Merge tag 'regmap-fix-v5.11-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux/fpc-iii.git] / drivers / scsi / mpt3sas / mpt3sas_base.c
blob6e23dc3209feb9ecf58bf45666f33f21f407d025
1 /*
2 * This is the Fusion MPT base driver providing common API layer interface
3 * for access to MPT (Message Passing Technology) firmware.
5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6 * Copyright (C) 2012-2014 LSI Corporation
7 * Copyright (C) 2013-2014 Avago Technologies
8 * (mailto: MPT-FusionLinux.pdl@avagotech.com)
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version 2
13 * of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * NO WARRANTY
21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25 * solely responsible for determining the appropriateness of using and
26 * distributing the Program and assumes all risks associated with its
27 * exercise of rights under this Agreement, including but not limited to
28 * the risks and costs of program errors, damage to or loss of data,
29 * programs or equipment, and unavailability or interruption of operations.
31 * DISCLAIMER OF LIABILITY
32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
40 * You should have received a copy of the GNU General Public License
41 * along with this program; if not, write to the Free Software
42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
43 * USA.
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <asm/page.h> /* To get host page size per arch */
63 #include <linux/aer.h>
66 #include "mpt3sas_base.h"
68 static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS];
71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
73 /* maximum controller queue depth */
74 #define MAX_HBA_QUEUE_DEPTH 30000
75 #define MAX_CHAIN_DEPTH 100000
76 static int max_queue_depth = -1;
77 module_param(max_queue_depth, int, 0444);
78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
80 static int max_sgl_entries = -1;
81 module_param(max_sgl_entries, int, 0444);
82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
84 static int msix_disable = -1;
85 module_param(msix_disable, int, 0444);
86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
88 static int smp_affinity_enable = 1;
89 module_param(smp_affinity_enable, int, 0444);
90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)");
92 static int max_msix_vectors = -1;
93 module_param(max_msix_vectors, int, 0444);
94 MODULE_PARM_DESC(max_msix_vectors,
95 " max msix vectors");
97 static int irqpoll_weight = -1;
98 module_param(irqpoll_weight, int, 0444);
99 MODULE_PARM_DESC(irqpoll_weight,
100 "irq poll weight (default= one fourth of HBA queue depth)");
102 static int mpt3sas_fwfault_debug;
103 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
104 " enable detection of firmware fault and halt firmware - (default=0)");
106 static int perf_mode = -1;
107 module_param(perf_mode, int, 0444);
108 MODULE_PARM_DESC(perf_mode,
109 "Performance mode (only for Aero/Sea Generation), options:\n\t\t"
110 "0 - balanced: high iops mode is enabled &\n\t\t"
111 "interrupt coalescing is enabled only on high iops queues,\n\t\t"
112 "1 - iops: high iops mode is disabled &\n\t\t"
113 "interrupt coalescing is enabled on all queues,\n\t\t"
114 "2 - latency: high iops mode is disabled &\n\t\t"
115 "interrupt coalescing is enabled on all queues with timeout value 0xA,\n"
116 "\t\tdefault - default perf_mode is 'balanced'"
119 enum mpt3sas_perf_mode {
120 MPT_PERF_MODE_DEFAULT = -1,
121 MPT_PERF_MODE_BALANCED = 0,
122 MPT_PERF_MODE_IOPS = 1,
123 MPT_PERF_MODE_LATENCY = 2,
126 static int
127 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc,
128 u32 ioc_state, int timeout);
129 static int
130 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
131 static void
132 _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc);
135 * mpt3sas_base_check_cmd_timeout - Function
136 * to check timeout and command termination due
137 * to Host reset.
139 * @ioc: per adapter object.
140 * @status: Status of issued command.
141 * @mpi_request:mf request pointer.
142 * @sz: size of buffer.
144 * @Returns - 1/0 Reset to be done or Not
147 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc,
148 u8 status, void *mpi_request, int sz)
150 u8 issue_reset = 0;
152 if (!(status & MPT3_CMD_RESET))
153 issue_reset = 1;
155 ioc_err(ioc, "Command %s\n",
156 issue_reset == 0 ? "terminated due to Host Reset" : "Timeout");
157 _debug_dump_mf(mpi_request, sz);
159 return issue_reset;
163 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
164 * @val: ?
165 * @kp: ?
167 * Return: ?
169 static int
170 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
172 int ret = param_set_int(val, kp);
173 struct MPT3SAS_ADAPTER *ioc;
175 if (ret)
176 return ret;
178 /* global ioc spinlock to protect controller list on list operations */
179 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
180 spin_lock(&gioc_lock);
181 list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
182 ioc->fwfault_debug = mpt3sas_fwfault_debug;
183 spin_unlock(&gioc_lock);
184 return 0;
186 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
187 param_get_int, &mpt3sas_fwfault_debug, 0644);
190 * _base_readl_aero - retry readl for max three times.
191 * @addr: MPT Fusion system interface register address
193 * Retry the readl() for max three times if it gets zero value
194 * while reading the system interface register.
196 static inline u32
197 _base_readl_aero(const volatile void __iomem *addr)
199 u32 i = 0, ret_val;
201 do {
202 ret_val = readl(addr);
203 i++;
204 } while (ret_val == 0 && i < 3);
206 return ret_val;
209 static inline u32
210 _base_readl(const volatile void __iomem *addr)
212 return readl(addr);
216 * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
217 * in BAR0 space.
219 * @ioc: per adapter object
220 * @reply: reply message frame(lower 32bit addr)
221 * @index: System request message index.
223 static void
224 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
225 u32 index)
228 * 256 is offset within sys register.
229 * 256 offset MPI frame starts. Max MPI frame supported is 32.
230 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
232 u16 cmd_credit = ioc->facts.RequestCredit + 1;
233 void __iomem *reply_free_iomem = (void __iomem *)ioc->chip +
234 MPI_FRAME_START_OFFSET +
235 (cmd_credit * ioc->request_sz) + (index * sizeof(u32));
237 writel(reply, reply_free_iomem);
241 * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
242 * to system/BAR0 region.
244 * @dst_iomem: Pointer to the destination location in BAR0 space.
245 * @src: Pointer to the Source data.
246 * @size: Size of data to be copied.
248 static void
249 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
251 int i;
252 u32 *src_virt_mem = (u32 *)src;
254 for (i = 0; i < size/4; i++)
255 writel((u32)src_virt_mem[i],
256 (void __iomem *)dst_iomem + (i * 4));
260 * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
262 * @dst_iomem: Pointer to the destination location in BAR0 space.
263 * @src: Pointer to the Source data.
264 * @size: Size of data to be copied.
266 static void
267 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size)
269 int i;
270 u32 *src_virt_mem = (u32 *)(src);
272 for (i = 0; i < size/4; i++)
273 writel((u32)src_virt_mem[i],
274 (void __iomem *)dst_iomem + (i * 4));
278 * _base_get_chain - Calculates and Returns virtual chain address
279 * for the provided smid in BAR0 space.
281 * @ioc: per adapter object
282 * @smid: system request message index
283 * @sge_chain_count: Scatter gather chain count.
285 * Return: the chain address.
287 static inline void __iomem*
288 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
289 u8 sge_chain_count)
291 void __iomem *base_chain, *chain_virt;
292 u16 cmd_credit = ioc->facts.RequestCredit + 1;
294 base_chain = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET +
295 (cmd_credit * ioc->request_sz) +
296 REPLY_FREE_POOL_SIZE;
297 chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
298 ioc->request_sz) + (sge_chain_count * ioc->request_sz);
299 return chain_virt;
303 * _base_get_chain_phys - Calculates and Returns physical address
304 * in BAR0 for scatter gather chains, for
305 * the provided smid.
307 * @ioc: per adapter object
308 * @smid: system request message index
309 * @sge_chain_count: Scatter gather chain count.
311 * Return: Physical chain address.
313 static inline phys_addr_t
314 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
315 u8 sge_chain_count)
317 phys_addr_t base_chain_phys, chain_phys;
318 u16 cmd_credit = ioc->facts.RequestCredit + 1;
320 base_chain_phys = ioc->chip_phys + MPI_FRAME_START_OFFSET +
321 (cmd_credit * ioc->request_sz) +
322 REPLY_FREE_POOL_SIZE;
323 chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
324 ioc->request_sz) + (sge_chain_count * ioc->request_sz);
325 return chain_phys;
329 * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
330 * buffer address for the provided smid.
331 * (Each smid can have 64K starts from 17024)
333 * @ioc: per adapter object
334 * @smid: system request message index
336 * Return: Pointer to buffer location in BAR0.
339 static void __iomem *
340 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
342 u16 cmd_credit = ioc->facts.RequestCredit + 1;
343 // Added extra 1 to reach end of chain.
344 void __iomem *chain_end = _base_get_chain(ioc,
345 cmd_credit + 1,
346 ioc->facts.MaxChainDepth);
347 return chain_end + (smid * 64 * 1024);
351 * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
352 * Host buffer Physical address for the provided smid.
353 * (Each smid can have 64K starts from 17024)
355 * @ioc: per adapter object
356 * @smid: system request message index
358 * Return: Pointer to buffer location in BAR0.
360 static phys_addr_t
361 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
363 u16 cmd_credit = ioc->facts.RequestCredit + 1;
364 phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
365 cmd_credit + 1,
366 ioc->facts.MaxChainDepth);
367 return chain_end_phys + (smid * 64 * 1024);
371 * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
372 * lookup list and Provides chain_buffer
373 * address for the matching dma address.
374 * (Each smid can have 64K starts from 17024)
376 * @ioc: per adapter object
377 * @chain_buffer_dma: Chain buffer dma address.
379 * Return: Pointer to chain buffer. Or Null on Failure.
381 static void *
382 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
383 dma_addr_t chain_buffer_dma)
385 u16 index, j;
386 struct chain_tracker *ct;
388 for (index = 0; index < ioc->scsiio_depth; index++) {
389 for (j = 0; j < ioc->chains_needed_per_io; j++) {
390 ct = &ioc->chain_lookup[index].chains_per_smid[j];
391 if (ct && ct->chain_buffer_dma == chain_buffer_dma)
392 return ct->chain_buffer;
395 ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n");
396 return NULL;
400 * _clone_sg_entries - MPI EP's scsiio and config requests
401 * are handled here. Base function for
402 * double buffering, before submitting
403 * the requests.
405 * @ioc: per adapter object.
406 * @mpi_request: mf request pointer.
407 * @smid: system request message index.
409 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
410 void *mpi_request, u16 smid)
412 Mpi2SGESimple32_t *sgel, *sgel_next;
413 u32 sgl_flags, sge_chain_count = 0;
414 bool is_write = false;
415 u16 i = 0;
416 void __iomem *buffer_iomem;
417 phys_addr_t buffer_iomem_phys;
418 void __iomem *buff_ptr;
419 phys_addr_t buff_ptr_phys;
420 void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
421 void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
422 phys_addr_t dst_addr_phys;
423 MPI2RequestHeader_t *request_hdr;
424 struct scsi_cmnd *scmd;
425 struct scatterlist *sg_scmd = NULL;
426 int is_scsiio_req = 0;
428 request_hdr = (MPI2RequestHeader_t *) mpi_request;
430 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
431 Mpi25SCSIIORequest_t *scsiio_request =
432 (Mpi25SCSIIORequest_t *)mpi_request;
433 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
434 is_scsiio_req = 1;
435 } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
436 Mpi2ConfigRequest_t *config_req =
437 (Mpi2ConfigRequest_t *)mpi_request;
438 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
439 } else
440 return;
442 /* From smid we can get scsi_cmd, once we have sg_scmd,
443 * we just need to get sg_virt and sg_next to get virual
444 * address associated with sgel->Address.
447 if (is_scsiio_req) {
448 /* Get scsi_cmd using smid */
449 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
450 if (scmd == NULL) {
451 ioc_err(ioc, "scmd is NULL\n");
452 return;
455 /* Get sg_scmd from scmd provided */
456 sg_scmd = scsi_sglist(scmd);
460 * 0 - 255 System register
461 * 256 - 4352 MPI Frame. (This is based on maxCredit 32)
462 * 4352 - 4864 Reply_free pool (512 byte is reserved
463 * considering maxCredit 32. Reply need extra
464 * room, for mCPU case kept four times of
465 * maxCredit).
466 * 4864 - 17152 SGE chain element. (32cmd * 3 chain of
467 * 128 byte size = 12288)
468 * 17152 - x Host buffer mapped with smid.
469 * (Each smid can have 64K Max IO.)
470 * BAR0+Last 1K MSIX Addr and Data
471 * Total size in use 2113664 bytes of 4MB BAR0
474 buffer_iomem = _base_get_buffer_bar0(ioc, smid);
475 buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
477 buff_ptr = buffer_iomem;
478 buff_ptr_phys = buffer_iomem_phys;
479 WARN_ON(buff_ptr_phys > U32_MAX);
481 if (le32_to_cpu(sgel->FlagsLength) &
482 (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
483 is_write = true;
485 for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
487 sgl_flags =
488 (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT);
490 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
491 case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
493 * Helper function which on passing
494 * chain_buffer_dma returns chain_buffer. Get
495 * the virtual address for sgel->Address
497 sgel_next =
498 _base_get_chain_buffer_dma_to_chain_buffer(ioc,
499 le32_to_cpu(sgel->Address));
500 if (sgel_next == NULL)
501 return;
503 * This is coping 128 byte chain
504 * frame (not a host buffer)
506 dst_chain_addr[sge_chain_count] =
507 _base_get_chain(ioc,
508 smid, sge_chain_count);
509 src_chain_addr[sge_chain_count] =
510 (void *) sgel_next;
511 dst_addr_phys = _base_get_chain_phys(ioc,
512 smid, sge_chain_count);
513 WARN_ON(dst_addr_phys > U32_MAX);
514 sgel->Address =
515 cpu_to_le32(lower_32_bits(dst_addr_phys));
516 sgel = sgel_next;
517 sge_chain_count++;
518 break;
519 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
520 if (is_write) {
521 if (is_scsiio_req) {
522 _base_clone_to_sys_mem(buff_ptr,
523 sg_virt(sg_scmd),
524 (le32_to_cpu(sgel->FlagsLength) &
525 0x00ffffff));
527 * FIXME: this relies on a a zero
528 * PCI mem_offset.
530 sgel->Address =
531 cpu_to_le32((u32)buff_ptr_phys);
532 } else {
533 _base_clone_to_sys_mem(buff_ptr,
534 ioc->config_vaddr,
535 (le32_to_cpu(sgel->FlagsLength) &
536 0x00ffffff));
537 sgel->Address =
538 cpu_to_le32((u32)buff_ptr_phys);
541 buff_ptr += (le32_to_cpu(sgel->FlagsLength) &
542 0x00ffffff);
543 buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) &
544 0x00ffffff);
545 if ((le32_to_cpu(sgel->FlagsLength) &
546 (MPI2_SGE_FLAGS_END_OF_BUFFER
547 << MPI2_SGE_FLAGS_SHIFT)))
548 goto eob_clone_chain;
549 else {
551 * Every single element in MPT will have
552 * associated sg_next. Better to sanity that
553 * sg_next is not NULL, but it will be a bug
554 * if it is null.
556 if (is_scsiio_req) {
557 sg_scmd = sg_next(sg_scmd);
558 if (sg_scmd)
559 sgel++;
560 else
561 goto eob_clone_chain;
564 break;
568 eob_clone_chain:
569 for (i = 0; i < sge_chain_count; i++) {
570 if (is_scsiio_req)
571 _base_clone_to_sys_mem(dst_chain_addr[i],
572 src_chain_addr[i], ioc->request_sz);
577 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
578 * @arg: input argument, used to derive ioc
580 * Return:
581 * 0 if controller is removed from pci subsystem.
582 * -1 for other case.
584 static int mpt3sas_remove_dead_ioc_func(void *arg)
586 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
587 struct pci_dev *pdev;
589 if (!ioc)
590 return -1;
592 pdev = ioc->pdev;
593 if (!pdev)
594 return -1;
595 pci_stop_and_remove_bus_device_locked(pdev);
596 return 0;
600 * _base_sync_drv_fw_timestamp - Sync Drive-Fw TimeStamp.
601 * @ioc: Per Adapter Object
603 * Return nothing.
605 static void _base_sync_drv_fw_timestamp(struct MPT3SAS_ADAPTER *ioc)
607 Mpi26IoUnitControlRequest_t *mpi_request;
608 Mpi26IoUnitControlReply_t *mpi_reply;
609 u16 smid;
610 ktime_t current_time;
611 u64 TimeStamp = 0;
612 u8 issue_reset = 0;
614 mutex_lock(&ioc->scsih_cmds.mutex);
615 if (ioc->scsih_cmds.status != MPT3_CMD_NOT_USED) {
616 ioc_err(ioc, "scsih_cmd in use %s\n", __func__);
617 goto out;
619 ioc->scsih_cmds.status = MPT3_CMD_PENDING;
620 smid = mpt3sas_base_get_smid(ioc, ioc->scsih_cb_idx);
621 if (!smid) {
622 ioc_err(ioc, "Failed obtaining a smid %s\n", __func__);
623 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
624 goto out;
626 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
627 ioc->scsih_cmds.smid = smid;
628 memset(mpi_request, 0, sizeof(Mpi26IoUnitControlRequest_t));
629 mpi_request->Function = MPI2_FUNCTION_IO_UNIT_CONTROL;
630 mpi_request->Operation = MPI26_CTRL_OP_SET_IOC_PARAMETER;
631 mpi_request->IOCParameter = MPI26_SET_IOC_PARAMETER_SYNC_TIMESTAMP;
632 current_time = ktime_get_real();
633 TimeStamp = ktime_to_ms(current_time);
634 mpi_request->Reserved7 = cpu_to_le32(TimeStamp & 0xFFFFFFFF);
635 mpi_request->IOCParameterValue = cpu_to_le32(TimeStamp >> 32);
636 init_completion(&ioc->scsih_cmds.done);
637 ioc->put_smid_default(ioc, smid);
638 dinitprintk(ioc, ioc_info(ioc,
639 "Io Unit Control Sync TimeStamp (sending), @time %lld ms\n",
640 TimeStamp));
641 wait_for_completion_timeout(&ioc->scsih_cmds.done,
642 MPT3SAS_TIMESYNC_TIMEOUT_SECONDS*HZ);
643 if (!(ioc->scsih_cmds.status & MPT3_CMD_COMPLETE)) {
644 mpt3sas_check_cmd_timeout(ioc,
645 ioc->scsih_cmds.status, mpi_request,
646 sizeof(Mpi2SasIoUnitControlRequest_t)/4, issue_reset);
647 goto issue_host_reset;
649 if (ioc->scsih_cmds.status & MPT3_CMD_REPLY_VALID) {
650 mpi_reply = ioc->scsih_cmds.reply;
651 dinitprintk(ioc, ioc_info(ioc,
652 "Io Unit Control sync timestamp (complete): ioc_status(0x%04x), loginfo(0x%08x)\n",
653 le16_to_cpu(mpi_reply->IOCStatus),
654 le32_to_cpu(mpi_reply->IOCLogInfo)));
656 issue_host_reset:
657 if (issue_reset)
658 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
659 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
660 out:
661 mutex_unlock(&ioc->scsih_cmds.mutex);
665 * _base_fault_reset_work - workq handling ioc fault conditions
666 * @work: input argument, used to derive ioc
668 * Context: sleep.
670 static void
671 _base_fault_reset_work(struct work_struct *work)
673 struct MPT3SAS_ADAPTER *ioc =
674 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
675 unsigned long flags;
676 u32 doorbell;
677 int rc;
678 struct task_struct *p;
681 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
682 if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) ||
683 ioc->pci_error_recovery)
684 goto rearm_timer;
685 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
687 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
688 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
689 ioc_err(ioc, "SAS host is non-operational !!!!\n");
691 /* It may be possible that EEH recovery can resolve some of
692 * pci bus failure issues rather removing the dead ioc function
693 * by considering controller is in a non-operational state. So
694 * here priority is given to the EEH recovery. If it doesn't
695 * not resolve this issue, mpt3sas driver will consider this
696 * controller to non-operational state and remove the dead ioc
697 * function.
699 if (ioc->non_operational_loop++ < 5) {
700 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
701 flags);
702 goto rearm_timer;
706 * Call _scsih_flush_pending_cmds callback so that we flush all
707 * pending commands back to OS. This call is required to aovid
708 * deadlock at block layer. Dead IOC will fail to do diag reset,
709 * and this call is safe since dead ioc will never return any
710 * command back from HW.
712 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
714 * Set remove_host flag early since kernel thread will
715 * take some time to execute.
717 ioc->remove_host = 1;
718 /*Remove the Dead Host */
719 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
720 "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
721 if (IS_ERR(p))
722 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
723 __func__);
724 else
725 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
726 __func__);
727 return; /* don't rearm timer */
730 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
731 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
732 ioc->manu_pg11.CoreDumpTOSec :
733 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
735 timeout /= (FAULT_POLLING_INTERVAL/1000);
737 if (ioc->ioc_coredump_loop == 0) {
738 mpt3sas_print_coredump_info(ioc,
739 doorbell & MPI2_DOORBELL_DATA_MASK);
740 /* do not accept any IOs and disable the interrupts */
741 spin_lock_irqsave(
742 &ioc->ioc_reset_in_progress_lock, flags);
743 ioc->shost_recovery = 1;
744 spin_unlock_irqrestore(
745 &ioc->ioc_reset_in_progress_lock, flags);
746 mpt3sas_base_mask_interrupts(ioc);
747 _base_clear_outstanding_commands(ioc);
750 ioc_info(ioc, "%s: CoreDump loop %d.",
751 __func__, ioc->ioc_coredump_loop);
753 /* Wait until CoreDump completes or times out */
754 if (ioc->ioc_coredump_loop++ < timeout) {
755 spin_lock_irqsave(
756 &ioc->ioc_reset_in_progress_lock, flags);
757 goto rearm_timer;
761 if (ioc->ioc_coredump_loop) {
762 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP)
763 ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d",
764 __func__, ioc->ioc_coredump_loop);
765 else
766 ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d",
767 __func__, ioc->ioc_coredump_loop);
768 ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE;
770 ioc->non_operational_loop = 0;
771 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
772 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
773 ioc_warn(ioc, "%s: hard reset: %s\n",
774 __func__, rc == 0 ? "success" : "failed");
775 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
776 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
777 mpt3sas_print_fault_code(ioc, doorbell &
778 MPI2_DOORBELL_DATA_MASK);
779 } else if ((doorbell & MPI2_IOC_STATE_MASK) ==
780 MPI2_IOC_STATE_COREDUMP)
781 mpt3sas_print_coredump_info(ioc, doorbell &
782 MPI2_DOORBELL_DATA_MASK);
783 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
784 MPI2_IOC_STATE_OPERATIONAL)
785 return; /* don't rearm timer */
787 ioc->ioc_coredump_loop = 0;
788 if (ioc->time_sync_interval &&
789 ++ioc->timestamp_update_count >= ioc->time_sync_interval) {
790 ioc->timestamp_update_count = 0;
791 _base_sync_drv_fw_timestamp(ioc);
793 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
794 rearm_timer:
795 if (ioc->fault_reset_work_q)
796 queue_delayed_work(ioc->fault_reset_work_q,
797 &ioc->fault_reset_work,
798 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
799 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
803 * mpt3sas_base_start_watchdog - start the fault_reset_work_q
804 * @ioc: per adapter object
806 * Context: sleep.
808 void
809 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
811 unsigned long flags;
813 if (ioc->fault_reset_work_q)
814 return;
816 ioc->timestamp_update_count = 0;
817 /* initialize fault polling */
819 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
820 snprintf(ioc->fault_reset_work_q_name,
821 sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
822 ioc->driver_name, ioc->id);
823 ioc->fault_reset_work_q =
824 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
825 if (!ioc->fault_reset_work_q) {
826 ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__);
827 return;
829 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
830 if (ioc->fault_reset_work_q)
831 queue_delayed_work(ioc->fault_reset_work_q,
832 &ioc->fault_reset_work,
833 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
834 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
838 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
839 * @ioc: per adapter object
841 * Context: sleep.
843 void
844 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
846 unsigned long flags;
847 struct workqueue_struct *wq;
849 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
850 wq = ioc->fault_reset_work_q;
851 ioc->fault_reset_work_q = NULL;
852 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
853 if (wq) {
854 if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
855 flush_workqueue(wq);
856 destroy_workqueue(wq);
861 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
862 * @ioc: per adapter object
863 * @fault_code: fault code
865 void
866 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
868 ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code);
872 * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state
873 * @ioc: per adapter object
874 * @fault_code: fault code
876 * Return nothing.
878 void
879 mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
881 ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code);
885 * mpt3sas_base_wait_for_coredump_completion - Wait until coredump
886 * completes or times out
887 * @ioc: per adapter object
888 * @caller: caller function name
890 * Returns 0 for success, non-zero for failure.
893 mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc,
894 const char *caller)
896 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
897 ioc->manu_pg11.CoreDumpTOSec :
898 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
900 int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT,
901 timeout);
903 if (ioc_state)
904 ioc_err(ioc,
905 "%s: CoreDump timed out. (ioc_state=0x%x)\n",
906 caller, ioc_state);
907 else
908 ioc_info(ioc,
909 "%s: CoreDump completed. (ioc_state=0x%x)\n",
910 caller, ioc_state);
912 return ioc_state;
916 * mpt3sas_halt_firmware - halt's mpt controller firmware
917 * @ioc: per adapter object
919 * For debugging timeout related issues. Writing 0xCOFFEE00
920 * to the doorbell register will halt controller firmware. With
921 * the purpose to stop both driver and firmware, the enduser can
922 * obtain a ring buffer from controller UART.
924 void
925 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
927 u32 doorbell;
929 if (!ioc->fwfault_debug)
930 return;
932 dump_stack();
934 doorbell = ioc->base_readl(&ioc->chip->Doorbell);
935 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
936 mpt3sas_print_fault_code(ioc, doorbell &
937 MPI2_DOORBELL_DATA_MASK);
938 } else if ((doorbell & MPI2_IOC_STATE_MASK) ==
939 MPI2_IOC_STATE_COREDUMP) {
940 mpt3sas_print_coredump_info(ioc, doorbell &
941 MPI2_DOORBELL_DATA_MASK);
942 } else {
943 writel(0xC0FFEE00, &ioc->chip->Doorbell);
944 ioc_err(ioc, "Firmware is halted due to command timeout\n");
947 if (ioc->fwfault_debug == 2)
948 for (;;)
950 else
951 panic("panic in %s\n", __func__);
955 * _base_sas_ioc_info - verbose translation of the ioc status
956 * @ioc: per adapter object
957 * @mpi_reply: reply mf payload returned from firmware
958 * @request_hdr: request mf
960 static void
961 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
962 MPI2RequestHeader_t *request_hdr)
964 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
965 MPI2_IOCSTATUS_MASK;
966 char *desc = NULL;
967 u16 frame_sz;
968 char *func_str = NULL;
970 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
971 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
972 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
973 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
974 return;
976 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
977 return;
979 * Older Firmware version doesn't support driver trigger pages.
980 * So, skip displaying 'config invalid type' type
981 * of error message.
983 if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
984 Mpi2ConfigRequest_t *rqst = (Mpi2ConfigRequest_t *)request_hdr;
986 if ((rqst->ExtPageType ==
987 MPI2_CONFIG_EXTPAGETYPE_DRIVER_PERSISTENT_TRIGGER) &&
988 !(ioc->logging_level & MPT_DEBUG_CONFIG)) {
989 return;
993 switch (ioc_status) {
995 /****************************************************************************
996 * Common IOCStatus values for all replies
997 ****************************************************************************/
999 case MPI2_IOCSTATUS_INVALID_FUNCTION:
1000 desc = "invalid function";
1001 break;
1002 case MPI2_IOCSTATUS_BUSY:
1003 desc = "busy";
1004 break;
1005 case MPI2_IOCSTATUS_INVALID_SGL:
1006 desc = "invalid sgl";
1007 break;
1008 case MPI2_IOCSTATUS_INTERNAL_ERROR:
1009 desc = "internal error";
1010 break;
1011 case MPI2_IOCSTATUS_INVALID_VPID:
1012 desc = "invalid vpid";
1013 break;
1014 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
1015 desc = "insufficient resources";
1016 break;
1017 case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
1018 desc = "insufficient power";
1019 break;
1020 case MPI2_IOCSTATUS_INVALID_FIELD:
1021 desc = "invalid field";
1022 break;
1023 case MPI2_IOCSTATUS_INVALID_STATE:
1024 desc = "invalid state";
1025 break;
1026 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
1027 desc = "op state not supported";
1028 break;
1030 /****************************************************************************
1031 * Config IOCStatus values
1032 ****************************************************************************/
1034 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
1035 desc = "config invalid action";
1036 break;
1037 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
1038 desc = "config invalid type";
1039 break;
1040 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
1041 desc = "config invalid page";
1042 break;
1043 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
1044 desc = "config invalid data";
1045 break;
1046 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
1047 desc = "config no defaults";
1048 break;
1049 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
1050 desc = "config cant commit";
1051 break;
1053 /****************************************************************************
1054 * SCSI IO Reply
1055 ****************************************************************************/
1057 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
1058 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
1059 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
1060 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
1061 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
1062 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
1063 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
1064 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
1065 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
1066 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
1067 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
1068 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
1069 break;
1071 /****************************************************************************
1072 * For use by SCSI Initiator and SCSI Target end-to-end data protection
1073 ****************************************************************************/
1075 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
1076 desc = "eedp guard error";
1077 break;
1078 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
1079 desc = "eedp ref tag error";
1080 break;
1081 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
1082 desc = "eedp app tag error";
1083 break;
1085 /****************************************************************************
1086 * SCSI Target values
1087 ****************************************************************************/
1089 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
1090 desc = "target invalid io index";
1091 break;
1092 case MPI2_IOCSTATUS_TARGET_ABORTED:
1093 desc = "target aborted";
1094 break;
1095 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
1096 desc = "target no conn retryable";
1097 break;
1098 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
1099 desc = "target no connection";
1100 break;
1101 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
1102 desc = "target xfer count mismatch";
1103 break;
1104 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
1105 desc = "target data offset error";
1106 break;
1107 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
1108 desc = "target too much write data";
1109 break;
1110 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
1111 desc = "target iu too short";
1112 break;
1113 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
1114 desc = "target ack nak timeout";
1115 break;
1116 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
1117 desc = "target nak received";
1118 break;
1120 /****************************************************************************
1121 * Serial Attached SCSI values
1122 ****************************************************************************/
1124 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
1125 desc = "smp request failed";
1126 break;
1127 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
1128 desc = "smp data overrun";
1129 break;
1131 /****************************************************************************
1132 * Diagnostic Buffer Post / Diagnostic Release values
1133 ****************************************************************************/
1135 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
1136 desc = "diagnostic released";
1137 break;
1138 default:
1139 break;
1142 if (!desc)
1143 return;
1145 switch (request_hdr->Function) {
1146 case MPI2_FUNCTION_CONFIG:
1147 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
1148 func_str = "config_page";
1149 break;
1150 case MPI2_FUNCTION_SCSI_TASK_MGMT:
1151 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
1152 func_str = "task_mgmt";
1153 break;
1154 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
1155 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
1156 func_str = "sas_iounit_ctl";
1157 break;
1158 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
1159 frame_sz = sizeof(Mpi2SepRequest_t);
1160 func_str = "enclosure";
1161 break;
1162 case MPI2_FUNCTION_IOC_INIT:
1163 frame_sz = sizeof(Mpi2IOCInitRequest_t);
1164 func_str = "ioc_init";
1165 break;
1166 case MPI2_FUNCTION_PORT_ENABLE:
1167 frame_sz = sizeof(Mpi2PortEnableRequest_t);
1168 func_str = "port_enable";
1169 break;
1170 case MPI2_FUNCTION_SMP_PASSTHROUGH:
1171 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
1172 func_str = "smp_passthru";
1173 break;
1174 case MPI2_FUNCTION_NVME_ENCAPSULATED:
1175 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
1176 ioc->sge_size;
1177 func_str = "nvme_encapsulated";
1178 break;
1179 default:
1180 frame_sz = 32;
1181 func_str = "unknown";
1182 break;
1185 ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
1186 desc, ioc_status, request_hdr, func_str);
1188 _debug_dump_mf(request_hdr, frame_sz/4);
1192 * _base_display_event_data - verbose translation of firmware asyn events
1193 * @ioc: per adapter object
1194 * @mpi_reply: reply mf payload returned from firmware
1196 static void
1197 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
1198 Mpi2EventNotificationReply_t *mpi_reply)
1200 char *desc = NULL;
1201 u16 event;
1203 if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
1204 return;
1206 event = le16_to_cpu(mpi_reply->Event);
1208 switch (event) {
1209 case MPI2_EVENT_LOG_DATA:
1210 desc = "Log Data";
1211 break;
1212 case MPI2_EVENT_STATE_CHANGE:
1213 desc = "Status Change";
1214 break;
1215 case MPI2_EVENT_HARD_RESET_RECEIVED:
1216 desc = "Hard Reset Received";
1217 break;
1218 case MPI2_EVENT_EVENT_CHANGE:
1219 desc = "Event Change";
1220 break;
1221 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
1222 desc = "Device Status Change";
1223 break;
1224 case MPI2_EVENT_IR_OPERATION_STATUS:
1225 if (!ioc->hide_ir_msg)
1226 desc = "IR Operation Status";
1227 break;
1228 case MPI2_EVENT_SAS_DISCOVERY:
1230 Mpi2EventDataSasDiscovery_t *event_data =
1231 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
1232 ioc_info(ioc, "Discovery: (%s)",
1233 event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ?
1234 "start" : "stop");
1235 if (event_data->DiscoveryStatus)
1236 pr_cont(" discovery_status(0x%08x)",
1237 le32_to_cpu(event_data->DiscoveryStatus));
1238 pr_cont("\n");
1239 return;
1241 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
1242 desc = "SAS Broadcast Primitive";
1243 break;
1244 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
1245 desc = "SAS Init Device Status Change";
1246 break;
1247 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
1248 desc = "SAS Init Table Overflow";
1249 break;
1250 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
1251 desc = "SAS Topology Change List";
1252 break;
1253 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
1254 desc = "SAS Enclosure Device Status Change";
1255 break;
1256 case MPI2_EVENT_IR_VOLUME:
1257 if (!ioc->hide_ir_msg)
1258 desc = "IR Volume";
1259 break;
1260 case MPI2_EVENT_IR_PHYSICAL_DISK:
1261 if (!ioc->hide_ir_msg)
1262 desc = "IR Physical Disk";
1263 break;
1264 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
1265 if (!ioc->hide_ir_msg)
1266 desc = "IR Configuration Change List";
1267 break;
1268 case MPI2_EVENT_LOG_ENTRY_ADDED:
1269 if (!ioc->hide_ir_msg)
1270 desc = "Log Entry Added";
1271 break;
1272 case MPI2_EVENT_TEMP_THRESHOLD:
1273 desc = "Temperature Threshold";
1274 break;
1275 case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
1276 desc = "Cable Event";
1277 break;
1278 case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
1279 desc = "SAS Device Discovery Error";
1280 break;
1281 case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
1282 desc = "PCIE Device Status Change";
1283 break;
1284 case MPI2_EVENT_PCIE_ENUMERATION:
1286 Mpi26EventDataPCIeEnumeration_t *event_data =
1287 (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
1288 ioc_info(ioc, "PCIE Enumeration: (%s)",
1289 event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ?
1290 "start" : "stop");
1291 if (event_data->EnumerationStatus)
1292 pr_cont("enumeration_status(0x%08x)",
1293 le32_to_cpu(event_data->EnumerationStatus));
1294 pr_cont("\n");
1295 return;
1297 case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
1298 desc = "PCIE Topology Change List";
1299 break;
1302 if (!desc)
1303 return;
1305 ioc_info(ioc, "%s\n", desc);
1309 * _base_sas_log_info - verbose translation of firmware log info
1310 * @ioc: per adapter object
1311 * @log_info: log info
1313 static void
1314 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
1316 union loginfo_type {
1317 u32 loginfo;
1318 struct {
1319 u32 subcode:16;
1320 u32 code:8;
1321 u32 originator:4;
1322 u32 bus_type:4;
1323 } dw;
1325 union loginfo_type sas_loginfo;
1326 char *originator_str = NULL;
1328 sas_loginfo.loginfo = log_info;
1329 if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1330 return;
1332 /* each nexus loss loginfo */
1333 if (log_info == 0x31170000)
1334 return;
1336 /* eat the loginfos associated with task aborts */
1337 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
1338 0x31140000 || log_info == 0x31130000))
1339 return;
1341 switch (sas_loginfo.dw.originator) {
1342 case 0:
1343 originator_str = "IOP";
1344 break;
1345 case 1:
1346 originator_str = "PL";
1347 break;
1348 case 2:
1349 if (!ioc->hide_ir_msg)
1350 originator_str = "IR";
1351 else
1352 originator_str = "WarpDrive";
1353 break;
1356 ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1357 log_info,
1358 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode);
1362 * _base_display_reply_info -
1363 * @ioc: per adapter object
1364 * @smid: system request message index
1365 * @msix_index: MSIX table index supplied by the OS
1366 * @reply: reply message frame(lower 32bit addr)
1368 static void
1369 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1370 u32 reply)
1372 MPI2DefaultReply_t *mpi_reply;
1373 u16 ioc_status;
1374 u32 loginfo = 0;
1376 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1377 if (unlikely(!mpi_reply)) {
1378 ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n",
1379 __FILE__, __LINE__, __func__);
1380 return;
1382 ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
1384 if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
1385 (ioc->logging_level & MPT_DEBUG_REPLY)) {
1386 _base_sas_ioc_info(ioc , mpi_reply,
1387 mpt3sas_base_get_msg_frame(ioc, smid));
1390 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
1391 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
1392 _base_sas_log_info(ioc, loginfo);
1395 if (ioc_status || loginfo) {
1396 ioc_status &= MPI2_IOCSTATUS_MASK;
1397 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
1402 * mpt3sas_base_done - base internal command completion routine
1403 * @ioc: per adapter object
1404 * @smid: system request message index
1405 * @msix_index: MSIX table index supplied by the OS
1406 * @reply: reply message frame(lower 32bit addr)
1408 * Return:
1409 * 1 meaning mf should be freed from _base_interrupt
1410 * 0 means the mf is freed from this function.
1413 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1414 u32 reply)
1416 MPI2DefaultReply_t *mpi_reply;
1418 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1419 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
1420 return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
1422 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
1423 return 1;
1425 ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
1426 if (mpi_reply) {
1427 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
1428 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
1430 ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
1432 complete(&ioc->base_cmds.done);
1433 return 1;
1437 * _base_async_event - main callback handler for firmware asyn events
1438 * @ioc: per adapter object
1439 * @msix_index: MSIX table index supplied by the OS
1440 * @reply: reply message frame(lower 32bit addr)
1442 * Return:
1443 * 1 meaning mf should be freed from _base_interrupt
1444 * 0 means the mf is freed from this function.
1446 static u8
1447 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
1449 Mpi2EventNotificationReply_t *mpi_reply;
1450 Mpi2EventAckRequest_t *ack_request;
1451 u16 smid;
1452 struct _event_ack_list *delayed_event_ack;
1454 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1455 if (!mpi_reply)
1456 return 1;
1457 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
1458 return 1;
1460 _base_display_event_data(ioc, mpi_reply);
1462 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
1463 goto out;
1464 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
1465 if (!smid) {
1466 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
1467 GFP_ATOMIC);
1468 if (!delayed_event_ack)
1469 goto out;
1470 INIT_LIST_HEAD(&delayed_event_ack->list);
1471 delayed_event_ack->Event = mpi_reply->Event;
1472 delayed_event_ack->EventContext = mpi_reply->EventContext;
1473 list_add_tail(&delayed_event_ack->list,
1474 &ioc->delayed_event_ack_list);
1475 dewtprintk(ioc,
1476 ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n",
1477 le16_to_cpu(mpi_reply->Event)));
1478 goto out;
1481 ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
1482 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
1483 ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
1484 ack_request->Event = mpi_reply->Event;
1485 ack_request->EventContext = mpi_reply->EventContext;
1486 ack_request->VF_ID = 0; /* TODO */
1487 ack_request->VP_ID = 0;
1488 ioc->put_smid_default(ioc, smid);
1490 out:
1492 /* scsih callback handler */
1493 mpt3sas_scsih_event_callback(ioc, msix_index, reply);
1495 /* ctl callback handler */
1496 mpt3sas_ctl_event_callback(ioc, msix_index, reply);
1498 return 1;
1501 static struct scsiio_tracker *
1502 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1504 struct scsi_cmnd *cmd;
1506 if (WARN_ON(!smid) ||
1507 WARN_ON(smid >= ioc->hi_priority_smid))
1508 return NULL;
1510 cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
1511 if (cmd)
1512 return scsi_cmd_priv(cmd);
1514 return NULL;
1518 * _base_get_cb_idx - obtain the callback index
1519 * @ioc: per adapter object
1520 * @smid: system request message index
1522 * Return: callback index.
1524 static u8
1525 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1527 int i;
1528 u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
1529 u8 cb_idx = 0xFF;
1531 if (smid < ioc->hi_priority_smid) {
1532 struct scsiio_tracker *st;
1534 if (smid < ctl_smid) {
1535 st = _get_st_from_smid(ioc, smid);
1536 if (st)
1537 cb_idx = st->cb_idx;
1538 } else if (smid == ctl_smid)
1539 cb_idx = ioc->ctl_cb_idx;
1540 } else if (smid < ioc->internal_smid) {
1541 i = smid - ioc->hi_priority_smid;
1542 cb_idx = ioc->hpr_lookup[i].cb_idx;
1543 } else if (smid <= ioc->hba_queue_depth) {
1544 i = smid - ioc->internal_smid;
1545 cb_idx = ioc->internal_lookup[i].cb_idx;
1547 return cb_idx;
1551 * mpt3sas_base_mask_interrupts - disable interrupts
1552 * @ioc: per adapter object
1554 * Disabling ResetIRQ, Reply and Doorbell Interrupts
1556 void
1557 mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1559 u32 him_register;
1561 ioc->mask_interrupts = 1;
1562 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1563 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
1564 writel(him_register, &ioc->chip->HostInterruptMask);
1565 ioc->base_readl(&ioc->chip->HostInterruptMask);
1569 * mpt3sas_base_unmask_interrupts - enable interrupts
1570 * @ioc: per adapter object
1572 * Enabling only Reply Interrupts
1574 void
1575 mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1577 u32 him_register;
1579 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1580 him_register &= ~MPI2_HIM_RIM;
1581 writel(him_register, &ioc->chip->HostInterruptMask);
1582 ioc->mask_interrupts = 0;
1585 union reply_descriptor {
1586 u64 word;
1587 struct {
1588 u32 low;
1589 u32 high;
1590 } u;
1593 static u32 base_mod64(u64 dividend, u32 divisor)
1595 u32 remainder;
1597 if (!divisor)
1598 pr_err("mpt3sas: DIVISOR is zero, in div fn\n");
1599 remainder = do_div(dividend, divisor);
1600 return remainder;
1604 * _base_process_reply_queue - Process reply descriptors from reply
1605 * descriptor post queue.
1606 * @reply_q: per IRQ's reply queue object.
1608 * Return: number of reply descriptors processed from reply
1609 * descriptor queue.
1611 static int
1612 _base_process_reply_queue(struct adapter_reply_queue *reply_q)
1614 union reply_descriptor rd;
1615 u64 completed_cmds;
1616 u8 request_descript_type;
1617 u16 smid;
1618 u8 cb_idx;
1619 u32 reply;
1620 u8 msix_index = reply_q->msix_index;
1621 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1622 Mpi2ReplyDescriptorsUnion_t *rpf;
1623 u8 rc;
1625 completed_cmds = 0;
1626 if (!atomic_add_unless(&reply_q->busy, 1, 1))
1627 return completed_cmds;
1629 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
1630 request_descript_type = rpf->Default.ReplyFlags
1631 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1632 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
1633 atomic_dec(&reply_q->busy);
1634 return completed_cmds;
1637 cb_idx = 0xFF;
1638 do {
1639 rd.word = le64_to_cpu(rpf->Words);
1640 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1641 goto out;
1642 reply = 0;
1643 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1644 if (request_descript_type ==
1645 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1646 request_descript_type ==
1647 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1648 request_descript_type ==
1649 MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1650 cb_idx = _base_get_cb_idx(ioc, smid);
1651 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1652 (likely(mpt_callbacks[cb_idx] != NULL))) {
1653 rc = mpt_callbacks[cb_idx](ioc, smid,
1654 msix_index, 0);
1655 if (rc)
1656 mpt3sas_base_free_smid(ioc, smid);
1658 } else if (request_descript_type ==
1659 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1660 reply = le32_to_cpu(
1661 rpf->AddressReply.ReplyFrameAddress);
1662 if (reply > ioc->reply_dma_max_address ||
1663 reply < ioc->reply_dma_min_address)
1664 reply = 0;
1665 if (smid) {
1666 cb_idx = _base_get_cb_idx(ioc, smid);
1667 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1668 (likely(mpt_callbacks[cb_idx] != NULL))) {
1669 rc = mpt_callbacks[cb_idx](ioc, smid,
1670 msix_index, reply);
1671 if (reply)
1672 _base_display_reply_info(ioc,
1673 smid, msix_index, reply);
1674 if (rc)
1675 mpt3sas_base_free_smid(ioc,
1676 smid);
1678 } else {
1679 _base_async_event(ioc, msix_index, reply);
1682 /* reply free queue handling */
1683 if (reply) {
1684 ioc->reply_free_host_index =
1685 (ioc->reply_free_host_index ==
1686 (ioc->reply_free_queue_depth - 1)) ?
1687 0 : ioc->reply_free_host_index + 1;
1688 ioc->reply_free[ioc->reply_free_host_index] =
1689 cpu_to_le32(reply);
1690 if (ioc->is_mcpu_endpoint)
1691 _base_clone_reply_to_sys_mem(ioc,
1692 reply,
1693 ioc->reply_free_host_index);
1694 writel(ioc->reply_free_host_index,
1695 &ioc->chip->ReplyFreeHostIndex);
1699 rpf->Words = cpu_to_le64(ULLONG_MAX);
1700 reply_q->reply_post_host_index =
1701 (reply_q->reply_post_host_index ==
1702 (ioc->reply_post_queue_depth - 1)) ? 0 :
1703 reply_q->reply_post_host_index + 1;
1704 request_descript_type =
1705 reply_q->reply_post_free[reply_q->reply_post_host_index].
1706 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1707 completed_cmds++;
1708 /* Update the reply post host index after continuously
1709 * processing the threshold number of Reply Descriptors.
1710 * So that FW can find enough entries to post the Reply
1711 * Descriptors in the reply descriptor post queue.
1713 if (completed_cmds >= ioc->thresh_hold) {
1714 if (ioc->combined_reply_queue) {
1715 writel(reply_q->reply_post_host_index |
1716 ((msix_index & 7) <<
1717 MPI2_RPHI_MSIX_INDEX_SHIFT),
1718 ioc->replyPostRegisterIndex[msix_index/8]);
1719 } else {
1720 writel(reply_q->reply_post_host_index |
1721 (msix_index <<
1722 MPI2_RPHI_MSIX_INDEX_SHIFT),
1723 &ioc->chip->ReplyPostHostIndex);
1725 if (!reply_q->irq_poll_scheduled) {
1726 reply_q->irq_poll_scheduled = true;
1727 irq_poll_sched(&reply_q->irqpoll);
1729 atomic_dec(&reply_q->busy);
1730 return completed_cmds;
1732 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1733 goto out;
1734 if (!reply_q->reply_post_host_index)
1735 rpf = reply_q->reply_post_free;
1736 else
1737 rpf++;
1738 } while (1);
1740 out:
1742 if (!completed_cmds) {
1743 atomic_dec(&reply_q->busy);
1744 return completed_cmds;
1747 if (ioc->is_warpdrive) {
1748 writel(reply_q->reply_post_host_index,
1749 ioc->reply_post_host_index[msix_index]);
1750 atomic_dec(&reply_q->busy);
1751 return completed_cmds;
1754 /* Update Reply Post Host Index.
1755 * For those HBA's which support combined reply queue feature
1756 * 1. Get the correct Supplemental Reply Post Host Index Register.
1757 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1758 * Index Register address bank i.e replyPostRegisterIndex[],
1759 * 2. Then update this register with new reply host index value
1760 * in ReplyPostIndex field and the MSIxIndex field with
1761 * msix_index value reduced to a value between 0 and 7,
1762 * using a modulo 8 operation. Since each Supplemental Reply Post
1763 * Host Index Register supports 8 MSI-X vectors.
1765 * For other HBA's just update the Reply Post Host Index register with
1766 * new reply host index value in ReplyPostIndex Field and msix_index
1767 * value in MSIxIndex field.
1769 if (ioc->combined_reply_queue)
1770 writel(reply_q->reply_post_host_index | ((msix_index & 7) <<
1771 MPI2_RPHI_MSIX_INDEX_SHIFT),
1772 ioc->replyPostRegisterIndex[msix_index/8]);
1773 else
1774 writel(reply_q->reply_post_host_index | (msix_index <<
1775 MPI2_RPHI_MSIX_INDEX_SHIFT),
1776 &ioc->chip->ReplyPostHostIndex);
1777 atomic_dec(&reply_q->busy);
1778 return completed_cmds;
1782 * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1783 * @irq: irq number (not used)
1784 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1786 * Return: IRQ_HANDLED if processed, else IRQ_NONE.
1788 static irqreturn_t
1789 _base_interrupt(int irq, void *bus_id)
1791 struct adapter_reply_queue *reply_q = bus_id;
1792 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1794 if (ioc->mask_interrupts)
1795 return IRQ_NONE;
1796 if (reply_q->irq_poll_scheduled)
1797 return IRQ_HANDLED;
1798 return ((_base_process_reply_queue(reply_q) > 0) ?
1799 IRQ_HANDLED : IRQ_NONE);
1803 * _base_irqpoll - IRQ poll callback handler
1804 * @irqpoll: irq_poll object
1805 * @budget: irq poll weight
1807 * returns number of reply descriptors processed
1809 static int
1810 _base_irqpoll(struct irq_poll *irqpoll, int budget)
1812 struct adapter_reply_queue *reply_q;
1813 int num_entries = 0;
1815 reply_q = container_of(irqpoll, struct adapter_reply_queue,
1816 irqpoll);
1817 if (reply_q->irq_line_enable) {
1818 disable_irq_nosync(reply_q->os_irq);
1819 reply_q->irq_line_enable = false;
1821 num_entries = _base_process_reply_queue(reply_q);
1822 if (num_entries < budget) {
1823 irq_poll_complete(irqpoll);
1824 reply_q->irq_poll_scheduled = false;
1825 reply_q->irq_line_enable = true;
1826 enable_irq(reply_q->os_irq);
1828 * Go for one more round of processing the
1829 * reply descriptor post queue incase if HBA
1830 * Firmware has posted some reply descriptors
1831 * while reenabling the IRQ.
1833 _base_process_reply_queue(reply_q);
1836 return num_entries;
1840 * _base_init_irqpolls - initliaze IRQ polls
1841 * @ioc: per adapter object
1843 * returns nothing
1845 static void
1846 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc)
1848 struct adapter_reply_queue *reply_q, *next;
1850 if (list_empty(&ioc->reply_queue_list))
1851 return;
1853 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1854 irq_poll_init(&reply_q->irqpoll,
1855 ioc->hba_queue_depth/4, _base_irqpoll);
1856 reply_q->irq_poll_scheduled = false;
1857 reply_q->irq_line_enable = true;
1858 reply_q->os_irq = pci_irq_vector(ioc->pdev,
1859 reply_q->msix_index);
1864 * _base_is_controller_msix_enabled - is controller support muli-reply queues
1865 * @ioc: per adapter object
1867 * Return: Whether or not MSI/X is enabled.
1869 static inline int
1870 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1872 return (ioc->facts.IOCCapabilities &
1873 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1877 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1878 * @ioc: per adapter object
1879 * @poll: poll over reply descriptor pools incase interrupt for
1880 * timed-out SCSI command got delayed
1881 * Context: non ISR conext
1883 * Called when a Task Management request has completed.
1885 void
1886 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc, u8 poll)
1888 struct adapter_reply_queue *reply_q;
1890 /* If MSIX capability is turned off
1891 * then multi-queues are not enabled
1893 if (!_base_is_controller_msix_enabled(ioc))
1894 return;
1896 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1897 if (ioc->shost_recovery || ioc->remove_host ||
1898 ioc->pci_error_recovery)
1899 return;
1900 /* TMs are on msix_index == 0 */
1901 if (reply_q->msix_index == 0)
1902 continue;
1903 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
1904 if (reply_q->irq_poll_scheduled) {
1905 /* Calling irq_poll_disable will wait for any pending
1906 * callbacks to have completed.
1908 irq_poll_disable(&reply_q->irqpoll);
1909 irq_poll_enable(&reply_q->irqpoll);
1910 /* check how the scheduled poll has ended,
1911 * clean up only if necessary
1913 if (reply_q->irq_poll_scheduled) {
1914 reply_q->irq_poll_scheduled = false;
1915 reply_q->irq_line_enable = true;
1916 enable_irq(reply_q->os_irq);
1920 if (poll)
1921 _base_process_reply_queue(reply_q);
1925 * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1926 * @cb_idx: callback index
1928 void
1929 mpt3sas_base_release_callback_handler(u8 cb_idx)
1931 mpt_callbacks[cb_idx] = NULL;
1935 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1936 * @cb_func: callback function
1938 * Return: Index of @cb_func.
1941 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1943 u8 cb_idx;
1945 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1946 if (mpt_callbacks[cb_idx] == NULL)
1947 break;
1949 mpt_callbacks[cb_idx] = cb_func;
1950 return cb_idx;
1954 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1956 void
1957 mpt3sas_base_initialize_callback_handler(void)
1959 u8 cb_idx;
1961 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1962 mpt3sas_base_release_callback_handler(cb_idx);
1967 * _base_build_zero_len_sge - build zero length sg entry
1968 * @ioc: per adapter object
1969 * @paddr: virtual address for SGE
1971 * Create a zero length scatter gather entry to insure the IOCs hardware has
1972 * something to use if the target device goes brain dead and tries
1973 * to send data even when none is asked for.
1975 static void
1976 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1978 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1979 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1980 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1981 MPI2_SGE_FLAGS_SHIFT);
1982 ioc->base_add_sg_single(paddr, flags_length, -1);
1986 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1987 * @paddr: virtual address for SGE
1988 * @flags_length: SGE flags and data transfer length
1989 * @dma_addr: Physical address
1991 static void
1992 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1994 Mpi2SGESimple32_t *sgel = paddr;
1996 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1997 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1998 sgel->FlagsLength = cpu_to_le32(flags_length);
1999 sgel->Address = cpu_to_le32(dma_addr);
2004 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
2005 * @paddr: virtual address for SGE
2006 * @flags_length: SGE flags and data transfer length
2007 * @dma_addr: Physical address
2009 static void
2010 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
2012 Mpi2SGESimple64_t *sgel = paddr;
2014 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
2015 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
2016 sgel->FlagsLength = cpu_to_le32(flags_length);
2017 sgel->Address = cpu_to_le64(dma_addr);
2021 * _base_get_chain_buffer_tracker - obtain chain tracker
2022 * @ioc: per adapter object
2023 * @scmd: SCSI commands of the IO request
2025 * Return: chain tracker from chain_lookup table using key as
2026 * smid and smid's chain_offset.
2028 static struct chain_tracker *
2029 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
2030 struct scsi_cmnd *scmd)
2032 struct chain_tracker *chain_req;
2033 struct scsiio_tracker *st = scsi_cmd_priv(scmd);
2034 u16 smid = st->smid;
2035 u8 chain_offset =
2036 atomic_read(&ioc->chain_lookup[smid - 1].chain_offset);
2038 if (chain_offset == ioc->chains_needed_per_io)
2039 return NULL;
2041 chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset];
2042 atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset);
2043 return chain_req;
2048 * _base_build_sg - build generic sg
2049 * @ioc: per adapter object
2050 * @psge: virtual address for SGE
2051 * @data_out_dma: physical address for WRITES
2052 * @data_out_sz: data xfer size for WRITES
2053 * @data_in_dma: physical address for READS
2054 * @data_in_sz: data xfer size for READS
2056 static void
2057 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
2058 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2059 size_t data_in_sz)
2061 u32 sgl_flags;
2063 if (!data_out_sz && !data_in_sz) {
2064 _base_build_zero_len_sge(ioc, psge);
2065 return;
2068 if (data_out_sz && data_in_sz) {
2069 /* WRITE sgel first */
2070 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2071 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
2072 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2073 ioc->base_add_sg_single(psge, sgl_flags |
2074 data_out_sz, data_out_dma);
2076 /* incr sgel */
2077 psge += ioc->sge_size;
2079 /* READ sgel last */
2080 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2081 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2082 MPI2_SGE_FLAGS_END_OF_LIST);
2083 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2084 ioc->base_add_sg_single(psge, sgl_flags |
2085 data_in_sz, data_in_dma);
2086 } else if (data_out_sz) /* WRITE */ {
2087 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2088 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2089 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
2090 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2091 ioc->base_add_sg_single(psge, sgl_flags |
2092 data_out_sz, data_out_dma);
2093 } else if (data_in_sz) /* READ */ {
2094 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2095 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2096 MPI2_SGE_FLAGS_END_OF_LIST);
2097 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2098 ioc->base_add_sg_single(psge, sgl_flags |
2099 data_in_sz, data_in_dma);
2103 /* IEEE format sgls */
2106 * _base_build_nvme_prp - This function is called for NVMe end devices to build
2107 * a native SGL (NVMe PRP). The native SGL is built starting in the first PRP
2108 * entry of the NVMe message (PRP1). If the data buffer is small enough to be
2109 * described entirely using PRP1, then PRP2 is not used. If needed, PRP2 is
2110 * used to describe a larger data buffer. If the data buffer is too large to
2111 * describe using the two PRP entriess inside the NVMe message, then PRP1
2112 * describes the first data memory segment, and PRP2 contains a pointer to a PRP
2113 * list located elsewhere in memory to describe the remaining data memory
2114 * segments. The PRP list will be contiguous.
2116 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP
2117 * consists of a list of PRP entries to describe a number of noncontigous
2118 * physical memory segments as a single memory buffer, just as a SGL does. Note
2119 * however, that this function is only used by the IOCTL call, so the memory
2120 * given will be guaranteed to be contiguous. There is no need to translate
2121 * non-contiguous SGL into a PRP in this case. All PRPs will describe
2122 * contiguous space that is one page size each.
2124 * Each NVMe message contains two PRP entries. The first (PRP1) either contains
2125 * a PRP list pointer or a PRP element, depending upon the command. PRP2
2126 * contains the second PRP element if the memory being described fits within 2
2127 * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
2129 * A PRP list pointer contains the address of a PRP list, structured as a linear
2130 * array of PRP entries. Each PRP entry in this list describes a segment of
2131 * physical memory.
2133 * Each 64-bit PRP entry comprises an address and an offset field. The address
2134 * always points at the beginning of a 4KB physical memory page, and the offset
2135 * describes where within that 4KB page the memory segment begins. Only the
2136 * first element in a PRP list may contain a non-zero offest, implying that all
2137 * memory segments following the first begin at the start of a 4KB page.
2139 * Each PRP element normally describes 4KB of physical memory, with exceptions
2140 * for the first and last elements in the list. If the memory being described
2141 * by the list begins at a non-zero offset within the first 4KB page, then the
2142 * first PRP element will contain a non-zero offset indicating where the region
2143 * begins within the 4KB page. The last memory segment may end before the end
2144 * of the 4KB segment, depending upon the overall size of the memory being
2145 * described by the PRP list.
2147 * Since PRP entries lack any indication of size, the overall data buffer length
2148 * is used to determine where the end of the data memory buffer is located, and
2149 * how many PRP entries are required to describe it.
2151 * @ioc: per adapter object
2152 * @smid: system request message index for getting asscociated SGL
2153 * @nvme_encap_request: the NVMe request msg frame pointer
2154 * @data_out_dma: physical address for WRITES
2155 * @data_out_sz: data xfer size for WRITES
2156 * @data_in_dma: physical address for READS
2157 * @data_in_sz: data xfer size for READS
2159 static void
2160 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2161 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
2162 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2163 size_t data_in_sz)
2165 int prp_size = NVME_PRP_SIZE;
2166 __le64 *prp_entry, *prp1_entry, *prp2_entry;
2167 __le64 *prp_page;
2168 dma_addr_t prp_entry_dma, prp_page_dma, dma_addr;
2169 u32 offset, entry_len;
2170 u32 page_mask_result, page_mask;
2171 size_t length;
2172 struct mpt3sas_nvme_cmd *nvme_cmd =
2173 (void *)nvme_encap_request->NVMe_Command;
2176 * Not all commands require a data transfer. If no data, just return
2177 * without constructing any PRP.
2179 if (!data_in_sz && !data_out_sz)
2180 return;
2181 prp1_entry = &nvme_cmd->prp1;
2182 prp2_entry = &nvme_cmd->prp2;
2183 prp_entry = prp1_entry;
2185 * For the PRP entries, use the specially allocated buffer of
2186 * contiguous memory.
2188 prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
2189 prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2192 * Check if we are within 1 entry of a page boundary we don't
2193 * want our first entry to be a PRP List entry.
2195 page_mask = ioc->page_size - 1;
2196 page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
2197 if (!page_mask_result) {
2198 /* Bump up to next page boundary. */
2199 prp_page = (__le64 *)((u8 *)prp_page + prp_size);
2200 prp_page_dma = prp_page_dma + prp_size;
2204 * Set PRP physical pointer, which initially points to the current PRP
2205 * DMA memory page.
2207 prp_entry_dma = prp_page_dma;
2209 /* Get physical address and length of the data buffer. */
2210 if (data_in_sz) {
2211 dma_addr = data_in_dma;
2212 length = data_in_sz;
2213 } else {
2214 dma_addr = data_out_dma;
2215 length = data_out_sz;
2218 /* Loop while the length is not zero. */
2219 while (length) {
2221 * Check if we need to put a list pointer here if we are at
2222 * page boundary - prp_size (8 bytes).
2224 page_mask_result = (prp_entry_dma + prp_size) & page_mask;
2225 if (!page_mask_result) {
2227 * This is the last entry in a PRP List, so we need to
2228 * put a PRP list pointer here. What this does is:
2229 * - bump the current memory pointer to the next
2230 * address, which will be the next full page.
2231 * - set the PRP Entry to point to that page. This
2232 * is now the PRP List pointer.
2233 * - bump the PRP Entry pointer the start of the
2234 * next page. Since all of this PRP memory is
2235 * contiguous, no need to get a new page - it's
2236 * just the next address.
2238 prp_entry_dma++;
2239 *prp_entry = cpu_to_le64(prp_entry_dma);
2240 prp_entry++;
2243 /* Need to handle if entry will be part of a page. */
2244 offset = dma_addr & page_mask;
2245 entry_len = ioc->page_size - offset;
2247 if (prp_entry == prp1_entry) {
2249 * Must fill in the first PRP pointer (PRP1) before
2250 * moving on.
2252 *prp1_entry = cpu_to_le64(dma_addr);
2255 * Now point to the second PRP entry within the
2256 * command (PRP2).
2258 prp_entry = prp2_entry;
2259 } else if (prp_entry == prp2_entry) {
2261 * Should the PRP2 entry be a PRP List pointer or just
2262 * a regular PRP pointer? If there is more than one
2263 * more page of data, must use a PRP List pointer.
2265 if (length > ioc->page_size) {
2267 * PRP2 will contain a PRP List pointer because
2268 * more PRP's are needed with this command. The
2269 * list will start at the beginning of the
2270 * contiguous buffer.
2272 *prp2_entry = cpu_to_le64(prp_entry_dma);
2275 * The next PRP Entry will be the start of the
2276 * first PRP List.
2278 prp_entry = prp_page;
2279 } else {
2281 * After this, the PRP Entries are complete.
2282 * This command uses 2 PRP's and no PRP list.
2284 *prp2_entry = cpu_to_le64(dma_addr);
2286 } else {
2288 * Put entry in list and bump the addresses.
2290 * After PRP1 and PRP2 are filled in, this will fill in
2291 * all remaining PRP entries in a PRP List, one per
2292 * each time through the loop.
2294 *prp_entry = cpu_to_le64(dma_addr);
2295 prp_entry++;
2296 prp_entry_dma++;
2300 * Bump the phys address of the command's data buffer by the
2301 * entry_len.
2303 dma_addr += entry_len;
2305 /* Decrement length accounting for last partial page. */
2306 if (entry_len > length)
2307 length = 0;
2308 else
2309 length -= entry_len;
2314 * base_make_prp_nvme -
2315 * Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only
2317 * @ioc: per adapter object
2318 * @scmd: SCSI command from the mid-layer
2319 * @mpi_request: mpi request
2320 * @smid: msg Index
2321 * @sge_count: scatter gather element count.
2323 * Return: true: PRPs are built
2324 * false: IEEE SGLs needs to be built
2326 static void
2327 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
2328 struct scsi_cmnd *scmd,
2329 Mpi25SCSIIORequest_t *mpi_request,
2330 u16 smid, int sge_count)
2332 int sge_len, num_prp_in_chain = 0;
2333 Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
2334 __le64 *curr_buff;
2335 dma_addr_t msg_dma, sge_addr, offset;
2336 u32 page_mask, page_mask_result;
2337 struct scatterlist *sg_scmd;
2338 u32 first_prp_len;
2339 int data_len = scsi_bufflen(scmd);
2340 u32 nvme_pg_size;
2342 nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
2344 * Nvme has a very convoluted prp format. One prp is required
2345 * for each page or partial page. Driver need to split up OS sg_list
2346 * entries if it is longer than one page or cross a page
2347 * boundary. Driver also have to insert a PRP list pointer entry as
2348 * the last entry in each physical page of the PRP list.
2350 * NOTE: The first PRP "entry" is actually placed in the first
2351 * SGL entry in the main message as IEEE 64 format. The 2nd
2352 * entry in the main message is the chain element, and the rest
2353 * of the PRP entries are built in the contiguous pcie buffer.
2355 page_mask = nvme_pg_size - 1;
2358 * Native SGL is needed.
2359 * Put a chain element in main message frame that points to the first
2360 * chain buffer.
2362 * NOTE: The ChainOffset field must be 0 when using a chain pointer to
2363 * a native SGL.
2366 /* Set main message chain element pointer */
2367 main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2369 * For NVMe the chain element needs to be the 2nd SG entry in the main
2370 * message.
2372 main_chain_element = (Mpi25IeeeSgeChain64_t *)
2373 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2376 * For the PRP entries, use the specially allocated buffer of
2377 * contiguous memory. Normal chain buffers can't be used
2378 * because each chain buffer would need to be the size of an OS
2379 * page (4k).
2381 curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
2382 msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2384 main_chain_element->Address = cpu_to_le64(msg_dma);
2385 main_chain_element->NextChainOffset = 0;
2386 main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2387 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2388 MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2390 /* Build first prp, sge need not to be page aligned*/
2391 ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2392 sg_scmd = scsi_sglist(scmd);
2393 sge_addr = sg_dma_address(sg_scmd);
2394 sge_len = sg_dma_len(sg_scmd);
2396 offset = sge_addr & page_mask;
2397 first_prp_len = nvme_pg_size - offset;
2399 ptr_first_sgl->Address = cpu_to_le64(sge_addr);
2400 ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
2402 data_len -= first_prp_len;
2404 if (sge_len > first_prp_len) {
2405 sge_addr += first_prp_len;
2406 sge_len -= first_prp_len;
2407 } else if (data_len && (sge_len == first_prp_len)) {
2408 sg_scmd = sg_next(sg_scmd);
2409 sge_addr = sg_dma_address(sg_scmd);
2410 sge_len = sg_dma_len(sg_scmd);
2413 for (;;) {
2414 offset = sge_addr & page_mask;
2416 /* Put PRP pointer due to page boundary*/
2417 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
2418 if (unlikely(!page_mask_result)) {
2419 scmd_printk(KERN_NOTICE,
2420 scmd, "page boundary curr_buff: 0x%p\n",
2421 curr_buff);
2422 msg_dma += 8;
2423 *curr_buff = cpu_to_le64(msg_dma);
2424 curr_buff++;
2425 num_prp_in_chain++;
2428 *curr_buff = cpu_to_le64(sge_addr);
2429 curr_buff++;
2430 msg_dma += 8;
2431 num_prp_in_chain++;
2433 sge_addr += nvme_pg_size;
2434 sge_len -= nvme_pg_size;
2435 data_len -= nvme_pg_size;
2437 if (data_len <= 0)
2438 break;
2440 if (sge_len > 0)
2441 continue;
2443 sg_scmd = sg_next(sg_scmd);
2444 sge_addr = sg_dma_address(sg_scmd);
2445 sge_len = sg_dma_len(sg_scmd);
2448 main_chain_element->Length =
2449 cpu_to_le32(num_prp_in_chain * sizeof(u64));
2450 return;
2453 static bool
2454 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
2455 struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
2457 u32 data_length = 0;
2458 bool build_prp = true;
2460 data_length = scsi_bufflen(scmd);
2461 if (pcie_device &&
2462 (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) {
2463 build_prp = false;
2464 return build_prp;
2467 /* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2468 * we built IEEE SGL
2470 if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
2471 build_prp = false;
2473 return build_prp;
2477 * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2478 * determine if the driver needs to build a native SGL. If so, that native
2479 * SGL is built in the special contiguous buffers allocated especially for
2480 * PCIe SGL creation. If the driver will not build a native SGL, return
2481 * TRUE and a normal IEEE SGL will be built. Currently this routine
2482 * supports NVMe.
2483 * @ioc: per adapter object
2484 * @mpi_request: mf request pointer
2485 * @smid: system request message index
2486 * @scmd: scsi command
2487 * @pcie_device: points to the PCIe device's info
2489 * Return: 0 if native SGL was built, 1 if no SGL was built
2491 static int
2492 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
2493 Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
2494 struct _pcie_device *pcie_device)
2496 int sges_left;
2498 /* Get the SG list pointer and info. */
2499 sges_left = scsi_dma_map(scmd);
2500 if (sges_left < 0) {
2501 sdev_printk(KERN_ERR, scmd->device,
2502 "scsi_dma_map failed: request for %d bytes!\n",
2503 scsi_bufflen(scmd));
2504 return 1;
2507 /* Check if we need to build a native SG list. */
2508 if (base_is_prp_possible(ioc, pcie_device,
2509 scmd, sges_left) == 0) {
2510 /* We built a native SG list, just return. */
2511 goto out;
2515 * Build native NVMe PRP.
2517 base_make_prp_nvme(ioc, scmd, mpi_request,
2518 smid, sges_left);
2520 return 0;
2521 out:
2522 scsi_dma_unmap(scmd);
2523 return 1;
2527 * _base_add_sg_single_ieee - add sg element for IEEE format
2528 * @paddr: virtual address for SGE
2529 * @flags: SGE flags
2530 * @chain_offset: number of 128 byte elements from start of segment
2531 * @length: data transfer length
2532 * @dma_addr: Physical address
2534 static void
2535 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
2536 dma_addr_t dma_addr)
2538 Mpi25IeeeSgeChain64_t *sgel = paddr;
2540 sgel->Flags = flags;
2541 sgel->NextChainOffset = chain_offset;
2542 sgel->Length = cpu_to_le32(length);
2543 sgel->Address = cpu_to_le64(dma_addr);
2547 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2548 * @ioc: per adapter object
2549 * @paddr: virtual address for SGE
2551 * Create a zero length scatter gather entry to insure the IOCs hardware has
2552 * something to use if the target device goes brain dead and tries
2553 * to send data even when none is asked for.
2555 static void
2556 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2558 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2559 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2560 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2562 _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
2566 * _base_build_sg_scmd - main sg creation routine
2567 * pcie_device is unused here!
2568 * @ioc: per adapter object
2569 * @scmd: scsi command
2570 * @smid: system request message index
2571 * @unused: unused pcie_device pointer
2572 * Context: none.
2574 * The main routine that builds scatter gather table from a given
2575 * scsi request sent via the .queuecommand main handler.
2577 * Return: 0 success, anything else error
2579 static int
2580 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
2581 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
2583 Mpi2SCSIIORequest_t *mpi_request;
2584 dma_addr_t chain_dma;
2585 struct scatterlist *sg_scmd;
2586 void *sg_local, *chain;
2587 u32 chain_offset;
2588 u32 chain_length;
2589 u32 chain_flags;
2590 int sges_left;
2591 u32 sges_in_segment;
2592 u32 sgl_flags;
2593 u32 sgl_flags_last_element;
2594 u32 sgl_flags_end_buffer;
2595 struct chain_tracker *chain_req;
2597 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2599 /* init scatter gather flags */
2600 sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
2601 if (scmd->sc_data_direction == DMA_TO_DEVICE)
2602 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2603 sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
2604 << MPI2_SGE_FLAGS_SHIFT;
2605 sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
2606 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
2607 << MPI2_SGE_FLAGS_SHIFT;
2608 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2610 sg_scmd = scsi_sglist(scmd);
2611 sges_left = scsi_dma_map(scmd);
2612 if (sges_left < 0) {
2613 sdev_printk(KERN_ERR, scmd->device,
2614 "scsi_dma_map failed: request for %d bytes!\n",
2615 scsi_bufflen(scmd));
2616 return -ENOMEM;
2619 sg_local = &mpi_request->SGL;
2620 sges_in_segment = ioc->max_sges_in_main_message;
2621 if (sges_left <= sges_in_segment)
2622 goto fill_in_last_segment;
2624 mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
2625 (sges_in_segment * ioc->sge_size))/4;
2627 /* fill in main message segment when there is a chain following */
2628 while (sges_in_segment) {
2629 if (sges_in_segment == 1)
2630 ioc->base_add_sg_single(sg_local,
2631 sgl_flags_last_element | sg_dma_len(sg_scmd),
2632 sg_dma_address(sg_scmd));
2633 else
2634 ioc->base_add_sg_single(sg_local, sgl_flags |
2635 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2636 sg_scmd = sg_next(sg_scmd);
2637 sg_local += ioc->sge_size;
2638 sges_left--;
2639 sges_in_segment--;
2642 /* initializing the chain flags and pointers */
2643 chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
2644 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2645 if (!chain_req)
2646 return -1;
2647 chain = chain_req->chain_buffer;
2648 chain_dma = chain_req->chain_buffer_dma;
2649 do {
2650 sges_in_segment = (sges_left <=
2651 ioc->max_sges_in_chain_message) ? sges_left :
2652 ioc->max_sges_in_chain_message;
2653 chain_offset = (sges_left == sges_in_segment) ?
2654 0 : (sges_in_segment * ioc->sge_size)/4;
2655 chain_length = sges_in_segment * ioc->sge_size;
2656 if (chain_offset) {
2657 chain_offset = chain_offset <<
2658 MPI2_SGE_CHAIN_OFFSET_SHIFT;
2659 chain_length += ioc->sge_size;
2661 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
2662 chain_length, chain_dma);
2663 sg_local = chain;
2664 if (!chain_offset)
2665 goto fill_in_last_segment;
2667 /* fill in chain segments */
2668 while (sges_in_segment) {
2669 if (sges_in_segment == 1)
2670 ioc->base_add_sg_single(sg_local,
2671 sgl_flags_last_element |
2672 sg_dma_len(sg_scmd),
2673 sg_dma_address(sg_scmd));
2674 else
2675 ioc->base_add_sg_single(sg_local, sgl_flags |
2676 sg_dma_len(sg_scmd),
2677 sg_dma_address(sg_scmd));
2678 sg_scmd = sg_next(sg_scmd);
2679 sg_local += ioc->sge_size;
2680 sges_left--;
2681 sges_in_segment--;
2684 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2685 if (!chain_req)
2686 return -1;
2687 chain = chain_req->chain_buffer;
2688 chain_dma = chain_req->chain_buffer_dma;
2689 } while (1);
2692 fill_in_last_segment:
2694 /* fill the last segment */
2695 while (sges_left) {
2696 if (sges_left == 1)
2697 ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
2698 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2699 else
2700 ioc->base_add_sg_single(sg_local, sgl_flags |
2701 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2702 sg_scmd = sg_next(sg_scmd);
2703 sg_local += ioc->sge_size;
2704 sges_left--;
2707 return 0;
2711 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2712 * @ioc: per adapter object
2713 * @scmd: scsi command
2714 * @smid: system request message index
2715 * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2716 * constructed on need.
2717 * Context: none.
2719 * The main routine that builds scatter gather table from a given
2720 * scsi request sent via the .queuecommand main handler.
2722 * Return: 0 success, anything else error
2724 static int
2725 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2726 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2728 Mpi25SCSIIORequest_t *mpi_request;
2729 dma_addr_t chain_dma;
2730 struct scatterlist *sg_scmd;
2731 void *sg_local, *chain;
2732 u32 chain_offset;
2733 u32 chain_length;
2734 int sges_left;
2735 u32 sges_in_segment;
2736 u8 simple_sgl_flags;
2737 u8 simple_sgl_flags_last;
2738 u8 chain_sgl_flags;
2739 struct chain_tracker *chain_req;
2741 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2743 /* init scatter gather flags */
2744 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2745 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2746 simple_sgl_flags_last = simple_sgl_flags |
2747 MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2748 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2749 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2751 /* Check if we need to build a native SG list. */
2752 if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2753 smid, scmd, pcie_device) == 0)) {
2754 /* We built a native SG list, just return. */
2755 return 0;
2758 sg_scmd = scsi_sglist(scmd);
2759 sges_left = scsi_dma_map(scmd);
2760 if (sges_left < 0) {
2761 sdev_printk(KERN_ERR, scmd->device,
2762 "scsi_dma_map failed: request for %d bytes!\n",
2763 scsi_bufflen(scmd));
2764 return -ENOMEM;
2767 sg_local = &mpi_request->SGL;
2768 sges_in_segment = (ioc->request_sz -
2769 offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2770 if (sges_left <= sges_in_segment)
2771 goto fill_in_last_segment;
2773 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2774 (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2776 /* fill in main message segment when there is a chain following */
2777 while (sges_in_segment > 1) {
2778 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2779 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2780 sg_scmd = sg_next(sg_scmd);
2781 sg_local += ioc->sge_size_ieee;
2782 sges_left--;
2783 sges_in_segment--;
2786 /* initializing the pointers */
2787 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2788 if (!chain_req)
2789 return -1;
2790 chain = chain_req->chain_buffer;
2791 chain_dma = chain_req->chain_buffer_dma;
2792 do {
2793 sges_in_segment = (sges_left <=
2794 ioc->max_sges_in_chain_message) ? sges_left :
2795 ioc->max_sges_in_chain_message;
2796 chain_offset = (sges_left == sges_in_segment) ?
2797 0 : sges_in_segment;
2798 chain_length = sges_in_segment * ioc->sge_size_ieee;
2799 if (chain_offset)
2800 chain_length += ioc->sge_size_ieee;
2801 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
2802 chain_offset, chain_length, chain_dma);
2804 sg_local = chain;
2805 if (!chain_offset)
2806 goto fill_in_last_segment;
2808 /* fill in chain segments */
2809 while (sges_in_segment) {
2810 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2811 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2812 sg_scmd = sg_next(sg_scmd);
2813 sg_local += ioc->sge_size_ieee;
2814 sges_left--;
2815 sges_in_segment--;
2818 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2819 if (!chain_req)
2820 return -1;
2821 chain = chain_req->chain_buffer;
2822 chain_dma = chain_req->chain_buffer_dma;
2823 } while (1);
2826 fill_in_last_segment:
2828 /* fill the last segment */
2829 while (sges_left > 0) {
2830 if (sges_left == 1)
2831 _base_add_sg_single_ieee(sg_local,
2832 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
2833 sg_dma_address(sg_scmd));
2834 else
2835 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2836 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2837 sg_scmd = sg_next(sg_scmd);
2838 sg_local += ioc->sge_size_ieee;
2839 sges_left--;
2842 return 0;
2846 * _base_build_sg_ieee - build generic sg for IEEE format
2847 * @ioc: per adapter object
2848 * @psge: virtual address for SGE
2849 * @data_out_dma: physical address for WRITES
2850 * @data_out_sz: data xfer size for WRITES
2851 * @data_in_dma: physical address for READS
2852 * @data_in_sz: data xfer size for READS
2854 static void
2855 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2856 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2857 size_t data_in_sz)
2859 u8 sgl_flags;
2861 if (!data_out_sz && !data_in_sz) {
2862 _base_build_zero_len_sge_ieee(ioc, psge);
2863 return;
2866 if (data_out_sz && data_in_sz) {
2867 /* WRITE sgel first */
2868 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2869 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2870 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2871 data_out_dma);
2873 /* incr sgel */
2874 psge += ioc->sge_size_ieee;
2876 /* READ sgel last */
2877 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2878 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2879 data_in_dma);
2880 } else if (data_out_sz) /* WRITE */ {
2881 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2882 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2883 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2884 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2885 data_out_dma);
2886 } else if (data_in_sz) /* READ */ {
2887 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2888 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2889 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2890 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2891 data_in_dma);
2895 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2898 * _base_config_dma_addressing - set dma addressing
2899 * @ioc: per adapter object
2900 * @pdev: PCI device struct
2902 * Return: 0 for success, non-zero for failure.
2904 static int
2905 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
2907 struct sysinfo s;
2908 int dma_mask;
2910 if (ioc->is_mcpu_endpoint ||
2911 sizeof(dma_addr_t) == 4 || ioc->use_32bit_dma ||
2912 dma_get_required_mask(&pdev->dev) <= 32)
2913 dma_mask = 32;
2914 /* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */
2915 else if (ioc->hba_mpi_version_belonged > MPI2_VERSION)
2916 dma_mask = 63;
2917 else
2918 dma_mask = 64;
2920 if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(dma_mask)) ||
2921 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(dma_mask)))
2922 return -ENODEV;
2924 if (dma_mask > 32) {
2925 ioc->base_add_sg_single = &_base_add_sg_single_64;
2926 ioc->sge_size = sizeof(Mpi2SGESimple64_t);
2927 } else {
2928 ioc->base_add_sg_single = &_base_add_sg_single_32;
2929 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
2932 si_meminfo(&s);
2933 ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
2934 dma_mask, convert_to_kb(s.totalram));
2936 return 0;
2940 * _base_check_enable_msix - checks MSIX capabable.
2941 * @ioc: per adapter object
2943 * Check to see if card is capable of MSIX, and set number
2944 * of available msix vectors
2946 static int
2947 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
2949 int base;
2950 u16 message_control;
2952 /* Check whether controller SAS2008 B0 controller,
2953 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
2955 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
2956 ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
2957 return -EINVAL;
2960 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
2961 if (!base) {
2962 dfailprintk(ioc, ioc_info(ioc, "msix not supported\n"));
2963 return -EINVAL;
2966 /* get msix vector count */
2967 /* NUMA_IO not supported for older controllers */
2968 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
2969 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
2970 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
2971 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
2972 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
2973 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
2974 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
2975 ioc->msix_vector_count = 1;
2976 else {
2977 pci_read_config_word(ioc->pdev, base + 2, &message_control);
2978 ioc->msix_vector_count = (message_control & 0x3FF) + 1;
2980 dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n",
2981 ioc->msix_vector_count));
2982 return 0;
2986 * _base_free_irq - free irq
2987 * @ioc: per adapter object
2989 * Freeing respective reply_queue from the list.
2991 static void
2992 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
2994 struct adapter_reply_queue *reply_q, *next;
2996 if (list_empty(&ioc->reply_queue_list))
2997 return;
2999 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
3000 list_del(&reply_q->list);
3001 if (ioc->smp_affinity_enable)
3002 irq_set_affinity_hint(pci_irq_vector(ioc->pdev,
3003 reply_q->msix_index), NULL);
3004 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
3005 reply_q);
3006 kfree(reply_q);
3011 * _base_request_irq - request irq
3012 * @ioc: per adapter object
3013 * @index: msix index into vector table
3015 * Inserting respective reply_queue into the list.
3017 static int
3018 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
3020 struct pci_dev *pdev = ioc->pdev;
3021 struct adapter_reply_queue *reply_q;
3022 int r;
3024 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
3025 if (!reply_q) {
3026 ioc_err(ioc, "unable to allocate memory %zu!\n",
3027 sizeof(struct adapter_reply_queue));
3028 return -ENOMEM;
3030 reply_q->ioc = ioc;
3031 reply_q->msix_index = index;
3033 atomic_set(&reply_q->busy, 0);
3034 if (ioc->msix_enable)
3035 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
3036 ioc->driver_name, ioc->id, index);
3037 else
3038 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
3039 ioc->driver_name, ioc->id);
3040 r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
3041 IRQF_SHARED, reply_q->name, reply_q);
3042 if (r) {
3043 pr_err("%s: unable to allocate interrupt %d!\n",
3044 reply_q->name, pci_irq_vector(pdev, index));
3045 kfree(reply_q);
3046 return -EBUSY;
3049 INIT_LIST_HEAD(&reply_q->list);
3050 list_add_tail(&reply_q->list, &ioc->reply_queue_list);
3051 return 0;
3055 * _base_assign_reply_queues - assigning msix index for each cpu
3056 * @ioc: per adapter object
3058 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
3060 * It would nice if we could call irq_set_affinity, however it is not
3061 * an exported symbol
3063 static void
3064 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
3066 unsigned int cpu, nr_cpus, nr_msix, index = 0;
3067 struct adapter_reply_queue *reply_q;
3068 int local_numa_node;
3070 if (!_base_is_controller_msix_enabled(ioc))
3071 return;
3073 if (ioc->msix_load_balance)
3074 return;
3076 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
3078 nr_cpus = num_online_cpus();
3079 nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
3080 ioc->facts.MaxMSIxVectors);
3081 if (!nr_msix)
3082 return;
3084 if (ioc->smp_affinity_enable) {
3087 * set irq affinity to local numa node for those irqs
3088 * corresponding to high iops queues.
3090 if (ioc->high_iops_queues) {
3091 local_numa_node = dev_to_node(&ioc->pdev->dev);
3092 for (index = 0; index < ioc->high_iops_queues;
3093 index++) {
3094 irq_set_affinity_hint(pci_irq_vector(ioc->pdev,
3095 index), cpumask_of_node(local_numa_node));
3099 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3100 const cpumask_t *mask;
3102 if (reply_q->msix_index < ioc->high_iops_queues)
3103 continue;
3105 mask = pci_irq_get_affinity(ioc->pdev,
3106 reply_q->msix_index);
3107 if (!mask) {
3108 ioc_warn(ioc, "no affinity for msi %x\n",
3109 reply_q->msix_index);
3110 goto fall_back;
3113 for_each_cpu_and(cpu, mask, cpu_online_mask) {
3114 if (cpu >= ioc->cpu_msix_table_sz)
3115 break;
3116 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3119 return;
3122 fall_back:
3123 cpu = cpumask_first(cpu_online_mask);
3124 nr_msix -= ioc->high_iops_queues;
3125 index = 0;
3127 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3128 unsigned int i, group = nr_cpus / nr_msix;
3130 if (reply_q->msix_index < ioc->high_iops_queues)
3131 continue;
3133 if (cpu >= nr_cpus)
3134 break;
3136 if (index < nr_cpus % nr_msix)
3137 group++;
3139 for (i = 0 ; i < group ; i++) {
3140 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3141 cpu = cpumask_next(cpu, cpu_online_mask);
3143 index++;
3148 * _base_check_and_enable_high_iops_queues - enable high iops mode
3149 * @ioc: per adapter object
3150 * @hba_msix_vector_count: msix vectors supported by HBA
3152 * Enable high iops queues only if
3153 * - HBA is a SEA/AERO controller and
3154 * - MSI-Xs vector supported by the HBA is 128 and
3155 * - total CPU count in the system >=16 and
3156 * - loaded driver with default max_msix_vectors module parameter and
3157 * - system booted in non kdump mode
3159 * returns nothing.
3161 static void
3162 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc,
3163 int hba_msix_vector_count)
3165 u16 lnksta, speed;
3167 if (perf_mode == MPT_PERF_MODE_IOPS ||
3168 perf_mode == MPT_PERF_MODE_LATENCY) {
3169 ioc->high_iops_queues = 0;
3170 return;
3173 if (perf_mode == MPT_PERF_MODE_DEFAULT) {
3175 pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta);
3176 speed = lnksta & PCI_EXP_LNKSTA_CLS;
3178 if (speed < 0x4) {
3179 ioc->high_iops_queues = 0;
3180 return;
3184 if (!reset_devices && ioc->is_aero_ioc &&
3185 hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES &&
3186 num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES &&
3187 max_msix_vectors == -1)
3188 ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES;
3189 else
3190 ioc->high_iops_queues = 0;
3194 * _base_disable_msix - disables msix
3195 * @ioc: per adapter object
3198 static void
3199 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
3201 if (!ioc->msix_enable)
3202 return;
3203 pci_free_irq_vectors(ioc->pdev);
3204 ioc->msix_enable = 0;
3208 * _base_alloc_irq_vectors - allocate msix vectors
3209 * @ioc: per adapter object
3212 static int
3213 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc)
3215 int i, irq_flags = PCI_IRQ_MSIX;
3216 struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues };
3217 struct irq_affinity *descp = &desc;
3219 if (ioc->smp_affinity_enable)
3220 irq_flags |= PCI_IRQ_AFFINITY;
3221 else
3222 descp = NULL;
3224 ioc_info(ioc, " %d %d\n", ioc->high_iops_queues,
3225 ioc->reply_queue_count);
3227 i = pci_alloc_irq_vectors_affinity(ioc->pdev,
3228 ioc->high_iops_queues,
3229 ioc->reply_queue_count, irq_flags, descp);
3231 return i;
3235 * _base_enable_msix - enables msix, failback to io_apic
3236 * @ioc: per adapter object
3239 static int
3240 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3242 int r;
3243 int i, local_max_msix_vectors;
3244 u8 try_msix = 0;
3246 ioc->msix_load_balance = false;
3248 if (msix_disable == -1 || msix_disable == 0)
3249 try_msix = 1;
3251 if (!try_msix)
3252 goto try_ioapic;
3254 if (_base_check_enable_msix(ioc) != 0)
3255 goto try_ioapic;
3257 ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count);
3258 pr_info("\t no of cores: %d, max_msix_vectors: %d\n",
3259 ioc->cpu_count, max_msix_vectors);
3260 if (ioc->is_aero_ioc)
3261 _base_check_and_enable_high_iops_queues(ioc,
3262 ioc->msix_vector_count);
3263 ioc->reply_queue_count =
3264 min_t(int, ioc->cpu_count + ioc->high_iops_queues,
3265 ioc->msix_vector_count);
3267 if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
3268 local_max_msix_vectors = (reset_devices) ? 1 : 8;
3269 else
3270 local_max_msix_vectors = max_msix_vectors;
3272 if (local_max_msix_vectors > 0)
3273 ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
3274 ioc->reply_queue_count);
3275 else if (local_max_msix_vectors == 0)
3276 goto try_ioapic;
3279 * Enable msix_load_balance only if combined reply queue mode is
3280 * disabled on SAS3 & above generation HBA devices.
3282 if (!ioc->combined_reply_queue &&
3283 ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3284 ioc_info(ioc,
3285 "combined ReplyQueue is off, Enabling msix load balance\n");
3286 ioc->msix_load_balance = true;
3290 * smp affinity setting is not need when msix load balance
3291 * is enabled.
3293 if (ioc->msix_load_balance)
3294 ioc->smp_affinity_enable = 0;
3296 r = _base_alloc_irq_vectors(ioc);
3297 if (r < 0) {
3298 ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r);
3299 goto try_ioapic;
3302 ioc->msix_enable = 1;
3303 ioc->reply_queue_count = r;
3304 for (i = 0; i < ioc->reply_queue_count; i++) {
3305 r = _base_request_irq(ioc, i);
3306 if (r) {
3307 _base_free_irq(ioc);
3308 _base_disable_msix(ioc);
3309 goto try_ioapic;
3313 ioc_info(ioc, "High IOPs queues : %s\n",
3314 ioc->high_iops_queues ? "enabled" : "disabled");
3316 return 0;
3318 /* failback to io_apic interrupt routing */
3319 try_ioapic:
3320 ioc->high_iops_queues = 0;
3321 ioc_info(ioc, "High IOPs queues : disabled\n");
3322 ioc->reply_queue_count = 1;
3323 r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
3324 if (r < 0) {
3325 dfailprintk(ioc,
3326 ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
3327 r));
3328 } else
3329 r = _base_request_irq(ioc, 0);
3331 return r;
3335 * mpt3sas_base_unmap_resources - free controller resources
3336 * @ioc: per adapter object
3338 static void
3339 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
3341 struct pci_dev *pdev = ioc->pdev;
3343 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3345 _base_free_irq(ioc);
3346 _base_disable_msix(ioc);
3348 kfree(ioc->replyPostRegisterIndex);
3349 ioc->replyPostRegisterIndex = NULL;
3352 if (ioc->chip_phys) {
3353 iounmap(ioc->chip);
3354 ioc->chip_phys = 0;
3357 if (pci_is_enabled(pdev)) {
3358 pci_release_selected_regions(ioc->pdev, ioc->bars);
3359 pci_disable_pcie_error_reporting(pdev);
3360 pci_disable_device(pdev);
3364 static int
3365 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
3368 * _base_check_for_fault_and_issue_reset - check if IOC is in fault state
3369 * and if it is in fault state then issue diag reset.
3370 * @ioc: per adapter object
3372 * Returns: 0 for success, non-zero for failure.
3374 static int
3375 _base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc)
3377 u32 ioc_state;
3378 int rc = -EFAULT;
3380 dinitprintk(ioc, pr_info("%s\n", __func__));
3381 if (ioc->pci_error_recovery)
3382 return 0;
3383 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
3384 dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state));
3386 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
3387 mpt3sas_print_fault_code(ioc, ioc_state &
3388 MPI2_DOORBELL_DATA_MASK);
3389 rc = _base_diag_reset(ioc);
3390 } else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
3391 MPI2_IOC_STATE_COREDUMP) {
3392 mpt3sas_print_coredump_info(ioc, ioc_state &
3393 MPI2_DOORBELL_DATA_MASK);
3394 mpt3sas_base_wait_for_coredump_completion(ioc, __func__);
3395 rc = _base_diag_reset(ioc);
3398 return rc;
3402 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
3403 * @ioc: per adapter object
3405 * Return: 0 for success, non-zero for failure.
3408 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
3410 struct pci_dev *pdev = ioc->pdev;
3411 u32 memap_sz;
3412 u32 pio_sz;
3413 int i, r = 0, rc;
3414 u64 pio_chip = 0;
3415 phys_addr_t chip_phys = 0;
3416 struct adapter_reply_queue *reply_q;
3418 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3420 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
3421 if (pci_enable_device_mem(pdev)) {
3422 ioc_warn(ioc, "pci_enable_device_mem: failed\n");
3423 ioc->bars = 0;
3424 return -ENODEV;
3428 if (pci_request_selected_regions(pdev, ioc->bars,
3429 ioc->driver_name)) {
3430 ioc_warn(ioc, "pci_request_selected_regions: failed\n");
3431 ioc->bars = 0;
3432 r = -ENODEV;
3433 goto out_fail;
3436 /* AER (Advanced Error Reporting) hooks */
3437 pci_enable_pcie_error_reporting(pdev);
3439 pci_set_master(pdev);
3442 if (_base_config_dma_addressing(ioc, pdev) != 0) {
3443 ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev));
3444 r = -ENODEV;
3445 goto out_fail;
3448 for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
3449 (!memap_sz || !pio_sz); i++) {
3450 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
3451 if (pio_sz)
3452 continue;
3453 pio_chip = (u64)pci_resource_start(pdev, i);
3454 pio_sz = pci_resource_len(pdev, i);
3455 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3456 if (memap_sz)
3457 continue;
3458 ioc->chip_phys = pci_resource_start(pdev, i);
3459 chip_phys = ioc->chip_phys;
3460 memap_sz = pci_resource_len(pdev, i);
3461 ioc->chip = ioremap(ioc->chip_phys, memap_sz);
3465 if (ioc->chip == NULL) {
3466 ioc_err(ioc,
3467 "unable to map adapter memory! or resource not found\n");
3468 r = -EINVAL;
3469 goto out_fail;
3472 mpt3sas_base_mask_interrupts(ioc);
3474 r = _base_get_ioc_facts(ioc);
3475 if (r) {
3476 rc = _base_check_for_fault_and_issue_reset(ioc);
3477 if (rc || (_base_get_ioc_facts(ioc)))
3478 goto out_fail;
3481 if (!ioc->rdpq_array_enable_assigned) {
3482 ioc->rdpq_array_enable = ioc->rdpq_array_capable;
3483 ioc->rdpq_array_enable_assigned = 1;
3486 r = _base_enable_msix(ioc);
3487 if (r)
3488 goto out_fail;
3490 if (!ioc->is_driver_loading)
3491 _base_init_irqpolls(ioc);
3492 /* Use the Combined reply queue feature only for SAS3 C0 & higher
3493 * revision HBAs and also only when reply queue count is greater than 8
3495 if (ioc->combined_reply_queue) {
3496 /* Determine the Supplemental Reply Post Host Index Registers
3497 * Addresse. Supplemental Reply Post Host Index Registers
3498 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3499 * each register is at offset bytes of
3500 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3502 ioc->replyPostRegisterIndex = kcalloc(
3503 ioc->combined_reply_index_count,
3504 sizeof(resource_size_t *), GFP_KERNEL);
3505 if (!ioc->replyPostRegisterIndex) {
3506 ioc_err(ioc,
3507 "allocation for replyPostRegisterIndex failed!\n");
3508 r = -ENOMEM;
3509 goto out_fail;
3512 for (i = 0; i < ioc->combined_reply_index_count; i++) {
3513 ioc->replyPostRegisterIndex[i] = (resource_size_t *)
3514 ((u8 __force *)&ioc->chip->Doorbell +
3515 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
3516 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
3520 if (ioc->is_warpdrive) {
3521 ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
3522 &ioc->chip->ReplyPostHostIndex;
3524 for (i = 1; i < ioc->cpu_msix_table_sz; i++)
3525 ioc->reply_post_host_index[i] =
3526 (resource_size_t __iomem *)
3527 ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
3528 * 4)));
3531 list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
3532 pr_info("%s: %s enabled: IRQ %d\n",
3533 reply_q->name,
3534 ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC",
3535 pci_irq_vector(ioc->pdev, reply_q->msix_index));
3537 ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n",
3538 &chip_phys, ioc->chip, memap_sz);
3539 ioc_info(ioc, "ioport(0x%016llx), size(%d)\n",
3540 (unsigned long long)pio_chip, pio_sz);
3542 /* Save PCI configuration state for recovery from PCI AER/EEH errors */
3543 pci_save_state(pdev);
3544 return 0;
3546 out_fail:
3547 mpt3sas_base_unmap_resources(ioc);
3548 return r;
3552 * mpt3sas_base_get_msg_frame - obtain request mf pointer
3553 * @ioc: per adapter object
3554 * @smid: system request message index(smid zero is invalid)
3556 * Return: virt pointer to message frame.
3558 void *
3559 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3561 return (void *)(ioc->request + (smid * ioc->request_sz));
3565 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3566 * @ioc: per adapter object
3567 * @smid: system request message index
3569 * Return: virt pointer to sense buffer.
3571 void *
3572 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3574 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
3578 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3579 * @ioc: per adapter object
3580 * @smid: system request message index
3582 * Return: phys pointer to the low 32bit address of the sense buffer.
3584 __le32
3585 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3587 return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
3588 SCSI_SENSE_BUFFERSIZE));
3592 * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3593 * @ioc: per adapter object
3594 * @smid: system request message index
3596 * Return: virt pointer to a PCIe SGL.
3598 void *
3599 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3601 return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
3605 * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3606 * @ioc: per adapter object
3607 * @smid: system request message index
3609 * Return: phys pointer to the address of the PCIe buffer.
3611 dma_addr_t
3612 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3614 return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
3618 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3619 * @ioc: per adapter object
3620 * @phys_addr: lower 32 physical addr of the reply
3622 * Converts 32bit lower physical addr into a virt address.
3624 void *
3625 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
3627 if (!phys_addr)
3628 return NULL;
3629 return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
3633 * _base_get_msix_index - get the msix index
3634 * @ioc: per adapter object
3635 * @scmd: scsi_cmnd object
3637 * returns msix index of general reply queues,
3638 * i.e. reply queue on which IO request's reply
3639 * should be posted by the HBA firmware.
3641 static inline u8
3642 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc,
3643 struct scsi_cmnd *scmd)
3645 /* Enables reply_queue load balancing */
3646 if (ioc->msix_load_balance)
3647 return ioc->reply_queue_count ?
3648 base_mod64(atomic64_add_return(1,
3649 &ioc->total_io_cnt), ioc->reply_queue_count) : 0;
3651 return ioc->cpu_msix_table[raw_smp_processor_id()];
3655 * _base_sdev_nr_inflight_request -get number of inflight requests
3656 * of a request queue.
3657 * @q: request_queue object
3659 * returns number of inflight request of a request queue.
3661 inline unsigned long
3662 _base_sdev_nr_inflight_request(struct request_queue *q)
3664 struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[0];
3666 return atomic_read(&hctx->nr_active);
3671 * _base_get_high_iops_msix_index - get the msix index of
3672 * high iops queues
3673 * @ioc: per adapter object
3674 * @scmd: scsi_cmnd object
3676 * Returns: msix index of high iops reply queues.
3677 * i.e. high iops reply queue on which IO request's
3678 * reply should be posted by the HBA firmware.
3680 static inline u8
3681 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc,
3682 struct scsi_cmnd *scmd)
3685 * Round robin the IO interrupts among the high iops
3686 * reply queues in terms of batch count 16 when outstanding
3687 * IOs on the target device is >=8.
3689 if (_base_sdev_nr_inflight_request(scmd->device->request_queue) >
3690 MPT3SAS_DEVICE_HIGH_IOPS_DEPTH)
3691 return base_mod64((
3692 atomic64_add_return(1, &ioc->high_iops_outstanding) /
3693 MPT3SAS_HIGH_IOPS_BATCH_COUNT),
3694 MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
3696 return _base_get_msix_index(ioc, scmd);
3700 * mpt3sas_base_get_smid - obtain a free smid from internal queue
3701 * @ioc: per adapter object
3702 * @cb_idx: callback index
3704 * Return: smid (zero is invalid)
3707 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3709 unsigned long flags;
3710 struct request_tracker *request;
3711 u16 smid;
3713 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3714 if (list_empty(&ioc->internal_free_list)) {
3715 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3716 ioc_err(ioc, "%s: smid not available\n", __func__);
3717 return 0;
3720 request = list_entry(ioc->internal_free_list.next,
3721 struct request_tracker, tracker_list);
3722 request->cb_idx = cb_idx;
3723 smid = request->smid;
3724 list_del(&request->tracker_list);
3725 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3726 return smid;
3730 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3731 * @ioc: per adapter object
3732 * @cb_idx: callback index
3733 * @scmd: pointer to scsi command object
3735 * Return: smid (zero is invalid)
3738 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
3739 struct scsi_cmnd *scmd)
3741 struct scsiio_tracker *request = scsi_cmd_priv(scmd);
3742 unsigned int tag = scmd->request->tag;
3743 u16 smid;
3745 smid = tag + 1;
3746 request->cb_idx = cb_idx;
3747 request->smid = smid;
3748 request->scmd = scmd;
3749 INIT_LIST_HEAD(&request->chain_list);
3750 return smid;
3754 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3755 * @ioc: per adapter object
3756 * @cb_idx: callback index
3758 * Return: smid (zero is invalid)
3761 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3763 unsigned long flags;
3764 struct request_tracker *request;
3765 u16 smid;
3767 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3768 if (list_empty(&ioc->hpr_free_list)) {
3769 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3770 return 0;
3773 request = list_entry(ioc->hpr_free_list.next,
3774 struct request_tracker, tracker_list);
3775 request->cb_idx = cb_idx;
3776 smid = request->smid;
3777 list_del(&request->tracker_list);
3778 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3779 return smid;
3782 static void
3783 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
3786 * See _wait_for_commands_to_complete() call with regards to this code.
3788 if (ioc->shost_recovery && ioc->pending_io_count) {
3789 ioc->pending_io_count = scsi_host_busy(ioc->shost);
3790 if (ioc->pending_io_count == 0)
3791 wake_up(&ioc->reset_wq);
3795 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
3796 struct scsiio_tracker *st)
3798 if (WARN_ON(st->smid == 0))
3799 return;
3800 st->cb_idx = 0xFF;
3801 st->direct_io = 0;
3802 st->scmd = NULL;
3803 atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0);
3804 st->smid = 0;
3808 * mpt3sas_base_free_smid - put smid back on free_list
3809 * @ioc: per adapter object
3810 * @smid: system request message index
3812 void
3813 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3815 unsigned long flags;
3816 int i;
3818 if (smid < ioc->hi_priority_smid) {
3819 struct scsiio_tracker *st;
3820 void *request;
3822 st = _get_st_from_smid(ioc, smid);
3823 if (!st) {
3824 _base_recovery_check(ioc);
3825 return;
3828 /* Clear MPI request frame */
3829 request = mpt3sas_base_get_msg_frame(ioc, smid);
3830 memset(request, 0, ioc->request_sz);
3832 mpt3sas_base_clear_st(ioc, st);
3833 _base_recovery_check(ioc);
3834 return;
3837 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3838 if (smid < ioc->internal_smid) {
3839 /* hi-priority */
3840 i = smid - ioc->hi_priority_smid;
3841 ioc->hpr_lookup[i].cb_idx = 0xFF;
3842 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
3843 } else if (smid <= ioc->hba_queue_depth) {
3844 /* internal queue */
3845 i = smid - ioc->internal_smid;
3846 ioc->internal_lookup[i].cb_idx = 0xFF;
3847 list_add(&ioc->internal_lookup[i].tracker_list,
3848 &ioc->internal_free_list);
3850 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3854 * _base_mpi_ep_writeq - 32 bit write to MMIO
3855 * @b: data payload
3856 * @addr: address in MMIO space
3857 * @writeq_lock: spin lock
3859 * This special handling for MPI EP to take care of 32 bit
3860 * environment where its not quarenteed to send the entire word
3861 * in one transfer.
3863 static inline void
3864 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr,
3865 spinlock_t *writeq_lock)
3867 unsigned long flags;
3869 spin_lock_irqsave(writeq_lock, flags);
3870 __raw_writel((u32)(b), addr);
3871 __raw_writel((u32)(b >> 32), (addr + 4));
3872 spin_unlock_irqrestore(writeq_lock, flags);
3876 * _base_writeq - 64 bit write to MMIO
3877 * @b: data payload
3878 * @addr: address in MMIO space
3879 * @writeq_lock: spin lock
3881 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
3882 * care of 32 bit environment where its not quarenteed to send the entire word
3883 * in one transfer.
3885 #if defined(writeq) && defined(CONFIG_64BIT)
3886 static inline void
3887 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3889 wmb();
3890 __raw_writeq(b, addr);
3891 barrier();
3893 #else
3894 static inline void
3895 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3897 _base_mpi_ep_writeq(b, addr, writeq_lock);
3899 #endif
3902 * _base_set_and_get_msix_index - get the msix index and assign to msix_io
3903 * variable of scsi tracker
3904 * @ioc: per adapter object
3905 * @smid: system request message index
3907 * returns msix index.
3909 static u8
3910 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3912 struct scsiio_tracker *st = NULL;
3914 if (smid < ioc->hi_priority_smid)
3915 st = _get_st_from_smid(ioc, smid);
3917 if (st == NULL)
3918 return _base_get_msix_index(ioc, NULL);
3920 st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd);
3921 return st->msix_io;
3925 * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
3926 * @ioc: per adapter object
3927 * @smid: system request message index
3928 * @handle: device handle
3930 static void
3931 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc,
3932 u16 smid, u16 handle)
3934 Mpi2RequestDescriptorUnion_t descriptor;
3935 u64 *request = (u64 *)&descriptor;
3936 void *mpi_req_iomem;
3937 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3939 _clone_sg_entries(ioc, (void *) mfp, smid);
3940 mpi_req_iomem = (void __force *)ioc->chip +
3941 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
3942 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3943 ioc->request_sz);
3944 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3945 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3946 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3947 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3948 descriptor.SCSIIO.LMID = 0;
3949 _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3950 &ioc->scsi_lookup_lock);
3954 * _base_put_smid_scsi_io - send SCSI_IO request to firmware
3955 * @ioc: per adapter object
3956 * @smid: system request message index
3957 * @handle: device handle
3959 static void
3960 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
3962 Mpi2RequestDescriptorUnion_t descriptor;
3963 u64 *request = (u64 *)&descriptor;
3966 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3967 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3968 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3969 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3970 descriptor.SCSIIO.LMID = 0;
3971 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3972 &ioc->scsi_lookup_lock);
3976 * _base_put_smid_fast_path - send fast path request to firmware
3977 * @ioc: per adapter object
3978 * @smid: system request message index
3979 * @handle: device handle
3981 static void
3982 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3983 u16 handle)
3985 Mpi2RequestDescriptorUnion_t descriptor;
3986 u64 *request = (u64 *)&descriptor;
3988 descriptor.SCSIIO.RequestFlags =
3989 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
3990 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3991 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3992 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3993 descriptor.SCSIIO.LMID = 0;
3994 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3995 &ioc->scsi_lookup_lock);
3999 * _base_put_smid_hi_priority - send Task Management request to firmware
4000 * @ioc: per adapter object
4001 * @smid: system request message index
4002 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
4004 static void
4005 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4006 u16 msix_task)
4008 Mpi2RequestDescriptorUnion_t descriptor;
4009 void *mpi_req_iomem;
4010 u64 *request;
4012 if (ioc->is_mcpu_endpoint) {
4013 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4015 /* TBD 256 is offset within sys register. */
4016 mpi_req_iomem = (void __force *)ioc->chip
4017 + MPI_FRAME_START_OFFSET
4018 + (smid * ioc->request_sz);
4019 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4020 ioc->request_sz);
4023 request = (u64 *)&descriptor;
4025 descriptor.HighPriority.RequestFlags =
4026 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4027 descriptor.HighPriority.MSIxIndex = msix_task;
4028 descriptor.HighPriority.SMID = cpu_to_le16(smid);
4029 descriptor.HighPriority.LMID = 0;
4030 descriptor.HighPriority.Reserved1 = 0;
4031 if (ioc->is_mcpu_endpoint)
4032 _base_mpi_ep_writeq(*request,
4033 &ioc->chip->RequestDescriptorPostLow,
4034 &ioc->scsi_lookup_lock);
4035 else
4036 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4037 &ioc->scsi_lookup_lock);
4041 * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
4042 * firmware
4043 * @ioc: per adapter object
4044 * @smid: system request message index
4046 void
4047 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4049 Mpi2RequestDescriptorUnion_t descriptor;
4050 u64 *request = (u64 *)&descriptor;
4052 descriptor.Default.RequestFlags =
4053 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
4054 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4055 descriptor.Default.SMID = cpu_to_le16(smid);
4056 descriptor.Default.LMID = 0;
4057 descriptor.Default.DescriptorTypeDependent = 0;
4058 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4059 &ioc->scsi_lookup_lock);
4063 * _base_put_smid_default - Default, primarily used for config pages
4064 * @ioc: per adapter object
4065 * @smid: system request message index
4067 static void
4068 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4070 Mpi2RequestDescriptorUnion_t descriptor;
4071 void *mpi_req_iomem;
4072 u64 *request;
4074 if (ioc->is_mcpu_endpoint) {
4075 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4077 _clone_sg_entries(ioc, (void *) mfp, smid);
4078 /* TBD 256 is offset within sys register */
4079 mpi_req_iomem = (void __force *)ioc->chip +
4080 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4081 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4082 ioc->request_sz);
4084 request = (u64 *)&descriptor;
4085 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4086 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4087 descriptor.Default.SMID = cpu_to_le16(smid);
4088 descriptor.Default.LMID = 0;
4089 descriptor.Default.DescriptorTypeDependent = 0;
4090 if (ioc->is_mcpu_endpoint)
4091 _base_mpi_ep_writeq(*request,
4092 &ioc->chip->RequestDescriptorPostLow,
4093 &ioc->scsi_lookup_lock);
4094 else
4095 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4096 &ioc->scsi_lookup_lock);
4100 * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
4101 * Atomic Request Descriptor
4102 * @ioc: per adapter object
4103 * @smid: system request message index
4104 * @handle: device handle, unused in this function, for function type match
4106 * Return nothing.
4108 static void
4109 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4110 u16 handle)
4112 Mpi26AtomicRequestDescriptor_t descriptor;
4113 u32 *request = (u32 *)&descriptor;
4115 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4116 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4117 descriptor.SMID = cpu_to_le16(smid);
4119 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4123 * _base_put_smid_fast_path_atomic - send fast path request to firmware
4124 * using Atomic Request Descriptor
4125 * @ioc: per adapter object
4126 * @smid: system request message index
4127 * @handle: device handle, unused in this function, for function type match
4128 * Return nothing
4130 static void
4131 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4132 u16 handle)
4134 Mpi26AtomicRequestDescriptor_t descriptor;
4135 u32 *request = (u32 *)&descriptor;
4137 descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4138 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4139 descriptor.SMID = cpu_to_le16(smid);
4141 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4145 * _base_put_smid_hi_priority_atomic - send Task Management request to
4146 * firmware using Atomic Request Descriptor
4147 * @ioc: per adapter object
4148 * @smid: system request message index
4149 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0
4151 * Return nothing.
4153 static void
4154 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4155 u16 msix_task)
4157 Mpi26AtomicRequestDescriptor_t descriptor;
4158 u32 *request = (u32 *)&descriptor;
4160 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4161 descriptor.MSIxIndex = msix_task;
4162 descriptor.SMID = cpu_to_le16(smid);
4164 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4168 * _base_put_smid_default - Default, primarily used for config pages
4169 * use Atomic Request Descriptor
4170 * @ioc: per adapter object
4171 * @smid: system request message index
4173 * Return nothing.
4175 static void
4176 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4178 Mpi26AtomicRequestDescriptor_t descriptor;
4179 u32 *request = (u32 *)&descriptor;
4181 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4182 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4183 descriptor.SMID = cpu_to_le16(smid);
4185 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4189 * _base_display_OEMs_branding - Display branding string
4190 * @ioc: per adapter object
4192 static void
4193 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
4195 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
4196 return;
4198 switch (ioc->pdev->subsystem_vendor) {
4199 case PCI_VENDOR_ID_INTEL:
4200 switch (ioc->pdev->device) {
4201 case MPI2_MFGPAGE_DEVID_SAS2008:
4202 switch (ioc->pdev->subsystem_device) {
4203 case MPT2SAS_INTEL_RMS2LL080_SSDID:
4204 ioc_info(ioc, "%s\n",
4205 MPT2SAS_INTEL_RMS2LL080_BRANDING);
4206 break;
4207 case MPT2SAS_INTEL_RMS2LL040_SSDID:
4208 ioc_info(ioc, "%s\n",
4209 MPT2SAS_INTEL_RMS2LL040_BRANDING);
4210 break;
4211 case MPT2SAS_INTEL_SSD910_SSDID:
4212 ioc_info(ioc, "%s\n",
4213 MPT2SAS_INTEL_SSD910_BRANDING);
4214 break;
4215 default:
4216 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4217 ioc->pdev->subsystem_device);
4218 break;
4220 break;
4221 case MPI2_MFGPAGE_DEVID_SAS2308_2:
4222 switch (ioc->pdev->subsystem_device) {
4223 case MPT2SAS_INTEL_RS25GB008_SSDID:
4224 ioc_info(ioc, "%s\n",
4225 MPT2SAS_INTEL_RS25GB008_BRANDING);
4226 break;
4227 case MPT2SAS_INTEL_RMS25JB080_SSDID:
4228 ioc_info(ioc, "%s\n",
4229 MPT2SAS_INTEL_RMS25JB080_BRANDING);
4230 break;
4231 case MPT2SAS_INTEL_RMS25JB040_SSDID:
4232 ioc_info(ioc, "%s\n",
4233 MPT2SAS_INTEL_RMS25JB040_BRANDING);
4234 break;
4235 case MPT2SAS_INTEL_RMS25KB080_SSDID:
4236 ioc_info(ioc, "%s\n",
4237 MPT2SAS_INTEL_RMS25KB080_BRANDING);
4238 break;
4239 case MPT2SAS_INTEL_RMS25KB040_SSDID:
4240 ioc_info(ioc, "%s\n",
4241 MPT2SAS_INTEL_RMS25KB040_BRANDING);
4242 break;
4243 case MPT2SAS_INTEL_RMS25LB040_SSDID:
4244 ioc_info(ioc, "%s\n",
4245 MPT2SAS_INTEL_RMS25LB040_BRANDING);
4246 break;
4247 case MPT2SAS_INTEL_RMS25LB080_SSDID:
4248 ioc_info(ioc, "%s\n",
4249 MPT2SAS_INTEL_RMS25LB080_BRANDING);
4250 break;
4251 default:
4252 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4253 ioc->pdev->subsystem_device);
4254 break;
4256 break;
4257 case MPI25_MFGPAGE_DEVID_SAS3008:
4258 switch (ioc->pdev->subsystem_device) {
4259 case MPT3SAS_INTEL_RMS3JC080_SSDID:
4260 ioc_info(ioc, "%s\n",
4261 MPT3SAS_INTEL_RMS3JC080_BRANDING);
4262 break;
4264 case MPT3SAS_INTEL_RS3GC008_SSDID:
4265 ioc_info(ioc, "%s\n",
4266 MPT3SAS_INTEL_RS3GC008_BRANDING);
4267 break;
4268 case MPT3SAS_INTEL_RS3FC044_SSDID:
4269 ioc_info(ioc, "%s\n",
4270 MPT3SAS_INTEL_RS3FC044_BRANDING);
4271 break;
4272 case MPT3SAS_INTEL_RS3UC080_SSDID:
4273 ioc_info(ioc, "%s\n",
4274 MPT3SAS_INTEL_RS3UC080_BRANDING);
4275 break;
4276 default:
4277 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4278 ioc->pdev->subsystem_device);
4279 break;
4281 break;
4282 default:
4283 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4284 ioc->pdev->subsystem_device);
4285 break;
4287 break;
4288 case PCI_VENDOR_ID_DELL:
4289 switch (ioc->pdev->device) {
4290 case MPI2_MFGPAGE_DEVID_SAS2008:
4291 switch (ioc->pdev->subsystem_device) {
4292 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
4293 ioc_info(ioc, "%s\n",
4294 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
4295 break;
4296 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
4297 ioc_info(ioc, "%s\n",
4298 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
4299 break;
4300 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
4301 ioc_info(ioc, "%s\n",
4302 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
4303 break;
4304 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
4305 ioc_info(ioc, "%s\n",
4306 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
4307 break;
4308 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
4309 ioc_info(ioc, "%s\n",
4310 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
4311 break;
4312 case MPT2SAS_DELL_PERC_H200_SSDID:
4313 ioc_info(ioc, "%s\n",
4314 MPT2SAS_DELL_PERC_H200_BRANDING);
4315 break;
4316 case MPT2SAS_DELL_6GBPS_SAS_SSDID:
4317 ioc_info(ioc, "%s\n",
4318 MPT2SAS_DELL_6GBPS_SAS_BRANDING);
4319 break;
4320 default:
4321 ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
4322 ioc->pdev->subsystem_device);
4323 break;
4325 break;
4326 case MPI25_MFGPAGE_DEVID_SAS3008:
4327 switch (ioc->pdev->subsystem_device) {
4328 case MPT3SAS_DELL_12G_HBA_SSDID:
4329 ioc_info(ioc, "%s\n",
4330 MPT3SAS_DELL_12G_HBA_BRANDING);
4331 break;
4332 default:
4333 ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
4334 ioc->pdev->subsystem_device);
4335 break;
4337 break;
4338 default:
4339 ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n",
4340 ioc->pdev->subsystem_device);
4341 break;
4343 break;
4344 case PCI_VENDOR_ID_CISCO:
4345 switch (ioc->pdev->device) {
4346 case MPI25_MFGPAGE_DEVID_SAS3008:
4347 switch (ioc->pdev->subsystem_device) {
4348 case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
4349 ioc_info(ioc, "%s\n",
4350 MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
4351 break;
4352 case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
4353 ioc_info(ioc, "%s\n",
4354 MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
4355 break;
4356 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4357 ioc_info(ioc, "%s\n",
4358 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4359 break;
4360 default:
4361 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4362 ioc->pdev->subsystem_device);
4363 break;
4365 break;
4366 case MPI25_MFGPAGE_DEVID_SAS3108_1:
4367 switch (ioc->pdev->subsystem_device) {
4368 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4369 ioc_info(ioc, "%s\n",
4370 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4371 break;
4372 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
4373 ioc_info(ioc, "%s\n",
4374 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING);
4375 break;
4376 default:
4377 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4378 ioc->pdev->subsystem_device);
4379 break;
4381 break;
4382 default:
4383 ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n",
4384 ioc->pdev->subsystem_device);
4385 break;
4387 break;
4388 case MPT2SAS_HP_3PAR_SSVID:
4389 switch (ioc->pdev->device) {
4390 case MPI2_MFGPAGE_DEVID_SAS2004:
4391 switch (ioc->pdev->subsystem_device) {
4392 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
4393 ioc_info(ioc, "%s\n",
4394 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
4395 break;
4396 default:
4397 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4398 ioc->pdev->subsystem_device);
4399 break;
4401 break;
4402 case MPI2_MFGPAGE_DEVID_SAS2308_2:
4403 switch (ioc->pdev->subsystem_device) {
4404 case MPT2SAS_HP_2_4_INTERNAL_SSDID:
4405 ioc_info(ioc, "%s\n",
4406 MPT2SAS_HP_2_4_INTERNAL_BRANDING);
4407 break;
4408 case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
4409 ioc_info(ioc, "%s\n",
4410 MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
4411 break;
4412 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
4413 ioc_info(ioc, "%s\n",
4414 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
4415 break;
4416 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
4417 ioc_info(ioc, "%s\n",
4418 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
4419 break;
4420 default:
4421 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4422 ioc->pdev->subsystem_device);
4423 break;
4425 break;
4426 default:
4427 ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n",
4428 ioc->pdev->subsystem_device);
4429 break;
4431 default:
4432 break;
4437 * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
4438 * version from FW Image Header.
4439 * @ioc: per adapter object
4441 * Return: 0 for success, non-zero for failure.
4443 static int
4444 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc)
4446 Mpi2FWImageHeader_t *fw_img_hdr;
4447 Mpi26ComponentImageHeader_t *cmp_img_hdr;
4448 Mpi25FWUploadRequest_t *mpi_request;
4449 Mpi2FWUploadReply_t mpi_reply;
4450 int r = 0;
4451 u32 package_version = 0;
4452 void *fwpkg_data = NULL;
4453 dma_addr_t fwpkg_data_dma;
4454 u16 smid, ioc_status;
4455 size_t data_length;
4457 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4459 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4460 ioc_err(ioc, "%s: internal command already in use\n", __func__);
4461 return -EAGAIN;
4464 data_length = sizeof(Mpi2FWImageHeader_t);
4465 fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length,
4466 &fwpkg_data_dma, GFP_KERNEL);
4467 if (!fwpkg_data) {
4468 ioc_err(ioc,
4469 "Memory allocation for fwpkg data failed at %s:%d/%s()!\n",
4470 __FILE__, __LINE__, __func__);
4471 return -ENOMEM;
4474 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4475 if (!smid) {
4476 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
4477 r = -EAGAIN;
4478 goto out;
4481 ioc->base_cmds.status = MPT3_CMD_PENDING;
4482 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4483 ioc->base_cmds.smid = smid;
4484 memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t));
4485 mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD;
4486 mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH;
4487 mpi_request->ImageSize = cpu_to_le32(data_length);
4488 ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma,
4489 data_length);
4490 init_completion(&ioc->base_cmds.done);
4491 ioc->put_smid_default(ioc, smid);
4492 /* Wait for 15 seconds */
4493 wait_for_completion_timeout(&ioc->base_cmds.done,
4494 FW_IMG_HDR_READ_TIMEOUT*HZ);
4495 ioc_info(ioc, "%s: complete\n", __func__);
4496 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4497 ioc_err(ioc, "%s: timeout\n", __func__);
4498 _debug_dump_mf(mpi_request,
4499 sizeof(Mpi25FWUploadRequest_t)/4);
4500 r = -ETIME;
4501 } else {
4502 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t));
4503 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) {
4504 memcpy(&mpi_reply, ioc->base_cmds.reply,
4505 sizeof(Mpi2FWUploadReply_t));
4506 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4507 MPI2_IOCSTATUS_MASK;
4508 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4509 fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data;
4510 if (le32_to_cpu(fw_img_hdr->Signature) ==
4511 MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) {
4512 cmp_img_hdr =
4513 (Mpi26ComponentImageHeader_t *)
4514 (fwpkg_data);
4515 package_version =
4516 le32_to_cpu(
4517 cmp_img_hdr->ApplicationSpecific);
4518 } else
4519 package_version =
4520 le32_to_cpu(
4521 fw_img_hdr->PackageVersion.Word);
4522 if (package_version)
4523 ioc_info(ioc,
4524 "FW Package Ver(%02d.%02d.%02d.%02d)\n",
4525 ((package_version) & 0xFF000000) >> 24,
4526 ((package_version) & 0x00FF0000) >> 16,
4527 ((package_version) & 0x0000FF00) >> 8,
4528 (package_version) & 0x000000FF);
4529 } else {
4530 _debug_dump_mf(&mpi_reply,
4531 sizeof(Mpi2FWUploadReply_t)/4);
4535 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4536 out:
4537 if (fwpkg_data)
4538 dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data,
4539 fwpkg_data_dma);
4540 return r;
4544 * _base_display_ioc_capabilities - Disply IOC's capabilities.
4545 * @ioc: per adapter object
4547 static void
4548 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
4550 int i = 0;
4551 char desc[16];
4552 u32 iounit_pg1_flags;
4553 u32 bios_version;
4555 bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
4556 strncpy(desc, ioc->manu_pg0.ChipName, 16);
4557 ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
4558 desc,
4559 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
4560 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
4561 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
4562 ioc->facts.FWVersion.Word & 0x000000FF,
4563 ioc->pdev->revision,
4564 (bios_version & 0xFF000000) >> 24,
4565 (bios_version & 0x00FF0000) >> 16,
4566 (bios_version & 0x0000FF00) >> 8,
4567 bios_version & 0x000000FF);
4569 _base_display_OEMs_branding(ioc);
4571 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4572 pr_info("%sNVMe", i ? "," : "");
4573 i++;
4576 ioc_info(ioc, "Protocol=(");
4578 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
4579 pr_cont("Initiator");
4580 i++;
4583 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
4584 pr_cont("%sTarget", i ? "," : "");
4585 i++;
4588 i = 0;
4589 pr_cont("), Capabilities=(");
4591 if (!ioc->hide_ir_msg) {
4592 if (ioc->facts.IOCCapabilities &
4593 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
4594 pr_cont("Raid");
4595 i++;
4599 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
4600 pr_cont("%sTLR", i ? "," : "");
4601 i++;
4604 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
4605 pr_cont("%sMulticast", i ? "," : "");
4606 i++;
4609 if (ioc->facts.IOCCapabilities &
4610 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
4611 pr_cont("%sBIDI Target", i ? "," : "");
4612 i++;
4615 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
4616 pr_cont("%sEEDP", i ? "," : "");
4617 i++;
4620 if (ioc->facts.IOCCapabilities &
4621 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
4622 pr_cont("%sSnapshot Buffer", i ? "," : "");
4623 i++;
4626 if (ioc->facts.IOCCapabilities &
4627 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
4628 pr_cont("%sDiag Trace Buffer", i ? "," : "");
4629 i++;
4632 if (ioc->facts.IOCCapabilities &
4633 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
4634 pr_cont("%sDiag Extended Buffer", i ? "," : "");
4635 i++;
4638 if (ioc->facts.IOCCapabilities &
4639 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
4640 pr_cont("%sTask Set Full", i ? "," : "");
4641 i++;
4644 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4645 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
4646 pr_cont("%sNCQ", i ? "," : "");
4647 i++;
4650 pr_cont(")\n");
4654 * mpt3sas_base_update_missing_delay - change the missing delay timers
4655 * @ioc: per adapter object
4656 * @device_missing_delay: amount of time till device is reported missing
4657 * @io_missing_delay: interval IO is returned when there is a missing device
4659 * Passed on the command line, this function will modify the device missing
4660 * delay, as well as the io missing delay. This should be called at driver
4661 * load time.
4663 void
4664 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
4665 u16 device_missing_delay, u8 io_missing_delay)
4667 u16 dmd, dmd_new, dmd_orignal;
4668 u8 io_missing_delay_original;
4669 u16 sz;
4670 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
4671 Mpi2ConfigReply_t mpi_reply;
4672 u8 num_phys = 0;
4673 u16 ioc_status;
4675 mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
4676 if (!num_phys)
4677 return;
4679 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
4680 sizeof(Mpi2SasIOUnit1PhyData_t));
4681 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
4682 if (!sas_iounit_pg1) {
4683 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4684 __FILE__, __LINE__, __func__);
4685 goto out;
4687 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
4688 sas_iounit_pg1, sz))) {
4689 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4690 __FILE__, __LINE__, __func__);
4691 goto out;
4693 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4694 MPI2_IOCSTATUS_MASK;
4695 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4696 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4697 __FILE__, __LINE__, __func__);
4698 goto out;
4701 /* device missing delay */
4702 dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
4703 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4704 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4705 else
4706 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4707 dmd_orignal = dmd;
4708 if (device_missing_delay > 0x7F) {
4709 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
4710 device_missing_delay;
4711 dmd = dmd / 16;
4712 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
4713 } else
4714 dmd = device_missing_delay;
4715 sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
4717 /* io missing delay */
4718 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
4719 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
4721 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
4722 sz)) {
4723 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4724 dmd_new = (dmd &
4725 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4726 else
4727 dmd_new =
4728 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4729 ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n",
4730 dmd_orignal, dmd_new);
4731 ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n",
4732 io_missing_delay_original,
4733 io_missing_delay);
4734 ioc->device_missing_delay = dmd_new;
4735 ioc->io_missing_delay = io_missing_delay;
4738 out:
4739 kfree(sas_iounit_pg1);
4743 * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields
4744 * according to performance mode.
4745 * @ioc : per adapter object
4747 * Return nothing.
4749 static void
4750 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc)
4752 Mpi2IOCPage1_t ioc_pg1;
4753 Mpi2ConfigReply_t mpi_reply;
4755 mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy);
4756 memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t));
4758 switch (perf_mode) {
4759 case MPT_PERF_MODE_DEFAULT:
4760 case MPT_PERF_MODE_BALANCED:
4761 if (ioc->high_iops_queues) {
4762 ioc_info(ioc,
4763 "Enable interrupt coalescing only for first\t"
4764 "%d reply queues\n",
4765 MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
4767 * If 31st bit is zero then interrupt coalescing is
4768 * enabled for all reply descriptor post queues.
4769 * If 31st bit is set to one then user can
4770 * enable/disable interrupt coalescing on per reply
4771 * descriptor post queue group(8) basis. So to enable
4772 * interrupt coalescing only on first reply descriptor
4773 * post queue group 31st bit and zero th bit is enabled.
4775 ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 |
4776 ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1));
4777 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4778 ioc_info(ioc, "performance mode: balanced\n");
4779 return;
4781 fallthrough;
4782 case MPT_PERF_MODE_LATENCY:
4784 * Enable interrupt coalescing on all reply queues
4785 * with timeout value 0xA
4787 ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa);
4788 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
4789 ioc_pg1.ProductSpecific = 0;
4790 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4791 ioc_info(ioc, "performance mode: latency\n");
4792 break;
4793 case MPT_PERF_MODE_IOPS:
4795 * Enable interrupt coalescing on all reply queues.
4797 ioc_info(ioc,
4798 "performance mode: iops with coalescing timeout: 0x%x\n",
4799 le32_to_cpu(ioc_pg1.CoalescingTimeout));
4800 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
4801 ioc_pg1.ProductSpecific = 0;
4802 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4803 break;
4808 * _base_get_event_diag_triggers - get event diag trigger values from
4809 * persistent pages
4810 * @ioc : per adapter object
4812 * Return nothing.
4814 static void
4815 _base_get_event_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
4817 Mpi26DriverTriggerPage2_t trigger_pg2;
4818 struct SL_WH_EVENT_TRIGGER_T *event_tg;
4819 MPI26_DRIVER_MPI_EVENT_TIGGER_ENTRY *mpi_event_tg;
4820 Mpi2ConfigReply_t mpi_reply;
4821 int r = 0, i = 0;
4822 u16 count = 0;
4823 u16 ioc_status;
4825 r = mpt3sas_config_get_driver_trigger_pg2(ioc, &mpi_reply,
4826 &trigger_pg2);
4827 if (r)
4828 return;
4830 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4831 MPI2_IOCSTATUS_MASK;
4832 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4833 dinitprintk(ioc,
4834 ioc_err(ioc,
4835 "%s: Failed to get trigger pg2, ioc_status(0x%04x)\n",
4836 __func__, ioc_status));
4837 return;
4840 if (le16_to_cpu(trigger_pg2.NumMPIEventTrigger)) {
4841 count = le16_to_cpu(trigger_pg2.NumMPIEventTrigger);
4842 count = min_t(u16, NUM_VALID_ENTRIES, count);
4843 ioc->diag_trigger_event.ValidEntries = count;
4845 event_tg = &ioc->diag_trigger_event.EventTriggerEntry[0];
4846 mpi_event_tg = &trigger_pg2.MPIEventTriggers[0];
4847 for (i = 0; i < count; i++) {
4848 event_tg->EventValue = le16_to_cpu(
4849 mpi_event_tg->MPIEventCode);
4850 event_tg->LogEntryQualifier = le16_to_cpu(
4851 mpi_event_tg->MPIEventCodeSpecific);
4852 event_tg++;
4853 mpi_event_tg++;
4859 * _base_get_scsi_diag_triggers - get scsi diag trigger values from
4860 * persistent pages
4861 * @ioc : per adapter object
4863 * Return nothing.
4865 static void
4866 _base_get_scsi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
4868 Mpi26DriverTriggerPage3_t trigger_pg3;
4869 struct SL_WH_SCSI_TRIGGER_T *scsi_tg;
4870 MPI26_DRIVER_SCSI_SENSE_TIGGER_ENTRY *mpi_scsi_tg;
4871 Mpi2ConfigReply_t mpi_reply;
4872 int r = 0, i = 0;
4873 u16 count = 0;
4874 u16 ioc_status;
4876 r = mpt3sas_config_get_driver_trigger_pg3(ioc, &mpi_reply,
4877 &trigger_pg3);
4878 if (r)
4879 return;
4881 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4882 MPI2_IOCSTATUS_MASK;
4883 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4884 dinitprintk(ioc,
4885 ioc_err(ioc,
4886 "%s: Failed to get trigger pg3, ioc_status(0x%04x)\n",
4887 __func__, ioc_status));
4888 return;
4891 if (le16_to_cpu(trigger_pg3.NumSCSISenseTrigger)) {
4892 count = le16_to_cpu(trigger_pg3.NumSCSISenseTrigger);
4893 count = min_t(u16, NUM_VALID_ENTRIES, count);
4894 ioc->diag_trigger_scsi.ValidEntries = count;
4896 scsi_tg = &ioc->diag_trigger_scsi.SCSITriggerEntry[0];
4897 mpi_scsi_tg = &trigger_pg3.SCSISenseTriggers[0];
4898 for (i = 0; i < count; i++) {
4899 scsi_tg->ASCQ = mpi_scsi_tg->ASCQ;
4900 scsi_tg->ASC = mpi_scsi_tg->ASC;
4901 scsi_tg->SenseKey = mpi_scsi_tg->SenseKey;
4903 scsi_tg++;
4904 mpi_scsi_tg++;
4910 * _base_get_mpi_diag_triggers - get mpi diag trigger values from
4911 * persistent pages
4912 * @ioc : per adapter object
4914 * Return nothing.
4916 static void
4917 _base_get_mpi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
4919 Mpi26DriverTriggerPage4_t trigger_pg4;
4920 struct SL_WH_MPI_TRIGGER_T *status_tg;
4921 MPI26_DRIVER_IOCSTATUS_LOGINFO_TIGGER_ENTRY *mpi_status_tg;
4922 Mpi2ConfigReply_t mpi_reply;
4923 int r = 0, i = 0;
4924 u16 count = 0;
4925 u16 ioc_status;
4927 r = mpt3sas_config_get_driver_trigger_pg4(ioc, &mpi_reply,
4928 &trigger_pg4);
4929 if (r)
4930 return;
4932 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4933 MPI2_IOCSTATUS_MASK;
4934 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4935 dinitprintk(ioc,
4936 ioc_err(ioc,
4937 "%s: Failed to get trigger pg4, ioc_status(0x%04x)\n",
4938 __func__, ioc_status));
4939 return;
4942 if (le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger)) {
4943 count = le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger);
4944 count = min_t(u16, NUM_VALID_ENTRIES, count);
4945 ioc->diag_trigger_mpi.ValidEntries = count;
4947 status_tg = &ioc->diag_trigger_mpi.MPITriggerEntry[0];
4948 mpi_status_tg = &trigger_pg4.IOCStatusLoginfoTriggers[0];
4950 for (i = 0; i < count; i++) {
4951 status_tg->IOCStatus = le16_to_cpu(
4952 mpi_status_tg->IOCStatus);
4953 status_tg->IocLogInfo = le32_to_cpu(
4954 mpi_status_tg->LogInfo);
4956 status_tg++;
4957 mpi_status_tg++;
4963 * _base_get_master_diag_triggers - get master diag trigger values from
4964 * persistent pages
4965 * @ioc : per adapter object
4967 * Return nothing.
4969 static void
4970 _base_get_master_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
4972 Mpi26DriverTriggerPage1_t trigger_pg1;
4973 Mpi2ConfigReply_t mpi_reply;
4974 int r;
4975 u16 ioc_status;
4977 r = mpt3sas_config_get_driver_trigger_pg1(ioc, &mpi_reply,
4978 &trigger_pg1);
4979 if (r)
4980 return;
4982 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4983 MPI2_IOCSTATUS_MASK;
4984 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4985 dinitprintk(ioc,
4986 ioc_err(ioc,
4987 "%s: Failed to get trigger pg1, ioc_status(0x%04x)\n",
4988 __func__, ioc_status));
4989 return;
4992 if (le16_to_cpu(trigger_pg1.NumMasterTrigger))
4993 ioc->diag_trigger_master.MasterData |=
4994 le32_to_cpu(
4995 trigger_pg1.MasterTriggers[0].MasterTriggerFlags);
4999 * _base_check_for_trigger_pages_support - checks whether HBA FW supports
5000 * driver trigger pages or not
5001 * @ioc : per adapter object
5003 * Returns trigger flags mask if HBA FW supports driver trigger pages,
5004 * otherwise returns EFAULT.
5006 static int
5007 _base_check_for_trigger_pages_support(struct MPT3SAS_ADAPTER *ioc)
5009 Mpi26DriverTriggerPage0_t trigger_pg0;
5010 int r = 0;
5011 Mpi2ConfigReply_t mpi_reply;
5012 u16 ioc_status;
5014 r = mpt3sas_config_get_driver_trigger_pg0(ioc, &mpi_reply,
5015 &trigger_pg0);
5016 if (r)
5017 return -EFAULT;
5019 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5020 MPI2_IOCSTATUS_MASK;
5021 if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
5022 return -EFAULT;
5024 return le16_to_cpu(trigger_pg0.TriggerFlags);
5028 * _base_get_diag_triggers - Retrieve diag trigger values from
5029 * persistent pages.
5030 * @ioc : per adapter object
5032 * Return nothing.
5034 static void
5035 _base_get_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5037 int trigger_flags;
5040 * Default setting of master trigger.
5042 ioc->diag_trigger_master.MasterData =
5043 (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET);
5045 trigger_flags = _base_check_for_trigger_pages_support(ioc);
5046 if (trigger_flags < 0)
5047 return;
5049 ioc->supports_trigger_pages = 1;
5052 * Retrieve master diag trigger values from driver trigger pg1
5053 * if master trigger bit enabled in TriggerFlags.
5055 if ((u16)trigger_flags &
5056 MPI26_DRIVER_TRIGGER0_FLAG_MASTER_TRIGGER_VALID)
5057 _base_get_master_diag_triggers(ioc);
5060 * Retrieve event diag trigger values from driver trigger pg2
5061 * if event trigger bit enabled in TriggerFlags.
5063 if ((u16)trigger_flags &
5064 MPI26_DRIVER_TRIGGER0_FLAG_MPI_EVENT_TRIGGER_VALID)
5065 _base_get_event_diag_triggers(ioc);
5068 * Retrieve scsi diag trigger values from driver trigger pg3
5069 * if scsi trigger bit enabled in TriggerFlags.
5071 if ((u16)trigger_flags &
5072 MPI26_DRIVER_TRIGGER0_FLAG_SCSI_SENSE_TRIGGER_VALID)
5073 _base_get_scsi_diag_triggers(ioc);
5075 * Retrieve mpi error diag trigger values from driver trigger pg4
5076 * if loginfo trigger bit enabled in TriggerFlags.
5078 if ((u16)trigger_flags &
5079 MPI26_DRIVER_TRIGGER0_FLAG_LOGINFO_TRIGGER_VALID)
5080 _base_get_mpi_diag_triggers(ioc);
5084 * _base_update_diag_trigger_pages - Update the driver trigger pages after
5085 * online FW update, incase updated FW supports driver
5086 * trigger pages.
5087 * @ioc : per adapter object
5089 * Return nothing.
5091 static void
5092 _base_update_diag_trigger_pages(struct MPT3SAS_ADAPTER *ioc)
5095 if (ioc->diag_trigger_master.MasterData)
5096 mpt3sas_config_update_driver_trigger_pg1(ioc,
5097 &ioc->diag_trigger_master, 1);
5099 if (ioc->diag_trigger_event.ValidEntries)
5100 mpt3sas_config_update_driver_trigger_pg2(ioc,
5101 &ioc->diag_trigger_event, 1);
5103 if (ioc->diag_trigger_scsi.ValidEntries)
5104 mpt3sas_config_update_driver_trigger_pg3(ioc,
5105 &ioc->diag_trigger_scsi, 1);
5107 if (ioc->diag_trigger_mpi.ValidEntries)
5108 mpt3sas_config_update_driver_trigger_pg4(ioc,
5109 &ioc->diag_trigger_mpi, 1);
5113 * _base_static_config_pages - static start of day config pages
5114 * @ioc: per adapter object
5116 static void
5117 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
5119 Mpi2ConfigReply_t mpi_reply;
5120 u32 iounit_pg1_flags;
5121 int tg_flags = 0;
5122 ioc->nvme_abort_timeout = 30;
5123 mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
5124 if (ioc->ir_firmware)
5125 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
5126 &ioc->manu_pg10);
5129 * Ensure correct T10 PI operation if vendor left EEDPTagMode
5130 * flag unset in NVDATA.
5132 mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
5133 if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) {
5134 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
5135 ioc->name);
5136 ioc->manu_pg11.EEDPTagMode &= ~0x3;
5137 ioc->manu_pg11.EEDPTagMode |= 0x1;
5138 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
5139 &ioc->manu_pg11);
5141 if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK)
5142 ioc->tm_custom_handling = 1;
5143 else {
5144 ioc->tm_custom_handling = 0;
5145 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT)
5146 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT;
5147 else if (ioc->manu_pg11.NVMeAbortTO >
5148 NVME_TASK_ABORT_MAX_TIMEOUT)
5149 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT;
5150 else
5151 ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO;
5153 ioc->time_sync_interval =
5154 ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_MASK;
5155 if (ioc->time_sync_interval) {
5156 if (ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_UNIT_MASK)
5157 ioc->time_sync_interval =
5158 ioc->time_sync_interval * SECONDS_PER_HOUR;
5159 else
5160 ioc->time_sync_interval =
5161 ioc->time_sync_interval * SECONDS_PER_MIN;
5162 dinitprintk(ioc, ioc_info(ioc,
5163 "Driver-FW TimeSync interval is %d seconds. ManuPg11 TimeSync Unit is in %s\n",
5164 ioc->time_sync_interval, (ioc->manu_pg11.TimeSyncInterval &
5165 MPT3SAS_TIMESYNC_UNIT_MASK) ? "Hour" : "Minute"));
5166 } else {
5167 if (ioc->is_gen35_ioc)
5168 ioc_warn(ioc,
5169 "TimeSync Interval in Manuf page-11 is not enabled. Periodic Time-Sync will be disabled\n");
5171 mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
5172 mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
5173 mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
5174 mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
5175 mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
5176 mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
5177 _base_display_ioc_capabilities(ioc);
5180 * Enable task_set_full handling in iounit_pg1 when the
5181 * facts capabilities indicate that its supported.
5183 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
5184 if ((ioc->facts.IOCCapabilities &
5185 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
5186 iounit_pg1_flags &=
5187 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5188 else
5189 iounit_pg1_flags |=
5190 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5191 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
5192 mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
5194 if (ioc->iounit_pg8.NumSensors)
5195 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
5196 if (ioc->is_aero_ioc)
5197 _base_update_ioc_page1_inlinewith_perf_mode(ioc);
5198 if (ioc->is_gen35_ioc) {
5199 if (ioc->is_driver_loading)
5200 _base_get_diag_triggers(ioc);
5201 else {
5203 * In case of online HBA FW update operation,
5204 * check whether updated FW supports the driver trigger
5205 * pages or not.
5206 * - If previous FW has not supported driver trigger
5207 * pages and newer FW supports them then update these
5208 * pages with current diag trigger values.
5209 * - If previous FW has supported driver trigger pages
5210 * and new FW doesn't support them then disable
5211 * support_trigger_pages flag.
5213 tg_flags = _base_check_for_trigger_pages_support(ioc);
5214 if (!ioc->supports_trigger_pages && tg_flags != -EFAULT)
5215 _base_update_diag_trigger_pages(ioc);
5216 else if (ioc->supports_trigger_pages &&
5217 tg_flags == -EFAULT)
5218 ioc->supports_trigger_pages = 0;
5224 * mpt3sas_free_enclosure_list - release memory
5225 * @ioc: per adapter object
5227 * Free memory allocated during encloure add.
5229 void
5230 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc)
5232 struct _enclosure_node *enclosure_dev, *enclosure_dev_next;
5234 /* Free enclosure list */
5235 list_for_each_entry_safe(enclosure_dev,
5236 enclosure_dev_next, &ioc->enclosure_list, list) {
5237 list_del(&enclosure_dev->list);
5238 kfree(enclosure_dev);
5243 * _base_release_memory_pools - release memory
5244 * @ioc: per adapter object
5246 * Free memory allocated from _base_allocate_memory_pools.
5248 static void
5249 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
5251 int i = 0;
5252 int j = 0;
5253 int dma_alloc_count = 0;
5254 struct chain_tracker *ct;
5255 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
5257 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5259 if (ioc->request) {
5260 dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz,
5261 ioc->request, ioc->request_dma);
5262 dexitprintk(ioc,
5263 ioc_info(ioc, "request_pool(0x%p): free\n",
5264 ioc->request));
5265 ioc->request = NULL;
5268 if (ioc->sense) {
5269 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
5270 dma_pool_destroy(ioc->sense_dma_pool);
5271 dexitprintk(ioc,
5272 ioc_info(ioc, "sense_pool(0x%p): free\n",
5273 ioc->sense));
5274 ioc->sense = NULL;
5277 if (ioc->reply) {
5278 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
5279 dma_pool_destroy(ioc->reply_dma_pool);
5280 dexitprintk(ioc,
5281 ioc_info(ioc, "reply_pool(0x%p): free\n",
5282 ioc->reply));
5283 ioc->reply = NULL;
5286 if (ioc->reply_free) {
5287 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
5288 ioc->reply_free_dma);
5289 dma_pool_destroy(ioc->reply_free_dma_pool);
5290 dexitprintk(ioc,
5291 ioc_info(ioc, "reply_free_pool(0x%p): free\n",
5292 ioc->reply_free));
5293 ioc->reply_free = NULL;
5296 if (ioc->reply_post) {
5297 dma_alloc_count = DIV_ROUND_UP(count,
5298 RDPQ_MAX_INDEX_IN_ONE_CHUNK);
5299 for (i = 0; i < count; i++) {
5300 if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0
5301 && dma_alloc_count) {
5302 if (ioc->reply_post[i].reply_post_free) {
5303 dma_pool_free(
5304 ioc->reply_post_free_dma_pool,
5305 ioc->reply_post[i].reply_post_free,
5306 ioc->reply_post[i].reply_post_free_dma);
5307 dexitprintk(ioc, ioc_info(ioc,
5308 "reply_post_free_pool(0x%p): free\n",
5309 ioc->reply_post[i].reply_post_free));
5310 ioc->reply_post[i].reply_post_free =
5311 NULL;
5313 --dma_alloc_count;
5316 dma_pool_destroy(ioc->reply_post_free_dma_pool);
5317 if (ioc->reply_post_free_array &&
5318 ioc->rdpq_array_enable) {
5319 dma_pool_free(ioc->reply_post_free_array_dma_pool,
5320 ioc->reply_post_free_array,
5321 ioc->reply_post_free_array_dma);
5322 ioc->reply_post_free_array = NULL;
5324 dma_pool_destroy(ioc->reply_post_free_array_dma_pool);
5325 kfree(ioc->reply_post);
5328 if (ioc->pcie_sgl_dma_pool) {
5329 for (i = 0; i < ioc->scsiio_depth; i++) {
5330 dma_pool_free(ioc->pcie_sgl_dma_pool,
5331 ioc->pcie_sg_lookup[i].pcie_sgl,
5332 ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5334 dma_pool_destroy(ioc->pcie_sgl_dma_pool);
5337 if (ioc->config_page) {
5338 dexitprintk(ioc,
5339 ioc_info(ioc, "config_page(0x%p): free\n",
5340 ioc->config_page));
5341 dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz,
5342 ioc->config_page, ioc->config_page_dma);
5345 kfree(ioc->hpr_lookup);
5346 ioc->hpr_lookup = NULL;
5347 kfree(ioc->internal_lookup);
5348 ioc->internal_lookup = NULL;
5349 if (ioc->chain_lookup) {
5350 for (i = 0; i < ioc->scsiio_depth; i++) {
5351 for (j = ioc->chains_per_prp_buffer;
5352 j < ioc->chains_needed_per_io; j++) {
5353 ct = &ioc->chain_lookup[i].chains_per_smid[j];
5354 if (ct && ct->chain_buffer)
5355 dma_pool_free(ioc->chain_dma_pool,
5356 ct->chain_buffer,
5357 ct->chain_buffer_dma);
5359 kfree(ioc->chain_lookup[i].chains_per_smid);
5361 dma_pool_destroy(ioc->chain_dma_pool);
5362 kfree(ioc->chain_lookup);
5363 ioc->chain_lookup = NULL;
5368 * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are
5369 * having same upper 32bits in their base memory address.
5370 * @reply_pool_start_address: Base address of a reply queue set
5371 * @pool_sz: Size of single Reply Descriptor Post Queues pool size
5373 * Return: 1 if reply queues in a set have a same upper 32bits in their base
5374 * memory address, else 0.
5377 static int
5378 mpt3sas_check_same_4gb_region(long reply_pool_start_address, u32 pool_sz)
5380 long reply_pool_end_address;
5382 reply_pool_end_address = reply_pool_start_address + pool_sz;
5384 if (upper_32_bits(reply_pool_start_address) ==
5385 upper_32_bits(reply_pool_end_address))
5386 return 1;
5387 else
5388 return 0;
5392 * base_alloc_rdpq_dma_pool - Allocating DMA'able memory
5393 * for reply queues.
5394 * @ioc: per adapter object
5395 * @sz: DMA Pool size
5396 * Return: 0 for success, non-zero for failure.
5398 static int
5399 base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz)
5401 int i = 0;
5402 u32 dma_alloc_count = 0;
5403 int reply_post_free_sz = ioc->reply_post_queue_depth *
5404 sizeof(Mpi2DefaultReplyDescriptor_t);
5405 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
5407 ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct),
5408 GFP_KERNEL);
5409 if (!ioc->reply_post)
5410 return -ENOMEM;
5412 * For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and
5413 * VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should
5414 * be within 4GB boundary i.e reply queues in a set must have same
5415 * upper 32-bits in their memory address. so here driver is allocating
5416 * the DMA'able memory for reply queues according.
5417 * Driver uses limitation of
5418 * VENTURA_SERIES to manage INVADER_SERIES as well.
5420 dma_alloc_count = DIV_ROUND_UP(count,
5421 RDPQ_MAX_INDEX_IN_ONE_CHUNK);
5422 ioc->reply_post_free_dma_pool =
5423 dma_pool_create("reply_post_free pool",
5424 &ioc->pdev->dev, sz, 16, 0);
5425 if (!ioc->reply_post_free_dma_pool)
5426 return -ENOMEM;
5427 for (i = 0; i < count; i++) {
5428 if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) {
5429 ioc->reply_post[i].reply_post_free =
5430 dma_pool_zalloc(ioc->reply_post_free_dma_pool,
5431 GFP_KERNEL,
5432 &ioc->reply_post[i].reply_post_free_dma);
5433 if (!ioc->reply_post[i].reply_post_free)
5434 return -ENOMEM;
5436 * Each set of RDPQ pool must satisfy 4gb boundary
5437 * restriction.
5438 * 1) Check if allocated resources for RDPQ pool are in
5439 * the same 4GB range.
5440 * 2) If #1 is true, continue with 64 bit DMA.
5441 * 3) If #1 is false, return 1. which means free all the
5442 * resources and set DMA mask to 32 and allocate.
5444 if (!mpt3sas_check_same_4gb_region(
5445 (long)ioc->reply_post[i].reply_post_free, sz)) {
5446 dinitprintk(ioc,
5447 ioc_err(ioc, "bad Replypost free pool(0x%p)"
5448 "reply_post_free_dma = (0x%llx)\n",
5449 ioc->reply_post[i].reply_post_free,
5450 (unsigned long long)
5451 ioc->reply_post[i].reply_post_free_dma));
5452 return -EAGAIN;
5454 dma_alloc_count--;
5456 } else {
5457 ioc->reply_post[i].reply_post_free =
5458 (Mpi2ReplyDescriptorsUnion_t *)
5459 ((long)ioc->reply_post[i-1].reply_post_free
5460 + reply_post_free_sz);
5461 ioc->reply_post[i].reply_post_free_dma =
5462 (dma_addr_t)
5463 (ioc->reply_post[i-1].reply_post_free_dma +
5464 reply_post_free_sz);
5467 return 0;
5471 * _base_allocate_memory_pools - allocate start of day memory pools
5472 * @ioc: per adapter object
5474 * Return: 0 success, anything else error.
5476 static int
5477 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
5479 struct mpt3sas_facts *facts;
5480 u16 max_sge_elements;
5481 u16 chains_needed_per_io;
5482 u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz;
5483 u32 retry_sz;
5484 u32 rdpq_sz = 0;
5485 u16 max_request_credit, nvme_blocks_needed;
5486 unsigned short sg_tablesize;
5487 u16 sge_size;
5488 int i, j;
5489 int ret = 0;
5490 struct chain_tracker *ct;
5492 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5495 retry_sz = 0;
5496 facts = &ioc->facts;
5498 /* command line tunables for max sgl entries */
5499 if (max_sgl_entries != -1)
5500 sg_tablesize = max_sgl_entries;
5501 else {
5502 if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
5503 sg_tablesize = MPT2SAS_SG_DEPTH;
5504 else
5505 sg_tablesize = MPT3SAS_SG_DEPTH;
5508 /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
5509 if (reset_devices)
5510 sg_tablesize = min_t(unsigned short, sg_tablesize,
5511 MPT_KDUMP_MIN_PHYS_SEGMENTS);
5513 if (ioc->is_mcpu_endpoint)
5514 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
5515 else {
5516 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
5517 sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
5518 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
5519 sg_tablesize = min_t(unsigned short, sg_tablesize,
5520 SG_MAX_SEGMENTS);
5521 ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n",
5522 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
5524 ioc->shost->sg_tablesize = sg_tablesize;
5527 ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
5528 (facts->RequestCredit / 4));
5529 if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
5530 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
5531 INTERNAL_SCSIIO_CMDS_COUNT)) {
5532 ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n",
5533 facts->RequestCredit);
5534 return -ENOMEM;
5536 ioc->internal_depth = 10;
5539 ioc->hi_priority_depth = ioc->internal_depth - (5);
5540 /* command line tunables for max controller queue depth */
5541 if (max_queue_depth != -1 && max_queue_depth != 0) {
5542 max_request_credit = min_t(u16, max_queue_depth +
5543 ioc->internal_depth, facts->RequestCredit);
5544 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
5545 max_request_credit = MAX_HBA_QUEUE_DEPTH;
5546 } else if (reset_devices)
5547 max_request_credit = min_t(u16, facts->RequestCredit,
5548 (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
5549 else
5550 max_request_credit = min_t(u16, facts->RequestCredit,
5551 MAX_HBA_QUEUE_DEPTH);
5553 /* Firmware maintains additional facts->HighPriorityCredit number of
5554 * credits for HiPriprity Request messages, so hba queue depth will be
5555 * sum of max_request_credit and high priority queue depth.
5557 ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
5559 /* request frame size */
5560 ioc->request_sz = facts->IOCRequestFrameSize * 4;
5562 /* reply frame size */
5563 ioc->reply_sz = facts->ReplyFrameSize * 4;
5565 /* chain segment size */
5566 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
5567 if (facts->IOCMaxChainSegmentSize)
5568 ioc->chain_segment_sz =
5569 facts->IOCMaxChainSegmentSize *
5570 MAX_CHAIN_ELEMT_SZ;
5571 else
5572 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
5573 ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
5574 MAX_CHAIN_ELEMT_SZ;
5575 } else
5576 ioc->chain_segment_sz = ioc->request_sz;
5578 /* calculate the max scatter element size */
5579 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
5581 retry_allocation:
5582 total_sz = 0;
5583 /* calculate number of sg elements left over in the 1st frame */
5584 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
5585 sizeof(Mpi2SGEIOUnion_t)) + sge_size);
5586 ioc->max_sges_in_main_message = max_sge_elements/sge_size;
5588 /* now do the same for a chain buffer */
5589 max_sge_elements = ioc->chain_segment_sz - sge_size;
5590 ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
5593 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
5595 chains_needed_per_io = ((ioc->shost->sg_tablesize -
5596 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
5597 + 1;
5598 if (chains_needed_per_io > facts->MaxChainDepth) {
5599 chains_needed_per_io = facts->MaxChainDepth;
5600 ioc->shost->sg_tablesize = min_t(u16,
5601 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
5602 * chains_needed_per_io), ioc->shost->sg_tablesize);
5604 ioc->chains_needed_per_io = chains_needed_per_io;
5606 /* reply free queue sizing - taking into account for 64 FW events */
5607 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
5609 /* mCPU manage single counters for simplicity */
5610 if (ioc->is_mcpu_endpoint)
5611 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
5612 else {
5613 /* calculate reply descriptor post queue depth */
5614 ioc->reply_post_queue_depth = ioc->hba_queue_depth +
5615 ioc->reply_free_queue_depth + 1;
5616 /* align the reply post queue on the next 16 count boundary */
5617 if (ioc->reply_post_queue_depth % 16)
5618 ioc->reply_post_queue_depth += 16 -
5619 (ioc->reply_post_queue_depth % 16);
5622 if (ioc->reply_post_queue_depth >
5623 facts->MaxReplyDescriptorPostQueueDepth) {
5624 ioc->reply_post_queue_depth =
5625 facts->MaxReplyDescriptorPostQueueDepth -
5626 (facts->MaxReplyDescriptorPostQueueDepth % 16);
5627 ioc->hba_queue_depth =
5628 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
5629 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
5632 ioc_info(ioc,
5633 "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), "
5634 "sge_per_io(%d), chains_per_io(%d)\n",
5635 ioc->max_sges_in_main_message,
5636 ioc->max_sges_in_chain_message,
5637 ioc->shost->sg_tablesize,
5638 ioc->chains_needed_per_io);
5640 /* reply post queue, 16 byte align */
5641 reply_post_free_sz = ioc->reply_post_queue_depth *
5642 sizeof(Mpi2DefaultReplyDescriptor_t);
5643 rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK;
5644 if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
5645 rdpq_sz = reply_post_free_sz * ioc->reply_queue_count;
5646 ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz);
5647 if (ret == -EAGAIN) {
5649 * Free allocated bad RDPQ memory pools.
5650 * Change dma coherent mask to 32 bit and reallocate RDPQ
5652 _base_release_memory_pools(ioc);
5653 ioc->use_32bit_dma = true;
5654 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
5655 ioc_err(ioc,
5656 "32 DMA mask failed %s\n", pci_name(ioc->pdev));
5657 return -ENODEV;
5659 if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz))
5660 return -ENOMEM;
5661 } else if (ret == -ENOMEM)
5662 return -ENOMEM;
5663 total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 :
5664 DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK));
5665 ioc->scsiio_depth = ioc->hba_queue_depth -
5666 ioc->hi_priority_depth - ioc->internal_depth;
5668 /* set the scsi host can_queue depth
5669 * with some internal commands that could be outstanding
5671 ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
5672 dinitprintk(ioc,
5673 ioc_info(ioc, "scsi host: can_queue depth (%d)\n",
5674 ioc->shost->can_queue));
5676 /* contiguous pool for request and chains, 16 byte align, one extra "
5677 * "frame for smid=0
5679 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
5680 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
5682 /* hi-priority queue */
5683 sz += (ioc->hi_priority_depth * ioc->request_sz);
5685 /* internal queue */
5686 sz += (ioc->internal_depth * ioc->request_sz);
5688 ioc->request_dma_sz = sz;
5689 ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz,
5690 &ioc->request_dma, GFP_KERNEL);
5691 if (!ioc->request) {
5692 ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n",
5693 ioc->hba_queue_depth, ioc->chains_needed_per_io,
5694 ioc->request_sz, sz / 1024);
5695 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
5696 goto out;
5697 retry_sz = 64;
5698 ioc->hba_queue_depth -= retry_sz;
5699 _base_release_memory_pools(ioc);
5700 goto retry_allocation;
5703 if (retry_sz)
5704 ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n",
5705 ioc->hba_queue_depth, ioc->chains_needed_per_io,
5706 ioc->request_sz, sz / 1024);
5708 /* hi-priority queue */
5709 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
5710 ioc->request_sz);
5711 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
5712 ioc->request_sz);
5714 /* internal queue */
5715 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
5716 ioc->request_sz);
5717 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
5718 ioc->request_sz);
5720 ioc_info(ioc,
5721 "request pool(0x%p) - dma(0x%llx): "
5722 "depth(%d), frame_size(%d), pool_size(%d kB)\n",
5723 ioc->request, (unsigned long long) ioc->request_dma,
5724 ioc->hba_queue_depth, ioc->request_sz,
5725 (ioc->hba_queue_depth * ioc->request_sz) / 1024);
5727 total_sz += sz;
5729 dinitprintk(ioc,
5730 ioc_info(ioc, "scsiio(0x%p): depth(%d)\n",
5731 ioc->request, ioc->scsiio_depth));
5733 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
5734 sz = ioc->scsiio_depth * sizeof(struct chain_lookup);
5735 ioc->chain_lookup = kzalloc(sz, GFP_KERNEL);
5736 if (!ioc->chain_lookup) {
5737 ioc_err(ioc, "chain_lookup: __get_free_pages failed\n");
5738 goto out;
5741 sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker);
5742 for (i = 0; i < ioc->scsiio_depth; i++) {
5743 ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL);
5744 if (!ioc->chain_lookup[i].chains_per_smid) {
5745 ioc_err(ioc, "chain_lookup: kzalloc failed\n");
5746 goto out;
5750 /* initialize hi-priority queue smid's */
5751 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
5752 sizeof(struct request_tracker), GFP_KERNEL);
5753 if (!ioc->hpr_lookup) {
5754 ioc_err(ioc, "hpr_lookup: kcalloc failed\n");
5755 goto out;
5757 ioc->hi_priority_smid = ioc->scsiio_depth + 1;
5758 dinitprintk(ioc,
5759 ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n",
5760 ioc->hi_priority,
5761 ioc->hi_priority_depth, ioc->hi_priority_smid));
5763 /* initialize internal queue smid's */
5764 ioc->internal_lookup = kcalloc(ioc->internal_depth,
5765 sizeof(struct request_tracker), GFP_KERNEL);
5766 if (!ioc->internal_lookup) {
5767 ioc_err(ioc, "internal_lookup: kcalloc failed\n");
5768 goto out;
5770 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
5771 dinitprintk(ioc,
5772 ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n",
5773 ioc->internal,
5774 ioc->internal_depth, ioc->internal_smid));
5776 * The number of NVMe page sized blocks needed is:
5777 * (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
5778 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
5779 * that is placed in the main message frame. 8 is the size of each PRP
5780 * entry or PRP list pointer entry. 8 is subtracted from page_size
5781 * because of the PRP list pointer entry at the end of a page, so this
5782 * is not counted as a PRP entry. The 1 added page is a round up.
5784 * To avoid allocation failures due to the amount of memory that could
5785 * be required for NVMe PRP's, only each set of NVMe blocks will be
5786 * contiguous, so a new set is allocated for each possible I/O.
5788 ioc->chains_per_prp_buffer = 0;
5789 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
5790 nvme_blocks_needed =
5791 (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
5792 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
5793 nvme_blocks_needed++;
5795 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
5796 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
5797 if (!ioc->pcie_sg_lookup) {
5798 ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n");
5799 goto out;
5801 sz = nvme_blocks_needed * ioc->page_size;
5802 ioc->pcie_sgl_dma_pool =
5803 dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz, 16, 0);
5804 if (!ioc->pcie_sgl_dma_pool) {
5805 ioc_info(ioc, "PCIe SGL pool: dma_pool_create failed\n");
5806 goto out;
5809 ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz;
5810 ioc->chains_per_prp_buffer = min(ioc->chains_per_prp_buffer,
5811 ioc->chains_needed_per_io);
5813 for (i = 0; i < ioc->scsiio_depth; i++) {
5814 ioc->pcie_sg_lookup[i].pcie_sgl = dma_pool_alloc(
5815 ioc->pcie_sgl_dma_pool, GFP_KERNEL,
5816 &ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5817 if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
5818 ioc_info(ioc, "PCIe SGL pool: dma_pool_alloc failed\n");
5819 goto out;
5821 for (j = 0; j < ioc->chains_per_prp_buffer; j++) {
5822 ct = &ioc->chain_lookup[i].chains_per_smid[j];
5823 ct->chain_buffer =
5824 ioc->pcie_sg_lookup[i].pcie_sgl +
5825 (j * ioc->chain_segment_sz);
5826 ct->chain_buffer_dma =
5827 ioc->pcie_sg_lookup[i].pcie_sgl_dma +
5828 (j * ioc->chain_segment_sz);
5832 dinitprintk(ioc,
5833 ioc_info(ioc, "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n",
5834 ioc->scsiio_depth, sz,
5835 (sz * ioc->scsiio_depth) / 1024));
5836 dinitprintk(ioc,
5837 ioc_info(ioc, "Number of chains can fit in a PRP page(%d)\n",
5838 ioc->chains_per_prp_buffer));
5839 total_sz += sz * ioc->scsiio_depth;
5842 ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
5843 ioc->chain_segment_sz, 16, 0);
5844 if (!ioc->chain_dma_pool) {
5845 ioc_err(ioc, "chain_dma_pool: dma_pool_create failed\n");
5846 goto out;
5848 for (i = 0; i < ioc->scsiio_depth; i++) {
5849 for (j = ioc->chains_per_prp_buffer;
5850 j < ioc->chains_needed_per_io; j++) {
5851 ct = &ioc->chain_lookup[i].chains_per_smid[j];
5852 ct->chain_buffer = dma_pool_alloc(
5853 ioc->chain_dma_pool, GFP_KERNEL,
5854 &ct->chain_buffer_dma);
5855 if (!ct->chain_buffer) {
5856 ioc_err(ioc, "chain_lookup: pci_pool_alloc failed\n");
5857 goto out;
5860 total_sz += ioc->chain_segment_sz;
5863 dinitprintk(ioc,
5864 ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
5865 ioc->chain_depth, ioc->chain_segment_sz,
5866 (ioc->chain_depth * ioc->chain_segment_sz) / 1024));
5868 /* sense buffers, 4 byte align */
5869 sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
5870 ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz,
5871 4, 0);
5872 if (!ioc->sense_dma_pool) {
5873 ioc_err(ioc, "sense pool: dma_pool_create failed\n");
5874 goto out;
5876 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
5877 &ioc->sense_dma);
5878 if (!ioc->sense) {
5879 ioc_err(ioc, "sense pool: dma_pool_alloc failed\n");
5880 goto out;
5882 /* sense buffer requires to be in same 4 gb region.
5883 * Below function will check the same.
5884 * In case of failure, new pci pool will be created with updated
5885 * alignment. Older allocation and pool will be destroyed.
5886 * Alignment will be used such a way that next allocation if
5887 * success, will always meet same 4gb region requirement.
5888 * Actual requirement is not alignment, but we need start and end of
5889 * DMA address must have same upper 32 bit address.
5891 if (!mpt3sas_check_same_4gb_region((long)ioc->sense, sz)) {
5892 //Release Sense pool & Reallocate
5893 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
5894 dma_pool_destroy(ioc->sense_dma_pool);
5895 ioc->sense = NULL;
5897 ioc->sense_dma_pool =
5898 dma_pool_create("sense pool", &ioc->pdev->dev, sz,
5899 roundup_pow_of_two(sz), 0);
5900 if (!ioc->sense_dma_pool) {
5901 ioc_err(ioc, "sense pool: pci_pool_create failed\n");
5902 goto out;
5904 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
5905 &ioc->sense_dma);
5906 if (!ioc->sense) {
5907 ioc_err(ioc, "sense pool: pci_pool_alloc failed\n");
5908 goto out;
5911 ioc_info(ioc,
5912 "sense pool(0x%p)- dma(0x%llx): depth(%d),"
5913 "element_size(%d), pool_size(%d kB)\n",
5914 ioc->sense, (unsigned long long)ioc->sense_dma, ioc->scsiio_depth,
5915 SCSI_SENSE_BUFFERSIZE, sz / 1024);
5917 total_sz += sz;
5919 /* reply pool, 4 byte align */
5920 sz = ioc->reply_free_queue_depth * ioc->reply_sz;
5921 ioc->reply_dma_pool = dma_pool_create("reply pool", &ioc->pdev->dev, sz,
5922 4, 0);
5923 if (!ioc->reply_dma_pool) {
5924 ioc_err(ioc, "reply pool: dma_pool_create failed\n");
5925 goto out;
5927 ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
5928 &ioc->reply_dma);
5929 if (!ioc->reply) {
5930 ioc_err(ioc, "reply pool: dma_pool_alloc failed\n");
5931 goto out;
5933 ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
5934 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
5935 dinitprintk(ioc,
5936 ioc_info(ioc, "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
5937 ioc->reply, ioc->reply_free_queue_depth,
5938 ioc->reply_sz, sz / 1024));
5939 dinitprintk(ioc,
5940 ioc_info(ioc, "reply_dma(0x%llx)\n",
5941 (unsigned long long)ioc->reply_dma));
5942 total_sz += sz;
5944 /* reply free queue, 16 byte align */
5945 sz = ioc->reply_free_queue_depth * 4;
5946 ioc->reply_free_dma_pool = dma_pool_create("reply_free pool",
5947 &ioc->pdev->dev, sz, 16, 0);
5948 if (!ioc->reply_free_dma_pool) {
5949 ioc_err(ioc, "reply_free pool: dma_pool_create failed\n");
5950 goto out;
5952 ioc->reply_free = dma_pool_zalloc(ioc->reply_free_dma_pool, GFP_KERNEL,
5953 &ioc->reply_free_dma);
5954 if (!ioc->reply_free) {
5955 ioc_err(ioc, "reply_free pool: dma_pool_alloc failed\n");
5956 goto out;
5958 dinitprintk(ioc,
5959 ioc_info(ioc, "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
5960 ioc->reply_free, ioc->reply_free_queue_depth,
5961 4, sz / 1024));
5962 dinitprintk(ioc,
5963 ioc_info(ioc, "reply_free_dma (0x%llx)\n",
5964 (unsigned long long)ioc->reply_free_dma));
5965 total_sz += sz;
5967 if (ioc->rdpq_array_enable) {
5968 reply_post_free_array_sz = ioc->reply_queue_count *
5969 sizeof(Mpi2IOCInitRDPQArrayEntry);
5970 ioc->reply_post_free_array_dma_pool =
5971 dma_pool_create("reply_post_free_array pool",
5972 &ioc->pdev->dev, reply_post_free_array_sz, 16, 0);
5973 if (!ioc->reply_post_free_array_dma_pool) {
5974 dinitprintk(ioc,
5975 ioc_info(ioc, "reply_post_free_array pool: dma_pool_create failed\n"));
5976 goto out;
5978 ioc->reply_post_free_array =
5979 dma_pool_alloc(ioc->reply_post_free_array_dma_pool,
5980 GFP_KERNEL, &ioc->reply_post_free_array_dma);
5981 if (!ioc->reply_post_free_array) {
5982 dinitprintk(ioc,
5983 ioc_info(ioc, "reply_post_free_array pool: dma_pool_alloc failed\n"));
5984 goto out;
5987 ioc->config_page_sz = 512;
5988 ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev,
5989 ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL);
5990 if (!ioc->config_page) {
5991 ioc_err(ioc, "config page: dma_pool_alloc failed\n");
5992 goto out;
5995 ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n",
5996 ioc->config_page, (unsigned long long)ioc->config_page_dma,
5997 ioc->config_page_sz);
5998 total_sz += ioc->config_page_sz;
6000 ioc_info(ioc, "Allocated physical memory: size(%d kB)\n",
6001 total_sz / 1024);
6002 ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
6003 ioc->shost->can_queue, facts->RequestCredit);
6004 ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n",
6005 ioc->shost->sg_tablesize);
6006 return 0;
6008 out:
6009 return -ENOMEM;
6013 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
6014 * @ioc: Pointer to MPT_ADAPTER structure
6015 * @cooked: Request raw or cooked IOC state
6017 * Return: all IOC Doorbell register bits if cooked==0, else just the
6018 * Doorbell bits in MPI_IOC_STATE_MASK.
6021 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
6023 u32 s, sc;
6025 s = ioc->base_readl(&ioc->chip->Doorbell);
6026 sc = s & MPI2_IOC_STATE_MASK;
6027 return cooked ? sc : s;
6031 * _base_wait_on_iocstate - waiting on a particular ioc state
6032 * @ioc: ?
6033 * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
6034 * @timeout: timeout in second
6036 * Return: 0 for success, non-zero for failure.
6038 static int
6039 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
6041 u32 count, cntdn;
6042 u32 current_state;
6044 count = 0;
6045 cntdn = 1000 * timeout;
6046 do {
6047 current_state = mpt3sas_base_get_iocstate(ioc, 1);
6048 if (current_state == ioc_state)
6049 return 0;
6050 if (count && current_state == MPI2_IOC_STATE_FAULT)
6051 break;
6052 if (count && current_state == MPI2_IOC_STATE_COREDUMP)
6053 break;
6055 usleep_range(1000, 1500);
6056 count++;
6057 } while (--cntdn);
6059 return current_state;
6063 * _base_dump_reg_set - This function will print hexdump of register set.
6064 * @ioc: per adapter object
6066 * Returns nothing.
6068 static inline void
6069 _base_dump_reg_set(struct MPT3SAS_ADAPTER *ioc)
6071 unsigned int i, sz = 256;
6072 u32 __iomem *reg = (u32 __iomem *)ioc->chip;
6074 ioc_info(ioc, "System Register set:\n");
6075 for (i = 0; i < (sz / sizeof(u32)); i++)
6076 pr_info("%08x: %08x\n", (i * 4), readl(&reg[i]));
6080 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
6081 * a write to the doorbell)
6082 * @ioc: per adapter object
6083 * @timeout: timeout in seconds
6085 * Return: 0 for success, non-zero for failure.
6087 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
6090 static int
6091 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6093 u32 cntdn, count;
6094 u32 int_status;
6096 count = 0;
6097 cntdn = 1000 * timeout;
6098 do {
6099 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6100 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6101 dhsprintk(ioc,
6102 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6103 __func__, count, timeout));
6104 return 0;
6107 usleep_range(1000, 1500);
6108 count++;
6109 } while (--cntdn);
6111 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6112 __func__, count, int_status);
6113 return -EFAULT;
6116 static int
6117 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6119 u32 cntdn, count;
6120 u32 int_status;
6122 count = 0;
6123 cntdn = 2000 * timeout;
6124 do {
6125 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6126 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6127 dhsprintk(ioc,
6128 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6129 __func__, count, timeout));
6130 return 0;
6133 udelay(500);
6134 count++;
6135 } while (--cntdn);
6137 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6138 __func__, count, int_status);
6139 return -EFAULT;
6144 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
6145 * @ioc: per adapter object
6146 * @timeout: timeout in second
6148 * Return: 0 for success, non-zero for failure.
6150 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
6151 * doorbell.
6153 static int
6154 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
6156 u32 cntdn, count;
6157 u32 int_status;
6158 u32 doorbell;
6160 count = 0;
6161 cntdn = 1000 * timeout;
6162 do {
6163 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6164 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
6165 dhsprintk(ioc,
6166 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6167 __func__, count, timeout));
6168 return 0;
6169 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6170 doorbell = ioc->base_readl(&ioc->chip->Doorbell);
6171 if ((doorbell & MPI2_IOC_STATE_MASK) ==
6172 MPI2_IOC_STATE_FAULT) {
6173 mpt3sas_print_fault_code(ioc, doorbell);
6174 return -EFAULT;
6176 if ((doorbell & MPI2_IOC_STATE_MASK) ==
6177 MPI2_IOC_STATE_COREDUMP) {
6178 mpt3sas_print_coredump_info(ioc, doorbell);
6179 return -EFAULT;
6181 } else if (int_status == 0xFFFFFFFF)
6182 goto out;
6184 usleep_range(1000, 1500);
6185 count++;
6186 } while (--cntdn);
6188 out:
6189 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6190 __func__, count, int_status);
6191 return -EFAULT;
6195 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
6196 * @ioc: per adapter object
6197 * @timeout: timeout in second
6199 * Return: 0 for success, non-zero for failure.
6201 static int
6202 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
6204 u32 cntdn, count;
6205 u32 doorbell_reg;
6207 count = 0;
6208 cntdn = 1000 * timeout;
6209 do {
6210 doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell);
6211 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
6212 dhsprintk(ioc,
6213 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6214 __func__, count, timeout));
6215 return 0;
6218 usleep_range(1000, 1500);
6219 count++;
6220 } while (--cntdn);
6222 ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
6223 __func__, count, doorbell_reg);
6224 return -EFAULT;
6228 * _base_send_ioc_reset - send doorbell reset
6229 * @ioc: per adapter object
6230 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
6231 * @timeout: timeout in second
6233 * Return: 0 for success, non-zero for failure.
6235 static int
6236 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
6238 u32 ioc_state;
6239 int r = 0;
6240 unsigned long flags;
6242 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
6243 ioc_err(ioc, "%s: unknown reset_type\n", __func__);
6244 return -EFAULT;
6247 if (!(ioc->facts.IOCCapabilities &
6248 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
6249 return -EFAULT;
6251 ioc_info(ioc, "sending message unit reset !!\n");
6253 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
6254 &ioc->chip->Doorbell);
6255 if ((_base_wait_for_doorbell_ack(ioc, 15))) {
6256 r = -EFAULT;
6257 goto out;
6260 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
6261 if (ioc_state) {
6262 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6263 __func__, ioc_state);
6264 r = -EFAULT;
6265 goto out;
6267 out:
6268 if (r != 0) {
6269 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6270 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
6272 * Wait for IOC state CoreDump to clear only during
6273 * HBA initialization & release time.
6275 if ((ioc_state & MPI2_IOC_STATE_MASK) ==
6276 MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 ||
6277 ioc->fault_reset_work_q == NULL)) {
6278 spin_unlock_irqrestore(
6279 &ioc->ioc_reset_in_progress_lock, flags);
6280 mpt3sas_print_coredump_info(ioc, ioc_state);
6281 mpt3sas_base_wait_for_coredump_completion(ioc,
6282 __func__);
6283 spin_lock_irqsave(
6284 &ioc->ioc_reset_in_progress_lock, flags);
6286 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
6288 ioc_info(ioc, "message unit reset: %s\n",
6289 r == 0 ? "SUCCESS" : "FAILED");
6290 return r;
6294 * mpt3sas_wait_for_ioc - IOC's operational state is checked here.
6295 * @ioc: per adapter object
6296 * @timeout: timeout in seconds
6298 * Return: Waits up to timeout seconds for the IOC to
6299 * become operational. Returns 0 if IOC is present
6300 * and operational; otherwise returns -EFAULT.
6304 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout)
6306 int wait_state_count = 0;
6307 u32 ioc_state;
6309 do {
6310 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
6311 if (ioc_state == MPI2_IOC_STATE_OPERATIONAL)
6312 break;
6313 ssleep(1);
6314 ioc_info(ioc, "%s: waiting for operational state(count=%d)\n",
6315 __func__, ++wait_state_count);
6316 } while (--timeout);
6317 if (!timeout) {
6318 ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__);
6319 return -EFAULT;
6321 if (wait_state_count)
6322 ioc_info(ioc, "ioc is operational\n");
6323 return 0;
6327 * _base_handshake_req_reply_wait - send request thru doorbell interface
6328 * @ioc: per adapter object
6329 * @request_bytes: request length
6330 * @request: pointer having request payload
6331 * @reply_bytes: reply length
6332 * @reply: pointer to reply payload
6333 * @timeout: timeout in second
6335 * Return: 0 for success, non-zero for failure.
6337 static int
6338 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
6339 u32 *request, int reply_bytes, u16 *reply, int timeout)
6341 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
6342 int i;
6343 u8 failed;
6344 __le32 *mfp;
6346 /* make sure doorbell is not in use */
6347 if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
6348 ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__);
6349 return -EFAULT;
6352 /* clear pending doorbell interrupts from previous state changes */
6353 if (ioc->base_readl(&ioc->chip->HostInterruptStatus) &
6354 MPI2_HIS_IOC2SYS_DB_STATUS)
6355 writel(0, &ioc->chip->HostInterruptStatus);
6357 /* send message to ioc */
6358 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
6359 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
6360 &ioc->chip->Doorbell);
6362 if ((_base_spin_on_doorbell_int(ioc, 5))) {
6363 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6364 __LINE__);
6365 return -EFAULT;
6367 writel(0, &ioc->chip->HostInterruptStatus);
6369 if ((_base_wait_for_doorbell_ack(ioc, 5))) {
6370 ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n",
6371 __LINE__);
6372 return -EFAULT;
6375 /* send message 32-bits at a time */
6376 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
6377 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
6378 if ((_base_wait_for_doorbell_ack(ioc, 5)))
6379 failed = 1;
6382 if (failed) {
6383 ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n",
6384 __LINE__);
6385 return -EFAULT;
6388 /* now wait for the reply */
6389 if ((_base_wait_for_doorbell_int(ioc, timeout))) {
6390 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6391 __LINE__);
6392 return -EFAULT;
6395 /* read the first two 16-bits, it gives the total length of the reply */
6396 reply[0] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
6397 & MPI2_DOORBELL_DATA_MASK);
6398 writel(0, &ioc->chip->HostInterruptStatus);
6399 if ((_base_wait_for_doorbell_int(ioc, 5))) {
6400 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6401 __LINE__);
6402 return -EFAULT;
6404 reply[1] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
6405 & MPI2_DOORBELL_DATA_MASK);
6406 writel(0, &ioc->chip->HostInterruptStatus);
6408 for (i = 2; i < default_reply->MsgLength * 2; i++) {
6409 if ((_base_wait_for_doorbell_int(ioc, 5))) {
6410 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6411 __LINE__);
6412 return -EFAULT;
6414 if (i >= reply_bytes/2) /* overflow case */
6415 ioc->base_readl(&ioc->chip->Doorbell);
6416 else
6417 reply[i] = le16_to_cpu(
6418 ioc->base_readl(&ioc->chip->Doorbell)
6419 & MPI2_DOORBELL_DATA_MASK);
6420 writel(0, &ioc->chip->HostInterruptStatus);
6423 _base_wait_for_doorbell_int(ioc, 5);
6424 if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
6425 dhsprintk(ioc,
6426 ioc_info(ioc, "doorbell is in use (line=%d)\n",
6427 __LINE__));
6429 writel(0, &ioc->chip->HostInterruptStatus);
6431 if (ioc->logging_level & MPT_DEBUG_INIT) {
6432 mfp = (__le32 *)reply;
6433 pr_info("\toffset:data\n");
6434 for (i = 0; i < reply_bytes/4; i++)
6435 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
6436 le32_to_cpu(mfp[i]));
6438 return 0;
6442 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
6443 * @ioc: per adapter object
6444 * @mpi_reply: the reply payload from FW
6445 * @mpi_request: the request payload sent to FW
6447 * The SAS IO Unit Control Request message allows the host to perform low-level
6448 * operations, such as resets on the PHYs of the IO Unit, also allows the host
6449 * to obtain the IOC assigned device handles for a device if it has other
6450 * identifying information about the device, in addition allows the host to
6451 * remove IOC resources associated with the device.
6453 * Return: 0 for success, non-zero for failure.
6456 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
6457 Mpi2SasIoUnitControlReply_t *mpi_reply,
6458 Mpi2SasIoUnitControlRequest_t *mpi_request)
6460 u16 smid;
6461 u8 issue_reset = 0;
6462 int rc;
6463 void *request;
6465 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6467 mutex_lock(&ioc->base_cmds.mutex);
6469 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
6470 ioc_err(ioc, "%s: base_cmd in use\n", __func__);
6471 rc = -EAGAIN;
6472 goto out;
6475 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
6476 if (rc)
6477 goto out;
6479 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
6480 if (!smid) {
6481 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6482 rc = -EAGAIN;
6483 goto out;
6486 rc = 0;
6487 ioc->base_cmds.status = MPT3_CMD_PENDING;
6488 request = mpt3sas_base_get_msg_frame(ioc, smid);
6489 ioc->base_cmds.smid = smid;
6490 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
6491 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
6492 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
6493 ioc->ioc_link_reset_in_progress = 1;
6494 init_completion(&ioc->base_cmds.done);
6495 ioc->put_smid_default(ioc, smid);
6496 wait_for_completion_timeout(&ioc->base_cmds.done,
6497 msecs_to_jiffies(10000));
6498 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
6499 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
6500 ioc->ioc_link_reset_in_progress)
6501 ioc->ioc_link_reset_in_progress = 0;
6502 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
6503 mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status,
6504 mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4,
6505 issue_reset);
6506 goto issue_host_reset;
6508 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
6509 memcpy(mpi_reply, ioc->base_cmds.reply,
6510 sizeof(Mpi2SasIoUnitControlReply_t));
6511 else
6512 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
6513 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6514 goto out;
6516 issue_host_reset:
6517 if (issue_reset)
6518 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
6519 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6520 rc = -EFAULT;
6521 out:
6522 mutex_unlock(&ioc->base_cmds.mutex);
6523 return rc;
6527 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
6528 * @ioc: per adapter object
6529 * @mpi_reply: the reply payload from FW
6530 * @mpi_request: the request payload sent to FW
6532 * The SCSI Enclosure Processor request message causes the IOC to
6533 * communicate with SES devices to control LED status signals.
6535 * Return: 0 for success, non-zero for failure.
6538 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
6539 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
6541 u16 smid;
6542 u8 issue_reset = 0;
6543 int rc;
6544 void *request;
6546 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6548 mutex_lock(&ioc->base_cmds.mutex);
6550 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
6551 ioc_err(ioc, "%s: base_cmd in use\n", __func__);
6552 rc = -EAGAIN;
6553 goto out;
6556 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
6557 if (rc)
6558 goto out;
6560 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
6561 if (!smid) {
6562 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6563 rc = -EAGAIN;
6564 goto out;
6567 rc = 0;
6568 ioc->base_cmds.status = MPT3_CMD_PENDING;
6569 request = mpt3sas_base_get_msg_frame(ioc, smid);
6570 ioc->base_cmds.smid = smid;
6571 memset(request, 0, ioc->request_sz);
6572 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
6573 init_completion(&ioc->base_cmds.done);
6574 ioc->put_smid_default(ioc, smid);
6575 wait_for_completion_timeout(&ioc->base_cmds.done,
6576 msecs_to_jiffies(10000));
6577 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
6578 mpt3sas_check_cmd_timeout(ioc,
6579 ioc->base_cmds.status, mpi_request,
6580 sizeof(Mpi2SepRequest_t)/4, issue_reset);
6581 goto issue_host_reset;
6583 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
6584 memcpy(mpi_reply, ioc->base_cmds.reply,
6585 sizeof(Mpi2SepReply_t));
6586 else
6587 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
6588 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6589 goto out;
6591 issue_host_reset:
6592 if (issue_reset)
6593 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
6594 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6595 rc = -EFAULT;
6596 out:
6597 mutex_unlock(&ioc->base_cmds.mutex);
6598 return rc;
6602 * _base_get_port_facts - obtain port facts reply and save in ioc
6603 * @ioc: per adapter object
6604 * @port: ?
6606 * Return: 0 for success, non-zero for failure.
6608 static int
6609 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
6611 Mpi2PortFactsRequest_t mpi_request;
6612 Mpi2PortFactsReply_t mpi_reply;
6613 struct mpt3sas_port_facts *pfacts;
6614 int mpi_reply_sz, mpi_request_sz, r;
6616 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6618 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
6619 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
6620 memset(&mpi_request, 0, mpi_request_sz);
6621 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
6622 mpi_request.PortNumber = port;
6623 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
6624 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
6626 if (r != 0) {
6627 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
6628 return r;
6631 pfacts = &ioc->pfacts[port];
6632 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
6633 pfacts->PortNumber = mpi_reply.PortNumber;
6634 pfacts->VP_ID = mpi_reply.VP_ID;
6635 pfacts->VF_ID = mpi_reply.VF_ID;
6636 pfacts->MaxPostedCmdBuffers =
6637 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
6639 return 0;
6643 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
6644 * @ioc: per adapter object
6645 * @timeout:
6647 * Return: 0 for success, non-zero for failure.
6649 static int
6650 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
6652 u32 ioc_state;
6653 int rc;
6655 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6657 if (ioc->pci_error_recovery) {
6658 dfailprintk(ioc,
6659 ioc_info(ioc, "%s: host in pci error recovery\n",
6660 __func__));
6661 return -EFAULT;
6664 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6665 dhsprintk(ioc,
6666 ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
6667 __func__, ioc_state));
6669 if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
6670 (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
6671 return 0;
6673 if (ioc_state & MPI2_DOORBELL_USED) {
6674 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n"));
6675 goto issue_diag_reset;
6678 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
6679 mpt3sas_print_fault_code(ioc, ioc_state &
6680 MPI2_DOORBELL_DATA_MASK);
6681 goto issue_diag_reset;
6682 } else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
6683 MPI2_IOC_STATE_COREDUMP) {
6684 ioc_info(ioc,
6685 "%s: Skipping the diag reset here. (ioc_state=0x%x)\n",
6686 __func__, ioc_state);
6687 return -EFAULT;
6690 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
6691 if (ioc_state) {
6692 dfailprintk(ioc,
6693 ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6694 __func__, ioc_state));
6695 return -EFAULT;
6698 issue_diag_reset:
6699 rc = _base_diag_reset(ioc);
6700 return rc;
6704 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
6705 * @ioc: per adapter object
6707 * Return: 0 for success, non-zero for failure.
6709 static int
6710 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
6712 Mpi2IOCFactsRequest_t mpi_request;
6713 Mpi2IOCFactsReply_t mpi_reply;
6714 struct mpt3sas_facts *facts;
6715 int mpi_reply_sz, mpi_request_sz, r;
6717 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6719 r = _base_wait_for_iocstate(ioc, 10);
6720 if (r) {
6721 dfailprintk(ioc,
6722 ioc_info(ioc, "%s: failed getting to correct state\n",
6723 __func__));
6724 return r;
6726 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
6727 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
6728 memset(&mpi_request, 0, mpi_request_sz);
6729 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
6730 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
6731 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
6733 if (r != 0) {
6734 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
6735 return r;
6738 facts = &ioc->facts;
6739 memset(facts, 0, sizeof(struct mpt3sas_facts));
6740 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
6741 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
6742 facts->VP_ID = mpi_reply.VP_ID;
6743 facts->VF_ID = mpi_reply.VF_ID;
6744 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
6745 facts->MaxChainDepth = mpi_reply.MaxChainDepth;
6746 facts->WhoInit = mpi_reply.WhoInit;
6747 facts->NumberOfPorts = mpi_reply.NumberOfPorts;
6748 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
6749 if (ioc->msix_enable && (facts->MaxMSIxVectors <=
6750 MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc)))
6751 ioc->combined_reply_queue = 0;
6752 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
6753 facts->MaxReplyDescriptorPostQueueDepth =
6754 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
6755 facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
6756 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
6757 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
6758 ioc->ir_firmware = 1;
6759 if ((facts->IOCCapabilities &
6760 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
6761 ioc->rdpq_array_capable = 1;
6762 if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
6763 && ioc->is_aero_ioc)
6764 ioc->atomic_desc_capable = 1;
6765 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
6766 facts->IOCRequestFrameSize =
6767 le16_to_cpu(mpi_reply.IOCRequestFrameSize);
6768 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
6769 facts->IOCMaxChainSegmentSize =
6770 le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
6772 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
6773 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
6774 ioc->shost->max_id = -1;
6775 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
6776 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
6777 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
6778 facts->HighPriorityCredit =
6779 le16_to_cpu(mpi_reply.HighPriorityCredit);
6780 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
6781 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
6782 facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
6785 * Get the Page Size from IOC Facts. If it's 0, default to 4k.
6787 ioc->page_size = 1 << facts->CurrentHostPageSize;
6788 if (ioc->page_size == 1) {
6789 ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n");
6790 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
6792 dinitprintk(ioc,
6793 ioc_info(ioc, "CurrentHostPageSize(%d)\n",
6794 facts->CurrentHostPageSize));
6796 dinitprintk(ioc,
6797 ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n",
6798 facts->RequestCredit, facts->MaxChainDepth));
6799 dinitprintk(ioc,
6800 ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n",
6801 facts->IOCRequestFrameSize * 4,
6802 facts->ReplyFrameSize * 4));
6803 return 0;
6807 * _base_send_ioc_init - send ioc_init to firmware
6808 * @ioc: per adapter object
6810 * Return: 0 for success, non-zero for failure.
6812 static int
6813 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
6815 Mpi2IOCInitRequest_t mpi_request;
6816 Mpi2IOCInitReply_t mpi_reply;
6817 int i, r = 0;
6818 ktime_t current_time;
6819 u16 ioc_status;
6820 u32 reply_post_free_array_sz = 0;
6822 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6824 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
6825 mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
6826 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
6827 mpi_request.VF_ID = 0; /* TODO */
6828 mpi_request.VP_ID = 0;
6829 mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
6830 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
6831 mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
6833 if (_base_is_controller_msix_enabled(ioc))
6834 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
6835 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
6836 mpi_request.ReplyDescriptorPostQueueDepth =
6837 cpu_to_le16(ioc->reply_post_queue_depth);
6838 mpi_request.ReplyFreeQueueDepth =
6839 cpu_to_le16(ioc->reply_free_queue_depth);
6841 mpi_request.SenseBufferAddressHigh =
6842 cpu_to_le32((u64)ioc->sense_dma >> 32);
6843 mpi_request.SystemReplyAddressHigh =
6844 cpu_to_le32((u64)ioc->reply_dma >> 32);
6845 mpi_request.SystemRequestFrameBaseAddress =
6846 cpu_to_le64((u64)ioc->request_dma);
6847 mpi_request.ReplyFreeQueueAddress =
6848 cpu_to_le64((u64)ioc->reply_free_dma);
6850 if (ioc->rdpq_array_enable) {
6851 reply_post_free_array_sz = ioc->reply_queue_count *
6852 sizeof(Mpi2IOCInitRDPQArrayEntry);
6853 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz);
6854 for (i = 0; i < ioc->reply_queue_count; i++)
6855 ioc->reply_post_free_array[i].RDPQBaseAddress =
6856 cpu_to_le64(
6857 (u64)ioc->reply_post[i].reply_post_free_dma);
6858 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
6859 mpi_request.ReplyDescriptorPostQueueAddress =
6860 cpu_to_le64((u64)ioc->reply_post_free_array_dma);
6861 } else {
6862 mpi_request.ReplyDescriptorPostQueueAddress =
6863 cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
6867 * Set the flag to enable CoreDump state feature in IOC firmware.
6869 mpi_request.ConfigurationFlags |=
6870 cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE);
6872 /* This time stamp specifies number of milliseconds
6873 * since epoch ~ midnight January 1, 1970.
6875 current_time = ktime_get_real();
6876 mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
6878 if (ioc->logging_level & MPT_DEBUG_INIT) {
6879 __le32 *mfp;
6880 int i;
6882 mfp = (__le32 *)&mpi_request;
6883 ioc_info(ioc, "\toffset:data\n");
6884 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
6885 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
6886 le32_to_cpu(mfp[i]));
6889 r = _base_handshake_req_reply_wait(ioc,
6890 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
6891 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 30);
6893 if (r != 0) {
6894 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
6895 return r;
6898 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
6899 if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
6900 mpi_reply.IOCLogInfo) {
6901 ioc_err(ioc, "%s: failed\n", __func__);
6902 r = -EIO;
6905 /* Reset TimeSync Counter*/
6906 ioc->timestamp_update_count = 0;
6907 return r;
6911 * mpt3sas_port_enable_done - command completion routine for port enable
6912 * @ioc: per adapter object
6913 * @smid: system request message index
6914 * @msix_index: MSIX table index supplied by the OS
6915 * @reply: reply message frame(lower 32bit addr)
6917 * Return: 1 meaning mf should be freed from _base_interrupt
6918 * 0 means the mf is freed from this function.
6921 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
6922 u32 reply)
6924 MPI2DefaultReply_t *mpi_reply;
6925 u16 ioc_status;
6927 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
6928 return 1;
6930 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
6931 if (!mpi_reply)
6932 return 1;
6934 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
6935 return 1;
6937 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
6938 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
6939 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
6940 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
6941 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
6942 if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
6943 ioc->port_enable_failed = 1;
6945 if (ioc->is_driver_loading) {
6946 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
6947 mpt3sas_port_enable_complete(ioc);
6948 return 1;
6949 } else {
6950 ioc->start_scan_failed = ioc_status;
6951 ioc->start_scan = 0;
6952 return 1;
6955 complete(&ioc->port_enable_cmds.done);
6956 return 1;
6960 * _base_send_port_enable - send port_enable(discovery stuff) to firmware
6961 * @ioc: per adapter object
6963 * Return: 0 for success, non-zero for failure.
6965 static int
6966 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
6968 Mpi2PortEnableRequest_t *mpi_request;
6969 Mpi2PortEnableReply_t *mpi_reply;
6970 int r = 0;
6971 u16 smid;
6972 u16 ioc_status;
6974 ioc_info(ioc, "sending port enable !!\n");
6976 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
6977 ioc_err(ioc, "%s: internal command already in use\n", __func__);
6978 return -EAGAIN;
6981 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
6982 if (!smid) {
6983 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6984 return -EAGAIN;
6987 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
6988 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
6989 ioc->port_enable_cmds.smid = smid;
6990 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
6991 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
6993 init_completion(&ioc->port_enable_cmds.done);
6994 ioc->put_smid_default(ioc, smid);
6995 wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
6996 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
6997 ioc_err(ioc, "%s: timeout\n", __func__);
6998 _debug_dump_mf(mpi_request,
6999 sizeof(Mpi2PortEnableRequest_t)/4);
7000 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
7001 r = -EFAULT;
7002 else
7003 r = -ETIME;
7004 goto out;
7007 mpi_reply = ioc->port_enable_cmds.reply;
7008 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
7009 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
7010 ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n",
7011 __func__, ioc_status);
7012 r = -EFAULT;
7013 goto out;
7016 out:
7017 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
7018 ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED");
7019 return r;
7023 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
7024 * @ioc: per adapter object
7026 * Return: 0 for success, non-zero for failure.
7029 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
7031 Mpi2PortEnableRequest_t *mpi_request;
7032 u16 smid;
7034 ioc_info(ioc, "sending port enable !!\n");
7036 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7037 ioc_err(ioc, "%s: internal command already in use\n", __func__);
7038 return -EAGAIN;
7041 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
7042 if (!smid) {
7043 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7044 return -EAGAIN;
7047 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
7048 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7049 ioc->port_enable_cmds.smid = smid;
7050 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
7051 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
7053 ioc->put_smid_default(ioc, smid);
7054 return 0;
7058 * _base_determine_wait_on_discovery - desposition
7059 * @ioc: per adapter object
7061 * Decide whether to wait on discovery to complete. Used to either
7062 * locate boot device, or report volumes ahead of physical devices.
7064 * Return: 1 for wait, 0 for don't wait.
7066 static int
7067 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
7069 /* We wait for discovery to complete if IR firmware is loaded.
7070 * The sas topology events arrive before PD events, so we need time to
7071 * turn on the bit in ioc->pd_handles to indicate PD
7072 * Also, it maybe required to report Volumes ahead of physical
7073 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
7075 if (ioc->ir_firmware)
7076 return 1;
7078 /* if no Bios, then we don't need to wait */
7079 if (!ioc->bios_pg3.BiosVersion)
7080 return 0;
7082 /* Bios is present, then we drop down here.
7084 * If there any entries in the Bios Page 2, then we wait
7085 * for discovery to complete.
7088 /* Current Boot Device */
7089 if ((ioc->bios_pg2.CurrentBootDeviceForm &
7090 MPI2_BIOSPAGE2_FORM_MASK) ==
7091 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7092 /* Request Boot Device */
7093 (ioc->bios_pg2.ReqBootDeviceForm &
7094 MPI2_BIOSPAGE2_FORM_MASK) ==
7095 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7096 /* Alternate Request Boot Device */
7097 (ioc->bios_pg2.ReqAltBootDeviceForm &
7098 MPI2_BIOSPAGE2_FORM_MASK) ==
7099 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
7100 return 0;
7102 return 1;
7106 * _base_unmask_events - turn on notification for this event
7107 * @ioc: per adapter object
7108 * @event: firmware event
7110 * The mask is stored in ioc->event_masks.
7112 static void
7113 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
7115 u32 desired_event;
7117 if (event >= 128)
7118 return;
7120 desired_event = (1 << (event % 32));
7122 if (event < 32)
7123 ioc->event_masks[0] &= ~desired_event;
7124 else if (event < 64)
7125 ioc->event_masks[1] &= ~desired_event;
7126 else if (event < 96)
7127 ioc->event_masks[2] &= ~desired_event;
7128 else if (event < 128)
7129 ioc->event_masks[3] &= ~desired_event;
7133 * _base_event_notification - send event notification
7134 * @ioc: per adapter object
7136 * Return: 0 for success, non-zero for failure.
7138 static int
7139 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
7141 Mpi2EventNotificationRequest_t *mpi_request;
7142 u16 smid;
7143 int r = 0;
7144 int i;
7146 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7148 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
7149 ioc_err(ioc, "%s: internal command already in use\n", __func__);
7150 return -EAGAIN;
7153 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7154 if (!smid) {
7155 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7156 return -EAGAIN;
7158 ioc->base_cmds.status = MPT3_CMD_PENDING;
7159 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7160 ioc->base_cmds.smid = smid;
7161 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
7162 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
7163 mpi_request->VF_ID = 0; /* TODO */
7164 mpi_request->VP_ID = 0;
7165 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
7166 mpi_request->EventMasks[i] =
7167 cpu_to_le32(ioc->event_masks[i]);
7168 init_completion(&ioc->base_cmds.done);
7169 ioc->put_smid_default(ioc, smid);
7170 wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
7171 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7172 ioc_err(ioc, "%s: timeout\n", __func__);
7173 _debug_dump_mf(mpi_request,
7174 sizeof(Mpi2EventNotificationRequest_t)/4);
7175 if (ioc->base_cmds.status & MPT3_CMD_RESET)
7176 r = -EFAULT;
7177 else
7178 r = -ETIME;
7179 } else
7180 dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__));
7181 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7182 return r;
7186 * mpt3sas_base_validate_event_type - validating event types
7187 * @ioc: per adapter object
7188 * @event_type: firmware event
7190 * This will turn on firmware event notification when application
7191 * ask for that event. We don't mask events that are already enabled.
7193 void
7194 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
7196 int i, j;
7197 u32 event_mask, desired_event;
7198 u8 send_update_to_fw;
7200 for (i = 0, send_update_to_fw = 0; i <
7201 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
7202 event_mask = ~event_type[i];
7203 desired_event = 1;
7204 for (j = 0; j < 32; j++) {
7205 if (!(event_mask & desired_event) &&
7206 (ioc->event_masks[i] & desired_event)) {
7207 ioc->event_masks[i] &= ~desired_event;
7208 send_update_to_fw = 1;
7210 desired_event = (desired_event << 1);
7214 if (!send_update_to_fw)
7215 return;
7217 mutex_lock(&ioc->base_cmds.mutex);
7218 _base_event_notification(ioc);
7219 mutex_unlock(&ioc->base_cmds.mutex);
7223 * _base_diag_reset - the "big hammer" start of day reset
7224 * @ioc: per adapter object
7226 * Return: 0 for success, non-zero for failure.
7228 static int
7229 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
7231 u32 host_diagnostic;
7232 u32 ioc_state;
7233 u32 count;
7234 u32 hcb_size;
7236 ioc_info(ioc, "sending diag reset !!\n");
7238 drsprintk(ioc, ioc_info(ioc, "clear interrupts\n"));
7240 count = 0;
7241 do {
7242 /* Write magic sequence to WriteSequence register
7243 * Loop until in diagnostic mode
7245 drsprintk(ioc, ioc_info(ioc, "write magic sequence\n"));
7246 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
7247 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
7248 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
7249 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
7250 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
7251 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
7252 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
7254 /* wait 100 msec */
7255 msleep(100);
7257 if (count++ > 20) {
7258 ioc_info(ioc,
7259 "Stop writing magic sequence after 20 retries\n");
7260 _base_dump_reg_set(ioc);
7261 goto out;
7264 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
7265 drsprintk(ioc,
7266 ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
7267 count, host_diagnostic));
7269 } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
7271 hcb_size = ioc->base_readl(&ioc->chip->HCBSize);
7273 drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n"));
7274 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
7275 &ioc->chip->HostDiagnostic);
7277 /*This delay allows the chip PCIe hardware time to finish reset tasks*/
7278 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
7280 /* Approximately 300 second max wait */
7281 for (count = 0; count < (300000000 /
7282 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
7284 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
7286 if (host_diagnostic == 0xFFFFFFFF) {
7287 ioc_info(ioc,
7288 "Invalid host diagnostic register value\n");
7289 _base_dump_reg_set(ioc);
7290 goto out;
7292 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
7293 break;
7295 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
7298 if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
7300 drsprintk(ioc,
7301 ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n"));
7302 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
7303 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
7304 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
7306 drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n"));
7307 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
7308 &ioc->chip->HCBSize);
7311 drsprintk(ioc, ioc_info(ioc, "restart the adapter\n"));
7312 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
7313 &ioc->chip->HostDiagnostic);
7315 drsprintk(ioc,
7316 ioc_info(ioc, "disable writes to the diagnostic register\n"));
7317 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
7319 drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n"));
7320 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
7321 if (ioc_state) {
7322 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7323 __func__, ioc_state);
7324 _base_dump_reg_set(ioc);
7325 goto out;
7328 ioc_info(ioc, "diag reset: SUCCESS\n");
7329 return 0;
7331 out:
7332 ioc_err(ioc, "diag reset: FAILED\n");
7333 return -EFAULT;
7337 * _base_make_ioc_ready - put controller in READY state
7338 * @ioc: per adapter object
7339 * @type: FORCE_BIG_HAMMER or SOFT_RESET
7341 * Return: 0 for success, non-zero for failure.
7343 static int
7344 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
7346 u32 ioc_state;
7347 int rc;
7348 int count;
7350 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7352 if (ioc->pci_error_recovery)
7353 return 0;
7355 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7356 dhsprintk(ioc,
7357 ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
7358 __func__, ioc_state));
7360 /* if in RESET state, it should move to READY state shortly */
7361 count = 0;
7362 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
7363 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
7364 MPI2_IOC_STATE_READY) {
7365 if (count++ == 10) {
7366 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7367 __func__, ioc_state);
7368 return -EFAULT;
7370 ssleep(1);
7371 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7375 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
7376 return 0;
7378 if (ioc_state & MPI2_DOORBELL_USED) {
7379 ioc_info(ioc, "unexpected doorbell active!\n");
7380 goto issue_diag_reset;
7383 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
7384 mpt3sas_print_fault_code(ioc, ioc_state &
7385 MPI2_DOORBELL_DATA_MASK);
7386 goto issue_diag_reset;
7389 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
7391 * if host reset is invoked while watch dog thread is waiting
7392 * for IOC state to be changed to Fault state then driver has
7393 * to wait here for CoreDump state to clear otherwise reset
7394 * will be issued to the FW and FW move the IOC state to
7395 * reset state without copying the FW logs to coredump region.
7397 if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) {
7398 mpt3sas_print_coredump_info(ioc, ioc_state &
7399 MPI2_DOORBELL_DATA_MASK);
7400 mpt3sas_base_wait_for_coredump_completion(ioc,
7401 __func__);
7403 goto issue_diag_reset;
7406 if (type == FORCE_BIG_HAMMER)
7407 goto issue_diag_reset;
7409 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
7410 if (!(_base_send_ioc_reset(ioc,
7411 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
7412 return 0;
7415 issue_diag_reset:
7416 rc = _base_diag_reset(ioc);
7417 return rc;
7421 * _base_make_ioc_operational - put controller in OPERATIONAL state
7422 * @ioc: per adapter object
7424 * Return: 0 for success, non-zero for failure.
7426 static int
7427 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
7429 int r, i, index, rc;
7430 unsigned long flags;
7431 u32 reply_address;
7432 u16 smid;
7433 struct _tr_list *delayed_tr, *delayed_tr_next;
7434 struct _sc_list *delayed_sc, *delayed_sc_next;
7435 struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
7436 u8 hide_flag;
7437 struct adapter_reply_queue *reply_q;
7438 Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
7440 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7442 /* clean the delayed target reset list */
7443 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
7444 &ioc->delayed_tr_list, list) {
7445 list_del(&delayed_tr->list);
7446 kfree(delayed_tr);
7450 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
7451 &ioc->delayed_tr_volume_list, list) {
7452 list_del(&delayed_tr->list);
7453 kfree(delayed_tr);
7456 list_for_each_entry_safe(delayed_sc, delayed_sc_next,
7457 &ioc->delayed_sc_list, list) {
7458 list_del(&delayed_sc->list);
7459 kfree(delayed_sc);
7462 list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
7463 &ioc->delayed_event_ack_list, list) {
7464 list_del(&delayed_event_ack->list);
7465 kfree(delayed_event_ack);
7468 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
7470 /* hi-priority queue */
7471 INIT_LIST_HEAD(&ioc->hpr_free_list);
7472 smid = ioc->hi_priority_smid;
7473 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
7474 ioc->hpr_lookup[i].cb_idx = 0xFF;
7475 ioc->hpr_lookup[i].smid = smid;
7476 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
7477 &ioc->hpr_free_list);
7480 /* internal queue */
7481 INIT_LIST_HEAD(&ioc->internal_free_list);
7482 smid = ioc->internal_smid;
7483 for (i = 0; i < ioc->internal_depth; i++, smid++) {
7484 ioc->internal_lookup[i].cb_idx = 0xFF;
7485 ioc->internal_lookup[i].smid = smid;
7486 list_add_tail(&ioc->internal_lookup[i].tracker_list,
7487 &ioc->internal_free_list);
7490 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
7492 /* initialize Reply Free Queue */
7493 for (i = 0, reply_address = (u32)ioc->reply_dma ;
7494 i < ioc->reply_free_queue_depth ; i++, reply_address +=
7495 ioc->reply_sz) {
7496 ioc->reply_free[i] = cpu_to_le32(reply_address);
7497 if (ioc->is_mcpu_endpoint)
7498 _base_clone_reply_to_sys_mem(ioc,
7499 reply_address, i);
7502 /* initialize reply queues */
7503 if (ioc->is_driver_loading)
7504 _base_assign_reply_queues(ioc);
7506 /* initialize Reply Post Free Queue */
7507 index = 0;
7508 reply_post_free_contig = ioc->reply_post[0].reply_post_free;
7509 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
7511 * If RDPQ is enabled, switch to the next allocation.
7512 * Otherwise advance within the contiguous region.
7514 if (ioc->rdpq_array_enable) {
7515 reply_q->reply_post_free =
7516 ioc->reply_post[index++].reply_post_free;
7517 } else {
7518 reply_q->reply_post_free = reply_post_free_contig;
7519 reply_post_free_contig += ioc->reply_post_queue_depth;
7522 reply_q->reply_post_host_index = 0;
7523 for (i = 0; i < ioc->reply_post_queue_depth; i++)
7524 reply_q->reply_post_free[i].Words =
7525 cpu_to_le64(ULLONG_MAX);
7526 if (!_base_is_controller_msix_enabled(ioc))
7527 goto skip_init_reply_post_free_queue;
7529 skip_init_reply_post_free_queue:
7531 r = _base_send_ioc_init(ioc);
7532 if (r) {
7534 * No need to check IOC state for fault state & issue
7535 * diag reset during host reset. This check is need
7536 * only during driver load time.
7538 if (!ioc->is_driver_loading)
7539 return r;
7541 rc = _base_check_for_fault_and_issue_reset(ioc);
7542 if (rc || (_base_send_ioc_init(ioc)))
7543 return r;
7546 /* initialize reply free host index */
7547 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
7548 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
7550 /* initialize reply post host index */
7551 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
7552 if (ioc->combined_reply_queue)
7553 writel((reply_q->msix_index & 7)<<
7554 MPI2_RPHI_MSIX_INDEX_SHIFT,
7555 ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
7556 else
7557 writel(reply_q->msix_index <<
7558 MPI2_RPHI_MSIX_INDEX_SHIFT,
7559 &ioc->chip->ReplyPostHostIndex);
7561 if (!_base_is_controller_msix_enabled(ioc))
7562 goto skip_init_reply_post_host_index;
7565 skip_init_reply_post_host_index:
7567 mpt3sas_base_unmask_interrupts(ioc);
7569 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
7570 r = _base_display_fwpkg_version(ioc);
7571 if (r)
7572 return r;
7575 _base_static_config_pages(ioc);
7576 r = _base_event_notification(ioc);
7577 if (r)
7578 return r;
7580 if (ioc->is_driver_loading) {
7582 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
7583 == 0x80) {
7584 hide_flag = (u8) (
7585 le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
7586 MFG_PAGE10_HIDE_SSDS_MASK);
7587 if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
7588 ioc->mfg_pg10_hide_flag = hide_flag;
7591 ioc->wait_for_discovery_to_complete =
7592 _base_determine_wait_on_discovery(ioc);
7594 return r; /* scan_start and scan_finished support */
7597 r = _base_send_port_enable(ioc);
7598 if (r)
7599 return r;
7601 return r;
7605 * mpt3sas_base_free_resources - free resources controller resources
7606 * @ioc: per adapter object
7608 void
7609 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
7611 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7613 /* synchronizing freeing resource with pci_access_mutex lock */
7614 mutex_lock(&ioc->pci_access_mutex);
7615 if (ioc->chip_phys && ioc->chip) {
7616 mpt3sas_base_mask_interrupts(ioc);
7617 ioc->shost_recovery = 1;
7618 _base_make_ioc_ready(ioc, SOFT_RESET);
7619 ioc->shost_recovery = 0;
7622 mpt3sas_base_unmap_resources(ioc);
7623 mutex_unlock(&ioc->pci_access_mutex);
7624 return;
7628 * mpt3sas_base_attach - attach controller instance
7629 * @ioc: per adapter object
7631 * Return: 0 for success, non-zero for failure.
7634 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
7636 int r, i, rc;
7637 int cpu_id, last_cpu_id = 0;
7639 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7641 /* setup cpu_msix_table */
7642 ioc->cpu_count = num_online_cpus();
7643 for_each_online_cpu(cpu_id)
7644 last_cpu_id = cpu_id;
7645 ioc->cpu_msix_table_sz = last_cpu_id + 1;
7646 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
7647 ioc->reply_queue_count = 1;
7648 if (!ioc->cpu_msix_table) {
7649 ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n");
7650 r = -ENOMEM;
7651 goto out_free_resources;
7654 if (ioc->is_warpdrive) {
7655 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
7656 sizeof(resource_size_t *), GFP_KERNEL);
7657 if (!ioc->reply_post_host_index) {
7658 ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n");
7659 r = -ENOMEM;
7660 goto out_free_resources;
7664 ioc->smp_affinity_enable = smp_affinity_enable;
7666 ioc->rdpq_array_enable_assigned = 0;
7667 ioc->use_32bit_dma = false;
7668 if (ioc->is_aero_ioc)
7669 ioc->base_readl = &_base_readl_aero;
7670 else
7671 ioc->base_readl = &_base_readl;
7672 r = mpt3sas_base_map_resources(ioc);
7673 if (r)
7674 goto out_free_resources;
7676 pci_set_drvdata(ioc->pdev, ioc->shost);
7677 r = _base_get_ioc_facts(ioc);
7678 if (r) {
7679 rc = _base_check_for_fault_and_issue_reset(ioc);
7680 if (rc || (_base_get_ioc_facts(ioc)))
7681 goto out_free_resources;
7684 switch (ioc->hba_mpi_version_belonged) {
7685 case MPI2_VERSION:
7686 ioc->build_sg_scmd = &_base_build_sg_scmd;
7687 ioc->build_sg = &_base_build_sg;
7688 ioc->build_zero_len_sge = &_base_build_zero_len_sge;
7689 ioc->get_msix_index_for_smlio = &_base_get_msix_index;
7690 break;
7691 case MPI25_VERSION:
7692 case MPI26_VERSION:
7694 * In SAS3.0,
7695 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
7696 * Target Status - all require the IEEE formated scatter gather
7697 * elements.
7699 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
7700 ioc->build_sg = &_base_build_sg_ieee;
7701 ioc->build_nvme_prp = &_base_build_nvme_prp;
7702 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
7703 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
7704 if (ioc->high_iops_queues)
7705 ioc->get_msix_index_for_smlio =
7706 &_base_get_high_iops_msix_index;
7707 else
7708 ioc->get_msix_index_for_smlio = &_base_get_msix_index;
7709 break;
7711 if (ioc->atomic_desc_capable) {
7712 ioc->put_smid_default = &_base_put_smid_default_atomic;
7713 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
7714 ioc->put_smid_fast_path =
7715 &_base_put_smid_fast_path_atomic;
7716 ioc->put_smid_hi_priority =
7717 &_base_put_smid_hi_priority_atomic;
7718 } else {
7719 ioc->put_smid_default = &_base_put_smid_default;
7720 ioc->put_smid_fast_path = &_base_put_smid_fast_path;
7721 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
7722 if (ioc->is_mcpu_endpoint)
7723 ioc->put_smid_scsi_io =
7724 &_base_put_smid_mpi_ep_scsi_io;
7725 else
7726 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
7729 * These function pointers for other requests that don't
7730 * the require IEEE scatter gather elements.
7732 * For example Configuration Pages and SAS IOUNIT Control don't.
7734 ioc->build_sg_mpi = &_base_build_sg;
7735 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
7737 r = _base_make_ioc_ready(ioc, SOFT_RESET);
7738 if (r)
7739 goto out_free_resources;
7741 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
7742 sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
7743 if (!ioc->pfacts) {
7744 r = -ENOMEM;
7745 goto out_free_resources;
7748 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
7749 r = _base_get_port_facts(ioc, i);
7750 if (r) {
7751 rc = _base_check_for_fault_and_issue_reset(ioc);
7752 if (rc || (_base_get_port_facts(ioc, i)))
7753 goto out_free_resources;
7757 r = _base_allocate_memory_pools(ioc);
7758 if (r)
7759 goto out_free_resources;
7761 if (irqpoll_weight > 0)
7762 ioc->thresh_hold = irqpoll_weight;
7763 else
7764 ioc->thresh_hold = ioc->hba_queue_depth/4;
7766 _base_init_irqpolls(ioc);
7767 init_waitqueue_head(&ioc->reset_wq);
7769 /* allocate memory pd handle bitmask list */
7770 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
7771 if (ioc->facts.MaxDevHandle % 8)
7772 ioc->pd_handles_sz++;
7773 ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
7774 GFP_KERNEL);
7775 if (!ioc->pd_handles) {
7776 r = -ENOMEM;
7777 goto out_free_resources;
7779 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
7780 GFP_KERNEL);
7781 if (!ioc->blocking_handles) {
7782 r = -ENOMEM;
7783 goto out_free_resources;
7786 /* allocate memory for pending OS device add list */
7787 ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
7788 if (ioc->facts.MaxDevHandle % 8)
7789 ioc->pend_os_device_add_sz++;
7790 ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
7791 GFP_KERNEL);
7792 if (!ioc->pend_os_device_add)
7793 goto out_free_resources;
7795 ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
7796 ioc->device_remove_in_progress =
7797 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
7798 if (!ioc->device_remove_in_progress)
7799 goto out_free_resources;
7801 ioc->fwfault_debug = mpt3sas_fwfault_debug;
7803 /* base internal command bits */
7804 mutex_init(&ioc->base_cmds.mutex);
7805 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7806 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7808 /* port_enable command bits */
7809 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7810 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
7812 /* transport internal command bits */
7813 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7814 ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
7815 mutex_init(&ioc->transport_cmds.mutex);
7817 /* scsih internal command bits */
7818 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7819 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
7820 mutex_init(&ioc->scsih_cmds.mutex);
7822 /* task management internal command bits */
7823 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7824 ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
7825 mutex_init(&ioc->tm_cmds.mutex);
7827 /* config page internal command bits */
7828 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7829 ioc->config_cmds.status = MPT3_CMD_NOT_USED;
7830 mutex_init(&ioc->config_cmds.mutex);
7832 /* ctl module internal command bits */
7833 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7834 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
7835 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
7836 mutex_init(&ioc->ctl_cmds.mutex);
7838 if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
7839 !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
7840 !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
7841 !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
7842 r = -ENOMEM;
7843 goto out_free_resources;
7846 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
7847 ioc->event_masks[i] = -1;
7849 /* here we enable the events we care about */
7850 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
7851 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
7852 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
7853 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
7854 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
7855 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
7856 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
7857 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
7858 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
7859 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
7860 _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
7861 _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
7862 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
7863 if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
7864 if (ioc->is_gen35_ioc) {
7865 _base_unmask_events(ioc,
7866 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
7867 _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
7868 _base_unmask_events(ioc,
7869 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
7872 r = _base_make_ioc_operational(ioc);
7873 if (r)
7874 goto out_free_resources;
7877 * Copy current copy of IOCFacts in prev_fw_facts
7878 * and it will be used during online firmware upgrade.
7880 memcpy(&ioc->prev_fw_facts, &ioc->facts,
7881 sizeof(struct mpt3sas_facts));
7883 ioc->non_operational_loop = 0;
7884 ioc->ioc_coredump_loop = 0;
7885 ioc->got_task_abort_from_ioctl = 0;
7886 return 0;
7888 out_free_resources:
7890 ioc->remove_host = 1;
7892 mpt3sas_base_free_resources(ioc);
7893 _base_release_memory_pools(ioc);
7894 pci_set_drvdata(ioc->pdev, NULL);
7895 kfree(ioc->cpu_msix_table);
7896 if (ioc->is_warpdrive)
7897 kfree(ioc->reply_post_host_index);
7898 kfree(ioc->pd_handles);
7899 kfree(ioc->blocking_handles);
7900 kfree(ioc->device_remove_in_progress);
7901 kfree(ioc->pend_os_device_add);
7902 kfree(ioc->tm_cmds.reply);
7903 kfree(ioc->transport_cmds.reply);
7904 kfree(ioc->scsih_cmds.reply);
7905 kfree(ioc->config_cmds.reply);
7906 kfree(ioc->base_cmds.reply);
7907 kfree(ioc->port_enable_cmds.reply);
7908 kfree(ioc->ctl_cmds.reply);
7909 kfree(ioc->ctl_cmds.sense);
7910 kfree(ioc->pfacts);
7911 ioc->ctl_cmds.reply = NULL;
7912 ioc->base_cmds.reply = NULL;
7913 ioc->tm_cmds.reply = NULL;
7914 ioc->scsih_cmds.reply = NULL;
7915 ioc->transport_cmds.reply = NULL;
7916 ioc->config_cmds.reply = NULL;
7917 ioc->pfacts = NULL;
7918 return r;
7923 * mpt3sas_base_detach - remove controller instance
7924 * @ioc: per adapter object
7926 void
7927 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
7929 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7931 mpt3sas_base_stop_watchdog(ioc);
7932 mpt3sas_base_free_resources(ioc);
7933 _base_release_memory_pools(ioc);
7934 mpt3sas_free_enclosure_list(ioc);
7935 pci_set_drvdata(ioc->pdev, NULL);
7936 kfree(ioc->cpu_msix_table);
7937 if (ioc->is_warpdrive)
7938 kfree(ioc->reply_post_host_index);
7939 kfree(ioc->pd_handles);
7940 kfree(ioc->blocking_handles);
7941 kfree(ioc->device_remove_in_progress);
7942 kfree(ioc->pend_os_device_add);
7943 kfree(ioc->pfacts);
7944 kfree(ioc->ctl_cmds.reply);
7945 kfree(ioc->ctl_cmds.sense);
7946 kfree(ioc->base_cmds.reply);
7947 kfree(ioc->port_enable_cmds.reply);
7948 kfree(ioc->tm_cmds.reply);
7949 kfree(ioc->transport_cmds.reply);
7950 kfree(ioc->scsih_cmds.reply);
7951 kfree(ioc->config_cmds.reply);
7955 * _base_pre_reset_handler - pre reset handler
7956 * @ioc: per adapter object
7958 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc)
7960 mpt3sas_scsih_pre_reset_handler(ioc);
7961 mpt3sas_ctl_pre_reset_handler(ioc);
7962 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__));
7966 * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands
7967 * @ioc: per adapter object
7969 static void
7970 _base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc)
7972 dtmprintk(ioc,
7973 ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__));
7974 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
7975 ioc->transport_cmds.status |= MPT3_CMD_RESET;
7976 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
7977 complete(&ioc->transport_cmds.done);
7979 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
7980 ioc->base_cmds.status |= MPT3_CMD_RESET;
7981 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
7982 complete(&ioc->base_cmds.done);
7984 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7985 ioc->port_enable_failed = 1;
7986 ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
7987 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
7988 if (ioc->is_driver_loading) {
7989 ioc->start_scan_failed =
7990 MPI2_IOCSTATUS_INTERNAL_ERROR;
7991 ioc->start_scan = 0;
7992 ioc->port_enable_cmds.status =
7993 MPT3_CMD_NOT_USED;
7994 } else {
7995 complete(&ioc->port_enable_cmds.done);
7998 if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
7999 ioc->config_cmds.status |= MPT3_CMD_RESET;
8000 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
8001 ioc->config_cmds.smid = USHRT_MAX;
8002 complete(&ioc->config_cmds.done);
8007 * _base_clear_outstanding_commands - clear all outstanding commands
8008 * @ioc: per adapter object
8010 static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc)
8012 mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc);
8013 mpt3sas_ctl_clear_outstanding_ioctls(ioc);
8014 _base_clear_outstanding_mpt_commands(ioc);
8018 * _base_reset_done_handler - reset done handler
8019 * @ioc: per adapter object
8021 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc)
8023 mpt3sas_scsih_reset_done_handler(ioc);
8024 mpt3sas_ctl_reset_done_handler(ioc);
8025 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__));
8029 * mpt3sas_wait_for_commands_to_complete - reset controller
8030 * @ioc: Pointer to MPT_ADAPTER structure
8032 * This function is waiting 10s for all pending commands to complete
8033 * prior to putting controller in reset.
8035 void
8036 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
8038 u32 ioc_state;
8040 ioc->pending_io_count = 0;
8042 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8043 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
8044 return;
8046 /* pending command count */
8047 ioc->pending_io_count = scsi_host_busy(ioc->shost);
8049 if (!ioc->pending_io_count)
8050 return;
8052 /* wait for pending commands to complete */
8053 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
8057 * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts
8058 * attributes during online firmware upgrade and update the corresponding
8059 * IOC variables accordingly.
8061 * @ioc: Pointer to MPT_ADAPTER structure
8063 static int
8064 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc)
8066 u16 pd_handles_sz;
8067 void *pd_handles = NULL, *blocking_handles = NULL;
8068 void *pend_os_device_add = NULL, *device_remove_in_progress = NULL;
8069 struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts;
8071 if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) {
8072 pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
8073 if (ioc->facts.MaxDevHandle % 8)
8074 pd_handles_sz++;
8076 pd_handles = krealloc(ioc->pd_handles, pd_handles_sz,
8077 GFP_KERNEL);
8078 if (!pd_handles) {
8079 ioc_info(ioc,
8080 "Unable to allocate the memory for pd_handles of sz: %d\n",
8081 pd_handles_sz);
8082 return -ENOMEM;
8084 memset(pd_handles + ioc->pd_handles_sz, 0,
8085 (pd_handles_sz - ioc->pd_handles_sz));
8086 ioc->pd_handles = pd_handles;
8088 blocking_handles = krealloc(ioc->blocking_handles,
8089 pd_handles_sz, GFP_KERNEL);
8090 if (!blocking_handles) {
8091 ioc_info(ioc,
8092 "Unable to allocate the memory for "
8093 "blocking_handles of sz: %d\n",
8094 pd_handles_sz);
8095 return -ENOMEM;
8097 memset(blocking_handles + ioc->pd_handles_sz, 0,
8098 (pd_handles_sz - ioc->pd_handles_sz));
8099 ioc->blocking_handles = blocking_handles;
8100 ioc->pd_handles_sz = pd_handles_sz;
8102 pend_os_device_add = krealloc(ioc->pend_os_device_add,
8103 pd_handles_sz, GFP_KERNEL);
8104 if (!pend_os_device_add) {
8105 ioc_info(ioc,
8106 "Unable to allocate the memory for pend_os_device_add of sz: %d\n",
8107 pd_handles_sz);
8108 return -ENOMEM;
8110 memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0,
8111 (pd_handles_sz - ioc->pend_os_device_add_sz));
8112 ioc->pend_os_device_add = pend_os_device_add;
8113 ioc->pend_os_device_add_sz = pd_handles_sz;
8115 device_remove_in_progress = krealloc(
8116 ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL);
8117 if (!device_remove_in_progress) {
8118 ioc_info(ioc,
8119 "Unable to allocate the memory for "
8120 "device_remove_in_progress of sz: %d\n "
8121 , pd_handles_sz);
8122 return -ENOMEM;
8124 memset(device_remove_in_progress +
8125 ioc->device_remove_in_progress_sz, 0,
8126 (pd_handles_sz - ioc->device_remove_in_progress_sz));
8127 ioc->device_remove_in_progress = device_remove_in_progress;
8128 ioc->device_remove_in_progress_sz = pd_handles_sz;
8131 memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts));
8132 return 0;
8136 * mpt3sas_base_hard_reset_handler - reset controller
8137 * @ioc: Pointer to MPT_ADAPTER structure
8138 * @type: FORCE_BIG_HAMMER or SOFT_RESET
8140 * Return: 0 for success, non-zero for failure.
8143 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
8144 enum reset_type type)
8146 int r;
8147 unsigned long flags;
8148 u32 ioc_state;
8149 u8 is_fault = 0, is_trigger = 0;
8151 dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__));
8153 if (ioc->pci_error_recovery) {
8154 ioc_err(ioc, "%s: pci error recovery reset\n", __func__);
8155 r = 0;
8156 goto out_unlocked;
8159 if (mpt3sas_fwfault_debug)
8160 mpt3sas_halt_firmware(ioc);
8162 /* wait for an active reset in progress to complete */
8163 mutex_lock(&ioc->reset_in_progress_mutex);
8165 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
8166 ioc->shost_recovery = 1;
8167 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
8169 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8170 MPT3_DIAG_BUFFER_IS_REGISTERED) &&
8171 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8172 MPT3_DIAG_BUFFER_IS_RELEASED))) {
8173 is_trigger = 1;
8174 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8175 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT ||
8176 (ioc_state & MPI2_IOC_STATE_MASK) ==
8177 MPI2_IOC_STATE_COREDUMP)
8178 is_fault = 1;
8180 _base_pre_reset_handler(ioc);
8181 mpt3sas_wait_for_commands_to_complete(ioc);
8182 mpt3sas_base_mask_interrupts(ioc);
8183 r = _base_make_ioc_ready(ioc, type);
8184 if (r)
8185 goto out;
8186 _base_clear_outstanding_commands(ioc);
8188 /* If this hard reset is called while port enable is active, then
8189 * there is no reason to call make_ioc_operational
8191 if (ioc->is_driver_loading && ioc->port_enable_failed) {
8192 ioc->remove_host = 1;
8193 r = -EFAULT;
8194 goto out;
8196 r = _base_get_ioc_facts(ioc);
8197 if (r)
8198 goto out;
8200 r = _base_check_ioc_facts_changes(ioc);
8201 if (r) {
8202 ioc_info(ioc,
8203 "Some of the parameters got changed in this new firmware"
8204 " image and it requires system reboot\n");
8205 goto out;
8207 if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
8208 panic("%s: Issue occurred with flashing controller firmware."
8209 "Please reboot the system and ensure that the correct"
8210 " firmware version is running\n", ioc->name);
8212 r = _base_make_ioc_operational(ioc);
8213 if (!r)
8214 _base_reset_done_handler(ioc);
8216 out:
8217 ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED");
8219 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
8220 ioc->shost_recovery = 0;
8221 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
8222 ioc->ioc_reset_count++;
8223 mutex_unlock(&ioc->reset_in_progress_mutex);
8225 out_unlocked:
8226 if ((r == 0) && is_trigger) {
8227 if (is_fault)
8228 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
8229 else
8230 mpt3sas_trigger_master(ioc,
8231 MASTER_TRIGGER_ADAPTER_RESET);
8233 dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__));
8234 return r;