices, bus_list) {
5246 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5247 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5248 return false;
5251 return true;
5254 /* Lock devices from the top of the tree down */
5255 static void pci_bus_lock(struct pci_bus *bus)
5257 struct pci_dev *dev;
5259 list_for_each_entry(dev, &bus->devices, bus_list) {
5260 pci_dev_lock(dev);
5261 if (dev->subordinate)
5262 pci_bus_lock(dev->subordinate);
5266 /* Unlock devices from the bottom of the tree up */
5267 static void pci_bus_unlock(struct pci_bus *bus)
5269 struct pci_dev *dev;
5271 list_for_each_entry(dev, &bus->devices, bus_list) {
5272 if (dev->subordinate)
5273 pci_bus_unlock(dev->subordinate);
5274 pci_dev_unlock(dev);
5278 /* Return 1 on successful lock, 0 on contention */
5279 static int pci_bus_trylock(struct pci_bus *bus)
5281 struct pci_dev *dev;
5283 list_for_each_entry(dev, &bus->devices, bus_list) {
5284 if (!pci_dev_trylock(dev))
5285 goto unlock;
5286 if (dev->subordinate) {
5287 if (!pci_bus_trylock(dev->subordinate)) {
5288 pci_dev_unlock(dev);
5289 goto unlock;
5293 return 1;
5295 unlock:
5296 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5297 if (dev->subordinate)
5298 pci_bus_unlock(dev->subordinate);
5299 pci_dev_unlock(dev);
5301 return 0;
5304 /* Do any devices on or below this slot prevent a bus reset? */
5305 static bool pci_slot_resetable(struct pci_slot *slot)
5307 struct pci_dev *dev;
5309 if (slot->bus->self &&
5310 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5311 return false;
5313 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5314 if (!dev->slot || dev->slot != slot)
5315 continue;
5316 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5317 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5318 return false;
5321 return true;
5324 /* Lock devices from the top of the tree down */
5325 static void pci_slot_lock(struct pci_slot *slot)
5327 struct pci_dev *dev;
5329 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5330 if (!dev->slot || dev->slot != slot)
5331 continue;
5332 pci_dev_lock(dev);
5333 if (dev->subordinate)
5334 pci_bus_lock(dev->subordinate);
5338 /* Unlock devices from the bottom of the tree up */
5339 static void pci_slot_unlock(struct pci_slot *slot)
5341 struct pci_dev *dev;
5343 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5344 if (!dev->slot || dev->slot != slot)
5345 continue;
5346 if (dev->subordinate)
5347 pci_bus_unlock(dev->subordinate);
5348 pci_dev_unlock(dev);
5352 /* Return 1 on successful lock, 0 on contention */
5353 static int pci_slot_trylock(struct pci_slot *slot)
5355 struct pci_dev *dev;
5357 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5358 if (!dev->slot || dev->slot != slot)
5359 continue;
5360 if (!pci_dev_trylock(dev))
5361 goto unlock;
5362 if (dev->subordinate) {
5363 if (!pci_bus_trylock(dev->subordinate)) {
5364 pci_dev_unlock(dev);
5365 goto unlock;
5369 return 1;
5371 unlock:
5372 list_for_each_entry_continue_reverse(dev,
5373 &slot->bus->devices, bus_list) {
5374 if (!dev->slot || dev->slot != slot)
5375 continue;
5376 if (dev->subordinate)
5377 pci_bus_unlock(dev->subordinate);
5378 pci_dev_unlock(dev);
5380 return 0;
5384 * Save and disable devices from the top of the tree down while holding
5385 * the @dev mutex lock for the entire tree.
5387 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5389 struct pci_dev *dev;
5391 list_for_each_entry(dev, &bus->devices, bus_list) {
5392 pci_dev_save_and_disable(dev);
5393 if (dev->subordinate)
5394 pci_bus_save_and_disable_locked(dev->subordinate);
5399 * Restore devices from top of the tree down while holding @dev mutex lock
5400 * for the entire tree. Parent bridges need to be restored before we can
5401 * get to subordinate devices.
5403 static void pci_bus_restore_locked(struct pci_bus *bus)
5405 struct pci_dev *dev;
5407 list_for_each_entry(dev, &bus->devices, bus_list) {
5408 pci_dev_restore(dev);
5409 if (dev->subordinate)
5410 pci_bus_restore_locked(dev->subordinate);
5415 * Save and disable devices from the top of the tree down while holding
5416 * the @dev mutex lock for the entire tree.
5418 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5420 struct pci_dev *dev;
5422 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5423 if (!dev->slot || dev->slot != slot)
5424 continue;
5425 pci_dev_save_and_disable(dev);
5426 if (dev->subordinate)
5427 pci_bus_save_and_disable_locked(dev->subordinate);
5432 * Restore devices from top of the tree down while holding @dev mutex lock
5433 * for the entire tree. Parent bridges need to be restored before we can
5434 * get to subordinate devices.
5436 static void pci_slot_restore_locked(struct pci_slot *slot)
5438 struct pci_dev *dev;
5440 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5441 if (!dev->slot || dev->slot != slot)
5442 continue;
5443 pci_dev_restore(dev);
5444 if (dev->subordinate)
5445 pci_bus_restore_locked(dev->subordinate);
5449 static int pci_slot_reset(struct pci_slot *slot, int probe)
5451 int rc;
5453 if (!slot || !pci_slot_resetable(slot))
5454 return -ENOTTY;
5456 if (!probe)
5457 pci_slot_lock(slot);
5459 might_sleep();
5461 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5463 if (!probe)
5464 pci_slot_unlock(slot);
5466 return rc;
5470 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5471 * @slot: PCI slot to probe
5473 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5475 int pci_probe_reset_slot(struct pci_slot *slot)
5477 return pci_slot_reset(slot, 1);
5479 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5482 * __pci_reset_slot - Try to reset a PCI slot
5483 * @slot: PCI slot to reset
5485 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5486 * independent of other slots. For instance, some slots may support slot power
5487 * control. In the case of a 1:1 bus to slot architecture, this function may
5488 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5489 * Generally a slot reset should be attempted before a bus reset. All of the
5490 * function of the slot and any subordinate buses behind the slot are reset
5491 * through this function. PCI config space of all devices in the slot and
5492 * behind the slot is saved before and restored after reset.
5494 * Same as above except return -EAGAIN if the slot cannot be locked
5496 static int __pci_reset_slot(struct pci_slot *slot)
5498 int rc;
5500 rc = pci_slot_reset(slot, 1);
5501 if (rc)
5502 return rc;
5504 if (pci_slot_trylock(slot)) {
5505 pci_slot_save_and_disable_locked(slot);
5506 might_sleep();
5507 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5508 pci_slot_restore_locked(slot);
5509 pci_slot_unlock(slot);
5510 } else
5511 rc = -EAGAIN;
5513 return rc;
5516 static int pci_bus_reset(struct pci_bus *bus, int probe)
5518 int ret;
5520 if (!bus->self || !pci_bus_resetable(bus))
5521 return -ENOTTY;
5523 if (probe)
5524 return 0;
5526 pci_bus_lock(bus);
5528 might_sleep();
5530 ret = pci_bridge_secondary_bus_reset(bus->self);
5532 pci_bus_unlock(bus);
5534 return ret;
5538 * pci_bus_error_reset - reset the bridge's subordinate bus
5539 * @bridge: The parent device that connects to the bus to reset
5541 * This function will first try to reset the slots on this bus if the method is
5542 * available. If slot reset fails or is not available, this will fall back to a
5543 * secondary bus reset.
5545 int pci_bus_error_reset(struct pci_dev *bridge)
5547 struct pci_bus *bus = bridge->subordinate;
5548 struct pci_slot *slot;
5550 if (!bus)
5551 return -ENOTTY;
5553 mutex_lock(&pci_slot_mutex);
5554 if (list_empty(&bus->slots))
5555 goto bus_reset;
5557 list_for_each_entry(slot, &bus->slots, list)
5558 if (pci_probe_reset_slot(slot))
5559 goto bus_reset;
5561 list_for_each_entry(slot, &bus->slots, list)
5562 if (pci_slot_reset(slot, 0))
5563 goto bus_reset;
5565 mutex_unlock(&pci_slot_mutex);
5566 return 0;
5567 bus_reset:
5568 mutex_unlock(&pci_slot_mutex);
5569 return pci_bus_reset(bridge->subordinate, 0);
5573 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5574 * @bus: PCI bus to probe
5576 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5578 int pci_probe_reset_bus(struct pci_bus *bus)
5580 return pci_bus_reset(bus, 1);
5582 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5585 * __pci_reset_bus - Try to reset a PCI bus
5586 * @bus: top level PCI bus to reset
5588 * Same as above except return -EAGAIN if the bus cannot be locked
5590 static int __pci_reset_bus(struct pci_bus *bus)
5592 int rc;
5594 rc = pci_bus_reset(bus, 1);
5595 if (rc)
5596 return rc;
5598 if (pci_bus_trylock(bus)) {
5599 pci_bus_save_and_disable_locked(bus);
5600 might_sleep();
5601 rc = pci_bridge_secondary_bus_reset(bus->self);
5602 pci_bus_restore_locked(bus);
5603 pci_bus_unlock(bus);
5604 } else
5605 rc = -EAGAIN;
5607 return rc;
5611 * pci_reset_bus - Try to reset a PCI bus
5612 * @pdev: top level PCI device to reset via slot/bus
5614 * Same as above except return -EAGAIN if the bus cannot be locked
5616 int pci_reset_bus(struct pci_dev *pdev)
5618 return (!pci_probe_reset_slot(pdev->slot)) ?
5619 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5621 EXPORT_SYMBOL_GPL(pci_reset_bus);
5624 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5625 * @dev: PCI device to query
5627 * Returns mmrbc: maximum designed memory read count in bytes or
5628 * appropriate error value.
5630 int pcix_get_max_mmrbc(struct pci_dev *dev)
5632 int cap;
5633 u32 stat;
5635 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5636 if (!cap)
5637 return -EINVAL;
5639 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5640 return -EINVAL;
5642 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5644 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5647 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5648 * @dev: PCI device to query
5650 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5651 * value.
5653 int pcix_get_mmrbc(struct pci_dev *dev)
5655 int cap;
5656 u16 cmd;
5658 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5659 if (!cap)
5660 return -EINVAL;
5662 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5663 return -EINVAL;
5665 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5667 EXPORT_SYMBOL(pcix_get_mmrbc);
5670 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5671 * @dev: PCI device to query
5672 * @mmrbc: maximum memory read count in bytes
5673 * valid values are 512, 1024, 2048, 4096
5675 * If possible sets maximum memory read byte count, some bridges have errata
5676 * that prevent this.
5678 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5680 int cap;
5681 u32 stat, v, o;
5682 u16 cmd;
5684 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5685 return -EINVAL;
5687 v = ffs(mmrbc) - 10;
5689 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5690 if (!cap)
5691 return -EINVAL;
5693 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5694 return -EINVAL;
5696 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5697 return -E2BIG;
5699 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5700 return -EINVAL;
5702 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5703 if (o != v) {
5704 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5705 return -EIO;
5707 cmd &= ~PCI_X_CMD_MAX_READ;
5708 cmd |= v << 2;
5709 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5710 return -EIO;
5712 return 0;
5714 EXPORT_SYMBOL(pcix_set_mmrbc);
5717 * pcie_get_readrq - get PCI Express read request size
5718 * @dev: PCI device to query
5720 * Returns maximum memory read request in bytes or appropriate error value.
5722 int pcie_get_readrq(struct pci_dev *dev)
5724 u16 ctl;
5726 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5728 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5730 EXPORT_SYMBOL(pcie_get_readrq);
5733 * pcie_set_readrq - set PCI Express maximum memory read request
5734 * @dev: PCI device to query
5735 * @rq: maximum memory read count in bytes
5736 * valid values are 128, 256, 512, 1024, 2048, 4096
5738 * If possible sets maximum memory read request in bytes
5740 int pcie_set_readrq(struct pci_dev *dev, int rq)
5742 u16 v;
5743 int ret;
5745 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5746 return -EINVAL;
5749 * If using the "performance" PCIe config, we clamp the read rq
5750 * size to the max packet size to keep the host bridge from
5751 * generating requests larger than we can cope with.
5753 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5754 int mps = pcie_get_mps(dev);
5756 if (mps < rq)
5757 rq = mps;
5760 v = (ffs(rq) - 8) << 12;
5762 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5763 PCI_EXP_DEVCTL_READRQ, v);
5765 return pcibios_err_to_errno(ret);
5767 EXPORT_SYMBOL(pcie_set_readrq);
5770 * pcie_get_mps - get PCI Express maximum payload size
5771 * @dev: PCI device to query
5773 * Returns maximum payload size in bytes
5775 int pcie_get_mps(struct pci_dev *dev)
5777 u16 ctl;
5779 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5781 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5783 EXPORT_SYMBOL(pcie_get_mps);
5786 * pcie_set_mps - set PCI Express maximum payload size
5787 * @dev: PCI device to query
5788 * @mps: maximum payload size in bytes
5789 * valid values are 128, 256, 512, 1024, 2048, 4096
5791 * If possible sets maximum payload size
5793 int pcie_set_mps(struct pci_dev *dev, int mps)
5795 u16 v;
5796 int ret;
5798 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5799 return -EINVAL;
5801 v = ffs(mps) - 8;
5802 if (v > dev->pcie_mpss)
5803 return -EINVAL;
5804 v <<= 5;
5806 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5807 PCI_EXP_DEVCTL_PAYLOAD, v);
5809 return pcibios_err_to_errno(ret);
5811 EXPORT_SYMBOL(pcie_set_mps);
5814 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5815 * device and its bandwidth limitation
5816 * @dev: PCI device to query
5817 * @limiting_dev: storage for device causing the bandwidth limitation
5818 * @speed: storage for speed of limiting device
5819 * @width: storage for width of limiting device
5821 * Walk up the PCI device chain and find the point where the minimum
5822 * bandwidth is available. Return the bandwidth available there and (if
5823 * limiting_dev, speed, and width pointers are supplied) information about
5824 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
5825 * raw bandwidth.
5827 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5828 enum pci_bus_speed *speed,
5829 enum pcie_link_width *width)
5831 u16 lnksta;
5832 enum pci_bus_speed next_speed;
5833 enum pcie_link_width next_width;
5834 u32 bw, next_bw;
5836 if (speed)
5837 *speed = PCI_SPEED_UNKNOWN;
5838 if (width)
5839 *width = PCIE_LNK_WIDTH_UNKNOWN;
5841 bw = 0;
5843 while (dev) {
5844 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5846 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5847 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5848 PCI_EXP_LNKSTA_NLW_SHIFT;
5850 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5852 /* Check if current device limits the total bandwidth */
5853 if (!bw || next_bw <= bw) {
5854 bw = next_bw;
5856 if (limiting_dev)
5857 *limiting_dev = dev;
5858 if (speed)
5859 *speed = next_speed;
5860 if (width)
5861 *width = next_width;
5864 dev = pci_upstream_bridge(dev);
5867 return bw;
5869 EXPORT_SYMBOL(pcie_bandwidth_available);
5872 * pcie_get_speed_cap - query for the PCI device's link speed capability
5873 * @dev: PCI device to query
5875 * Query the PCI device speed capability. Return the maximum link speed
5876 * supported by the device.
5878 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5880 u32 lnkcap2, lnkcap;
5883 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
5884 * implementation note there recommends using the Supported Link
5885 * Speeds Vector in Link Capabilities 2 when supported.
5887 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5888 * should use the Supported Link Speeds field in Link Capabilities,
5889 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5891 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5893 /* PCIe r3.0-compliant */
5894 if (lnkcap2)
5895 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
5897 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5898 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5899 return PCIE_SPEED_5_0GT;
5900 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5901 return PCIE_SPEED_2_5GT;
5903 return PCI_SPEED_UNKNOWN;
5905 EXPORT_SYMBOL(pcie_get_speed_cap);
5908 * pcie_get_width_cap - query for the PCI device's link width capability
5909 * @dev: PCI device to query
5911 * Query the PCI device width capability. Return the maximum link width
5912 * supported by the device.
5914 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5916 u32 lnkcap;
5918 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5919 if (lnkcap)
5920 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5922 return PCIE_LNK_WIDTH_UNKNOWN;
5924 EXPORT_SYMBOL(pcie_get_width_cap);
5927 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5928 * @dev: PCI device
5929 * @speed: storage for link speed
5930 * @width: storage for link width
5932 * Calculate a PCI device's link bandwidth by querying for its link speed
5933 * and width, multiplying them, and applying encoding overhead. The result
5934 * is in Mb/s, i.e., megabits/second of raw bandwidth.
5936 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5937 enum pcie_link_width *width)
5939 *speed = pcie_get_speed_cap(dev);
5940 *width = pcie_get_width_cap(dev);
5942 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5943 return 0;
5945 return *width * PCIE_SPEED2MBS_ENC(*speed);
5949 * __pcie_print_link_status - Report the PCI device's link speed and width
5950 * @dev: PCI device to query
5951 * @verbose: Print info even when enough bandwidth is available
5953 * If the available bandwidth at the device is less than the device is
5954 * capable of, report the device's maximum possible bandwidth and the
5955 * upstream link that limits its performance. If @verbose, always print
5956 * the available bandwidth, even if the device isn't constrained.
5958 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
5960 enum pcie_link_width width, width_cap;
5961 enum pci_bus_speed speed, speed_cap;
5962 struct pci_dev *limiting_dev = NULL;
5963 u32 bw_avail, bw_cap;
5965 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5966 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5968 if (bw_avail >= bw_cap && verbose)
5969 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5970 bw_cap / 1000, bw_cap % 1000,
5971 pci_speed_string(speed_cap), width_cap);
5972 else if (bw_avail < bw_cap)
5973 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5974 bw_avail / 1000, bw_avail % 1000,
5975 pci_speed_string(speed), width,
5976 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5977 bw_cap / 1000, bw_cap % 1000,
5978 pci_speed_string(speed_cap), width_cap);
5982 * pcie_print_link_status - Report the PCI device's link speed and width
5983 * @dev: PCI device to query
5985 * Report the available bandwidth at the device.
5987 void pcie_print_link_status(struct pci_dev *dev)
5989 __pcie_print_link_status(dev, true);
5991 EXPORT_SYMBOL(pcie_print_link_status);
5994 * pci_select_bars - Make BAR mask from the type of resource
5995 * @dev: the PCI device for which BAR mask is made
5996 * @flags: resource type mask to be selected
5998 * This helper routine makes bar mask from the type of resource.
6000 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6002 int i, bars = 0;
6003 for (i = 0; i < PCI_NUM_RESOURCES; i++)
6004 if (pci_resource_flags(dev, i) & flags)
6005 bars |= (1 << i);
6006 return bars;
6008 EXPORT_SYMBOL(pci_select_bars);
6010 /* Some architectures require additional programming to enable VGA */
6011 static arch_set_vga_state_t arch_set_vga_state;
6013 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6015 arch_set_vga_state = func; /* NULL disables */
6018 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6019 unsigned int command_bits, u32 flags)
6021 if (arch_set_vga_state)
6022 return arch_set_vga_state(dev, decode, command_bits,
6023 flags);
6024 return 0;
6028 * pci_set_vga_state - set VGA decode state on device and parents if requested
6029 * @dev: the PCI device
6030 * @decode: true = enable decoding, false = disable decoding
6031 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6032 * @flags: traverse ancestors and change bridges
6033 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6035 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6036 unsigned int command_bits, u32 flags)
6038 struct pci_bus *bus;
6039 struct pci_dev *bridge;
6040 u16 cmd;
6041 int rc;
6043 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6045 /* ARCH specific VGA enables */
6046 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6047 if (rc)
6048 return rc;
6050 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6051 pci_read_config_word(dev, PCI_COMMAND, &cmd);
6052 if (decode)
6053 cmd |= command_bits;
6054 else
6055 cmd &= ~command_bits;
6056 pci_write_config_word(dev, PCI_COMMAND, cmd);
6059 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6060 return 0;
6062 bus = dev->bus;
6063 while (bus) {
6064 bridge = bus->self;
6065 if (bridge) {
6066 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6067 &cmd);
6068 if (decode)
6069 cmd |= PCI_BRIDGE_CTL_VGA;
6070 else
6071 cmd &= ~PCI_BRIDGE_CTL_VGA;
6072 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6073 cmd);
6075 bus = bus->parent;
6077 return 0;
6080 #ifdef CONFIG_ACPI
6081 bool pci_pr3_present(struct pci_dev *pdev)
6083 struct acpi_device *adev;
6085 if (acpi_disabled)
6086 return false;
6088 adev = ACPI_COMPANION(&pdev->dev);
6089 if (!adev)
6090 return false;
6092 return adev->power.flags.power_resources &&
6093 acpi_has_method(adev->handle, "_PR3");
6095 EXPORT_SYMBOL_GPL(pci_pr3_present);
6096 #endif
6099 * pci_add_dma_alias - Add a DMA devfn alias for a device
6100 * @dev: the PCI device for which alias is added
6101 * @devfn_from: alias slot and function
6102 * @nr_devfns: number of subsequent devfns to alias
6104 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6105 * which is used to program permissible bus-devfn source addresses for DMA
6106 * requests in an IOMMU. These aliases factor into IOMMU group creation
6107 * and are useful for devices generating DMA requests beyond or different
6108 * from their logical bus-devfn. Examples include device quirks where the
6109 * device simply uses the wrong devfn, as well as non-transparent bridges
6110 * where the alias may be a proxy for devices in another domain.
6112 * IOMMU group creation is performed during device discovery or addition,
6113 * prior to any potential DMA mapping and therefore prior to driver probing
6114 * (especially for userspace assigned devices where IOMMU group definition
6115 * cannot be left as a userspace activity). DMA aliases should therefore
6116 * be configured via quirks, such as the PCI fixup header quirk.
6118 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns)
6120 int devfn_to;
6122 nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from);
6123 devfn_to = devfn_from + nr_devfns - 1;
6125 if (!dev->dma_alias_mask)
6126 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6127 if (!dev->dma_alias_mask) {
6128 pci_warn(dev, "Unable to allocate DMA alias mask\n");
6129 return;
6132 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6134 if (nr_devfns == 1)
6135 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6136 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6137 else if (nr_devfns > 1)
6138 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6139 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6140 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6143 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6145 return (dev1->dma_alias_mask &&
6146 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6147 (dev2->dma_alias_mask &&
6148 test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6149 pci_real_dma_dev(dev1) == dev2 ||
6150 pci_real_dma_dev(dev2) == dev1;
6153 bool pci_device_is_present(struct pci_dev *pdev)
6155 u32 v;
6157 if (pci_dev_is_disconnected(pdev))
6158 return false;
6159 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6161 EXPORT_SYMBOL_GPL(pci_device_is_present);
6163 void pci_ignore_hotplug(struct pci_dev *dev)
6165 struct pci_dev *bridge = dev->bus->self;
6167 dev->ignore_hotplug = 1;
6168 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6169 if (bridge)
6170 bridge->ignore_hotplug = 1;
6172 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6175 * pci_real_dma_dev - Get PCI DMA device for PCI device
6176 * @dev: the PCI device that may have a PCI DMA alias
6178 * Permits the platform to provide architecture-specific functionality to
6179 * devices needing to alias DMA to another PCI device on another PCI bus. If
6180 * the PCI device is on the same bus, it is recommended to use
6181 * pci_add_dma_alias(). This is the default implementation. Architecture
6182 * implementations can override this.
6184 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6186 return dev;
6189 resource_size_t __weak pcibios_default_alignment(void)
6191 return 0;
6195 * Arches that don't want to expose struct resource to userland as-is in
6196 * sysfs and /proc can implement their own pci_resource_to_user().
6198 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6199 const struct resource *rsrc,
6200 resource_size_t *start, resource_size_t *end)
6202 *start = rsrc->start;
6203 *end = rsrc->end;
6206 static char *resource_alignment_param;
6207 static DEFINE_SPINLOCK(resource_alignment_lock);
6210 * pci_specified_resource_alignment - get resource alignment specified by user.
6211 * @dev: the PCI device to get
6212 * @resize: whether or not to change resources' size when reassigning alignment
6214 * RETURNS: Resource alignment if it is specified.
6215 * Zero if it is not specified.
6217 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6218 bool *resize)
6220 int align_order, count;
6221 resource_size_t align = pcibios_default_alignment();
6222 const char *p;
6223 int ret;
6225 spin_lock(&resource_alignment_lock);
6226 p = resource_alignment_param;
6227 if (!p || !*p)
6228 goto out;
6229 if (pci_has_flag(PCI_PROBE_ONLY)) {
6230 align = 0;
6231 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6232 goto out;
6235 while (*p) {
6236 count = 0;
6237 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6238 p[count] == '@') {
6239 p += count + 1;
6240 if (align_order > 63) {
6241 pr_err("PCI: Invalid requested alignment (order %d)\n",
6242 align_order);
6243 align_order = PAGE_SHIFT;
6245 } else {
6246 align_order = PAGE_SHIFT;
6249 ret = pci_dev_str_match(dev, p, &p);
6250 if (ret == 1) {
6251 *resize = true;
6252 align = 1ULL << align_order;
6253 break;
6254 } else if (ret < 0) {
6255 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6257 break;
6260 if (*p != ';' && *p != ',') {
6261 /* End of param or invalid format */
6262 break;
6264 p++;
6266 out:
6267 spin_unlock(&resource_alignment_lock);
6268 return align;
6271 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6272 resource_size_t align, bool resize)
6274 struct resource *r = &dev->resource[bar];
6275 resource_size_t size;
6277 if (!(r->flags & IORESOURCE_MEM))
6278 return;
6280 if (r->flags & IORESOURCE_PCI_FIXED) {
6281 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6282 bar, r, (unsigned long long)align);
6283 return;
6286 size = resource_size(r);
6287 if (size >= align)
6288 return;
6291 * Increase the alignment of the resource. There are two ways we
6292 * can do this:
6294 * 1) Increase the size of the resource. BARs are aligned on their
6295 * size, so when we reallocate space for this resource, we'll
6296 * allocate it with the larger alignment. This also prevents
6297 * assignment of any other BARs inside the alignment region, so
6298 * if we're requesting page alignment, this means no other BARs
6299 * will share the page.
6301 * The disadvantage is that this makes the resource larger than
6302 * the hardware BAR, which may break drivers that compute things
6303 * based on the resource size, e.g., to find registers at a
6304 * fixed offset before the end of the BAR.
6306 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6307 * set r->start to the desired alignment. By itself this
6308 * doesn't prevent other BARs being put inside the alignment
6309 * region, but if we realign *every* resource of every device in
6310 * the system, none of them will share an alignment region.
6312 * When the user has requested alignment for only some devices via
6313 * the "pci=resource_alignment" argument, "resize" is true and we
6314 * use the first method. Otherwise we assume we're aligning all
6315 * devices and we use the second.
6318 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6319 bar, r, (unsigned long long)align);
6321 if (resize) {
6322 r->start = 0;
6323 r->end = align - 1;
6324 } else {
6325 r->flags &= ~IORESOURCE_SIZEALIGN;
6326 r->flags |= IORESOURCE_STARTALIGN;
6327 r->start = align;
6328 r->end = r->start + size - 1;
6330 r->flags |= IORESOURCE_UNSET;
6334 * This function disables memory decoding and releases memory resources
6335 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6336 * It also rounds up size to specified alignment.
6337 * Later on, the kernel will assign page-aligned memory resource back
6338 * to the device.
6340 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6342 int i;
6343 struct resource *r;
6344 resource_size_t align;
6345 u16 command;
6346 bool resize = false;
6349 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6350 * 3.4.1.11. Their resources are allocated from the space
6351 * described by the VF BARx register in the PF's SR-IOV capability.
6352 * We can't influence their alignment here.
6354 if (dev->is_virtfn)
6355 return;
6357 /* check if specified PCI is target device to reassign */
6358 align = pci_specified_resource_alignment(dev, &resize);
6359 if (!align)
6360 return;
6362 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6363 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6364 pci_warn(dev, "Can't reassign resources to host bridge\n");
6365 return;
6368 pci_read_config_word(dev, PCI_COMMAND, &command);
6369 command &= ~PCI_COMMAND_MEMORY;
6370 pci_write_config_word(dev, PCI_COMMAND, command);
6372 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6373 pci_request_resource_alignment(dev, i, align, resize);
6376 * Need to disable bridge's resource window,
6377 * to enable the kernel to reassign new resource
6378 * window later on.
6380 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6381 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6382 r = &dev->resource[i];
6383 if (!(r->flags & IORESOURCE_MEM))
6384 continue;
6385 r->flags |= IORESOURCE_UNSET;
6386 r->end = resource_size(r) - 1;
6387 r->start = 0;
6389 pci_disable_bridge_window(dev);
6393 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6395 size_t count = 0;
6397 spin_lock(&resource_alignment_lock);
6398 if (resource_alignment_param)
6399 count = scnprintf(buf, PAGE_SIZE, "%s", resource_alignment_param);
6400 spin_unlock(&resource_alignment_lock);
6403 * When set by the command line, resource_alignment_param will not
6404 * have a trailing line feed, which is ugly. So conditionally add
6405 * it here.
6407 if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) {
6408 buf[count - 1] = '\n';
6409 buf[count++] = 0;
6412 return count;
6415 static ssize_t resource_alignment_store(struct bus_type *bus,
6416 const char *buf, size_t count)
6418 char *param = kstrndup(buf, count, GFP_KERNEL);
6420 if (!param)
6421 return -ENOMEM;
6423 spin_lock(&resource_alignment_lock);
6424 kfree(resource_alignment_param);
6425 resource_alignment_param = param;
6426 spin_unlock(&resource_alignment_lock);
6427 return count;
6430 static BUS_ATTR_RW(resource_alignment);
6432 static int __init pci_resource_alignment_sysfs_init(void)
6434 return bus_create_file(&pci_bus_type,
6435 &bus_attr_resource_alignment);
6437 late_initcall(pci_resource_alignment_sysfs_init);
6439 static void pci_no_domains(void)
6441 #ifdef CONFIG_PCI_DOMAINS
6442 pci_domains_supported = 0;
6443 #endif
6446 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6447 static atomic_t __domain_nr = ATOMIC_INIT(-1);
6449 static int pci_get_new_domain_nr(void)
6451 return atomic_inc_return(&__domain_nr);
6454 static int of_pci_bus_find_domain_nr(struct device *parent)
6456 static int use_dt_domains = -1;
6457 int domain = -1;
6459 if (parent)
6460 domain = of_get_pci_domain_nr(parent->of_node);
6463 * Check DT domain and use_dt_domains values.
6465 * If DT domain property is valid (domain >= 0) and
6466 * use_dt_domains != 0, the DT assignment is valid since this means
6467 * we have not previously allocated a domain number by using
6468 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6469 * 1, to indicate that we have just assigned a domain number from
6470 * DT.
6472 * If DT domain property value is not valid (ie domain < 0), and we
6473 * have not previously assigned a domain number from DT
6474 * (use_dt_domains != 1) we should assign a domain number by
6475 * using the:
6477 * pci_get_new_domain_nr()
6479 * API and update the use_dt_domains value to keep track of method we
6480 * are using to assign domain numbers (use_dt_domains = 0).
6482 * All other combinations imply we have a platform that is trying
6483 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6484 * which is a recipe for domain mishandling and it is prevented by
6485 * invalidating the domain value (domain = -1) and printing a
6486 * corresponding error.
6488 if (domain >= 0 && use_dt_domains) {
6489 use_dt_domains = 1;
6490 } else if (domain < 0 && use_dt_domains != 1) {
6491 use_dt_domains = 0;
6492 domain = pci_get_new_domain_nr();
6493 } else {
6494 if (parent)
6495 pr_err("Node %pOF has ", parent->of_node);
6496 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6497 domain = -1;
6500 return domain;
6503 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6505 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6506 acpi_pci_bus_find_domain_nr(bus);
6508 #endif
6511 * pci_ext_cfg_avail - can we access extended PCI config space?
6513 * Returns 1 if we can access PCI extended config space (offsets
6514 * greater than 0xff). This is the default implementation. Architecture
6515 * implementations can override this.
6517 int __weak pci_ext_cfg_avail(void)
6519 return 1;
6522 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6525 EXPORT_SYMBOL(pci_fixup_cardbus);
6527 static int __init pci_setup(char *str)
6529 while (str) {
6530 char *k = strchr(str, ',');
6531 if (k)
6532 *k++ = 0;
6533 if (*str && (str = pcibios_setup(str)) && *str) {
6534 if (!strcmp(str, "nomsi")) {
6535 pci_no_msi();
6536 } else if (!strncmp(str, "noats", 5)) {
6537 pr_info("PCIe: ATS is disabled\n");
6538 pcie_ats_disabled = true;
6539 } else if (!strcmp(str, "noaer")) {
6540 pci_no_aer();
6541 } else if (!strcmp(str, "earlydump")) {
6542 pci_early_dump = true;
6543 } else if (!strncmp(str, "realloc=", 8)) {
6544 pci_realloc_get_opt(str + 8);
6545 } else if (!strncmp(str, "realloc", 7)) {
6546 pci_realloc_get_opt("on");
6547 } else if (!strcmp(str, "nodomains")) {
6548 pci_no_domains();
6549 } else if (!strncmp(str, "noari", 5)) {
6550 pcie_ari_disabled = true;
6551 } else if (!strncmp(str, "cbiosize=", 9)) {
6552 pci_cardbus_io_size = memparse(str + 9, &str);
6553 } else if (!strncmp(str, "cbmemsize=", 10)) {
6554 pci_cardbus_mem_size = memparse(str + 10, &str);
6555 } else if (!strncmp(str, "resource_alignment=", 19)) {
6556 resource_alignment_param = str + 19;
6557 } else if (!strncmp(str, "ecrc=", 5)) {
6558 pcie_ecrc_get_policy(str + 5);
6559 } else if (!strncmp(str, "hpiosize=", 9)) {
6560 pci_hotplug_io_size = memparse(str + 9, &str);
6561 } else if (!strncmp(str, "hpmmiosize=", 11)) {
6562 pci_hotplug_mmio_size = memparse(str + 11, &str);
6563 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6564 pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6565 } else if (!strncmp(str, "hpmemsize=", 10)) {
6566 pci_hotplug_mmio_size = memparse(str + 10, &str);
6567 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6568 } else if (!strncmp(str, "hpbussize=", 10)) {
6569 pci_hotplug_bus_size =
6570 simple_strtoul(str + 10, &str, 0);
6571 if (pci_hotplug_bus_size > 0xff)
6572 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6573 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6574 pcie_bus_config = PCIE_BUS_TUNE_OFF;
6575 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6576 pcie_bus_config = PCIE_BUS_SAFE;
6577 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6578 pcie_bus_config = PCIE_BUS_PERFORMANCE;
6579 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6580 pcie_bus_config = PCIE_BUS_PEER2PEER;
6581 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6582 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6583 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6584 disable_acs_redir_param = str + 18;
6585 } else {
6586 pr_err("PCI: Unknown option `%s'\n", str);
6589 str = k;
6591 return 0;
6593 early_param("pci", pci_setup);
6596 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6597 * in pci_setup(), above, to point to data in the __initdata section which
6598 * will be freed after the init sequence is complete. We can't allocate memory
6599 * in pci_setup() because some architectures do not have any memory allocation
6600 * service available during an early_param() call. So we allocate memory and
6601 * copy the variable here before the init section is freed.
6604 static int __init pci_realloc_setup_params(void)
6606 resource_alignment_param = kstrdup(resource_alignment_param,
6607 GFP_KERNEL);
6608 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6610 return 0;
6612 pure_initcall(pci_realloc_setup_params);