1 // SPDX-License-Identifier: GPL-2.0+
3 * (C) Copyright Linus Torvalds 1999
4 * (C) Copyright Johannes Erdfelt 1999-2001
5 * (C) Copyright Andreas Gal 1999
6 * (C) Copyright Gregory P. Smith 1999
7 * (C) Copyright Deti Fliegl 1999
8 * (C) Copyright Randy Dunlap 2000
9 * (C) Copyright David Brownell 2000-2002
12 #include <linux/bcd.h>
13 #include <linux/module.h>
14 #include <linux/version.h>
15 #include <linux/kernel.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/slab.h>
18 #include <linux/completion.h>
19 #include <linux/utsname.h>
22 #include <linux/device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/mutex.h>
26 #include <asm/byteorder.h>
27 #include <asm/unaligned.h>
28 #include <linux/platform_device.h>
29 #include <linux/workqueue.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/types.h>
32 #include <linux/genalloc.h>
34 #include <linux/kcov.h>
36 #include <linux/phy/phy.h>
37 #include <linux/usb.h>
38 #include <linux/usb/hcd.h>
39 #include <linux/usb/otg.h>
45 /*-------------------------------------------------------------------------*/
48 * USB Host Controller Driver framework
50 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
51 * HCD-specific behaviors/bugs.
53 * This does error checks, tracks devices and urbs, and delegates to a
54 * "hc_driver" only for code (and data) that really needs to know about
55 * hardware differences. That includes root hub registers, i/o queues,
56 * and so on ... but as little else as possible.
58 * Shared code includes most of the "root hub" code (these are emulated,
59 * though each HC's hardware works differently) and PCI glue, plus request
60 * tracking overhead. The HCD code should only block on spinlocks or on
61 * hardware handshaking; blocking on software events (such as other kernel
62 * threads releasing resources, or completing actions) is all generic.
64 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
65 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
66 * only by the hub driver ... and that neither should be seen or used by
67 * usb client device drivers.
69 * Contributors of ideas or unattributed patches include: David Brownell,
70 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
73 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
74 * associated cleanup. "usb_hcd" still != "usb_bus".
75 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
78 /*-------------------------------------------------------------------------*/
80 /* Keep track of which host controller drivers are loaded */
81 unsigned long usb_hcds_loaded
;
82 EXPORT_SYMBOL_GPL(usb_hcds_loaded
);
84 /* host controllers we manage */
85 DEFINE_IDR (usb_bus_idr
);
86 EXPORT_SYMBOL_GPL (usb_bus_idr
);
88 /* used when allocating bus numbers */
91 /* used when updating list of hcds */
92 DEFINE_MUTEX(usb_bus_idr_lock
); /* exported only for usbfs */
93 EXPORT_SYMBOL_GPL (usb_bus_idr_lock
);
95 /* used for controlling access to virtual root hubs */
96 static DEFINE_SPINLOCK(hcd_root_hub_lock
);
98 /* used when updating an endpoint's URB list */
99 static DEFINE_SPINLOCK(hcd_urb_list_lock
);
101 /* used to protect against unlinking URBs after the device is gone */
102 static DEFINE_SPINLOCK(hcd_urb_unlink_lock
);
104 /* wait queue for synchronous unlinks */
105 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue
);
107 /*-------------------------------------------------------------------------*/
110 * Sharable chunks of root hub code.
113 /*-------------------------------------------------------------------------*/
114 #define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
115 #define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
117 /* usb 3.1 root hub device descriptor */
118 static const u8 usb31_rh_dev_descriptor
[18] = {
119 0x12, /* __u8 bLength; */
120 USB_DT_DEVICE
, /* __u8 bDescriptorType; Device */
121 0x10, 0x03, /* __le16 bcdUSB; v3.1 */
123 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
124 0x00, /* __u8 bDeviceSubClass; */
125 0x03, /* __u8 bDeviceProtocol; USB 3 hub */
126 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
128 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
129 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
130 KERNEL_VER
, KERNEL_REL
, /* __le16 bcdDevice */
132 0x03, /* __u8 iManufacturer; */
133 0x02, /* __u8 iProduct; */
134 0x01, /* __u8 iSerialNumber; */
135 0x01 /* __u8 bNumConfigurations; */
138 /* usb 3.0 root hub device descriptor */
139 static const u8 usb3_rh_dev_descriptor
[18] = {
140 0x12, /* __u8 bLength; */
141 USB_DT_DEVICE
, /* __u8 bDescriptorType; Device */
142 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
144 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
145 0x00, /* __u8 bDeviceSubClass; */
146 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
147 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
149 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
150 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
151 KERNEL_VER
, KERNEL_REL
, /* __le16 bcdDevice */
153 0x03, /* __u8 iManufacturer; */
154 0x02, /* __u8 iProduct; */
155 0x01, /* __u8 iSerialNumber; */
156 0x01 /* __u8 bNumConfigurations; */
159 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
160 static const u8 usb25_rh_dev_descriptor
[18] = {
161 0x12, /* __u8 bLength; */
162 USB_DT_DEVICE
, /* __u8 bDescriptorType; Device */
163 0x50, 0x02, /* __le16 bcdUSB; v2.5 */
165 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
166 0x00, /* __u8 bDeviceSubClass; */
167 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
168 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
170 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
171 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
172 KERNEL_VER
, KERNEL_REL
, /* __le16 bcdDevice */
174 0x03, /* __u8 iManufacturer; */
175 0x02, /* __u8 iProduct; */
176 0x01, /* __u8 iSerialNumber; */
177 0x01 /* __u8 bNumConfigurations; */
180 /* usb 2.0 root hub device descriptor */
181 static const u8 usb2_rh_dev_descriptor
[18] = {
182 0x12, /* __u8 bLength; */
183 USB_DT_DEVICE
, /* __u8 bDescriptorType; Device */
184 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
186 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
187 0x00, /* __u8 bDeviceSubClass; */
188 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
189 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
191 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
192 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
193 KERNEL_VER
, KERNEL_REL
, /* __le16 bcdDevice */
195 0x03, /* __u8 iManufacturer; */
196 0x02, /* __u8 iProduct; */
197 0x01, /* __u8 iSerialNumber; */
198 0x01 /* __u8 bNumConfigurations; */
201 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
203 /* usb 1.1 root hub device descriptor */
204 static const u8 usb11_rh_dev_descriptor
[18] = {
205 0x12, /* __u8 bLength; */
206 USB_DT_DEVICE
, /* __u8 bDescriptorType; Device */
207 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
209 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
210 0x00, /* __u8 bDeviceSubClass; */
211 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
212 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
214 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
215 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
216 KERNEL_VER
, KERNEL_REL
, /* __le16 bcdDevice */
218 0x03, /* __u8 iManufacturer; */
219 0x02, /* __u8 iProduct; */
220 0x01, /* __u8 iSerialNumber; */
221 0x01 /* __u8 bNumConfigurations; */
225 /*-------------------------------------------------------------------------*/
227 /* Configuration descriptors for our root hubs */
229 static const u8 fs_rh_config_descriptor
[] = {
231 /* one configuration */
232 0x09, /* __u8 bLength; */
233 USB_DT_CONFIG
, /* __u8 bDescriptorType; Configuration */
234 0x19, 0x00, /* __le16 wTotalLength; */
235 0x01, /* __u8 bNumInterfaces; (1) */
236 0x01, /* __u8 bConfigurationValue; */
237 0x00, /* __u8 iConfiguration; */
238 0xc0, /* __u8 bmAttributes;
243 0x00, /* __u8 MaxPower; */
246 * USB 2.0, single TT organization (mandatory):
247 * one interface, protocol 0
249 * USB 2.0, multiple TT organization (optional):
250 * two interfaces, protocols 1 (like single TT)
251 * and 2 (multiple TT mode) ... config is
257 0x09, /* __u8 if_bLength; */
258 USB_DT_INTERFACE
, /* __u8 if_bDescriptorType; Interface */
259 0x00, /* __u8 if_bInterfaceNumber; */
260 0x00, /* __u8 if_bAlternateSetting; */
261 0x01, /* __u8 if_bNumEndpoints; */
262 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
263 0x00, /* __u8 if_bInterfaceSubClass; */
264 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
265 0x00, /* __u8 if_iInterface; */
267 /* one endpoint (status change endpoint) */
268 0x07, /* __u8 ep_bLength; */
269 USB_DT_ENDPOINT
, /* __u8 ep_bDescriptorType; Endpoint */
270 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
271 0x03, /* __u8 ep_bmAttributes; Interrupt */
272 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
273 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
276 static const u8 hs_rh_config_descriptor
[] = {
278 /* one configuration */
279 0x09, /* __u8 bLength; */
280 USB_DT_CONFIG
, /* __u8 bDescriptorType; Configuration */
281 0x19, 0x00, /* __le16 wTotalLength; */
282 0x01, /* __u8 bNumInterfaces; (1) */
283 0x01, /* __u8 bConfigurationValue; */
284 0x00, /* __u8 iConfiguration; */
285 0xc0, /* __u8 bmAttributes;
290 0x00, /* __u8 MaxPower; */
293 * USB 2.0, single TT organization (mandatory):
294 * one interface, protocol 0
296 * USB 2.0, multiple TT organization (optional):
297 * two interfaces, protocols 1 (like single TT)
298 * and 2 (multiple TT mode) ... config is
304 0x09, /* __u8 if_bLength; */
305 USB_DT_INTERFACE
, /* __u8 if_bDescriptorType; Interface */
306 0x00, /* __u8 if_bInterfaceNumber; */
307 0x00, /* __u8 if_bAlternateSetting; */
308 0x01, /* __u8 if_bNumEndpoints; */
309 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
310 0x00, /* __u8 if_bInterfaceSubClass; */
311 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
312 0x00, /* __u8 if_iInterface; */
314 /* one endpoint (status change endpoint) */
315 0x07, /* __u8 ep_bLength; */
316 USB_DT_ENDPOINT
, /* __u8 ep_bDescriptorType; Endpoint */
317 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
318 0x03, /* __u8 ep_bmAttributes; Interrupt */
319 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
320 * see hub.c:hub_configure() for details. */
321 (USB_MAXCHILDREN
+ 1 + 7) / 8, 0x00,
322 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
325 static const u8 ss_rh_config_descriptor
[] = {
326 /* one configuration */
327 0x09, /* __u8 bLength; */
328 USB_DT_CONFIG
, /* __u8 bDescriptorType; Configuration */
329 0x1f, 0x00, /* __le16 wTotalLength; */
330 0x01, /* __u8 bNumInterfaces; (1) */
331 0x01, /* __u8 bConfigurationValue; */
332 0x00, /* __u8 iConfiguration; */
333 0xc0, /* __u8 bmAttributes;
338 0x00, /* __u8 MaxPower; */
341 0x09, /* __u8 if_bLength; */
342 USB_DT_INTERFACE
, /* __u8 if_bDescriptorType; Interface */
343 0x00, /* __u8 if_bInterfaceNumber; */
344 0x00, /* __u8 if_bAlternateSetting; */
345 0x01, /* __u8 if_bNumEndpoints; */
346 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
347 0x00, /* __u8 if_bInterfaceSubClass; */
348 0x00, /* __u8 if_bInterfaceProtocol; */
349 0x00, /* __u8 if_iInterface; */
351 /* one endpoint (status change endpoint) */
352 0x07, /* __u8 ep_bLength; */
353 USB_DT_ENDPOINT
, /* __u8 ep_bDescriptorType; Endpoint */
354 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
355 0x03, /* __u8 ep_bmAttributes; Interrupt */
356 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
357 * see hub.c:hub_configure() for details. */
358 (USB_MAXCHILDREN
+ 1 + 7) / 8, 0x00,
359 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
361 /* one SuperSpeed endpoint companion descriptor */
362 0x06, /* __u8 ss_bLength */
363 USB_DT_SS_ENDPOINT_COMP
, /* __u8 ss_bDescriptorType; SuperSpeed EP */
365 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
366 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
367 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
370 /* authorized_default behaviour:
371 * -1 is authorized for all devices except wireless (old behaviour)
372 * 0 is unauthorized for all devices
373 * 1 is authorized for all devices
374 * 2 is authorized for internal devices
376 #define USB_AUTHORIZE_WIRED -1
377 #define USB_AUTHORIZE_NONE 0
378 #define USB_AUTHORIZE_ALL 1
379 #define USB_AUTHORIZE_INTERNAL 2
381 static int authorized_default
= USB_AUTHORIZE_WIRED
;
382 module_param(authorized_default
, int, S_IRUGO
|S_IWUSR
);
383 MODULE_PARM_DESC(authorized_default
,
384 "Default USB device authorization: 0 is not authorized, 1 is "
385 "authorized, 2 is authorized for internal devices, -1 is "
386 "authorized except for wireless USB (default, old behaviour)");
387 /*-------------------------------------------------------------------------*/
390 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
391 * @s: Null-terminated ASCII (actually ISO-8859-1) string
392 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
393 * @len: Length (in bytes; may be odd) of descriptor buffer.
395 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
399 * USB String descriptors can contain at most 126 characters; input
400 * strings longer than that are truncated.
403 ascii2desc(char const *s
, u8
*buf
, unsigned len
)
405 unsigned n
, t
= 2 + 2*strlen(s
);
408 t
= 254; /* Longest possible UTF string descriptor */
412 t
+= USB_DT_STRING
<< 8; /* Now t is first 16 bits to store */
420 t
= (unsigned char)*s
++;
426 * rh_string() - provides string descriptors for root hub
427 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
428 * @hcd: the host controller for this root hub
429 * @data: buffer for output packet
430 * @len: length of the provided buffer
432 * Produces either a manufacturer, product or serial number string for the
433 * virtual root hub device.
435 * Return: The number of bytes filled in: the length of the descriptor or
436 * of the provided buffer, whichever is less.
439 rh_string(int id
, struct usb_hcd
const *hcd
, u8
*data
, unsigned len
)
443 static char const langids
[4] = {4, USB_DT_STRING
, 0x09, 0x04};
448 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
449 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
452 memcpy(data
, langids
, len
);
456 s
= hcd
->self
.bus_name
;
460 s
= hcd
->product_desc
;
464 snprintf (buf
, sizeof buf
, "%s %s %s", init_utsname()->sysname
,
465 init_utsname()->release
, hcd
->driver
->description
);
469 /* Can't happen; caller guarantees it */
473 return ascii2desc(s
, data
, len
);
477 /* Root hub control transfers execute synchronously */
478 static int rh_call_control (struct usb_hcd
*hcd
, struct urb
*urb
)
480 struct usb_ctrlrequest
*cmd
;
481 u16 typeReq
, wValue
, wIndex
, wLength
;
482 u8
*ubuf
= urb
->transfer_buffer
;
486 u8 patch_protocol
= 0;
493 spin_lock_irq(&hcd_root_hub_lock
);
494 status
= usb_hcd_link_urb_to_ep(hcd
, urb
);
495 spin_unlock_irq(&hcd_root_hub_lock
);
498 urb
->hcpriv
= hcd
; /* Indicate it's queued */
500 cmd
= (struct usb_ctrlrequest
*) urb
->setup_packet
;
501 typeReq
= (cmd
->bRequestType
<< 8) | cmd
->bRequest
;
502 wValue
= le16_to_cpu (cmd
->wValue
);
503 wIndex
= le16_to_cpu (cmd
->wIndex
);
504 wLength
= le16_to_cpu (cmd
->wLength
);
506 if (wLength
> urb
->transfer_buffer_length
)
510 * tbuf should be at least as big as the
511 * USB hub descriptor.
513 tbuf_size
= max_t(u16
, sizeof(struct usb_hub_descriptor
), wLength
);
514 tbuf
= kzalloc(tbuf_size
, GFP_KERNEL
);
523 urb
->actual_length
= 0;
526 /* DEVICE REQUESTS */
528 /* The root hub's remote wakeup enable bit is implemented using
529 * driver model wakeup flags. If this system supports wakeup
530 * through USB, userspace may change the default "allow wakeup"
531 * policy through sysfs or these calls.
533 * Most root hubs support wakeup from downstream devices, for
534 * runtime power management (disabling USB clocks and reducing
535 * VBUS power usage). However, not all of them do so; silicon,
536 * board, and BIOS bugs here are not uncommon, so these can't
537 * be treated quite like external hubs.
539 * Likewise, not all root hubs will pass wakeup events upstream,
540 * to wake up the whole system. So don't assume root hub and
541 * controller capabilities are identical.
544 case DeviceRequest
| USB_REQ_GET_STATUS
:
545 tbuf
[0] = (device_may_wakeup(&hcd
->self
.root_hub
->dev
)
546 << USB_DEVICE_REMOTE_WAKEUP
)
547 | (1 << USB_DEVICE_SELF_POWERED
);
551 case DeviceOutRequest
| USB_REQ_CLEAR_FEATURE
:
552 if (wValue
== USB_DEVICE_REMOTE_WAKEUP
)
553 device_set_wakeup_enable(&hcd
->self
.root_hub
->dev
, 0);
557 case DeviceOutRequest
| USB_REQ_SET_FEATURE
:
558 if (device_can_wakeup(&hcd
->self
.root_hub
->dev
)
559 && wValue
== USB_DEVICE_REMOTE_WAKEUP
)
560 device_set_wakeup_enable(&hcd
->self
.root_hub
->dev
, 1);
564 case DeviceRequest
| USB_REQ_GET_CONFIGURATION
:
568 case DeviceOutRequest
| USB_REQ_SET_CONFIGURATION
:
570 case DeviceRequest
| USB_REQ_GET_DESCRIPTOR
:
571 switch (wValue
& 0xff00) {
572 case USB_DT_DEVICE
<< 8:
573 switch (hcd
->speed
) {
576 bufp
= usb31_rh_dev_descriptor
;
579 bufp
= usb3_rh_dev_descriptor
;
582 bufp
= usb25_rh_dev_descriptor
;
585 bufp
= usb2_rh_dev_descriptor
;
588 bufp
= usb11_rh_dev_descriptor
;
597 case USB_DT_CONFIG
<< 8:
598 switch (hcd
->speed
) {
602 bufp
= ss_rh_config_descriptor
;
603 len
= sizeof ss_rh_config_descriptor
;
607 bufp
= hs_rh_config_descriptor
;
608 len
= sizeof hs_rh_config_descriptor
;
611 bufp
= fs_rh_config_descriptor
;
612 len
= sizeof fs_rh_config_descriptor
;
617 if (device_can_wakeup(&hcd
->self
.root_hub
->dev
))
620 case USB_DT_STRING
<< 8:
621 if ((wValue
& 0xff) < 4)
622 urb
->actual_length
= rh_string(wValue
& 0xff,
624 else /* unsupported IDs --> "protocol stall" */
627 case USB_DT_BOS
<< 8:
633 case DeviceRequest
| USB_REQ_GET_INTERFACE
:
637 case DeviceOutRequest
| USB_REQ_SET_INTERFACE
:
639 case DeviceOutRequest
| USB_REQ_SET_ADDRESS
:
640 /* wValue == urb->dev->devaddr */
641 dev_dbg (hcd
->self
.controller
, "root hub device address %d\n",
645 /* INTERFACE REQUESTS (no defined feature/status flags) */
647 /* ENDPOINT REQUESTS */
649 case EndpointRequest
| USB_REQ_GET_STATUS
:
650 /* ENDPOINT_HALT flag */
655 case EndpointOutRequest
| USB_REQ_CLEAR_FEATURE
:
656 case EndpointOutRequest
| USB_REQ_SET_FEATURE
:
657 dev_dbg (hcd
->self
.controller
, "no endpoint features yet\n");
660 /* CLASS REQUESTS (and errors) */
664 /* non-generic request */
670 if (wValue
== HUB_PORT_STATUS
)
673 /* other port status types return 8 bytes */
676 case GetHubDescriptor
:
677 len
= sizeof (struct usb_hub_descriptor
);
679 case DeviceRequest
| USB_REQ_GET_DESCRIPTOR
:
680 /* len is returned by hub_control */
683 status
= hcd
->driver
->hub_control (hcd
,
684 typeReq
, wValue
, wIndex
,
687 if (typeReq
== GetHubDescriptor
)
688 usb_hub_adjust_deviceremovable(hcd
->self
.root_hub
,
689 (struct usb_hub_descriptor
*)tbuf
);
692 /* "protocol stall" on error */
698 if (status
!= -EPIPE
) {
699 dev_dbg (hcd
->self
.controller
,
700 "CTRL: TypeReq=0x%x val=0x%x "
701 "idx=0x%x len=%d ==> %d\n",
702 typeReq
, wValue
, wIndex
,
705 } else if (status
> 0) {
706 /* hub_control may return the length of data copied. */
711 if (urb
->transfer_buffer_length
< len
)
712 len
= urb
->transfer_buffer_length
;
713 urb
->actual_length
= len
;
714 /* always USB_DIR_IN, toward host */
715 memcpy (ubuf
, bufp
, len
);
717 /* report whether RH hardware supports remote wakeup */
719 len
> offsetof (struct usb_config_descriptor
,
721 ((struct usb_config_descriptor
*)ubuf
)->bmAttributes
722 |= USB_CONFIG_ATT_WAKEUP
;
724 /* report whether RH hardware has an integrated TT */
725 if (patch_protocol
&&
726 len
> offsetof(struct usb_device_descriptor
,
728 ((struct usb_device_descriptor
*) ubuf
)->
729 bDeviceProtocol
= USB_HUB_PR_HS_SINGLE_TT
;
735 /* any errors get returned through the urb completion */
736 spin_lock_irq(&hcd_root_hub_lock
);
737 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
738 usb_hcd_giveback_urb(hcd
, urb
, status
);
739 spin_unlock_irq(&hcd_root_hub_lock
);
743 /*-------------------------------------------------------------------------*/
746 * Root Hub interrupt transfers are polled using a timer if the
747 * driver requests it; otherwise the driver is responsible for
748 * calling usb_hcd_poll_rh_status() when an event occurs.
750 * Completion handler may not sleep. See usb_hcd_giveback_urb() for details.
752 void usb_hcd_poll_rh_status(struct usb_hcd
*hcd
)
757 char buffer
[6]; /* Any root hubs with > 31 ports? */
759 if (unlikely(!hcd
->rh_pollable
))
761 if (!hcd
->uses_new_polling
&& !hcd
->status_urb
)
764 length
= hcd
->driver
->hub_status_data(hcd
, buffer
);
767 /* try to complete the status urb */
768 spin_lock_irqsave(&hcd_root_hub_lock
, flags
);
769 urb
= hcd
->status_urb
;
771 clear_bit(HCD_FLAG_POLL_PENDING
, &hcd
->flags
);
772 hcd
->status_urb
= NULL
;
773 urb
->actual_length
= length
;
774 memcpy(urb
->transfer_buffer
, buffer
, length
);
776 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
777 usb_hcd_giveback_urb(hcd
, urb
, 0);
780 set_bit(HCD_FLAG_POLL_PENDING
, &hcd
->flags
);
782 spin_unlock_irqrestore(&hcd_root_hub_lock
, flags
);
785 /* The USB 2.0 spec says 256 ms. This is close enough and won't
786 * exceed that limit if HZ is 100. The math is more clunky than
787 * maybe expected, this is to make sure that all timers for USB devices
788 * fire at the same time to give the CPU a break in between */
789 if (hcd
->uses_new_polling
? HCD_POLL_RH(hcd
) :
790 (length
== 0 && hcd
->status_urb
!= NULL
))
791 mod_timer (&hcd
->rh_timer
, (jiffies
/(HZ
/4) + 1) * (HZ
/4));
793 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status
);
796 static void rh_timer_func (struct timer_list
*t
)
798 struct usb_hcd
*_hcd
= from_timer(_hcd
, t
, rh_timer
);
800 usb_hcd_poll_rh_status(_hcd
);
803 /*-------------------------------------------------------------------------*/
805 static int rh_queue_status (struct usb_hcd
*hcd
, struct urb
*urb
)
809 unsigned len
= 1 + (urb
->dev
->maxchild
/ 8);
811 spin_lock_irqsave (&hcd_root_hub_lock
, flags
);
812 if (hcd
->status_urb
|| urb
->transfer_buffer_length
< len
) {
813 dev_dbg (hcd
->self
.controller
, "not queuing rh status urb\n");
818 retval
= usb_hcd_link_urb_to_ep(hcd
, urb
);
822 hcd
->status_urb
= urb
;
823 urb
->hcpriv
= hcd
; /* indicate it's queued */
824 if (!hcd
->uses_new_polling
)
825 mod_timer(&hcd
->rh_timer
, (jiffies
/(HZ
/4) + 1) * (HZ
/4));
827 /* If a status change has already occurred, report it ASAP */
828 else if (HCD_POLL_PENDING(hcd
))
829 mod_timer(&hcd
->rh_timer
, jiffies
);
832 spin_unlock_irqrestore (&hcd_root_hub_lock
, flags
);
836 static int rh_urb_enqueue (struct usb_hcd
*hcd
, struct urb
*urb
)
838 if (usb_endpoint_xfer_int(&urb
->ep
->desc
))
839 return rh_queue_status (hcd
, urb
);
840 if (usb_endpoint_xfer_control(&urb
->ep
->desc
))
841 return rh_call_control (hcd
, urb
);
845 /*-------------------------------------------------------------------------*/
847 /* Unlinks of root-hub control URBs are legal, but they don't do anything
848 * since these URBs always execute synchronously.
850 static int usb_rh_urb_dequeue(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
855 spin_lock_irqsave(&hcd_root_hub_lock
, flags
);
856 rc
= usb_hcd_check_unlink_urb(hcd
, urb
, status
);
860 if (usb_endpoint_num(&urb
->ep
->desc
) == 0) { /* Control URB */
863 } else { /* Status URB */
864 if (!hcd
->uses_new_polling
)
865 del_timer (&hcd
->rh_timer
);
866 if (urb
== hcd
->status_urb
) {
867 hcd
->status_urb
= NULL
;
868 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
869 usb_hcd_giveback_urb(hcd
, urb
, status
);
873 spin_unlock_irqrestore(&hcd_root_hub_lock
, flags
);
878 /*-------------------------------------------------------------------------*/
881 * usb_bus_init - shared initialization code
882 * @bus: the bus structure being initialized
884 * This code is used to initialize a usb_bus structure, memory for which is
885 * separately managed.
887 static void usb_bus_init (struct usb_bus
*bus
)
889 memset (&bus
->devmap
, 0, sizeof(struct usb_devmap
));
891 bus
->devnum_next
= 1;
893 bus
->root_hub
= NULL
;
895 bus
->bandwidth_allocated
= 0;
896 bus
->bandwidth_int_reqs
= 0;
897 bus
->bandwidth_isoc_reqs
= 0;
898 mutex_init(&bus
->devnum_next_mutex
);
901 /*-------------------------------------------------------------------------*/
904 * usb_register_bus - registers the USB host controller with the usb core
905 * @bus: pointer to the bus to register
907 * Context: task context, might sleep.
909 * Assigns a bus number, and links the controller into usbcore data
910 * structures so that it can be seen by scanning the bus list.
912 * Return: 0 if successful. A negative error code otherwise.
914 static int usb_register_bus(struct usb_bus
*bus
)
919 mutex_lock(&usb_bus_idr_lock
);
920 busnum
= idr_alloc(&usb_bus_idr
, bus
, 1, USB_MAXBUS
, GFP_KERNEL
);
922 pr_err("%s: failed to get bus number\n", usbcore_name
);
923 goto error_find_busnum
;
925 bus
->busnum
= busnum
;
926 mutex_unlock(&usb_bus_idr_lock
);
928 usb_notify_add_bus(bus
);
930 dev_info (bus
->controller
, "new USB bus registered, assigned bus "
931 "number %d\n", bus
->busnum
);
935 mutex_unlock(&usb_bus_idr_lock
);
940 * usb_deregister_bus - deregisters the USB host controller
941 * @bus: pointer to the bus to deregister
943 * Context: task context, might sleep.
945 * Recycles the bus number, and unlinks the controller from usbcore data
946 * structures so that it won't be seen by scanning the bus list.
948 static void usb_deregister_bus (struct usb_bus
*bus
)
950 dev_info (bus
->controller
, "USB bus %d deregistered\n", bus
->busnum
);
953 * NOTE: make sure that all the devices are removed by the
954 * controller code, as well as having it call this when cleaning
957 mutex_lock(&usb_bus_idr_lock
);
958 idr_remove(&usb_bus_idr
, bus
->busnum
);
959 mutex_unlock(&usb_bus_idr_lock
);
961 usb_notify_remove_bus(bus
);
965 * register_root_hub - called by usb_add_hcd() to register a root hub
966 * @hcd: host controller for this root hub
968 * This function registers the root hub with the USB subsystem. It sets up
969 * the device properly in the device tree and then calls usb_new_device()
970 * to register the usb device. It also assigns the root hub's USB address
973 * Return: 0 if successful. A negative error code otherwise.
975 static int register_root_hub(struct usb_hcd
*hcd
)
977 struct device
*parent_dev
= hcd
->self
.controller
;
978 struct usb_device
*usb_dev
= hcd
->self
.root_hub
;
979 const int devnum
= 1;
982 usb_dev
->devnum
= devnum
;
983 usb_dev
->bus
->devnum_next
= devnum
+ 1;
984 set_bit (devnum
, usb_dev
->bus
->devmap
.devicemap
);
985 usb_set_device_state(usb_dev
, USB_STATE_ADDRESS
);
987 mutex_lock(&usb_bus_idr_lock
);
989 usb_dev
->ep0
.desc
.wMaxPacketSize
= cpu_to_le16(64);
990 retval
= usb_get_device_descriptor(usb_dev
, USB_DT_DEVICE_SIZE
);
991 if (retval
!= sizeof usb_dev
->descriptor
) {
992 mutex_unlock(&usb_bus_idr_lock
);
993 dev_dbg (parent_dev
, "can't read %s device descriptor %d\n",
994 dev_name(&usb_dev
->dev
), retval
);
995 return (retval
< 0) ? retval
: -EMSGSIZE
;
998 if (le16_to_cpu(usb_dev
->descriptor
.bcdUSB
) >= 0x0201) {
999 retval
= usb_get_bos_descriptor(usb_dev
);
1001 usb_dev
->lpm_capable
= usb_device_supports_lpm(usb_dev
);
1002 } else if (usb_dev
->speed
>= USB_SPEED_SUPER
) {
1003 mutex_unlock(&usb_bus_idr_lock
);
1004 dev_dbg(parent_dev
, "can't read %s bos descriptor %d\n",
1005 dev_name(&usb_dev
->dev
), retval
);
1010 retval
= usb_new_device (usb_dev
);
1012 dev_err (parent_dev
, "can't register root hub for %s, %d\n",
1013 dev_name(&usb_dev
->dev
), retval
);
1015 spin_lock_irq (&hcd_root_hub_lock
);
1016 hcd
->rh_registered
= 1;
1017 spin_unlock_irq (&hcd_root_hub_lock
);
1019 /* Did the HC die before the root hub was registered? */
1021 usb_hc_died (hcd
); /* This time clean up */
1023 mutex_unlock(&usb_bus_idr_lock
);
1029 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1030 * @bus: the bus which the root hub belongs to
1031 * @portnum: the port which is being resumed
1033 * HCDs should call this function when they know that a resume signal is
1034 * being sent to a root-hub port. The root hub will be prevented from
1035 * going into autosuspend until usb_hcd_end_port_resume() is called.
1037 * The bus's private lock must be held by the caller.
1039 void usb_hcd_start_port_resume(struct usb_bus
*bus
, int portnum
)
1041 unsigned bit
= 1 << portnum
;
1043 if (!(bus
->resuming_ports
& bit
)) {
1044 bus
->resuming_ports
|= bit
;
1045 pm_runtime_get_noresume(&bus
->root_hub
->dev
);
1048 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume
);
1051 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1052 * @bus: the bus which the root hub belongs to
1053 * @portnum: the port which is being resumed
1055 * HCDs should call this function when they know that a resume signal has
1056 * stopped being sent to a root-hub port. The root hub will be allowed to
1057 * autosuspend again.
1059 * The bus's private lock must be held by the caller.
1061 void usb_hcd_end_port_resume(struct usb_bus
*bus
, int portnum
)
1063 unsigned bit
= 1 << portnum
;
1065 if (bus
->resuming_ports
& bit
) {
1066 bus
->resuming_ports
&= ~bit
;
1067 pm_runtime_put_noidle(&bus
->root_hub
->dev
);
1070 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume
);
1072 /*-------------------------------------------------------------------------*/
1075 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1076 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1077 * @is_input: true iff the transaction sends data to the host
1078 * @isoc: true for isochronous transactions, false for interrupt ones
1079 * @bytecount: how many bytes in the transaction.
1081 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1084 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1085 * scheduled in software, this function is only used for such scheduling.
1087 long usb_calc_bus_time (int speed
, int is_input
, int isoc
, int bytecount
)
1092 case USB_SPEED_LOW
: /* INTR only */
1094 tmp
= (67667L * (31L + 10L * BitTime (bytecount
))) / 1000L;
1095 return 64060L + (2 * BW_HUB_LS_SETUP
) + BW_HOST_DELAY
+ tmp
;
1097 tmp
= (66700L * (31L + 10L * BitTime (bytecount
))) / 1000L;
1098 return 64107L + (2 * BW_HUB_LS_SETUP
) + BW_HOST_DELAY
+ tmp
;
1100 case USB_SPEED_FULL
: /* ISOC or INTR */
1102 tmp
= (8354L * (31L + 10L * BitTime (bytecount
))) / 1000L;
1103 return ((is_input
) ? 7268L : 6265L) + BW_HOST_DELAY
+ tmp
;
1105 tmp
= (8354L * (31L + 10L * BitTime (bytecount
))) / 1000L;
1106 return 9107L + BW_HOST_DELAY
+ tmp
;
1108 case USB_SPEED_HIGH
: /* ISOC or INTR */
1109 /* FIXME adjust for input vs output */
1111 tmp
= HS_NSECS_ISO (bytecount
);
1113 tmp
= HS_NSECS (bytecount
);
1116 pr_debug ("%s: bogus device speed!\n", usbcore_name
);
1120 EXPORT_SYMBOL_GPL(usb_calc_bus_time
);
1123 /*-------------------------------------------------------------------------*/
1126 * Generic HC operations.
1129 /*-------------------------------------------------------------------------*/
1132 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1133 * @hcd: host controller to which @urb was submitted
1134 * @urb: URB being submitted
1136 * Host controller drivers should call this routine in their enqueue()
1137 * method. The HCD's private spinlock must be held and interrupts must
1138 * be disabled. The actions carried out here are required for URB
1139 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1141 * Return: 0 for no error, otherwise a negative error code (in which case
1142 * the enqueue() method must fail). If no error occurs but enqueue() fails
1143 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1144 * the private spinlock and returning.
1146 int usb_hcd_link_urb_to_ep(struct usb_hcd
*hcd
, struct urb
*urb
)
1150 spin_lock(&hcd_urb_list_lock
);
1152 /* Check that the URB isn't being killed */
1153 if (unlikely(atomic_read(&urb
->reject
))) {
1158 if (unlikely(!urb
->ep
->enabled
)) {
1163 if (unlikely(!urb
->dev
->can_submit
)) {
1169 * Check the host controller's state and add the URB to the
1172 if (HCD_RH_RUNNING(hcd
)) {
1174 list_add_tail(&urb
->urb_list
, &urb
->ep
->urb_list
);
1180 spin_unlock(&hcd_urb_list_lock
);
1183 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep
);
1186 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1187 * @hcd: host controller to which @urb was submitted
1188 * @urb: URB being checked for unlinkability
1189 * @status: error code to store in @urb if the unlink succeeds
1191 * Host controller drivers should call this routine in their dequeue()
1192 * method. The HCD's private spinlock must be held and interrupts must
1193 * be disabled. The actions carried out here are required for making
1194 * sure than an unlink is valid.
1196 * Return: 0 for no error, otherwise a negative error code (in which case
1197 * the dequeue() method must fail). The possible error codes are:
1199 * -EIDRM: @urb was not submitted or has already completed.
1200 * The completion function may not have been called yet.
1202 * -EBUSY: @urb has already been unlinked.
1204 int usb_hcd_check_unlink_urb(struct usb_hcd
*hcd
, struct urb
*urb
,
1207 struct list_head
*tmp
;
1209 /* insist the urb is still queued */
1210 list_for_each(tmp
, &urb
->ep
->urb_list
) {
1211 if (tmp
== &urb
->urb_list
)
1214 if (tmp
!= &urb
->urb_list
)
1217 /* Any status except -EINPROGRESS means something already started to
1218 * unlink this URB from the hardware. So there's no more work to do.
1222 urb
->unlinked
= status
;
1225 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb
);
1228 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1229 * @hcd: host controller to which @urb was submitted
1230 * @urb: URB being unlinked
1232 * Host controller drivers should call this routine before calling
1233 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1234 * interrupts must be disabled. The actions carried out here are required
1235 * for URB completion.
1237 void usb_hcd_unlink_urb_from_ep(struct usb_hcd
*hcd
, struct urb
*urb
)
1239 /* clear all state linking urb to this dev (and hcd) */
1240 spin_lock(&hcd_urb_list_lock
);
1241 list_del_init(&urb
->urb_list
);
1242 spin_unlock(&hcd_urb_list_lock
);
1244 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep
);
1247 * Some usb host controllers can only perform dma using a small SRAM area.
1248 * The usb core itself is however optimized for host controllers that can dma
1249 * using regular system memory - like pci devices doing bus mastering.
1251 * To support host controllers with limited dma capabilities we provide dma
1252 * bounce buffers. This feature can be enabled by initializing
1253 * hcd->localmem_pool using usb_hcd_setup_local_mem().
1255 * The initialized hcd->localmem_pool then tells the usb code to allocate all
1256 * data for dma using the genalloc API.
1258 * So, to summarize...
1260 * - We need "local" memory, canonical example being
1261 * a small SRAM on a discrete controller being the
1262 * only memory that the controller can read ...
1263 * (a) "normal" kernel memory is no good, and
1264 * (b) there's not enough to share
1266 * - So we use that, even though the primary requirement
1267 * is that the memory be "local" (hence addressable
1268 * by that device), not "coherent".
1272 static int hcd_alloc_coherent(struct usb_bus
*bus
,
1273 gfp_t mem_flags
, dma_addr_t
*dma_handle
,
1274 void **vaddr_handle
, size_t size
,
1275 enum dma_data_direction dir
)
1277 unsigned char *vaddr
;
1279 if (*vaddr_handle
== NULL
) {
1284 vaddr
= hcd_buffer_alloc(bus
, size
+ sizeof(vaddr
),
1285 mem_flags
, dma_handle
);
1290 * Store the virtual address of the buffer at the end
1291 * of the allocated dma buffer. The size of the buffer
1292 * may be uneven so use unaligned functions instead
1293 * of just rounding up. It makes sense to optimize for
1294 * memory footprint over access speed since the amount
1295 * of memory available for dma may be limited.
1297 put_unaligned((unsigned long)*vaddr_handle
,
1298 (unsigned long *)(vaddr
+ size
));
1300 if (dir
== DMA_TO_DEVICE
)
1301 memcpy(vaddr
, *vaddr_handle
, size
);
1303 *vaddr_handle
= vaddr
;
1307 static void hcd_free_coherent(struct usb_bus
*bus
, dma_addr_t
*dma_handle
,
1308 void **vaddr_handle
, size_t size
,
1309 enum dma_data_direction dir
)
1311 unsigned char *vaddr
= *vaddr_handle
;
1313 vaddr
= (void *)get_unaligned((unsigned long *)(vaddr
+ size
));
1315 if (dir
== DMA_FROM_DEVICE
)
1316 memcpy(vaddr
, *vaddr_handle
, size
);
1318 hcd_buffer_free(bus
, size
+ sizeof(vaddr
), *vaddr_handle
, *dma_handle
);
1320 *vaddr_handle
= vaddr
;
1324 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
)
1326 if (IS_ENABLED(CONFIG_HAS_DMA
) &&
1327 (urb
->transfer_flags
& URB_SETUP_MAP_SINGLE
))
1328 dma_unmap_single(hcd
->self
.sysdev
,
1330 sizeof(struct usb_ctrlrequest
),
1332 else if (urb
->transfer_flags
& URB_SETUP_MAP_LOCAL
)
1333 hcd_free_coherent(urb
->dev
->bus
,
1335 (void **) &urb
->setup_packet
,
1336 sizeof(struct usb_ctrlrequest
),
1339 /* Make it safe to call this routine more than once */
1340 urb
->transfer_flags
&= ~(URB_SETUP_MAP_SINGLE
| URB_SETUP_MAP_LOCAL
);
1342 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma
);
1344 static void unmap_urb_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
)
1346 if (hcd
->driver
->unmap_urb_for_dma
)
1347 hcd
->driver
->unmap_urb_for_dma(hcd
, urb
);
1349 usb_hcd_unmap_urb_for_dma(hcd
, urb
);
1352 void usb_hcd_unmap_urb_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
)
1354 enum dma_data_direction dir
;
1356 usb_hcd_unmap_urb_setup_for_dma(hcd
, urb
);
1358 dir
= usb_urb_dir_in(urb
) ? DMA_FROM_DEVICE
: DMA_TO_DEVICE
;
1359 if (IS_ENABLED(CONFIG_HAS_DMA
) &&
1360 (urb
->transfer_flags
& URB_DMA_MAP_SG
))
1361 dma_unmap_sg(hcd
->self
.sysdev
,
1365 else if (IS_ENABLED(CONFIG_HAS_DMA
) &&
1366 (urb
->transfer_flags
& URB_DMA_MAP_PAGE
))
1367 dma_unmap_page(hcd
->self
.sysdev
,
1369 urb
->transfer_buffer_length
,
1371 else if (IS_ENABLED(CONFIG_HAS_DMA
) &&
1372 (urb
->transfer_flags
& URB_DMA_MAP_SINGLE
))
1373 dma_unmap_single(hcd
->self
.sysdev
,
1375 urb
->transfer_buffer_length
,
1377 else if (urb
->transfer_flags
& URB_MAP_LOCAL
)
1378 hcd_free_coherent(urb
->dev
->bus
,
1380 &urb
->transfer_buffer
,
1381 urb
->transfer_buffer_length
,
1384 /* Make it safe to call this routine more than once */
1385 urb
->transfer_flags
&= ~(URB_DMA_MAP_SG
| URB_DMA_MAP_PAGE
|
1386 URB_DMA_MAP_SINGLE
| URB_MAP_LOCAL
);
1388 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma
);
1390 static int map_urb_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
,
1393 if (hcd
->driver
->map_urb_for_dma
)
1394 return hcd
->driver
->map_urb_for_dma(hcd
, urb
, mem_flags
);
1396 return usb_hcd_map_urb_for_dma(hcd
, urb
, mem_flags
);
1399 int usb_hcd_map_urb_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
,
1402 enum dma_data_direction dir
;
1405 /* Map the URB's buffers for DMA access.
1406 * Lower level HCD code should use *_dma exclusively,
1407 * unless it uses pio or talks to another transport,
1408 * or uses the provided scatter gather list for bulk.
1411 if (usb_endpoint_xfer_control(&urb
->ep
->desc
)) {
1412 if (hcd
->self
.uses_pio_for_control
)
1414 if (hcd
->localmem_pool
) {
1415 ret
= hcd_alloc_coherent(
1416 urb
->dev
->bus
, mem_flags
,
1418 (void **)&urb
->setup_packet
,
1419 sizeof(struct usb_ctrlrequest
),
1423 urb
->transfer_flags
|= URB_SETUP_MAP_LOCAL
;
1424 } else if (hcd_uses_dma(hcd
)) {
1425 if (object_is_on_stack(urb
->setup_packet
)) {
1426 WARN_ONCE(1, "setup packet is on stack\n");
1430 urb
->setup_dma
= dma_map_single(
1433 sizeof(struct usb_ctrlrequest
),
1435 if (dma_mapping_error(hcd
->self
.sysdev
,
1438 urb
->transfer_flags
|= URB_SETUP_MAP_SINGLE
;
1442 dir
= usb_urb_dir_in(urb
) ? DMA_FROM_DEVICE
: DMA_TO_DEVICE
;
1443 if (urb
->transfer_buffer_length
!= 0
1444 && !(urb
->transfer_flags
& URB_NO_TRANSFER_DMA_MAP
)) {
1445 if (hcd
->localmem_pool
) {
1446 ret
= hcd_alloc_coherent(
1447 urb
->dev
->bus
, mem_flags
,
1449 &urb
->transfer_buffer
,
1450 urb
->transfer_buffer_length
,
1453 urb
->transfer_flags
|= URB_MAP_LOCAL
;
1454 } else if (hcd_uses_dma(hcd
)) {
1458 /* We don't support sg for isoc transfers ! */
1459 if (usb_endpoint_xfer_isoc(&urb
->ep
->desc
)) {
1472 urb
->transfer_flags
|= URB_DMA_MAP_SG
;
1473 urb
->num_mapped_sgs
= n
;
1474 if (n
!= urb
->num_sgs
)
1475 urb
->transfer_flags
|=
1476 URB_DMA_SG_COMBINED
;
1477 } else if (urb
->sg
) {
1478 struct scatterlist
*sg
= urb
->sg
;
1479 urb
->transfer_dma
= dma_map_page(
1483 urb
->transfer_buffer_length
,
1485 if (dma_mapping_error(hcd
->self
.sysdev
,
1489 urb
->transfer_flags
|= URB_DMA_MAP_PAGE
;
1490 } else if (object_is_on_stack(urb
->transfer_buffer
)) {
1491 WARN_ONCE(1, "transfer buffer is on stack\n");
1494 urb
->transfer_dma
= dma_map_single(
1496 urb
->transfer_buffer
,
1497 urb
->transfer_buffer_length
,
1499 if (dma_mapping_error(hcd
->self
.sysdev
,
1503 urb
->transfer_flags
|= URB_DMA_MAP_SINGLE
;
1506 if (ret
&& (urb
->transfer_flags
& (URB_SETUP_MAP_SINGLE
|
1507 URB_SETUP_MAP_LOCAL
)))
1508 usb_hcd_unmap_urb_for_dma(hcd
, urb
);
1512 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma
);
1514 /*-------------------------------------------------------------------------*/
1516 /* may be called in any context with a valid urb->dev usecount
1517 * caller surrenders "ownership" of urb
1518 * expects usb_submit_urb() to have sanity checked and conditioned all
1521 int usb_hcd_submit_urb (struct urb
*urb
, gfp_t mem_flags
)
1524 struct usb_hcd
*hcd
= bus_to_hcd(urb
->dev
->bus
);
1526 /* increment urb's reference count as part of giving it to the HCD
1527 * (which will control it). HCD guarantees that it either returns
1528 * an error or calls giveback(), but not both.
1531 atomic_inc(&urb
->use_count
);
1532 atomic_inc(&urb
->dev
->urbnum
);
1533 usbmon_urb_submit(&hcd
->self
, urb
);
1535 /* NOTE requirements on root-hub callers (usbfs and the hub
1536 * driver, for now): URBs' urb->transfer_buffer must be
1537 * valid and usb_buffer_{sync,unmap}() not be needed, since
1538 * they could clobber root hub response data. Also, control
1539 * URBs must be submitted in process context with interrupts
1543 if (is_root_hub(urb
->dev
)) {
1544 status
= rh_urb_enqueue(hcd
, urb
);
1546 status
= map_urb_for_dma(hcd
, urb
, mem_flags
);
1547 if (likely(status
== 0)) {
1548 status
= hcd
->driver
->urb_enqueue(hcd
, urb
, mem_flags
);
1549 if (unlikely(status
))
1550 unmap_urb_for_dma(hcd
, urb
);
1554 if (unlikely(status
)) {
1555 usbmon_urb_submit_error(&hcd
->self
, urb
, status
);
1557 INIT_LIST_HEAD(&urb
->urb_list
);
1558 atomic_dec(&urb
->use_count
);
1559 atomic_dec(&urb
->dev
->urbnum
);
1560 if (atomic_read(&urb
->reject
))
1561 wake_up(&usb_kill_urb_queue
);
1567 /*-------------------------------------------------------------------------*/
1569 /* this makes the hcd giveback() the urb more quickly, by kicking it
1570 * off hardware queues (which may take a while) and returning it as
1571 * soon as practical. we've already set up the urb's return status,
1572 * but we can't know if the callback completed already.
1574 static int unlink1(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
1578 if (is_root_hub(urb
->dev
))
1579 value
= usb_rh_urb_dequeue(hcd
, urb
, status
);
1582 /* The only reason an HCD might fail this call is if
1583 * it has not yet fully queued the urb to begin with.
1584 * Such failures should be harmless. */
1585 value
= hcd
->driver
->urb_dequeue(hcd
, urb
, status
);
1591 * called in any context
1593 * caller guarantees urb won't be recycled till both unlink()
1594 * and the urb's completion function return
1596 int usb_hcd_unlink_urb (struct urb
*urb
, int status
)
1598 struct usb_hcd
*hcd
;
1599 struct usb_device
*udev
= urb
->dev
;
1600 int retval
= -EIDRM
;
1601 unsigned long flags
;
1603 /* Prevent the device and bus from going away while
1604 * the unlink is carried out. If they are already gone
1605 * then urb->use_count must be 0, since disconnected
1606 * devices can't have any active URBs.
1608 spin_lock_irqsave(&hcd_urb_unlink_lock
, flags
);
1609 if (atomic_read(&urb
->use_count
) > 0) {
1613 spin_unlock_irqrestore(&hcd_urb_unlink_lock
, flags
);
1615 hcd
= bus_to_hcd(urb
->dev
->bus
);
1616 retval
= unlink1(hcd
, urb
, status
);
1618 retval
= -EINPROGRESS
;
1619 else if (retval
!= -EIDRM
&& retval
!= -EBUSY
)
1620 dev_dbg(&udev
->dev
, "hcd_unlink_urb %pK fail %d\n",
1627 /*-------------------------------------------------------------------------*/
1629 static void __usb_hcd_giveback_urb(struct urb
*urb
)
1631 struct usb_hcd
*hcd
= bus_to_hcd(urb
->dev
->bus
);
1632 struct usb_anchor
*anchor
= urb
->anchor
;
1633 int status
= urb
->unlinked
;
1636 if (unlikely((urb
->transfer_flags
& URB_SHORT_NOT_OK
) &&
1637 urb
->actual_length
< urb
->transfer_buffer_length
&&
1639 status
= -EREMOTEIO
;
1641 unmap_urb_for_dma(hcd
, urb
);
1642 usbmon_urb_complete(&hcd
->self
, urb
, status
);
1643 usb_anchor_suspend_wakeups(anchor
);
1644 usb_unanchor_urb(urb
);
1645 if (likely(status
== 0))
1646 usb_led_activity(USB_LED_EVENT_HOST
);
1648 /* pass ownership to the completion handler */
1649 urb
->status
= status
;
1651 * This function can be called in task context inside another remote
1652 * coverage collection section, but KCOV doesn't support that kind of
1653 * recursion yet. Only collect coverage in softirq context for now.
1655 if (in_serving_softirq())
1656 kcov_remote_start_usb((u64
)urb
->dev
->bus
->busnum
);
1658 if (in_serving_softirq())
1661 usb_anchor_resume_wakeups(anchor
);
1662 atomic_dec(&urb
->use_count
);
1663 if (unlikely(atomic_read(&urb
->reject
)))
1664 wake_up(&usb_kill_urb_queue
);
1668 static void usb_giveback_urb_bh(struct tasklet_struct
*t
)
1670 struct giveback_urb_bh
*bh
= from_tasklet(bh
, t
, bh
);
1671 struct list_head local_list
;
1673 spin_lock_irq(&bh
->lock
);
1676 list_replace_init(&bh
->head
, &local_list
);
1677 spin_unlock_irq(&bh
->lock
);
1679 while (!list_empty(&local_list
)) {
1682 urb
= list_entry(local_list
.next
, struct urb
, urb_list
);
1683 list_del_init(&urb
->urb_list
);
1684 bh
->completing_ep
= urb
->ep
;
1685 __usb_hcd_giveback_urb(urb
);
1686 bh
->completing_ep
= NULL
;
1689 /* check if there are new URBs to giveback */
1690 spin_lock_irq(&bh
->lock
);
1691 if (!list_empty(&bh
->head
))
1693 bh
->running
= false;
1694 spin_unlock_irq(&bh
->lock
);
1698 * usb_hcd_giveback_urb - return URB from HCD to device driver
1699 * @hcd: host controller returning the URB
1700 * @urb: urb being returned to the USB device driver.
1701 * @status: completion status code for the URB.
1703 * Context: atomic. The completion callback is invoked in caller's context.
1704 * For HCDs with HCD_BH flag set, the completion callback is invoked in tasklet
1705 * context (except for URBs submitted to the root hub which always complete in
1706 * caller's context).
1708 * This hands the URB from HCD to its USB device driver, using its
1709 * completion function. The HCD has freed all per-urb resources
1710 * (and is done using urb->hcpriv). It also released all HCD locks;
1711 * the device driver won't cause problems if it frees, modifies,
1712 * or resubmits this URB.
1714 * If @urb was unlinked, the value of @status will be overridden by
1715 * @urb->unlinked. Erroneous short transfers are detected in case
1716 * the HCD hasn't checked for them.
1718 void usb_hcd_giveback_urb(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
1720 struct giveback_urb_bh
*bh
;
1721 bool running
, high_prio_bh
;
1723 /* pass status to tasklet via unlinked */
1724 if (likely(!urb
->unlinked
))
1725 urb
->unlinked
= status
;
1727 if (!hcd_giveback_urb_in_bh(hcd
) && !is_root_hub(urb
->dev
)) {
1728 __usb_hcd_giveback_urb(urb
);
1732 if (usb_pipeisoc(urb
->pipe
) || usb_pipeint(urb
->pipe
)) {
1733 bh
= &hcd
->high_prio_bh
;
1734 high_prio_bh
= true;
1736 bh
= &hcd
->low_prio_bh
;
1737 high_prio_bh
= false;
1740 spin_lock(&bh
->lock
);
1741 list_add_tail(&urb
->urb_list
, &bh
->head
);
1742 running
= bh
->running
;
1743 spin_unlock(&bh
->lock
);
1747 else if (high_prio_bh
)
1748 tasklet_hi_schedule(&bh
->bh
);
1750 tasklet_schedule(&bh
->bh
);
1752 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb
);
1754 /*-------------------------------------------------------------------------*/
1756 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1757 * queue to drain completely. The caller must first insure that no more
1758 * URBs can be submitted for this endpoint.
1760 void usb_hcd_flush_endpoint(struct usb_device
*udev
,
1761 struct usb_host_endpoint
*ep
)
1763 struct usb_hcd
*hcd
;
1769 hcd
= bus_to_hcd(udev
->bus
);
1771 /* No more submits can occur */
1772 spin_lock_irq(&hcd_urb_list_lock
);
1774 list_for_each_entry_reverse(urb
, &ep
->urb_list
, urb_list
) {
1780 is_in
= usb_urb_dir_in(urb
);
1781 spin_unlock(&hcd_urb_list_lock
);
1784 unlink1(hcd
, urb
, -ESHUTDOWN
);
1785 dev_dbg (hcd
->self
.controller
,
1786 "shutdown urb %pK ep%d%s-%s\n",
1787 urb
, usb_endpoint_num(&ep
->desc
),
1788 is_in
? "in" : "out",
1789 usb_ep_type_string(usb_endpoint_type(&ep
->desc
)));
1792 /* list contents may have changed */
1793 spin_lock(&hcd_urb_list_lock
);
1796 spin_unlock_irq(&hcd_urb_list_lock
);
1798 /* Wait until the endpoint queue is completely empty */
1799 while (!list_empty (&ep
->urb_list
)) {
1800 spin_lock_irq(&hcd_urb_list_lock
);
1802 /* The list may have changed while we acquired the spinlock */
1804 if (!list_empty (&ep
->urb_list
)) {
1805 urb
= list_entry (ep
->urb_list
.prev
, struct urb
,
1809 spin_unlock_irq(&hcd_urb_list_lock
);
1819 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1821 * @udev: target &usb_device
1822 * @new_config: new configuration to install
1823 * @cur_alt: the current alternate interface setting
1824 * @new_alt: alternate interface setting that is being installed
1826 * To change configurations, pass in the new configuration in new_config,
1827 * and pass NULL for cur_alt and new_alt.
1829 * To reset a device's configuration (put the device in the ADDRESSED state),
1830 * pass in NULL for new_config, cur_alt, and new_alt.
1832 * To change alternate interface settings, pass in NULL for new_config,
1833 * pass in the current alternate interface setting in cur_alt,
1834 * and pass in the new alternate interface setting in new_alt.
1836 * Return: An error if the requested bandwidth change exceeds the
1837 * bus bandwidth or host controller internal resources.
1839 int usb_hcd_alloc_bandwidth(struct usb_device
*udev
,
1840 struct usb_host_config
*new_config
,
1841 struct usb_host_interface
*cur_alt
,
1842 struct usb_host_interface
*new_alt
)
1844 int num_intfs
, i
, j
;
1845 struct usb_host_interface
*alt
= NULL
;
1847 struct usb_hcd
*hcd
;
1848 struct usb_host_endpoint
*ep
;
1850 hcd
= bus_to_hcd(udev
->bus
);
1851 if (!hcd
->driver
->check_bandwidth
)
1854 /* Configuration is being removed - set configuration 0 */
1855 if (!new_config
&& !cur_alt
) {
1856 for (i
= 1; i
< 16; ++i
) {
1857 ep
= udev
->ep_out
[i
];
1859 hcd
->driver
->drop_endpoint(hcd
, udev
, ep
);
1860 ep
= udev
->ep_in
[i
];
1862 hcd
->driver
->drop_endpoint(hcd
, udev
, ep
);
1864 hcd
->driver
->check_bandwidth(hcd
, udev
);
1867 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1868 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1869 * of the bus. There will always be bandwidth for endpoint 0, so it's
1873 num_intfs
= new_config
->desc
.bNumInterfaces
;
1874 /* Remove endpoints (except endpoint 0, which is always on the
1875 * schedule) from the old config from the schedule
1877 for (i
= 1; i
< 16; ++i
) {
1878 ep
= udev
->ep_out
[i
];
1880 ret
= hcd
->driver
->drop_endpoint(hcd
, udev
, ep
);
1884 ep
= udev
->ep_in
[i
];
1886 ret
= hcd
->driver
->drop_endpoint(hcd
, udev
, ep
);
1891 for (i
= 0; i
< num_intfs
; ++i
) {
1892 struct usb_host_interface
*first_alt
;
1895 first_alt
= &new_config
->intf_cache
[i
]->altsetting
[0];
1896 iface_num
= first_alt
->desc
.bInterfaceNumber
;
1897 /* Set up endpoints for alternate interface setting 0 */
1898 alt
= usb_find_alt_setting(new_config
, iface_num
, 0);
1900 /* No alt setting 0? Pick the first setting. */
1903 for (j
= 0; j
< alt
->desc
.bNumEndpoints
; j
++) {
1904 ret
= hcd
->driver
->add_endpoint(hcd
, udev
, &alt
->endpoint
[j
]);
1910 if (cur_alt
&& new_alt
) {
1911 struct usb_interface
*iface
= usb_ifnum_to_if(udev
,
1912 cur_alt
->desc
.bInterfaceNumber
);
1916 if (iface
->resetting_device
) {
1918 * The USB core just reset the device, so the xHCI host
1919 * and the device will think alt setting 0 is installed.
1920 * However, the USB core will pass in the alternate
1921 * setting installed before the reset as cur_alt. Dig
1922 * out the alternate setting 0 structure, or the first
1923 * alternate setting if a broken device doesn't have alt
1926 cur_alt
= usb_altnum_to_altsetting(iface
, 0);
1928 cur_alt
= &iface
->altsetting
[0];
1931 /* Drop all the endpoints in the current alt setting */
1932 for (i
= 0; i
< cur_alt
->desc
.bNumEndpoints
; i
++) {
1933 ret
= hcd
->driver
->drop_endpoint(hcd
, udev
,
1934 &cur_alt
->endpoint
[i
]);
1938 /* Add all the endpoints in the new alt setting */
1939 for (i
= 0; i
< new_alt
->desc
.bNumEndpoints
; i
++) {
1940 ret
= hcd
->driver
->add_endpoint(hcd
, udev
,
1941 &new_alt
->endpoint
[i
]);
1946 ret
= hcd
->driver
->check_bandwidth(hcd
, udev
);
1949 hcd
->driver
->reset_bandwidth(hcd
, udev
);
1953 /* Disables the endpoint: synchronizes with the hcd to make sure all
1954 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1955 * have been called previously. Use for set_configuration, set_interface,
1956 * driver removal, physical disconnect.
1958 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1959 * type, maxpacket size, toggle, halt status, and scheduling.
1961 void usb_hcd_disable_endpoint(struct usb_device
*udev
,
1962 struct usb_host_endpoint
*ep
)
1964 struct usb_hcd
*hcd
;
1967 hcd
= bus_to_hcd(udev
->bus
);
1968 if (hcd
->driver
->endpoint_disable
)
1969 hcd
->driver
->endpoint_disable(hcd
, ep
);
1973 * usb_hcd_reset_endpoint - reset host endpoint state
1974 * @udev: USB device.
1975 * @ep: the endpoint to reset.
1977 * Resets any host endpoint state such as the toggle bit, sequence
1978 * number and current window.
1980 void usb_hcd_reset_endpoint(struct usb_device
*udev
,
1981 struct usb_host_endpoint
*ep
)
1983 struct usb_hcd
*hcd
= bus_to_hcd(udev
->bus
);
1985 if (hcd
->driver
->endpoint_reset
)
1986 hcd
->driver
->endpoint_reset(hcd
, ep
);
1988 int epnum
= usb_endpoint_num(&ep
->desc
);
1989 int is_out
= usb_endpoint_dir_out(&ep
->desc
);
1990 int is_control
= usb_endpoint_xfer_control(&ep
->desc
);
1992 usb_settoggle(udev
, epnum
, is_out
, 0);
1994 usb_settoggle(udev
, epnum
, !is_out
, 0);
1999 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2000 * @interface: alternate setting that includes all endpoints.
2001 * @eps: array of endpoints that need streams.
2002 * @num_eps: number of endpoints in the array.
2003 * @num_streams: number of streams to allocate.
2004 * @mem_flags: flags hcd should use to allocate memory.
2006 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2007 * Drivers may queue multiple transfers to different stream IDs, which may
2008 * complete in a different order than they were queued.
2010 * Return: On success, the number of allocated streams. On failure, a negative
2013 int usb_alloc_streams(struct usb_interface
*interface
,
2014 struct usb_host_endpoint
**eps
, unsigned int num_eps
,
2015 unsigned int num_streams
, gfp_t mem_flags
)
2017 struct usb_hcd
*hcd
;
2018 struct usb_device
*dev
;
2021 dev
= interface_to_usbdev(interface
);
2022 hcd
= bus_to_hcd(dev
->bus
);
2023 if (!hcd
->driver
->alloc_streams
|| !hcd
->driver
->free_streams
)
2025 if (dev
->speed
< USB_SPEED_SUPER
)
2027 if (dev
->state
< USB_STATE_CONFIGURED
)
2030 for (i
= 0; i
< num_eps
; i
++) {
2031 /* Streams only apply to bulk endpoints. */
2032 if (!usb_endpoint_xfer_bulk(&eps
[i
]->desc
))
2034 /* Re-alloc is not allowed */
2035 if (eps
[i
]->streams
)
2039 ret
= hcd
->driver
->alloc_streams(hcd
, dev
, eps
, num_eps
,
2040 num_streams
, mem_flags
);
2044 for (i
= 0; i
< num_eps
; i
++)
2045 eps
[i
]->streams
= ret
;
2049 EXPORT_SYMBOL_GPL(usb_alloc_streams
);
2052 * usb_free_streams - free bulk endpoint stream IDs.
2053 * @interface: alternate setting that includes all endpoints.
2054 * @eps: array of endpoints to remove streams from.
2055 * @num_eps: number of endpoints in the array.
2056 * @mem_flags: flags hcd should use to allocate memory.
2058 * Reverts a group of bulk endpoints back to not using stream IDs.
2059 * Can fail if we are given bad arguments, or HCD is broken.
2061 * Return: 0 on success. On failure, a negative error code.
2063 int usb_free_streams(struct usb_interface
*interface
,
2064 struct usb_host_endpoint
**eps
, unsigned int num_eps
,
2067 struct usb_hcd
*hcd
;
2068 struct usb_device
*dev
;
2071 dev
= interface_to_usbdev(interface
);
2072 hcd
= bus_to_hcd(dev
->bus
);
2073 if (dev
->speed
< USB_SPEED_SUPER
)
2076 /* Double-free is not allowed */
2077 for (i
= 0; i
< num_eps
; i
++)
2078 if (!eps
[i
] || !eps
[i
]->streams
)
2081 ret
= hcd
->driver
->free_streams(hcd
, dev
, eps
, num_eps
, mem_flags
);
2085 for (i
= 0; i
< num_eps
; i
++)
2086 eps
[i
]->streams
= 0;
2090 EXPORT_SYMBOL_GPL(usb_free_streams
);
2092 /* Protect against drivers that try to unlink URBs after the device
2093 * is gone, by waiting until all unlinks for @udev are finished.
2094 * Since we don't currently track URBs by device, simply wait until
2095 * nothing is running in the locked region of usb_hcd_unlink_urb().
2097 void usb_hcd_synchronize_unlinks(struct usb_device
*udev
)
2099 spin_lock_irq(&hcd_urb_unlink_lock
);
2100 spin_unlock_irq(&hcd_urb_unlink_lock
);
2103 /*-------------------------------------------------------------------------*/
2105 /* called in any context */
2106 int usb_hcd_get_frame_number (struct usb_device
*udev
)
2108 struct usb_hcd
*hcd
= bus_to_hcd(udev
->bus
);
2110 if (!HCD_RH_RUNNING(hcd
))
2112 return hcd
->driver
->get_frame_number (hcd
);
2115 /*-------------------------------------------------------------------------*/
2119 int hcd_bus_suspend(struct usb_device
*rhdev
, pm_message_t msg
)
2121 struct usb_hcd
*hcd
= bus_to_hcd(rhdev
->bus
);
2123 int old_state
= hcd
->state
;
2125 dev_dbg(&rhdev
->dev
, "bus %ssuspend, wakeup %d\n",
2126 (PMSG_IS_AUTO(msg
) ? "auto-" : ""),
2127 rhdev
->do_remote_wakeup
);
2128 if (HCD_DEAD(hcd
)) {
2129 dev_dbg(&rhdev
->dev
, "skipped %s of dead bus\n", "suspend");
2133 if (!hcd
->driver
->bus_suspend
) {
2136 clear_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2137 hcd
->state
= HC_STATE_QUIESCING
;
2138 status
= hcd
->driver
->bus_suspend(hcd
);
2141 usb_set_device_state(rhdev
, USB_STATE_SUSPENDED
);
2142 hcd
->state
= HC_STATE_SUSPENDED
;
2144 if (!PMSG_IS_AUTO(msg
))
2145 usb_phy_roothub_suspend(hcd
->self
.sysdev
,
2148 /* Did we race with a root-hub wakeup event? */
2149 if (rhdev
->do_remote_wakeup
) {
2152 status
= hcd
->driver
->hub_status_data(hcd
, buffer
);
2154 dev_dbg(&rhdev
->dev
, "suspend raced with wakeup event\n");
2155 hcd_bus_resume(rhdev
, PMSG_AUTO_RESUME
);
2160 spin_lock_irq(&hcd_root_hub_lock
);
2161 if (!HCD_DEAD(hcd
)) {
2162 set_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2163 hcd
->state
= old_state
;
2165 spin_unlock_irq(&hcd_root_hub_lock
);
2166 dev_dbg(&rhdev
->dev
, "bus %s fail, err %d\n",
2172 int hcd_bus_resume(struct usb_device
*rhdev
, pm_message_t msg
)
2174 struct usb_hcd
*hcd
= bus_to_hcd(rhdev
->bus
);
2176 int old_state
= hcd
->state
;
2178 dev_dbg(&rhdev
->dev
, "usb %sresume\n",
2179 (PMSG_IS_AUTO(msg
) ? "auto-" : ""));
2180 if (HCD_DEAD(hcd
)) {
2181 dev_dbg(&rhdev
->dev
, "skipped %s of dead bus\n", "resume");
2185 if (!PMSG_IS_AUTO(msg
)) {
2186 status
= usb_phy_roothub_resume(hcd
->self
.sysdev
,
2192 if (!hcd
->driver
->bus_resume
)
2194 if (HCD_RH_RUNNING(hcd
))
2197 hcd
->state
= HC_STATE_RESUMING
;
2198 status
= hcd
->driver
->bus_resume(hcd
);
2199 clear_bit(HCD_FLAG_WAKEUP_PENDING
, &hcd
->flags
);
2201 status
= usb_phy_roothub_calibrate(hcd
->phy_roothub
);
2204 struct usb_device
*udev
;
2207 spin_lock_irq(&hcd_root_hub_lock
);
2208 if (!HCD_DEAD(hcd
)) {
2209 usb_set_device_state(rhdev
, rhdev
->actconfig
2210 ? USB_STATE_CONFIGURED
2211 : USB_STATE_ADDRESS
);
2212 set_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2213 hcd
->state
= HC_STATE_RUNNING
;
2215 spin_unlock_irq(&hcd_root_hub_lock
);
2218 * Check whether any of the enabled ports on the root hub are
2219 * unsuspended. If they are then a TRSMRCY delay is needed
2220 * (this is what the USB-2 spec calls a "global resume").
2221 * Otherwise we can skip the delay.
2223 usb_hub_for_each_child(rhdev
, port1
, udev
) {
2224 if (udev
->state
!= USB_STATE_NOTATTACHED
&&
2225 !udev
->port_is_suspended
) {
2226 usleep_range(10000, 11000); /* TRSMRCY */
2231 hcd
->state
= old_state
;
2232 usb_phy_roothub_suspend(hcd
->self
.sysdev
, hcd
->phy_roothub
);
2233 dev_dbg(&rhdev
->dev
, "bus %s fail, err %d\n",
2235 if (status
!= -ESHUTDOWN
)
2241 /* Workqueue routine for root-hub remote wakeup */
2242 static void hcd_resume_work(struct work_struct
*work
)
2244 struct usb_hcd
*hcd
= container_of(work
, struct usb_hcd
, wakeup_work
);
2245 struct usb_device
*udev
= hcd
->self
.root_hub
;
2247 usb_remote_wakeup(udev
);
2251 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2252 * @hcd: host controller for this root hub
2254 * The USB host controller calls this function when its root hub is
2255 * suspended (with the remote wakeup feature enabled) and a remote
2256 * wakeup request is received. The routine submits a workqueue request
2257 * to resume the root hub (that is, manage its downstream ports again).
2259 void usb_hcd_resume_root_hub (struct usb_hcd
*hcd
)
2261 unsigned long flags
;
2263 spin_lock_irqsave (&hcd_root_hub_lock
, flags
);
2264 if (hcd
->rh_registered
) {
2265 pm_wakeup_event(&hcd
->self
.root_hub
->dev
, 0);
2266 set_bit(HCD_FLAG_WAKEUP_PENDING
, &hcd
->flags
);
2267 queue_work(pm_wq
, &hcd
->wakeup_work
);
2269 spin_unlock_irqrestore (&hcd_root_hub_lock
, flags
);
2271 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub
);
2273 #endif /* CONFIG_PM */
2275 /*-------------------------------------------------------------------------*/
2277 #ifdef CONFIG_USB_OTG
2280 * usb_bus_start_enum - start immediate enumeration (for OTG)
2281 * @bus: the bus (must use hcd framework)
2282 * @port_num: 1-based number of port; usually bus->otg_port
2285 * Starts enumeration, with an immediate reset followed later by
2286 * hub_wq identifying and possibly configuring the device.
2287 * This is needed by OTG controller drivers, where it helps meet
2288 * HNP protocol timing requirements for starting a port reset.
2290 * Return: 0 if successful.
2292 int usb_bus_start_enum(struct usb_bus
*bus
, unsigned port_num
)
2294 struct usb_hcd
*hcd
;
2295 int status
= -EOPNOTSUPP
;
2297 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2298 * boards with root hubs hooked up to internal devices (instead of
2299 * just the OTG port) may need more attention to resetting...
2301 hcd
= bus_to_hcd(bus
);
2302 if (port_num
&& hcd
->driver
->start_port_reset
)
2303 status
= hcd
->driver
->start_port_reset(hcd
, port_num
);
2305 /* allocate hub_wq shortly after (first) root port reset finishes;
2306 * it may issue others, until at least 50 msecs have passed.
2309 mod_timer(&hcd
->rh_timer
, jiffies
+ msecs_to_jiffies(10));
2312 EXPORT_SYMBOL_GPL(usb_bus_start_enum
);
2316 /*-------------------------------------------------------------------------*/
2319 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2320 * @irq: the IRQ being raised
2321 * @__hcd: pointer to the HCD whose IRQ is being signaled
2323 * If the controller isn't HALTed, calls the driver's irq handler.
2324 * Checks whether the controller is now dead.
2326 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2328 irqreturn_t
usb_hcd_irq (int irq
, void *__hcd
)
2330 struct usb_hcd
*hcd
= __hcd
;
2333 if (unlikely(HCD_DEAD(hcd
) || !HCD_HW_ACCESSIBLE(hcd
)))
2335 else if (hcd
->driver
->irq(hcd
) == IRQ_NONE
)
2342 EXPORT_SYMBOL_GPL(usb_hcd_irq
);
2344 /*-------------------------------------------------------------------------*/
2346 /* Workqueue routine for when the root-hub has died. */
2347 static void hcd_died_work(struct work_struct
*work
)
2349 struct usb_hcd
*hcd
= container_of(work
, struct usb_hcd
, died_work
);
2350 static char *env
[] = {
2355 /* Notify user space that the host controller has died */
2356 kobject_uevent_env(&hcd
->self
.root_hub
->dev
.kobj
, KOBJ_OFFLINE
, env
);
2360 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2361 * @hcd: pointer to the HCD representing the controller
2363 * This is called by bus glue to report a USB host controller that died
2364 * while operations may still have been pending. It's called automatically
2365 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2367 * Only call this function with the primary HCD.
2369 void usb_hc_died (struct usb_hcd
*hcd
)
2371 unsigned long flags
;
2373 dev_err (hcd
->self
.controller
, "HC died; cleaning up\n");
2375 spin_lock_irqsave (&hcd_root_hub_lock
, flags
);
2376 clear_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2377 set_bit(HCD_FLAG_DEAD
, &hcd
->flags
);
2378 if (hcd
->rh_registered
) {
2379 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
2381 /* make hub_wq clean up old urbs and devices */
2382 usb_set_device_state (hcd
->self
.root_hub
,
2383 USB_STATE_NOTATTACHED
);
2384 usb_kick_hub_wq(hcd
->self
.root_hub
);
2386 if (usb_hcd_is_primary_hcd(hcd
) && hcd
->shared_hcd
) {
2387 hcd
= hcd
->shared_hcd
;
2388 clear_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2389 set_bit(HCD_FLAG_DEAD
, &hcd
->flags
);
2390 if (hcd
->rh_registered
) {
2391 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
2393 /* make hub_wq clean up old urbs and devices */
2394 usb_set_device_state(hcd
->self
.root_hub
,
2395 USB_STATE_NOTATTACHED
);
2396 usb_kick_hub_wq(hcd
->self
.root_hub
);
2400 /* Handle the case where this function gets called with a shared HCD */
2401 if (usb_hcd_is_primary_hcd(hcd
))
2402 schedule_work(&hcd
->died_work
);
2404 schedule_work(&hcd
->primary_hcd
->died_work
);
2406 spin_unlock_irqrestore (&hcd_root_hub_lock
, flags
);
2407 /* Make sure that the other roothub is also deallocated. */
2409 EXPORT_SYMBOL_GPL (usb_hc_died
);
2411 /*-------------------------------------------------------------------------*/
2413 static void init_giveback_urb_bh(struct giveback_urb_bh
*bh
)
2416 spin_lock_init(&bh
->lock
);
2417 INIT_LIST_HEAD(&bh
->head
);
2418 tasklet_setup(&bh
->bh
, usb_giveback_urb_bh
);
2421 struct usb_hcd
*__usb_create_hcd(const struct hc_driver
*driver
,
2422 struct device
*sysdev
, struct device
*dev
, const char *bus_name
,
2423 struct usb_hcd
*primary_hcd
)
2425 struct usb_hcd
*hcd
;
2427 hcd
= kzalloc(sizeof(*hcd
) + driver
->hcd_priv_size
, GFP_KERNEL
);
2430 if (primary_hcd
== NULL
) {
2431 hcd
->address0_mutex
= kmalloc(sizeof(*hcd
->address0_mutex
),
2433 if (!hcd
->address0_mutex
) {
2435 dev_dbg(dev
, "hcd address0 mutex alloc failed\n");
2438 mutex_init(hcd
->address0_mutex
);
2439 hcd
->bandwidth_mutex
= kmalloc(sizeof(*hcd
->bandwidth_mutex
),
2441 if (!hcd
->bandwidth_mutex
) {
2442 kfree(hcd
->address0_mutex
);
2444 dev_dbg(dev
, "hcd bandwidth mutex alloc failed\n");
2447 mutex_init(hcd
->bandwidth_mutex
);
2448 dev_set_drvdata(dev
, hcd
);
2450 mutex_lock(&usb_port_peer_mutex
);
2451 hcd
->address0_mutex
= primary_hcd
->address0_mutex
;
2452 hcd
->bandwidth_mutex
= primary_hcd
->bandwidth_mutex
;
2453 hcd
->primary_hcd
= primary_hcd
;
2454 primary_hcd
->primary_hcd
= primary_hcd
;
2455 hcd
->shared_hcd
= primary_hcd
;
2456 primary_hcd
->shared_hcd
= hcd
;
2457 mutex_unlock(&usb_port_peer_mutex
);
2460 kref_init(&hcd
->kref
);
2462 usb_bus_init(&hcd
->self
);
2463 hcd
->self
.controller
= dev
;
2464 hcd
->self
.sysdev
= sysdev
;
2465 hcd
->self
.bus_name
= bus_name
;
2467 timer_setup(&hcd
->rh_timer
, rh_timer_func
, 0);
2469 INIT_WORK(&hcd
->wakeup_work
, hcd_resume_work
);
2472 INIT_WORK(&hcd
->died_work
, hcd_died_work
);
2474 hcd
->driver
= driver
;
2475 hcd
->speed
= driver
->flags
& HCD_MASK
;
2476 hcd
->product_desc
= (driver
->product_desc
) ? driver
->product_desc
:
2477 "USB Host Controller";
2480 EXPORT_SYMBOL_GPL(__usb_create_hcd
);
2483 * usb_create_shared_hcd - create and initialize an HCD structure
2484 * @driver: HC driver that will use this hcd
2485 * @dev: device for this HC, stored in hcd->self.controller
2486 * @bus_name: value to store in hcd->self.bus_name
2487 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2488 * PCI device. Only allocate certain resources for the primary HCD
2490 * Context: task context, might sleep.
2492 * Allocate a struct usb_hcd, with extra space at the end for the
2493 * HC driver's private data. Initialize the generic members of the
2496 * Return: On success, a pointer to the created and initialized HCD structure.
2497 * On failure (e.g. if memory is unavailable), %NULL.
2499 struct usb_hcd
*usb_create_shared_hcd(const struct hc_driver
*driver
,
2500 struct device
*dev
, const char *bus_name
,
2501 struct usb_hcd
*primary_hcd
)
2503 return __usb_create_hcd(driver
, dev
, dev
, bus_name
, primary_hcd
);
2505 EXPORT_SYMBOL_GPL(usb_create_shared_hcd
);
2508 * usb_create_hcd - create and initialize an HCD structure
2509 * @driver: HC driver that will use this hcd
2510 * @dev: device for this HC, stored in hcd->self.controller
2511 * @bus_name: value to store in hcd->self.bus_name
2513 * Context: task context, might sleep.
2515 * Allocate a struct usb_hcd, with extra space at the end for the
2516 * HC driver's private data. Initialize the generic members of the
2519 * Return: On success, a pointer to the created and initialized HCD
2520 * structure. On failure (e.g. if memory is unavailable), %NULL.
2522 struct usb_hcd
*usb_create_hcd(const struct hc_driver
*driver
,
2523 struct device
*dev
, const char *bus_name
)
2525 return __usb_create_hcd(driver
, dev
, dev
, bus_name
, NULL
);
2527 EXPORT_SYMBOL_GPL(usb_create_hcd
);
2530 * Roothubs that share one PCI device must also share the bandwidth mutex.
2531 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2534 * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2535 * freed. When hcd_release() is called for either hcd in a peer set,
2536 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2538 static void hcd_release(struct kref
*kref
)
2540 struct usb_hcd
*hcd
= container_of (kref
, struct usb_hcd
, kref
);
2542 mutex_lock(&usb_port_peer_mutex
);
2543 if (hcd
->shared_hcd
) {
2544 struct usb_hcd
*peer
= hcd
->shared_hcd
;
2546 peer
->shared_hcd
= NULL
;
2547 peer
->primary_hcd
= NULL
;
2549 kfree(hcd
->address0_mutex
);
2550 kfree(hcd
->bandwidth_mutex
);
2552 mutex_unlock(&usb_port_peer_mutex
);
2556 struct usb_hcd
*usb_get_hcd (struct usb_hcd
*hcd
)
2559 kref_get (&hcd
->kref
);
2562 EXPORT_SYMBOL_GPL(usb_get_hcd
);
2564 void usb_put_hcd (struct usb_hcd
*hcd
)
2567 kref_put (&hcd
->kref
, hcd_release
);
2569 EXPORT_SYMBOL_GPL(usb_put_hcd
);
2571 int usb_hcd_is_primary_hcd(struct usb_hcd
*hcd
)
2573 if (!hcd
->primary_hcd
)
2575 return hcd
== hcd
->primary_hcd
;
2577 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd
);
2579 int usb_hcd_find_raw_port_number(struct usb_hcd
*hcd
, int port1
)
2581 if (!hcd
->driver
->find_raw_port_number
)
2584 return hcd
->driver
->find_raw_port_number(hcd
, port1
);
2587 static int usb_hcd_request_irqs(struct usb_hcd
*hcd
,
2588 unsigned int irqnum
, unsigned long irqflags
)
2592 if (hcd
->driver
->irq
) {
2594 snprintf(hcd
->irq_descr
, sizeof(hcd
->irq_descr
), "%s:usb%d",
2595 hcd
->driver
->description
, hcd
->self
.busnum
);
2596 retval
= request_irq(irqnum
, &usb_hcd_irq
, irqflags
,
2597 hcd
->irq_descr
, hcd
);
2599 dev_err(hcd
->self
.controller
,
2600 "request interrupt %d failed\n",
2605 dev_info(hcd
->self
.controller
, "irq %d, %s 0x%08llx\n", irqnum
,
2606 (hcd
->driver
->flags
& HCD_MEMORY
) ?
2607 "io mem" : "io base",
2608 (unsigned long long)hcd
->rsrc_start
);
2611 if (hcd
->rsrc_start
)
2612 dev_info(hcd
->self
.controller
, "%s 0x%08llx\n",
2613 (hcd
->driver
->flags
& HCD_MEMORY
) ?
2614 "io mem" : "io base",
2615 (unsigned long long)hcd
->rsrc_start
);
2621 * Before we free this root hub, flush in-flight peering attempts
2622 * and disable peer lookups
2624 static void usb_put_invalidate_rhdev(struct usb_hcd
*hcd
)
2626 struct usb_device
*rhdev
;
2628 mutex_lock(&usb_port_peer_mutex
);
2629 rhdev
= hcd
->self
.root_hub
;
2630 hcd
->self
.root_hub
= NULL
;
2631 mutex_unlock(&usb_port_peer_mutex
);
2636 * usb_add_hcd - finish generic HCD structure initialization and register
2637 * @hcd: the usb_hcd structure to initialize
2638 * @irqnum: Interrupt line to allocate
2639 * @irqflags: Interrupt type flags
2641 * Finish the remaining parts of generic HCD initialization: allocate the
2642 * buffers of consistent memory, register the bus, request the IRQ line,
2643 * and call the driver's reset() and start() routines.
2645 int usb_add_hcd(struct usb_hcd
*hcd
,
2646 unsigned int irqnum
, unsigned long irqflags
)
2649 struct usb_device
*rhdev
;
2651 if (!hcd
->skip_phy_initialization
&& usb_hcd_is_primary_hcd(hcd
)) {
2652 hcd
->phy_roothub
= usb_phy_roothub_alloc(hcd
->self
.sysdev
);
2653 if (IS_ERR(hcd
->phy_roothub
))
2654 return PTR_ERR(hcd
->phy_roothub
);
2656 retval
= usb_phy_roothub_init(hcd
->phy_roothub
);
2660 retval
= usb_phy_roothub_set_mode(hcd
->phy_roothub
,
2661 PHY_MODE_USB_HOST_SS
);
2663 retval
= usb_phy_roothub_set_mode(hcd
->phy_roothub
,
2666 goto err_usb_phy_roothub_power_on
;
2668 retval
= usb_phy_roothub_power_on(hcd
->phy_roothub
);
2670 goto err_usb_phy_roothub_power_on
;
2673 dev_info(hcd
->self
.controller
, "%s\n", hcd
->product_desc
);
2675 switch (authorized_default
) {
2676 case USB_AUTHORIZE_NONE
:
2677 hcd
->dev_policy
= USB_DEVICE_AUTHORIZE_NONE
;
2680 case USB_AUTHORIZE_ALL
:
2681 hcd
->dev_policy
= USB_DEVICE_AUTHORIZE_ALL
;
2684 case USB_AUTHORIZE_INTERNAL
:
2685 hcd
->dev_policy
= USB_DEVICE_AUTHORIZE_INTERNAL
;
2688 case USB_AUTHORIZE_WIRED
:
2690 hcd
->dev_policy
= hcd
->wireless
?
2691 USB_DEVICE_AUTHORIZE_NONE
: USB_DEVICE_AUTHORIZE_ALL
;
2695 set_bit(HCD_FLAG_HW_ACCESSIBLE
, &hcd
->flags
);
2697 /* per default all interfaces are authorized */
2698 set_bit(HCD_FLAG_INTF_AUTHORIZED
, &hcd
->flags
);
2700 /* HC is in reset state, but accessible. Now do the one-time init,
2701 * bottom up so that hcds can customize the root hubs before hub_wq
2702 * starts talking to them. (Note, bus id is assigned early too.)
2704 retval
= hcd_buffer_create(hcd
);
2706 dev_dbg(hcd
->self
.sysdev
, "pool alloc failed\n");
2707 goto err_create_buf
;
2710 retval
= usb_register_bus(&hcd
->self
);
2712 goto err_register_bus
;
2714 rhdev
= usb_alloc_dev(NULL
, &hcd
->self
, 0);
2715 if (rhdev
== NULL
) {
2716 dev_err(hcd
->self
.sysdev
, "unable to allocate root hub\n");
2718 goto err_allocate_root_hub
;
2720 mutex_lock(&usb_port_peer_mutex
);
2721 hcd
->self
.root_hub
= rhdev
;
2722 mutex_unlock(&usb_port_peer_mutex
);
2724 rhdev
->rx_lanes
= 1;
2725 rhdev
->tx_lanes
= 1;
2727 switch (hcd
->speed
) {
2729 rhdev
->speed
= USB_SPEED_FULL
;
2732 rhdev
->speed
= USB_SPEED_HIGH
;
2735 rhdev
->speed
= USB_SPEED_WIRELESS
;
2738 rhdev
->speed
= USB_SPEED_SUPER
;
2741 rhdev
->rx_lanes
= 2;
2742 rhdev
->tx_lanes
= 2;
2745 rhdev
->speed
= USB_SPEED_SUPER_PLUS
;
2749 goto err_set_rh_speed
;
2752 /* wakeup flag init defaults to "everything works" for root hubs,
2753 * but drivers can override it in reset() if needed, along with
2754 * recording the overall controller's system wakeup capability.
2756 device_set_wakeup_capable(&rhdev
->dev
, 1);
2758 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2759 * registered. But since the controller can die at any time,
2760 * let's initialize the flag before touching the hardware.
2762 set_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2764 /* "reset" is misnamed; its role is now one-time init. the controller
2765 * should already have been reset (and boot firmware kicked off etc).
2767 if (hcd
->driver
->reset
) {
2768 retval
= hcd
->driver
->reset(hcd
);
2770 dev_err(hcd
->self
.controller
, "can't setup: %d\n",
2772 goto err_hcd_driver_setup
;
2775 hcd
->rh_pollable
= 1;
2777 retval
= usb_phy_roothub_calibrate(hcd
->phy_roothub
);
2779 goto err_hcd_driver_setup
;
2781 /* NOTE: root hub and controller capabilities may not be the same */
2782 if (device_can_wakeup(hcd
->self
.controller
)
2783 && device_can_wakeup(&hcd
->self
.root_hub
->dev
))
2784 dev_dbg(hcd
->self
.controller
, "supports USB remote wakeup\n");
2786 /* initialize tasklets */
2787 init_giveback_urb_bh(&hcd
->high_prio_bh
);
2788 init_giveback_urb_bh(&hcd
->low_prio_bh
);
2790 /* enable irqs just before we start the controller,
2791 * if the BIOS provides legacy PCI irqs.
2793 if (usb_hcd_is_primary_hcd(hcd
) && irqnum
) {
2794 retval
= usb_hcd_request_irqs(hcd
, irqnum
, irqflags
);
2796 goto err_request_irq
;
2799 hcd
->state
= HC_STATE_RUNNING
;
2800 retval
= hcd
->driver
->start(hcd
);
2802 dev_err(hcd
->self
.controller
, "startup error %d\n", retval
);
2803 goto err_hcd_driver_start
;
2806 /* starting here, usbcore will pay attention to this root hub */
2807 retval
= register_root_hub(hcd
);
2809 goto err_register_root_hub
;
2811 if (hcd
->uses_new_polling
&& HCD_POLL_RH(hcd
))
2812 usb_hcd_poll_rh_status(hcd
);
2816 err_register_root_hub
:
2817 hcd
->rh_pollable
= 0;
2818 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
2819 del_timer_sync(&hcd
->rh_timer
);
2820 hcd
->driver
->stop(hcd
);
2821 hcd
->state
= HC_STATE_HALT
;
2822 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
2823 del_timer_sync(&hcd
->rh_timer
);
2824 err_hcd_driver_start
:
2825 if (usb_hcd_is_primary_hcd(hcd
) && hcd
->irq
> 0)
2826 free_irq(irqnum
, hcd
);
2828 err_hcd_driver_setup
:
2830 usb_put_invalidate_rhdev(hcd
);
2831 err_allocate_root_hub
:
2832 usb_deregister_bus(&hcd
->self
);
2834 hcd_buffer_destroy(hcd
);
2836 usb_phy_roothub_power_off(hcd
->phy_roothub
);
2837 err_usb_phy_roothub_power_on
:
2838 usb_phy_roothub_exit(hcd
->phy_roothub
);
2842 EXPORT_SYMBOL_GPL(usb_add_hcd
);
2845 * usb_remove_hcd - shutdown processing for generic HCDs
2846 * @hcd: the usb_hcd structure to remove
2848 * Context: task context, might sleep.
2850 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2851 * invoking the HCD's stop() method.
2853 void usb_remove_hcd(struct usb_hcd
*hcd
)
2855 struct usb_device
*rhdev
= hcd
->self
.root_hub
;
2857 dev_info(hcd
->self
.controller
, "remove, state %x\n", hcd
->state
);
2860 clear_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2861 if (HC_IS_RUNNING (hcd
->state
))
2862 hcd
->state
= HC_STATE_QUIESCING
;
2864 dev_dbg(hcd
->self
.controller
, "roothub graceful disconnect\n");
2865 spin_lock_irq (&hcd_root_hub_lock
);
2866 hcd
->rh_registered
= 0;
2867 spin_unlock_irq (&hcd_root_hub_lock
);
2870 cancel_work_sync(&hcd
->wakeup_work
);
2872 cancel_work_sync(&hcd
->died_work
);
2874 mutex_lock(&usb_bus_idr_lock
);
2875 usb_disconnect(&rhdev
); /* Sets rhdev to NULL */
2876 mutex_unlock(&usb_bus_idr_lock
);
2879 * tasklet_kill() isn't needed here because:
2880 * - driver's disconnect() called from usb_disconnect() should
2881 * make sure its URBs are completed during the disconnect()
2884 * - it is too late to run complete() here since driver may have
2885 * been removed already now
2888 /* Prevent any more root-hub status calls from the timer.
2889 * The HCD might still restart the timer (if a port status change
2890 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2891 * the hub_status_data() callback.
2893 hcd
->rh_pollable
= 0;
2894 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
2895 del_timer_sync(&hcd
->rh_timer
);
2897 hcd
->driver
->stop(hcd
);
2898 hcd
->state
= HC_STATE_HALT
;
2900 /* In case the HCD restarted the timer, stop it again. */
2901 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
2902 del_timer_sync(&hcd
->rh_timer
);
2904 if (usb_hcd_is_primary_hcd(hcd
)) {
2906 free_irq(hcd
->irq
, hcd
);
2909 usb_deregister_bus(&hcd
->self
);
2910 hcd_buffer_destroy(hcd
);
2912 usb_phy_roothub_power_off(hcd
->phy_roothub
);
2913 usb_phy_roothub_exit(hcd
->phy_roothub
);
2915 usb_put_invalidate_rhdev(hcd
);
2918 EXPORT_SYMBOL_GPL(usb_remove_hcd
);
2921 usb_hcd_platform_shutdown(struct platform_device
*dev
)
2923 struct usb_hcd
*hcd
= platform_get_drvdata(dev
);
2925 /* No need for pm_runtime_put(), we're shutting down */
2926 pm_runtime_get_sync(&dev
->dev
);
2928 if (hcd
->driver
->shutdown
)
2929 hcd
->driver
->shutdown(hcd
);
2931 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown
);
2933 int usb_hcd_setup_local_mem(struct usb_hcd
*hcd
, phys_addr_t phys_addr
,
2934 dma_addr_t dma
, size_t size
)
2939 hcd
->localmem_pool
= devm_gen_pool_create(hcd
->self
.sysdev
, 4,
2940 dev_to_node(hcd
->self
.sysdev
),
2941 dev_name(hcd
->self
.sysdev
));
2942 if (IS_ERR(hcd
->localmem_pool
))
2943 return PTR_ERR(hcd
->localmem_pool
);
2945 local_mem
= devm_memremap(hcd
->self
.sysdev
, phys_addr
,
2947 if (IS_ERR(local_mem
))
2948 return PTR_ERR(local_mem
);
2951 * Here we pass a dma_addr_t but the arg type is a phys_addr_t.
2952 * It's not backed by system memory and thus there's no kernel mapping
2955 err
= gen_pool_add_virt(hcd
->localmem_pool
, (unsigned long)local_mem
,
2956 dma
, size
, dev_to_node(hcd
->self
.sysdev
));
2958 dev_err(hcd
->self
.sysdev
, "gen_pool_add_virt failed with %d\n",
2965 EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem
);
2967 /*-------------------------------------------------------------------------*/
2969 #if IS_ENABLED(CONFIG_USB_MON)
2971 const struct usb_mon_operations
*mon_ops
;
2974 * The registration is unlocked.
2975 * We do it this way because we do not want to lock in hot paths.
2977 * Notice that the code is minimally error-proof. Because usbmon needs
2978 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2981 int usb_mon_register(const struct usb_mon_operations
*ops
)
2991 EXPORT_SYMBOL_GPL (usb_mon_register
);
2993 void usb_mon_deregister (void)
2996 if (mon_ops
== NULL
) {
2997 printk(KERN_ERR
"USB: monitor was not registered\n");
3003 EXPORT_SYMBOL_GPL (usb_mon_deregister
);
3005 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */