Merge tag 'regmap-fix-v5.11-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux/fpc-iii.git] / drivers / scsi / aacraid / dpcsup.c
blobfbe334c59f376cf34aaaf5f45febca390206bab5
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Adaptec AAC series RAID controller driver
4 * (c) Copyright 2001 Red Hat Inc.
6 * based on the old aacraid driver that is..
7 * Adaptec aacraid device driver for Linux.
9 * Copyright (c) 2000-2010 Adaptec, Inc.
10 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
11 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
13 * Module Name:
14 * dpcsup.c
16 * Abstract: All DPC processing routines for the cyclone board occur here.
19 #include <linux/kernel.h>
20 #include <linux/init.h>
21 #include <linux/types.h>
22 #include <linux/spinlock.h>
23 #include <linux/slab.h>
24 #include <linux/completion.h>
25 #include <linux/blkdev.h>
27 #include "aacraid.h"
29 /**
30 * aac_response_normal - Handle command replies
31 * @q: Queue to read from
33 * This DPC routine will be run when the adapter interrupts us to let us
34 * know there is a response on our normal priority queue. We will pull off
35 * all QE there are and wake up all the waiters before exiting. We will
36 * take a spinlock out on the queue before operating on it.
39 unsigned int aac_response_normal(struct aac_queue * q)
41 struct aac_dev * dev = q->dev;
42 struct aac_entry *entry;
43 struct hw_fib * hwfib;
44 struct fib * fib;
45 int consumed = 0;
46 unsigned long flags, mflags;
48 spin_lock_irqsave(q->lock, flags);
50 * Keep pulling response QEs off the response queue and waking
51 * up the waiters until there are no more QEs. We then return
52 * back to the system. If no response was requested we just
53 * deallocate the Fib here and continue.
55 while(aac_consumer_get(dev, q, &entry))
57 int fast;
58 u32 index = le32_to_cpu(entry->addr);
59 fast = index & 0x01;
60 fib = &dev->fibs[index >> 2];
61 hwfib = fib->hw_fib_va;
63 aac_consumer_free(dev, q, HostNormRespQueue);
65 * Remove this fib from the Outstanding I/O queue.
66 * But only if it has not already been timed out.
68 * If the fib has been timed out already, then just
69 * continue. The caller has already been notified that
70 * the fib timed out.
72 atomic_dec(&dev->queues->queue[AdapNormCmdQueue].numpending);
74 if (unlikely(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) {
75 spin_unlock_irqrestore(q->lock, flags);
76 aac_fib_complete(fib);
77 aac_fib_free(fib);
78 spin_lock_irqsave(q->lock, flags);
79 continue;
81 spin_unlock_irqrestore(q->lock, flags);
83 if (fast) {
85 * Doctor the fib
87 *(__le32 *)hwfib->data = cpu_to_le32(ST_OK);
88 hwfib->header.XferState |= cpu_to_le32(AdapterProcessed);
89 fib->flags |= FIB_CONTEXT_FLAG_FASTRESP;
92 FIB_COUNTER_INCREMENT(aac_config.FibRecved);
94 if (hwfib->header.Command == cpu_to_le16(NuFileSystem))
96 __le32 *pstatus = (__le32 *)hwfib->data;
97 if (*pstatus & cpu_to_le32(0xffff0000))
98 *pstatus = cpu_to_le32(ST_OK);
100 if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected | Async))
102 if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected)) {
103 FIB_COUNTER_INCREMENT(aac_config.NoResponseRecved);
104 } else {
105 FIB_COUNTER_INCREMENT(aac_config.AsyncRecved);
108 * NOTE: we cannot touch the fib after this
109 * call, because it may have been deallocated.
111 fib->callback(fib->callback_data, fib);
112 } else {
113 unsigned long flagv;
114 spin_lock_irqsave(&fib->event_lock, flagv);
115 if (!fib->done) {
116 fib->done = 1;
117 complete(&fib->event_wait);
119 spin_unlock_irqrestore(&fib->event_lock, flagv);
121 spin_lock_irqsave(&dev->manage_lock, mflags);
122 dev->management_fib_count--;
123 spin_unlock_irqrestore(&dev->manage_lock, mflags);
125 FIB_COUNTER_INCREMENT(aac_config.NormalRecved);
126 if (fib->done == 2) {
127 spin_lock_irqsave(&fib->event_lock, flagv);
128 fib->done = 0;
129 spin_unlock_irqrestore(&fib->event_lock, flagv);
130 aac_fib_complete(fib);
131 aac_fib_free(fib);
134 consumed++;
135 spin_lock_irqsave(q->lock, flags);
138 if (consumed > aac_config.peak_fibs)
139 aac_config.peak_fibs = consumed;
140 if (consumed == 0)
141 aac_config.zero_fibs++;
143 spin_unlock_irqrestore(q->lock, flags);
144 return 0;
149 * aac_command_normal - handle commands
150 * @q: queue to process
152 * This DPC routine will be queued when the adapter interrupts us to
153 * let us know there is a command on our normal priority queue. We will
154 * pull off all QE there are and wake up all the waiters before exiting.
155 * We will take a spinlock out on the queue before operating on it.
158 unsigned int aac_command_normal(struct aac_queue *q)
160 struct aac_dev * dev = q->dev;
161 struct aac_entry *entry;
162 unsigned long flags;
164 spin_lock_irqsave(q->lock, flags);
167 * Keep pulling response QEs off the response queue and waking
168 * up the waiters until there are no more QEs. We then return
169 * back to the system.
171 while(aac_consumer_get(dev, q, &entry))
173 struct fib fibctx;
174 struct hw_fib * hw_fib;
175 u32 index;
176 struct fib *fib = &fibctx;
178 index = le32_to_cpu(entry->addr) / sizeof(struct hw_fib);
179 hw_fib = &dev->aif_base_va[index];
182 * Allocate a FIB at all costs. For non queued stuff
183 * we can just use the stack so we are happy. We need
184 * a fib object in order to manage the linked lists
186 if (dev->aif_thread)
187 if((fib = kmalloc(sizeof(struct fib), GFP_ATOMIC)) == NULL)
188 fib = &fibctx;
190 memset(fib, 0, sizeof(struct fib));
191 INIT_LIST_HEAD(&fib->fiblink);
192 fib->type = FSAFS_NTC_FIB_CONTEXT;
193 fib->size = sizeof(struct fib);
194 fib->hw_fib_va = hw_fib;
195 fib->data = hw_fib->data;
196 fib->dev = dev;
199 if (dev->aif_thread && fib != &fibctx) {
200 list_add_tail(&fib->fiblink, &q->cmdq);
201 aac_consumer_free(dev, q, HostNormCmdQueue);
202 wake_up_interruptible(&q->cmdready);
203 } else {
204 aac_consumer_free(dev, q, HostNormCmdQueue);
205 spin_unlock_irqrestore(q->lock, flags);
207 * Set the status of this FIB
209 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
210 aac_fib_adapter_complete(fib, sizeof(u32));
211 spin_lock_irqsave(q->lock, flags);
214 spin_unlock_irqrestore(q->lock, flags);
215 return 0;
220 * aac_aif_callback
221 * @context: the context set in the fib - here it is scsi cmd
222 * @fibptr: pointer to the fib
224 * Handles the AIFs - new method (SRC)
228 static void aac_aif_callback(void *context, struct fib * fibptr)
230 struct fib *fibctx;
231 struct aac_dev *dev;
232 struct aac_aifcmd *cmd;
234 fibctx = (struct fib *)context;
235 BUG_ON(fibptr == NULL);
236 dev = fibptr->dev;
238 if ((fibptr->hw_fib_va->header.XferState &
239 cpu_to_le32(NoMoreAifDataAvailable)) ||
240 dev->sa_firmware) {
241 aac_fib_complete(fibptr);
242 aac_fib_free(fibptr);
243 return;
246 aac_intr_normal(dev, 0, 1, 0, fibptr->hw_fib_va);
248 aac_fib_init(fibctx);
249 cmd = (struct aac_aifcmd *) fib_data(fibctx);
250 cmd->command = cpu_to_le32(AifReqEvent);
252 aac_fib_send(AifRequest,
253 fibctx,
254 sizeof(struct hw_fib)-sizeof(struct aac_fibhdr),
255 FsaNormal,
256 0, 1,
257 (fib_callback)aac_aif_callback, fibctx);
262 * aac_intr_normal - Handle command replies
263 * @dev: Device
264 * @index: completion reference
266 * This DPC routine will be run when the adapter interrupts us to let us
267 * know there is a response on our normal priority queue. We will pull off
268 * all QE there are and wake up all the waiters before exiting.
270 unsigned int aac_intr_normal(struct aac_dev *dev, u32 index, int isAif,
271 int isFastResponse, struct hw_fib *aif_fib)
273 unsigned long mflags;
274 dprintk((KERN_INFO "aac_intr_normal(%p,%x)\n", dev, index));
275 if (isAif == 1) { /* AIF - common */
276 struct hw_fib * hw_fib;
277 struct fib * fib;
278 struct aac_queue *q = &dev->queues->queue[HostNormCmdQueue];
279 unsigned long flags;
282 * Allocate a FIB. For non queued stuff we can just use
283 * the stack so we are happy. We need a fib object in order to
284 * manage the linked lists.
286 if ((!dev->aif_thread)
287 || (!(fib = kzalloc(sizeof(struct fib),GFP_ATOMIC))))
288 return 1;
289 if (!(hw_fib = kzalloc(sizeof(struct hw_fib),GFP_ATOMIC))) {
290 kfree (fib);
291 return 1;
293 if (dev->sa_firmware) {
294 fib->hbacmd_size = index; /* store event type */
295 } else if (aif_fib != NULL) {
296 memcpy(hw_fib, aif_fib, sizeof(struct hw_fib));
297 } else {
298 memcpy(hw_fib, (struct hw_fib *)
299 (((uintptr_t)(dev->regs.sa)) + index),
300 sizeof(struct hw_fib));
302 INIT_LIST_HEAD(&fib->fiblink);
303 fib->type = FSAFS_NTC_FIB_CONTEXT;
304 fib->size = sizeof(struct fib);
305 fib->hw_fib_va = hw_fib;
306 fib->data = hw_fib->data;
307 fib->dev = dev;
309 spin_lock_irqsave(q->lock, flags);
310 list_add_tail(&fib->fiblink, &q->cmdq);
311 wake_up_interruptible(&q->cmdready);
312 spin_unlock_irqrestore(q->lock, flags);
313 return 1;
314 } else if (isAif == 2) { /* AIF - new (SRC) */
315 struct fib *fibctx;
316 struct aac_aifcmd *cmd;
318 fibctx = aac_fib_alloc(dev);
319 if (!fibctx)
320 return 1;
321 aac_fib_init(fibctx);
323 cmd = (struct aac_aifcmd *) fib_data(fibctx);
324 cmd->command = cpu_to_le32(AifReqEvent);
326 return aac_fib_send(AifRequest,
327 fibctx,
328 sizeof(struct hw_fib)-sizeof(struct aac_fibhdr),
329 FsaNormal,
330 0, 1,
331 (fib_callback)aac_aif_callback, fibctx);
332 } else {
333 struct fib *fib = &dev->fibs[index];
334 int start_callback = 0;
337 * Remove this fib from the Outstanding I/O queue.
338 * But only if it has not already been timed out.
340 * If the fib has been timed out already, then just
341 * continue. The caller has already been notified that
342 * the fib timed out.
344 atomic_dec(&dev->queues->queue[AdapNormCmdQueue].numpending);
346 if (unlikely(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) {
347 aac_fib_complete(fib);
348 aac_fib_free(fib);
349 return 0;
352 FIB_COUNTER_INCREMENT(aac_config.FibRecved);
354 if (fib->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) {
356 if (isFastResponse)
357 fib->flags |= FIB_CONTEXT_FLAG_FASTRESP;
359 if (fib->callback) {
360 start_callback = 1;
361 } else {
362 unsigned long flagv;
363 int completed = 0;
365 dprintk((KERN_INFO "event_wait up\n"));
366 spin_lock_irqsave(&fib->event_lock, flagv);
367 if (fib->done == 2) {
368 fib->done = 1;
369 completed = 1;
370 } else {
371 fib->done = 1;
372 complete(&fib->event_wait);
374 spin_unlock_irqrestore(&fib->event_lock, flagv);
376 spin_lock_irqsave(&dev->manage_lock, mflags);
377 dev->management_fib_count--;
378 spin_unlock_irqrestore(&dev->manage_lock,
379 mflags);
381 FIB_COUNTER_INCREMENT(aac_config.NativeRecved);
382 if (completed)
383 aac_fib_complete(fib);
385 } else {
386 struct hw_fib *hwfib = fib->hw_fib_va;
388 if (isFastResponse) {
389 /* Doctor the fib */
390 *(__le32 *)hwfib->data = cpu_to_le32(ST_OK);
391 hwfib->header.XferState |=
392 cpu_to_le32(AdapterProcessed);
393 fib->flags |= FIB_CONTEXT_FLAG_FASTRESP;
396 if (hwfib->header.Command ==
397 cpu_to_le16(NuFileSystem)) {
398 __le32 *pstatus = (__le32 *)hwfib->data;
400 if (*pstatus & cpu_to_le32(0xffff0000))
401 *pstatus = cpu_to_le32(ST_OK);
403 if (hwfib->header.XferState &
404 cpu_to_le32(NoResponseExpected | Async)) {
405 if (hwfib->header.XferState & cpu_to_le32(
406 NoResponseExpected)) {
407 FIB_COUNTER_INCREMENT(
408 aac_config.NoResponseRecved);
409 } else {
410 FIB_COUNTER_INCREMENT(
411 aac_config.AsyncRecved);
413 start_callback = 1;
414 } else {
415 unsigned long flagv;
416 int completed = 0;
418 dprintk((KERN_INFO "event_wait up\n"));
419 spin_lock_irqsave(&fib->event_lock, flagv);
420 if (fib->done == 2) {
421 fib->done = 1;
422 completed = 1;
423 } else {
424 fib->done = 1;
425 complete(&fib->event_wait);
427 spin_unlock_irqrestore(&fib->event_lock, flagv);
429 spin_lock_irqsave(&dev->manage_lock, mflags);
430 dev->management_fib_count--;
431 spin_unlock_irqrestore(&dev->manage_lock,
432 mflags);
434 FIB_COUNTER_INCREMENT(aac_config.NormalRecved);
435 if (completed)
436 aac_fib_complete(fib);
441 if (start_callback) {
443 * NOTE: we cannot touch the fib after this
444 * call, because it may have been deallocated.
446 if (likely(fib->callback && fib->callback_data)) {
447 fib->callback(fib->callback_data, fib);
448 } else {
449 aac_fib_complete(fib);
450 aac_fib_free(fib);
454 return 0;