2 * This is the Fusion MPT base driver providing common API layer interface
3 * for access to MPT (Message Passing Technology) firmware.
5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6 * Copyright (C) 2012-2014 LSI Corporation
7 * Copyright (C) 2013-2014 Avago Technologies
8 * (mailto: MPT-FusionLinux.pdl@avagotech.com)
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version 2
13 * of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25 * solely responsible for determining the appropriateness of using and
26 * distributing the Program and assumes all risks associated with its
27 * exercise of rights under this Agreement, including but not limited to
28 * the risks and costs of program errors, damage to or loss of data,
29 * programs or equipment, and unavailability or interruption of operations.
31 * DISCLAIMER OF LIABILITY
32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
40 * You should have received a copy of the GNU General Public License
41 * along with this program; if not, write to the Free Software
42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <asm/page.h> /* To get host page size per arch */
63 #include <linux/aer.h>
66 #include "mpt3sas_base.h"
68 static MPT_CALLBACK mpt_callbacks
[MPT_MAX_CALLBACKS
];
71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
73 /* maximum controller queue depth */
74 #define MAX_HBA_QUEUE_DEPTH 30000
75 #define MAX_CHAIN_DEPTH 100000
76 static int max_queue_depth
= -1;
77 module_param(max_queue_depth
, int, 0444);
78 MODULE_PARM_DESC(max_queue_depth
, " max controller queue depth ");
80 static int max_sgl_entries
= -1;
81 module_param(max_sgl_entries
, int, 0444);
82 MODULE_PARM_DESC(max_sgl_entries
, " max sg entries ");
84 static int msix_disable
= -1;
85 module_param(msix_disable
, int, 0444);
86 MODULE_PARM_DESC(msix_disable
, " disable msix routed interrupts (default=0)");
88 static int smp_affinity_enable
= 1;
89 module_param(smp_affinity_enable
, int, 0444);
90 MODULE_PARM_DESC(smp_affinity_enable
, "SMP affinity feature enable/disable Default: enable(1)");
92 static int max_msix_vectors
= -1;
93 module_param(max_msix_vectors
, int, 0444);
94 MODULE_PARM_DESC(max_msix_vectors
,
97 static int irqpoll_weight
= -1;
98 module_param(irqpoll_weight
, int, 0444);
99 MODULE_PARM_DESC(irqpoll_weight
,
100 "irq poll weight (default= one fourth of HBA queue depth)");
102 static int mpt3sas_fwfault_debug
;
103 MODULE_PARM_DESC(mpt3sas_fwfault_debug
,
104 " enable detection of firmware fault and halt firmware - (default=0)");
106 static int perf_mode
= -1;
107 module_param(perf_mode
, int, 0444);
108 MODULE_PARM_DESC(perf_mode
,
109 "Performance mode (only for Aero/Sea Generation), options:\n\t\t"
110 "0 - balanced: high iops mode is enabled &\n\t\t"
111 "interrupt coalescing is enabled only on high iops queues,\n\t\t"
112 "1 - iops: high iops mode is disabled &\n\t\t"
113 "interrupt coalescing is enabled on all queues,\n\t\t"
114 "2 - latency: high iops mode is disabled &\n\t\t"
115 "interrupt coalescing is enabled on all queues with timeout value 0xA,\n"
116 "\t\tdefault - default perf_mode is 'balanced'"
119 enum mpt3sas_perf_mode
{
120 MPT_PERF_MODE_DEFAULT
= -1,
121 MPT_PERF_MODE_BALANCED
= 0,
122 MPT_PERF_MODE_IOPS
= 1,
123 MPT_PERF_MODE_LATENCY
= 2,
127 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER
*ioc
,
128 u32 ioc_state
, int timeout
);
130 _base_get_ioc_facts(struct MPT3SAS_ADAPTER
*ioc
);
132 _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER
*ioc
);
135 * mpt3sas_base_check_cmd_timeout - Function
136 * to check timeout and command termination due
139 * @ioc: per adapter object.
140 * @status: Status of issued command.
141 * @mpi_request:mf request pointer.
142 * @sz: size of buffer.
144 * @Returns - 1/0 Reset to be done or Not
147 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER
*ioc
,
148 u8 status
, void *mpi_request
, int sz
)
152 if (!(status
& MPT3_CMD_RESET
))
155 ioc_err(ioc
, "Command %s\n",
156 issue_reset
== 0 ? "terminated due to Host Reset" : "Timeout");
157 _debug_dump_mf(mpi_request
, sz
);
163 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
170 _scsih_set_fwfault_debug(const char *val
, const struct kernel_param
*kp
)
172 int ret
= param_set_int(val
, kp
);
173 struct MPT3SAS_ADAPTER
*ioc
;
178 /* global ioc spinlock to protect controller list on list operations */
179 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug
);
180 spin_lock(&gioc_lock
);
181 list_for_each_entry(ioc
, &mpt3sas_ioc_list
, list
)
182 ioc
->fwfault_debug
= mpt3sas_fwfault_debug
;
183 spin_unlock(&gioc_lock
);
186 module_param_call(mpt3sas_fwfault_debug
, _scsih_set_fwfault_debug
,
187 param_get_int
, &mpt3sas_fwfault_debug
, 0644);
190 * _base_readl_aero - retry readl for max three times.
191 * @addr: MPT Fusion system interface register address
193 * Retry the readl() for max three times if it gets zero value
194 * while reading the system interface register.
197 _base_readl_aero(const volatile void __iomem
*addr
)
202 ret_val
= readl(addr
);
204 } while (ret_val
== 0 && i
< 3);
210 _base_readl(const volatile void __iomem
*addr
)
216 * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
219 * @ioc: per adapter object
220 * @reply: reply message frame(lower 32bit addr)
221 * @index: System request message index.
224 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER
*ioc
, u32 reply
,
228 * 256 is offset within sys register.
229 * 256 offset MPI frame starts. Max MPI frame supported is 32.
230 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
232 u16 cmd_credit
= ioc
->facts
.RequestCredit
+ 1;
233 void __iomem
*reply_free_iomem
= (void __iomem
*)ioc
->chip
+
234 MPI_FRAME_START_OFFSET
+
235 (cmd_credit
* ioc
->request_sz
) + (index
* sizeof(u32
));
237 writel(reply
, reply_free_iomem
);
241 * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
242 * to system/BAR0 region.
244 * @dst_iomem: Pointer to the destination location in BAR0 space.
245 * @src: Pointer to the Source data.
246 * @size: Size of data to be copied.
249 _base_clone_mpi_to_sys_mem(void *dst_iomem
, void *src
, u32 size
)
252 u32
*src_virt_mem
= (u32
*)src
;
254 for (i
= 0; i
< size
/4; i
++)
255 writel((u32
)src_virt_mem
[i
],
256 (void __iomem
*)dst_iomem
+ (i
* 4));
260 * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
262 * @dst_iomem: Pointer to the destination location in BAR0 space.
263 * @src: Pointer to the Source data.
264 * @size: Size of data to be copied.
267 _base_clone_to_sys_mem(void __iomem
*dst_iomem
, void *src
, u32 size
)
270 u32
*src_virt_mem
= (u32
*)(src
);
272 for (i
= 0; i
< size
/4; i
++)
273 writel((u32
)src_virt_mem
[i
],
274 (void __iomem
*)dst_iomem
+ (i
* 4));
278 * _base_get_chain - Calculates and Returns virtual chain address
279 * for the provided smid in BAR0 space.
281 * @ioc: per adapter object
282 * @smid: system request message index
283 * @sge_chain_count: Scatter gather chain count.
285 * Return: the chain address.
287 static inline void __iomem
*
288 _base_get_chain(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
,
291 void __iomem
*base_chain
, *chain_virt
;
292 u16 cmd_credit
= ioc
->facts
.RequestCredit
+ 1;
294 base_chain
= (void __iomem
*)ioc
->chip
+ MPI_FRAME_START_OFFSET
+
295 (cmd_credit
* ioc
->request_sz
) +
296 REPLY_FREE_POOL_SIZE
;
297 chain_virt
= base_chain
+ (smid
* ioc
->facts
.MaxChainDepth
*
298 ioc
->request_sz
) + (sge_chain_count
* ioc
->request_sz
);
303 * _base_get_chain_phys - Calculates and Returns physical address
304 * in BAR0 for scatter gather chains, for
307 * @ioc: per adapter object
308 * @smid: system request message index
309 * @sge_chain_count: Scatter gather chain count.
311 * Return: Physical chain address.
313 static inline phys_addr_t
314 _base_get_chain_phys(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
,
317 phys_addr_t base_chain_phys
, chain_phys
;
318 u16 cmd_credit
= ioc
->facts
.RequestCredit
+ 1;
320 base_chain_phys
= ioc
->chip_phys
+ MPI_FRAME_START_OFFSET
+
321 (cmd_credit
* ioc
->request_sz
) +
322 REPLY_FREE_POOL_SIZE
;
323 chain_phys
= base_chain_phys
+ (smid
* ioc
->facts
.MaxChainDepth
*
324 ioc
->request_sz
) + (sge_chain_count
* ioc
->request_sz
);
329 * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
330 * buffer address for the provided smid.
331 * (Each smid can have 64K starts from 17024)
333 * @ioc: per adapter object
334 * @smid: system request message index
336 * Return: Pointer to buffer location in BAR0.
339 static void __iomem
*
340 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
342 u16 cmd_credit
= ioc
->facts
.RequestCredit
+ 1;
343 // Added extra 1 to reach end of chain.
344 void __iomem
*chain_end
= _base_get_chain(ioc
,
346 ioc
->facts
.MaxChainDepth
);
347 return chain_end
+ (smid
* 64 * 1024);
351 * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
352 * Host buffer Physical address for the provided smid.
353 * (Each smid can have 64K starts from 17024)
355 * @ioc: per adapter object
356 * @smid: system request message index
358 * Return: Pointer to buffer location in BAR0.
361 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
363 u16 cmd_credit
= ioc
->facts
.RequestCredit
+ 1;
364 phys_addr_t chain_end_phys
= _base_get_chain_phys(ioc
,
366 ioc
->facts
.MaxChainDepth
);
367 return chain_end_phys
+ (smid
* 64 * 1024);
371 * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
372 * lookup list and Provides chain_buffer
373 * address for the matching dma address.
374 * (Each smid can have 64K starts from 17024)
376 * @ioc: per adapter object
377 * @chain_buffer_dma: Chain buffer dma address.
379 * Return: Pointer to chain buffer. Or Null on Failure.
382 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER
*ioc
,
383 dma_addr_t chain_buffer_dma
)
386 struct chain_tracker
*ct
;
388 for (index
= 0; index
< ioc
->scsiio_depth
; index
++) {
389 for (j
= 0; j
< ioc
->chains_needed_per_io
; j
++) {
390 ct
= &ioc
->chain_lookup
[index
].chains_per_smid
[j
];
391 if (ct
&& ct
->chain_buffer_dma
== chain_buffer_dma
)
392 return ct
->chain_buffer
;
395 ioc_info(ioc
, "Provided chain_buffer_dma address is not in the lookup list\n");
400 * _clone_sg_entries - MPI EP's scsiio and config requests
401 * are handled here. Base function for
402 * double buffering, before submitting
405 * @ioc: per adapter object.
406 * @mpi_request: mf request pointer.
407 * @smid: system request message index.
409 static void _clone_sg_entries(struct MPT3SAS_ADAPTER
*ioc
,
410 void *mpi_request
, u16 smid
)
412 Mpi2SGESimple32_t
*sgel
, *sgel_next
;
413 u32 sgl_flags
, sge_chain_count
= 0;
414 bool is_write
= false;
416 void __iomem
*buffer_iomem
;
417 phys_addr_t buffer_iomem_phys
;
418 void __iomem
*buff_ptr
;
419 phys_addr_t buff_ptr_phys
;
420 void __iomem
*dst_chain_addr
[MCPU_MAX_CHAINS_PER_IO
];
421 void *src_chain_addr
[MCPU_MAX_CHAINS_PER_IO
];
422 phys_addr_t dst_addr_phys
;
423 MPI2RequestHeader_t
*request_hdr
;
424 struct scsi_cmnd
*scmd
;
425 struct scatterlist
*sg_scmd
= NULL
;
426 int is_scsiio_req
= 0;
428 request_hdr
= (MPI2RequestHeader_t
*) mpi_request
;
430 if (request_hdr
->Function
== MPI2_FUNCTION_SCSI_IO_REQUEST
) {
431 Mpi25SCSIIORequest_t
*scsiio_request
=
432 (Mpi25SCSIIORequest_t
*)mpi_request
;
433 sgel
= (Mpi2SGESimple32_t
*) &scsiio_request
->SGL
;
435 } else if (request_hdr
->Function
== MPI2_FUNCTION_CONFIG
) {
436 Mpi2ConfigRequest_t
*config_req
=
437 (Mpi2ConfigRequest_t
*)mpi_request
;
438 sgel
= (Mpi2SGESimple32_t
*) &config_req
->PageBufferSGE
;
442 /* From smid we can get scsi_cmd, once we have sg_scmd,
443 * we just need to get sg_virt and sg_next to get virual
444 * address associated with sgel->Address.
448 /* Get scsi_cmd using smid */
449 scmd
= mpt3sas_scsih_scsi_lookup_get(ioc
, smid
);
451 ioc_err(ioc
, "scmd is NULL\n");
455 /* Get sg_scmd from scmd provided */
456 sg_scmd
= scsi_sglist(scmd
);
460 * 0 - 255 System register
461 * 256 - 4352 MPI Frame. (This is based on maxCredit 32)
462 * 4352 - 4864 Reply_free pool (512 byte is reserved
463 * considering maxCredit 32. Reply need extra
464 * room, for mCPU case kept four times of
466 * 4864 - 17152 SGE chain element. (32cmd * 3 chain of
467 * 128 byte size = 12288)
468 * 17152 - x Host buffer mapped with smid.
469 * (Each smid can have 64K Max IO.)
470 * BAR0+Last 1K MSIX Addr and Data
471 * Total size in use 2113664 bytes of 4MB BAR0
474 buffer_iomem
= _base_get_buffer_bar0(ioc
, smid
);
475 buffer_iomem_phys
= _base_get_buffer_phys_bar0(ioc
, smid
);
477 buff_ptr
= buffer_iomem
;
478 buff_ptr_phys
= buffer_iomem_phys
;
479 WARN_ON(buff_ptr_phys
> U32_MAX
);
481 if (le32_to_cpu(sgel
->FlagsLength
) &
482 (MPI2_SGE_FLAGS_HOST_TO_IOC
<< MPI2_SGE_FLAGS_SHIFT
))
485 for (i
= 0; i
< MPT_MIN_PHYS_SEGMENTS
+ ioc
->facts
.MaxChainDepth
; i
++) {
488 (le32_to_cpu(sgel
->FlagsLength
) >> MPI2_SGE_FLAGS_SHIFT
);
490 switch (sgl_flags
& MPI2_SGE_FLAGS_ELEMENT_MASK
) {
491 case MPI2_SGE_FLAGS_CHAIN_ELEMENT
:
493 * Helper function which on passing
494 * chain_buffer_dma returns chain_buffer. Get
495 * the virtual address for sgel->Address
498 _base_get_chain_buffer_dma_to_chain_buffer(ioc
,
499 le32_to_cpu(sgel
->Address
));
500 if (sgel_next
== NULL
)
503 * This is coping 128 byte chain
504 * frame (not a host buffer)
506 dst_chain_addr
[sge_chain_count
] =
508 smid
, sge_chain_count
);
509 src_chain_addr
[sge_chain_count
] =
511 dst_addr_phys
= _base_get_chain_phys(ioc
,
512 smid
, sge_chain_count
);
513 WARN_ON(dst_addr_phys
> U32_MAX
);
515 cpu_to_le32(lower_32_bits(dst_addr_phys
));
519 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT
:
522 _base_clone_to_sys_mem(buff_ptr
,
524 (le32_to_cpu(sgel
->FlagsLength
) &
527 * FIXME: this relies on a a zero
531 cpu_to_le32((u32
)buff_ptr_phys
);
533 _base_clone_to_sys_mem(buff_ptr
,
535 (le32_to_cpu(sgel
->FlagsLength
) &
538 cpu_to_le32((u32
)buff_ptr_phys
);
541 buff_ptr
+= (le32_to_cpu(sgel
->FlagsLength
) &
543 buff_ptr_phys
+= (le32_to_cpu(sgel
->FlagsLength
) &
545 if ((le32_to_cpu(sgel
->FlagsLength
) &
546 (MPI2_SGE_FLAGS_END_OF_BUFFER
547 << MPI2_SGE_FLAGS_SHIFT
)))
548 goto eob_clone_chain
;
551 * Every single element in MPT will have
552 * associated sg_next. Better to sanity that
553 * sg_next is not NULL, but it will be a bug
557 sg_scmd
= sg_next(sg_scmd
);
561 goto eob_clone_chain
;
569 for (i
= 0; i
< sge_chain_count
; i
++) {
571 _base_clone_to_sys_mem(dst_chain_addr
[i
],
572 src_chain_addr
[i
], ioc
->request_sz
);
577 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
578 * @arg: input argument, used to derive ioc
581 * 0 if controller is removed from pci subsystem.
584 static int mpt3sas_remove_dead_ioc_func(void *arg
)
586 struct MPT3SAS_ADAPTER
*ioc
= (struct MPT3SAS_ADAPTER
*)arg
;
587 struct pci_dev
*pdev
;
595 pci_stop_and_remove_bus_device_locked(pdev
);
600 * _base_sync_drv_fw_timestamp - Sync Drive-Fw TimeStamp.
601 * @ioc: Per Adapter Object
605 static void _base_sync_drv_fw_timestamp(struct MPT3SAS_ADAPTER
*ioc
)
607 Mpi26IoUnitControlRequest_t
*mpi_request
;
608 Mpi26IoUnitControlReply_t
*mpi_reply
;
610 ktime_t current_time
;
614 mutex_lock(&ioc
->scsih_cmds
.mutex
);
615 if (ioc
->scsih_cmds
.status
!= MPT3_CMD_NOT_USED
) {
616 ioc_err(ioc
, "scsih_cmd in use %s\n", __func__
);
619 ioc
->scsih_cmds
.status
= MPT3_CMD_PENDING
;
620 smid
= mpt3sas_base_get_smid(ioc
, ioc
->scsih_cb_idx
);
622 ioc_err(ioc
, "Failed obtaining a smid %s\n", __func__
);
623 ioc
->scsih_cmds
.status
= MPT3_CMD_NOT_USED
;
626 mpi_request
= mpt3sas_base_get_msg_frame(ioc
, smid
);
627 ioc
->scsih_cmds
.smid
= smid
;
628 memset(mpi_request
, 0, sizeof(Mpi26IoUnitControlRequest_t
));
629 mpi_request
->Function
= MPI2_FUNCTION_IO_UNIT_CONTROL
;
630 mpi_request
->Operation
= MPI26_CTRL_OP_SET_IOC_PARAMETER
;
631 mpi_request
->IOCParameter
= MPI26_SET_IOC_PARAMETER_SYNC_TIMESTAMP
;
632 current_time
= ktime_get_real();
633 TimeStamp
= ktime_to_ms(current_time
);
634 mpi_request
->Reserved7
= cpu_to_le32(TimeStamp
& 0xFFFFFFFF);
635 mpi_request
->IOCParameterValue
= cpu_to_le32(TimeStamp
>> 32);
636 init_completion(&ioc
->scsih_cmds
.done
);
637 ioc
->put_smid_default(ioc
, smid
);
638 dinitprintk(ioc
, ioc_info(ioc
,
639 "Io Unit Control Sync TimeStamp (sending), @time %lld ms\n",
641 wait_for_completion_timeout(&ioc
->scsih_cmds
.done
,
642 MPT3SAS_TIMESYNC_TIMEOUT_SECONDS
*HZ
);
643 if (!(ioc
->scsih_cmds
.status
& MPT3_CMD_COMPLETE
)) {
644 mpt3sas_check_cmd_timeout(ioc
,
645 ioc
->scsih_cmds
.status
, mpi_request
,
646 sizeof(Mpi2SasIoUnitControlRequest_t
)/4, issue_reset
);
647 goto issue_host_reset
;
649 if (ioc
->scsih_cmds
.status
& MPT3_CMD_REPLY_VALID
) {
650 mpi_reply
= ioc
->scsih_cmds
.reply
;
651 dinitprintk(ioc
, ioc_info(ioc
,
652 "Io Unit Control sync timestamp (complete): ioc_status(0x%04x), loginfo(0x%08x)\n",
653 le16_to_cpu(mpi_reply
->IOCStatus
),
654 le32_to_cpu(mpi_reply
->IOCLogInfo
)));
658 mpt3sas_base_hard_reset_handler(ioc
, FORCE_BIG_HAMMER
);
659 ioc
->scsih_cmds
.status
= MPT3_CMD_NOT_USED
;
661 mutex_unlock(&ioc
->scsih_cmds
.mutex
);
665 * _base_fault_reset_work - workq handling ioc fault conditions
666 * @work: input argument, used to derive ioc
671 _base_fault_reset_work(struct work_struct
*work
)
673 struct MPT3SAS_ADAPTER
*ioc
=
674 container_of(work
, struct MPT3SAS_ADAPTER
, fault_reset_work
.work
);
678 struct task_struct
*p
;
681 spin_lock_irqsave(&ioc
->ioc_reset_in_progress_lock
, flags
);
682 if ((ioc
->shost_recovery
&& (ioc
->ioc_coredump_loop
== 0)) ||
683 ioc
->pci_error_recovery
)
685 spin_unlock_irqrestore(&ioc
->ioc_reset_in_progress_lock
, flags
);
687 doorbell
= mpt3sas_base_get_iocstate(ioc
, 0);
688 if ((doorbell
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_MASK
) {
689 ioc_err(ioc
, "SAS host is non-operational !!!!\n");
691 /* It may be possible that EEH recovery can resolve some of
692 * pci bus failure issues rather removing the dead ioc function
693 * by considering controller is in a non-operational state. So
694 * here priority is given to the EEH recovery. If it doesn't
695 * not resolve this issue, mpt3sas driver will consider this
696 * controller to non-operational state and remove the dead ioc
699 if (ioc
->non_operational_loop
++ < 5) {
700 spin_lock_irqsave(&ioc
->ioc_reset_in_progress_lock
,
706 * Call _scsih_flush_pending_cmds callback so that we flush all
707 * pending commands back to OS. This call is required to aovid
708 * deadlock at block layer. Dead IOC will fail to do diag reset,
709 * and this call is safe since dead ioc will never return any
710 * command back from HW.
712 ioc
->schedule_dead_ioc_flush_running_cmds(ioc
);
714 * Set remove_host flag early since kernel thread will
715 * take some time to execute.
717 ioc
->remove_host
= 1;
718 /*Remove the Dead Host */
719 p
= kthread_run(mpt3sas_remove_dead_ioc_func
, ioc
,
720 "%s_dead_ioc_%d", ioc
->driver_name
, ioc
->id
);
722 ioc_err(ioc
, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
725 ioc_err(ioc
, "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
727 return; /* don't rearm timer */
730 if ((doorbell
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_COREDUMP
) {
731 u8 timeout
= (ioc
->manu_pg11
.CoreDumpTOSec
) ?
732 ioc
->manu_pg11
.CoreDumpTOSec
:
733 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS
;
735 timeout
/= (FAULT_POLLING_INTERVAL
/1000);
737 if (ioc
->ioc_coredump_loop
== 0) {
738 mpt3sas_print_coredump_info(ioc
,
739 doorbell
& MPI2_DOORBELL_DATA_MASK
);
740 /* do not accept any IOs and disable the interrupts */
742 &ioc
->ioc_reset_in_progress_lock
, flags
);
743 ioc
->shost_recovery
= 1;
744 spin_unlock_irqrestore(
745 &ioc
->ioc_reset_in_progress_lock
, flags
);
746 mpt3sas_base_mask_interrupts(ioc
);
747 _base_clear_outstanding_commands(ioc
);
750 ioc_info(ioc
, "%s: CoreDump loop %d.",
751 __func__
, ioc
->ioc_coredump_loop
);
753 /* Wait until CoreDump completes or times out */
754 if (ioc
->ioc_coredump_loop
++ < timeout
) {
756 &ioc
->ioc_reset_in_progress_lock
, flags
);
761 if (ioc
->ioc_coredump_loop
) {
762 if ((doorbell
& MPI2_IOC_STATE_MASK
) != MPI2_IOC_STATE_COREDUMP
)
763 ioc_err(ioc
, "%s: CoreDump completed. LoopCount: %d",
764 __func__
, ioc
->ioc_coredump_loop
);
766 ioc_err(ioc
, "%s: CoreDump Timed out. LoopCount: %d",
767 __func__
, ioc
->ioc_coredump_loop
);
768 ioc
->ioc_coredump_loop
= MPT3SAS_COREDUMP_LOOP_DONE
;
770 ioc
->non_operational_loop
= 0;
771 if ((doorbell
& MPI2_IOC_STATE_MASK
) != MPI2_IOC_STATE_OPERATIONAL
) {
772 rc
= mpt3sas_base_hard_reset_handler(ioc
, FORCE_BIG_HAMMER
);
773 ioc_warn(ioc
, "%s: hard reset: %s\n",
774 __func__
, rc
== 0 ? "success" : "failed");
775 doorbell
= mpt3sas_base_get_iocstate(ioc
, 0);
776 if ((doorbell
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_FAULT
) {
777 mpt3sas_print_fault_code(ioc
, doorbell
&
778 MPI2_DOORBELL_DATA_MASK
);
779 } else if ((doorbell
& MPI2_IOC_STATE_MASK
) ==
780 MPI2_IOC_STATE_COREDUMP
)
781 mpt3sas_print_coredump_info(ioc
, doorbell
&
782 MPI2_DOORBELL_DATA_MASK
);
783 if (rc
&& (doorbell
& MPI2_IOC_STATE_MASK
) !=
784 MPI2_IOC_STATE_OPERATIONAL
)
785 return; /* don't rearm timer */
787 ioc
->ioc_coredump_loop
= 0;
788 if (ioc
->time_sync_interval
&&
789 ++ioc
->timestamp_update_count
>= ioc
->time_sync_interval
) {
790 ioc
->timestamp_update_count
= 0;
791 _base_sync_drv_fw_timestamp(ioc
);
793 spin_lock_irqsave(&ioc
->ioc_reset_in_progress_lock
, flags
);
795 if (ioc
->fault_reset_work_q
)
796 queue_delayed_work(ioc
->fault_reset_work_q
,
797 &ioc
->fault_reset_work
,
798 msecs_to_jiffies(FAULT_POLLING_INTERVAL
));
799 spin_unlock_irqrestore(&ioc
->ioc_reset_in_progress_lock
, flags
);
803 * mpt3sas_base_start_watchdog - start the fault_reset_work_q
804 * @ioc: per adapter object
809 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER
*ioc
)
813 if (ioc
->fault_reset_work_q
)
816 ioc
->timestamp_update_count
= 0;
817 /* initialize fault polling */
819 INIT_DELAYED_WORK(&ioc
->fault_reset_work
, _base_fault_reset_work
);
820 snprintf(ioc
->fault_reset_work_q_name
,
821 sizeof(ioc
->fault_reset_work_q_name
), "poll_%s%d_status",
822 ioc
->driver_name
, ioc
->id
);
823 ioc
->fault_reset_work_q
=
824 create_singlethread_workqueue(ioc
->fault_reset_work_q_name
);
825 if (!ioc
->fault_reset_work_q
) {
826 ioc_err(ioc
, "%s: failed (line=%d)\n", __func__
, __LINE__
);
829 spin_lock_irqsave(&ioc
->ioc_reset_in_progress_lock
, flags
);
830 if (ioc
->fault_reset_work_q
)
831 queue_delayed_work(ioc
->fault_reset_work_q
,
832 &ioc
->fault_reset_work
,
833 msecs_to_jiffies(FAULT_POLLING_INTERVAL
));
834 spin_unlock_irqrestore(&ioc
->ioc_reset_in_progress_lock
, flags
);
838 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
839 * @ioc: per adapter object
844 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER
*ioc
)
847 struct workqueue_struct
*wq
;
849 spin_lock_irqsave(&ioc
->ioc_reset_in_progress_lock
, flags
);
850 wq
= ioc
->fault_reset_work_q
;
851 ioc
->fault_reset_work_q
= NULL
;
852 spin_unlock_irqrestore(&ioc
->ioc_reset_in_progress_lock
, flags
);
854 if (!cancel_delayed_work_sync(&ioc
->fault_reset_work
))
856 destroy_workqueue(wq
);
861 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
862 * @ioc: per adapter object
863 * @fault_code: fault code
866 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER
*ioc
, u16 fault_code
)
868 ioc_err(ioc
, "fault_state(0x%04x)!\n", fault_code
);
872 * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state
873 * @ioc: per adapter object
874 * @fault_code: fault code
879 mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER
*ioc
, u16 fault_code
)
881 ioc_err(ioc
, "coredump_state(0x%04x)!\n", fault_code
);
885 * mpt3sas_base_wait_for_coredump_completion - Wait until coredump
886 * completes or times out
887 * @ioc: per adapter object
888 * @caller: caller function name
890 * Returns 0 for success, non-zero for failure.
893 mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER
*ioc
,
896 u8 timeout
= (ioc
->manu_pg11
.CoreDumpTOSec
) ?
897 ioc
->manu_pg11
.CoreDumpTOSec
:
898 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS
;
900 int ioc_state
= _base_wait_on_iocstate(ioc
, MPI2_IOC_STATE_FAULT
,
905 "%s: CoreDump timed out. (ioc_state=0x%x)\n",
909 "%s: CoreDump completed. (ioc_state=0x%x)\n",
916 * mpt3sas_halt_firmware - halt's mpt controller firmware
917 * @ioc: per adapter object
919 * For debugging timeout related issues. Writing 0xCOFFEE00
920 * to the doorbell register will halt controller firmware. With
921 * the purpose to stop both driver and firmware, the enduser can
922 * obtain a ring buffer from controller UART.
925 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER
*ioc
)
929 if (!ioc
->fwfault_debug
)
934 doorbell
= ioc
->base_readl(&ioc
->chip
->Doorbell
);
935 if ((doorbell
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_FAULT
) {
936 mpt3sas_print_fault_code(ioc
, doorbell
&
937 MPI2_DOORBELL_DATA_MASK
);
938 } else if ((doorbell
& MPI2_IOC_STATE_MASK
) ==
939 MPI2_IOC_STATE_COREDUMP
) {
940 mpt3sas_print_coredump_info(ioc
, doorbell
&
941 MPI2_DOORBELL_DATA_MASK
);
943 writel(0xC0FFEE00, &ioc
->chip
->Doorbell
);
944 ioc_err(ioc
, "Firmware is halted due to command timeout\n");
947 if (ioc
->fwfault_debug
== 2)
951 panic("panic in %s\n", __func__
);
955 * _base_sas_ioc_info - verbose translation of the ioc status
956 * @ioc: per adapter object
957 * @mpi_reply: reply mf payload returned from firmware
958 * @request_hdr: request mf
961 _base_sas_ioc_info(struct MPT3SAS_ADAPTER
*ioc
, MPI2DefaultReply_t
*mpi_reply
,
962 MPI2RequestHeader_t
*request_hdr
)
964 u16 ioc_status
= le16_to_cpu(mpi_reply
->IOCStatus
) &
968 char *func_str
= NULL
;
970 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
971 if (request_hdr
->Function
== MPI2_FUNCTION_SCSI_IO_REQUEST
||
972 request_hdr
->Function
== MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH
||
973 request_hdr
->Function
== MPI2_FUNCTION_EVENT_NOTIFICATION
)
976 if (ioc_status
== MPI2_IOCSTATUS_CONFIG_INVALID_PAGE
)
979 * Older Firmware version doesn't support driver trigger pages.
980 * So, skip displaying 'config invalid type' type
983 if (request_hdr
->Function
== MPI2_FUNCTION_CONFIG
) {
984 Mpi2ConfigRequest_t
*rqst
= (Mpi2ConfigRequest_t
*)request_hdr
;
986 if ((rqst
->ExtPageType
==
987 MPI2_CONFIG_EXTPAGETYPE_DRIVER_PERSISTENT_TRIGGER
) &&
988 !(ioc
->logging_level
& MPT_DEBUG_CONFIG
)) {
993 switch (ioc_status
) {
995 /****************************************************************************
996 * Common IOCStatus values for all replies
997 ****************************************************************************/
999 case MPI2_IOCSTATUS_INVALID_FUNCTION
:
1000 desc
= "invalid function";
1002 case MPI2_IOCSTATUS_BUSY
:
1005 case MPI2_IOCSTATUS_INVALID_SGL
:
1006 desc
= "invalid sgl";
1008 case MPI2_IOCSTATUS_INTERNAL_ERROR
:
1009 desc
= "internal error";
1011 case MPI2_IOCSTATUS_INVALID_VPID
:
1012 desc
= "invalid vpid";
1014 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES
:
1015 desc
= "insufficient resources";
1017 case MPI2_IOCSTATUS_INSUFFICIENT_POWER
:
1018 desc
= "insufficient power";
1020 case MPI2_IOCSTATUS_INVALID_FIELD
:
1021 desc
= "invalid field";
1023 case MPI2_IOCSTATUS_INVALID_STATE
:
1024 desc
= "invalid state";
1026 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED
:
1027 desc
= "op state not supported";
1030 /****************************************************************************
1031 * Config IOCStatus values
1032 ****************************************************************************/
1034 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION
:
1035 desc
= "config invalid action";
1037 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE
:
1038 desc
= "config invalid type";
1040 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE
:
1041 desc
= "config invalid page";
1043 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA
:
1044 desc
= "config invalid data";
1046 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS
:
1047 desc
= "config no defaults";
1049 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT
:
1050 desc
= "config cant commit";
1053 /****************************************************************************
1055 ****************************************************************************/
1057 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR
:
1058 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE
:
1059 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE
:
1060 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN
:
1061 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN
:
1062 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR
:
1063 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR
:
1064 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED
:
1065 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH
:
1066 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED
:
1067 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED
:
1068 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED
:
1071 /****************************************************************************
1072 * For use by SCSI Initiator and SCSI Target end-to-end data protection
1073 ****************************************************************************/
1075 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR
:
1076 desc
= "eedp guard error";
1078 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR
:
1079 desc
= "eedp ref tag error";
1081 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR
:
1082 desc
= "eedp app tag error";
1085 /****************************************************************************
1086 * SCSI Target values
1087 ****************************************************************************/
1089 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX
:
1090 desc
= "target invalid io index";
1092 case MPI2_IOCSTATUS_TARGET_ABORTED
:
1093 desc
= "target aborted";
1095 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE
:
1096 desc
= "target no conn retryable";
1098 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION
:
1099 desc
= "target no connection";
1101 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH
:
1102 desc
= "target xfer count mismatch";
1104 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR
:
1105 desc
= "target data offset error";
1107 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA
:
1108 desc
= "target too much write data";
1110 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT
:
1111 desc
= "target iu too short";
1113 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT
:
1114 desc
= "target ack nak timeout";
1116 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED
:
1117 desc
= "target nak received";
1120 /****************************************************************************
1121 * Serial Attached SCSI values
1122 ****************************************************************************/
1124 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED
:
1125 desc
= "smp request failed";
1127 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN
:
1128 desc
= "smp data overrun";
1131 /****************************************************************************
1132 * Diagnostic Buffer Post / Diagnostic Release values
1133 ****************************************************************************/
1135 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED
:
1136 desc
= "diagnostic released";
1145 switch (request_hdr
->Function
) {
1146 case MPI2_FUNCTION_CONFIG
:
1147 frame_sz
= sizeof(Mpi2ConfigRequest_t
) + ioc
->sge_size
;
1148 func_str
= "config_page";
1150 case MPI2_FUNCTION_SCSI_TASK_MGMT
:
1151 frame_sz
= sizeof(Mpi2SCSITaskManagementRequest_t
);
1152 func_str
= "task_mgmt";
1154 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL
:
1155 frame_sz
= sizeof(Mpi2SasIoUnitControlRequest_t
);
1156 func_str
= "sas_iounit_ctl";
1158 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR
:
1159 frame_sz
= sizeof(Mpi2SepRequest_t
);
1160 func_str
= "enclosure";
1162 case MPI2_FUNCTION_IOC_INIT
:
1163 frame_sz
= sizeof(Mpi2IOCInitRequest_t
);
1164 func_str
= "ioc_init";
1166 case MPI2_FUNCTION_PORT_ENABLE
:
1167 frame_sz
= sizeof(Mpi2PortEnableRequest_t
);
1168 func_str
= "port_enable";
1170 case MPI2_FUNCTION_SMP_PASSTHROUGH
:
1171 frame_sz
= sizeof(Mpi2SmpPassthroughRequest_t
) + ioc
->sge_size
;
1172 func_str
= "smp_passthru";
1174 case MPI2_FUNCTION_NVME_ENCAPSULATED
:
1175 frame_sz
= sizeof(Mpi26NVMeEncapsulatedRequest_t
) +
1177 func_str
= "nvme_encapsulated";
1181 func_str
= "unknown";
1185 ioc_warn(ioc
, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
1186 desc
, ioc_status
, request_hdr
, func_str
);
1188 _debug_dump_mf(request_hdr
, frame_sz
/4);
1192 * _base_display_event_data - verbose translation of firmware asyn events
1193 * @ioc: per adapter object
1194 * @mpi_reply: reply mf payload returned from firmware
1197 _base_display_event_data(struct MPT3SAS_ADAPTER
*ioc
,
1198 Mpi2EventNotificationReply_t
*mpi_reply
)
1203 if (!(ioc
->logging_level
& MPT_DEBUG_EVENTS
))
1206 event
= le16_to_cpu(mpi_reply
->Event
);
1209 case MPI2_EVENT_LOG_DATA
:
1212 case MPI2_EVENT_STATE_CHANGE
:
1213 desc
= "Status Change";
1215 case MPI2_EVENT_HARD_RESET_RECEIVED
:
1216 desc
= "Hard Reset Received";
1218 case MPI2_EVENT_EVENT_CHANGE
:
1219 desc
= "Event Change";
1221 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE
:
1222 desc
= "Device Status Change";
1224 case MPI2_EVENT_IR_OPERATION_STATUS
:
1225 if (!ioc
->hide_ir_msg
)
1226 desc
= "IR Operation Status";
1228 case MPI2_EVENT_SAS_DISCOVERY
:
1230 Mpi2EventDataSasDiscovery_t
*event_data
=
1231 (Mpi2EventDataSasDiscovery_t
*)mpi_reply
->EventData
;
1232 ioc_info(ioc
, "Discovery: (%s)",
1233 event_data
->ReasonCode
== MPI2_EVENT_SAS_DISC_RC_STARTED
?
1235 if (event_data
->DiscoveryStatus
)
1236 pr_cont(" discovery_status(0x%08x)",
1237 le32_to_cpu(event_data
->DiscoveryStatus
));
1241 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE
:
1242 desc
= "SAS Broadcast Primitive";
1244 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE
:
1245 desc
= "SAS Init Device Status Change";
1247 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW
:
1248 desc
= "SAS Init Table Overflow";
1250 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST
:
1251 desc
= "SAS Topology Change List";
1253 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE
:
1254 desc
= "SAS Enclosure Device Status Change";
1256 case MPI2_EVENT_IR_VOLUME
:
1257 if (!ioc
->hide_ir_msg
)
1260 case MPI2_EVENT_IR_PHYSICAL_DISK
:
1261 if (!ioc
->hide_ir_msg
)
1262 desc
= "IR Physical Disk";
1264 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST
:
1265 if (!ioc
->hide_ir_msg
)
1266 desc
= "IR Configuration Change List";
1268 case MPI2_EVENT_LOG_ENTRY_ADDED
:
1269 if (!ioc
->hide_ir_msg
)
1270 desc
= "Log Entry Added";
1272 case MPI2_EVENT_TEMP_THRESHOLD
:
1273 desc
= "Temperature Threshold";
1275 case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION
:
1276 desc
= "Cable Event";
1278 case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR
:
1279 desc
= "SAS Device Discovery Error";
1281 case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE
:
1282 desc
= "PCIE Device Status Change";
1284 case MPI2_EVENT_PCIE_ENUMERATION
:
1286 Mpi26EventDataPCIeEnumeration_t
*event_data
=
1287 (Mpi26EventDataPCIeEnumeration_t
*)mpi_reply
->EventData
;
1288 ioc_info(ioc
, "PCIE Enumeration: (%s)",
1289 event_data
->ReasonCode
== MPI26_EVENT_PCIE_ENUM_RC_STARTED
?
1291 if (event_data
->EnumerationStatus
)
1292 pr_cont("enumeration_status(0x%08x)",
1293 le32_to_cpu(event_data
->EnumerationStatus
));
1297 case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST
:
1298 desc
= "PCIE Topology Change List";
1305 ioc_info(ioc
, "%s\n", desc
);
1309 * _base_sas_log_info - verbose translation of firmware log info
1310 * @ioc: per adapter object
1311 * @log_info: log info
1314 _base_sas_log_info(struct MPT3SAS_ADAPTER
*ioc
, u32 log_info
)
1316 union loginfo_type
{
1325 union loginfo_type sas_loginfo
;
1326 char *originator_str
= NULL
;
1328 sas_loginfo
.loginfo
= log_info
;
1329 if (sas_loginfo
.dw
.bus_type
!= 3 /*SAS*/)
1332 /* each nexus loss loginfo */
1333 if (log_info
== 0x31170000)
1336 /* eat the loginfos associated with task aborts */
1337 if (ioc
->ignore_loginfos
&& (log_info
== 0x30050000 || log_info
==
1338 0x31140000 || log_info
== 0x31130000))
1341 switch (sas_loginfo
.dw
.originator
) {
1343 originator_str
= "IOP";
1346 originator_str
= "PL";
1349 if (!ioc
->hide_ir_msg
)
1350 originator_str
= "IR";
1352 originator_str
= "WarpDrive";
1356 ioc_warn(ioc
, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1358 originator_str
, sas_loginfo
.dw
.code
, sas_loginfo
.dw
.subcode
);
1362 * _base_display_reply_info -
1363 * @ioc: per adapter object
1364 * @smid: system request message index
1365 * @msix_index: MSIX table index supplied by the OS
1366 * @reply: reply message frame(lower 32bit addr)
1369 _base_display_reply_info(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
, u8 msix_index
,
1372 MPI2DefaultReply_t
*mpi_reply
;
1376 mpi_reply
= mpt3sas_base_get_reply_virt_addr(ioc
, reply
);
1377 if (unlikely(!mpi_reply
)) {
1378 ioc_err(ioc
, "mpi_reply not valid at %s:%d/%s()!\n",
1379 __FILE__
, __LINE__
, __func__
);
1382 ioc_status
= le16_to_cpu(mpi_reply
->IOCStatus
);
1384 if ((ioc_status
& MPI2_IOCSTATUS_MASK
) &&
1385 (ioc
->logging_level
& MPT_DEBUG_REPLY
)) {
1386 _base_sas_ioc_info(ioc
, mpi_reply
,
1387 mpt3sas_base_get_msg_frame(ioc
, smid
));
1390 if (ioc_status
& MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE
) {
1391 loginfo
= le32_to_cpu(mpi_reply
->IOCLogInfo
);
1392 _base_sas_log_info(ioc
, loginfo
);
1395 if (ioc_status
|| loginfo
) {
1396 ioc_status
&= MPI2_IOCSTATUS_MASK
;
1397 mpt3sas_trigger_mpi(ioc
, ioc_status
, loginfo
);
1402 * mpt3sas_base_done - base internal command completion routine
1403 * @ioc: per adapter object
1404 * @smid: system request message index
1405 * @msix_index: MSIX table index supplied by the OS
1406 * @reply: reply message frame(lower 32bit addr)
1409 * 1 meaning mf should be freed from _base_interrupt
1410 * 0 means the mf is freed from this function.
1413 mpt3sas_base_done(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
, u8 msix_index
,
1416 MPI2DefaultReply_t
*mpi_reply
;
1418 mpi_reply
= mpt3sas_base_get_reply_virt_addr(ioc
, reply
);
1419 if (mpi_reply
&& mpi_reply
->Function
== MPI2_FUNCTION_EVENT_ACK
)
1420 return mpt3sas_check_for_pending_internal_cmds(ioc
, smid
);
1422 if (ioc
->base_cmds
.status
== MPT3_CMD_NOT_USED
)
1425 ioc
->base_cmds
.status
|= MPT3_CMD_COMPLETE
;
1427 ioc
->base_cmds
.status
|= MPT3_CMD_REPLY_VALID
;
1428 memcpy(ioc
->base_cmds
.reply
, mpi_reply
, mpi_reply
->MsgLength
*4);
1430 ioc
->base_cmds
.status
&= ~MPT3_CMD_PENDING
;
1432 complete(&ioc
->base_cmds
.done
);
1437 * _base_async_event - main callback handler for firmware asyn events
1438 * @ioc: per adapter object
1439 * @msix_index: MSIX table index supplied by the OS
1440 * @reply: reply message frame(lower 32bit addr)
1443 * 1 meaning mf should be freed from _base_interrupt
1444 * 0 means the mf is freed from this function.
1447 _base_async_event(struct MPT3SAS_ADAPTER
*ioc
, u8 msix_index
, u32 reply
)
1449 Mpi2EventNotificationReply_t
*mpi_reply
;
1450 Mpi2EventAckRequest_t
*ack_request
;
1452 struct _event_ack_list
*delayed_event_ack
;
1454 mpi_reply
= mpt3sas_base_get_reply_virt_addr(ioc
, reply
);
1457 if (mpi_reply
->Function
!= MPI2_FUNCTION_EVENT_NOTIFICATION
)
1460 _base_display_event_data(ioc
, mpi_reply
);
1462 if (!(mpi_reply
->AckRequired
& MPI2_EVENT_NOTIFICATION_ACK_REQUIRED
))
1464 smid
= mpt3sas_base_get_smid(ioc
, ioc
->base_cb_idx
);
1466 delayed_event_ack
= kzalloc(sizeof(*delayed_event_ack
),
1468 if (!delayed_event_ack
)
1470 INIT_LIST_HEAD(&delayed_event_ack
->list
);
1471 delayed_event_ack
->Event
= mpi_reply
->Event
;
1472 delayed_event_ack
->EventContext
= mpi_reply
->EventContext
;
1473 list_add_tail(&delayed_event_ack
->list
,
1474 &ioc
->delayed_event_ack_list
);
1476 ioc_info(ioc
, "DELAYED: EVENT ACK: event (0x%04x)\n",
1477 le16_to_cpu(mpi_reply
->Event
)));
1481 ack_request
= mpt3sas_base_get_msg_frame(ioc
, smid
);
1482 memset(ack_request
, 0, sizeof(Mpi2EventAckRequest_t
));
1483 ack_request
->Function
= MPI2_FUNCTION_EVENT_ACK
;
1484 ack_request
->Event
= mpi_reply
->Event
;
1485 ack_request
->EventContext
= mpi_reply
->EventContext
;
1486 ack_request
->VF_ID
= 0; /* TODO */
1487 ack_request
->VP_ID
= 0;
1488 ioc
->put_smid_default(ioc
, smid
);
1492 /* scsih callback handler */
1493 mpt3sas_scsih_event_callback(ioc
, msix_index
, reply
);
1495 /* ctl callback handler */
1496 mpt3sas_ctl_event_callback(ioc
, msix_index
, reply
);
1501 static struct scsiio_tracker
*
1502 _get_st_from_smid(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
1504 struct scsi_cmnd
*cmd
;
1506 if (WARN_ON(!smid
) ||
1507 WARN_ON(smid
>= ioc
->hi_priority_smid
))
1510 cmd
= mpt3sas_scsih_scsi_lookup_get(ioc
, smid
);
1512 return scsi_cmd_priv(cmd
);
1518 * _base_get_cb_idx - obtain the callback index
1519 * @ioc: per adapter object
1520 * @smid: system request message index
1522 * Return: callback index.
1525 _base_get_cb_idx(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
1528 u16 ctl_smid
= ioc
->scsiio_depth
- INTERNAL_SCSIIO_CMDS_COUNT
+ 1;
1531 if (smid
< ioc
->hi_priority_smid
) {
1532 struct scsiio_tracker
*st
;
1534 if (smid
< ctl_smid
) {
1535 st
= _get_st_from_smid(ioc
, smid
);
1537 cb_idx
= st
->cb_idx
;
1538 } else if (smid
== ctl_smid
)
1539 cb_idx
= ioc
->ctl_cb_idx
;
1540 } else if (smid
< ioc
->internal_smid
) {
1541 i
= smid
- ioc
->hi_priority_smid
;
1542 cb_idx
= ioc
->hpr_lookup
[i
].cb_idx
;
1543 } else if (smid
<= ioc
->hba_queue_depth
) {
1544 i
= smid
- ioc
->internal_smid
;
1545 cb_idx
= ioc
->internal_lookup
[i
].cb_idx
;
1551 * mpt3sas_base_mask_interrupts - disable interrupts
1552 * @ioc: per adapter object
1554 * Disabling ResetIRQ, Reply and Doorbell Interrupts
1557 mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER
*ioc
)
1561 ioc
->mask_interrupts
= 1;
1562 him_register
= ioc
->base_readl(&ioc
->chip
->HostInterruptMask
);
1563 him_register
|= MPI2_HIM_DIM
+ MPI2_HIM_RIM
+ MPI2_HIM_RESET_IRQ_MASK
;
1564 writel(him_register
, &ioc
->chip
->HostInterruptMask
);
1565 ioc
->base_readl(&ioc
->chip
->HostInterruptMask
);
1569 * mpt3sas_base_unmask_interrupts - enable interrupts
1570 * @ioc: per adapter object
1572 * Enabling only Reply Interrupts
1575 mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER
*ioc
)
1579 him_register
= ioc
->base_readl(&ioc
->chip
->HostInterruptMask
);
1580 him_register
&= ~MPI2_HIM_RIM
;
1581 writel(him_register
, &ioc
->chip
->HostInterruptMask
);
1582 ioc
->mask_interrupts
= 0;
1585 union reply_descriptor
{
1593 static u32
base_mod64(u64 dividend
, u32 divisor
)
1598 pr_err("mpt3sas: DIVISOR is zero, in div fn\n");
1599 remainder
= do_div(dividend
, divisor
);
1604 * _base_process_reply_queue - Process reply descriptors from reply
1605 * descriptor post queue.
1606 * @reply_q: per IRQ's reply queue object.
1608 * Return: number of reply descriptors processed from reply
1612 _base_process_reply_queue(struct adapter_reply_queue
*reply_q
)
1614 union reply_descriptor rd
;
1616 u8 request_descript_type
;
1620 u8 msix_index
= reply_q
->msix_index
;
1621 struct MPT3SAS_ADAPTER
*ioc
= reply_q
->ioc
;
1622 Mpi2ReplyDescriptorsUnion_t
*rpf
;
1626 if (!atomic_add_unless(&reply_q
->busy
, 1, 1))
1627 return completed_cmds
;
1629 rpf
= &reply_q
->reply_post_free
[reply_q
->reply_post_host_index
];
1630 request_descript_type
= rpf
->Default
.ReplyFlags
1631 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK
;
1632 if (request_descript_type
== MPI2_RPY_DESCRIPT_FLAGS_UNUSED
) {
1633 atomic_dec(&reply_q
->busy
);
1634 return completed_cmds
;
1639 rd
.word
= le64_to_cpu(rpf
->Words
);
1640 if (rd
.u
.low
== UINT_MAX
|| rd
.u
.high
== UINT_MAX
)
1643 smid
= le16_to_cpu(rpf
->Default
.DescriptorTypeDependent1
);
1644 if (request_descript_type
==
1645 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS
||
1646 request_descript_type
==
1647 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS
||
1648 request_descript_type
==
1649 MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS
) {
1650 cb_idx
= _base_get_cb_idx(ioc
, smid
);
1651 if ((likely(cb_idx
< MPT_MAX_CALLBACKS
)) &&
1652 (likely(mpt_callbacks
[cb_idx
] != NULL
))) {
1653 rc
= mpt_callbacks
[cb_idx
](ioc
, smid
,
1656 mpt3sas_base_free_smid(ioc
, smid
);
1658 } else if (request_descript_type
==
1659 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY
) {
1660 reply
= le32_to_cpu(
1661 rpf
->AddressReply
.ReplyFrameAddress
);
1662 if (reply
> ioc
->reply_dma_max_address
||
1663 reply
< ioc
->reply_dma_min_address
)
1666 cb_idx
= _base_get_cb_idx(ioc
, smid
);
1667 if ((likely(cb_idx
< MPT_MAX_CALLBACKS
)) &&
1668 (likely(mpt_callbacks
[cb_idx
] != NULL
))) {
1669 rc
= mpt_callbacks
[cb_idx
](ioc
, smid
,
1672 _base_display_reply_info(ioc
,
1673 smid
, msix_index
, reply
);
1675 mpt3sas_base_free_smid(ioc
,
1679 _base_async_event(ioc
, msix_index
, reply
);
1682 /* reply free queue handling */
1684 ioc
->reply_free_host_index
=
1685 (ioc
->reply_free_host_index
==
1686 (ioc
->reply_free_queue_depth
- 1)) ?
1687 0 : ioc
->reply_free_host_index
+ 1;
1688 ioc
->reply_free
[ioc
->reply_free_host_index
] =
1690 if (ioc
->is_mcpu_endpoint
)
1691 _base_clone_reply_to_sys_mem(ioc
,
1693 ioc
->reply_free_host_index
);
1694 writel(ioc
->reply_free_host_index
,
1695 &ioc
->chip
->ReplyFreeHostIndex
);
1699 rpf
->Words
= cpu_to_le64(ULLONG_MAX
);
1700 reply_q
->reply_post_host_index
=
1701 (reply_q
->reply_post_host_index
==
1702 (ioc
->reply_post_queue_depth
- 1)) ? 0 :
1703 reply_q
->reply_post_host_index
+ 1;
1704 request_descript_type
=
1705 reply_q
->reply_post_free
[reply_q
->reply_post_host_index
].
1706 Default
.ReplyFlags
& MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK
;
1708 /* Update the reply post host index after continuously
1709 * processing the threshold number of Reply Descriptors.
1710 * So that FW can find enough entries to post the Reply
1711 * Descriptors in the reply descriptor post queue.
1713 if (completed_cmds
>= ioc
->thresh_hold
) {
1714 if (ioc
->combined_reply_queue
) {
1715 writel(reply_q
->reply_post_host_index
|
1716 ((msix_index
& 7) <<
1717 MPI2_RPHI_MSIX_INDEX_SHIFT
),
1718 ioc
->replyPostRegisterIndex
[msix_index
/8]);
1720 writel(reply_q
->reply_post_host_index
|
1722 MPI2_RPHI_MSIX_INDEX_SHIFT
),
1723 &ioc
->chip
->ReplyPostHostIndex
);
1725 if (!reply_q
->irq_poll_scheduled
) {
1726 reply_q
->irq_poll_scheduled
= true;
1727 irq_poll_sched(&reply_q
->irqpoll
);
1729 atomic_dec(&reply_q
->busy
);
1730 return completed_cmds
;
1732 if (request_descript_type
== MPI2_RPY_DESCRIPT_FLAGS_UNUSED
)
1734 if (!reply_q
->reply_post_host_index
)
1735 rpf
= reply_q
->reply_post_free
;
1742 if (!completed_cmds
) {
1743 atomic_dec(&reply_q
->busy
);
1744 return completed_cmds
;
1747 if (ioc
->is_warpdrive
) {
1748 writel(reply_q
->reply_post_host_index
,
1749 ioc
->reply_post_host_index
[msix_index
]);
1750 atomic_dec(&reply_q
->busy
);
1751 return completed_cmds
;
1754 /* Update Reply Post Host Index.
1755 * For those HBA's which support combined reply queue feature
1756 * 1. Get the correct Supplemental Reply Post Host Index Register.
1757 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1758 * Index Register address bank i.e replyPostRegisterIndex[],
1759 * 2. Then update this register with new reply host index value
1760 * in ReplyPostIndex field and the MSIxIndex field with
1761 * msix_index value reduced to a value between 0 and 7,
1762 * using a modulo 8 operation. Since each Supplemental Reply Post
1763 * Host Index Register supports 8 MSI-X vectors.
1765 * For other HBA's just update the Reply Post Host Index register with
1766 * new reply host index value in ReplyPostIndex Field and msix_index
1767 * value in MSIxIndex field.
1769 if (ioc
->combined_reply_queue
)
1770 writel(reply_q
->reply_post_host_index
| ((msix_index
& 7) <<
1771 MPI2_RPHI_MSIX_INDEX_SHIFT
),
1772 ioc
->replyPostRegisterIndex
[msix_index
/8]);
1774 writel(reply_q
->reply_post_host_index
| (msix_index
<<
1775 MPI2_RPHI_MSIX_INDEX_SHIFT
),
1776 &ioc
->chip
->ReplyPostHostIndex
);
1777 atomic_dec(&reply_q
->busy
);
1778 return completed_cmds
;
1782 * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1783 * @irq: irq number (not used)
1784 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1786 * Return: IRQ_HANDLED if processed, else IRQ_NONE.
1789 _base_interrupt(int irq
, void *bus_id
)
1791 struct adapter_reply_queue
*reply_q
= bus_id
;
1792 struct MPT3SAS_ADAPTER
*ioc
= reply_q
->ioc
;
1794 if (ioc
->mask_interrupts
)
1796 if (reply_q
->irq_poll_scheduled
)
1798 return ((_base_process_reply_queue(reply_q
) > 0) ?
1799 IRQ_HANDLED
: IRQ_NONE
);
1803 * _base_irqpoll - IRQ poll callback handler
1804 * @irqpoll: irq_poll object
1805 * @budget: irq poll weight
1807 * returns number of reply descriptors processed
1810 _base_irqpoll(struct irq_poll
*irqpoll
, int budget
)
1812 struct adapter_reply_queue
*reply_q
;
1813 int num_entries
= 0;
1815 reply_q
= container_of(irqpoll
, struct adapter_reply_queue
,
1817 if (reply_q
->irq_line_enable
) {
1818 disable_irq_nosync(reply_q
->os_irq
);
1819 reply_q
->irq_line_enable
= false;
1821 num_entries
= _base_process_reply_queue(reply_q
);
1822 if (num_entries
< budget
) {
1823 irq_poll_complete(irqpoll
);
1824 reply_q
->irq_poll_scheduled
= false;
1825 reply_q
->irq_line_enable
= true;
1826 enable_irq(reply_q
->os_irq
);
1828 * Go for one more round of processing the
1829 * reply descriptor post queue incase if HBA
1830 * Firmware has posted some reply descriptors
1831 * while reenabling the IRQ.
1833 _base_process_reply_queue(reply_q
);
1840 * _base_init_irqpolls - initliaze IRQ polls
1841 * @ioc: per adapter object
1846 _base_init_irqpolls(struct MPT3SAS_ADAPTER
*ioc
)
1848 struct adapter_reply_queue
*reply_q
, *next
;
1850 if (list_empty(&ioc
->reply_queue_list
))
1853 list_for_each_entry_safe(reply_q
, next
, &ioc
->reply_queue_list
, list
) {
1854 irq_poll_init(&reply_q
->irqpoll
,
1855 ioc
->hba_queue_depth
/4, _base_irqpoll
);
1856 reply_q
->irq_poll_scheduled
= false;
1857 reply_q
->irq_line_enable
= true;
1858 reply_q
->os_irq
= pci_irq_vector(ioc
->pdev
,
1859 reply_q
->msix_index
);
1864 * _base_is_controller_msix_enabled - is controller support muli-reply queues
1865 * @ioc: per adapter object
1867 * Return: Whether or not MSI/X is enabled.
1870 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER
*ioc
)
1872 return (ioc
->facts
.IOCCapabilities
&
1873 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX
) && ioc
->msix_enable
;
1877 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1878 * @ioc: per adapter object
1879 * @poll: poll over reply descriptor pools incase interrupt for
1880 * timed-out SCSI command got delayed
1881 * Context: non ISR conext
1883 * Called when a Task Management request has completed.
1886 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER
*ioc
, u8 poll
)
1888 struct adapter_reply_queue
*reply_q
;
1890 /* If MSIX capability is turned off
1891 * then multi-queues are not enabled
1893 if (!_base_is_controller_msix_enabled(ioc
))
1896 list_for_each_entry(reply_q
, &ioc
->reply_queue_list
, list
) {
1897 if (ioc
->shost_recovery
|| ioc
->remove_host
||
1898 ioc
->pci_error_recovery
)
1900 /* TMs are on msix_index == 0 */
1901 if (reply_q
->msix_index
== 0)
1903 synchronize_irq(pci_irq_vector(ioc
->pdev
, reply_q
->msix_index
));
1904 if (reply_q
->irq_poll_scheduled
) {
1905 /* Calling irq_poll_disable will wait for any pending
1906 * callbacks to have completed.
1908 irq_poll_disable(&reply_q
->irqpoll
);
1909 irq_poll_enable(&reply_q
->irqpoll
);
1910 /* check how the scheduled poll has ended,
1911 * clean up only if necessary
1913 if (reply_q
->irq_poll_scheduled
) {
1914 reply_q
->irq_poll_scheduled
= false;
1915 reply_q
->irq_line_enable
= true;
1916 enable_irq(reply_q
->os_irq
);
1921 _base_process_reply_queue(reply_q
);
1925 * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1926 * @cb_idx: callback index
1929 mpt3sas_base_release_callback_handler(u8 cb_idx
)
1931 mpt_callbacks
[cb_idx
] = NULL
;
1935 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1936 * @cb_func: callback function
1938 * Return: Index of @cb_func.
1941 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func
)
1945 for (cb_idx
= MPT_MAX_CALLBACKS
-1; cb_idx
; cb_idx
--)
1946 if (mpt_callbacks
[cb_idx
] == NULL
)
1949 mpt_callbacks
[cb_idx
] = cb_func
;
1954 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1957 mpt3sas_base_initialize_callback_handler(void)
1961 for (cb_idx
= 0; cb_idx
< MPT_MAX_CALLBACKS
; cb_idx
++)
1962 mpt3sas_base_release_callback_handler(cb_idx
);
1967 * _base_build_zero_len_sge - build zero length sg entry
1968 * @ioc: per adapter object
1969 * @paddr: virtual address for SGE
1971 * Create a zero length scatter gather entry to insure the IOCs hardware has
1972 * something to use if the target device goes brain dead and tries
1973 * to send data even when none is asked for.
1976 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER
*ioc
, void *paddr
)
1978 u32 flags_length
= (u32
)((MPI2_SGE_FLAGS_LAST_ELEMENT
|
1979 MPI2_SGE_FLAGS_END_OF_BUFFER
| MPI2_SGE_FLAGS_END_OF_LIST
|
1980 MPI2_SGE_FLAGS_SIMPLE_ELEMENT
) <<
1981 MPI2_SGE_FLAGS_SHIFT
);
1982 ioc
->base_add_sg_single(paddr
, flags_length
, -1);
1986 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1987 * @paddr: virtual address for SGE
1988 * @flags_length: SGE flags and data transfer length
1989 * @dma_addr: Physical address
1992 _base_add_sg_single_32(void *paddr
, u32 flags_length
, dma_addr_t dma_addr
)
1994 Mpi2SGESimple32_t
*sgel
= paddr
;
1996 flags_length
|= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING
|
1997 MPI2_SGE_FLAGS_SYSTEM_ADDRESS
) << MPI2_SGE_FLAGS_SHIFT
;
1998 sgel
->FlagsLength
= cpu_to_le32(flags_length
);
1999 sgel
->Address
= cpu_to_le32(dma_addr
);
2004 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
2005 * @paddr: virtual address for SGE
2006 * @flags_length: SGE flags and data transfer length
2007 * @dma_addr: Physical address
2010 _base_add_sg_single_64(void *paddr
, u32 flags_length
, dma_addr_t dma_addr
)
2012 Mpi2SGESimple64_t
*sgel
= paddr
;
2014 flags_length
|= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING
|
2015 MPI2_SGE_FLAGS_SYSTEM_ADDRESS
) << MPI2_SGE_FLAGS_SHIFT
;
2016 sgel
->FlagsLength
= cpu_to_le32(flags_length
);
2017 sgel
->Address
= cpu_to_le64(dma_addr
);
2021 * _base_get_chain_buffer_tracker - obtain chain tracker
2022 * @ioc: per adapter object
2023 * @scmd: SCSI commands of the IO request
2025 * Return: chain tracker from chain_lookup table using key as
2026 * smid and smid's chain_offset.
2028 static struct chain_tracker
*
2029 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER
*ioc
,
2030 struct scsi_cmnd
*scmd
)
2032 struct chain_tracker
*chain_req
;
2033 struct scsiio_tracker
*st
= scsi_cmd_priv(scmd
);
2034 u16 smid
= st
->smid
;
2036 atomic_read(&ioc
->chain_lookup
[smid
- 1].chain_offset
);
2038 if (chain_offset
== ioc
->chains_needed_per_io
)
2041 chain_req
= &ioc
->chain_lookup
[smid
- 1].chains_per_smid
[chain_offset
];
2042 atomic_inc(&ioc
->chain_lookup
[smid
- 1].chain_offset
);
2048 * _base_build_sg - build generic sg
2049 * @ioc: per adapter object
2050 * @psge: virtual address for SGE
2051 * @data_out_dma: physical address for WRITES
2052 * @data_out_sz: data xfer size for WRITES
2053 * @data_in_dma: physical address for READS
2054 * @data_in_sz: data xfer size for READS
2057 _base_build_sg(struct MPT3SAS_ADAPTER
*ioc
, void *psge
,
2058 dma_addr_t data_out_dma
, size_t data_out_sz
, dma_addr_t data_in_dma
,
2063 if (!data_out_sz
&& !data_in_sz
) {
2064 _base_build_zero_len_sge(ioc
, psge
);
2068 if (data_out_sz
&& data_in_sz
) {
2069 /* WRITE sgel first */
2070 sgl_flags
= (MPI2_SGE_FLAGS_SIMPLE_ELEMENT
|
2071 MPI2_SGE_FLAGS_END_OF_BUFFER
| MPI2_SGE_FLAGS_HOST_TO_IOC
);
2072 sgl_flags
= sgl_flags
<< MPI2_SGE_FLAGS_SHIFT
;
2073 ioc
->base_add_sg_single(psge
, sgl_flags
|
2074 data_out_sz
, data_out_dma
);
2077 psge
+= ioc
->sge_size
;
2079 /* READ sgel last */
2080 sgl_flags
= (MPI2_SGE_FLAGS_SIMPLE_ELEMENT
|
2081 MPI2_SGE_FLAGS_LAST_ELEMENT
| MPI2_SGE_FLAGS_END_OF_BUFFER
|
2082 MPI2_SGE_FLAGS_END_OF_LIST
);
2083 sgl_flags
= sgl_flags
<< MPI2_SGE_FLAGS_SHIFT
;
2084 ioc
->base_add_sg_single(psge
, sgl_flags
|
2085 data_in_sz
, data_in_dma
);
2086 } else if (data_out_sz
) /* WRITE */ {
2087 sgl_flags
= (MPI2_SGE_FLAGS_SIMPLE_ELEMENT
|
2088 MPI2_SGE_FLAGS_LAST_ELEMENT
| MPI2_SGE_FLAGS_END_OF_BUFFER
|
2089 MPI2_SGE_FLAGS_END_OF_LIST
| MPI2_SGE_FLAGS_HOST_TO_IOC
);
2090 sgl_flags
= sgl_flags
<< MPI2_SGE_FLAGS_SHIFT
;
2091 ioc
->base_add_sg_single(psge
, sgl_flags
|
2092 data_out_sz
, data_out_dma
);
2093 } else if (data_in_sz
) /* READ */ {
2094 sgl_flags
= (MPI2_SGE_FLAGS_SIMPLE_ELEMENT
|
2095 MPI2_SGE_FLAGS_LAST_ELEMENT
| MPI2_SGE_FLAGS_END_OF_BUFFER
|
2096 MPI2_SGE_FLAGS_END_OF_LIST
);
2097 sgl_flags
= sgl_flags
<< MPI2_SGE_FLAGS_SHIFT
;
2098 ioc
->base_add_sg_single(psge
, sgl_flags
|
2099 data_in_sz
, data_in_dma
);
2103 /* IEEE format sgls */
2106 * _base_build_nvme_prp - This function is called for NVMe end devices to build
2107 * a native SGL (NVMe PRP). The native SGL is built starting in the first PRP
2108 * entry of the NVMe message (PRP1). If the data buffer is small enough to be
2109 * described entirely using PRP1, then PRP2 is not used. If needed, PRP2 is
2110 * used to describe a larger data buffer. If the data buffer is too large to
2111 * describe using the two PRP entriess inside the NVMe message, then PRP1
2112 * describes the first data memory segment, and PRP2 contains a pointer to a PRP
2113 * list located elsewhere in memory to describe the remaining data memory
2114 * segments. The PRP list will be contiguous.
2116 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP
2117 * consists of a list of PRP entries to describe a number of noncontigous
2118 * physical memory segments as a single memory buffer, just as a SGL does. Note
2119 * however, that this function is only used by the IOCTL call, so the memory
2120 * given will be guaranteed to be contiguous. There is no need to translate
2121 * non-contiguous SGL into a PRP in this case. All PRPs will describe
2122 * contiguous space that is one page size each.
2124 * Each NVMe message contains two PRP entries. The first (PRP1) either contains
2125 * a PRP list pointer or a PRP element, depending upon the command. PRP2
2126 * contains the second PRP element if the memory being described fits within 2
2127 * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
2129 * A PRP list pointer contains the address of a PRP list, structured as a linear
2130 * array of PRP entries. Each PRP entry in this list describes a segment of
2133 * Each 64-bit PRP entry comprises an address and an offset field. The address
2134 * always points at the beginning of a 4KB physical memory page, and the offset
2135 * describes where within that 4KB page the memory segment begins. Only the
2136 * first element in a PRP list may contain a non-zero offest, implying that all
2137 * memory segments following the first begin at the start of a 4KB page.
2139 * Each PRP element normally describes 4KB of physical memory, with exceptions
2140 * for the first and last elements in the list. If the memory being described
2141 * by the list begins at a non-zero offset within the first 4KB page, then the
2142 * first PRP element will contain a non-zero offset indicating where the region
2143 * begins within the 4KB page. The last memory segment may end before the end
2144 * of the 4KB segment, depending upon the overall size of the memory being
2145 * described by the PRP list.
2147 * Since PRP entries lack any indication of size, the overall data buffer length
2148 * is used to determine where the end of the data memory buffer is located, and
2149 * how many PRP entries are required to describe it.
2151 * @ioc: per adapter object
2152 * @smid: system request message index for getting asscociated SGL
2153 * @nvme_encap_request: the NVMe request msg frame pointer
2154 * @data_out_dma: physical address for WRITES
2155 * @data_out_sz: data xfer size for WRITES
2156 * @data_in_dma: physical address for READS
2157 * @data_in_sz: data xfer size for READS
2160 _base_build_nvme_prp(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
,
2161 Mpi26NVMeEncapsulatedRequest_t
*nvme_encap_request
,
2162 dma_addr_t data_out_dma
, size_t data_out_sz
, dma_addr_t data_in_dma
,
2165 int prp_size
= NVME_PRP_SIZE
;
2166 __le64
*prp_entry
, *prp1_entry
, *prp2_entry
;
2168 dma_addr_t prp_entry_dma
, prp_page_dma
, dma_addr
;
2169 u32 offset
, entry_len
;
2170 u32 page_mask_result
, page_mask
;
2172 struct mpt3sas_nvme_cmd
*nvme_cmd
=
2173 (void *)nvme_encap_request
->NVMe_Command
;
2176 * Not all commands require a data transfer. If no data, just return
2177 * without constructing any PRP.
2179 if (!data_in_sz
&& !data_out_sz
)
2181 prp1_entry
= &nvme_cmd
->prp1
;
2182 prp2_entry
= &nvme_cmd
->prp2
;
2183 prp_entry
= prp1_entry
;
2185 * For the PRP entries, use the specially allocated buffer of
2186 * contiguous memory.
2188 prp_page
= (__le64
*)mpt3sas_base_get_pcie_sgl(ioc
, smid
);
2189 prp_page_dma
= mpt3sas_base_get_pcie_sgl_dma(ioc
, smid
);
2192 * Check if we are within 1 entry of a page boundary we don't
2193 * want our first entry to be a PRP List entry.
2195 page_mask
= ioc
->page_size
- 1;
2196 page_mask_result
= (uintptr_t)((u8
*)prp_page
+ prp_size
) & page_mask
;
2197 if (!page_mask_result
) {
2198 /* Bump up to next page boundary. */
2199 prp_page
= (__le64
*)((u8
*)prp_page
+ prp_size
);
2200 prp_page_dma
= prp_page_dma
+ prp_size
;
2204 * Set PRP physical pointer, which initially points to the current PRP
2207 prp_entry_dma
= prp_page_dma
;
2209 /* Get physical address and length of the data buffer. */
2211 dma_addr
= data_in_dma
;
2212 length
= data_in_sz
;
2214 dma_addr
= data_out_dma
;
2215 length
= data_out_sz
;
2218 /* Loop while the length is not zero. */
2221 * Check if we need to put a list pointer here if we are at
2222 * page boundary - prp_size (8 bytes).
2224 page_mask_result
= (prp_entry_dma
+ prp_size
) & page_mask
;
2225 if (!page_mask_result
) {
2227 * This is the last entry in a PRP List, so we need to
2228 * put a PRP list pointer here. What this does is:
2229 * - bump the current memory pointer to the next
2230 * address, which will be the next full page.
2231 * - set the PRP Entry to point to that page. This
2232 * is now the PRP List pointer.
2233 * - bump the PRP Entry pointer the start of the
2234 * next page. Since all of this PRP memory is
2235 * contiguous, no need to get a new page - it's
2236 * just the next address.
2239 *prp_entry
= cpu_to_le64(prp_entry_dma
);
2243 /* Need to handle if entry will be part of a page. */
2244 offset
= dma_addr
& page_mask
;
2245 entry_len
= ioc
->page_size
- offset
;
2247 if (prp_entry
== prp1_entry
) {
2249 * Must fill in the first PRP pointer (PRP1) before
2252 *prp1_entry
= cpu_to_le64(dma_addr
);
2255 * Now point to the second PRP entry within the
2258 prp_entry
= prp2_entry
;
2259 } else if (prp_entry
== prp2_entry
) {
2261 * Should the PRP2 entry be a PRP List pointer or just
2262 * a regular PRP pointer? If there is more than one
2263 * more page of data, must use a PRP List pointer.
2265 if (length
> ioc
->page_size
) {
2267 * PRP2 will contain a PRP List pointer because
2268 * more PRP's are needed with this command. The
2269 * list will start at the beginning of the
2270 * contiguous buffer.
2272 *prp2_entry
= cpu_to_le64(prp_entry_dma
);
2275 * The next PRP Entry will be the start of the
2278 prp_entry
= prp_page
;
2281 * After this, the PRP Entries are complete.
2282 * This command uses 2 PRP's and no PRP list.
2284 *prp2_entry
= cpu_to_le64(dma_addr
);
2288 * Put entry in list and bump the addresses.
2290 * After PRP1 and PRP2 are filled in, this will fill in
2291 * all remaining PRP entries in a PRP List, one per
2292 * each time through the loop.
2294 *prp_entry
= cpu_to_le64(dma_addr
);
2300 * Bump the phys address of the command's data buffer by the
2303 dma_addr
+= entry_len
;
2305 /* Decrement length accounting for last partial page. */
2306 if (entry_len
> length
)
2309 length
-= entry_len
;
2314 * base_make_prp_nvme -
2315 * Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only
2317 * @ioc: per adapter object
2318 * @scmd: SCSI command from the mid-layer
2319 * @mpi_request: mpi request
2321 * @sge_count: scatter gather element count.
2323 * Return: true: PRPs are built
2324 * false: IEEE SGLs needs to be built
2327 base_make_prp_nvme(struct MPT3SAS_ADAPTER
*ioc
,
2328 struct scsi_cmnd
*scmd
,
2329 Mpi25SCSIIORequest_t
*mpi_request
,
2330 u16 smid
, int sge_count
)
2332 int sge_len
, num_prp_in_chain
= 0;
2333 Mpi25IeeeSgeChain64_t
*main_chain_element
, *ptr_first_sgl
;
2335 dma_addr_t msg_dma
, sge_addr
, offset
;
2336 u32 page_mask
, page_mask_result
;
2337 struct scatterlist
*sg_scmd
;
2339 int data_len
= scsi_bufflen(scmd
);
2342 nvme_pg_size
= max_t(u32
, ioc
->page_size
, NVME_PRP_PAGE_SIZE
);
2344 * Nvme has a very convoluted prp format. One prp is required
2345 * for each page or partial page. Driver need to split up OS sg_list
2346 * entries if it is longer than one page or cross a page
2347 * boundary. Driver also have to insert a PRP list pointer entry as
2348 * the last entry in each physical page of the PRP list.
2350 * NOTE: The first PRP "entry" is actually placed in the first
2351 * SGL entry in the main message as IEEE 64 format. The 2nd
2352 * entry in the main message is the chain element, and the rest
2353 * of the PRP entries are built in the contiguous pcie buffer.
2355 page_mask
= nvme_pg_size
- 1;
2358 * Native SGL is needed.
2359 * Put a chain element in main message frame that points to the first
2362 * NOTE: The ChainOffset field must be 0 when using a chain pointer to
2366 /* Set main message chain element pointer */
2367 main_chain_element
= (pMpi25IeeeSgeChain64_t
)&mpi_request
->SGL
;
2369 * For NVMe the chain element needs to be the 2nd SG entry in the main
2372 main_chain_element
= (Mpi25IeeeSgeChain64_t
*)
2373 ((u8
*)main_chain_element
+ sizeof(MPI25_IEEE_SGE_CHAIN64
));
2376 * For the PRP entries, use the specially allocated buffer of
2377 * contiguous memory. Normal chain buffers can't be used
2378 * because each chain buffer would need to be the size of an OS
2381 curr_buff
= mpt3sas_base_get_pcie_sgl(ioc
, smid
);
2382 msg_dma
= mpt3sas_base_get_pcie_sgl_dma(ioc
, smid
);
2384 main_chain_element
->Address
= cpu_to_le64(msg_dma
);
2385 main_chain_element
->NextChainOffset
= 0;
2386 main_chain_element
->Flags
= MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT
|
2387 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR
|
2388 MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP
;
2390 /* Build first prp, sge need not to be page aligned*/
2391 ptr_first_sgl
= (pMpi25IeeeSgeChain64_t
)&mpi_request
->SGL
;
2392 sg_scmd
= scsi_sglist(scmd
);
2393 sge_addr
= sg_dma_address(sg_scmd
);
2394 sge_len
= sg_dma_len(sg_scmd
);
2396 offset
= sge_addr
& page_mask
;
2397 first_prp_len
= nvme_pg_size
- offset
;
2399 ptr_first_sgl
->Address
= cpu_to_le64(sge_addr
);
2400 ptr_first_sgl
->Length
= cpu_to_le32(first_prp_len
);
2402 data_len
-= first_prp_len
;
2404 if (sge_len
> first_prp_len
) {
2405 sge_addr
+= first_prp_len
;
2406 sge_len
-= first_prp_len
;
2407 } else if (data_len
&& (sge_len
== first_prp_len
)) {
2408 sg_scmd
= sg_next(sg_scmd
);
2409 sge_addr
= sg_dma_address(sg_scmd
);
2410 sge_len
= sg_dma_len(sg_scmd
);
2414 offset
= sge_addr
& page_mask
;
2416 /* Put PRP pointer due to page boundary*/
2417 page_mask_result
= (uintptr_t)(curr_buff
+ 1) & page_mask
;
2418 if (unlikely(!page_mask_result
)) {
2419 scmd_printk(KERN_NOTICE
,
2420 scmd
, "page boundary curr_buff: 0x%p\n",
2423 *curr_buff
= cpu_to_le64(msg_dma
);
2428 *curr_buff
= cpu_to_le64(sge_addr
);
2433 sge_addr
+= nvme_pg_size
;
2434 sge_len
-= nvme_pg_size
;
2435 data_len
-= nvme_pg_size
;
2443 sg_scmd
= sg_next(sg_scmd
);
2444 sge_addr
= sg_dma_address(sg_scmd
);
2445 sge_len
= sg_dma_len(sg_scmd
);
2448 main_chain_element
->Length
=
2449 cpu_to_le32(num_prp_in_chain
* sizeof(u64
));
2454 base_is_prp_possible(struct MPT3SAS_ADAPTER
*ioc
,
2455 struct _pcie_device
*pcie_device
, struct scsi_cmnd
*scmd
, int sge_count
)
2457 u32 data_length
= 0;
2458 bool build_prp
= true;
2460 data_length
= scsi_bufflen(scmd
);
2462 (mpt3sas_scsih_is_pcie_scsi_device(pcie_device
->device_info
))) {
2467 /* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2470 if ((data_length
<= NVME_PRP_PAGE_SIZE
*4) && (sge_count
<= 2))
2477 * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2478 * determine if the driver needs to build a native SGL. If so, that native
2479 * SGL is built in the special contiguous buffers allocated especially for
2480 * PCIe SGL creation. If the driver will not build a native SGL, return
2481 * TRUE and a normal IEEE SGL will be built. Currently this routine
2483 * @ioc: per adapter object
2484 * @mpi_request: mf request pointer
2485 * @smid: system request message index
2486 * @scmd: scsi command
2487 * @pcie_device: points to the PCIe device's info
2489 * Return: 0 if native SGL was built, 1 if no SGL was built
2492 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER
*ioc
,
2493 Mpi25SCSIIORequest_t
*mpi_request
, u16 smid
, struct scsi_cmnd
*scmd
,
2494 struct _pcie_device
*pcie_device
)
2498 /* Get the SG list pointer and info. */
2499 sges_left
= scsi_dma_map(scmd
);
2500 if (sges_left
< 0) {
2501 sdev_printk(KERN_ERR
, scmd
->device
,
2502 "scsi_dma_map failed: request for %d bytes!\n",
2503 scsi_bufflen(scmd
));
2507 /* Check if we need to build a native SG list. */
2508 if (base_is_prp_possible(ioc
, pcie_device
,
2509 scmd
, sges_left
) == 0) {
2510 /* We built a native SG list, just return. */
2515 * Build native NVMe PRP.
2517 base_make_prp_nvme(ioc
, scmd
, mpi_request
,
2522 scsi_dma_unmap(scmd
);
2527 * _base_add_sg_single_ieee - add sg element for IEEE format
2528 * @paddr: virtual address for SGE
2530 * @chain_offset: number of 128 byte elements from start of segment
2531 * @length: data transfer length
2532 * @dma_addr: Physical address
2535 _base_add_sg_single_ieee(void *paddr
, u8 flags
, u8 chain_offset
, u32 length
,
2536 dma_addr_t dma_addr
)
2538 Mpi25IeeeSgeChain64_t
*sgel
= paddr
;
2540 sgel
->Flags
= flags
;
2541 sgel
->NextChainOffset
= chain_offset
;
2542 sgel
->Length
= cpu_to_le32(length
);
2543 sgel
->Address
= cpu_to_le64(dma_addr
);
2547 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2548 * @ioc: per adapter object
2549 * @paddr: virtual address for SGE
2551 * Create a zero length scatter gather entry to insure the IOCs hardware has
2552 * something to use if the target device goes brain dead and tries
2553 * to send data even when none is asked for.
2556 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER
*ioc
, void *paddr
)
2558 u8 sgl_flags
= (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT
|
2559 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR
|
2560 MPI25_IEEE_SGE_FLAGS_END_OF_LIST
);
2562 _base_add_sg_single_ieee(paddr
, sgl_flags
, 0, 0, -1);
2566 * _base_build_sg_scmd - main sg creation routine
2567 * pcie_device is unused here!
2568 * @ioc: per adapter object
2569 * @scmd: scsi command
2570 * @smid: system request message index
2571 * @unused: unused pcie_device pointer
2574 * The main routine that builds scatter gather table from a given
2575 * scsi request sent via the .queuecommand main handler.
2577 * Return: 0 success, anything else error
2580 _base_build_sg_scmd(struct MPT3SAS_ADAPTER
*ioc
,
2581 struct scsi_cmnd
*scmd
, u16 smid
, struct _pcie_device
*unused
)
2583 Mpi2SCSIIORequest_t
*mpi_request
;
2584 dma_addr_t chain_dma
;
2585 struct scatterlist
*sg_scmd
;
2586 void *sg_local
, *chain
;
2591 u32 sges_in_segment
;
2593 u32 sgl_flags_last_element
;
2594 u32 sgl_flags_end_buffer
;
2595 struct chain_tracker
*chain_req
;
2597 mpi_request
= mpt3sas_base_get_msg_frame(ioc
, smid
);
2599 /* init scatter gather flags */
2600 sgl_flags
= MPI2_SGE_FLAGS_SIMPLE_ELEMENT
;
2601 if (scmd
->sc_data_direction
== DMA_TO_DEVICE
)
2602 sgl_flags
|= MPI2_SGE_FLAGS_HOST_TO_IOC
;
2603 sgl_flags_last_element
= (sgl_flags
| MPI2_SGE_FLAGS_LAST_ELEMENT
)
2604 << MPI2_SGE_FLAGS_SHIFT
;
2605 sgl_flags_end_buffer
= (sgl_flags
| MPI2_SGE_FLAGS_LAST_ELEMENT
|
2606 MPI2_SGE_FLAGS_END_OF_BUFFER
| MPI2_SGE_FLAGS_END_OF_LIST
)
2607 << MPI2_SGE_FLAGS_SHIFT
;
2608 sgl_flags
= sgl_flags
<< MPI2_SGE_FLAGS_SHIFT
;
2610 sg_scmd
= scsi_sglist(scmd
);
2611 sges_left
= scsi_dma_map(scmd
);
2612 if (sges_left
< 0) {
2613 sdev_printk(KERN_ERR
, scmd
->device
,
2614 "scsi_dma_map failed: request for %d bytes!\n",
2615 scsi_bufflen(scmd
));
2619 sg_local
= &mpi_request
->SGL
;
2620 sges_in_segment
= ioc
->max_sges_in_main_message
;
2621 if (sges_left
<= sges_in_segment
)
2622 goto fill_in_last_segment
;
2624 mpi_request
->ChainOffset
= (offsetof(Mpi2SCSIIORequest_t
, SGL
) +
2625 (sges_in_segment
* ioc
->sge_size
))/4;
2627 /* fill in main message segment when there is a chain following */
2628 while (sges_in_segment
) {
2629 if (sges_in_segment
== 1)
2630 ioc
->base_add_sg_single(sg_local
,
2631 sgl_flags_last_element
| sg_dma_len(sg_scmd
),
2632 sg_dma_address(sg_scmd
));
2634 ioc
->base_add_sg_single(sg_local
, sgl_flags
|
2635 sg_dma_len(sg_scmd
), sg_dma_address(sg_scmd
));
2636 sg_scmd
= sg_next(sg_scmd
);
2637 sg_local
+= ioc
->sge_size
;
2642 /* initializing the chain flags and pointers */
2643 chain_flags
= MPI2_SGE_FLAGS_CHAIN_ELEMENT
<< MPI2_SGE_FLAGS_SHIFT
;
2644 chain_req
= _base_get_chain_buffer_tracker(ioc
, scmd
);
2647 chain
= chain_req
->chain_buffer
;
2648 chain_dma
= chain_req
->chain_buffer_dma
;
2650 sges_in_segment
= (sges_left
<=
2651 ioc
->max_sges_in_chain_message
) ? sges_left
:
2652 ioc
->max_sges_in_chain_message
;
2653 chain_offset
= (sges_left
== sges_in_segment
) ?
2654 0 : (sges_in_segment
* ioc
->sge_size
)/4;
2655 chain_length
= sges_in_segment
* ioc
->sge_size
;
2657 chain_offset
= chain_offset
<<
2658 MPI2_SGE_CHAIN_OFFSET_SHIFT
;
2659 chain_length
+= ioc
->sge_size
;
2661 ioc
->base_add_sg_single(sg_local
, chain_flags
| chain_offset
|
2662 chain_length
, chain_dma
);
2665 goto fill_in_last_segment
;
2667 /* fill in chain segments */
2668 while (sges_in_segment
) {
2669 if (sges_in_segment
== 1)
2670 ioc
->base_add_sg_single(sg_local
,
2671 sgl_flags_last_element
|
2672 sg_dma_len(sg_scmd
),
2673 sg_dma_address(sg_scmd
));
2675 ioc
->base_add_sg_single(sg_local
, sgl_flags
|
2676 sg_dma_len(sg_scmd
),
2677 sg_dma_address(sg_scmd
));
2678 sg_scmd
= sg_next(sg_scmd
);
2679 sg_local
+= ioc
->sge_size
;
2684 chain_req
= _base_get_chain_buffer_tracker(ioc
, scmd
);
2687 chain
= chain_req
->chain_buffer
;
2688 chain_dma
= chain_req
->chain_buffer_dma
;
2692 fill_in_last_segment
:
2694 /* fill the last segment */
2697 ioc
->base_add_sg_single(sg_local
, sgl_flags_end_buffer
|
2698 sg_dma_len(sg_scmd
), sg_dma_address(sg_scmd
));
2700 ioc
->base_add_sg_single(sg_local
, sgl_flags
|
2701 sg_dma_len(sg_scmd
), sg_dma_address(sg_scmd
));
2702 sg_scmd
= sg_next(sg_scmd
);
2703 sg_local
+= ioc
->sge_size
;
2711 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2712 * @ioc: per adapter object
2713 * @scmd: scsi command
2714 * @smid: system request message index
2715 * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2716 * constructed on need.
2719 * The main routine that builds scatter gather table from a given
2720 * scsi request sent via the .queuecommand main handler.
2722 * Return: 0 success, anything else error
2725 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER
*ioc
,
2726 struct scsi_cmnd
*scmd
, u16 smid
, struct _pcie_device
*pcie_device
)
2728 Mpi25SCSIIORequest_t
*mpi_request
;
2729 dma_addr_t chain_dma
;
2730 struct scatterlist
*sg_scmd
;
2731 void *sg_local
, *chain
;
2735 u32 sges_in_segment
;
2736 u8 simple_sgl_flags
;
2737 u8 simple_sgl_flags_last
;
2739 struct chain_tracker
*chain_req
;
2741 mpi_request
= mpt3sas_base_get_msg_frame(ioc
, smid
);
2743 /* init scatter gather flags */
2744 simple_sgl_flags
= MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT
|
2745 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR
;
2746 simple_sgl_flags_last
= simple_sgl_flags
|
2747 MPI25_IEEE_SGE_FLAGS_END_OF_LIST
;
2748 chain_sgl_flags
= MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT
|
2749 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR
;
2751 /* Check if we need to build a native SG list. */
2752 if ((pcie_device
) && (_base_check_pcie_native_sgl(ioc
, mpi_request
,
2753 smid
, scmd
, pcie_device
) == 0)) {
2754 /* We built a native SG list, just return. */
2758 sg_scmd
= scsi_sglist(scmd
);
2759 sges_left
= scsi_dma_map(scmd
);
2760 if (sges_left
< 0) {
2761 sdev_printk(KERN_ERR
, scmd
->device
,
2762 "scsi_dma_map failed: request for %d bytes!\n",
2763 scsi_bufflen(scmd
));
2767 sg_local
= &mpi_request
->SGL
;
2768 sges_in_segment
= (ioc
->request_sz
-
2769 offsetof(Mpi25SCSIIORequest_t
, SGL
))/ioc
->sge_size_ieee
;
2770 if (sges_left
<= sges_in_segment
)
2771 goto fill_in_last_segment
;
2773 mpi_request
->ChainOffset
= (sges_in_segment
- 1 /* chain element */) +
2774 (offsetof(Mpi25SCSIIORequest_t
, SGL
)/ioc
->sge_size_ieee
);
2776 /* fill in main message segment when there is a chain following */
2777 while (sges_in_segment
> 1) {
2778 _base_add_sg_single_ieee(sg_local
, simple_sgl_flags
, 0,
2779 sg_dma_len(sg_scmd
), sg_dma_address(sg_scmd
));
2780 sg_scmd
= sg_next(sg_scmd
);
2781 sg_local
+= ioc
->sge_size_ieee
;
2786 /* initializing the pointers */
2787 chain_req
= _base_get_chain_buffer_tracker(ioc
, scmd
);
2790 chain
= chain_req
->chain_buffer
;
2791 chain_dma
= chain_req
->chain_buffer_dma
;
2793 sges_in_segment
= (sges_left
<=
2794 ioc
->max_sges_in_chain_message
) ? sges_left
:
2795 ioc
->max_sges_in_chain_message
;
2796 chain_offset
= (sges_left
== sges_in_segment
) ?
2797 0 : sges_in_segment
;
2798 chain_length
= sges_in_segment
* ioc
->sge_size_ieee
;
2800 chain_length
+= ioc
->sge_size_ieee
;
2801 _base_add_sg_single_ieee(sg_local
, chain_sgl_flags
,
2802 chain_offset
, chain_length
, chain_dma
);
2806 goto fill_in_last_segment
;
2808 /* fill in chain segments */
2809 while (sges_in_segment
) {
2810 _base_add_sg_single_ieee(sg_local
, simple_sgl_flags
, 0,
2811 sg_dma_len(sg_scmd
), sg_dma_address(sg_scmd
));
2812 sg_scmd
= sg_next(sg_scmd
);
2813 sg_local
+= ioc
->sge_size_ieee
;
2818 chain_req
= _base_get_chain_buffer_tracker(ioc
, scmd
);
2821 chain
= chain_req
->chain_buffer
;
2822 chain_dma
= chain_req
->chain_buffer_dma
;
2826 fill_in_last_segment
:
2828 /* fill the last segment */
2829 while (sges_left
> 0) {
2831 _base_add_sg_single_ieee(sg_local
,
2832 simple_sgl_flags_last
, 0, sg_dma_len(sg_scmd
),
2833 sg_dma_address(sg_scmd
));
2835 _base_add_sg_single_ieee(sg_local
, simple_sgl_flags
, 0,
2836 sg_dma_len(sg_scmd
), sg_dma_address(sg_scmd
));
2837 sg_scmd
= sg_next(sg_scmd
);
2838 sg_local
+= ioc
->sge_size_ieee
;
2846 * _base_build_sg_ieee - build generic sg for IEEE format
2847 * @ioc: per adapter object
2848 * @psge: virtual address for SGE
2849 * @data_out_dma: physical address for WRITES
2850 * @data_out_sz: data xfer size for WRITES
2851 * @data_in_dma: physical address for READS
2852 * @data_in_sz: data xfer size for READS
2855 _base_build_sg_ieee(struct MPT3SAS_ADAPTER
*ioc
, void *psge
,
2856 dma_addr_t data_out_dma
, size_t data_out_sz
, dma_addr_t data_in_dma
,
2861 if (!data_out_sz
&& !data_in_sz
) {
2862 _base_build_zero_len_sge_ieee(ioc
, psge
);
2866 if (data_out_sz
&& data_in_sz
) {
2867 /* WRITE sgel first */
2868 sgl_flags
= MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT
|
2869 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR
;
2870 _base_add_sg_single_ieee(psge
, sgl_flags
, 0, data_out_sz
,
2874 psge
+= ioc
->sge_size_ieee
;
2876 /* READ sgel last */
2877 sgl_flags
|= MPI25_IEEE_SGE_FLAGS_END_OF_LIST
;
2878 _base_add_sg_single_ieee(psge
, sgl_flags
, 0, data_in_sz
,
2880 } else if (data_out_sz
) /* WRITE */ {
2881 sgl_flags
= MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT
|
2882 MPI25_IEEE_SGE_FLAGS_END_OF_LIST
|
2883 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR
;
2884 _base_add_sg_single_ieee(psge
, sgl_flags
, 0, data_out_sz
,
2886 } else if (data_in_sz
) /* READ */ {
2887 sgl_flags
= MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT
|
2888 MPI25_IEEE_SGE_FLAGS_END_OF_LIST
|
2889 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR
;
2890 _base_add_sg_single_ieee(psge
, sgl_flags
, 0, data_in_sz
,
2895 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2898 * _base_config_dma_addressing - set dma addressing
2899 * @ioc: per adapter object
2900 * @pdev: PCI device struct
2902 * Return: 0 for success, non-zero for failure.
2905 _base_config_dma_addressing(struct MPT3SAS_ADAPTER
*ioc
, struct pci_dev
*pdev
)
2910 if (ioc
->is_mcpu_endpoint
||
2911 sizeof(dma_addr_t
) == 4 || ioc
->use_32bit_dma
||
2912 dma_get_required_mask(&pdev
->dev
) <= 32)
2914 /* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */
2915 else if (ioc
->hba_mpi_version_belonged
> MPI2_VERSION
)
2920 if (dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(dma_mask
)) ||
2921 dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(dma_mask
)))
2924 if (dma_mask
> 32) {
2925 ioc
->base_add_sg_single
= &_base_add_sg_single_64
;
2926 ioc
->sge_size
= sizeof(Mpi2SGESimple64_t
);
2928 ioc
->base_add_sg_single
= &_base_add_sg_single_32
;
2929 ioc
->sge_size
= sizeof(Mpi2SGESimple32_t
);
2933 ioc_info(ioc
, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
2934 dma_mask
, convert_to_kb(s
.totalram
));
2940 * _base_check_enable_msix - checks MSIX capabable.
2941 * @ioc: per adapter object
2943 * Check to see if card is capable of MSIX, and set number
2944 * of available msix vectors
2947 _base_check_enable_msix(struct MPT3SAS_ADAPTER
*ioc
)
2950 u16 message_control
;
2952 /* Check whether controller SAS2008 B0 controller,
2953 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
2955 if (ioc
->pdev
->device
== MPI2_MFGPAGE_DEVID_SAS2008
&&
2956 ioc
->pdev
->revision
== SAS2_PCI_DEVICE_B0_REVISION
) {
2960 base
= pci_find_capability(ioc
->pdev
, PCI_CAP_ID_MSIX
);
2962 dfailprintk(ioc
, ioc_info(ioc
, "msix not supported\n"));
2966 /* get msix vector count */
2967 /* NUMA_IO not supported for older controllers */
2968 if (ioc
->pdev
->device
== MPI2_MFGPAGE_DEVID_SAS2004
||
2969 ioc
->pdev
->device
== MPI2_MFGPAGE_DEVID_SAS2008
||
2970 ioc
->pdev
->device
== MPI2_MFGPAGE_DEVID_SAS2108_1
||
2971 ioc
->pdev
->device
== MPI2_MFGPAGE_DEVID_SAS2108_2
||
2972 ioc
->pdev
->device
== MPI2_MFGPAGE_DEVID_SAS2108_3
||
2973 ioc
->pdev
->device
== MPI2_MFGPAGE_DEVID_SAS2116_1
||
2974 ioc
->pdev
->device
== MPI2_MFGPAGE_DEVID_SAS2116_2
)
2975 ioc
->msix_vector_count
= 1;
2977 pci_read_config_word(ioc
->pdev
, base
+ 2, &message_control
);
2978 ioc
->msix_vector_count
= (message_control
& 0x3FF) + 1;
2980 dinitprintk(ioc
, ioc_info(ioc
, "msix is supported, vector_count(%d)\n",
2981 ioc
->msix_vector_count
));
2986 * _base_free_irq - free irq
2987 * @ioc: per adapter object
2989 * Freeing respective reply_queue from the list.
2992 _base_free_irq(struct MPT3SAS_ADAPTER
*ioc
)
2994 struct adapter_reply_queue
*reply_q
, *next
;
2996 if (list_empty(&ioc
->reply_queue_list
))
2999 list_for_each_entry_safe(reply_q
, next
, &ioc
->reply_queue_list
, list
) {
3000 list_del(&reply_q
->list
);
3001 if (ioc
->smp_affinity_enable
)
3002 irq_set_affinity_hint(pci_irq_vector(ioc
->pdev
,
3003 reply_q
->msix_index
), NULL
);
3004 free_irq(pci_irq_vector(ioc
->pdev
, reply_q
->msix_index
),
3011 * _base_request_irq - request irq
3012 * @ioc: per adapter object
3013 * @index: msix index into vector table
3015 * Inserting respective reply_queue into the list.
3018 _base_request_irq(struct MPT3SAS_ADAPTER
*ioc
, u8 index
)
3020 struct pci_dev
*pdev
= ioc
->pdev
;
3021 struct adapter_reply_queue
*reply_q
;
3024 reply_q
= kzalloc(sizeof(struct adapter_reply_queue
), GFP_KERNEL
);
3026 ioc_err(ioc
, "unable to allocate memory %zu!\n",
3027 sizeof(struct adapter_reply_queue
));
3031 reply_q
->msix_index
= index
;
3033 atomic_set(&reply_q
->busy
, 0);
3034 if (ioc
->msix_enable
)
3035 snprintf(reply_q
->name
, MPT_NAME_LENGTH
, "%s%d-msix%d",
3036 ioc
->driver_name
, ioc
->id
, index
);
3038 snprintf(reply_q
->name
, MPT_NAME_LENGTH
, "%s%d",
3039 ioc
->driver_name
, ioc
->id
);
3040 r
= request_irq(pci_irq_vector(pdev
, index
), _base_interrupt
,
3041 IRQF_SHARED
, reply_q
->name
, reply_q
);
3043 pr_err("%s: unable to allocate interrupt %d!\n",
3044 reply_q
->name
, pci_irq_vector(pdev
, index
));
3049 INIT_LIST_HEAD(&reply_q
->list
);
3050 list_add_tail(&reply_q
->list
, &ioc
->reply_queue_list
);
3055 * _base_assign_reply_queues - assigning msix index for each cpu
3056 * @ioc: per adapter object
3058 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
3060 * It would nice if we could call irq_set_affinity, however it is not
3061 * an exported symbol
3064 _base_assign_reply_queues(struct MPT3SAS_ADAPTER
*ioc
)
3066 unsigned int cpu
, nr_cpus
, nr_msix
, index
= 0;
3067 struct adapter_reply_queue
*reply_q
;
3068 int local_numa_node
;
3070 if (!_base_is_controller_msix_enabled(ioc
))
3073 if (ioc
->msix_load_balance
)
3076 memset(ioc
->cpu_msix_table
, 0, ioc
->cpu_msix_table_sz
);
3078 nr_cpus
= num_online_cpus();
3079 nr_msix
= ioc
->reply_queue_count
= min(ioc
->reply_queue_count
,
3080 ioc
->facts
.MaxMSIxVectors
);
3084 if (ioc
->smp_affinity_enable
) {
3087 * set irq affinity to local numa node for those irqs
3088 * corresponding to high iops queues.
3090 if (ioc
->high_iops_queues
) {
3091 local_numa_node
= dev_to_node(&ioc
->pdev
->dev
);
3092 for (index
= 0; index
< ioc
->high_iops_queues
;
3094 irq_set_affinity_hint(pci_irq_vector(ioc
->pdev
,
3095 index
), cpumask_of_node(local_numa_node
));
3099 list_for_each_entry(reply_q
, &ioc
->reply_queue_list
, list
) {
3100 const cpumask_t
*mask
;
3102 if (reply_q
->msix_index
< ioc
->high_iops_queues
)
3105 mask
= pci_irq_get_affinity(ioc
->pdev
,
3106 reply_q
->msix_index
);
3108 ioc_warn(ioc
, "no affinity for msi %x\n",
3109 reply_q
->msix_index
);
3113 for_each_cpu_and(cpu
, mask
, cpu_online_mask
) {
3114 if (cpu
>= ioc
->cpu_msix_table_sz
)
3116 ioc
->cpu_msix_table
[cpu
] = reply_q
->msix_index
;
3123 cpu
= cpumask_first(cpu_online_mask
);
3124 nr_msix
-= ioc
->high_iops_queues
;
3127 list_for_each_entry(reply_q
, &ioc
->reply_queue_list
, list
) {
3128 unsigned int i
, group
= nr_cpus
/ nr_msix
;
3130 if (reply_q
->msix_index
< ioc
->high_iops_queues
)
3136 if (index
< nr_cpus
% nr_msix
)
3139 for (i
= 0 ; i
< group
; i
++) {
3140 ioc
->cpu_msix_table
[cpu
] = reply_q
->msix_index
;
3141 cpu
= cpumask_next(cpu
, cpu_online_mask
);
3148 * _base_check_and_enable_high_iops_queues - enable high iops mode
3149 * @ioc: per adapter object
3150 * @hba_msix_vector_count: msix vectors supported by HBA
3152 * Enable high iops queues only if
3153 * - HBA is a SEA/AERO controller and
3154 * - MSI-Xs vector supported by the HBA is 128 and
3155 * - total CPU count in the system >=16 and
3156 * - loaded driver with default max_msix_vectors module parameter and
3157 * - system booted in non kdump mode
3162 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER
*ioc
,
3163 int hba_msix_vector_count
)
3167 if (perf_mode
== MPT_PERF_MODE_IOPS
||
3168 perf_mode
== MPT_PERF_MODE_LATENCY
) {
3169 ioc
->high_iops_queues
= 0;
3173 if (perf_mode
== MPT_PERF_MODE_DEFAULT
) {
3175 pcie_capability_read_word(ioc
->pdev
, PCI_EXP_LNKSTA
, &lnksta
);
3176 speed
= lnksta
& PCI_EXP_LNKSTA_CLS
;
3179 ioc
->high_iops_queues
= 0;
3184 if (!reset_devices
&& ioc
->is_aero_ioc
&&
3185 hba_msix_vector_count
== MPT3SAS_GEN35_MAX_MSIX_QUEUES
&&
3186 num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES
&&
3187 max_msix_vectors
== -1)
3188 ioc
->high_iops_queues
= MPT3SAS_HIGH_IOPS_REPLY_QUEUES
;
3190 ioc
->high_iops_queues
= 0;
3194 * _base_disable_msix - disables msix
3195 * @ioc: per adapter object
3199 _base_disable_msix(struct MPT3SAS_ADAPTER
*ioc
)
3201 if (!ioc
->msix_enable
)
3203 pci_free_irq_vectors(ioc
->pdev
);
3204 ioc
->msix_enable
= 0;
3208 * _base_alloc_irq_vectors - allocate msix vectors
3209 * @ioc: per adapter object
3213 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER
*ioc
)
3215 int i
, irq_flags
= PCI_IRQ_MSIX
;
3216 struct irq_affinity desc
= { .pre_vectors
= ioc
->high_iops_queues
};
3217 struct irq_affinity
*descp
= &desc
;
3219 if (ioc
->smp_affinity_enable
)
3220 irq_flags
|= PCI_IRQ_AFFINITY
;
3224 ioc_info(ioc
, " %d %d\n", ioc
->high_iops_queues
,
3225 ioc
->reply_queue_count
);
3227 i
= pci_alloc_irq_vectors_affinity(ioc
->pdev
,
3228 ioc
->high_iops_queues
,
3229 ioc
->reply_queue_count
, irq_flags
, descp
);
3235 * _base_enable_msix - enables msix, failback to io_apic
3236 * @ioc: per adapter object
3240 _base_enable_msix(struct MPT3SAS_ADAPTER
*ioc
)
3243 int i
, local_max_msix_vectors
;
3246 ioc
->msix_load_balance
= false;
3248 if (msix_disable
== -1 || msix_disable
== 0)
3254 if (_base_check_enable_msix(ioc
) != 0)
3257 ioc_info(ioc
, "MSI-X vectors supported: %d\n", ioc
->msix_vector_count
);
3258 pr_info("\t no of cores: %d, max_msix_vectors: %d\n",
3259 ioc
->cpu_count
, max_msix_vectors
);
3260 if (ioc
->is_aero_ioc
)
3261 _base_check_and_enable_high_iops_queues(ioc
,
3262 ioc
->msix_vector_count
);
3263 ioc
->reply_queue_count
=
3264 min_t(int, ioc
->cpu_count
+ ioc
->high_iops_queues
,
3265 ioc
->msix_vector_count
);
3267 if (!ioc
->rdpq_array_enable
&& max_msix_vectors
== -1)
3268 local_max_msix_vectors
= (reset_devices
) ? 1 : 8;
3270 local_max_msix_vectors
= max_msix_vectors
;
3272 if (local_max_msix_vectors
> 0)
3273 ioc
->reply_queue_count
= min_t(int, local_max_msix_vectors
,
3274 ioc
->reply_queue_count
);
3275 else if (local_max_msix_vectors
== 0)
3279 * Enable msix_load_balance only if combined reply queue mode is
3280 * disabled on SAS3 & above generation HBA devices.
3282 if (!ioc
->combined_reply_queue
&&
3283 ioc
->hba_mpi_version_belonged
!= MPI2_VERSION
) {
3285 "combined ReplyQueue is off, Enabling msix load balance\n");
3286 ioc
->msix_load_balance
= true;
3290 * smp affinity setting is not need when msix load balance
3293 if (ioc
->msix_load_balance
)
3294 ioc
->smp_affinity_enable
= 0;
3296 r
= _base_alloc_irq_vectors(ioc
);
3298 ioc_info(ioc
, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r
);
3302 ioc
->msix_enable
= 1;
3303 ioc
->reply_queue_count
= r
;
3304 for (i
= 0; i
< ioc
->reply_queue_count
; i
++) {
3305 r
= _base_request_irq(ioc
, i
);
3307 _base_free_irq(ioc
);
3308 _base_disable_msix(ioc
);
3313 ioc_info(ioc
, "High IOPs queues : %s\n",
3314 ioc
->high_iops_queues
? "enabled" : "disabled");
3318 /* failback to io_apic interrupt routing */
3320 ioc
->high_iops_queues
= 0;
3321 ioc_info(ioc
, "High IOPs queues : disabled\n");
3322 ioc
->reply_queue_count
= 1;
3323 r
= pci_alloc_irq_vectors(ioc
->pdev
, 1, 1, PCI_IRQ_LEGACY
);
3326 ioc_info(ioc
, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
3329 r
= _base_request_irq(ioc
, 0);
3335 * mpt3sas_base_unmap_resources - free controller resources
3336 * @ioc: per adapter object
3339 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER
*ioc
)
3341 struct pci_dev
*pdev
= ioc
->pdev
;
3343 dexitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
3345 _base_free_irq(ioc
);
3346 _base_disable_msix(ioc
);
3348 kfree(ioc
->replyPostRegisterIndex
);
3349 ioc
->replyPostRegisterIndex
= NULL
;
3352 if (ioc
->chip_phys
) {
3357 if (pci_is_enabled(pdev
)) {
3358 pci_release_selected_regions(ioc
->pdev
, ioc
->bars
);
3359 pci_disable_pcie_error_reporting(pdev
);
3360 pci_disable_device(pdev
);
3365 _base_diag_reset(struct MPT3SAS_ADAPTER
*ioc
);
3368 * _base_check_for_fault_and_issue_reset - check if IOC is in fault state
3369 * and if it is in fault state then issue diag reset.
3370 * @ioc: per adapter object
3372 * Returns: 0 for success, non-zero for failure.
3375 _base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER
*ioc
)
3380 dinitprintk(ioc
, pr_info("%s\n", __func__
));
3381 if (ioc
->pci_error_recovery
)
3383 ioc_state
= mpt3sas_base_get_iocstate(ioc
, 0);
3384 dhsprintk(ioc
, pr_info("%s: ioc_state(0x%08x)\n", __func__
, ioc_state
));
3386 if ((ioc_state
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_FAULT
) {
3387 mpt3sas_print_fault_code(ioc
, ioc_state
&
3388 MPI2_DOORBELL_DATA_MASK
);
3389 rc
= _base_diag_reset(ioc
);
3390 } else if ((ioc_state
& MPI2_IOC_STATE_MASK
) ==
3391 MPI2_IOC_STATE_COREDUMP
) {
3392 mpt3sas_print_coredump_info(ioc
, ioc_state
&
3393 MPI2_DOORBELL_DATA_MASK
);
3394 mpt3sas_base_wait_for_coredump_completion(ioc
, __func__
);
3395 rc
= _base_diag_reset(ioc
);
3402 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
3403 * @ioc: per adapter object
3405 * Return: 0 for success, non-zero for failure.
3408 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER
*ioc
)
3410 struct pci_dev
*pdev
= ioc
->pdev
;
3415 phys_addr_t chip_phys
= 0;
3416 struct adapter_reply_queue
*reply_q
;
3418 dinitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
3420 ioc
->bars
= pci_select_bars(pdev
, IORESOURCE_MEM
);
3421 if (pci_enable_device_mem(pdev
)) {
3422 ioc_warn(ioc
, "pci_enable_device_mem: failed\n");
3428 if (pci_request_selected_regions(pdev
, ioc
->bars
,
3429 ioc
->driver_name
)) {
3430 ioc_warn(ioc
, "pci_request_selected_regions: failed\n");
3436 /* AER (Advanced Error Reporting) hooks */
3437 pci_enable_pcie_error_reporting(pdev
);
3439 pci_set_master(pdev
);
3442 if (_base_config_dma_addressing(ioc
, pdev
) != 0) {
3443 ioc_warn(ioc
, "no suitable DMA mask for %s\n", pci_name(pdev
));
3448 for (i
= 0, memap_sz
= 0, pio_sz
= 0; (i
< DEVICE_COUNT_RESOURCE
) &&
3449 (!memap_sz
|| !pio_sz
); i
++) {
3450 if (pci_resource_flags(pdev
, i
) & IORESOURCE_IO
) {
3453 pio_chip
= (u64
)pci_resource_start(pdev
, i
);
3454 pio_sz
= pci_resource_len(pdev
, i
);
3455 } else if (pci_resource_flags(pdev
, i
) & IORESOURCE_MEM
) {
3458 ioc
->chip_phys
= pci_resource_start(pdev
, i
);
3459 chip_phys
= ioc
->chip_phys
;
3460 memap_sz
= pci_resource_len(pdev
, i
);
3461 ioc
->chip
= ioremap(ioc
->chip_phys
, memap_sz
);
3465 if (ioc
->chip
== NULL
) {
3467 "unable to map adapter memory! or resource not found\n");
3472 mpt3sas_base_mask_interrupts(ioc
);
3474 r
= _base_get_ioc_facts(ioc
);
3476 rc
= _base_check_for_fault_and_issue_reset(ioc
);
3477 if (rc
|| (_base_get_ioc_facts(ioc
)))
3481 if (!ioc
->rdpq_array_enable_assigned
) {
3482 ioc
->rdpq_array_enable
= ioc
->rdpq_array_capable
;
3483 ioc
->rdpq_array_enable_assigned
= 1;
3486 r
= _base_enable_msix(ioc
);
3490 if (!ioc
->is_driver_loading
)
3491 _base_init_irqpolls(ioc
);
3492 /* Use the Combined reply queue feature only for SAS3 C0 & higher
3493 * revision HBAs and also only when reply queue count is greater than 8
3495 if (ioc
->combined_reply_queue
) {
3496 /* Determine the Supplemental Reply Post Host Index Registers
3497 * Addresse. Supplemental Reply Post Host Index Registers
3498 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3499 * each register is at offset bytes of
3500 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3502 ioc
->replyPostRegisterIndex
= kcalloc(
3503 ioc
->combined_reply_index_count
,
3504 sizeof(resource_size_t
*), GFP_KERNEL
);
3505 if (!ioc
->replyPostRegisterIndex
) {
3507 "allocation for replyPostRegisterIndex failed!\n");
3512 for (i
= 0; i
< ioc
->combined_reply_index_count
; i
++) {
3513 ioc
->replyPostRegisterIndex
[i
] = (resource_size_t
*)
3514 ((u8 __force
*)&ioc
->chip
->Doorbell
+
3515 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET
+
3516 (i
* MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET
));
3520 if (ioc
->is_warpdrive
) {
3521 ioc
->reply_post_host_index
[0] = (resource_size_t __iomem
*)
3522 &ioc
->chip
->ReplyPostHostIndex
;
3524 for (i
= 1; i
< ioc
->cpu_msix_table_sz
; i
++)
3525 ioc
->reply_post_host_index
[i
] =
3526 (resource_size_t __iomem
*)
3527 ((u8 __iomem
*)&ioc
->chip
->Doorbell
+ (0x4000 + ((i
- 1)
3531 list_for_each_entry(reply_q
, &ioc
->reply_queue_list
, list
)
3532 pr_info("%s: %s enabled: IRQ %d\n",
3534 ioc
->msix_enable
? "PCI-MSI-X" : "IO-APIC",
3535 pci_irq_vector(ioc
->pdev
, reply_q
->msix_index
));
3537 ioc_info(ioc
, "iomem(%pap), mapped(0x%p), size(%d)\n",
3538 &chip_phys
, ioc
->chip
, memap_sz
);
3539 ioc_info(ioc
, "ioport(0x%016llx), size(%d)\n",
3540 (unsigned long long)pio_chip
, pio_sz
);
3542 /* Save PCI configuration state for recovery from PCI AER/EEH errors */
3543 pci_save_state(pdev
);
3547 mpt3sas_base_unmap_resources(ioc
);
3552 * mpt3sas_base_get_msg_frame - obtain request mf pointer
3553 * @ioc: per adapter object
3554 * @smid: system request message index(smid zero is invalid)
3556 * Return: virt pointer to message frame.
3559 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
3561 return (void *)(ioc
->request
+ (smid
* ioc
->request_sz
));
3565 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3566 * @ioc: per adapter object
3567 * @smid: system request message index
3569 * Return: virt pointer to sense buffer.
3572 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
3574 return (void *)(ioc
->sense
+ ((smid
- 1) * SCSI_SENSE_BUFFERSIZE
));
3578 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3579 * @ioc: per adapter object
3580 * @smid: system request message index
3582 * Return: phys pointer to the low 32bit address of the sense buffer.
3585 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
3587 return cpu_to_le32(ioc
->sense_dma
+ ((smid
- 1) *
3588 SCSI_SENSE_BUFFERSIZE
));
3592 * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3593 * @ioc: per adapter object
3594 * @smid: system request message index
3596 * Return: virt pointer to a PCIe SGL.
3599 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
3601 return (void *)(ioc
->pcie_sg_lookup
[smid
- 1].pcie_sgl
);
3605 * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3606 * @ioc: per adapter object
3607 * @smid: system request message index
3609 * Return: phys pointer to the address of the PCIe buffer.
3612 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
3614 return ioc
->pcie_sg_lookup
[smid
- 1].pcie_sgl_dma
;
3618 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3619 * @ioc: per adapter object
3620 * @phys_addr: lower 32 physical addr of the reply
3622 * Converts 32bit lower physical addr into a virt address.
3625 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER
*ioc
, u32 phys_addr
)
3629 return ioc
->reply
+ (phys_addr
- (u32
)ioc
->reply_dma
);
3633 * _base_get_msix_index - get the msix index
3634 * @ioc: per adapter object
3635 * @scmd: scsi_cmnd object
3637 * returns msix index of general reply queues,
3638 * i.e. reply queue on which IO request's reply
3639 * should be posted by the HBA firmware.
3642 _base_get_msix_index(struct MPT3SAS_ADAPTER
*ioc
,
3643 struct scsi_cmnd
*scmd
)
3645 /* Enables reply_queue load balancing */
3646 if (ioc
->msix_load_balance
)
3647 return ioc
->reply_queue_count
?
3648 base_mod64(atomic64_add_return(1,
3649 &ioc
->total_io_cnt
), ioc
->reply_queue_count
) : 0;
3651 return ioc
->cpu_msix_table
[raw_smp_processor_id()];
3655 * _base_sdev_nr_inflight_request -get number of inflight requests
3656 * of a request queue.
3657 * @q: request_queue object
3659 * returns number of inflight request of a request queue.
3661 inline unsigned long
3662 _base_sdev_nr_inflight_request(struct request_queue
*q
)
3664 struct blk_mq_hw_ctx
*hctx
= q
->queue_hw_ctx
[0];
3666 return atomic_read(&hctx
->nr_active
);
3671 * _base_get_high_iops_msix_index - get the msix index of
3673 * @ioc: per adapter object
3674 * @scmd: scsi_cmnd object
3676 * Returns: msix index of high iops reply queues.
3677 * i.e. high iops reply queue on which IO request's
3678 * reply should be posted by the HBA firmware.
3681 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER
*ioc
,
3682 struct scsi_cmnd
*scmd
)
3685 * Round robin the IO interrupts among the high iops
3686 * reply queues in terms of batch count 16 when outstanding
3687 * IOs on the target device is >=8.
3689 if (_base_sdev_nr_inflight_request(scmd
->device
->request_queue
) >
3690 MPT3SAS_DEVICE_HIGH_IOPS_DEPTH
)
3692 atomic64_add_return(1, &ioc
->high_iops_outstanding
) /
3693 MPT3SAS_HIGH_IOPS_BATCH_COUNT
),
3694 MPT3SAS_HIGH_IOPS_REPLY_QUEUES
);
3696 return _base_get_msix_index(ioc
, scmd
);
3700 * mpt3sas_base_get_smid - obtain a free smid from internal queue
3701 * @ioc: per adapter object
3702 * @cb_idx: callback index
3704 * Return: smid (zero is invalid)
3707 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER
*ioc
, u8 cb_idx
)
3709 unsigned long flags
;
3710 struct request_tracker
*request
;
3713 spin_lock_irqsave(&ioc
->scsi_lookup_lock
, flags
);
3714 if (list_empty(&ioc
->internal_free_list
)) {
3715 spin_unlock_irqrestore(&ioc
->scsi_lookup_lock
, flags
);
3716 ioc_err(ioc
, "%s: smid not available\n", __func__
);
3720 request
= list_entry(ioc
->internal_free_list
.next
,
3721 struct request_tracker
, tracker_list
);
3722 request
->cb_idx
= cb_idx
;
3723 smid
= request
->smid
;
3724 list_del(&request
->tracker_list
);
3725 spin_unlock_irqrestore(&ioc
->scsi_lookup_lock
, flags
);
3730 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3731 * @ioc: per adapter object
3732 * @cb_idx: callback index
3733 * @scmd: pointer to scsi command object
3735 * Return: smid (zero is invalid)
3738 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER
*ioc
, u8 cb_idx
,
3739 struct scsi_cmnd
*scmd
)
3741 struct scsiio_tracker
*request
= scsi_cmd_priv(scmd
);
3742 unsigned int tag
= scmd
->request
->tag
;
3746 request
->cb_idx
= cb_idx
;
3747 request
->smid
= smid
;
3748 request
->scmd
= scmd
;
3749 INIT_LIST_HEAD(&request
->chain_list
);
3754 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3755 * @ioc: per adapter object
3756 * @cb_idx: callback index
3758 * Return: smid (zero is invalid)
3761 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER
*ioc
, u8 cb_idx
)
3763 unsigned long flags
;
3764 struct request_tracker
*request
;
3767 spin_lock_irqsave(&ioc
->scsi_lookup_lock
, flags
);
3768 if (list_empty(&ioc
->hpr_free_list
)) {
3769 spin_unlock_irqrestore(&ioc
->scsi_lookup_lock
, flags
);
3773 request
= list_entry(ioc
->hpr_free_list
.next
,
3774 struct request_tracker
, tracker_list
);
3775 request
->cb_idx
= cb_idx
;
3776 smid
= request
->smid
;
3777 list_del(&request
->tracker_list
);
3778 spin_unlock_irqrestore(&ioc
->scsi_lookup_lock
, flags
);
3783 _base_recovery_check(struct MPT3SAS_ADAPTER
*ioc
)
3786 * See _wait_for_commands_to_complete() call with regards to this code.
3788 if (ioc
->shost_recovery
&& ioc
->pending_io_count
) {
3789 ioc
->pending_io_count
= scsi_host_busy(ioc
->shost
);
3790 if (ioc
->pending_io_count
== 0)
3791 wake_up(&ioc
->reset_wq
);
3795 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER
*ioc
,
3796 struct scsiio_tracker
*st
)
3798 if (WARN_ON(st
->smid
== 0))
3803 atomic_set(&ioc
->chain_lookup
[st
->smid
- 1].chain_offset
, 0);
3808 * mpt3sas_base_free_smid - put smid back on free_list
3809 * @ioc: per adapter object
3810 * @smid: system request message index
3813 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
3815 unsigned long flags
;
3818 if (smid
< ioc
->hi_priority_smid
) {
3819 struct scsiio_tracker
*st
;
3822 st
= _get_st_from_smid(ioc
, smid
);
3824 _base_recovery_check(ioc
);
3828 /* Clear MPI request frame */
3829 request
= mpt3sas_base_get_msg_frame(ioc
, smid
);
3830 memset(request
, 0, ioc
->request_sz
);
3832 mpt3sas_base_clear_st(ioc
, st
);
3833 _base_recovery_check(ioc
);
3837 spin_lock_irqsave(&ioc
->scsi_lookup_lock
, flags
);
3838 if (smid
< ioc
->internal_smid
) {
3840 i
= smid
- ioc
->hi_priority_smid
;
3841 ioc
->hpr_lookup
[i
].cb_idx
= 0xFF;
3842 list_add(&ioc
->hpr_lookup
[i
].tracker_list
, &ioc
->hpr_free_list
);
3843 } else if (smid
<= ioc
->hba_queue_depth
) {
3844 /* internal queue */
3845 i
= smid
- ioc
->internal_smid
;
3846 ioc
->internal_lookup
[i
].cb_idx
= 0xFF;
3847 list_add(&ioc
->internal_lookup
[i
].tracker_list
,
3848 &ioc
->internal_free_list
);
3850 spin_unlock_irqrestore(&ioc
->scsi_lookup_lock
, flags
);
3854 * _base_mpi_ep_writeq - 32 bit write to MMIO
3856 * @addr: address in MMIO space
3857 * @writeq_lock: spin lock
3859 * This special handling for MPI EP to take care of 32 bit
3860 * environment where its not quarenteed to send the entire word
3864 _base_mpi_ep_writeq(__u64 b
, volatile void __iomem
*addr
,
3865 spinlock_t
*writeq_lock
)
3867 unsigned long flags
;
3869 spin_lock_irqsave(writeq_lock
, flags
);
3870 __raw_writel((u32
)(b
), addr
);
3871 __raw_writel((u32
)(b
>> 32), (addr
+ 4));
3872 spin_unlock_irqrestore(writeq_lock
, flags
);
3876 * _base_writeq - 64 bit write to MMIO
3878 * @addr: address in MMIO space
3879 * @writeq_lock: spin lock
3881 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
3882 * care of 32 bit environment where its not quarenteed to send the entire word
3885 #if defined(writeq) && defined(CONFIG_64BIT)
3887 _base_writeq(__u64 b
, volatile void __iomem
*addr
, spinlock_t
*writeq_lock
)
3890 __raw_writeq(b
, addr
);
3895 _base_writeq(__u64 b
, volatile void __iomem
*addr
, spinlock_t
*writeq_lock
)
3897 _base_mpi_ep_writeq(b
, addr
, writeq_lock
);
3902 * _base_set_and_get_msix_index - get the msix index and assign to msix_io
3903 * variable of scsi tracker
3904 * @ioc: per adapter object
3905 * @smid: system request message index
3907 * returns msix index.
3910 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
3912 struct scsiio_tracker
*st
= NULL
;
3914 if (smid
< ioc
->hi_priority_smid
)
3915 st
= _get_st_from_smid(ioc
, smid
);
3918 return _base_get_msix_index(ioc
, NULL
);
3920 st
->msix_io
= ioc
->get_msix_index_for_smlio(ioc
, st
->scmd
);
3925 * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
3926 * @ioc: per adapter object
3927 * @smid: system request message index
3928 * @handle: device handle
3931 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER
*ioc
,
3932 u16 smid
, u16 handle
)
3934 Mpi2RequestDescriptorUnion_t descriptor
;
3935 u64
*request
= (u64
*)&descriptor
;
3936 void *mpi_req_iomem
;
3937 __le32
*mfp
= (__le32
*)mpt3sas_base_get_msg_frame(ioc
, smid
);
3939 _clone_sg_entries(ioc
, (void *) mfp
, smid
);
3940 mpi_req_iomem
= (void __force
*)ioc
->chip
+
3941 MPI_FRAME_START_OFFSET
+ (smid
* ioc
->request_sz
);
3942 _base_clone_mpi_to_sys_mem(mpi_req_iomem
, (void *)mfp
,
3944 descriptor
.SCSIIO
.RequestFlags
= MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO
;
3945 descriptor
.SCSIIO
.MSIxIndex
= _base_set_and_get_msix_index(ioc
, smid
);
3946 descriptor
.SCSIIO
.SMID
= cpu_to_le16(smid
);
3947 descriptor
.SCSIIO
.DevHandle
= cpu_to_le16(handle
);
3948 descriptor
.SCSIIO
.LMID
= 0;
3949 _base_mpi_ep_writeq(*request
, &ioc
->chip
->RequestDescriptorPostLow
,
3950 &ioc
->scsi_lookup_lock
);
3954 * _base_put_smid_scsi_io - send SCSI_IO request to firmware
3955 * @ioc: per adapter object
3956 * @smid: system request message index
3957 * @handle: device handle
3960 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
, u16 handle
)
3962 Mpi2RequestDescriptorUnion_t descriptor
;
3963 u64
*request
= (u64
*)&descriptor
;
3966 descriptor
.SCSIIO
.RequestFlags
= MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO
;
3967 descriptor
.SCSIIO
.MSIxIndex
= _base_set_and_get_msix_index(ioc
, smid
);
3968 descriptor
.SCSIIO
.SMID
= cpu_to_le16(smid
);
3969 descriptor
.SCSIIO
.DevHandle
= cpu_to_le16(handle
);
3970 descriptor
.SCSIIO
.LMID
= 0;
3971 _base_writeq(*request
, &ioc
->chip
->RequestDescriptorPostLow
,
3972 &ioc
->scsi_lookup_lock
);
3976 * _base_put_smid_fast_path - send fast path request to firmware
3977 * @ioc: per adapter object
3978 * @smid: system request message index
3979 * @handle: device handle
3982 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
,
3985 Mpi2RequestDescriptorUnion_t descriptor
;
3986 u64
*request
= (u64
*)&descriptor
;
3988 descriptor
.SCSIIO
.RequestFlags
=
3989 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO
;
3990 descriptor
.SCSIIO
.MSIxIndex
= _base_set_and_get_msix_index(ioc
, smid
);
3991 descriptor
.SCSIIO
.SMID
= cpu_to_le16(smid
);
3992 descriptor
.SCSIIO
.DevHandle
= cpu_to_le16(handle
);
3993 descriptor
.SCSIIO
.LMID
= 0;
3994 _base_writeq(*request
, &ioc
->chip
->RequestDescriptorPostLow
,
3995 &ioc
->scsi_lookup_lock
);
3999 * _base_put_smid_hi_priority - send Task Management request to firmware
4000 * @ioc: per adapter object
4001 * @smid: system request message index
4002 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
4005 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
,
4008 Mpi2RequestDescriptorUnion_t descriptor
;
4009 void *mpi_req_iomem
;
4012 if (ioc
->is_mcpu_endpoint
) {
4013 __le32
*mfp
= (__le32
*)mpt3sas_base_get_msg_frame(ioc
, smid
);
4015 /* TBD 256 is offset within sys register. */
4016 mpi_req_iomem
= (void __force
*)ioc
->chip
4017 + MPI_FRAME_START_OFFSET
4018 + (smid
* ioc
->request_sz
);
4019 _base_clone_mpi_to_sys_mem(mpi_req_iomem
, (void *)mfp
,
4023 request
= (u64
*)&descriptor
;
4025 descriptor
.HighPriority
.RequestFlags
=
4026 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY
;
4027 descriptor
.HighPriority
.MSIxIndex
= msix_task
;
4028 descriptor
.HighPriority
.SMID
= cpu_to_le16(smid
);
4029 descriptor
.HighPriority
.LMID
= 0;
4030 descriptor
.HighPriority
.Reserved1
= 0;
4031 if (ioc
->is_mcpu_endpoint
)
4032 _base_mpi_ep_writeq(*request
,
4033 &ioc
->chip
->RequestDescriptorPostLow
,
4034 &ioc
->scsi_lookup_lock
);
4036 _base_writeq(*request
, &ioc
->chip
->RequestDescriptorPostLow
,
4037 &ioc
->scsi_lookup_lock
);
4041 * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
4043 * @ioc: per adapter object
4044 * @smid: system request message index
4047 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
4049 Mpi2RequestDescriptorUnion_t descriptor
;
4050 u64
*request
= (u64
*)&descriptor
;
4052 descriptor
.Default
.RequestFlags
=
4053 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED
;
4054 descriptor
.Default
.MSIxIndex
= _base_set_and_get_msix_index(ioc
, smid
);
4055 descriptor
.Default
.SMID
= cpu_to_le16(smid
);
4056 descriptor
.Default
.LMID
= 0;
4057 descriptor
.Default
.DescriptorTypeDependent
= 0;
4058 _base_writeq(*request
, &ioc
->chip
->RequestDescriptorPostLow
,
4059 &ioc
->scsi_lookup_lock
);
4063 * _base_put_smid_default - Default, primarily used for config pages
4064 * @ioc: per adapter object
4065 * @smid: system request message index
4068 _base_put_smid_default(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
4070 Mpi2RequestDescriptorUnion_t descriptor
;
4071 void *mpi_req_iomem
;
4074 if (ioc
->is_mcpu_endpoint
) {
4075 __le32
*mfp
= (__le32
*)mpt3sas_base_get_msg_frame(ioc
, smid
);
4077 _clone_sg_entries(ioc
, (void *) mfp
, smid
);
4078 /* TBD 256 is offset within sys register */
4079 mpi_req_iomem
= (void __force
*)ioc
->chip
+
4080 MPI_FRAME_START_OFFSET
+ (smid
* ioc
->request_sz
);
4081 _base_clone_mpi_to_sys_mem(mpi_req_iomem
, (void *)mfp
,
4084 request
= (u64
*)&descriptor
;
4085 descriptor
.Default
.RequestFlags
= MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE
;
4086 descriptor
.Default
.MSIxIndex
= _base_set_and_get_msix_index(ioc
, smid
);
4087 descriptor
.Default
.SMID
= cpu_to_le16(smid
);
4088 descriptor
.Default
.LMID
= 0;
4089 descriptor
.Default
.DescriptorTypeDependent
= 0;
4090 if (ioc
->is_mcpu_endpoint
)
4091 _base_mpi_ep_writeq(*request
,
4092 &ioc
->chip
->RequestDescriptorPostLow
,
4093 &ioc
->scsi_lookup_lock
);
4095 _base_writeq(*request
, &ioc
->chip
->RequestDescriptorPostLow
,
4096 &ioc
->scsi_lookup_lock
);
4100 * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
4101 * Atomic Request Descriptor
4102 * @ioc: per adapter object
4103 * @smid: system request message index
4104 * @handle: device handle, unused in this function, for function type match
4109 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
,
4112 Mpi26AtomicRequestDescriptor_t descriptor
;
4113 u32
*request
= (u32
*)&descriptor
;
4115 descriptor
.RequestFlags
= MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO
;
4116 descriptor
.MSIxIndex
= _base_set_and_get_msix_index(ioc
, smid
);
4117 descriptor
.SMID
= cpu_to_le16(smid
);
4119 writel(cpu_to_le32(*request
), &ioc
->chip
->AtomicRequestDescriptorPost
);
4123 * _base_put_smid_fast_path_atomic - send fast path request to firmware
4124 * using Atomic Request Descriptor
4125 * @ioc: per adapter object
4126 * @smid: system request message index
4127 * @handle: device handle, unused in this function, for function type match
4131 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
,
4134 Mpi26AtomicRequestDescriptor_t descriptor
;
4135 u32
*request
= (u32
*)&descriptor
;
4137 descriptor
.RequestFlags
= MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO
;
4138 descriptor
.MSIxIndex
= _base_set_and_get_msix_index(ioc
, smid
);
4139 descriptor
.SMID
= cpu_to_le16(smid
);
4141 writel(cpu_to_le32(*request
), &ioc
->chip
->AtomicRequestDescriptorPost
);
4145 * _base_put_smid_hi_priority_atomic - send Task Management request to
4146 * firmware using Atomic Request Descriptor
4147 * @ioc: per adapter object
4148 * @smid: system request message index
4149 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0
4154 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
,
4157 Mpi26AtomicRequestDescriptor_t descriptor
;
4158 u32
*request
= (u32
*)&descriptor
;
4160 descriptor
.RequestFlags
= MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY
;
4161 descriptor
.MSIxIndex
= msix_task
;
4162 descriptor
.SMID
= cpu_to_le16(smid
);
4164 writel(cpu_to_le32(*request
), &ioc
->chip
->AtomicRequestDescriptorPost
);
4168 * _base_put_smid_default - Default, primarily used for config pages
4169 * use Atomic Request Descriptor
4170 * @ioc: per adapter object
4171 * @smid: system request message index
4176 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
)
4178 Mpi26AtomicRequestDescriptor_t descriptor
;
4179 u32
*request
= (u32
*)&descriptor
;
4181 descriptor
.RequestFlags
= MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE
;
4182 descriptor
.MSIxIndex
= _base_set_and_get_msix_index(ioc
, smid
);
4183 descriptor
.SMID
= cpu_to_le16(smid
);
4185 writel(cpu_to_le32(*request
), &ioc
->chip
->AtomicRequestDescriptorPost
);
4189 * _base_display_OEMs_branding - Display branding string
4190 * @ioc: per adapter object
4193 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER
*ioc
)
4195 if (ioc
->pdev
->subsystem_vendor
!= PCI_VENDOR_ID_INTEL
)
4198 switch (ioc
->pdev
->subsystem_vendor
) {
4199 case PCI_VENDOR_ID_INTEL
:
4200 switch (ioc
->pdev
->device
) {
4201 case MPI2_MFGPAGE_DEVID_SAS2008
:
4202 switch (ioc
->pdev
->subsystem_device
) {
4203 case MPT2SAS_INTEL_RMS2LL080_SSDID
:
4204 ioc_info(ioc
, "%s\n",
4205 MPT2SAS_INTEL_RMS2LL080_BRANDING
);
4207 case MPT2SAS_INTEL_RMS2LL040_SSDID
:
4208 ioc_info(ioc
, "%s\n",
4209 MPT2SAS_INTEL_RMS2LL040_BRANDING
);
4211 case MPT2SAS_INTEL_SSD910_SSDID
:
4212 ioc_info(ioc
, "%s\n",
4213 MPT2SAS_INTEL_SSD910_BRANDING
);
4216 ioc_info(ioc
, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4217 ioc
->pdev
->subsystem_device
);
4221 case MPI2_MFGPAGE_DEVID_SAS2308_2
:
4222 switch (ioc
->pdev
->subsystem_device
) {
4223 case MPT2SAS_INTEL_RS25GB008_SSDID
:
4224 ioc_info(ioc
, "%s\n",
4225 MPT2SAS_INTEL_RS25GB008_BRANDING
);
4227 case MPT2SAS_INTEL_RMS25JB080_SSDID
:
4228 ioc_info(ioc
, "%s\n",
4229 MPT2SAS_INTEL_RMS25JB080_BRANDING
);
4231 case MPT2SAS_INTEL_RMS25JB040_SSDID
:
4232 ioc_info(ioc
, "%s\n",
4233 MPT2SAS_INTEL_RMS25JB040_BRANDING
);
4235 case MPT2SAS_INTEL_RMS25KB080_SSDID
:
4236 ioc_info(ioc
, "%s\n",
4237 MPT2SAS_INTEL_RMS25KB080_BRANDING
);
4239 case MPT2SAS_INTEL_RMS25KB040_SSDID
:
4240 ioc_info(ioc
, "%s\n",
4241 MPT2SAS_INTEL_RMS25KB040_BRANDING
);
4243 case MPT2SAS_INTEL_RMS25LB040_SSDID
:
4244 ioc_info(ioc
, "%s\n",
4245 MPT2SAS_INTEL_RMS25LB040_BRANDING
);
4247 case MPT2SAS_INTEL_RMS25LB080_SSDID
:
4248 ioc_info(ioc
, "%s\n",
4249 MPT2SAS_INTEL_RMS25LB080_BRANDING
);
4252 ioc_info(ioc
, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4253 ioc
->pdev
->subsystem_device
);
4257 case MPI25_MFGPAGE_DEVID_SAS3008
:
4258 switch (ioc
->pdev
->subsystem_device
) {
4259 case MPT3SAS_INTEL_RMS3JC080_SSDID
:
4260 ioc_info(ioc
, "%s\n",
4261 MPT3SAS_INTEL_RMS3JC080_BRANDING
);
4264 case MPT3SAS_INTEL_RS3GC008_SSDID
:
4265 ioc_info(ioc
, "%s\n",
4266 MPT3SAS_INTEL_RS3GC008_BRANDING
);
4268 case MPT3SAS_INTEL_RS3FC044_SSDID
:
4269 ioc_info(ioc
, "%s\n",
4270 MPT3SAS_INTEL_RS3FC044_BRANDING
);
4272 case MPT3SAS_INTEL_RS3UC080_SSDID
:
4273 ioc_info(ioc
, "%s\n",
4274 MPT3SAS_INTEL_RS3UC080_BRANDING
);
4277 ioc_info(ioc
, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4278 ioc
->pdev
->subsystem_device
);
4283 ioc_info(ioc
, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4284 ioc
->pdev
->subsystem_device
);
4288 case PCI_VENDOR_ID_DELL
:
4289 switch (ioc
->pdev
->device
) {
4290 case MPI2_MFGPAGE_DEVID_SAS2008
:
4291 switch (ioc
->pdev
->subsystem_device
) {
4292 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID
:
4293 ioc_info(ioc
, "%s\n",
4294 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING
);
4296 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID
:
4297 ioc_info(ioc
, "%s\n",
4298 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING
);
4300 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID
:
4301 ioc_info(ioc
, "%s\n",
4302 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING
);
4304 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID
:
4305 ioc_info(ioc
, "%s\n",
4306 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING
);
4308 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID
:
4309 ioc_info(ioc
, "%s\n",
4310 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING
);
4312 case MPT2SAS_DELL_PERC_H200_SSDID
:
4313 ioc_info(ioc
, "%s\n",
4314 MPT2SAS_DELL_PERC_H200_BRANDING
);
4316 case MPT2SAS_DELL_6GBPS_SAS_SSDID
:
4317 ioc_info(ioc
, "%s\n",
4318 MPT2SAS_DELL_6GBPS_SAS_BRANDING
);
4321 ioc_info(ioc
, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
4322 ioc
->pdev
->subsystem_device
);
4326 case MPI25_MFGPAGE_DEVID_SAS3008
:
4327 switch (ioc
->pdev
->subsystem_device
) {
4328 case MPT3SAS_DELL_12G_HBA_SSDID
:
4329 ioc_info(ioc
, "%s\n",
4330 MPT3SAS_DELL_12G_HBA_BRANDING
);
4333 ioc_info(ioc
, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
4334 ioc
->pdev
->subsystem_device
);
4339 ioc_info(ioc
, "Dell HBA: Subsystem ID: 0x%X\n",
4340 ioc
->pdev
->subsystem_device
);
4344 case PCI_VENDOR_ID_CISCO
:
4345 switch (ioc
->pdev
->device
) {
4346 case MPI25_MFGPAGE_DEVID_SAS3008
:
4347 switch (ioc
->pdev
->subsystem_device
) {
4348 case MPT3SAS_CISCO_12G_8E_HBA_SSDID
:
4349 ioc_info(ioc
, "%s\n",
4350 MPT3SAS_CISCO_12G_8E_HBA_BRANDING
);
4352 case MPT3SAS_CISCO_12G_8I_HBA_SSDID
:
4353 ioc_info(ioc
, "%s\n",
4354 MPT3SAS_CISCO_12G_8I_HBA_BRANDING
);
4356 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID
:
4357 ioc_info(ioc
, "%s\n",
4358 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING
);
4361 ioc_info(ioc
, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4362 ioc
->pdev
->subsystem_device
);
4366 case MPI25_MFGPAGE_DEVID_SAS3108_1
:
4367 switch (ioc
->pdev
->subsystem_device
) {
4368 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID
:
4369 ioc_info(ioc
, "%s\n",
4370 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING
);
4372 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID
:
4373 ioc_info(ioc
, "%s\n",
4374 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING
);
4377 ioc_info(ioc
, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4378 ioc
->pdev
->subsystem_device
);
4383 ioc_info(ioc
, "Cisco SAS HBA: Subsystem ID: 0x%X\n",
4384 ioc
->pdev
->subsystem_device
);
4388 case MPT2SAS_HP_3PAR_SSVID
:
4389 switch (ioc
->pdev
->device
) {
4390 case MPI2_MFGPAGE_DEVID_SAS2004
:
4391 switch (ioc
->pdev
->subsystem_device
) {
4392 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID
:
4393 ioc_info(ioc
, "%s\n",
4394 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING
);
4397 ioc_info(ioc
, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4398 ioc
->pdev
->subsystem_device
);
4402 case MPI2_MFGPAGE_DEVID_SAS2308_2
:
4403 switch (ioc
->pdev
->subsystem_device
) {
4404 case MPT2SAS_HP_2_4_INTERNAL_SSDID
:
4405 ioc_info(ioc
, "%s\n",
4406 MPT2SAS_HP_2_4_INTERNAL_BRANDING
);
4408 case MPT2SAS_HP_2_4_EXTERNAL_SSDID
:
4409 ioc_info(ioc
, "%s\n",
4410 MPT2SAS_HP_2_4_EXTERNAL_BRANDING
);
4412 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID
:
4413 ioc_info(ioc
, "%s\n",
4414 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING
);
4416 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID
:
4417 ioc_info(ioc
, "%s\n",
4418 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING
);
4421 ioc_info(ioc
, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4422 ioc
->pdev
->subsystem_device
);
4427 ioc_info(ioc
, "HP SAS HBA: Subsystem ID: 0x%X\n",
4428 ioc
->pdev
->subsystem_device
);
4437 * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
4438 * version from FW Image Header.
4439 * @ioc: per adapter object
4441 * Return: 0 for success, non-zero for failure.
4444 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER
*ioc
)
4446 Mpi2FWImageHeader_t
*fw_img_hdr
;
4447 Mpi26ComponentImageHeader_t
*cmp_img_hdr
;
4448 Mpi25FWUploadRequest_t
*mpi_request
;
4449 Mpi2FWUploadReply_t mpi_reply
;
4451 u32 package_version
= 0;
4452 void *fwpkg_data
= NULL
;
4453 dma_addr_t fwpkg_data_dma
;
4454 u16 smid
, ioc_status
;
4457 dinitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
4459 if (ioc
->base_cmds
.status
& MPT3_CMD_PENDING
) {
4460 ioc_err(ioc
, "%s: internal command already in use\n", __func__
);
4464 data_length
= sizeof(Mpi2FWImageHeader_t
);
4465 fwpkg_data
= dma_alloc_coherent(&ioc
->pdev
->dev
, data_length
,
4466 &fwpkg_data_dma
, GFP_KERNEL
);
4469 "Memory allocation for fwpkg data failed at %s:%d/%s()!\n",
4470 __FILE__
, __LINE__
, __func__
);
4474 smid
= mpt3sas_base_get_smid(ioc
, ioc
->base_cb_idx
);
4476 ioc_err(ioc
, "%s: failed obtaining a smid\n", __func__
);
4481 ioc
->base_cmds
.status
= MPT3_CMD_PENDING
;
4482 mpi_request
= mpt3sas_base_get_msg_frame(ioc
, smid
);
4483 ioc
->base_cmds
.smid
= smid
;
4484 memset(mpi_request
, 0, sizeof(Mpi25FWUploadRequest_t
));
4485 mpi_request
->Function
= MPI2_FUNCTION_FW_UPLOAD
;
4486 mpi_request
->ImageType
= MPI2_FW_UPLOAD_ITYPE_FW_FLASH
;
4487 mpi_request
->ImageSize
= cpu_to_le32(data_length
);
4488 ioc
->build_sg(ioc
, &mpi_request
->SGL
, 0, 0, fwpkg_data_dma
,
4490 init_completion(&ioc
->base_cmds
.done
);
4491 ioc
->put_smid_default(ioc
, smid
);
4492 /* Wait for 15 seconds */
4493 wait_for_completion_timeout(&ioc
->base_cmds
.done
,
4494 FW_IMG_HDR_READ_TIMEOUT
*HZ
);
4495 ioc_info(ioc
, "%s: complete\n", __func__
);
4496 if (!(ioc
->base_cmds
.status
& MPT3_CMD_COMPLETE
)) {
4497 ioc_err(ioc
, "%s: timeout\n", __func__
);
4498 _debug_dump_mf(mpi_request
,
4499 sizeof(Mpi25FWUploadRequest_t
)/4);
4502 memset(&mpi_reply
, 0, sizeof(Mpi2FWUploadReply_t
));
4503 if (ioc
->base_cmds
.status
& MPT3_CMD_REPLY_VALID
) {
4504 memcpy(&mpi_reply
, ioc
->base_cmds
.reply
,
4505 sizeof(Mpi2FWUploadReply_t
));
4506 ioc_status
= le16_to_cpu(mpi_reply
.IOCStatus
) &
4507 MPI2_IOCSTATUS_MASK
;
4508 if (ioc_status
== MPI2_IOCSTATUS_SUCCESS
) {
4509 fw_img_hdr
= (Mpi2FWImageHeader_t
*)fwpkg_data
;
4510 if (le32_to_cpu(fw_img_hdr
->Signature
) ==
4511 MPI26_IMAGE_HEADER_SIGNATURE0_MPI26
) {
4513 (Mpi26ComponentImageHeader_t
*)
4517 cmp_img_hdr
->ApplicationSpecific
);
4521 fw_img_hdr
->PackageVersion
.Word
);
4522 if (package_version
)
4524 "FW Package Ver(%02d.%02d.%02d.%02d)\n",
4525 ((package_version
) & 0xFF000000) >> 24,
4526 ((package_version
) & 0x00FF0000) >> 16,
4527 ((package_version
) & 0x0000FF00) >> 8,
4528 (package_version
) & 0x000000FF);
4530 _debug_dump_mf(&mpi_reply
,
4531 sizeof(Mpi2FWUploadReply_t
)/4);
4535 ioc
->base_cmds
.status
= MPT3_CMD_NOT_USED
;
4538 dma_free_coherent(&ioc
->pdev
->dev
, data_length
, fwpkg_data
,
4544 * _base_display_ioc_capabilities - Disply IOC's capabilities.
4545 * @ioc: per adapter object
4548 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER
*ioc
)
4552 u32 iounit_pg1_flags
;
4555 bios_version
= le32_to_cpu(ioc
->bios_pg3
.BiosVersion
);
4556 strncpy(desc
, ioc
->manu_pg0
.ChipName
, 16);
4557 ioc_info(ioc
, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
4559 (ioc
->facts
.FWVersion
.Word
& 0xFF000000) >> 24,
4560 (ioc
->facts
.FWVersion
.Word
& 0x00FF0000) >> 16,
4561 (ioc
->facts
.FWVersion
.Word
& 0x0000FF00) >> 8,
4562 ioc
->facts
.FWVersion
.Word
& 0x000000FF,
4563 ioc
->pdev
->revision
,
4564 (bios_version
& 0xFF000000) >> 24,
4565 (bios_version
& 0x00FF0000) >> 16,
4566 (bios_version
& 0x0000FF00) >> 8,
4567 bios_version
& 0x000000FF);
4569 _base_display_OEMs_branding(ioc
);
4571 if (ioc
->facts
.ProtocolFlags
& MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES
) {
4572 pr_info("%sNVMe", i
? "," : "");
4576 ioc_info(ioc
, "Protocol=(");
4578 if (ioc
->facts
.ProtocolFlags
& MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR
) {
4579 pr_cont("Initiator");
4583 if (ioc
->facts
.ProtocolFlags
& MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET
) {
4584 pr_cont("%sTarget", i
? "," : "");
4589 pr_cont("), Capabilities=(");
4591 if (!ioc
->hide_ir_msg
) {
4592 if (ioc
->facts
.IOCCapabilities
&
4593 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID
) {
4599 if (ioc
->facts
.IOCCapabilities
& MPI2_IOCFACTS_CAPABILITY_TLR
) {
4600 pr_cont("%sTLR", i
? "," : "");
4604 if (ioc
->facts
.IOCCapabilities
& MPI2_IOCFACTS_CAPABILITY_MULTICAST
) {
4605 pr_cont("%sMulticast", i
? "," : "");
4609 if (ioc
->facts
.IOCCapabilities
&
4610 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET
) {
4611 pr_cont("%sBIDI Target", i
? "," : "");
4615 if (ioc
->facts
.IOCCapabilities
& MPI2_IOCFACTS_CAPABILITY_EEDP
) {
4616 pr_cont("%sEEDP", i
? "," : "");
4620 if (ioc
->facts
.IOCCapabilities
&
4621 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER
) {
4622 pr_cont("%sSnapshot Buffer", i
? "," : "");
4626 if (ioc
->facts
.IOCCapabilities
&
4627 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER
) {
4628 pr_cont("%sDiag Trace Buffer", i
? "," : "");
4632 if (ioc
->facts
.IOCCapabilities
&
4633 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER
) {
4634 pr_cont("%sDiag Extended Buffer", i
? "," : "");
4638 if (ioc
->facts
.IOCCapabilities
&
4639 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING
) {
4640 pr_cont("%sTask Set Full", i
? "," : "");
4644 iounit_pg1_flags
= le32_to_cpu(ioc
->iounit_pg1
.Flags
);
4645 if (!(iounit_pg1_flags
& MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE
)) {
4646 pr_cont("%sNCQ", i
? "," : "");
4654 * mpt3sas_base_update_missing_delay - change the missing delay timers
4655 * @ioc: per adapter object
4656 * @device_missing_delay: amount of time till device is reported missing
4657 * @io_missing_delay: interval IO is returned when there is a missing device
4659 * Passed on the command line, this function will modify the device missing
4660 * delay, as well as the io missing delay. This should be called at driver
4664 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER
*ioc
,
4665 u16 device_missing_delay
, u8 io_missing_delay
)
4667 u16 dmd
, dmd_new
, dmd_orignal
;
4668 u8 io_missing_delay_original
;
4670 Mpi2SasIOUnitPage1_t
*sas_iounit_pg1
= NULL
;
4671 Mpi2ConfigReply_t mpi_reply
;
4675 mpt3sas_config_get_number_hba_phys(ioc
, &num_phys
);
4679 sz
= offsetof(Mpi2SasIOUnitPage1_t
, PhyData
) + (num_phys
*
4680 sizeof(Mpi2SasIOUnit1PhyData_t
));
4681 sas_iounit_pg1
= kzalloc(sz
, GFP_KERNEL
);
4682 if (!sas_iounit_pg1
) {
4683 ioc_err(ioc
, "failure at %s:%d/%s()!\n",
4684 __FILE__
, __LINE__
, __func__
);
4687 if ((mpt3sas_config_get_sas_iounit_pg1(ioc
, &mpi_reply
,
4688 sas_iounit_pg1
, sz
))) {
4689 ioc_err(ioc
, "failure at %s:%d/%s()!\n",
4690 __FILE__
, __LINE__
, __func__
);
4693 ioc_status
= le16_to_cpu(mpi_reply
.IOCStatus
) &
4694 MPI2_IOCSTATUS_MASK
;
4695 if (ioc_status
!= MPI2_IOCSTATUS_SUCCESS
) {
4696 ioc_err(ioc
, "failure at %s:%d/%s()!\n",
4697 __FILE__
, __LINE__
, __func__
);
4701 /* device missing delay */
4702 dmd
= sas_iounit_pg1
->ReportDeviceMissingDelay
;
4703 if (dmd
& MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16
)
4704 dmd
= (dmd
& MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK
) * 16;
4706 dmd
= dmd
& MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK
;
4708 if (device_missing_delay
> 0x7F) {
4709 dmd
= (device_missing_delay
> 0x7F0) ? 0x7F0 :
4710 device_missing_delay
;
4712 dmd
|= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16
;
4714 dmd
= device_missing_delay
;
4715 sas_iounit_pg1
->ReportDeviceMissingDelay
= dmd
;
4717 /* io missing delay */
4718 io_missing_delay_original
= sas_iounit_pg1
->IODeviceMissingDelay
;
4719 sas_iounit_pg1
->IODeviceMissingDelay
= io_missing_delay
;
4721 if (!mpt3sas_config_set_sas_iounit_pg1(ioc
, &mpi_reply
, sas_iounit_pg1
,
4723 if (dmd
& MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16
)
4725 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK
) * 16;
4728 dmd
& MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK
;
4729 ioc_info(ioc
, "device_missing_delay: old(%d), new(%d)\n",
4730 dmd_orignal
, dmd_new
);
4731 ioc_info(ioc
, "ioc_missing_delay: old(%d), new(%d)\n",
4732 io_missing_delay_original
,
4734 ioc
->device_missing_delay
= dmd_new
;
4735 ioc
->io_missing_delay
= io_missing_delay
;
4739 kfree(sas_iounit_pg1
);
4743 * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields
4744 * according to performance mode.
4745 * @ioc : per adapter object
4750 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER
*ioc
)
4752 Mpi2IOCPage1_t ioc_pg1
;
4753 Mpi2ConfigReply_t mpi_reply
;
4755 mpt3sas_config_get_ioc_pg1(ioc
, &mpi_reply
, &ioc
->ioc_pg1_copy
);
4756 memcpy(&ioc_pg1
, &ioc
->ioc_pg1_copy
, sizeof(Mpi2IOCPage1_t
));
4758 switch (perf_mode
) {
4759 case MPT_PERF_MODE_DEFAULT
:
4760 case MPT_PERF_MODE_BALANCED
:
4761 if (ioc
->high_iops_queues
) {
4763 "Enable interrupt coalescing only for first\t"
4764 "%d reply queues\n",
4765 MPT3SAS_HIGH_IOPS_REPLY_QUEUES
);
4767 * If 31st bit is zero then interrupt coalescing is
4768 * enabled for all reply descriptor post queues.
4769 * If 31st bit is set to one then user can
4770 * enable/disable interrupt coalescing on per reply
4771 * descriptor post queue group(8) basis. So to enable
4772 * interrupt coalescing only on first reply descriptor
4773 * post queue group 31st bit and zero th bit is enabled.
4775 ioc_pg1
.ProductSpecific
= cpu_to_le32(0x80000000 |
4776 ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES
/8) - 1));
4777 mpt3sas_config_set_ioc_pg1(ioc
, &mpi_reply
, &ioc_pg1
);
4778 ioc_info(ioc
, "performance mode: balanced\n");
4782 case MPT_PERF_MODE_LATENCY
:
4784 * Enable interrupt coalescing on all reply queues
4785 * with timeout value 0xA
4787 ioc_pg1
.CoalescingTimeout
= cpu_to_le32(0xa);
4788 ioc_pg1
.Flags
|= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING
);
4789 ioc_pg1
.ProductSpecific
= 0;
4790 mpt3sas_config_set_ioc_pg1(ioc
, &mpi_reply
, &ioc_pg1
);
4791 ioc_info(ioc
, "performance mode: latency\n");
4793 case MPT_PERF_MODE_IOPS
:
4795 * Enable interrupt coalescing on all reply queues.
4798 "performance mode: iops with coalescing timeout: 0x%x\n",
4799 le32_to_cpu(ioc_pg1
.CoalescingTimeout
));
4800 ioc_pg1
.Flags
|= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING
);
4801 ioc_pg1
.ProductSpecific
= 0;
4802 mpt3sas_config_set_ioc_pg1(ioc
, &mpi_reply
, &ioc_pg1
);
4808 * _base_get_event_diag_triggers - get event diag trigger values from
4810 * @ioc : per adapter object
4815 _base_get_event_diag_triggers(struct MPT3SAS_ADAPTER
*ioc
)
4817 Mpi26DriverTriggerPage2_t trigger_pg2
;
4818 struct SL_WH_EVENT_TRIGGER_T
*event_tg
;
4819 MPI26_DRIVER_MPI_EVENT_TIGGER_ENTRY
*mpi_event_tg
;
4820 Mpi2ConfigReply_t mpi_reply
;
4825 r
= mpt3sas_config_get_driver_trigger_pg2(ioc
, &mpi_reply
,
4830 ioc_status
= le16_to_cpu(mpi_reply
.IOCStatus
) &
4831 MPI2_IOCSTATUS_MASK
;
4832 if (ioc_status
!= MPI2_IOCSTATUS_SUCCESS
) {
4835 "%s: Failed to get trigger pg2, ioc_status(0x%04x)\n",
4836 __func__
, ioc_status
));
4840 if (le16_to_cpu(trigger_pg2
.NumMPIEventTrigger
)) {
4841 count
= le16_to_cpu(trigger_pg2
.NumMPIEventTrigger
);
4842 count
= min_t(u16
, NUM_VALID_ENTRIES
, count
);
4843 ioc
->diag_trigger_event
.ValidEntries
= count
;
4845 event_tg
= &ioc
->diag_trigger_event
.EventTriggerEntry
[0];
4846 mpi_event_tg
= &trigger_pg2
.MPIEventTriggers
[0];
4847 for (i
= 0; i
< count
; i
++) {
4848 event_tg
->EventValue
= le16_to_cpu(
4849 mpi_event_tg
->MPIEventCode
);
4850 event_tg
->LogEntryQualifier
= le16_to_cpu(
4851 mpi_event_tg
->MPIEventCodeSpecific
);
4859 * _base_get_scsi_diag_triggers - get scsi diag trigger values from
4861 * @ioc : per adapter object
4866 _base_get_scsi_diag_triggers(struct MPT3SAS_ADAPTER
*ioc
)
4868 Mpi26DriverTriggerPage3_t trigger_pg3
;
4869 struct SL_WH_SCSI_TRIGGER_T
*scsi_tg
;
4870 MPI26_DRIVER_SCSI_SENSE_TIGGER_ENTRY
*mpi_scsi_tg
;
4871 Mpi2ConfigReply_t mpi_reply
;
4876 r
= mpt3sas_config_get_driver_trigger_pg3(ioc
, &mpi_reply
,
4881 ioc_status
= le16_to_cpu(mpi_reply
.IOCStatus
) &
4882 MPI2_IOCSTATUS_MASK
;
4883 if (ioc_status
!= MPI2_IOCSTATUS_SUCCESS
) {
4886 "%s: Failed to get trigger pg3, ioc_status(0x%04x)\n",
4887 __func__
, ioc_status
));
4891 if (le16_to_cpu(trigger_pg3
.NumSCSISenseTrigger
)) {
4892 count
= le16_to_cpu(trigger_pg3
.NumSCSISenseTrigger
);
4893 count
= min_t(u16
, NUM_VALID_ENTRIES
, count
);
4894 ioc
->diag_trigger_scsi
.ValidEntries
= count
;
4896 scsi_tg
= &ioc
->diag_trigger_scsi
.SCSITriggerEntry
[0];
4897 mpi_scsi_tg
= &trigger_pg3
.SCSISenseTriggers
[0];
4898 for (i
= 0; i
< count
; i
++) {
4899 scsi_tg
->ASCQ
= mpi_scsi_tg
->ASCQ
;
4900 scsi_tg
->ASC
= mpi_scsi_tg
->ASC
;
4901 scsi_tg
->SenseKey
= mpi_scsi_tg
->SenseKey
;
4910 * _base_get_mpi_diag_triggers - get mpi diag trigger values from
4912 * @ioc : per adapter object
4917 _base_get_mpi_diag_triggers(struct MPT3SAS_ADAPTER
*ioc
)
4919 Mpi26DriverTriggerPage4_t trigger_pg4
;
4920 struct SL_WH_MPI_TRIGGER_T
*status_tg
;
4921 MPI26_DRIVER_IOCSTATUS_LOGINFO_TIGGER_ENTRY
*mpi_status_tg
;
4922 Mpi2ConfigReply_t mpi_reply
;
4927 r
= mpt3sas_config_get_driver_trigger_pg4(ioc
, &mpi_reply
,
4932 ioc_status
= le16_to_cpu(mpi_reply
.IOCStatus
) &
4933 MPI2_IOCSTATUS_MASK
;
4934 if (ioc_status
!= MPI2_IOCSTATUS_SUCCESS
) {
4937 "%s: Failed to get trigger pg4, ioc_status(0x%04x)\n",
4938 __func__
, ioc_status
));
4942 if (le16_to_cpu(trigger_pg4
.NumIOCStatusLogInfoTrigger
)) {
4943 count
= le16_to_cpu(trigger_pg4
.NumIOCStatusLogInfoTrigger
);
4944 count
= min_t(u16
, NUM_VALID_ENTRIES
, count
);
4945 ioc
->diag_trigger_mpi
.ValidEntries
= count
;
4947 status_tg
= &ioc
->diag_trigger_mpi
.MPITriggerEntry
[0];
4948 mpi_status_tg
= &trigger_pg4
.IOCStatusLoginfoTriggers
[0];
4950 for (i
= 0; i
< count
; i
++) {
4951 status_tg
->IOCStatus
= le16_to_cpu(
4952 mpi_status_tg
->IOCStatus
);
4953 status_tg
->IocLogInfo
= le32_to_cpu(
4954 mpi_status_tg
->LogInfo
);
4963 * _base_get_master_diag_triggers - get master diag trigger values from
4965 * @ioc : per adapter object
4970 _base_get_master_diag_triggers(struct MPT3SAS_ADAPTER
*ioc
)
4972 Mpi26DriverTriggerPage1_t trigger_pg1
;
4973 Mpi2ConfigReply_t mpi_reply
;
4977 r
= mpt3sas_config_get_driver_trigger_pg1(ioc
, &mpi_reply
,
4982 ioc_status
= le16_to_cpu(mpi_reply
.IOCStatus
) &
4983 MPI2_IOCSTATUS_MASK
;
4984 if (ioc_status
!= MPI2_IOCSTATUS_SUCCESS
) {
4987 "%s: Failed to get trigger pg1, ioc_status(0x%04x)\n",
4988 __func__
, ioc_status
));
4992 if (le16_to_cpu(trigger_pg1
.NumMasterTrigger
))
4993 ioc
->diag_trigger_master
.MasterData
|=
4995 trigger_pg1
.MasterTriggers
[0].MasterTriggerFlags
);
4999 * _base_check_for_trigger_pages_support - checks whether HBA FW supports
5000 * driver trigger pages or not
5001 * @ioc : per adapter object
5003 * Returns trigger flags mask if HBA FW supports driver trigger pages,
5004 * otherwise returns EFAULT.
5007 _base_check_for_trigger_pages_support(struct MPT3SAS_ADAPTER
*ioc
)
5009 Mpi26DriverTriggerPage0_t trigger_pg0
;
5011 Mpi2ConfigReply_t mpi_reply
;
5014 r
= mpt3sas_config_get_driver_trigger_pg0(ioc
, &mpi_reply
,
5019 ioc_status
= le16_to_cpu(mpi_reply
.IOCStatus
) &
5020 MPI2_IOCSTATUS_MASK
;
5021 if (ioc_status
!= MPI2_IOCSTATUS_SUCCESS
)
5024 return le16_to_cpu(trigger_pg0
.TriggerFlags
);
5028 * _base_get_diag_triggers - Retrieve diag trigger values from
5030 * @ioc : per adapter object
5035 _base_get_diag_triggers(struct MPT3SAS_ADAPTER
*ioc
)
5040 * Default setting of master trigger.
5042 ioc
->diag_trigger_master
.MasterData
=
5043 (MASTER_TRIGGER_FW_FAULT
+ MASTER_TRIGGER_ADAPTER_RESET
);
5045 trigger_flags
= _base_check_for_trigger_pages_support(ioc
);
5046 if (trigger_flags
< 0)
5049 ioc
->supports_trigger_pages
= 1;
5052 * Retrieve master diag trigger values from driver trigger pg1
5053 * if master trigger bit enabled in TriggerFlags.
5055 if ((u16
)trigger_flags
&
5056 MPI26_DRIVER_TRIGGER0_FLAG_MASTER_TRIGGER_VALID
)
5057 _base_get_master_diag_triggers(ioc
);
5060 * Retrieve event diag trigger values from driver trigger pg2
5061 * if event trigger bit enabled in TriggerFlags.
5063 if ((u16
)trigger_flags
&
5064 MPI26_DRIVER_TRIGGER0_FLAG_MPI_EVENT_TRIGGER_VALID
)
5065 _base_get_event_diag_triggers(ioc
);
5068 * Retrieve scsi diag trigger values from driver trigger pg3
5069 * if scsi trigger bit enabled in TriggerFlags.
5071 if ((u16
)trigger_flags
&
5072 MPI26_DRIVER_TRIGGER0_FLAG_SCSI_SENSE_TRIGGER_VALID
)
5073 _base_get_scsi_diag_triggers(ioc
);
5075 * Retrieve mpi error diag trigger values from driver trigger pg4
5076 * if loginfo trigger bit enabled in TriggerFlags.
5078 if ((u16
)trigger_flags
&
5079 MPI26_DRIVER_TRIGGER0_FLAG_LOGINFO_TRIGGER_VALID
)
5080 _base_get_mpi_diag_triggers(ioc
);
5084 * _base_update_diag_trigger_pages - Update the driver trigger pages after
5085 * online FW update, incase updated FW supports driver
5087 * @ioc : per adapter object
5092 _base_update_diag_trigger_pages(struct MPT3SAS_ADAPTER
*ioc
)
5095 if (ioc
->diag_trigger_master
.MasterData
)
5096 mpt3sas_config_update_driver_trigger_pg1(ioc
,
5097 &ioc
->diag_trigger_master
, 1);
5099 if (ioc
->diag_trigger_event
.ValidEntries
)
5100 mpt3sas_config_update_driver_trigger_pg2(ioc
,
5101 &ioc
->diag_trigger_event
, 1);
5103 if (ioc
->diag_trigger_scsi
.ValidEntries
)
5104 mpt3sas_config_update_driver_trigger_pg3(ioc
,
5105 &ioc
->diag_trigger_scsi
, 1);
5107 if (ioc
->diag_trigger_mpi
.ValidEntries
)
5108 mpt3sas_config_update_driver_trigger_pg4(ioc
,
5109 &ioc
->diag_trigger_mpi
, 1);
5113 * _base_static_config_pages - static start of day config pages
5114 * @ioc: per adapter object
5117 _base_static_config_pages(struct MPT3SAS_ADAPTER
*ioc
)
5119 Mpi2ConfigReply_t mpi_reply
;
5120 u32 iounit_pg1_flags
;
5122 ioc
->nvme_abort_timeout
= 30;
5123 mpt3sas_config_get_manufacturing_pg0(ioc
, &mpi_reply
, &ioc
->manu_pg0
);
5124 if (ioc
->ir_firmware
)
5125 mpt3sas_config_get_manufacturing_pg10(ioc
, &mpi_reply
,
5129 * Ensure correct T10 PI operation if vendor left EEDPTagMode
5130 * flag unset in NVDATA.
5132 mpt3sas_config_get_manufacturing_pg11(ioc
, &mpi_reply
, &ioc
->manu_pg11
);
5133 if (!ioc
->is_gen35_ioc
&& ioc
->manu_pg11
.EEDPTagMode
== 0) {
5134 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
5136 ioc
->manu_pg11
.EEDPTagMode
&= ~0x3;
5137 ioc
->manu_pg11
.EEDPTagMode
|= 0x1;
5138 mpt3sas_config_set_manufacturing_pg11(ioc
, &mpi_reply
,
5141 if (ioc
->manu_pg11
.AddlFlags2
& NVME_TASK_MNGT_CUSTOM_MASK
)
5142 ioc
->tm_custom_handling
= 1;
5144 ioc
->tm_custom_handling
= 0;
5145 if (ioc
->manu_pg11
.NVMeAbortTO
< NVME_TASK_ABORT_MIN_TIMEOUT
)
5146 ioc
->nvme_abort_timeout
= NVME_TASK_ABORT_MIN_TIMEOUT
;
5147 else if (ioc
->manu_pg11
.NVMeAbortTO
>
5148 NVME_TASK_ABORT_MAX_TIMEOUT
)
5149 ioc
->nvme_abort_timeout
= NVME_TASK_ABORT_MAX_TIMEOUT
;
5151 ioc
->nvme_abort_timeout
= ioc
->manu_pg11
.NVMeAbortTO
;
5153 ioc
->time_sync_interval
=
5154 ioc
->manu_pg11
.TimeSyncInterval
& MPT3SAS_TIMESYNC_MASK
;
5155 if (ioc
->time_sync_interval
) {
5156 if (ioc
->manu_pg11
.TimeSyncInterval
& MPT3SAS_TIMESYNC_UNIT_MASK
)
5157 ioc
->time_sync_interval
=
5158 ioc
->time_sync_interval
* SECONDS_PER_HOUR
;
5160 ioc
->time_sync_interval
=
5161 ioc
->time_sync_interval
* SECONDS_PER_MIN
;
5162 dinitprintk(ioc
, ioc_info(ioc
,
5163 "Driver-FW TimeSync interval is %d seconds. ManuPg11 TimeSync Unit is in %s\n",
5164 ioc
->time_sync_interval
, (ioc
->manu_pg11
.TimeSyncInterval
&
5165 MPT3SAS_TIMESYNC_UNIT_MASK
) ? "Hour" : "Minute"));
5167 if (ioc
->is_gen35_ioc
)
5169 "TimeSync Interval in Manuf page-11 is not enabled. Periodic Time-Sync will be disabled\n");
5171 mpt3sas_config_get_bios_pg2(ioc
, &mpi_reply
, &ioc
->bios_pg2
);
5172 mpt3sas_config_get_bios_pg3(ioc
, &mpi_reply
, &ioc
->bios_pg3
);
5173 mpt3sas_config_get_ioc_pg8(ioc
, &mpi_reply
, &ioc
->ioc_pg8
);
5174 mpt3sas_config_get_iounit_pg0(ioc
, &mpi_reply
, &ioc
->iounit_pg0
);
5175 mpt3sas_config_get_iounit_pg1(ioc
, &mpi_reply
, &ioc
->iounit_pg1
);
5176 mpt3sas_config_get_iounit_pg8(ioc
, &mpi_reply
, &ioc
->iounit_pg8
);
5177 _base_display_ioc_capabilities(ioc
);
5180 * Enable task_set_full handling in iounit_pg1 when the
5181 * facts capabilities indicate that its supported.
5183 iounit_pg1_flags
= le32_to_cpu(ioc
->iounit_pg1
.Flags
);
5184 if ((ioc
->facts
.IOCCapabilities
&
5185 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING
))
5187 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING
;
5190 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING
;
5191 ioc
->iounit_pg1
.Flags
= cpu_to_le32(iounit_pg1_flags
);
5192 mpt3sas_config_set_iounit_pg1(ioc
, &mpi_reply
, &ioc
->iounit_pg1
);
5194 if (ioc
->iounit_pg8
.NumSensors
)
5195 ioc
->temp_sensors_count
= ioc
->iounit_pg8
.NumSensors
;
5196 if (ioc
->is_aero_ioc
)
5197 _base_update_ioc_page1_inlinewith_perf_mode(ioc
);
5198 if (ioc
->is_gen35_ioc
) {
5199 if (ioc
->is_driver_loading
)
5200 _base_get_diag_triggers(ioc
);
5203 * In case of online HBA FW update operation,
5204 * check whether updated FW supports the driver trigger
5206 * - If previous FW has not supported driver trigger
5207 * pages and newer FW supports them then update these
5208 * pages with current diag trigger values.
5209 * - If previous FW has supported driver trigger pages
5210 * and new FW doesn't support them then disable
5211 * support_trigger_pages flag.
5213 tg_flags
= _base_check_for_trigger_pages_support(ioc
);
5214 if (!ioc
->supports_trigger_pages
&& tg_flags
!= -EFAULT
)
5215 _base_update_diag_trigger_pages(ioc
);
5216 else if (ioc
->supports_trigger_pages
&&
5217 tg_flags
== -EFAULT
)
5218 ioc
->supports_trigger_pages
= 0;
5224 * mpt3sas_free_enclosure_list - release memory
5225 * @ioc: per adapter object
5227 * Free memory allocated during encloure add.
5230 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER
*ioc
)
5232 struct _enclosure_node
*enclosure_dev
, *enclosure_dev_next
;
5234 /* Free enclosure list */
5235 list_for_each_entry_safe(enclosure_dev
,
5236 enclosure_dev_next
, &ioc
->enclosure_list
, list
) {
5237 list_del(&enclosure_dev
->list
);
5238 kfree(enclosure_dev
);
5243 * _base_release_memory_pools - release memory
5244 * @ioc: per adapter object
5246 * Free memory allocated from _base_allocate_memory_pools.
5249 _base_release_memory_pools(struct MPT3SAS_ADAPTER
*ioc
)
5253 int dma_alloc_count
= 0;
5254 struct chain_tracker
*ct
;
5255 int count
= ioc
->rdpq_array_enable
? ioc
->reply_queue_count
: 1;
5257 dexitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
5260 dma_free_coherent(&ioc
->pdev
->dev
, ioc
->request_dma_sz
,
5261 ioc
->request
, ioc
->request_dma
);
5263 ioc_info(ioc
, "request_pool(0x%p): free\n",
5265 ioc
->request
= NULL
;
5269 dma_pool_free(ioc
->sense_dma_pool
, ioc
->sense
, ioc
->sense_dma
);
5270 dma_pool_destroy(ioc
->sense_dma_pool
);
5272 ioc_info(ioc
, "sense_pool(0x%p): free\n",
5278 dma_pool_free(ioc
->reply_dma_pool
, ioc
->reply
, ioc
->reply_dma
);
5279 dma_pool_destroy(ioc
->reply_dma_pool
);
5281 ioc_info(ioc
, "reply_pool(0x%p): free\n",
5286 if (ioc
->reply_free
) {
5287 dma_pool_free(ioc
->reply_free_dma_pool
, ioc
->reply_free
,
5288 ioc
->reply_free_dma
);
5289 dma_pool_destroy(ioc
->reply_free_dma_pool
);
5291 ioc_info(ioc
, "reply_free_pool(0x%p): free\n",
5293 ioc
->reply_free
= NULL
;
5296 if (ioc
->reply_post
) {
5297 dma_alloc_count
= DIV_ROUND_UP(count
,
5298 RDPQ_MAX_INDEX_IN_ONE_CHUNK
);
5299 for (i
= 0; i
< count
; i
++) {
5300 if (i
% RDPQ_MAX_INDEX_IN_ONE_CHUNK
== 0
5301 && dma_alloc_count
) {
5302 if (ioc
->reply_post
[i
].reply_post_free
) {
5304 ioc
->reply_post_free_dma_pool
,
5305 ioc
->reply_post
[i
].reply_post_free
,
5306 ioc
->reply_post
[i
].reply_post_free_dma
);
5307 dexitprintk(ioc
, ioc_info(ioc
,
5308 "reply_post_free_pool(0x%p): free\n",
5309 ioc
->reply_post
[i
].reply_post_free
));
5310 ioc
->reply_post
[i
].reply_post_free
=
5316 dma_pool_destroy(ioc
->reply_post_free_dma_pool
);
5317 if (ioc
->reply_post_free_array
&&
5318 ioc
->rdpq_array_enable
) {
5319 dma_pool_free(ioc
->reply_post_free_array_dma_pool
,
5320 ioc
->reply_post_free_array
,
5321 ioc
->reply_post_free_array_dma
);
5322 ioc
->reply_post_free_array
= NULL
;
5324 dma_pool_destroy(ioc
->reply_post_free_array_dma_pool
);
5325 kfree(ioc
->reply_post
);
5328 if (ioc
->pcie_sgl_dma_pool
) {
5329 for (i
= 0; i
< ioc
->scsiio_depth
; i
++) {
5330 dma_pool_free(ioc
->pcie_sgl_dma_pool
,
5331 ioc
->pcie_sg_lookup
[i
].pcie_sgl
,
5332 ioc
->pcie_sg_lookup
[i
].pcie_sgl_dma
);
5334 dma_pool_destroy(ioc
->pcie_sgl_dma_pool
);
5337 if (ioc
->config_page
) {
5339 ioc_info(ioc
, "config_page(0x%p): free\n",
5341 dma_free_coherent(&ioc
->pdev
->dev
, ioc
->config_page_sz
,
5342 ioc
->config_page
, ioc
->config_page_dma
);
5345 kfree(ioc
->hpr_lookup
);
5346 ioc
->hpr_lookup
= NULL
;
5347 kfree(ioc
->internal_lookup
);
5348 ioc
->internal_lookup
= NULL
;
5349 if (ioc
->chain_lookup
) {
5350 for (i
= 0; i
< ioc
->scsiio_depth
; i
++) {
5351 for (j
= ioc
->chains_per_prp_buffer
;
5352 j
< ioc
->chains_needed_per_io
; j
++) {
5353 ct
= &ioc
->chain_lookup
[i
].chains_per_smid
[j
];
5354 if (ct
&& ct
->chain_buffer
)
5355 dma_pool_free(ioc
->chain_dma_pool
,
5357 ct
->chain_buffer_dma
);
5359 kfree(ioc
->chain_lookup
[i
].chains_per_smid
);
5361 dma_pool_destroy(ioc
->chain_dma_pool
);
5362 kfree(ioc
->chain_lookup
);
5363 ioc
->chain_lookup
= NULL
;
5368 * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are
5369 * having same upper 32bits in their base memory address.
5370 * @reply_pool_start_address: Base address of a reply queue set
5371 * @pool_sz: Size of single Reply Descriptor Post Queues pool size
5373 * Return: 1 if reply queues in a set have a same upper 32bits in their base
5374 * memory address, else 0.
5378 mpt3sas_check_same_4gb_region(long reply_pool_start_address
, u32 pool_sz
)
5380 long reply_pool_end_address
;
5382 reply_pool_end_address
= reply_pool_start_address
+ pool_sz
;
5384 if (upper_32_bits(reply_pool_start_address
) ==
5385 upper_32_bits(reply_pool_end_address
))
5392 * base_alloc_rdpq_dma_pool - Allocating DMA'able memory
5394 * @ioc: per adapter object
5395 * @sz: DMA Pool size
5396 * Return: 0 for success, non-zero for failure.
5399 base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER
*ioc
, int sz
)
5402 u32 dma_alloc_count
= 0;
5403 int reply_post_free_sz
= ioc
->reply_post_queue_depth
*
5404 sizeof(Mpi2DefaultReplyDescriptor_t
);
5405 int count
= ioc
->rdpq_array_enable
? ioc
->reply_queue_count
: 1;
5407 ioc
->reply_post
= kcalloc(count
, sizeof(struct reply_post_struct
),
5409 if (!ioc
->reply_post
)
5412 * For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and
5413 * VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should
5414 * be within 4GB boundary i.e reply queues in a set must have same
5415 * upper 32-bits in their memory address. so here driver is allocating
5416 * the DMA'able memory for reply queues according.
5417 * Driver uses limitation of
5418 * VENTURA_SERIES to manage INVADER_SERIES as well.
5420 dma_alloc_count
= DIV_ROUND_UP(count
,
5421 RDPQ_MAX_INDEX_IN_ONE_CHUNK
);
5422 ioc
->reply_post_free_dma_pool
=
5423 dma_pool_create("reply_post_free pool",
5424 &ioc
->pdev
->dev
, sz
, 16, 0);
5425 if (!ioc
->reply_post_free_dma_pool
)
5427 for (i
= 0; i
< count
; i
++) {
5428 if ((i
% RDPQ_MAX_INDEX_IN_ONE_CHUNK
== 0) && dma_alloc_count
) {
5429 ioc
->reply_post
[i
].reply_post_free
=
5430 dma_pool_zalloc(ioc
->reply_post_free_dma_pool
,
5432 &ioc
->reply_post
[i
].reply_post_free_dma
);
5433 if (!ioc
->reply_post
[i
].reply_post_free
)
5436 * Each set of RDPQ pool must satisfy 4gb boundary
5438 * 1) Check if allocated resources for RDPQ pool are in
5439 * the same 4GB range.
5440 * 2) If #1 is true, continue with 64 bit DMA.
5441 * 3) If #1 is false, return 1. which means free all the
5442 * resources and set DMA mask to 32 and allocate.
5444 if (!mpt3sas_check_same_4gb_region(
5445 (long)ioc
->reply_post
[i
].reply_post_free
, sz
)) {
5447 ioc_err(ioc
, "bad Replypost free pool(0x%p)"
5448 "reply_post_free_dma = (0x%llx)\n",
5449 ioc
->reply_post
[i
].reply_post_free
,
5450 (unsigned long long)
5451 ioc
->reply_post
[i
].reply_post_free_dma
));
5457 ioc
->reply_post
[i
].reply_post_free
=
5458 (Mpi2ReplyDescriptorsUnion_t
*)
5459 ((long)ioc
->reply_post
[i
-1].reply_post_free
5460 + reply_post_free_sz
);
5461 ioc
->reply_post
[i
].reply_post_free_dma
=
5463 (ioc
->reply_post
[i
-1].reply_post_free_dma
+
5464 reply_post_free_sz
);
5471 * _base_allocate_memory_pools - allocate start of day memory pools
5472 * @ioc: per adapter object
5474 * Return: 0 success, anything else error.
5477 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER
*ioc
)
5479 struct mpt3sas_facts
*facts
;
5480 u16 max_sge_elements
;
5481 u16 chains_needed_per_io
;
5482 u32 sz
, total_sz
, reply_post_free_sz
, reply_post_free_array_sz
;
5485 u16 max_request_credit
, nvme_blocks_needed
;
5486 unsigned short sg_tablesize
;
5490 struct chain_tracker
*ct
;
5492 dinitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
5496 facts
= &ioc
->facts
;
5498 /* command line tunables for max sgl entries */
5499 if (max_sgl_entries
!= -1)
5500 sg_tablesize
= max_sgl_entries
;
5502 if (ioc
->hba_mpi_version_belonged
== MPI2_VERSION
)
5503 sg_tablesize
= MPT2SAS_SG_DEPTH
;
5505 sg_tablesize
= MPT3SAS_SG_DEPTH
;
5508 /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
5510 sg_tablesize
= min_t(unsigned short, sg_tablesize
,
5511 MPT_KDUMP_MIN_PHYS_SEGMENTS
);
5513 if (ioc
->is_mcpu_endpoint
)
5514 ioc
->shost
->sg_tablesize
= MPT_MIN_PHYS_SEGMENTS
;
5516 if (sg_tablesize
< MPT_MIN_PHYS_SEGMENTS
)
5517 sg_tablesize
= MPT_MIN_PHYS_SEGMENTS
;
5518 else if (sg_tablesize
> MPT_MAX_PHYS_SEGMENTS
) {
5519 sg_tablesize
= min_t(unsigned short, sg_tablesize
,
5521 ioc_warn(ioc
, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n",
5522 sg_tablesize
, MPT_MAX_PHYS_SEGMENTS
);
5524 ioc
->shost
->sg_tablesize
= sg_tablesize
;
5527 ioc
->internal_depth
= min_t(int, (facts
->HighPriorityCredit
+ (5)),
5528 (facts
->RequestCredit
/ 4));
5529 if (ioc
->internal_depth
< INTERNAL_CMDS_COUNT
) {
5530 if (facts
->RequestCredit
<= (INTERNAL_CMDS_COUNT
+
5531 INTERNAL_SCSIIO_CMDS_COUNT
)) {
5532 ioc_err(ioc
, "IOC doesn't have enough Request Credits, it has just %d number of credits\n",
5533 facts
->RequestCredit
);
5536 ioc
->internal_depth
= 10;
5539 ioc
->hi_priority_depth
= ioc
->internal_depth
- (5);
5540 /* command line tunables for max controller queue depth */
5541 if (max_queue_depth
!= -1 && max_queue_depth
!= 0) {
5542 max_request_credit
= min_t(u16
, max_queue_depth
+
5543 ioc
->internal_depth
, facts
->RequestCredit
);
5544 if (max_request_credit
> MAX_HBA_QUEUE_DEPTH
)
5545 max_request_credit
= MAX_HBA_QUEUE_DEPTH
;
5546 } else if (reset_devices
)
5547 max_request_credit
= min_t(u16
, facts
->RequestCredit
,
5548 (MPT3SAS_KDUMP_SCSI_IO_DEPTH
+ ioc
->internal_depth
));
5550 max_request_credit
= min_t(u16
, facts
->RequestCredit
,
5551 MAX_HBA_QUEUE_DEPTH
);
5553 /* Firmware maintains additional facts->HighPriorityCredit number of
5554 * credits for HiPriprity Request messages, so hba queue depth will be
5555 * sum of max_request_credit and high priority queue depth.
5557 ioc
->hba_queue_depth
= max_request_credit
+ ioc
->hi_priority_depth
;
5559 /* request frame size */
5560 ioc
->request_sz
= facts
->IOCRequestFrameSize
* 4;
5562 /* reply frame size */
5563 ioc
->reply_sz
= facts
->ReplyFrameSize
* 4;
5565 /* chain segment size */
5566 if (ioc
->hba_mpi_version_belonged
!= MPI2_VERSION
) {
5567 if (facts
->IOCMaxChainSegmentSize
)
5568 ioc
->chain_segment_sz
=
5569 facts
->IOCMaxChainSegmentSize
*
5572 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
5573 ioc
->chain_segment_sz
= DEFAULT_NUM_FWCHAIN_ELEMTS
*
5576 ioc
->chain_segment_sz
= ioc
->request_sz
;
5578 /* calculate the max scatter element size */
5579 sge_size
= max_t(u16
, ioc
->sge_size
, ioc
->sge_size_ieee
);
5583 /* calculate number of sg elements left over in the 1st frame */
5584 max_sge_elements
= ioc
->request_sz
- ((sizeof(Mpi2SCSIIORequest_t
) -
5585 sizeof(Mpi2SGEIOUnion_t
)) + sge_size
);
5586 ioc
->max_sges_in_main_message
= max_sge_elements
/sge_size
;
5588 /* now do the same for a chain buffer */
5589 max_sge_elements
= ioc
->chain_segment_sz
- sge_size
;
5590 ioc
->max_sges_in_chain_message
= max_sge_elements
/sge_size
;
5593 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
5595 chains_needed_per_io
= ((ioc
->shost
->sg_tablesize
-
5596 ioc
->max_sges_in_main_message
)/ioc
->max_sges_in_chain_message
)
5598 if (chains_needed_per_io
> facts
->MaxChainDepth
) {
5599 chains_needed_per_io
= facts
->MaxChainDepth
;
5600 ioc
->shost
->sg_tablesize
= min_t(u16
,
5601 ioc
->max_sges_in_main_message
+ (ioc
->max_sges_in_chain_message
5602 * chains_needed_per_io
), ioc
->shost
->sg_tablesize
);
5604 ioc
->chains_needed_per_io
= chains_needed_per_io
;
5606 /* reply free queue sizing - taking into account for 64 FW events */
5607 ioc
->reply_free_queue_depth
= ioc
->hba_queue_depth
+ 64;
5609 /* mCPU manage single counters for simplicity */
5610 if (ioc
->is_mcpu_endpoint
)
5611 ioc
->reply_post_queue_depth
= ioc
->reply_free_queue_depth
;
5613 /* calculate reply descriptor post queue depth */
5614 ioc
->reply_post_queue_depth
= ioc
->hba_queue_depth
+
5615 ioc
->reply_free_queue_depth
+ 1;
5616 /* align the reply post queue on the next 16 count boundary */
5617 if (ioc
->reply_post_queue_depth
% 16)
5618 ioc
->reply_post_queue_depth
+= 16 -
5619 (ioc
->reply_post_queue_depth
% 16);
5622 if (ioc
->reply_post_queue_depth
>
5623 facts
->MaxReplyDescriptorPostQueueDepth
) {
5624 ioc
->reply_post_queue_depth
=
5625 facts
->MaxReplyDescriptorPostQueueDepth
-
5626 (facts
->MaxReplyDescriptorPostQueueDepth
% 16);
5627 ioc
->hba_queue_depth
=
5628 ((ioc
->reply_post_queue_depth
- 64) / 2) - 1;
5629 ioc
->reply_free_queue_depth
= ioc
->hba_queue_depth
+ 64;
5633 "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), "
5634 "sge_per_io(%d), chains_per_io(%d)\n",
5635 ioc
->max_sges_in_main_message
,
5636 ioc
->max_sges_in_chain_message
,
5637 ioc
->shost
->sg_tablesize
,
5638 ioc
->chains_needed_per_io
);
5640 /* reply post queue, 16 byte align */
5641 reply_post_free_sz
= ioc
->reply_post_queue_depth
*
5642 sizeof(Mpi2DefaultReplyDescriptor_t
);
5643 rdpq_sz
= reply_post_free_sz
* RDPQ_MAX_INDEX_IN_ONE_CHUNK
;
5644 if (_base_is_controller_msix_enabled(ioc
) && !ioc
->rdpq_array_enable
)
5645 rdpq_sz
= reply_post_free_sz
* ioc
->reply_queue_count
;
5646 ret
= base_alloc_rdpq_dma_pool(ioc
, rdpq_sz
);
5647 if (ret
== -EAGAIN
) {
5649 * Free allocated bad RDPQ memory pools.
5650 * Change dma coherent mask to 32 bit and reallocate RDPQ
5652 _base_release_memory_pools(ioc
);
5653 ioc
->use_32bit_dma
= true;
5654 if (_base_config_dma_addressing(ioc
, ioc
->pdev
) != 0) {
5656 "32 DMA mask failed %s\n", pci_name(ioc
->pdev
));
5659 if (base_alloc_rdpq_dma_pool(ioc
, rdpq_sz
))
5661 } else if (ret
== -ENOMEM
)
5663 total_sz
= rdpq_sz
* (!ioc
->rdpq_array_enable
? 1 :
5664 DIV_ROUND_UP(ioc
->reply_queue_count
, RDPQ_MAX_INDEX_IN_ONE_CHUNK
));
5665 ioc
->scsiio_depth
= ioc
->hba_queue_depth
-
5666 ioc
->hi_priority_depth
- ioc
->internal_depth
;
5668 /* set the scsi host can_queue depth
5669 * with some internal commands that could be outstanding
5671 ioc
->shost
->can_queue
= ioc
->scsiio_depth
- INTERNAL_SCSIIO_CMDS_COUNT
;
5673 ioc_info(ioc
, "scsi host: can_queue depth (%d)\n",
5674 ioc
->shost
->can_queue
));
5676 /* contiguous pool for request and chains, 16 byte align, one extra "
5679 ioc
->chain_depth
= ioc
->chains_needed_per_io
* ioc
->scsiio_depth
;
5680 sz
= ((ioc
->scsiio_depth
+ 1) * ioc
->request_sz
);
5682 /* hi-priority queue */
5683 sz
+= (ioc
->hi_priority_depth
* ioc
->request_sz
);
5685 /* internal queue */
5686 sz
+= (ioc
->internal_depth
* ioc
->request_sz
);
5688 ioc
->request_dma_sz
= sz
;
5689 ioc
->request
= dma_alloc_coherent(&ioc
->pdev
->dev
, sz
,
5690 &ioc
->request_dma
, GFP_KERNEL
);
5691 if (!ioc
->request
) {
5692 ioc_err(ioc
, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n",
5693 ioc
->hba_queue_depth
, ioc
->chains_needed_per_io
,
5694 ioc
->request_sz
, sz
/ 1024);
5695 if (ioc
->scsiio_depth
< MPT3SAS_SAS_QUEUE_DEPTH
)
5698 ioc
->hba_queue_depth
-= retry_sz
;
5699 _base_release_memory_pools(ioc
);
5700 goto retry_allocation
;
5704 ioc_err(ioc
, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n",
5705 ioc
->hba_queue_depth
, ioc
->chains_needed_per_io
,
5706 ioc
->request_sz
, sz
/ 1024);
5708 /* hi-priority queue */
5709 ioc
->hi_priority
= ioc
->request
+ ((ioc
->scsiio_depth
+ 1) *
5711 ioc
->hi_priority_dma
= ioc
->request_dma
+ ((ioc
->scsiio_depth
+ 1) *
5714 /* internal queue */
5715 ioc
->internal
= ioc
->hi_priority
+ (ioc
->hi_priority_depth
*
5717 ioc
->internal_dma
= ioc
->hi_priority_dma
+ (ioc
->hi_priority_depth
*
5721 "request pool(0x%p) - dma(0x%llx): "
5722 "depth(%d), frame_size(%d), pool_size(%d kB)\n",
5723 ioc
->request
, (unsigned long long) ioc
->request_dma
,
5724 ioc
->hba_queue_depth
, ioc
->request_sz
,
5725 (ioc
->hba_queue_depth
* ioc
->request_sz
) / 1024);
5730 ioc_info(ioc
, "scsiio(0x%p): depth(%d)\n",
5731 ioc
->request
, ioc
->scsiio_depth
));
5733 ioc
->chain_depth
= min_t(u32
, ioc
->chain_depth
, MAX_CHAIN_DEPTH
);
5734 sz
= ioc
->scsiio_depth
* sizeof(struct chain_lookup
);
5735 ioc
->chain_lookup
= kzalloc(sz
, GFP_KERNEL
);
5736 if (!ioc
->chain_lookup
) {
5737 ioc_err(ioc
, "chain_lookup: __get_free_pages failed\n");
5741 sz
= ioc
->chains_needed_per_io
* sizeof(struct chain_tracker
);
5742 for (i
= 0; i
< ioc
->scsiio_depth
; i
++) {
5743 ioc
->chain_lookup
[i
].chains_per_smid
= kzalloc(sz
, GFP_KERNEL
);
5744 if (!ioc
->chain_lookup
[i
].chains_per_smid
) {
5745 ioc_err(ioc
, "chain_lookup: kzalloc failed\n");
5750 /* initialize hi-priority queue smid's */
5751 ioc
->hpr_lookup
= kcalloc(ioc
->hi_priority_depth
,
5752 sizeof(struct request_tracker
), GFP_KERNEL
);
5753 if (!ioc
->hpr_lookup
) {
5754 ioc_err(ioc
, "hpr_lookup: kcalloc failed\n");
5757 ioc
->hi_priority_smid
= ioc
->scsiio_depth
+ 1;
5759 ioc_info(ioc
, "hi_priority(0x%p): depth(%d), start smid(%d)\n",
5761 ioc
->hi_priority_depth
, ioc
->hi_priority_smid
));
5763 /* initialize internal queue smid's */
5764 ioc
->internal_lookup
= kcalloc(ioc
->internal_depth
,
5765 sizeof(struct request_tracker
), GFP_KERNEL
);
5766 if (!ioc
->internal_lookup
) {
5767 ioc_err(ioc
, "internal_lookup: kcalloc failed\n");
5770 ioc
->internal_smid
= ioc
->hi_priority_smid
+ ioc
->hi_priority_depth
;
5772 ioc_info(ioc
, "internal(0x%p): depth(%d), start smid(%d)\n",
5774 ioc
->internal_depth
, ioc
->internal_smid
));
5776 * The number of NVMe page sized blocks needed is:
5777 * (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
5778 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
5779 * that is placed in the main message frame. 8 is the size of each PRP
5780 * entry or PRP list pointer entry. 8 is subtracted from page_size
5781 * because of the PRP list pointer entry at the end of a page, so this
5782 * is not counted as a PRP entry. The 1 added page is a round up.
5784 * To avoid allocation failures due to the amount of memory that could
5785 * be required for NVMe PRP's, only each set of NVMe blocks will be
5786 * contiguous, so a new set is allocated for each possible I/O.
5788 ioc
->chains_per_prp_buffer
= 0;
5789 if (ioc
->facts
.ProtocolFlags
& MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES
) {
5790 nvme_blocks_needed
=
5791 (ioc
->shost
->sg_tablesize
* NVME_PRP_SIZE
) - 1;
5792 nvme_blocks_needed
/= (ioc
->page_size
- NVME_PRP_SIZE
);
5793 nvme_blocks_needed
++;
5795 sz
= sizeof(struct pcie_sg_list
) * ioc
->scsiio_depth
;
5796 ioc
->pcie_sg_lookup
= kzalloc(sz
, GFP_KERNEL
);
5797 if (!ioc
->pcie_sg_lookup
) {
5798 ioc_info(ioc
, "PCIe SGL lookup: kzalloc failed\n");
5801 sz
= nvme_blocks_needed
* ioc
->page_size
;
5802 ioc
->pcie_sgl_dma_pool
=
5803 dma_pool_create("PCIe SGL pool", &ioc
->pdev
->dev
, sz
, 16, 0);
5804 if (!ioc
->pcie_sgl_dma_pool
) {
5805 ioc_info(ioc
, "PCIe SGL pool: dma_pool_create failed\n");
5809 ioc
->chains_per_prp_buffer
= sz
/ioc
->chain_segment_sz
;
5810 ioc
->chains_per_prp_buffer
= min(ioc
->chains_per_prp_buffer
,
5811 ioc
->chains_needed_per_io
);
5813 for (i
= 0; i
< ioc
->scsiio_depth
; i
++) {
5814 ioc
->pcie_sg_lookup
[i
].pcie_sgl
= dma_pool_alloc(
5815 ioc
->pcie_sgl_dma_pool
, GFP_KERNEL
,
5816 &ioc
->pcie_sg_lookup
[i
].pcie_sgl_dma
);
5817 if (!ioc
->pcie_sg_lookup
[i
].pcie_sgl
) {
5818 ioc_info(ioc
, "PCIe SGL pool: dma_pool_alloc failed\n");
5821 for (j
= 0; j
< ioc
->chains_per_prp_buffer
; j
++) {
5822 ct
= &ioc
->chain_lookup
[i
].chains_per_smid
[j
];
5824 ioc
->pcie_sg_lookup
[i
].pcie_sgl
+
5825 (j
* ioc
->chain_segment_sz
);
5826 ct
->chain_buffer_dma
=
5827 ioc
->pcie_sg_lookup
[i
].pcie_sgl_dma
+
5828 (j
* ioc
->chain_segment_sz
);
5833 ioc_info(ioc
, "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n",
5834 ioc
->scsiio_depth
, sz
,
5835 (sz
* ioc
->scsiio_depth
) / 1024));
5837 ioc_info(ioc
, "Number of chains can fit in a PRP page(%d)\n",
5838 ioc
->chains_per_prp_buffer
));
5839 total_sz
+= sz
* ioc
->scsiio_depth
;
5842 ioc
->chain_dma_pool
= dma_pool_create("chain pool", &ioc
->pdev
->dev
,
5843 ioc
->chain_segment_sz
, 16, 0);
5844 if (!ioc
->chain_dma_pool
) {
5845 ioc_err(ioc
, "chain_dma_pool: dma_pool_create failed\n");
5848 for (i
= 0; i
< ioc
->scsiio_depth
; i
++) {
5849 for (j
= ioc
->chains_per_prp_buffer
;
5850 j
< ioc
->chains_needed_per_io
; j
++) {
5851 ct
= &ioc
->chain_lookup
[i
].chains_per_smid
[j
];
5852 ct
->chain_buffer
= dma_pool_alloc(
5853 ioc
->chain_dma_pool
, GFP_KERNEL
,
5854 &ct
->chain_buffer_dma
);
5855 if (!ct
->chain_buffer
) {
5856 ioc_err(ioc
, "chain_lookup: pci_pool_alloc failed\n");
5860 total_sz
+= ioc
->chain_segment_sz
;
5864 ioc_info(ioc
, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
5865 ioc
->chain_depth
, ioc
->chain_segment_sz
,
5866 (ioc
->chain_depth
* ioc
->chain_segment_sz
) / 1024));
5868 /* sense buffers, 4 byte align */
5869 sz
= ioc
->scsiio_depth
* SCSI_SENSE_BUFFERSIZE
;
5870 ioc
->sense_dma_pool
= dma_pool_create("sense pool", &ioc
->pdev
->dev
, sz
,
5872 if (!ioc
->sense_dma_pool
) {
5873 ioc_err(ioc
, "sense pool: dma_pool_create failed\n");
5876 ioc
->sense
= dma_pool_alloc(ioc
->sense_dma_pool
, GFP_KERNEL
,
5879 ioc_err(ioc
, "sense pool: dma_pool_alloc failed\n");
5882 /* sense buffer requires to be in same 4 gb region.
5883 * Below function will check the same.
5884 * In case of failure, new pci pool will be created with updated
5885 * alignment. Older allocation and pool will be destroyed.
5886 * Alignment will be used such a way that next allocation if
5887 * success, will always meet same 4gb region requirement.
5888 * Actual requirement is not alignment, but we need start and end of
5889 * DMA address must have same upper 32 bit address.
5891 if (!mpt3sas_check_same_4gb_region((long)ioc
->sense
, sz
)) {
5892 //Release Sense pool & Reallocate
5893 dma_pool_free(ioc
->sense_dma_pool
, ioc
->sense
, ioc
->sense_dma
);
5894 dma_pool_destroy(ioc
->sense_dma_pool
);
5897 ioc
->sense_dma_pool
=
5898 dma_pool_create("sense pool", &ioc
->pdev
->dev
, sz
,
5899 roundup_pow_of_two(sz
), 0);
5900 if (!ioc
->sense_dma_pool
) {
5901 ioc_err(ioc
, "sense pool: pci_pool_create failed\n");
5904 ioc
->sense
= dma_pool_alloc(ioc
->sense_dma_pool
, GFP_KERNEL
,
5907 ioc_err(ioc
, "sense pool: pci_pool_alloc failed\n");
5912 "sense pool(0x%p)- dma(0x%llx): depth(%d),"
5913 "element_size(%d), pool_size(%d kB)\n",
5914 ioc
->sense
, (unsigned long long)ioc
->sense_dma
, ioc
->scsiio_depth
,
5915 SCSI_SENSE_BUFFERSIZE
, sz
/ 1024);
5919 /* reply pool, 4 byte align */
5920 sz
= ioc
->reply_free_queue_depth
* ioc
->reply_sz
;
5921 ioc
->reply_dma_pool
= dma_pool_create("reply pool", &ioc
->pdev
->dev
, sz
,
5923 if (!ioc
->reply_dma_pool
) {
5924 ioc_err(ioc
, "reply pool: dma_pool_create failed\n");
5927 ioc
->reply
= dma_pool_alloc(ioc
->reply_dma_pool
, GFP_KERNEL
,
5930 ioc_err(ioc
, "reply pool: dma_pool_alloc failed\n");
5933 ioc
->reply_dma_min_address
= (u32
)(ioc
->reply_dma
);
5934 ioc
->reply_dma_max_address
= (u32
)(ioc
->reply_dma
) + sz
;
5936 ioc_info(ioc
, "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
5937 ioc
->reply
, ioc
->reply_free_queue_depth
,
5938 ioc
->reply_sz
, sz
/ 1024));
5940 ioc_info(ioc
, "reply_dma(0x%llx)\n",
5941 (unsigned long long)ioc
->reply_dma
));
5944 /* reply free queue, 16 byte align */
5945 sz
= ioc
->reply_free_queue_depth
* 4;
5946 ioc
->reply_free_dma_pool
= dma_pool_create("reply_free pool",
5947 &ioc
->pdev
->dev
, sz
, 16, 0);
5948 if (!ioc
->reply_free_dma_pool
) {
5949 ioc_err(ioc
, "reply_free pool: dma_pool_create failed\n");
5952 ioc
->reply_free
= dma_pool_zalloc(ioc
->reply_free_dma_pool
, GFP_KERNEL
,
5953 &ioc
->reply_free_dma
);
5954 if (!ioc
->reply_free
) {
5955 ioc_err(ioc
, "reply_free pool: dma_pool_alloc failed\n");
5959 ioc_info(ioc
, "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
5960 ioc
->reply_free
, ioc
->reply_free_queue_depth
,
5963 ioc_info(ioc
, "reply_free_dma (0x%llx)\n",
5964 (unsigned long long)ioc
->reply_free_dma
));
5967 if (ioc
->rdpq_array_enable
) {
5968 reply_post_free_array_sz
= ioc
->reply_queue_count
*
5969 sizeof(Mpi2IOCInitRDPQArrayEntry
);
5970 ioc
->reply_post_free_array_dma_pool
=
5971 dma_pool_create("reply_post_free_array pool",
5972 &ioc
->pdev
->dev
, reply_post_free_array_sz
, 16, 0);
5973 if (!ioc
->reply_post_free_array_dma_pool
) {
5975 ioc_info(ioc
, "reply_post_free_array pool: dma_pool_create failed\n"));
5978 ioc
->reply_post_free_array
=
5979 dma_pool_alloc(ioc
->reply_post_free_array_dma_pool
,
5980 GFP_KERNEL
, &ioc
->reply_post_free_array_dma
);
5981 if (!ioc
->reply_post_free_array
) {
5983 ioc_info(ioc
, "reply_post_free_array pool: dma_pool_alloc failed\n"));
5987 ioc
->config_page_sz
= 512;
5988 ioc
->config_page
= dma_alloc_coherent(&ioc
->pdev
->dev
,
5989 ioc
->config_page_sz
, &ioc
->config_page_dma
, GFP_KERNEL
);
5990 if (!ioc
->config_page
) {
5991 ioc_err(ioc
, "config page: dma_pool_alloc failed\n");
5995 ioc_info(ioc
, "config page(0x%p) - dma(0x%llx): size(%d)\n",
5996 ioc
->config_page
, (unsigned long long)ioc
->config_page_dma
,
5997 ioc
->config_page_sz
);
5998 total_sz
+= ioc
->config_page_sz
;
6000 ioc_info(ioc
, "Allocated physical memory: size(%d kB)\n",
6002 ioc_info(ioc
, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
6003 ioc
->shost
->can_queue
, facts
->RequestCredit
);
6004 ioc_info(ioc
, "Scatter Gather Elements per IO(%d)\n",
6005 ioc
->shost
->sg_tablesize
);
6013 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
6014 * @ioc: Pointer to MPT_ADAPTER structure
6015 * @cooked: Request raw or cooked IOC state
6017 * Return: all IOC Doorbell register bits if cooked==0, else just the
6018 * Doorbell bits in MPI_IOC_STATE_MASK.
6021 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER
*ioc
, int cooked
)
6025 s
= ioc
->base_readl(&ioc
->chip
->Doorbell
);
6026 sc
= s
& MPI2_IOC_STATE_MASK
;
6027 return cooked
? sc
: s
;
6031 * _base_wait_on_iocstate - waiting on a particular ioc state
6033 * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
6034 * @timeout: timeout in second
6036 * Return: 0 for success, non-zero for failure.
6039 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER
*ioc
, u32 ioc_state
, int timeout
)
6045 cntdn
= 1000 * timeout
;
6047 current_state
= mpt3sas_base_get_iocstate(ioc
, 1);
6048 if (current_state
== ioc_state
)
6050 if (count
&& current_state
== MPI2_IOC_STATE_FAULT
)
6052 if (count
&& current_state
== MPI2_IOC_STATE_COREDUMP
)
6055 usleep_range(1000, 1500);
6059 return current_state
;
6063 * _base_dump_reg_set - This function will print hexdump of register set.
6064 * @ioc: per adapter object
6069 _base_dump_reg_set(struct MPT3SAS_ADAPTER
*ioc
)
6071 unsigned int i
, sz
= 256;
6072 u32 __iomem
*reg
= (u32 __iomem
*)ioc
->chip
;
6074 ioc_info(ioc
, "System Register set:\n");
6075 for (i
= 0; i
< (sz
/ sizeof(u32
)); i
++)
6076 pr_info("%08x: %08x\n", (i
* 4), readl(®
[i
]));
6080 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
6081 * a write to the doorbell)
6082 * @ioc: per adapter object
6083 * @timeout: timeout in seconds
6085 * Return: 0 for success, non-zero for failure.
6087 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
6091 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER
*ioc
, int timeout
)
6097 cntdn
= 1000 * timeout
;
6099 int_status
= ioc
->base_readl(&ioc
->chip
->HostInterruptStatus
);
6100 if (int_status
& MPI2_HIS_IOC2SYS_DB_STATUS
) {
6102 ioc_info(ioc
, "%s: successful count(%d), timeout(%d)\n",
6103 __func__
, count
, timeout
));
6107 usleep_range(1000, 1500);
6111 ioc_err(ioc
, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6112 __func__
, count
, int_status
);
6117 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER
*ioc
, int timeout
)
6123 cntdn
= 2000 * timeout
;
6125 int_status
= ioc
->base_readl(&ioc
->chip
->HostInterruptStatus
);
6126 if (int_status
& MPI2_HIS_IOC2SYS_DB_STATUS
) {
6128 ioc_info(ioc
, "%s: successful count(%d), timeout(%d)\n",
6129 __func__
, count
, timeout
));
6137 ioc_err(ioc
, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6138 __func__
, count
, int_status
);
6144 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
6145 * @ioc: per adapter object
6146 * @timeout: timeout in second
6148 * Return: 0 for success, non-zero for failure.
6150 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
6154 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER
*ioc
, int timeout
)
6161 cntdn
= 1000 * timeout
;
6163 int_status
= ioc
->base_readl(&ioc
->chip
->HostInterruptStatus
);
6164 if (!(int_status
& MPI2_HIS_SYS2IOC_DB_STATUS
)) {
6166 ioc_info(ioc
, "%s: successful count(%d), timeout(%d)\n",
6167 __func__
, count
, timeout
));
6169 } else if (int_status
& MPI2_HIS_IOC2SYS_DB_STATUS
) {
6170 doorbell
= ioc
->base_readl(&ioc
->chip
->Doorbell
);
6171 if ((doorbell
& MPI2_IOC_STATE_MASK
) ==
6172 MPI2_IOC_STATE_FAULT
) {
6173 mpt3sas_print_fault_code(ioc
, doorbell
);
6176 if ((doorbell
& MPI2_IOC_STATE_MASK
) ==
6177 MPI2_IOC_STATE_COREDUMP
) {
6178 mpt3sas_print_coredump_info(ioc
, doorbell
);
6181 } else if (int_status
== 0xFFFFFFFF)
6184 usleep_range(1000, 1500);
6189 ioc_err(ioc
, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6190 __func__
, count
, int_status
);
6195 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
6196 * @ioc: per adapter object
6197 * @timeout: timeout in second
6199 * Return: 0 for success, non-zero for failure.
6202 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER
*ioc
, int timeout
)
6208 cntdn
= 1000 * timeout
;
6210 doorbell_reg
= ioc
->base_readl(&ioc
->chip
->Doorbell
);
6211 if (!(doorbell_reg
& MPI2_DOORBELL_USED
)) {
6213 ioc_info(ioc
, "%s: successful count(%d), timeout(%d)\n",
6214 __func__
, count
, timeout
));
6218 usleep_range(1000, 1500);
6222 ioc_err(ioc
, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
6223 __func__
, count
, doorbell_reg
);
6228 * _base_send_ioc_reset - send doorbell reset
6229 * @ioc: per adapter object
6230 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
6231 * @timeout: timeout in second
6233 * Return: 0 for success, non-zero for failure.
6236 _base_send_ioc_reset(struct MPT3SAS_ADAPTER
*ioc
, u8 reset_type
, int timeout
)
6240 unsigned long flags
;
6242 if (reset_type
!= MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
) {
6243 ioc_err(ioc
, "%s: unknown reset_type\n", __func__
);
6247 if (!(ioc
->facts
.IOCCapabilities
&
6248 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY
))
6251 ioc_info(ioc
, "sending message unit reset !!\n");
6253 writel(reset_type
<< MPI2_DOORBELL_FUNCTION_SHIFT
,
6254 &ioc
->chip
->Doorbell
);
6255 if ((_base_wait_for_doorbell_ack(ioc
, 15))) {
6260 ioc_state
= _base_wait_on_iocstate(ioc
, MPI2_IOC_STATE_READY
, timeout
);
6262 ioc_err(ioc
, "%s: failed going to ready state (ioc_state=0x%x)\n",
6263 __func__
, ioc_state
);
6269 ioc_state
= mpt3sas_base_get_iocstate(ioc
, 0);
6270 spin_lock_irqsave(&ioc
->ioc_reset_in_progress_lock
, flags
);
6272 * Wait for IOC state CoreDump to clear only during
6273 * HBA initialization & release time.
6275 if ((ioc_state
& MPI2_IOC_STATE_MASK
) ==
6276 MPI2_IOC_STATE_COREDUMP
&& (ioc
->is_driver_loading
== 1 ||
6277 ioc
->fault_reset_work_q
== NULL
)) {
6278 spin_unlock_irqrestore(
6279 &ioc
->ioc_reset_in_progress_lock
, flags
);
6280 mpt3sas_print_coredump_info(ioc
, ioc_state
);
6281 mpt3sas_base_wait_for_coredump_completion(ioc
,
6284 &ioc
->ioc_reset_in_progress_lock
, flags
);
6286 spin_unlock_irqrestore(&ioc
->ioc_reset_in_progress_lock
, flags
);
6288 ioc_info(ioc
, "message unit reset: %s\n",
6289 r
== 0 ? "SUCCESS" : "FAILED");
6294 * mpt3sas_wait_for_ioc - IOC's operational state is checked here.
6295 * @ioc: per adapter object
6296 * @timeout: timeout in seconds
6298 * Return: Waits up to timeout seconds for the IOC to
6299 * become operational. Returns 0 if IOC is present
6300 * and operational; otherwise returns -EFAULT.
6304 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER
*ioc
, int timeout
)
6306 int wait_state_count
= 0;
6310 ioc_state
= mpt3sas_base_get_iocstate(ioc
, 1);
6311 if (ioc_state
== MPI2_IOC_STATE_OPERATIONAL
)
6314 ioc_info(ioc
, "%s: waiting for operational state(count=%d)\n",
6315 __func__
, ++wait_state_count
);
6316 } while (--timeout
);
6318 ioc_err(ioc
, "%s: failed due to ioc not operational\n", __func__
);
6321 if (wait_state_count
)
6322 ioc_info(ioc
, "ioc is operational\n");
6327 * _base_handshake_req_reply_wait - send request thru doorbell interface
6328 * @ioc: per adapter object
6329 * @request_bytes: request length
6330 * @request: pointer having request payload
6331 * @reply_bytes: reply length
6332 * @reply: pointer to reply payload
6333 * @timeout: timeout in second
6335 * Return: 0 for success, non-zero for failure.
6338 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER
*ioc
, int request_bytes
,
6339 u32
*request
, int reply_bytes
, u16
*reply
, int timeout
)
6341 MPI2DefaultReply_t
*default_reply
= (MPI2DefaultReply_t
*)reply
;
6346 /* make sure doorbell is not in use */
6347 if ((ioc
->base_readl(&ioc
->chip
->Doorbell
) & MPI2_DOORBELL_USED
)) {
6348 ioc_err(ioc
, "doorbell is in use (line=%d)\n", __LINE__
);
6352 /* clear pending doorbell interrupts from previous state changes */
6353 if (ioc
->base_readl(&ioc
->chip
->HostInterruptStatus
) &
6354 MPI2_HIS_IOC2SYS_DB_STATUS
)
6355 writel(0, &ioc
->chip
->HostInterruptStatus
);
6357 /* send message to ioc */
6358 writel(((MPI2_FUNCTION_HANDSHAKE
<<MPI2_DOORBELL_FUNCTION_SHIFT
) |
6359 ((request_bytes
/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT
)),
6360 &ioc
->chip
->Doorbell
);
6362 if ((_base_spin_on_doorbell_int(ioc
, 5))) {
6363 ioc_err(ioc
, "doorbell handshake int failed (line=%d)\n",
6367 writel(0, &ioc
->chip
->HostInterruptStatus
);
6369 if ((_base_wait_for_doorbell_ack(ioc
, 5))) {
6370 ioc_err(ioc
, "doorbell handshake ack failed (line=%d)\n",
6375 /* send message 32-bits at a time */
6376 for (i
= 0, failed
= 0; i
< request_bytes
/4 && !failed
; i
++) {
6377 writel(cpu_to_le32(request
[i
]), &ioc
->chip
->Doorbell
);
6378 if ((_base_wait_for_doorbell_ack(ioc
, 5)))
6383 ioc_err(ioc
, "doorbell handshake sending request failed (line=%d)\n",
6388 /* now wait for the reply */
6389 if ((_base_wait_for_doorbell_int(ioc
, timeout
))) {
6390 ioc_err(ioc
, "doorbell handshake int failed (line=%d)\n",
6395 /* read the first two 16-bits, it gives the total length of the reply */
6396 reply
[0] = le16_to_cpu(ioc
->base_readl(&ioc
->chip
->Doorbell
)
6397 & MPI2_DOORBELL_DATA_MASK
);
6398 writel(0, &ioc
->chip
->HostInterruptStatus
);
6399 if ((_base_wait_for_doorbell_int(ioc
, 5))) {
6400 ioc_err(ioc
, "doorbell handshake int failed (line=%d)\n",
6404 reply
[1] = le16_to_cpu(ioc
->base_readl(&ioc
->chip
->Doorbell
)
6405 & MPI2_DOORBELL_DATA_MASK
);
6406 writel(0, &ioc
->chip
->HostInterruptStatus
);
6408 for (i
= 2; i
< default_reply
->MsgLength
* 2; i
++) {
6409 if ((_base_wait_for_doorbell_int(ioc
, 5))) {
6410 ioc_err(ioc
, "doorbell handshake int failed (line=%d)\n",
6414 if (i
>= reply_bytes
/2) /* overflow case */
6415 ioc
->base_readl(&ioc
->chip
->Doorbell
);
6417 reply
[i
] = le16_to_cpu(
6418 ioc
->base_readl(&ioc
->chip
->Doorbell
)
6419 & MPI2_DOORBELL_DATA_MASK
);
6420 writel(0, &ioc
->chip
->HostInterruptStatus
);
6423 _base_wait_for_doorbell_int(ioc
, 5);
6424 if (_base_wait_for_doorbell_not_used(ioc
, 5) != 0) {
6426 ioc_info(ioc
, "doorbell is in use (line=%d)\n",
6429 writel(0, &ioc
->chip
->HostInterruptStatus
);
6431 if (ioc
->logging_level
& MPT_DEBUG_INIT
) {
6432 mfp
= (__le32
*)reply
;
6433 pr_info("\toffset:data\n");
6434 for (i
= 0; i
< reply_bytes
/4; i
++)
6435 ioc_info(ioc
, "\t[0x%02x]:%08x\n", i
*4,
6436 le32_to_cpu(mfp
[i
]));
6442 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
6443 * @ioc: per adapter object
6444 * @mpi_reply: the reply payload from FW
6445 * @mpi_request: the request payload sent to FW
6447 * The SAS IO Unit Control Request message allows the host to perform low-level
6448 * operations, such as resets on the PHYs of the IO Unit, also allows the host
6449 * to obtain the IOC assigned device handles for a device if it has other
6450 * identifying information about the device, in addition allows the host to
6451 * remove IOC resources associated with the device.
6453 * Return: 0 for success, non-zero for failure.
6456 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER
*ioc
,
6457 Mpi2SasIoUnitControlReply_t
*mpi_reply
,
6458 Mpi2SasIoUnitControlRequest_t
*mpi_request
)
6465 dinitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
6467 mutex_lock(&ioc
->base_cmds
.mutex
);
6469 if (ioc
->base_cmds
.status
!= MPT3_CMD_NOT_USED
) {
6470 ioc_err(ioc
, "%s: base_cmd in use\n", __func__
);
6475 rc
= mpt3sas_wait_for_ioc(ioc
, IOC_OPERATIONAL_WAIT_COUNT
);
6479 smid
= mpt3sas_base_get_smid(ioc
, ioc
->base_cb_idx
);
6481 ioc_err(ioc
, "%s: failed obtaining a smid\n", __func__
);
6487 ioc
->base_cmds
.status
= MPT3_CMD_PENDING
;
6488 request
= mpt3sas_base_get_msg_frame(ioc
, smid
);
6489 ioc
->base_cmds
.smid
= smid
;
6490 memcpy(request
, mpi_request
, sizeof(Mpi2SasIoUnitControlRequest_t
));
6491 if (mpi_request
->Operation
== MPI2_SAS_OP_PHY_HARD_RESET
||
6492 mpi_request
->Operation
== MPI2_SAS_OP_PHY_LINK_RESET
)
6493 ioc
->ioc_link_reset_in_progress
= 1;
6494 init_completion(&ioc
->base_cmds
.done
);
6495 ioc
->put_smid_default(ioc
, smid
);
6496 wait_for_completion_timeout(&ioc
->base_cmds
.done
,
6497 msecs_to_jiffies(10000));
6498 if ((mpi_request
->Operation
== MPI2_SAS_OP_PHY_HARD_RESET
||
6499 mpi_request
->Operation
== MPI2_SAS_OP_PHY_LINK_RESET
) &&
6500 ioc
->ioc_link_reset_in_progress
)
6501 ioc
->ioc_link_reset_in_progress
= 0;
6502 if (!(ioc
->base_cmds
.status
& MPT3_CMD_COMPLETE
)) {
6503 mpt3sas_check_cmd_timeout(ioc
, ioc
->base_cmds
.status
,
6504 mpi_request
, sizeof(Mpi2SasIoUnitControlRequest_t
)/4,
6506 goto issue_host_reset
;
6508 if (ioc
->base_cmds
.status
& MPT3_CMD_REPLY_VALID
)
6509 memcpy(mpi_reply
, ioc
->base_cmds
.reply
,
6510 sizeof(Mpi2SasIoUnitControlReply_t
));
6512 memset(mpi_reply
, 0, sizeof(Mpi2SasIoUnitControlReply_t
));
6513 ioc
->base_cmds
.status
= MPT3_CMD_NOT_USED
;
6518 mpt3sas_base_hard_reset_handler(ioc
, FORCE_BIG_HAMMER
);
6519 ioc
->base_cmds
.status
= MPT3_CMD_NOT_USED
;
6522 mutex_unlock(&ioc
->base_cmds
.mutex
);
6527 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
6528 * @ioc: per adapter object
6529 * @mpi_reply: the reply payload from FW
6530 * @mpi_request: the request payload sent to FW
6532 * The SCSI Enclosure Processor request message causes the IOC to
6533 * communicate with SES devices to control LED status signals.
6535 * Return: 0 for success, non-zero for failure.
6538 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER
*ioc
,
6539 Mpi2SepReply_t
*mpi_reply
, Mpi2SepRequest_t
*mpi_request
)
6546 dinitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
6548 mutex_lock(&ioc
->base_cmds
.mutex
);
6550 if (ioc
->base_cmds
.status
!= MPT3_CMD_NOT_USED
) {
6551 ioc_err(ioc
, "%s: base_cmd in use\n", __func__
);
6556 rc
= mpt3sas_wait_for_ioc(ioc
, IOC_OPERATIONAL_WAIT_COUNT
);
6560 smid
= mpt3sas_base_get_smid(ioc
, ioc
->base_cb_idx
);
6562 ioc_err(ioc
, "%s: failed obtaining a smid\n", __func__
);
6568 ioc
->base_cmds
.status
= MPT3_CMD_PENDING
;
6569 request
= mpt3sas_base_get_msg_frame(ioc
, smid
);
6570 ioc
->base_cmds
.smid
= smid
;
6571 memset(request
, 0, ioc
->request_sz
);
6572 memcpy(request
, mpi_request
, sizeof(Mpi2SepReply_t
));
6573 init_completion(&ioc
->base_cmds
.done
);
6574 ioc
->put_smid_default(ioc
, smid
);
6575 wait_for_completion_timeout(&ioc
->base_cmds
.done
,
6576 msecs_to_jiffies(10000));
6577 if (!(ioc
->base_cmds
.status
& MPT3_CMD_COMPLETE
)) {
6578 mpt3sas_check_cmd_timeout(ioc
,
6579 ioc
->base_cmds
.status
, mpi_request
,
6580 sizeof(Mpi2SepRequest_t
)/4, issue_reset
);
6581 goto issue_host_reset
;
6583 if (ioc
->base_cmds
.status
& MPT3_CMD_REPLY_VALID
)
6584 memcpy(mpi_reply
, ioc
->base_cmds
.reply
,
6585 sizeof(Mpi2SepReply_t
));
6587 memset(mpi_reply
, 0, sizeof(Mpi2SepReply_t
));
6588 ioc
->base_cmds
.status
= MPT3_CMD_NOT_USED
;
6593 mpt3sas_base_hard_reset_handler(ioc
, FORCE_BIG_HAMMER
);
6594 ioc
->base_cmds
.status
= MPT3_CMD_NOT_USED
;
6597 mutex_unlock(&ioc
->base_cmds
.mutex
);
6602 * _base_get_port_facts - obtain port facts reply and save in ioc
6603 * @ioc: per adapter object
6606 * Return: 0 for success, non-zero for failure.
6609 _base_get_port_facts(struct MPT3SAS_ADAPTER
*ioc
, int port
)
6611 Mpi2PortFactsRequest_t mpi_request
;
6612 Mpi2PortFactsReply_t mpi_reply
;
6613 struct mpt3sas_port_facts
*pfacts
;
6614 int mpi_reply_sz
, mpi_request_sz
, r
;
6616 dinitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
6618 mpi_reply_sz
= sizeof(Mpi2PortFactsReply_t
);
6619 mpi_request_sz
= sizeof(Mpi2PortFactsRequest_t
);
6620 memset(&mpi_request
, 0, mpi_request_sz
);
6621 mpi_request
.Function
= MPI2_FUNCTION_PORT_FACTS
;
6622 mpi_request
.PortNumber
= port
;
6623 r
= _base_handshake_req_reply_wait(ioc
, mpi_request_sz
,
6624 (u32
*)&mpi_request
, mpi_reply_sz
, (u16
*)&mpi_reply
, 5);
6627 ioc_err(ioc
, "%s: handshake failed (r=%d)\n", __func__
, r
);
6631 pfacts
= &ioc
->pfacts
[port
];
6632 memset(pfacts
, 0, sizeof(struct mpt3sas_port_facts
));
6633 pfacts
->PortNumber
= mpi_reply
.PortNumber
;
6634 pfacts
->VP_ID
= mpi_reply
.VP_ID
;
6635 pfacts
->VF_ID
= mpi_reply
.VF_ID
;
6636 pfacts
->MaxPostedCmdBuffers
=
6637 le16_to_cpu(mpi_reply
.MaxPostedCmdBuffers
);
6643 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
6644 * @ioc: per adapter object
6647 * Return: 0 for success, non-zero for failure.
6650 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER
*ioc
, int timeout
)
6655 dinitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
6657 if (ioc
->pci_error_recovery
) {
6659 ioc_info(ioc
, "%s: host in pci error recovery\n",
6664 ioc_state
= mpt3sas_base_get_iocstate(ioc
, 0);
6666 ioc_info(ioc
, "%s: ioc_state(0x%08x)\n",
6667 __func__
, ioc_state
));
6669 if (((ioc_state
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_READY
) ||
6670 (ioc_state
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_OPERATIONAL
)
6673 if (ioc_state
& MPI2_DOORBELL_USED
) {
6674 dhsprintk(ioc
, ioc_info(ioc
, "unexpected doorbell active!\n"));
6675 goto issue_diag_reset
;
6678 if ((ioc_state
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_FAULT
) {
6679 mpt3sas_print_fault_code(ioc
, ioc_state
&
6680 MPI2_DOORBELL_DATA_MASK
);
6681 goto issue_diag_reset
;
6682 } else if ((ioc_state
& MPI2_IOC_STATE_MASK
) ==
6683 MPI2_IOC_STATE_COREDUMP
) {
6685 "%s: Skipping the diag reset here. (ioc_state=0x%x)\n",
6686 __func__
, ioc_state
);
6690 ioc_state
= _base_wait_on_iocstate(ioc
, MPI2_IOC_STATE_READY
, timeout
);
6693 ioc_info(ioc
, "%s: failed going to ready state (ioc_state=0x%x)\n",
6694 __func__
, ioc_state
));
6699 rc
= _base_diag_reset(ioc
);
6704 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
6705 * @ioc: per adapter object
6707 * Return: 0 for success, non-zero for failure.
6710 _base_get_ioc_facts(struct MPT3SAS_ADAPTER
*ioc
)
6712 Mpi2IOCFactsRequest_t mpi_request
;
6713 Mpi2IOCFactsReply_t mpi_reply
;
6714 struct mpt3sas_facts
*facts
;
6715 int mpi_reply_sz
, mpi_request_sz
, r
;
6717 dinitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
6719 r
= _base_wait_for_iocstate(ioc
, 10);
6722 ioc_info(ioc
, "%s: failed getting to correct state\n",
6726 mpi_reply_sz
= sizeof(Mpi2IOCFactsReply_t
);
6727 mpi_request_sz
= sizeof(Mpi2IOCFactsRequest_t
);
6728 memset(&mpi_request
, 0, mpi_request_sz
);
6729 mpi_request
.Function
= MPI2_FUNCTION_IOC_FACTS
;
6730 r
= _base_handshake_req_reply_wait(ioc
, mpi_request_sz
,
6731 (u32
*)&mpi_request
, mpi_reply_sz
, (u16
*)&mpi_reply
, 5);
6734 ioc_err(ioc
, "%s: handshake failed (r=%d)\n", __func__
, r
);
6738 facts
= &ioc
->facts
;
6739 memset(facts
, 0, sizeof(struct mpt3sas_facts
));
6740 facts
->MsgVersion
= le16_to_cpu(mpi_reply
.MsgVersion
);
6741 facts
->HeaderVersion
= le16_to_cpu(mpi_reply
.HeaderVersion
);
6742 facts
->VP_ID
= mpi_reply
.VP_ID
;
6743 facts
->VF_ID
= mpi_reply
.VF_ID
;
6744 facts
->IOCExceptions
= le16_to_cpu(mpi_reply
.IOCExceptions
);
6745 facts
->MaxChainDepth
= mpi_reply
.MaxChainDepth
;
6746 facts
->WhoInit
= mpi_reply
.WhoInit
;
6747 facts
->NumberOfPorts
= mpi_reply
.NumberOfPorts
;
6748 facts
->MaxMSIxVectors
= mpi_reply
.MaxMSIxVectors
;
6749 if (ioc
->msix_enable
&& (facts
->MaxMSIxVectors
<=
6750 MAX_COMBINED_MSIX_VECTORS(ioc
->is_gen35_ioc
)))
6751 ioc
->combined_reply_queue
= 0;
6752 facts
->RequestCredit
= le16_to_cpu(mpi_reply
.RequestCredit
);
6753 facts
->MaxReplyDescriptorPostQueueDepth
=
6754 le16_to_cpu(mpi_reply
.MaxReplyDescriptorPostQueueDepth
);
6755 facts
->ProductID
= le16_to_cpu(mpi_reply
.ProductID
);
6756 facts
->IOCCapabilities
= le32_to_cpu(mpi_reply
.IOCCapabilities
);
6757 if ((facts
->IOCCapabilities
& MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID
))
6758 ioc
->ir_firmware
= 1;
6759 if ((facts
->IOCCapabilities
&
6760 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE
) && (!reset_devices
))
6761 ioc
->rdpq_array_capable
= 1;
6762 if ((facts
->IOCCapabilities
& MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ
)
6763 && ioc
->is_aero_ioc
)
6764 ioc
->atomic_desc_capable
= 1;
6765 facts
->FWVersion
.Word
= le32_to_cpu(mpi_reply
.FWVersion
.Word
);
6766 facts
->IOCRequestFrameSize
=
6767 le16_to_cpu(mpi_reply
.IOCRequestFrameSize
);
6768 if (ioc
->hba_mpi_version_belonged
!= MPI2_VERSION
) {
6769 facts
->IOCMaxChainSegmentSize
=
6770 le16_to_cpu(mpi_reply
.IOCMaxChainSegmentSize
);
6772 facts
->MaxInitiators
= le16_to_cpu(mpi_reply
.MaxInitiators
);
6773 facts
->MaxTargets
= le16_to_cpu(mpi_reply
.MaxTargets
);
6774 ioc
->shost
->max_id
= -1;
6775 facts
->MaxSasExpanders
= le16_to_cpu(mpi_reply
.MaxSasExpanders
);
6776 facts
->MaxEnclosures
= le16_to_cpu(mpi_reply
.MaxEnclosures
);
6777 facts
->ProtocolFlags
= le16_to_cpu(mpi_reply
.ProtocolFlags
);
6778 facts
->HighPriorityCredit
=
6779 le16_to_cpu(mpi_reply
.HighPriorityCredit
);
6780 facts
->ReplyFrameSize
= mpi_reply
.ReplyFrameSize
;
6781 facts
->MaxDevHandle
= le16_to_cpu(mpi_reply
.MaxDevHandle
);
6782 facts
->CurrentHostPageSize
= mpi_reply
.CurrentHostPageSize
;
6785 * Get the Page Size from IOC Facts. If it's 0, default to 4k.
6787 ioc
->page_size
= 1 << facts
->CurrentHostPageSize
;
6788 if (ioc
->page_size
== 1) {
6789 ioc_info(ioc
, "CurrentHostPageSize is 0: Setting default host page size to 4k\n");
6790 ioc
->page_size
= 1 << MPT3SAS_HOST_PAGE_SIZE_4K
;
6793 ioc_info(ioc
, "CurrentHostPageSize(%d)\n",
6794 facts
->CurrentHostPageSize
));
6797 ioc_info(ioc
, "hba queue depth(%d), max chains per io(%d)\n",
6798 facts
->RequestCredit
, facts
->MaxChainDepth
));
6800 ioc_info(ioc
, "request frame size(%d), reply frame size(%d)\n",
6801 facts
->IOCRequestFrameSize
* 4,
6802 facts
->ReplyFrameSize
* 4));
6807 * _base_send_ioc_init - send ioc_init to firmware
6808 * @ioc: per adapter object
6810 * Return: 0 for success, non-zero for failure.
6813 _base_send_ioc_init(struct MPT3SAS_ADAPTER
*ioc
)
6815 Mpi2IOCInitRequest_t mpi_request
;
6816 Mpi2IOCInitReply_t mpi_reply
;
6818 ktime_t current_time
;
6820 u32 reply_post_free_array_sz
= 0;
6822 dinitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
6824 memset(&mpi_request
, 0, sizeof(Mpi2IOCInitRequest_t
));
6825 mpi_request
.Function
= MPI2_FUNCTION_IOC_INIT
;
6826 mpi_request
.WhoInit
= MPI2_WHOINIT_HOST_DRIVER
;
6827 mpi_request
.VF_ID
= 0; /* TODO */
6828 mpi_request
.VP_ID
= 0;
6829 mpi_request
.MsgVersion
= cpu_to_le16(ioc
->hba_mpi_version_belonged
);
6830 mpi_request
.HeaderVersion
= cpu_to_le16(MPI2_HEADER_VERSION
);
6831 mpi_request
.HostPageSize
= MPT3SAS_HOST_PAGE_SIZE_4K
;
6833 if (_base_is_controller_msix_enabled(ioc
))
6834 mpi_request
.HostMSIxVectors
= ioc
->reply_queue_count
;
6835 mpi_request
.SystemRequestFrameSize
= cpu_to_le16(ioc
->request_sz
/4);
6836 mpi_request
.ReplyDescriptorPostQueueDepth
=
6837 cpu_to_le16(ioc
->reply_post_queue_depth
);
6838 mpi_request
.ReplyFreeQueueDepth
=
6839 cpu_to_le16(ioc
->reply_free_queue_depth
);
6841 mpi_request
.SenseBufferAddressHigh
=
6842 cpu_to_le32((u64
)ioc
->sense_dma
>> 32);
6843 mpi_request
.SystemReplyAddressHigh
=
6844 cpu_to_le32((u64
)ioc
->reply_dma
>> 32);
6845 mpi_request
.SystemRequestFrameBaseAddress
=
6846 cpu_to_le64((u64
)ioc
->request_dma
);
6847 mpi_request
.ReplyFreeQueueAddress
=
6848 cpu_to_le64((u64
)ioc
->reply_free_dma
);
6850 if (ioc
->rdpq_array_enable
) {
6851 reply_post_free_array_sz
= ioc
->reply_queue_count
*
6852 sizeof(Mpi2IOCInitRDPQArrayEntry
);
6853 memset(ioc
->reply_post_free_array
, 0, reply_post_free_array_sz
);
6854 for (i
= 0; i
< ioc
->reply_queue_count
; i
++)
6855 ioc
->reply_post_free_array
[i
].RDPQBaseAddress
=
6857 (u64
)ioc
->reply_post
[i
].reply_post_free_dma
);
6858 mpi_request
.MsgFlags
= MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE
;
6859 mpi_request
.ReplyDescriptorPostQueueAddress
=
6860 cpu_to_le64((u64
)ioc
->reply_post_free_array_dma
);
6862 mpi_request
.ReplyDescriptorPostQueueAddress
=
6863 cpu_to_le64((u64
)ioc
->reply_post
[0].reply_post_free_dma
);
6867 * Set the flag to enable CoreDump state feature in IOC firmware.
6869 mpi_request
.ConfigurationFlags
|=
6870 cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE
);
6872 /* This time stamp specifies number of milliseconds
6873 * since epoch ~ midnight January 1, 1970.
6875 current_time
= ktime_get_real();
6876 mpi_request
.TimeStamp
= cpu_to_le64(ktime_to_ms(current_time
));
6878 if (ioc
->logging_level
& MPT_DEBUG_INIT
) {
6882 mfp
= (__le32
*)&mpi_request
;
6883 ioc_info(ioc
, "\toffset:data\n");
6884 for (i
= 0; i
< sizeof(Mpi2IOCInitRequest_t
)/4; i
++)
6885 ioc_info(ioc
, "\t[0x%02x]:%08x\n", i
*4,
6886 le32_to_cpu(mfp
[i
]));
6889 r
= _base_handshake_req_reply_wait(ioc
,
6890 sizeof(Mpi2IOCInitRequest_t
), (u32
*)&mpi_request
,
6891 sizeof(Mpi2IOCInitReply_t
), (u16
*)&mpi_reply
, 30);
6894 ioc_err(ioc
, "%s: handshake failed (r=%d)\n", __func__
, r
);
6898 ioc_status
= le16_to_cpu(mpi_reply
.IOCStatus
) & MPI2_IOCSTATUS_MASK
;
6899 if (ioc_status
!= MPI2_IOCSTATUS_SUCCESS
||
6900 mpi_reply
.IOCLogInfo
) {
6901 ioc_err(ioc
, "%s: failed\n", __func__
);
6905 /* Reset TimeSync Counter*/
6906 ioc
->timestamp_update_count
= 0;
6911 * mpt3sas_port_enable_done - command completion routine for port enable
6912 * @ioc: per adapter object
6913 * @smid: system request message index
6914 * @msix_index: MSIX table index supplied by the OS
6915 * @reply: reply message frame(lower 32bit addr)
6917 * Return: 1 meaning mf should be freed from _base_interrupt
6918 * 0 means the mf is freed from this function.
6921 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER
*ioc
, u16 smid
, u8 msix_index
,
6924 MPI2DefaultReply_t
*mpi_reply
;
6927 if (ioc
->port_enable_cmds
.status
== MPT3_CMD_NOT_USED
)
6930 mpi_reply
= mpt3sas_base_get_reply_virt_addr(ioc
, reply
);
6934 if (mpi_reply
->Function
!= MPI2_FUNCTION_PORT_ENABLE
)
6937 ioc
->port_enable_cmds
.status
&= ~MPT3_CMD_PENDING
;
6938 ioc
->port_enable_cmds
.status
|= MPT3_CMD_COMPLETE
;
6939 ioc
->port_enable_cmds
.status
|= MPT3_CMD_REPLY_VALID
;
6940 memcpy(ioc
->port_enable_cmds
.reply
, mpi_reply
, mpi_reply
->MsgLength
*4);
6941 ioc_status
= le16_to_cpu(mpi_reply
->IOCStatus
) & MPI2_IOCSTATUS_MASK
;
6942 if (ioc_status
!= MPI2_IOCSTATUS_SUCCESS
)
6943 ioc
->port_enable_failed
= 1;
6945 if (ioc
->is_driver_loading
) {
6946 if (ioc_status
== MPI2_IOCSTATUS_SUCCESS
) {
6947 mpt3sas_port_enable_complete(ioc
);
6950 ioc
->start_scan_failed
= ioc_status
;
6951 ioc
->start_scan
= 0;
6955 complete(&ioc
->port_enable_cmds
.done
);
6960 * _base_send_port_enable - send port_enable(discovery stuff) to firmware
6961 * @ioc: per adapter object
6963 * Return: 0 for success, non-zero for failure.
6966 _base_send_port_enable(struct MPT3SAS_ADAPTER
*ioc
)
6968 Mpi2PortEnableRequest_t
*mpi_request
;
6969 Mpi2PortEnableReply_t
*mpi_reply
;
6974 ioc_info(ioc
, "sending port enable !!\n");
6976 if (ioc
->port_enable_cmds
.status
& MPT3_CMD_PENDING
) {
6977 ioc_err(ioc
, "%s: internal command already in use\n", __func__
);
6981 smid
= mpt3sas_base_get_smid(ioc
, ioc
->port_enable_cb_idx
);
6983 ioc_err(ioc
, "%s: failed obtaining a smid\n", __func__
);
6987 ioc
->port_enable_cmds
.status
= MPT3_CMD_PENDING
;
6988 mpi_request
= mpt3sas_base_get_msg_frame(ioc
, smid
);
6989 ioc
->port_enable_cmds
.smid
= smid
;
6990 memset(mpi_request
, 0, sizeof(Mpi2PortEnableRequest_t
));
6991 mpi_request
->Function
= MPI2_FUNCTION_PORT_ENABLE
;
6993 init_completion(&ioc
->port_enable_cmds
.done
);
6994 ioc
->put_smid_default(ioc
, smid
);
6995 wait_for_completion_timeout(&ioc
->port_enable_cmds
.done
, 300*HZ
);
6996 if (!(ioc
->port_enable_cmds
.status
& MPT3_CMD_COMPLETE
)) {
6997 ioc_err(ioc
, "%s: timeout\n", __func__
);
6998 _debug_dump_mf(mpi_request
,
6999 sizeof(Mpi2PortEnableRequest_t
)/4);
7000 if (ioc
->port_enable_cmds
.status
& MPT3_CMD_RESET
)
7007 mpi_reply
= ioc
->port_enable_cmds
.reply
;
7008 ioc_status
= le16_to_cpu(mpi_reply
->IOCStatus
) & MPI2_IOCSTATUS_MASK
;
7009 if (ioc_status
!= MPI2_IOCSTATUS_SUCCESS
) {
7010 ioc_err(ioc
, "%s: failed with (ioc_status=0x%08x)\n",
7011 __func__
, ioc_status
);
7017 ioc
->port_enable_cmds
.status
= MPT3_CMD_NOT_USED
;
7018 ioc_info(ioc
, "port enable: %s\n", r
== 0 ? "SUCCESS" : "FAILED");
7023 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
7024 * @ioc: per adapter object
7026 * Return: 0 for success, non-zero for failure.
7029 mpt3sas_port_enable(struct MPT3SAS_ADAPTER
*ioc
)
7031 Mpi2PortEnableRequest_t
*mpi_request
;
7034 ioc_info(ioc
, "sending port enable !!\n");
7036 if (ioc
->port_enable_cmds
.status
& MPT3_CMD_PENDING
) {
7037 ioc_err(ioc
, "%s: internal command already in use\n", __func__
);
7041 smid
= mpt3sas_base_get_smid(ioc
, ioc
->port_enable_cb_idx
);
7043 ioc_err(ioc
, "%s: failed obtaining a smid\n", __func__
);
7047 ioc
->port_enable_cmds
.status
= MPT3_CMD_PENDING
;
7048 mpi_request
= mpt3sas_base_get_msg_frame(ioc
, smid
);
7049 ioc
->port_enable_cmds
.smid
= smid
;
7050 memset(mpi_request
, 0, sizeof(Mpi2PortEnableRequest_t
));
7051 mpi_request
->Function
= MPI2_FUNCTION_PORT_ENABLE
;
7053 ioc
->put_smid_default(ioc
, smid
);
7058 * _base_determine_wait_on_discovery - desposition
7059 * @ioc: per adapter object
7061 * Decide whether to wait on discovery to complete. Used to either
7062 * locate boot device, or report volumes ahead of physical devices.
7064 * Return: 1 for wait, 0 for don't wait.
7067 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER
*ioc
)
7069 /* We wait for discovery to complete if IR firmware is loaded.
7070 * The sas topology events arrive before PD events, so we need time to
7071 * turn on the bit in ioc->pd_handles to indicate PD
7072 * Also, it maybe required to report Volumes ahead of physical
7073 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
7075 if (ioc
->ir_firmware
)
7078 /* if no Bios, then we don't need to wait */
7079 if (!ioc
->bios_pg3
.BiosVersion
)
7082 /* Bios is present, then we drop down here.
7084 * If there any entries in the Bios Page 2, then we wait
7085 * for discovery to complete.
7088 /* Current Boot Device */
7089 if ((ioc
->bios_pg2
.CurrentBootDeviceForm
&
7090 MPI2_BIOSPAGE2_FORM_MASK
) ==
7091 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED
&&
7092 /* Request Boot Device */
7093 (ioc
->bios_pg2
.ReqBootDeviceForm
&
7094 MPI2_BIOSPAGE2_FORM_MASK
) ==
7095 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED
&&
7096 /* Alternate Request Boot Device */
7097 (ioc
->bios_pg2
.ReqAltBootDeviceForm
&
7098 MPI2_BIOSPAGE2_FORM_MASK
) ==
7099 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED
)
7106 * _base_unmask_events - turn on notification for this event
7107 * @ioc: per adapter object
7108 * @event: firmware event
7110 * The mask is stored in ioc->event_masks.
7113 _base_unmask_events(struct MPT3SAS_ADAPTER
*ioc
, u16 event
)
7120 desired_event
= (1 << (event
% 32));
7123 ioc
->event_masks
[0] &= ~desired_event
;
7124 else if (event
< 64)
7125 ioc
->event_masks
[1] &= ~desired_event
;
7126 else if (event
< 96)
7127 ioc
->event_masks
[2] &= ~desired_event
;
7128 else if (event
< 128)
7129 ioc
->event_masks
[3] &= ~desired_event
;
7133 * _base_event_notification - send event notification
7134 * @ioc: per adapter object
7136 * Return: 0 for success, non-zero for failure.
7139 _base_event_notification(struct MPT3SAS_ADAPTER
*ioc
)
7141 Mpi2EventNotificationRequest_t
*mpi_request
;
7146 dinitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
7148 if (ioc
->base_cmds
.status
& MPT3_CMD_PENDING
) {
7149 ioc_err(ioc
, "%s: internal command already in use\n", __func__
);
7153 smid
= mpt3sas_base_get_smid(ioc
, ioc
->base_cb_idx
);
7155 ioc_err(ioc
, "%s: failed obtaining a smid\n", __func__
);
7158 ioc
->base_cmds
.status
= MPT3_CMD_PENDING
;
7159 mpi_request
= mpt3sas_base_get_msg_frame(ioc
, smid
);
7160 ioc
->base_cmds
.smid
= smid
;
7161 memset(mpi_request
, 0, sizeof(Mpi2EventNotificationRequest_t
));
7162 mpi_request
->Function
= MPI2_FUNCTION_EVENT_NOTIFICATION
;
7163 mpi_request
->VF_ID
= 0; /* TODO */
7164 mpi_request
->VP_ID
= 0;
7165 for (i
= 0; i
< MPI2_EVENT_NOTIFY_EVENTMASK_WORDS
; i
++)
7166 mpi_request
->EventMasks
[i
] =
7167 cpu_to_le32(ioc
->event_masks
[i
]);
7168 init_completion(&ioc
->base_cmds
.done
);
7169 ioc
->put_smid_default(ioc
, smid
);
7170 wait_for_completion_timeout(&ioc
->base_cmds
.done
, 30*HZ
);
7171 if (!(ioc
->base_cmds
.status
& MPT3_CMD_COMPLETE
)) {
7172 ioc_err(ioc
, "%s: timeout\n", __func__
);
7173 _debug_dump_mf(mpi_request
,
7174 sizeof(Mpi2EventNotificationRequest_t
)/4);
7175 if (ioc
->base_cmds
.status
& MPT3_CMD_RESET
)
7180 dinitprintk(ioc
, ioc_info(ioc
, "%s: complete\n", __func__
));
7181 ioc
->base_cmds
.status
= MPT3_CMD_NOT_USED
;
7186 * mpt3sas_base_validate_event_type - validating event types
7187 * @ioc: per adapter object
7188 * @event_type: firmware event
7190 * This will turn on firmware event notification when application
7191 * ask for that event. We don't mask events that are already enabled.
7194 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER
*ioc
, u32
*event_type
)
7197 u32 event_mask
, desired_event
;
7198 u8 send_update_to_fw
;
7200 for (i
= 0, send_update_to_fw
= 0; i
<
7201 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS
; i
++) {
7202 event_mask
= ~event_type
[i
];
7204 for (j
= 0; j
< 32; j
++) {
7205 if (!(event_mask
& desired_event
) &&
7206 (ioc
->event_masks
[i
] & desired_event
)) {
7207 ioc
->event_masks
[i
] &= ~desired_event
;
7208 send_update_to_fw
= 1;
7210 desired_event
= (desired_event
<< 1);
7214 if (!send_update_to_fw
)
7217 mutex_lock(&ioc
->base_cmds
.mutex
);
7218 _base_event_notification(ioc
);
7219 mutex_unlock(&ioc
->base_cmds
.mutex
);
7223 * _base_diag_reset - the "big hammer" start of day reset
7224 * @ioc: per adapter object
7226 * Return: 0 for success, non-zero for failure.
7229 _base_diag_reset(struct MPT3SAS_ADAPTER
*ioc
)
7231 u32 host_diagnostic
;
7236 ioc_info(ioc
, "sending diag reset !!\n");
7238 drsprintk(ioc
, ioc_info(ioc
, "clear interrupts\n"));
7242 /* Write magic sequence to WriteSequence register
7243 * Loop until in diagnostic mode
7245 drsprintk(ioc
, ioc_info(ioc
, "write magic sequence\n"));
7246 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE
, &ioc
->chip
->WriteSequence
);
7247 writel(MPI2_WRSEQ_1ST_KEY_VALUE
, &ioc
->chip
->WriteSequence
);
7248 writel(MPI2_WRSEQ_2ND_KEY_VALUE
, &ioc
->chip
->WriteSequence
);
7249 writel(MPI2_WRSEQ_3RD_KEY_VALUE
, &ioc
->chip
->WriteSequence
);
7250 writel(MPI2_WRSEQ_4TH_KEY_VALUE
, &ioc
->chip
->WriteSequence
);
7251 writel(MPI2_WRSEQ_5TH_KEY_VALUE
, &ioc
->chip
->WriteSequence
);
7252 writel(MPI2_WRSEQ_6TH_KEY_VALUE
, &ioc
->chip
->WriteSequence
);
7259 "Stop writing magic sequence after 20 retries\n");
7260 _base_dump_reg_set(ioc
);
7264 host_diagnostic
= ioc
->base_readl(&ioc
->chip
->HostDiagnostic
);
7266 ioc_info(ioc
, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
7267 count
, host_diagnostic
));
7269 } while ((host_diagnostic
& MPI2_DIAG_DIAG_WRITE_ENABLE
) == 0);
7271 hcb_size
= ioc
->base_readl(&ioc
->chip
->HCBSize
);
7273 drsprintk(ioc
, ioc_info(ioc
, "diag reset: issued\n"));
7274 writel(host_diagnostic
| MPI2_DIAG_RESET_ADAPTER
,
7275 &ioc
->chip
->HostDiagnostic
);
7277 /*This delay allows the chip PCIe hardware time to finish reset tasks*/
7278 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC
/1000);
7280 /* Approximately 300 second max wait */
7281 for (count
= 0; count
< (300000000 /
7282 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
); count
++) {
7284 host_diagnostic
= ioc
->base_readl(&ioc
->chip
->HostDiagnostic
);
7286 if (host_diagnostic
== 0xFFFFFFFF) {
7288 "Invalid host diagnostic register value\n");
7289 _base_dump_reg_set(ioc
);
7292 if (!(host_diagnostic
& MPI2_DIAG_RESET_ADAPTER
))
7295 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
/ 1000);
7298 if (host_diagnostic
& MPI2_DIAG_HCB_MODE
) {
7301 ioc_info(ioc
, "restart the adapter assuming the HCB Address points to good F/W\n"));
7302 host_diagnostic
&= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK
;
7303 host_diagnostic
|= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW
;
7304 writel(host_diagnostic
, &ioc
->chip
->HostDiagnostic
);
7306 drsprintk(ioc
, ioc_info(ioc
, "re-enable the HCDW\n"));
7307 writel(hcb_size
| MPI2_HCB_SIZE_HCB_ENABLE
,
7308 &ioc
->chip
->HCBSize
);
7311 drsprintk(ioc
, ioc_info(ioc
, "restart the adapter\n"));
7312 writel(host_diagnostic
& ~MPI2_DIAG_HOLD_IOC_RESET
,
7313 &ioc
->chip
->HostDiagnostic
);
7316 ioc_info(ioc
, "disable writes to the diagnostic register\n"));
7317 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE
, &ioc
->chip
->WriteSequence
);
7319 drsprintk(ioc
, ioc_info(ioc
, "Wait for FW to go to the READY state\n"));
7320 ioc_state
= _base_wait_on_iocstate(ioc
, MPI2_IOC_STATE_READY
, 20);
7322 ioc_err(ioc
, "%s: failed going to ready state (ioc_state=0x%x)\n",
7323 __func__
, ioc_state
);
7324 _base_dump_reg_set(ioc
);
7328 ioc_info(ioc
, "diag reset: SUCCESS\n");
7332 ioc_err(ioc
, "diag reset: FAILED\n");
7337 * _base_make_ioc_ready - put controller in READY state
7338 * @ioc: per adapter object
7339 * @type: FORCE_BIG_HAMMER or SOFT_RESET
7341 * Return: 0 for success, non-zero for failure.
7344 _base_make_ioc_ready(struct MPT3SAS_ADAPTER
*ioc
, enum reset_type type
)
7350 dinitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
7352 if (ioc
->pci_error_recovery
)
7355 ioc_state
= mpt3sas_base_get_iocstate(ioc
, 0);
7357 ioc_info(ioc
, "%s: ioc_state(0x%08x)\n",
7358 __func__
, ioc_state
));
7360 /* if in RESET state, it should move to READY state shortly */
7362 if ((ioc_state
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_RESET
) {
7363 while ((ioc_state
& MPI2_IOC_STATE_MASK
) !=
7364 MPI2_IOC_STATE_READY
) {
7365 if (count
++ == 10) {
7366 ioc_err(ioc
, "%s: failed going to ready state (ioc_state=0x%x)\n",
7367 __func__
, ioc_state
);
7371 ioc_state
= mpt3sas_base_get_iocstate(ioc
, 0);
7375 if ((ioc_state
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_READY
)
7378 if (ioc_state
& MPI2_DOORBELL_USED
) {
7379 ioc_info(ioc
, "unexpected doorbell active!\n");
7380 goto issue_diag_reset
;
7383 if ((ioc_state
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_FAULT
) {
7384 mpt3sas_print_fault_code(ioc
, ioc_state
&
7385 MPI2_DOORBELL_DATA_MASK
);
7386 goto issue_diag_reset
;
7389 if ((ioc_state
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_COREDUMP
) {
7391 * if host reset is invoked while watch dog thread is waiting
7392 * for IOC state to be changed to Fault state then driver has
7393 * to wait here for CoreDump state to clear otherwise reset
7394 * will be issued to the FW and FW move the IOC state to
7395 * reset state without copying the FW logs to coredump region.
7397 if (ioc
->ioc_coredump_loop
!= MPT3SAS_COREDUMP_LOOP_DONE
) {
7398 mpt3sas_print_coredump_info(ioc
, ioc_state
&
7399 MPI2_DOORBELL_DATA_MASK
);
7400 mpt3sas_base_wait_for_coredump_completion(ioc
,
7403 goto issue_diag_reset
;
7406 if (type
== FORCE_BIG_HAMMER
)
7407 goto issue_diag_reset
;
7409 if ((ioc_state
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_OPERATIONAL
)
7410 if (!(_base_send_ioc_reset(ioc
,
7411 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
, 15))) {
7416 rc
= _base_diag_reset(ioc
);
7421 * _base_make_ioc_operational - put controller in OPERATIONAL state
7422 * @ioc: per adapter object
7424 * Return: 0 for success, non-zero for failure.
7427 _base_make_ioc_operational(struct MPT3SAS_ADAPTER
*ioc
)
7429 int r
, i
, index
, rc
;
7430 unsigned long flags
;
7433 struct _tr_list
*delayed_tr
, *delayed_tr_next
;
7434 struct _sc_list
*delayed_sc
, *delayed_sc_next
;
7435 struct _event_ack_list
*delayed_event_ack
, *delayed_event_ack_next
;
7437 struct adapter_reply_queue
*reply_q
;
7438 Mpi2ReplyDescriptorsUnion_t
*reply_post_free_contig
;
7440 dinitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
7442 /* clean the delayed target reset list */
7443 list_for_each_entry_safe(delayed_tr
, delayed_tr_next
,
7444 &ioc
->delayed_tr_list
, list
) {
7445 list_del(&delayed_tr
->list
);
7450 list_for_each_entry_safe(delayed_tr
, delayed_tr_next
,
7451 &ioc
->delayed_tr_volume_list
, list
) {
7452 list_del(&delayed_tr
->list
);
7456 list_for_each_entry_safe(delayed_sc
, delayed_sc_next
,
7457 &ioc
->delayed_sc_list
, list
) {
7458 list_del(&delayed_sc
->list
);
7462 list_for_each_entry_safe(delayed_event_ack
, delayed_event_ack_next
,
7463 &ioc
->delayed_event_ack_list
, list
) {
7464 list_del(&delayed_event_ack
->list
);
7465 kfree(delayed_event_ack
);
7468 spin_lock_irqsave(&ioc
->scsi_lookup_lock
, flags
);
7470 /* hi-priority queue */
7471 INIT_LIST_HEAD(&ioc
->hpr_free_list
);
7472 smid
= ioc
->hi_priority_smid
;
7473 for (i
= 0; i
< ioc
->hi_priority_depth
; i
++, smid
++) {
7474 ioc
->hpr_lookup
[i
].cb_idx
= 0xFF;
7475 ioc
->hpr_lookup
[i
].smid
= smid
;
7476 list_add_tail(&ioc
->hpr_lookup
[i
].tracker_list
,
7477 &ioc
->hpr_free_list
);
7480 /* internal queue */
7481 INIT_LIST_HEAD(&ioc
->internal_free_list
);
7482 smid
= ioc
->internal_smid
;
7483 for (i
= 0; i
< ioc
->internal_depth
; i
++, smid
++) {
7484 ioc
->internal_lookup
[i
].cb_idx
= 0xFF;
7485 ioc
->internal_lookup
[i
].smid
= smid
;
7486 list_add_tail(&ioc
->internal_lookup
[i
].tracker_list
,
7487 &ioc
->internal_free_list
);
7490 spin_unlock_irqrestore(&ioc
->scsi_lookup_lock
, flags
);
7492 /* initialize Reply Free Queue */
7493 for (i
= 0, reply_address
= (u32
)ioc
->reply_dma
;
7494 i
< ioc
->reply_free_queue_depth
; i
++, reply_address
+=
7496 ioc
->reply_free
[i
] = cpu_to_le32(reply_address
);
7497 if (ioc
->is_mcpu_endpoint
)
7498 _base_clone_reply_to_sys_mem(ioc
,
7502 /* initialize reply queues */
7503 if (ioc
->is_driver_loading
)
7504 _base_assign_reply_queues(ioc
);
7506 /* initialize Reply Post Free Queue */
7508 reply_post_free_contig
= ioc
->reply_post
[0].reply_post_free
;
7509 list_for_each_entry(reply_q
, &ioc
->reply_queue_list
, list
) {
7511 * If RDPQ is enabled, switch to the next allocation.
7512 * Otherwise advance within the contiguous region.
7514 if (ioc
->rdpq_array_enable
) {
7515 reply_q
->reply_post_free
=
7516 ioc
->reply_post
[index
++].reply_post_free
;
7518 reply_q
->reply_post_free
= reply_post_free_contig
;
7519 reply_post_free_contig
+= ioc
->reply_post_queue_depth
;
7522 reply_q
->reply_post_host_index
= 0;
7523 for (i
= 0; i
< ioc
->reply_post_queue_depth
; i
++)
7524 reply_q
->reply_post_free
[i
].Words
=
7525 cpu_to_le64(ULLONG_MAX
);
7526 if (!_base_is_controller_msix_enabled(ioc
))
7527 goto skip_init_reply_post_free_queue
;
7529 skip_init_reply_post_free_queue
:
7531 r
= _base_send_ioc_init(ioc
);
7534 * No need to check IOC state for fault state & issue
7535 * diag reset during host reset. This check is need
7536 * only during driver load time.
7538 if (!ioc
->is_driver_loading
)
7541 rc
= _base_check_for_fault_and_issue_reset(ioc
);
7542 if (rc
|| (_base_send_ioc_init(ioc
)))
7546 /* initialize reply free host index */
7547 ioc
->reply_free_host_index
= ioc
->reply_free_queue_depth
- 1;
7548 writel(ioc
->reply_free_host_index
, &ioc
->chip
->ReplyFreeHostIndex
);
7550 /* initialize reply post host index */
7551 list_for_each_entry(reply_q
, &ioc
->reply_queue_list
, list
) {
7552 if (ioc
->combined_reply_queue
)
7553 writel((reply_q
->msix_index
& 7)<<
7554 MPI2_RPHI_MSIX_INDEX_SHIFT
,
7555 ioc
->replyPostRegisterIndex
[reply_q
->msix_index
/8]);
7557 writel(reply_q
->msix_index
<<
7558 MPI2_RPHI_MSIX_INDEX_SHIFT
,
7559 &ioc
->chip
->ReplyPostHostIndex
);
7561 if (!_base_is_controller_msix_enabled(ioc
))
7562 goto skip_init_reply_post_host_index
;
7565 skip_init_reply_post_host_index
:
7567 mpt3sas_base_unmask_interrupts(ioc
);
7569 if (ioc
->hba_mpi_version_belonged
!= MPI2_VERSION
) {
7570 r
= _base_display_fwpkg_version(ioc
);
7575 _base_static_config_pages(ioc
);
7576 r
= _base_event_notification(ioc
);
7580 if (ioc
->is_driver_loading
) {
7582 if (ioc
->is_warpdrive
&& ioc
->manu_pg10
.OEMIdentifier
7585 le32_to_cpu(ioc
->manu_pg10
.OEMSpecificFlags0
) &
7586 MFG_PAGE10_HIDE_SSDS_MASK
);
7587 if (hide_flag
!= MFG_PAGE10_HIDE_SSDS_MASK
)
7588 ioc
->mfg_pg10_hide_flag
= hide_flag
;
7591 ioc
->wait_for_discovery_to_complete
=
7592 _base_determine_wait_on_discovery(ioc
);
7594 return r
; /* scan_start and scan_finished support */
7597 r
= _base_send_port_enable(ioc
);
7605 * mpt3sas_base_free_resources - free resources controller resources
7606 * @ioc: per adapter object
7609 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER
*ioc
)
7611 dexitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
7613 /* synchronizing freeing resource with pci_access_mutex lock */
7614 mutex_lock(&ioc
->pci_access_mutex
);
7615 if (ioc
->chip_phys
&& ioc
->chip
) {
7616 mpt3sas_base_mask_interrupts(ioc
);
7617 ioc
->shost_recovery
= 1;
7618 _base_make_ioc_ready(ioc
, SOFT_RESET
);
7619 ioc
->shost_recovery
= 0;
7622 mpt3sas_base_unmap_resources(ioc
);
7623 mutex_unlock(&ioc
->pci_access_mutex
);
7628 * mpt3sas_base_attach - attach controller instance
7629 * @ioc: per adapter object
7631 * Return: 0 for success, non-zero for failure.
7634 mpt3sas_base_attach(struct MPT3SAS_ADAPTER
*ioc
)
7637 int cpu_id
, last_cpu_id
= 0;
7639 dinitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
7641 /* setup cpu_msix_table */
7642 ioc
->cpu_count
= num_online_cpus();
7643 for_each_online_cpu(cpu_id
)
7644 last_cpu_id
= cpu_id
;
7645 ioc
->cpu_msix_table_sz
= last_cpu_id
+ 1;
7646 ioc
->cpu_msix_table
= kzalloc(ioc
->cpu_msix_table_sz
, GFP_KERNEL
);
7647 ioc
->reply_queue_count
= 1;
7648 if (!ioc
->cpu_msix_table
) {
7649 ioc_info(ioc
, "Allocation for cpu_msix_table failed!!!\n");
7651 goto out_free_resources
;
7654 if (ioc
->is_warpdrive
) {
7655 ioc
->reply_post_host_index
= kcalloc(ioc
->cpu_msix_table_sz
,
7656 sizeof(resource_size_t
*), GFP_KERNEL
);
7657 if (!ioc
->reply_post_host_index
) {
7658 ioc_info(ioc
, "Allocation for reply_post_host_index failed!!!\n");
7660 goto out_free_resources
;
7664 ioc
->smp_affinity_enable
= smp_affinity_enable
;
7666 ioc
->rdpq_array_enable_assigned
= 0;
7667 ioc
->use_32bit_dma
= false;
7668 if (ioc
->is_aero_ioc
)
7669 ioc
->base_readl
= &_base_readl_aero
;
7671 ioc
->base_readl
= &_base_readl
;
7672 r
= mpt3sas_base_map_resources(ioc
);
7674 goto out_free_resources
;
7676 pci_set_drvdata(ioc
->pdev
, ioc
->shost
);
7677 r
= _base_get_ioc_facts(ioc
);
7679 rc
= _base_check_for_fault_and_issue_reset(ioc
);
7680 if (rc
|| (_base_get_ioc_facts(ioc
)))
7681 goto out_free_resources
;
7684 switch (ioc
->hba_mpi_version_belonged
) {
7686 ioc
->build_sg_scmd
= &_base_build_sg_scmd
;
7687 ioc
->build_sg
= &_base_build_sg
;
7688 ioc
->build_zero_len_sge
= &_base_build_zero_len_sge
;
7689 ioc
->get_msix_index_for_smlio
= &_base_get_msix_index
;
7695 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
7696 * Target Status - all require the IEEE formated scatter gather
7699 ioc
->build_sg_scmd
= &_base_build_sg_scmd_ieee
;
7700 ioc
->build_sg
= &_base_build_sg_ieee
;
7701 ioc
->build_nvme_prp
= &_base_build_nvme_prp
;
7702 ioc
->build_zero_len_sge
= &_base_build_zero_len_sge_ieee
;
7703 ioc
->sge_size_ieee
= sizeof(Mpi2IeeeSgeSimple64_t
);
7704 if (ioc
->high_iops_queues
)
7705 ioc
->get_msix_index_for_smlio
=
7706 &_base_get_high_iops_msix_index
;
7708 ioc
->get_msix_index_for_smlio
= &_base_get_msix_index
;
7711 if (ioc
->atomic_desc_capable
) {
7712 ioc
->put_smid_default
= &_base_put_smid_default_atomic
;
7713 ioc
->put_smid_scsi_io
= &_base_put_smid_scsi_io_atomic
;
7714 ioc
->put_smid_fast_path
=
7715 &_base_put_smid_fast_path_atomic
;
7716 ioc
->put_smid_hi_priority
=
7717 &_base_put_smid_hi_priority_atomic
;
7719 ioc
->put_smid_default
= &_base_put_smid_default
;
7720 ioc
->put_smid_fast_path
= &_base_put_smid_fast_path
;
7721 ioc
->put_smid_hi_priority
= &_base_put_smid_hi_priority
;
7722 if (ioc
->is_mcpu_endpoint
)
7723 ioc
->put_smid_scsi_io
=
7724 &_base_put_smid_mpi_ep_scsi_io
;
7726 ioc
->put_smid_scsi_io
= &_base_put_smid_scsi_io
;
7729 * These function pointers for other requests that don't
7730 * the require IEEE scatter gather elements.
7732 * For example Configuration Pages and SAS IOUNIT Control don't.
7734 ioc
->build_sg_mpi
= &_base_build_sg
;
7735 ioc
->build_zero_len_sge_mpi
= &_base_build_zero_len_sge
;
7737 r
= _base_make_ioc_ready(ioc
, SOFT_RESET
);
7739 goto out_free_resources
;
7741 ioc
->pfacts
= kcalloc(ioc
->facts
.NumberOfPorts
,
7742 sizeof(struct mpt3sas_port_facts
), GFP_KERNEL
);
7745 goto out_free_resources
;
7748 for (i
= 0 ; i
< ioc
->facts
.NumberOfPorts
; i
++) {
7749 r
= _base_get_port_facts(ioc
, i
);
7751 rc
= _base_check_for_fault_and_issue_reset(ioc
);
7752 if (rc
|| (_base_get_port_facts(ioc
, i
)))
7753 goto out_free_resources
;
7757 r
= _base_allocate_memory_pools(ioc
);
7759 goto out_free_resources
;
7761 if (irqpoll_weight
> 0)
7762 ioc
->thresh_hold
= irqpoll_weight
;
7764 ioc
->thresh_hold
= ioc
->hba_queue_depth
/4;
7766 _base_init_irqpolls(ioc
);
7767 init_waitqueue_head(&ioc
->reset_wq
);
7769 /* allocate memory pd handle bitmask list */
7770 ioc
->pd_handles_sz
= (ioc
->facts
.MaxDevHandle
/ 8);
7771 if (ioc
->facts
.MaxDevHandle
% 8)
7772 ioc
->pd_handles_sz
++;
7773 ioc
->pd_handles
= kzalloc(ioc
->pd_handles_sz
,
7775 if (!ioc
->pd_handles
) {
7777 goto out_free_resources
;
7779 ioc
->blocking_handles
= kzalloc(ioc
->pd_handles_sz
,
7781 if (!ioc
->blocking_handles
) {
7783 goto out_free_resources
;
7786 /* allocate memory for pending OS device add list */
7787 ioc
->pend_os_device_add_sz
= (ioc
->facts
.MaxDevHandle
/ 8);
7788 if (ioc
->facts
.MaxDevHandle
% 8)
7789 ioc
->pend_os_device_add_sz
++;
7790 ioc
->pend_os_device_add
= kzalloc(ioc
->pend_os_device_add_sz
,
7792 if (!ioc
->pend_os_device_add
)
7793 goto out_free_resources
;
7795 ioc
->device_remove_in_progress_sz
= ioc
->pend_os_device_add_sz
;
7796 ioc
->device_remove_in_progress
=
7797 kzalloc(ioc
->device_remove_in_progress_sz
, GFP_KERNEL
);
7798 if (!ioc
->device_remove_in_progress
)
7799 goto out_free_resources
;
7801 ioc
->fwfault_debug
= mpt3sas_fwfault_debug
;
7803 /* base internal command bits */
7804 mutex_init(&ioc
->base_cmds
.mutex
);
7805 ioc
->base_cmds
.reply
= kzalloc(ioc
->reply_sz
, GFP_KERNEL
);
7806 ioc
->base_cmds
.status
= MPT3_CMD_NOT_USED
;
7808 /* port_enable command bits */
7809 ioc
->port_enable_cmds
.reply
= kzalloc(ioc
->reply_sz
, GFP_KERNEL
);
7810 ioc
->port_enable_cmds
.status
= MPT3_CMD_NOT_USED
;
7812 /* transport internal command bits */
7813 ioc
->transport_cmds
.reply
= kzalloc(ioc
->reply_sz
, GFP_KERNEL
);
7814 ioc
->transport_cmds
.status
= MPT3_CMD_NOT_USED
;
7815 mutex_init(&ioc
->transport_cmds
.mutex
);
7817 /* scsih internal command bits */
7818 ioc
->scsih_cmds
.reply
= kzalloc(ioc
->reply_sz
, GFP_KERNEL
);
7819 ioc
->scsih_cmds
.status
= MPT3_CMD_NOT_USED
;
7820 mutex_init(&ioc
->scsih_cmds
.mutex
);
7822 /* task management internal command bits */
7823 ioc
->tm_cmds
.reply
= kzalloc(ioc
->reply_sz
, GFP_KERNEL
);
7824 ioc
->tm_cmds
.status
= MPT3_CMD_NOT_USED
;
7825 mutex_init(&ioc
->tm_cmds
.mutex
);
7827 /* config page internal command bits */
7828 ioc
->config_cmds
.reply
= kzalloc(ioc
->reply_sz
, GFP_KERNEL
);
7829 ioc
->config_cmds
.status
= MPT3_CMD_NOT_USED
;
7830 mutex_init(&ioc
->config_cmds
.mutex
);
7832 /* ctl module internal command bits */
7833 ioc
->ctl_cmds
.reply
= kzalloc(ioc
->reply_sz
, GFP_KERNEL
);
7834 ioc
->ctl_cmds
.sense
= kzalloc(SCSI_SENSE_BUFFERSIZE
, GFP_KERNEL
);
7835 ioc
->ctl_cmds
.status
= MPT3_CMD_NOT_USED
;
7836 mutex_init(&ioc
->ctl_cmds
.mutex
);
7838 if (!ioc
->base_cmds
.reply
|| !ioc
->port_enable_cmds
.reply
||
7839 !ioc
->transport_cmds
.reply
|| !ioc
->scsih_cmds
.reply
||
7840 !ioc
->tm_cmds
.reply
|| !ioc
->config_cmds
.reply
||
7841 !ioc
->ctl_cmds
.reply
|| !ioc
->ctl_cmds
.sense
) {
7843 goto out_free_resources
;
7846 for (i
= 0; i
< MPI2_EVENT_NOTIFY_EVENTMASK_WORDS
; i
++)
7847 ioc
->event_masks
[i
] = -1;
7849 /* here we enable the events we care about */
7850 _base_unmask_events(ioc
, MPI2_EVENT_SAS_DISCOVERY
);
7851 _base_unmask_events(ioc
, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE
);
7852 _base_unmask_events(ioc
, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST
);
7853 _base_unmask_events(ioc
, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE
);
7854 _base_unmask_events(ioc
, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE
);
7855 _base_unmask_events(ioc
, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST
);
7856 _base_unmask_events(ioc
, MPI2_EVENT_IR_VOLUME
);
7857 _base_unmask_events(ioc
, MPI2_EVENT_IR_PHYSICAL_DISK
);
7858 _base_unmask_events(ioc
, MPI2_EVENT_IR_OPERATION_STATUS
);
7859 _base_unmask_events(ioc
, MPI2_EVENT_LOG_ENTRY_ADDED
);
7860 _base_unmask_events(ioc
, MPI2_EVENT_TEMP_THRESHOLD
);
7861 _base_unmask_events(ioc
, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION
);
7862 _base_unmask_events(ioc
, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR
);
7863 if (ioc
->hba_mpi_version_belonged
== MPI26_VERSION
) {
7864 if (ioc
->is_gen35_ioc
) {
7865 _base_unmask_events(ioc
,
7866 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE
);
7867 _base_unmask_events(ioc
, MPI2_EVENT_PCIE_ENUMERATION
);
7868 _base_unmask_events(ioc
,
7869 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST
);
7872 r
= _base_make_ioc_operational(ioc
);
7874 goto out_free_resources
;
7877 * Copy current copy of IOCFacts in prev_fw_facts
7878 * and it will be used during online firmware upgrade.
7880 memcpy(&ioc
->prev_fw_facts
, &ioc
->facts
,
7881 sizeof(struct mpt3sas_facts
));
7883 ioc
->non_operational_loop
= 0;
7884 ioc
->ioc_coredump_loop
= 0;
7885 ioc
->got_task_abort_from_ioctl
= 0;
7890 ioc
->remove_host
= 1;
7892 mpt3sas_base_free_resources(ioc
);
7893 _base_release_memory_pools(ioc
);
7894 pci_set_drvdata(ioc
->pdev
, NULL
);
7895 kfree(ioc
->cpu_msix_table
);
7896 if (ioc
->is_warpdrive
)
7897 kfree(ioc
->reply_post_host_index
);
7898 kfree(ioc
->pd_handles
);
7899 kfree(ioc
->blocking_handles
);
7900 kfree(ioc
->device_remove_in_progress
);
7901 kfree(ioc
->pend_os_device_add
);
7902 kfree(ioc
->tm_cmds
.reply
);
7903 kfree(ioc
->transport_cmds
.reply
);
7904 kfree(ioc
->scsih_cmds
.reply
);
7905 kfree(ioc
->config_cmds
.reply
);
7906 kfree(ioc
->base_cmds
.reply
);
7907 kfree(ioc
->port_enable_cmds
.reply
);
7908 kfree(ioc
->ctl_cmds
.reply
);
7909 kfree(ioc
->ctl_cmds
.sense
);
7911 ioc
->ctl_cmds
.reply
= NULL
;
7912 ioc
->base_cmds
.reply
= NULL
;
7913 ioc
->tm_cmds
.reply
= NULL
;
7914 ioc
->scsih_cmds
.reply
= NULL
;
7915 ioc
->transport_cmds
.reply
= NULL
;
7916 ioc
->config_cmds
.reply
= NULL
;
7923 * mpt3sas_base_detach - remove controller instance
7924 * @ioc: per adapter object
7927 mpt3sas_base_detach(struct MPT3SAS_ADAPTER
*ioc
)
7929 dexitprintk(ioc
, ioc_info(ioc
, "%s\n", __func__
));
7931 mpt3sas_base_stop_watchdog(ioc
);
7932 mpt3sas_base_free_resources(ioc
);
7933 _base_release_memory_pools(ioc
);
7934 mpt3sas_free_enclosure_list(ioc
);
7935 pci_set_drvdata(ioc
->pdev
, NULL
);
7936 kfree(ioc
->cpu_msix_table
);
7937 if (ioc
->is_warpdrive
)
7938 kfree(ioc
->reply_post_host_index
);
7939 kfree(ioc
->pd_handles
);
7940 kfree(ioc
->blocking_handles
);
7941 kfree(ioc
->device_remove_in_progress
);
7942 kfree(ioc
->pend_os_device_add
);
7944 kfree(ioc
->ctl_cmds
.reply
);
7945 kfree(ioc
->ctl_cmds
.sense
);
7946 kfree(ioc
->base_cmds
.reply
);
7947 kfree(ioc
->port_enable_cmds
.reply
);
7948 kfree(ioc
->tm_cmds
.reply
);
7949 kfree(ioc
->transport_cmds
.reply
);
7950 kfree(ioc
->scsih_cmds
.reply
);
7951 kfree(ioc
->config_cmds
.reply
);
7955 * _base_pre_reset_handler - pre reset handler
7956 * @ioc: per adapter object
7958 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER
*ioc
)
7960 mpt3sas_scsih_pre_reset_handler(ioc
);
7961 mpt3sas_ctl_pre_reset_handler(ioc
);
7962 dtmprintk(ioc
, ioc_info(ioc
, "%s: MPT3_IOC_PRE_RESET\n", __func__
));
7966 * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands
7967 * @ioc: per adapter object
7970 _base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER
*ioc
)
7973 ioc_info(ioc
, "%s: clear outstanding mpt cmds\n", __func__
));
7974 if (ioc
->transport_cmds
.status
& MPT3_CMD_PENDING
) {
7975 ioc
->transport_cmds
.status
|= MPT3_CMD_RESET
;
7976 mpt3sas_base_free_smid(ioc
, ioc
->transport_cmds
.smid
);
7977 complete(&ioc
->transport_cmds
.done
);
7979 if (ioc
->base_cmds
.status
& MPT3_CMD_PENDING
) {
7980 ioc
->base_cmds
.status
|= MPT3_CMD_RESET
;
7981 mpt3sas_base_free_smid(ioc
, ioc
->base_cmds
.smid
);
7982 complete(&ioc
->base_cmds
.done
);
7984 if (ioc
->port_enable_cmds
.status
& MPT3_CMD_PENDING
) {
7985 ioc
->port_enable_failed
= 1;
7986 ioc
->port_enable_cmds
.status
|= MPT3_CMD_RESET
;
7987 mpt3sas_base_free_smid(ioc
, ioc
->port_enable_cmds
.smid
);
7988 if (ioc
->is_driver_loading
) {
7989 ioc
->start_scan_failed
=
7990 MPI2_IOCSTATUS_INTERNAL_ERROR
;
7991 ioc
->start_scan
= 0;
7992 ioc
->port_enable_cmds
.status
=
7995 complete(&ioc
->port_enable_cmds
.done
);
7998 if (ioc
->config_cmds
.status
& MPT3_CMD_PENDING
) {
7999 ioc
->config_cmds
.status
|= MPT3_CMD_RESET
;
8000 mpt3sas_base_free_smid(ioc
, ioc
->config_cmds
.smid
);
8001 ioc
->config_cmds
.smid
= USHRT_MAX
;
8002 complete(&ioc
->config_cmds
.done
);
8007 * _base_clear_outstanding_commands - clear all outstanding commands
8008 * @ioc: per adapter object
8010 static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER
*ioc
)
8012 mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc
);
8013 mpt3sas_ctl_clear_outstanding_ioctls(ioc
);
8014 _base_clear_outstanding_mpt_commands(ioc
);
8018 * _base_reset_done_handler - reset done handler
8019 * @ioc: per adapter object
8021 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER
*ioc
)
8023 mpt3sas_scsih_reset_done_handler(ioc
);
8024 mpt3sas_ctl_reset_done_handler(ioc
);
8025 dtmprintk(ioc
, ioc_info(ioc
, "%s: MPT3_IOC_DONE_RESET\n", __func__
));
8029 * mpt3sas_wait_for_commands_to_complete - reset controller
8030 * @ioc: Pointer to MPT_ADAPTER structure
8032 * This function is waiting 10s for all pending commands to complete
8033 * prior to putting controller in reset.
8036 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER
*ioc
)
8040 ioc
->pending_io_count
= 0;
8042 ioc_state
= mpt3sas_base_get_iocstate(ioc
, 0);
8043 if ((ioc_state
& MPI2_IOC_STATE_MASK
) != MPI2_IOC_STATE_OPERATIONAL
)
8046 /* pending command count */
8047 ioc
->pending_io_count
= scsi_host_busy(ioc
->shost
);
8049 if (!ioc
->pending_io_count
)
8052 /* wait for pending commands to complete */
8053 wait_event_timeout(ioc
->reset_wq
, ioc
->pending_io_count
== 0, 10 * HZ
);
8057 * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts
8058 * attributes during online firmware upgrade and update the corresponding
8059 * IOC variables accordingly.
8061 * @ioc: Pointer to MPT_ADAPTER structure
8064 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER
*ioc
)
8067 void *pd_handles
= NULL
, *blocking_handles
= NULL
;
8068 void *pend_os_device_add
= NULL
, *device_remove_in_progress
= NULL
;
8069 struct mpt3sas_facts
*old_facts
= &ioc
->prev_fw_facts
;
8071 if (ioc
->facts
.MaxDevHandle
> old_facts
->MaxDevHandle
) {
8072 pd_handles_sz
= (ioc
->facts
.MaxDevHandle
/ 8);
8073 if (ioc
->facts
.MaxDevHandle
% 8)
8076 pd_handles
= krealloc(ioc
->pd_handles
, pd_handles_sz
,
8080 "Unable to allocate the memory for pd_handles of sz: %d\n",
8084 memset(pd_handles
+ ioc
->pd_handles_sz
, 0,
8085 (pd_handles_sz
- ioc
->pd_handles_sz
));
8086 ioc
->pd_handles
= pd_handles
;
8088 blocking_handles
= krealloc(ioc
->blocking_handles
,
8089 pd_handles_sz
, GFP_KERNEL
);
8090 if (!blocking_handles
) {
8092 "Unable to allocate the memory for "
8093 "blocking_handles of sz: %d\n",
8097 memset(blocking_handles
+ ioc
->pd_handles_sz
, 0,
8098 (pd_handles_sz
- ioc
->pd_handles_sz
));
8099 ioc
->blocking_handles
= blocking_handles
;
8100 ioc
->pd_handles_sz
= pd_handles_sz
;
8102 pend_os_device_add
= krealloc(ioc
->pend_os_device_add
,
8103 pd_handles_sz
, GFP_KERNEL
);
8104 if (!pend_os_device_add
) {
8106 "Unable to allocate the memory for pend_os_device_add of sz: %d\n",
8110 memset(pend_os_device_add
+ ioc
->pend_os_device_add_sz
, 0,
8111 (pd_handles_sz
- ioc
->pend_os_device_add_sz
));
8112 ioc
->pend_os_device_add
= pend_os_device_add
;
8113 ioc
->pend_os_device_add_sz
= pd_handles_sz
;
8115 device_remove_in_progress
= krealloc(
8116 ioc
->device_remove_in_progress
, pd_handles_sz
, GFP_KERNEL
);
8117 if (!device_remove_in_progress
) {
8119 "Unable to allocate the memory for "
8120 "device_remove_in_progress of sz: %d\n "
8124 memset(device_remove_in_progress
+
8125 ioc
->device_remove_in_progress_sz
, 0,
8126 (pd_handles_sz
- ioc
->device_remove_in_progress_sz
));
8127 ioc
->device_remove_in_progress
= device_remove_in_progress
;
8128 ioc
->device_remove_in_progress_sz
= pd_handles_sz
;
8131 memcpy(&ioc
->prev_fw_facts
, &ioc
->facts
, sizeof(struct mpt3sas_facts
));
8136 * mpt3sas_base_hard_reset_handler - reset controller
8137 * @ioc: Pointer to MPT_ADAPTER structure
8138 * @type: FORCE_BIG_HAMMER or SOFT_RESET
8140 * Return: 0 for success, non-zero for failure.
8143 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER
*ioc
,
8144 enum reset_type type
)
8147 unsigned long flags
;
8149 u8 is_fault
= 0, is_trigger
= 0;
8151 dtmprintk(ioc
, ioc_info(ioc
, "%s: enter\n", __func__
));
8153 if (ioc
->pci_error_recovery
) {
8154 ioc_err(ioc
, "%s: pci error recovery reset\n", __func__
);
8159 if (mpt3sas_fwfault_debug
)
8160 mpt3sas_halt_firmware(ioc
);
8162 /* wait for an active reset in progress to complete */
8163 mutex_lock(&ioc
->reset_in_progress_mutex
);
8165 spin_lock_irqsave(&ioc
->ioc_reset_in_progress_lock
, flags
);
8166 ioc
->shost_recovery
= 1;
8167 spin_unlock_irqrestore(&ioc
->ioc_reset_in_progress_lock
, flags
);
8169 if ((ioc
->diag_buffer_status
[MPI2_DIAG_BUF_TYPE_TRACE
] &
8170 MPT3_DIAG_BUFFER_IS_REGISTERED
) &&
8171 (!(ioc
->diag_buffer_status
[MPI2_DIAG_BUF_TYPE_TRACE
] &
8172 MPT3_DIAG_BUFFER_IS_RELEASED
))) {
8174 ioc_state
= mpt3sas_base_get_iocstate(ioc
, 0);
8175 if ((ioc_state
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_FAULT
||
8176 (ioc_state
& MPI2_IOC_STATE_MASK
) ==
8177 MPI2_IOC_STATE_COREDUMP
)
8180 _base_pre_reset_handler(ioc
);
8181 mpt3sas_wait_for_commands_to_complete(ioc
);
8182 mpt3sas_base_mask_interrupts(ioc
);
8183 r
= _base_make_ioc_ready(ioc
, type
);
8186 _base_clear_outstanding_commands(ioc
);
8188 /* If this hard reset is called while port enable is active, then
8189 * there is no reason to call make_ioc_operational
8191 if (ioc
->is_driver_loading
&& ioc
->port_enable_failed
) {
8192 ioc
->remove_host
= 1;
8196 r
= _base_get_ioc_facts(ioc
);
8200 r
= _base_check_ioc_facts_changes(ioc
);
8203 "Some of the parameters got changed in this new firmware"
8204 " image and it requires system reboot\n");
8207 if (ioc
->rdpq_array_enable
&& !ioc
->rdpq_array_capable
)
8208 panic("%s: Issue occurred with flashing controller firmware."
8209 "Please reboot the system and ensure that the correct"
8210 " firmware version is running\n", ioc
->name
);
8212 r
= _base_make_ioc_operational(ioc
);
8214 _base_reset_done_handler(ioc
);
8217 ioc_info(ioc
, "%s: %s\n", __func__
, r
== 0 ? "SUCCESS" : "FAILED");
8219 spin_lock_irqsave(&ioc
->ioc_reset_in_progress_lock
, flags
);
8220 ioc
->shost_recovery
= 0;
8221 spin_unlock_irqrestore(&ioc
->ioc_reset_in_progress_lock
, flags
);
8222 ioc
->ioc_reset_count
++;
8223 mutex_unlock(&ioc
->reset_in_progress_mutex
);
8226 if ((r
== 0) && is_trigger
) {
8228 mpt3sas_trigger_master(ioc
, MASTER_TRIGGER_FW_FAULT
);
8230 mpt3sas_trigger_master(ioc
,
8231 MASTER_TRIGGER_ADAPTER_RESET
);
8233 dtmprintk(ioc
, ioc_info(ioc
, "%s: exit\n", __func__
));