Merge tag 'regmap-fix-v5.11-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux/fpc-iii.git] / drivers / usb / core / message.c
blob30e9e680c74cc85673600c9f74f744f80f74620d
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * message.c - synchronous message handling
5 * Released under the GPLv2 only.
6 */
8 #include <linux/acpi.h>
9 #include <linux/pci.h> /* for scatterlist macros */
10 #include <linux/usb.h>
11 #include <linux/module.h>
12 #include <linux/slab.h>
13 #include <linux/mm.h>
14 #include <linux/timer.h>
15 #include <linux/ctype.h>
16 #include <linux/nls.h>
17 #include <linux/device.h>
18 #include <linux/scatterlist.h>
19 #include <linux/usb/cdc.h>
20 #include <linux/usb/quirks.h>
21 #include <linux/usb/hcd.h> /* for usbcore internals */
22 #include <linux/usb/of.h>
23 #include <asm/byteorder.h>
25 #include "usb.h"
27 static void cancel_async_set_config(struct usb_device *udev);
29 struct api_context {
30 struct completion done;
31 int status;
34 static void usb_api_blocking_completion(struct urb *urb)
36 struct api_context *ctx = urb->context;
38 ctx->status = urb->status;
39 complete(&ctx->done);
44 * Starts urb and waits for completion or timeout. Note that this call
45 * is NOT interruptible. Many device driver i/o requests should be
46 * interruptible and therefore these drivers should implement their
47 * own interruptible routines.
49 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
51 struct api_context ctx;
52 unsigned long expire;
53 int retval;
55 init_completion(&ctx.done);
56 urb->context = &ctx;
57 urb->actual_length = 0;
58 retval = usb_submit_urb(urb, GFP_NOIO);
59 if (unlikely(retval))
60 goto out;
62 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
63 if (!wait_for_completion_timeout(&ctx.done, expire)) {
64 usb_kill_urb(urb);
65 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
67 dev_dbg(&urb->dev->dev,
68 "%s timed out on ep%d%s len=%u/%u\n",
69 current->comm,
70 usb_endpoint_num(&urb->ep->desc),
71 usb_urb_dir_in(urb) ? "in" : "out",
72 urb->actual_length,
73 urb->transfer_buffer_length);
74 } else
75 retval = ctx.status;
76 out:
77 if (actual_length)
78 *actual_length = urb->actual_length;
80 usb_free_urb(urb);
81 return retval;
84 /*-------------------------------------------------------------------*/
85 /* returns status (negative) or length (positive) */
86 static int usb_internal_control_msg(struct usb_device *usb_dev,
87 unsigned int pipe,
88 struct usb_ctrlrequest *cmd,
89 void *data, int len, int timeout)
91 struct urb *urb;
92 int retv;
93 int length;
95 urb = usb_alloc_urb(0, GFP_NOIO);
96 if (!urb)
97 return -ENOMEM;
99 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
100 len, usb_api_blocking_completion, NULL);
102 retv = usb_start_wait_urb(urb, timeout, &length);
103 if (retv < 0)
104 return retv;
105 else
106 return length;
110 * usb_control_msg - Builds a control urb, sends it off and waits for completion
111 * @dev: pointer to the usb device to send the message to
112 * @pipe: endpoint "pipe" to send the message to
113 * @request: USB message request value
114 * @requesttype: USB message request type value
115 * @value: USB message value
116 * @index: USB message index value
117 * @data: pointer to the data to send
118 * @size: length in bytes of the data to send
119 * @timeout: time in msecs to wait for the message to complete before timing
120 * out (if 0 the wait is forever)
122 * Context: task context, might sleep.
124 * This function sends a simple control message to a specified endpoint and
125 * waits for the message to complete, or timeout.
127 * Don't use this function from within an interrupt context. If you need
128 * an asynchronous message, or need to send a message from within interrupt
129 * context, use usb_submit_urb(). If a thread in your driver uses this call,
130 * make sure your disconnect() method can wait for it to complete. Since you
131 * don't have a handle on the URB used, you can't cancel the request.
133 * Return: If successful, the number of bytes transferred. Otherwise, a negative
134 * error number.
136 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
137 __u8 requesttype, __u16 value, __u16 index, void *data,
138 __u16 size, int timeout)
140 struct usb_ctrlrequest *dr;
141 int ret;
143 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
144 if (!dr)
145 return -ENOMEM;
147 dr->bRequestType = requesttype;
148 dr->bRequest = request;
149 dr->wValue = cpu_to_le16(value);
150 dr->wIndex = cpu_to_le16(index);
151 dr->wLength = cpu_to_le16(size);
153 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
155 /* Linger a bit, prior to the next control message. */
156 if (dev->quirks & USB_QUIRK_DELAY_CTRL_MSG)
157 msleep(200);
159 kfree(dr);
161 return ret;
163 EXPORT_SYMBOL_GPL(usb_control_msg);
166 * usb_control_msg_send - Builds a control "send" message, sends it off and waits for completion
167 * @dev: pointer to the usb device to send the message to
168 * @endpoint: endpoint to send the message to
169 * @request: USB message request value
170 * @requesttype: USB message request type value
171 * @value: USB message value
172 * @index: USB message index value
173 * @driver_data: pointer to the data to send
174 * @size: length in bytes of the data to send
175 * @timeout: time in msecs to wait for the message to complete before timing
176 * out (if 0 the wait is forever)
177 * @memflags: the flags for memory allocation for buffers
179 * Context: !in_interrupt ()
181 * This function sends a control message to a specified endpoint that is not
182 * expected to fill in a response (i.e. a "send message") and waits for the
183 * message to complete, or timeout.
185 * Do not use this function from within an interrupt context. If you need
186 * an asynchronous message, or need to send a message from within interrupt
187 * context, use usb_submit_urb(). If a thread in your driver uses this call,
188 * make sure your disconnect() method can wait for it to complete. Since you
189 * don't have a handle on the URB used, you can't cancel the request.
191 * The data pointer can be made to a reference on the stack, or anywhere else,
192 * as it will not be modified at all. This does not have the restriction that
193 * usb_control_msg() has where the data pointer must be to dynamically allocated
194 * memory (i.e. memory that can be successfully DMAed to a device).
196 * Return: If successful, 0 is returned, Otherwise, a negative error number.
198 int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request,
199 __u8 requesttype, __u16 value, __u16 index,
200 const void *driver_data, __u16 size, int timeout,
201 gfp_t memflags)
203 unsigned int pipe = usb_sndctrlpipe(dev, endpoint);
204 int ret;
205 u8 *data = NULL;
207 if (size) {
208 data = kmemdup(driver_data, size, memflags);
209 if (!data)
210 return -ENOMEM;
213 ret = usb_control_msg(dev, pipe, request, requesttype, value, index,
214 data, size, timeout);
215 kfree(data);
217 if (ret < 0)
218 return ret;
220 return 0;
222 EXPORT_SYMBOL_GPL(usb_control_msg_send);
225 * usb_control_msg_recv - Builds a control "receive" message, sends it off and waits for completion
226 * @dev: pointer to the usb device to send the message to
227 * @endpoint: endpoint to send the message to
228 * @request: USB message request value
229 * @requesttype: USB message request type value
230 * @value: USB message value
231 * @index: USB message index value
232 * @driver_data: pointer to the data to be filled in by the message
233 * @size: length in bytes of the data to be received
234 * @timeout: time in msecs to wait for the message to complete before timing
235 * out (if 0 the wait is forever)
236 * @memflags: the flags for memory allocation for buffers
238 * Context: !in_interrupt ()
240 * This function sends a control message to a specified endpoint that is
241 * expected to fill in a response (i.e. a "receive message") and waits for the
242 * message to complete, or timeout.
244 * Do not use this function from within an interrupt context. If you need
245 * an asynchronous message, or need to send a message from within interrupt
246 * context, use usb_submit_urb(). If a thread in your driver uses this call,
247 * make sure your disconnect() method can wait for it to complete. Since you
248 * don't have a handle on the URB used, you can't cancel the request.
250 * The data pointer can be made to a reference on the stack, or anywhere else
251 * that can be successfully written to. This function does not have the
252 * restriction that usb_control_msg() has where the data pointer must be to
253 * dynamically allocated memory (i.e. memory that can be successfully DMAed to a
254 * device).
256 * The "whole" message must be properly received from the device in order for
257 * this function to be successful. If a device returns less than the expected
258 * amount of data, then the function will fail. Do not use this for messages
259 * where a variable amount of data might be returned.
261 * Return: If successful, 0 is returned, Otherwise, a negative error number.
263 int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request,
264 __u8 requesttype, __u16 value, __u16 index,
265 void *driver_data, __u16 size, int timeout,
266 gfp_t memflags)
268 unsigned int pipe = usb_rcvctrlpipe(dev, endpoint);
269 int ret;
270 u8 *data;
272 if (!size || !driver_data)
273 return -EINVAL;
275 data = kmalloc(size, memflags);
276 if (!data)
277 return -ENOMEM;
279 ret = usb_control_msg(dev, pipe, request, requesttype, value, index,
280 data, size, timeout);
282 if (ret < 0)
283 goto exit;
285 if (ret == size) {
286 memcpy(driver_data, data, size);
287 ret = 0;
288 } else {
289 ret = -EREMOTEIO;
292 exit:
293 kfree(data);
294 return ret;
296 EXPORT_SYMBOL_GPL(usb_control_msg_recv);
299 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
300 * @usb_dev: pointer to the usb device to send the message to
301 * @pipe: endpoint "pipe" to send the message to
302 * @data: pointer to the data to send
303 * @len: length in bytes of the data to send
304 * @actual_length: pointer to a location to put the actual length transferred
305 * in bytes
306 * @timeout: time in msecs to wait for the message to complete before
307 * timing out (if 0 the wait is forever)
309 * Context: task context, might sleep.
311 * This function sends a simple interrupt message to a specified endpoint and
312 * waits for the message to complete, or timeout.
314 * Don't use this function from within an interrupt context. If you need
315 * an asynchronous message, or need to send a message from within interrupt
316 * context, use usb_submit_urb() If a thread in your driver uses this call,
317 * make sure your disconnect() method can wait for it to complete. Since you
318 * don't have a handle on the URB used, you can't cancel the request.
320 * Return:
321 * If successful, 0. Otherwise a negative error number. The number of actual
322 * bytes transferred will be stored in the @actual_length parameter.
324 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
325 void *data, int len, int *actual_length, int timeout)
327 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
329 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
332 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
333 * @usb_dev: pointer to the usb device to send the message to
334 * @pipe: endpoint "pipe" to send the message to
335 * @data: pointer to the data to send
336 * @len: length in bytes of the data to send
337 * @actual_length: pointer to a location to put the actual length transferred
338 * in bytes
339 * @timeout: time in msecs to wait for the message to complete before
340 * timing out (if 0 the wait is forever)
342 * Context: task context, might sleep.
344 * This function sends a simple bulk message to a specified endpoint
345 * and waits for the message to complete, or timeout.
347 * Don't use this function from within an interrupt context. If you need
348 * an asynchronous message, or need to send a message from within interrupt
349 * context, use usb_submit_urb() If a thread in your driver uses this call,
350 * make sure your disconnect() method can wait for it to complete. Since you
351 * don't have a handle on the URB used, you can't cancel the request.
353 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
354 * users are forced to abuse this routine by using it to submit URBs for
355 * interrupt endpoints. We will take the liberty of creating an interrupt URB
356 * (with the default interval) if the target is an interrupt endpoint.
358 * Return:
359 * If successful, 0. Otherwise a negative error number. The number of actual
360 * bytes transferred will be stored in the @actual_length parameter.
363 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
364 void *data, int len, int *actual_length, int timeout)
366 struct urb *urb;
367 struct usb_host_endpoint *ep;
369 ep = usb_pipe_endpoint(usb_dev, pipe);
370 if (!ep || len < 0)
371 return -EINVAL;
373 urb = usb_alloc_urb(0, GFP_KERNEL);
374 if (!urb)
375 return -ENOMEM;
377 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
378 USB_ENDPOINT_XFER_INT) {
379 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
380 usb_fill_int_urb(urb, usb_dev, pipe, data, len,
381 usb_api_blocking_completion, NULL,
382 ep->desc.bInterval);
383 } else
384 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
385 usb_api_blocking_completion, NULL);
387 return usb_start_wait_urb(urb, timeout, actual_length);
389 EXPORT_SYMBOL_GPL(usb_bulk_msg);
391 /*-------------------------------------------------------------------*/
393 static void sg_clean(struct usb_sg_request *io)
395 if (io->urbs) {
396 while (io->entries--)
397 usb_free_urb(io->urbs[io->entries]);
398 kfree(io->urbs);
399 io->urbs = NULL;
401 io->dev = NULL;
404 static void sg_complete(struct urb *urb)
406 unsigned long flags;
407 struct usb_sg_request *io = urb->context;
408 int status = urb->status;
410 spin_lock_irqsave(&io->lock, flags);
412 /* In 2.5 we require hcds' endpoint queues not to progress after fault
413 * reports, until the completion callback (this!) returns. That lets
414 * device driver code (like this routine) unlink queued urbs first,
415 * if it needs to, since the HC won't work on them at all. So it's
416 * not possible for page N+1 to overwrite page N, and so on.
418 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
419 * complete before the HCD can get requests away from hardware,
420 * though never during cleanup after a hard fault.
422 if (io->status
423 && (io->status != -ECONNRESET
424 || status != -ECONNRESET)
425 && urb->actual_length) {
426 dev_err(io->dev->bus->controller,
427 "dev %s ep%d%s scatterlist error %d/%d\n",
428 io->dev->devpath,
429 usb_endpoint_num(&urb->ep->desc),
430 usb_urb_dir_in(urb) ? "in" : "out",
431 status, io->status);
432 /* BUG (); */
435 if (io->status == 0 && status && status != -ECONNRESET) {
436 int i, found, retval;
438 io->status = status;
440 /* the previous urbs, and this one, completed already.
441 * unlink pending urbs so they won't rx/tx bad data.
442 * careful: unlink can sometimes be synchronous...
444 spin_unlock_irqrestore(&io->lock, flags);
445 for (i = 0, found = 0; i < io->entries; i++) {
446 if (!io->urbs[i])
447 continue;
448 if (found) {
449 usb_block_urb(io->urbs[i]);
450 retval = usb_unlink_urb(io->urbs[i]);
451 if (retval != -EINPROGRESS &&
452 retval != -ENODEV &&
453 retval != -EBUSY &&
454 retval != -EIDRM)
455 dev_err(&io->dev->dev,
456 "%s, unlink --> %d\n",
457 __func__, retval);
458 } else if (urb == io->urbs[i])
459 found = 1;
461 spin_lock_irqsave(&io->lock, flags);
464 /* on the last completion, signal usb_sg_wait() */
465 io->bytes += urb->actual_length;
466 io->count--;
467 if (!io->count)
468 complete(&io->complete);
470 spin_unlock_irqrestore(&io->lock, flags);
475 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
476 * @io: request block being initialized. until usb_sg_wait() returns,
477 * treat this as a pointer to an opaque block of memory,
478 * @dev: the usb device that will send or receive the data
479 * @pipe: endpoint "pipe" used to transfer the data
480 * @period: polling rate for interrupt endpoints, in frames or
481 * (for high speed endpoints) microframes; ignored for bulk
482 * @sg: scatterlist entries
483 * @nents: how many entries in the scatterlist
484 * @length: how many bytes to send from the scatterlist, or zero to
485 * send every byte identified in the list.
486 * @mem_flags: SLAB_* flags affecting memory allocations in this call
488 * This initializes a scatter/gather request, allocating resources such as
489 * I/O mappings and urb memory (except maybe memory used by USB controller
490 * drivers).
492 * The request must be issued using usb_sg_wait(), which waits for the I/O to
493 * complete (or to be canceled) and then cleans up all resources allocated by
494 * usb_sg_init().
496 * The request may be canceled with usb_sg_cancel(), either before or after
497 * usb_sg_wait() is called.
499 * Return: Zero for success, else a negative errno value.
501 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
502 unsigned pipe, unsigned period, struct scatterlist *sg,
503 int nents, size_t length, gfp_t mem_flags)
505 int i;
506 int urb_flags;
507 int use_sg;
509 if (!io || !dev || !sg
510 || usb_pipecontrol(pipe)
511 || usb_pipeisoc(pipe)
512 || nents <= 0)
513 return -EINVAL;
515 spin_lock_init(&io->lock);
516 io->dev = dev;
517 io->pipe = pipe;
519 if (dev->bus->sg_tablesize > 0) {
520 use_sg = true;
521 io->entries = 1;
522 } else {
523 use_sg = false;
524 io->entries = nents;
527 /* initialize all the urbs we'll use */
528 io->urbs = kmalloc_array(io->entries, sizeof(*io->urbs), mem_flags);
529 if (!io->urbs)
530 goto nomem;
532 urb_flags = URB_NO_INTERRUPT;
533 if (usb_pipein(pipe))
534 urb_flags |= URB_SHORT_NOT_OK;
536 for_each_sg(sg, sg, io->entries, i) {
537 struct urb *urb;
538 unsigned len;
540 urb = usb_alloc_urb(0, mem_flags);
541 if (!urb) {
542 io->entries = i;
543 goto nomem;
545 io->urbs[i] = urb;
547 urb->dev = NULL;
548 urb->pipe = pipe;
549 urb->interval = period;
550 urb->transfer_flags = urb_flags;
551 urb->complete = sg_complete;
552 urb->context = io;
553 urb->sg = sg;
555 if (use_sg) {
556 /* There is no single transfer buffer */
557 urb->transfer_buffer = NULL;
558 urb->num_sgs = nents;
560 /* A length of zero means transfer the whole sg list */
561 len = length;
562 if (len == 0) {
563 struct scatterlist *sg2;
564 int j;
566 for_each_sg(sg, sg2, nents, j)
567 len += sg2->length;
569 } else {
571 * Some systems can't use DMA; they use PIO instead.
572 * For their sakes, transfer_buffer is set whenever
573 * possible.
575 if (!PageHighMem(sg_page(sg)))
576 urb->transfer_buffer = sg_virt(sg);
577 else
578 urb->transfer_buffer = NULL;
580 len = sg->length;
581 if (length) {
582 len = min_t(size_t, len, length);
583 length -= len;
584 if (length == 0)
585 io->entries = i + 1;
588 urb->transfer_buffer_length = len;
590 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
592 /* transaction state */
593 io->count = io->entries;
594 io->status = 0;
595 io->bytes = 0;
596 init_completion(&io->complete);
597 return 0;
599 nomem:
600 sg_clean(io);
601 return -ENOMEM;
603 EXPORT_SYMBOL_GPL(usb_sg_init);
606 * usb_sg_wait - synchronously execute scatter/gather request
607 * @io: request block handle, as initialized with usb_sg_init().
608 * some fields become accessible when this call returns.
610 * Context: task context, might sleep.
612 * This function blocks until the specified I/O operation completes. It
613 * leverages the grouping of the related I/O requests to get good transfer
614 * rates, by queueing the requests. At higher speeds, such queuing can
615 * significantly improve USB throughput.
617 * There are three kinds of completion for this function.
619 * (1) success, where io->status is zero. The number of io->bytes
620 * transferred is as requested.
621 * (2) error, where io->status is a negative errno value. The number
622 * of io->bytes transferred before the error is usually less
623 * than requested, and can be nonzero.
624 * (3) cancellation, a type of error with status -ECONNRESET that
625 * is initiated by usb_sg_cancel().
627 * When this function returns, all memory allocated through usb_sg_init() or
628 * this call will have been freed. The request block parameter may still be
629 * passed to usb_sg_cancel(), or it may be freed. It could also be
630 * reinitialized and then reused.
632 * Data Transfer Rates:
634 * Bulk transfers are valid for full or high speed endpoints.
635 * The best full speed data rate is 19 packets of 64 bytes each
636 * per frame, or 1216 bytes per millisecond.
637 * The best high speed data rate is 13 packets of 512 bytes each
638 * per microframe, or 52 KBytes per millisecond.
640 * The reason to use interrupt transfers through this API would most likely
641 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
642 * could be transferred. That capability is less useful for low or full
643 * speed interrupt endpoints, which allow at most one packet per millisecond,
644 * of at most 8 or 64 bytes (respectively).
646 * It is not necessary to call this function to reserve bandwidth for devices
647 * under an xHCI host controller, as the bandwidth is reserved when the
648 * configuration or interface alt setting is selected.
650 void usb_sg_wait(struct usb_sg_request *io)
652 int i;
653 int entries = io->entries;
655 /* queue the urbs. */
656 spin_lock_irq(&io->lock);
657 i = 0;
658 while (i < entries && !io->status) {
659 int retval;
661 io->urbs[i]->dev = io->dev;
662 spin_unlock_irq(&io->lock);
664 retval = usb_submit_urb(io->urbs[i], GFP_NOIO);
666 switch (retval) {
667 /* maybe we retrying will recover */
668 case -ENXIO: /* hc didn't queue this one */
669 case -EAGAIN:
670 case -ENOMEM:
671 retval = 0;
672 yield();
673 break;
675 /* no error? continue immediately.
677 * NOTE: to work better with UHCI (4K I/O buffer may
678 * need 3K of TDs) it may be good to limit how many
679 * URBs are queued at once; N milliseconds?
681 case 0:
682 ++i;
683 cpu_relax();
684 break;
686 /* fail any uncompleted urbs */
687 default:
688 io->urbs[i]->status = retval;
689 dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
690 __func__, retval);
691 usb_sg_cancel(io);
693 spin_lock_irq(&io->lock);
694 if (retval && (io->status == 0 || io->status == -ECONNRESET))
695 io->status = retval;
697 io->count -= entries - i;
698 if (io->count == 0)
699 complete(&io->complete);
700 spin_unlock_irq(&io->lock);
702 /* OK, yes, this could be packaged as non-blocking.
703 * So could the submit loop above ... but it's easier to
704 * solve neither problem than to solve both!
706 wait_for_completion(&io->complete);
708 sg_clean(io);
710 EXPORT_SYMBOL_GPL(usb_sg_wait);
713 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
714 * @io: request block, initialized with usb_sg_init()
716 * This stops a request after it has been started by usb_sg_wait().
717 * It can also prevents one initialized by usb_sg_init() from starting,
718 * so that call just frees resources allocated to the request.
720 void usb_sg_cancel(struct usb_sg_request *io)
722 unsigned long flags;
723 int i, retval;
725 spin_lock_irqsave(&io->lock, flags);
726 if (io->status || io->count == 0) {
727 spin_unlock_irqrestore(&io->lock, flags);
728 return;
730 /* shut everything down */
731 io->status = -ECONNRESET;
732 io->count++; /* Keep the request alive until we're done */
733 spin_unlock_irqrestore(&io->lock, flags);
735 for (i = io->entries - 1; i >= 0; --i) {
736 usb_block_urb(io->urbs[i]);
738 retval = usb_unlink_urb(io->urbs[i]);
739 if (retval != -EINPROGRESS
740 && retval != -ENODEV
741 && retval != -EBUSY
742 && retval != -EIDRM)
743 dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
744 __func__, retval);
747 spin_lock_irqsave(&io->lock, flags);
748 io->count--;
749 if (!io->count)
750 complete(&io->complete);
751 spin_unlock_irqrestore(&io->lock, flags);
753 EXPORT_SYMBOL_GPL(usb_sg_cancel);
755 /*-------------------------------------------------------------------*/
758 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
759 * @dev: the device whose descriptor is being retrieved
760 * @type: the descriptor type (USB_DT_*)
761 * @index: the number of the descriptor
762 * @buf: where to put the descriptor
763 * @size: how big is "buf"?
765 * Context: task context, might sleep.
767 * Gets a USB descriptor. Convenience functions exist to simplify
768 * getting some types of descriptors. Use
769 * usb_get_string() or usb_string() for USB_DT_STRING.
770 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
771 * are part of the device structure.
772 * In addition to a number of USB-standard descriptors, some
773 * devices also use class-specific or vendor-specific descriptors.
775 * This call is synchronous, and may not be used in an interrupt context.
777 * Return: The number of bytes received on success, or else the status code
778 * returned by the underlying usb_control_msg() call.
780 int usb_get_descriptor(struct usb_device *dev, unsigned char type,
781 unsigned char index, void *buf, int size)
783 int i;
784 int result;
786 memset(buf, 0, size); /* Make sure we parse really received data */
788 for (i = 0; i < 3; ++i) {
789 /* retry on length 0 or error; some devices are flakey */
790 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
791 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
792 (type << 8) + index, 0, buf, size,
793 USB_CTRL_GET_TIMEOUT);
794 if (result <= 0 && result != -ETIMEDOUT)
795 continue;
796 if (result > 1 && ((u8 *)buf)[1] != type) {
797 result = -ENODATA;
798 continue;
800 break;
802 return result;
804 EXPORT_SYMBOL_GPL(usb_get_descriptor);
807 * usb_get_string - gets a string descriptor
808 * @dev: the device whose string descriptor is being retrieved
809 * @langid: code for language chosen (from string descriptor zero)
810 * @index: the number of the descriptor
811 * @buf: where to put the string
812 * @size: how big is "buf"?
814 * Context: task context, might sleep.
816 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
817 * in little-endian byte order).
818 * The usb_string() function will often be a convenient way to turn
819 * these strings into kernel-printable form.
821 * Strings may be referenced in device, configuration, interface, or other
822 * descriptors, and could also be used in vendor-specific ways.
824 * This call is synchronous, and may not be used in an interrupt context.
826 * Return: The number of bytes received on success, or else the status code
827 * returned by the underlying usb_control_msg() call.
829 static int usb_get_string(struct usb_device *dev, unsigned short langid,
830 unsigned char index, void *buf, int size)
832 int i;
833 int result;
835 for (i = 0; i < 3; ++i) {
836 /* retry on length 0 or stall; some devices are flakey */
837 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
838 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
839 (USB_DT_STRING << 8) + index, langid, buf, size,
840 USB_CTRL_GET_TIMEOUT);
841 if (result == 0 || result == -EPIPE)
842 continue;
843 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
844 result = -ENODATA;
845 continue;
847 break;
849 return result;
852 static void usb_try_string_workarounds(unsigned char *buf, int *length)
854 int newlength, oldlength = *length;
856 for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
857 if (!isprint(buf[newlength]) || buf[newlength + 1])
858 break;
860 if (newlength > 2) {
861 buf[0] = newlength;
862 *length = newlength;
866 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
867 unsigned int index, unsigned char *buf)
869 int rc;
871 /* Try to read the string descriptor by asking for the maximum
872 * possible number of bytes */
873 if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
874 rc = -EIO;
875 else
876 rc = usb_get_string(dev, langid, index, buf, 255);
878 /* If that failed try to read the descriptor length, then
879 * ask for just that many bytes */
880 if (rc < 2) {
881 rc = usb_get_string(dev, langid, index, buf, 2);
882 if (rc == 2)
883 rc = usb_get_string(dev, langid, index, buf, buf[0]);
886 if (rc >= 2) {
887 if (!buf[0] && !buf[1])
888 usb_try_string_workarounds(buf, &rc);
890 /* There might be extra junk at the end of the descriptor */
891 if (buf[0] < rc)
892 rc = buf[0];
894 rc = rc - (rc & 1); /* force a multiple of two */
897 if (rc < 2)
898 rc = (rc < 0 ? rc : -EINVAL);
900 return rc;
903 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
905 int err;
907 if (dev->have_langid)
908 return 0;
910 if (dev->string_langid < 0)
911 return -EPIPE;
913 err = usb_string_sub(dev, 0, 0, tbuf);
915 /* If the string was reported but is malformed, default to english
916 * (0x0409) */
917 if (err == -ENODATA || (err > 0 && err < 4)) {
918 dev->string_langid = 0x0409;
919 dev->have_langid = 1;
920 dev_err(&dev->dev,
921 "language id specifier not provided by device, defaulting to English\n");
922 return 0;
925 /* In case of all other errors, we assume the device is not able to
926 * deal with strings at all. Set string_langid to -1 in order to
927 * prevent any string to be retrieved from the device */
928 if (err < 0) {
929 dev_info(&dev->dev, "string descriptor 0 read error: %d\n",
930 err);
931 dev->string_langid = -1;
932 return -EPIPE;
935 /* always use the first langid listed */
936 dev->string_langid = tbuf[2] | (tbuf[3] << 8);
937 dev->have_langid = 1;
938 dev_dbg(&dev->dev, "default language 0x%04x\n",
939 dev->string_langid);
940 return 0;
944 * usb_string - returns UTF-8 version of a string descriptor
945 * @dev: the device whose string descriptor is being retrieved
946 * @index: the number of the descriptor
947 * @buf: where to put the string
948 * @size: how big is "buf"?
950 * Context: task context, might sleep.
952 * This converts the UTF-16LE encoded strings returned by devices, from
953 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
954 * that are more usable in most kernel contexts. Note that this function
955 * chooses strings in the first language supported by the device.
957 * This call is synchronous, and may not be used in an interrupt context.
959 * Return: length of the string (>= 0) or usb_control_msg status (< 0).
961 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
963 unsigned char *tbuf;
964 int err;
966 if (dev->state == USB_STATE_SUSPENDED)
967 return -EHOSTUNREACH;
968 if (size <= 0 || !buf)
969 return -EINVAL;
970 buf[0] = 0;
971 if (index <= 0 || index >= 256)
972 return -EINVAL;
973 tbuf = kmalloc(256, GFP_NOIO);
974 if (!tbuf)
975 return -ENOMEM;
977 err = usb_get_langid(dev, tbuf);
978 if (err < 0)
979 goto errout;
981 err = usb_string_sub(dev, dev->string_langid, index, tbuf);
982 if (err < 0)
983 goto errout;
985 size--; /* leave room for trailing NULL char in output buffer */
986 err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
987 UTF16_LITTLE_ENDIAN, buf, size);
988 buf[err] = 0;
990 if (tbuf[1] != USB_DT_STRING)
991 dev_dbg(&dev->dev,
992 "wrong descriptor type %02x for string %d (\"%s\")\n",
993 tbuf[1], index, buf);
995 errout:
996 kfree(tbuf);
997 return err;
999 EXPORT_SYMBOL_GPL(usb_string);
1001 /* one UTF-8-encoded 16-bit character has at most three bytes */
1002 #define MAX_USB_STRING_SIZE (127 * 3 + 1)
1005 * usb_cache_string - read a string descriptor and cache it for later use
1006 * @udev: the device whose string descriptor is being read
1007 * @index: the descriptor index
1009 * Return: A pointer to a kmalloc'ed buffer containing the descriptor string,
1010 * or %NULL if the index is 0 or the string could not be read.
1012 char *usb_cache_string(struct usb_device *udev, int index)
1014 char *buf;
1015 char *smallbuf = NULL;
1016 int len;
1018 if (index <= 0)
1019 return NULL;
1021 buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
1022 if (buf) {
1023 len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
1024 if (len > 0) {
1025 smallbuf = kmalloc(++len, GFP_NOIO);
1026 if (!smallbuf)
1027 return buf;
1028 memcpy(smallbuf, buf, len);
1030 kfree(buf);
1032 return smallbuf;
1036 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
1037 * @dev: the device whose device descriptor is being updated
1038 * @size: how much of the descriptor to read
1040 * Context: task context, might sleep.
1042 * Updates the copy of the device descriptor stored in the device structure,
1043 * which dedicates space for this purpose.
1045 * Not exported, only for use by the core. If drivers really want to read
1046 * the device descriptor directly, they can call usb_get_descriptor() with
1047 * type = USB_DT_DEVICE and index = 0.
1049 * This call is synchronous, and may not be used in an interrupt context.
1051 * Return: The number of bytes received on success, or else the status code
1052 * returned by the underlying usb_control_msg() call.
1054 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
1056 struct usb_device_descriptor *desc;
1057 int ret;
1059 if (size > sizeof(*desc))
1060 return -EINVAL;
1061 desc = kmalloc(sizeof(*desc), GFP_NOIO);
1062 if (!desc)
1063 return -ENOMEM;
1065 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
1066 if (ret >= 0)
1067 memcpy(&dev->descriptor, desc, size);
1068 kfree(desc);
1069 return ret;
1073 * usb_set_isoch_delay - informs the device of the packet transmit delay
1074 * @dev: the device whose delay is to be informed
1075 * Context: task context, might sleep
1077 * Since this is an optional request, we don't bother if it fails.
1079 int usb_set_isoch_delay(struct usb_device *dev)
1081 /* skip hub devices */
1082 if (dev->descriptor.bDeviceClass == USB_CLASS_HUB)
1083 return 0;
1085 /* skip non-SS/non-SSP devices */
1086 if (dev->speed < USB_SPEED_SUPER)
1087 return 0;
1089 return usb_control_msg_send(dev, 0,
1090 USB_REQ_SET_ISOCH_DELAY,
1091 USB_DIR_OUT | USB_TYPE_STANDARD | USB_RECIP_DEVICE,
1092 dev->hub_delay, 0, NULL, 0,
1093 USB_CTRL_SET_TIMEOUT,
1094 GFP_NOIO);
1098 * usb_get_status - issues a GET_STATUS call
1099 * @dev: the device whose status is being checked
1100 * @recip: USB_RECIP_*; for device, interface, or endpoint
1101 * @type: USB_STATUS_TYPE_*; for standard or PTM status types
1102 * @target: zero (for device), else interface or endpoint number
1103 * @data: pointer to two bytes of bitmap data
1105 * Context: task context, might sleep.
1107 * Returns device, interface, or endpoint status. Normally only of
1108 * interest to see if the device is self powered, or has enabled the
1109 * remote wakeup facility; or whether a bulk or interrupt endpoint
1110 * is halted ("stalled").
1112 * Bits in these status bitmaps are set using the SET_FEATURE request,
1113 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt()
1114 * function should be used to clear halt ("stall") status.
1116 * This call is synchronous, and may not be used in an interrupt context.
1118 * Returns 0 and the status value in *@data (in host byte order) on success,
1119 * or else the status code from the underlying usb_control_msg() call.
1121 int usb_get_status(struct usb_device *dev, int recip, int type, int target,
1122 void *data)
1124 int ret;
1125 void *status;
1126 int length;
1128 switch (type) {
1129 case USB_STATUS_TYPE_STANDARD:
1130 length = 2;
1131 break;
1132 case USB_STATUS_TYPE_PTM:
1133 if (recip != USB_RECIP_DEVICE)
1134 return -EINVAL;
1136 length = 4;
1137 break;
1138 default:
1139 return -EINVAL;
1142 status = kmalloc(length, GFP_KERNEL);
1143 if (!status)
1144 return -ENOMEM;
1146 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
1147 USB_REQ_GET_STATUS, USB_DIR_IN | recip, USB_STATUS_TYPE_STANDARD,
1148 target, status, length, USB_CTRL_GET_TIMEOUT);
1150 switch (ret) {
1151 case 4:
1152 if (type != USB_STATUS_TYPE_PTM) {
1153 ret = -EIO;
1154 break;
1157 *(u32 *) data = le32_to_cpu(*(__le32 *) status);
1158 ret = 0;
1159 break;
1160 case 2:
1161 if (type != USB_STATUS_TYPE_STANDARD) {
1162 ret = -EIO;
1163 break;
1166 *(u16 *) data = le16_to_cpu(*(__le16 *) status);
1167 ret = 0;
1168 break;
1169 default:
1170 ret = -EIO;
1173 kfree(status);
1174 return ret;
1176 EXPORT_SYMBOL_GPL(usb_get_status);
1179 * usb_clear_halt - tells device to clear endpoint halt/stall condition
1180 * @dev: device whose endpoint is halted
1181 * @pipe: endpoint "pipe" being cleared
1183 * Context: task context, might sleep.
1185 * This is used to clear halt conditions for bulk and interrupt endpoints,
1186 * as reported by URB completion status. Endpoints that are halted are
1187 * sometimes referred to as being "stalled". Such endpoints are unable
1188 * to transmit or receive data until the halt status is cleared. Any URBs
1189 * queued for such an endpoint should normally be unlinked by the driver
1190 * before clearing the halt condition, as described in sections 5.7.5
1191 * and 5.8.5 of the USB 2.0 spec.
1193 * Note that control and isochronous endpoints don't halt, although control
1194 * endpoints report "protocol stall" (for unsupported requests) using the
1195 * same status code used to report a true stall.
1197 * This call is synchronous, and may not be used in an interrupt context.
1199 * Return: Zero on success, or else the status code returned by the
1200 * underlying usb_control_msg() call.
1202 int usb_clear_halt(struct usb_device *dev, int pipe)
1204 int result;
1205 int endp = usb_pipeendpoint(pipe);
1207 if (usb_pipein(pipe))
1208 endp |= USB_DIR_IN;
1210 /* we don't care if it wasn't halted first. in fact some devices
1211 * (like some ibmcam model 1 units) seem to expect hosts to make
1212 * this request for iso endpoints, which can't halt!
1214 result = usb_control_msg_send(dev, 0,
1215 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1216 USB_ENDPOINT_HALT, endp, NULL, 0,
1217 USB_CTRL_SET_TIMEOUT, GFP_NOIO);
1219 /* don't un-halt or force to DATA0 except on success */
1220 if (result)
1221 return result;
1223 /* NOTE: seems like Microsoft and Apple don't bother verifying
1224 * the clear "took", so some devices could lock up if you check...
1225 * such as the Hagiwara FlashGate DUAL. So we won't bother.
1227 * NOTE: make sure the logic here doesn't diverge much from
1228 * the copy in usb-storage, for as long as we need two copies.
1231 usb_reset_endpoint(dev, endp);
1233 return 0;
1235 EXPORT_SYMBOL_GPL(usb_clear_halt);
1237 static int create_intf_ep_devs(struct usb_interface *intf)
1239 struct usb_device *udev = interface_to_usbdev(intf);
1240 struct usb_host_interface *alt = intf->cur_altsetting;
1241 int i;
1243 if (intf->ep_devs_created || intf->unregistering)
1244 return 0;
1246 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1247 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1248 intf->ep_devs_created = 1;
1249 return 0;
1252 static void remove_intf_ep_devs(struct usb_interface *intf)
1254 struct usb_host_interface *alt = intf->cur_altsetting;
1255 int i;
1257 if (!intf->ep_devs_created)
1258 return;
1260 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1261 usb_remove_ep_devs(&alt->endpoint[i]);
1262 intf->ep_devs_created = 0;
1266 * usb_disable_endpoint -- Disable an endpoint by address
1267 * @dev: the device whose endpoint is being disabled
1268 * @epaddr: the endpoint's address. Endpoint number for output,
1269 * endpoint number + USB_DIR_IN for input
1270 * @reset_hardware: flag to erase any endpoint state stored in the
1271 * controller hardware
1273 * Disables the endpoint for URB submission and nukes all pending URBs.
1274 * If @reset_hardware is set then also deallocates hcd/hardware state
1275 * for the endpoint.
1277 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1278 bool reset_hardware)
1280 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1281 struct usb_host_endpoint *ep;
1283 if (!dev)
1284 return;
1286 if (usb_endpoint_out(epaddr)) {
1287 ep = dev->ep_out[epnum];
1288 if (reset_hardware && epnum != 0)
1289 dev->ep_out[epnum] = NULL;
1290 } else {
1291 ep = dev->ep_in[epnum];
1292 if (reset_hardware && epnum != 0)
1293 dev->ep_in[epnum] = NULL;
1295 if (ep) {
1296 ep->enabled = 0;
1297 usb_hcd_flush_endpoint(dev, ep);
1298 if (reset_hardware)
1299 usb_hcd_disable_endpoint(dev, ep);
1304 * usb_reset_endpoint - Reset an endpoint's state.
1305 * @dev: the device whose endpoint is to be reset
1306 * @epaddr: the endpoint's address. Endpoint number for output,
1307 * endpoint number + USB_DIR_IN for input
1309 * Resets any host-side endpoint state such as the toggle bit,
1310 * sequence number or current window.
1312 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1314 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1315 struct usb_host_endpoint *ep;
1317 if (usb_endpoint_out(epaddr))
1318 ep = dev->ep_out[epnum];
1319 else
1320 ep = dev->ep_in[epnum];
1321 if (ep)
1322 usb_hcd_reset_endpoint(dev, ep);
1324 EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1328 * usb_disable_interface -- Disable all endpoints for an interface
1329 * @dev: the device whose interface is being disabled
1330 * @intf: pointer to the interface descriptor
1331 * @reset_hardware: flag to erase any endpoint state stored in the
1332 * controller hardware
1334 * Disables all the endpoints for the interface's current altsetting.
1336 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1337 bool reset_hardware)
1339 struct usb_host_interface *alt = intf->cur_altsetting;
1340 int i;
1342 for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1343 usb_disable_endpoint(dev,
1344 alt->endpoint[i].desc.bEndpointAddress,
1345 reset_hardware);
1350 * usb_disable_device_endpoints -- Disable all endpoints for a device
1351 * @dev: the device whose endpoints are being disabled
1352 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1354 static void usb_disable_device_endpoints(struct usb_device *dev, int skip_ep0)
1356 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1357 int i;
1359 if (hcd->driver->check_bandwidth) {
1360 /* First pass: Cancel URBs, leave endpoint pointers intact. */
1361 for (i = skip_ep0; i < 16; ++i) {
1362 usb_disable_endpoint(dev, i, false);
1363 usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1365 /* Remove endpoints from the host controller internal state */
1366 mutex_lock(hcd->bandwidth_mutex);
1367 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1368 mutex_unlock(hcd->bandwidth_mutex);
1370 /* Second pass: remove endpoint pointers */
1371 for (i = skip_ep0; i < 16; ++i) {
1372 usb_disable_endpoint(dev, i, true);
1373 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1378 * usb_disable_device - Disable all the endpoints for a USB device
1379 * @dev: the device whose endpoints are being disabled
1380 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1382 * Disables all the device's endpoints, potentially including endpoint 0.
1383 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1384 * pending urbs) and usbcore state for the interfaces, so that usbcore
1385 * must usb_set_configuration() before any interfaces could be used.
1387 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1389 int i;
1391 /* getting rid of interfaces will disconnect
1392 * any drivers bound to them (a key side effect)
1394 if (dev->actconfig) {
1396 * FIXME: In order to avoid self-deadlock involving the
1397 * bandwidth_mutex, we have to mark all the interfaces
1398 * before unregistering any of them.
1400 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1401 dev->actconfig->interface[i]->unregistering = 1;
1403 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1404 struct usb_interface *interface;
1406 /* remove this interface if it has been registered */
1407 interface = dev->actconfig->interface[i];
1408 if (!device_is_registered(&interface->dev))
1409 continue;
1410 dev_dbg(&dev->dev, "unregistering interface %s\n",
1411 dev_name(&interface->dev));
1412 remove_intf_ep_devs(interface);
1413 device_del(&interface->dev);
1416 /* Now that the interfaces are unbound, nobody should
1417 * try to access them.
1419 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1420 put_device(&dev->actconfig->interface[i]->dev);
1421 dev->actconfig->interface[i] = NULL;
1424 usb_disable_usb2_hardware_lpm(dev);
1425 usb_unlocked_disable_lpm(dev);
1426 usb_disable_ltm(dev);
1428 dev->actconfig = NULL;
1429 if (dev->state == USB_STATE_CONFIGURED)
1430 usb_set_device_state(dev, USB_STATE_ADDRESS);
1433 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1434 skip_ep0 ? "non-ep0" : "all");
1436 usb_disable_device_endpoints(dev, skip_ep0);
1440 * usb_enable_endpoint - Enable an endpoint for USB communications
1441 * @dev: the device whose interface is being enabled
1442 * @ep: the endpoint
1443 * @reset_ep: flag to reset the endpoint state
1445 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1446 * For control endpoints, both the input and output sides are handled.
1448 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1449 bool reset_ep)
1451 int epnum = usb_endpoint_num(&ep->desc);
1452 int is_out = usb_endpoint_dir_out(&ep->desc);
1453 int is_control = usb_endpoint_xfer_control(&ep->desc);
1455 if (reset_ep)
1456 usb_hcd_reset_endpoint(dev, ep);
1457 if (is_out || is_control)
1458 dev->ep_out[epnum] = ep;
1459 if (!is_out || is_control)
1460 dev->ep_in[epnum] = ep;
1461 ep->enabled = 1;
1465 * usb_enable_interface - Enable all the endpoints for an interface
1466 * @dev: the device whose interface is being enabled
1467 * @intf: pointer to the interface descriptor
1468 * @reset_eps: flag to reset the endpoints' state
1470 * Enables all the endpoints for the interface's current altsetting.
1472 void usb_enable_interface(struct usb_device *dev,
1473 struct usb_interface *intf, bool reset_eps)
1475 struct usb_host_interface *alt = intf->cur_altsetting;
1476 int i;
1478 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1479 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1483 * usb_set_interface - Makes a particular alternate setting be current
1484 * @dev: the device whose interface is being updated
1485 * @interface: the interface being updated
1486 * @alternate: the setting being chosen.
1488 * Context: task context, might sleep.
1490 * This is used to enable data transfers on interfaces that may not
1491 * be enabled by default. Not all devices support such configurability.
1492 * Only the driver bound to an interface may change its setting.
1494 * Within any given configuration, each interface may have several
1495 * alternative settings. These are often used to control levels of
1496 * bandwidth consumption. For example, the default setting for a high
1497 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1498 * while interrupt transfers of up to 3KBytes per microframe are legal.
1499 * Also, isochronous endpoints may never be part of an
1500 * interface's default setting. To access such bandwidth, alternate
1501 * interface settings must be made current.
1503 * Note that in the Linux USB subsystem, bandwidth associated with
1504 * an endpoint in a given alternate setting is not reserved until an URB
1505 * is submitted that needs that bandwidth. Some other operating systems
1506 * allocate bandwidth early, when a configuration is chosen.
1508 * xHCI reserves bandwidth and configures the alternate setting in
1509 * usb_hcd_alloc_bandwidth(). If it fails the original interface altsetting
1510 * may be disabled. Drivers cannot rely on any particular alternate
1511 * setting being in effect after a failure.
1513 * This call is synchronous, and may not be used in an interrupt context.
1514 * Also, drivers must not change altsettings while urbs are scheduled for
1515 * endpoints in that interface; all such urbs must first be completed
1516 * (perhaps forced by unlinking).
1518 * Return: Zero on success, or else the status code returned by the
1519 * underlying usb_control_msg() call.
1521 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1523 struct usb_interface *iface;
1524 struct usb_host_interface *alt;
1525 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1526 int i, ret, manual = 0;
1527 unsigned int epaddr;
1528 unsigned int pipe;
1530 if (dev->state == USB_STATE_SUSPENDED)
1531 return -EHOSTUNREACH;
1533 iface = usb_ifnum_to_if(dev, interface);
1534 if (!iface) {
1535 dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1536 interface);
1537 return -EINVAL;
1539 if (iface->unregistering)
1540 return -ENODEV;
1542 alt = usb_altnum_to_altsetting(iface, alternate);
1543 if (!alt) {
1544 dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1545 alternate);
1546 return -EINVAL;
1549 * usb3 hosts configure the interface in usb_hcd_alloc_bandwidth,
1550 * including freeing dropped endpoint ring buffers.
1551 * Make sure the interface endpoints are flushed before that
1553 usb_disable_interface(dev, iface, false);
1555 /* Make sure we have enough bandwidth for this alternate interface.
1556 * Remove the current alt setting and add the new alt setting.
1558 mutex_lock(hcd->bandwidth_mutex);
1559 /* Disable LPM, and re-enable it once the new alt setting is installed,
1560 * so that the xHCI driver can recalculate the U1/U2 timeouts.
1562 if (usb_disable_lpm(dev)) {
1563 dev_err(&iface->dev, "%s Failed to disable LPM\n", __func__);
1564 mutex_unlock(hcd->bandwidth_mutex);
1565 return -ENOMEM;
1567 /* Changing alt-setting also frees any allocated streams */
1568 for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++)
1569 iface->cur_altsetting->endpoint[i].streams = 0;
1571 ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1572 if (ret < 0) {
1573 dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1574 alternate);
1575 usb_enable_lpm(dev);
1576 mutex_unlock(hcd->bandwidth_mutex);
1577 return ret;
1580 if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1581 ret = -EPIPE;
1582 else
1583 ret = usb_control_msg_send(dev, 0,
1584 USB_REQ_SET_INTERFACE,
1585 USB_RECIP_INTERFACE, alternate,
1586 interface, NULL, 0, 5000,
1587 GFP_NOIO);
1589 /* 9.4.10 says devices don't need this and are free to STALL the
1590 * request if the interface only has one alternate setting.
1592 if (ret == -EPIPE && iface->num_altsetting == 1) {
1593 dev_dbg(&dev->dev,
1594 "manual set_interface for iface %d, alt %d\n",
1595 interface, alternate);
1596 manual = 1;
1597 } else if (ret) {
1598 /* Re-instate the old alt setting */
1599 usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1600 usb_enable_lpm(dev);
1601 mutex_unlock(hcd->bandwidth_mutex);
1602 return ret;
1604 mutex_unlock(hcd->bandwidth_mutex);
1606 /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1607 * when they implement async or easily-killable versions of this or
1608 * other "should-be-internal" functions (like clear_halt).
1609 * should hcd+usbcore postprocess control requests?
1612 /* prevent submissions using previous endpoint settings */
1613 if (iface->cur_altsetting != alt) {
1614 remove_intf_ep_devs(iface);
1615 usb_remove_sysfs_intf_files(iface);
1617 usb_disable_interface(dev, iface, true);
1619 iface->cur_altsetting = alt;
1621 /* Now that the interface is installed, re-enable LPM. */
1622 usb_unlocked_enable_lpm(dev);
1624 /* If the interface only has one altsetting and the device didn't
1625 * accept the request, we attempt to carry out the equivalent action
1626 * by manually clearing the HALT feature for each endpoint in the
1627 * new altsetting.
1629 if (manual) {
1630 for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1631 epaddr = alt->endpoint[i].desc.bEndpointAddress;
1632 pipe = __create_pipe(dev,
1633 USB_ENDPOINT_NUMBER_MASK & epaddr) |
1634 (usb_endpoint_out(epaddr) ?
1635 USB_DIR_OUT : USB_DIR_IN);
1637 usb_clear_halt(dev, pipe);
1641 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1643 * Note:
1644 * Despite EP0 is always present in all interfaces/AS, the list of
1645 * endpoints from the descriptor does not contain EP0. Due to its
1646 * omnipresence one might expect EP0 being considered "affected" by
1647 * any SetInterface request and hence assume toggles need to be reset.
1648 * However, EP0 toggles are re-synced for every individual transfer
1649 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1650 * (Likewise, EP0 never "halts" on well designed devices.)
1652 usb_enable_interface(dev, iface, true);
1653 if (device_is_registered(&iface->dev)) {
1654 usb_create_sysfs_intf_files(iface);
1655 create_intf_ep_devs(iface);
1657 return 0;
1659 EXPORT_SYMBOL_GPL(usb_set_interface);
1662 * usb_reset_configuration - lightweight device reset
1663 * @dev: the device whose configuration is being reset
1665 * This issues a standard SET_CONFIGURATION request to the device using
1666 * the current configuration. The effect is to reset most USB-related
1667 * state in the device, including interface altsettings (reset to zero),
1668 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1669 * endpoints). Other usbcore state is unchanged, including bindings of
1670 * usb device drivers to interfaces.
1672 * Because this affects multiple interfaces, avoid using this with composite
1673 * (multi-interface) devices. Instead, the driver for each interface may
1674 * use usb_set_interface() on the interfaces it claims. Be careful though;
1675 * some devices don't support the SET_INTERFACE request, and others won't
1676 * reset all the interface state (notably endpoint state). Resetting the whole
1677 * configuration would affect other drivers' interfaces.
1679 * The caller must own the device lock.
1681 * Return: Zero on success, else a negative error code.
1683 * If this routine fails the device will probably be in an unusable state
1684 * with endpoints disabled, and interfaces only partially enabled.
1686 int usb_reset_configuration(struct usb_device *dev)
1688 int i, retval;
1689 struct usb_host_config *config;
1690 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1692 if (dev->state == USB_STATE_SUSPENDED)
1693 return -EHOSTUNREACH;
1695 /* caller must have locked the device and must own
1696 * the usb bus readlock (so driver bindings are stable);
1697 * calls during probe() are fine
1700 usb_disable_device_endpoints(dev, 1); /* skip ep0*/
1702 config = dev->actconfig;
1703 retval = 0;
1704 mutex_lock(hcd->bandwidth_mutex);
1705 /* Disable LPM, and re-enable it once the configuration is reset, so
1706 * that the xHCI driver can recalculate the U1/U2 timeouts.
1708 if (usb_disable_lpm(dev)) {
1709 dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__);
1710 mutex_unlock(hcd->bandwidth_mutex);
1711 return -ENOMEM;
1714 /* xHCI adds all endpoints in usb_hcd_alloc_bandwidth */
1715 retval = usb_hcd_alloc_bandwidth(dev, config, NULL, NULL);
1716 if (retval < 0) {
1717 usb_enable_lpm(dev);
1718 mutex_unlock(hcd->bandwidth_mutex);
1719 return retval;
1721 retval = usb_control_msg_send(dev, 0, USB_REQ_SET_CONFIGURATION, 0,
1722 config->desc.bConfigurationValue, 0,
1723 NULL, 0, USB_CTRL_SET_TIMEOUT,
1724 GFP_NOIO);
1725 if (retval) {
1726 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1727 usb_enable_lpm(dev);
1728 mutex_unlock(hcd->bandwidth_mutex);
1729 return retval;
1731 mutex_unlock(hcd->bandwidth_mutex);
1733 /* re-init hc/hcd interface/endpoint state */
1734 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1735 struct usb_interface *intf = config->interface[i];
1736 struct usb_host_interface *alt;
1738 alt = usb_altnum_to_altsetting(intf, 0);
1740 /* No altsetting 0? We'll assume the first altsetting.
1741 * We could use a GetInterface call, but if a device is
1742 * so non-compliant that it doesn't have altsetting 0
1743 * then I wouldn't trust its reply anyway.
1745 if (!alt)
1746 alt = &intf->altsetting[0];
1748 if (alt != intf->cur_altsetting) {
1749 remove_intf_ep_devs(intf);
1750 usb_remove_sysfs_intf_files(intf);
1752 intf->cur_altsetting = alt;
1753 usb_enable_interface(dev, intf, true);
1754 if (device_is_registered(&intf->dev)) {
1755 usb_create_sysfs_intf_files(intf);
1756 create_intf_ep_devs(intf);
1759 /* Now that the interfaces are installed, re-enable LPM. */
1760 usb_unlocked_enable_lpm(dev);
1761 return 0;
1763 EXPORT_SYMBOL_GPL(usb_reset_configuration);
1765 static void usb_release_interface(struct device *dev)
1767 struct usb_interface *intf = to_usb_interface(dev);
1768 struct usb_interface_cache *intfc =
1769 altsetting_to_usb_interface_cache(intf->altsetting);
1771 kref_put(&intfc->ref, usb_release_interface_cache);
1772 usb_put_dev(interface_to_usbdev(intf));
1773 of_node_put(dev->of_node);
1774 kfree(intf);
1778 * usb_deauthorize_interface - deauthorize an USB interface
1780 * @intf: USB interface structure
1782 void usb_deauthorize_interface(struct usb_interface *intf)
1784 struct device *dev = &intf->dev;
1786 device_lock(dev->parent);
1788 if (intf->authorized) {
1789 device_lock(dev);
1790 intf->authorized = 0;
1791 device_unlock(dev);
1793 usb_forced_unbind_intf(intf);
1796 device_unlock(dev->parent);
1800 * usb_authorize_interface - authorize an USB interface
1802 * @intf: USB interface structure
1804 void usb_authorize_interface(struct usb_interface *intf)
1806 struct device *dev = &intf->dev;
1808 if (!intf->authorized) {
1809 device_lock(dev);
1810 intf->authorized = 1; /* authorize interface */
1811 device_unlock(dev);
1815 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1817 struct usb_device *usb_dev;
1818 struct usb_interface *intf;
1819 struct usb_host_interface *alt;
1821 intf = to_usb_interface(dev);
1822 usb_dev = interface_to_usbdev(intf);
1823 alt = intf->cur_altsetting;
1825 if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1826 alt->desc.bInterfaceClass,
1827 alt->desc.bInterfaceSubClass,
1828 alt->desc.bInterfaceProtocol))
1829 return -ENOMEM;
1831 if (add_uevent_var(env,
1832 "MODALIAS=usb:"
1833 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1834 le16_to_cpu(usb_dev->descriptor.idVendor),
1835 le16_to_cpu(usb_dev->descriptor.idProduct),
1836 le16_to_cpu(usb_dev->descriptor.bcdDevice),
1837 usb_dev->descriptor.bDeviceClass,
1838 usb_dev->descriptor.bDeviceSubClass,
1839 usb_dev->descriptor.bDeviceProtocol,
1840 alt->desc.bInterfaceClass,
1841 alt->desc.bInterfaceSubClass,
1842 alt->desc.bInterfaceProtocol,
1843 alt->desc.bInterfaceNumber))
1844 return -ENOMEM;
1846 return 0;
1849 struct device_type usb_if_device_type = {
1850 .name = "usb_interface",
1851 .release = usb_release_interface,
1852 .uevent = usb_if_uevent,
1855 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1856 struct usb_host_config *config,
1857 u8 inum)
1859 struct usb_interface_assoc_descriptor *retval = NULL;
1860 struct usb_interface_assoc_descriptor *intf_assoc;
1861 int first_intf;
1862 int last_intf;
1863 int i;
1865 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1866 intf_assoc = config->intf_assoc[i];
1867 if (intf_assoc->bInterfaceCount == 0)
1868 continue;
1870 first_intf = intf_assoc->bFirstInterface;
1871 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1872 if (inum >= first_intf && inum <= last_intf) {
1873 if (!retval)
1874 retval = intf_assoc;
1875 else
1876 dev_err(&dev->dev, "Interface #%d referenced"
1877 " by multiple IADs\n", inum);
1881 return retval;
1886 * Internal function to queue a device reset
1887 * See usb_queue_reset_device() for more details
1889 static void __usb_queue_reset_device(struct work_struct *ws)
1891 int rc;
1892 struct usb_interface *iface =
1893 container_of(ws, struct usb_interface, reset_ws);
1894 struct usb_device *udev = interface_to_usbdev(iface);
1896 rc = usb_lock_device_for_reset(udev, iface);
1897 if (rc >= 0) {
1898 usb_reset_device(udev);
1899 usb_unlock_device(udev);
1901 usb_put_intf(iface); /* Undo _get_ in usb_queue_reset_device() */
1906 * usb_set_configuration - Makes a particular device setting be current
1907 * @dev: the device whose configuration is being updated
1908 * @configuration: the configuration being chosen.
1910 * Context: task context, might sleep. Caller holds device lock.
1912 * This is used to enable non-default device modes. Not all devices
1913 * use this kind of configurability; many devices only have one
1914 * configuration.
1916 * @configuration is the value of the configuration to be installed.
1917 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1918 * must be non-zero; a value of zero indicates that the device in
1919 * unconfigured. However some devices erroneously use 0 as one of their
1920 * configuration values. To help manage such devices, this routine will
1921 * accept @configuration = -1 as indicating the device should be put in
1922 * an unconfigured state.
1924 * USB device configurations may affect Linux interoperability,
1925 * power consumption and the functionality available. For example,
1926 * the default configuration is limited to using 100mA of bus power,
1927 * so that when certain device functionality requires more power,
1928 * and the device is bus powered, that functionality should be in some
1929 * non-default device configuration. Other device modes may also be
1930 * reflected as configuration options, such as whether two ISDN
1931 * channels are available independently; and choosing between open
1932 * standard device protocols (like CDC) or proprietary ones.
1934 * Note that a non-authorized device (dev->authorized == 0) will only
1935 * be put in unconfigured mode.
1937 * Note that USB has an additional level of device configurability,
1938 * associated with interfaces. That configurability is accessed using
1939 * usb_set_interface().
1941 * This call is synchronous. The calling context must be able to sleep,
1942 * must own the device lock, and must not hold the driver model's USB
1943 * bus mutex; usb interface driver probe() methods cannot use this routine.
1945 * Returns zero on success, or else the status code returned by the
1946 * underlying call that failed. On successful completion, each interface
1947 * in the original device configuration has been destroyed, and each one
1948 * in the new configuration has been probed by all relevant usb device
1949 * drivers currently known to the kernel.
1951 int usb_set_configuration(struct usb_device *dev, int configuration)
1953 int i, ret;
1954 struct usb_host_config *cp = NULL;
1955 struct usb_interface **new_interfaces = NULL;
1956 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1957 int n, nintf;
1959 if (dev->authorized == 0 || configuration == -1)
1960 configuration = 0;
1961 else {
1962 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1963 if (dev->config[i].desc.bConfigurationValue ==
1964 configuration) {
1965 cp = &dev->config[i];
1966 break;
1970 if ((!cp && configuration != 0))
1971 return -EINVAL;
1973 /* The USB spec says configuration 0 means unconfigured.
1974 * But if a device includes a configuration numbered 0,
1975 * we will accept it as a correctly configured state.
1976 * Use -1 if you really want to unconfigure the device.
1978 if (cp && configuration == 0)
1979 dev_warn(&dev->dev, "config 0 descriptor??\n");
1981 /* Allocate memory for new interfaces before doing anything else,
1982 * so that if we run out then nothing will have changed. */
1983 n = nintf = 0;
1984 if (cp) {
1985 nintf = cp->desc.bNumInterfaces;
1986 new_interfaces = kmalloc_array(nintf, sizeof(*new_interfaces),
1987 GFP_NOIO);
1988 if (!new_interfaces)
1989 return -ENOMEM;
1991 for (; n < nintf; ++n) {
1992 new_interfaces[n] = kzalloc(
1993 sizeof(struct usb_interface),
1994 GFP_NOIO);
1995 if (!new_interfaces[n]) {
1996 ret = -ENOMEM;
1997 free_interfaces:
1998 while (--n >= 0)
1999 kfree(new_interfaces[n]);
2000 kfree(new_interfaces);
2001 return ret;
2005 i = dev->bus_mA - usb_get_max_power(dev, cp);
2006 if (i < 0)
2007 dev_warn(&dev->dev, "new config #%d exceeds power "
2008 "limit by %dmA\n",
2009 configuration, -i);
2012 /* Wake up the device so we can send it the Set-Config request */
2013 ret = usb_autoresume_device(dev);
2014 if (ret)
2015 goto free_interfaces;
2017 /* if it's already configured, clear out old state first.
2018 * getting rid of old interfaces means unbinding their drivers.
2020 if (dev->state != USB_STATE_ADDRESS)
2021 usb_disable_device(dev, 1); /* Skip ep0 */
2023 /* Get rid of pending async Set-Config requests for this device */
2024 cancel_async_set_config(dev);
2026 /* Make sure we have bandwidth (and available HCD resources) for this
2027 * configuration. Remove endpoints from the schedule if we're dropping
2028 * this configuration to set configuration 0. After this point, the
2029 * host controller will not allow submissions to dropped endpoints. If
2030 * this call fails, the device state is unchanged.
2032 mutex_lock(hcd->bandwidth_mutex);
2033 /* Disable LPM, and re-enable it once the new configuration is
2034 * installed, so that the xHCI driver can recalculate the U1/U2
2035 * timeouts.
2037 if (dev->actconfig && usb_disable_lpm(dev)) {
2038 dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__);
2039 mutex_unlock(hcd->bandwidth_mutex);
2040 ret = -ENOMEM;
2041 goto free_interfaces;
2043 ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
2044 if (ret < 0) {
2045 if (dev->actconfig)
2046 usb_enable_lpm(dev);
2047 mutex_unlock(hcd->bandwidth_mutex);
2048 usb_autosuspend_device(dev);
2049 goto free_interfaces;
2053 * Initialize the new interface structures and the
2054 * hc/hcd/usbcore interface/endpoint state.
2056 for (i = 0; i < nintf; ++i) {
2057 struct usb_interface_cache *intfc;
2058 struct usb_interface *intf;
2059 struct usb_host_interface *alt;
2060 u8 ifnum;
2062 cp->interface[i] = intf = new_interfaces[i];
2063 intfc = cp->intf_cache[i];
2064 intf->altsetting = intfc->altsetting;
2065 intf->num_altsetting = intfc->num_altsetting;
2066 intf->authorized = !!HCD_INTF_AUTHORIZED(hcd);
2067 kref_get(&intfc->ref);
2069 alt = usb_altnum_to_altsetting(intf, 0);
2071 /* No altsetting 0? We'll assume the first altsetting.
2072 * We could use a GetInterface call, but if a device is
2073 * so non-compliant that it doesn't have altsetting 0
2074 * then I wouldn't trust its reply anyway.
2076 if (!alt)
2077 alt = &intf->altsetting[0];
2079 ifnum = alt->desc.bInterfaceNumber;
2080 intf->intf_assoc = find_iad(dev, cp, ifnum);
2081 intf->cur_altsetting = alt;
2082 usb_enable_interface(dev, intf, true);
2083 intf->dev.parent = &dev->dev;
2084 if (usb_of_has_combined_node(dev)) {
2085 device_set_of_node_from_dev(&intf->dev, &dev->dev);
2086 } else {
2087 intf->dev.of_node = usb_of_get_interface_node(dev,
2088 configuration, ifnum);
2090 ACPI_COMPANION_SET(&intf->dev, ACPI_COMPANION(&dev->dev));
2091 intf->dev.driver = NULL;
2092 intf->dev.bus = &usb_bus_type;
2093 intf->dev.type = &usb_if_device_type;
2094 intf->dev.groups = usb_interface_groups;
2095 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
2096 intf->minor = -1;
2097 device_initialize(&intf->dev);
2098 pm_runtime_no_callbacks(&intf->dev);
2099 dev_set_name(&intf->dev, "%d-%s:%d.%d", dev->bus->busnum,
2100 dev->devpath, configuration, ifnum);
2101 usb_get_dev(dev);
2103 kfree(new_interfaces);
2105 ret = usb_control_msg_send(dev, 0, USB_REQ_SET_CONFIGURATION, 0,
2106 configuration, 0, NULL, 0,
2107 USB_CTRL_SET_TIMEOUT, GFP_NOIO);
2108 if (ret && cp) {
2110 * All the old state is gone, so what else can we do?
2111 * The device is probably useless now anyway.
2113 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
2114 for (i = 0; i < nintf; ++i) {
2115 usb_disable_interface(dev, cp->interface[i], true);
2116 put_device(&cp->interface[i]->dev);
2117 cp->interface[i] = NULL;
2119 cp = NULL;
2122 dev->actconfig = cp;
2123 mutex_unlock(hcd->bandwidth_mutex);
2125 if (!cp) {
2126 usb_set_device_state(dev, USB_STATE_ADDRESS);
2128 /* Leave LPM disabled while the device is unconfigured. */
2129 usb_autosuspend_device(dev);
2130 return ret;
2132 usb_set_device_state(dev, USB_STATE_CONFIGURED);
2134 if (cp->string == NULL &&
2135 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
2136 cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
2138 /* Now that the interfaces are installed, re-enable LPM. */
2139 usb_unlocked_enable_lpm(dev);
2140 /* Enable LTM if it was turned off by usb_disable_device. */
2141 usb_enable_ltm(dev);
2143 /* Now that all the interfaces are set up, register them
2144 * to trigger binding of drivers to interfaces. probe()
2145 * routines may install different altsettings and may
2146 * claim() any interfaces not yet bound. Many class drivers
2147 * need that: CDC, audio, video, etc.
2149 for (i = 0; i < nintf; ++i) {
2150 struct usb_interface *intf = cp->interface[i];
2152 if (intf->dev.of_node &&
2153 !of_device_is_available(intf->dev.of_node)) {
2154 dev_info(&dev->dev, "skipping disabled interface %d\n",
2155 intf->cur_altsetting->desc.bInterfaceNumber);
2156 continue;
2159 dev_dbg(&dev->dev,
2160 "adding %s (config #%d, interface %d)\n",
2161 dev_name(&intf->dev), configuration,
2162 intf->cur_altsetting->desc.bInterfaceNumber);
2163 device_enable_async_suspend(&intf->dev);
2164 ret = device_add(&intf->dev);
2165 if (ret != 0) {
2166 dev_err(&dev->dev, "device_add(%s) --> %d\n",
2167 dev_name(&intf->dev), ret);
2168 continue;
2170 create_intf_ep_devs(intf);
2173 usb_autosuspend_device(dev);
2174 return 0;
2176 EXPORT_SYMBOL_GPL(usb_set_configuration);
2178 static LIST_HEAD(set_config_list);
2179 static DEFINE_SPINLOCK(set_config_lock);
2181 struct set_config_request {
2182 struct usb_device *udev;
2183 int config;
2184 struct work_struct work;
2185 struct list_head node;
2188 /* Worker routine for usb_driver_set_configuration() */
2189 static void driver_set_config_work(struct work_struct *work)
2191 struct set_config_request *req =
2192 container_of(work, struct set_config_request, work);
2193 struct usb_device *udev = req->udev;
2195 usb_lock_device(udev);
2196 spin_lock(&set_config_lock);
2197 list_del(&req->node);
2198 spin_unlock(&set_config_lock);
2200 if (req->config >= -1) /* Is req still valid? */
2201 usb_set_configuration(udev, req->config);
2202 usb_unlock_device(udev);
2203 usb_put_dev(udev);
2204 kfree(req);
2207 /* Cancel pending Set-Config requests for a device whose configuration
2208 * was just changed
2210 static void cancel_async_set_config(struct usb_device *udev)
2212 struct set_config_request *req;
2214 spin_lock(&set_config_lock);
2215 list_for_each_entry(req, &set_config_list, node) {
2216 if (req->udev == udev)
2217 req->config = -999; /* Mark as cancelled */
2219 spin_unlock(&set_config_lock);
2223 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
2224 * @udev: the device whose configuration is being updated
2225 * @config: the configuration being chosen.
2226 * Context: In process context, must be able to sleep
2228 * Device interface drivers are not allowed to change device configurations.
2229 * This is because changing configurations will destroy the interface the
2230 * driver is bound to and create new ones; it would be like a floppy-disk
2231 * driver telling the computer to replace the floppy-disk drive with a
2232 * tape drive!
2234 * Still, in certain specialized circumstances the need may arise. This
2235 * routine gets around the normal restrictions by using a work thread to
2236 * submit the change-config request.
2238 * Return: 0 if the request was successfully queued, error code otherwise.
2239 * The caller has no way to know whether the queued request will eventually
2240 * succeed.
2242 int usb_driver_set_configuration(struct usb_device *udev, int config)
2244 struct set_config_request *req;
2246 req = kmalloc(sizeof(*req), GFP_KERNEL);
2247 if (!req)
2248 return -ENOMEM;
2249 req->udev = udev;
2250 req->config = config;
2251 INIT_WORK(&req->work, driver_set_config_work);
2253 spin_lock(&set_config_lock);
2254 list_add(&req->node, &set_config_list);
2255 spin_unlock(&set_config_lock);
2257 usb_get_dev(udev);
2258 schedule_work(&req->work);
2259 return 0;
2261 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
2264 * cdc_parse_cdc_header - parse the extra headers present in CDC devices
2265 * @hdr: the place to put the results of the parsing
2266 * @intf: the interface for which parsing is requested
2267 * @buffer: pointer to the extra headers to be parsed
2268 * @buflen: length of the extra headers
2270 * This evaluates the extra headers present in CDC devices which
2271 * bind the interfaces for data and control and provide details
2272 * about the capabilities of the device.
2274 * Return: number of descriptors parsed or -EINVAL
2275 * if the header is contradictory beyond salvage
2278 int cdc_parse_cdc_header(struct usb_cdc_parsed_header *hdr,
2279 struct usb_interface *intf,
2280 u8 *buffer,
2281 int buflen)
2283 /* duplicates are ignored */
2284 struct usb_cdc_union_desc *union_header = NULL;
2286 /* duplicates are not tolerated */
2287 struct usb_cdc_header_desc *header = NULL;
2288 struct usb_cdc_ether_desc *ether = NULL;
2289 struct usb_cdc_mdlm_detail_desc *detail = NULL;
2290 struct usb_cdc_mdlm_desc *desc = NULL;
2292 unsigned int elength;
2293 int cnt = 0;
2295 memset(hdr, 0x00, sizeof(struct usb_cdc_parsed_header));
2296 hdr->phonet_magic_present = false;
2297 while (buflen > 0) {
2298 elength = buffer[0];
2299 if (!elength) {
2300 dev_err(&intf->dev, "skipping garbage byte\n");
2301 elength = 1;
2302 goto next_desc;
2304 if ((buflen < elength) || (elength < 3)) {
2305 dev_err(&intf->dev, "invalid descriptor buffer length\n");
2306 break;
2308 if (buffer[1] != USB_DT_CS_INTERFACE) {
2309 dev_err(&intf->dev, "skipping garbage\n");
2310 goto next_desc;
2313 switch (buffer[2]) {
2314 case USB_CDC_UNION_TYPE: /* we've found it */
2315 if (elength < sizeof(struct usb_cdc_union_desc))
2316 goto next_desc;
2317 if (union_header) {
2318 dev_err(&intf->dev, "More than one union descriptor, skipping ...\n");
2319 goto next_desc;
2321 union_header = (struct usb_cdc_union_desc *)buffer;
2322 break;
2323 case USB_CDC_COUNTRY_TYPE:
2324 if (elength < sizeof(struct usb_cdc_country_functional_desc))
2325 goto next_desc;
2326 hdr->usb_cdc_country_functional_desc =
2327 (struct usb_cdc_country_functional_desc *)buffer;
2328 break;
2329 case USB_CDC_HEADER_TYPE:
2330 if (elength != sizeof(struct usb_cdc_header_desc))
2331 goto next_desc;
2332 if (header)
2333 return -EINVAL;
2334 header = (struct usb_cdc_header_desc *)buffer;
2335 break;
2336 case USB_CDC_ACM_TYPE:
2337 if (elength < sizeof(struct usb_cdc_acm_descriptor))
2338 goto next_desc;
2339 hdr->usb_cdc_acm_descriptor =
2340 (struct usb_cdc_acm_descriptor *)buffer;
2341 break;
2342 case USB_CDC_ETHERNET_TYPE:
2343 if (elength != sizeof(struct usb_cdc_ether_desc))
2344 goto next_desc;
2345 if (ether)
2346 return -EINVAL;
2347 ether = (struct usb_cdc_ether_desc *)buffer;
2348 break;
2349 case USB_CDC_CALL_MANAGEMENT_TYPE:
2350 if (elength < sizeof(struct usb_cdc_call_mgmt_descriptor))
2351 goto next_desc;
2352 hdr->usb_cdc_call_mgmt_descriptor =
2353 (struct usb_cdc_call_mgmt_descriptor *)buffer;
2354 break;
2355 case USB_CDC_DMM_TYPE:
2356 if (elength < sizeof(struct usb_cdc_dmm_desc))
2357 goto next_desc;
2358 hdr->usb_cdc_dmm_desc =
2359 (struct usb_cdc_dmm_desc *)buffer;
2360 break;
2361 case USB_CDC_MDLM_TYPE:
2362 if (elength < sizeof(struct usb_cdc_mdlm_desc))
2363 goto next_desc;
2364 if (desc)
2365 return -EINVAL;
2366 desc = (struct usb_cdc_mdlm_desc *)buffer;
2367 break;
2368 case USB_CDC_MDLM_DETAIL_TYPE:
2369 if (elength < sizeof(struct usb_cdc_mdlm_detail_desc))
2370 goto next_desc;
2371 if (detail)
2372 return -EINVAL;
2373 detail = (struct usb_cdc_mdlm_detail_desc *)buffer;
2374 break;
2375 case USB_CDC_NCM_TYPE:
2376 if (elength < sizeof(struct usb_cdc_ncm_desc))
2377 goto next_desc;
2378 hdr->usb_cdc_ncm_desc = (struct usb_cdc_ncm_desc *)buffer;
2379 break;
2380 case USB_CDC_MBIM_TYPE:
2381 if (elength < sizeof(struct usb_cdc_mbim_desc))
2382 goto next_desc;
2384 hdr->usb_cdc_mbim_desc = (struct usb_cdc_mbim_desc *)buffer;
2385 break;
2386 case USB_CDC_MBIM_EXTENDED_TYPE:
2387 if (elength < sizeof(struct usb_cdc_mbim_extended_desc))
2388 break;
2389 hdr->usb_cdc_mbim_extended_desc =
2390 (struct usb_cdc_mbim_extended_desc *)buffer;
2391 break;
2392 case CDC_PHONET_MAGIC_NUMBER:
2393 hdr->phonet_magic_present = true;
2394 break;
2395 default:
2397 * there are LOTS more CDC descriptors that
2398 * could legitimately be found here.
2400 dev_dbg(&intf->dev, "Ignoring descriptor: type %02x, length %ud\n",
2401 buffer[2], elength);
2402 goto next_desc;
2404 cnt++;
2405 next_desc:
2406 buflen -= elength;
2407 buffer += elength;
2409 hdr->usb_cdc_union_desc = union_header;
2410 hdr->usb_cdc_header_desc = header;
2411 hdr->usb_cdc_mdlm_detail_desc = detail;
2412 hdr->usb_cdc_mdlm_desc = desc;
2413 hdr->usb_cdc_ether_desc = ether;
2414 return cnt;
2417 EXPORT_SYMBOL(cdc_parse_cdc_header);