Merge tag 'regmap-fix-v5.11-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux/fpc-iii.git] / drivers / watchdog / dw_wdt.c
blob32d0e1781e63c4ec5535b383d0c5647b1aa3b5d3
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright 2010-2011 Picochip Ltd., Jamie Iles
4 * https://www.picochip.com
6 * This file implements a driver for the Synopsys DesignWare watchdog device
7 * in the many subsystems. The watchdog has 16 different timeout periods
8 * and these are a function of the input clock frequency.
10 * The DesignWare watchdog cannot be stopped once it has been started so we
11 * do not implement a stop function. The watchdog core will continue to send
12 * heartbeat requests after the watchdog device has been closed.
15 #include <linux/bitops.h>
16 #include <linux/limits.h>
17 #include <linux/kernel.h>
18 #include <linux/clk.h>
19 #include <linux/delay.h>
20 #include <linux/err.h>
21 #include <linux/io.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/interrupt.h>
26 #include <linux/of.h>
27 #include <linux/pm.h>
28 #include <linux/platform_device.h>
29 #include <linux/reset.h>
30 #include <linux/watchdog.h>
31 #include <linux/debugfs.h>
33 #define WDOG_CONTROL_REG_OFFSET 0x00
34 #define WDOG_CONTROL_REG_WDT_EN_MASK 0x01
35 #define WDOG_CONTROL_REG_RESP_MODE_MASK 0x02
36 #define WDOG_TIMEOUT_RANGE_REG_OFFSET 0x04
37 #define WDOG_TIMEOUT_RANGE_TOPINIT_SHIFT 4
38 #define WDOG_CURRENT_COUNT_REG_OFFSET 0x08
39 #define WDOG_COUNTER_RESTART_REG_OFFSET 0x0c
40 #define WDOG_COUNTER_RESTART_KICK_VALUE 0x76
41 #define WDOG_INTERRUPT_STATUS_REG_OFFSET 0x10
42 #define WDOG_INTERRUPT_CLEAR_REG_OFFSET 0x14
43 #define WDOG_COMP_PARAMS_5_REG_OFFSET 0xe4
44 #define WDOG_COMP_PARAMS_4_REG_OFFSET 0xe8
45 #define WDOG_COMP_PARAMS_3_REG_OFFSET 0xec
46 #define WDOG_COMP_PARAMS_2_REG_OFFSET 0xf0
47 #define WDOG_COMP_PARAMS_1_REG_OFFSET 0xf4
48 #define WDOG_COMP_PARAMS_1_USE_FIX_TOP BIT(6)
49 #define WDOG_COMP_VERSION_REG_OFFSET 0xf8
50 #define WDOG_COMP_TYPE_REG_OFFSET 0xfc
52 /* There are sixteen TOPs (timeout periods) that can be set in the watchdog. */
53 #define DW_WDT_NUM_TOPS 16
54 #define DW_WDT_FIX_TOP(_idx) (1U << (16 + _idx))
56 #define DW_WDT_DEFAULT_SECONDS 30
58 static const u32 dw_wdt_fix_tops[DW_WDT_NUM_TOPS] = {
59 DW_WDT_FIX_TOP(0), DW_WDT_FIX_TOP(1), DW_WDT_FIX_TOP(2),
60 DW_WDT_FIX_TOP(3), DW_WDT_FIX_TOP(4), DW_WDT_FIX_TOP(5),
61 DW_WDT_FIX_TOP(6), DW_WDT_FIX_TOP(7), DW_WDT_FIX_TOP(8),
62 DW_WDT_FIX_TOP(9), DW_WDT_FIX_TOP(10), DW_WDT_FIX_TOP(11),
63 DW_WDT_FIX_TOP(12), DW_WDT_FIX_TOP(13), DW_WDT_FIX_TOP(14),
64 DW_WDT_FIX_TOP(15)
67 static bool nowayout = WATCHDOG_NOWAYOUT;
68 module_param(nowayout, bool, 0);
69 MODULE_PARM_DESC(nowayout, "Watchdog cannot be stopped once started "
70 "(default=" __MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
72 enum dw_wdt_rmod {
73 DW_WDT_RMOD_RESET = 1,
74 DW_WDT_RMOD_IRQ = 2
77 struct dw_wdt_timeout {
78 u32 top_val;
79 unsigned int sec;
80 unsigned int msec;
83 struct dw_wdt {
84 void __iomem *regs;
85 struct clk *clk;
86 struct clk *pclk;
87 unsigned long rate;
88 enum dw_wdt_rmod rmod;
89 struct dw_wdt_timeout timeouts[DW_WDT_NUM_TOPS];
90 struct watchdog_device wdd;
91 struct reset_control *rst;
92 /* Save/restore */
93 u32 control;
94 u32 timeout;
96 #ifdef CONFIG_DEBUG_FS
97 struct dentry *dbgfs_dir;
98 #endif
101 #define to_dw_wdt(wdd) container_of(wdd, struct dw_wdt, wdd)
103 static inline int dw_wdt_is_enabled(struct dw_wdt *dw_wdt)
105 return readl(dw_wdt->regs + WDOG_CONTROL_REG_OFFSET) &
106 WDOG_CONTROL_REG_WDT_EN_MASK;
109 static void dw_wdt_update_mode(struct dw_wdt *dw_wdt, enum dw_wdt_rmod rmod)
111 u32 val;
113 val = readl(dw_wdt->regs + WDOG_CONTROL_REG_OFFSET);
114 if (rmod == DW_WDT_RMOD_IRQ)
115 val |= WDOG_CONTROL_REG_RESP_MODE_MASK;
116 else
117 val &= ~WDOG_CONTROL_REG_RESP_MODE_MASK;
118 writel(val, dw_wdt->regs + WDOG_CONTROL_REG_OFFSET);
120 dw_wdt->rmod = rmod;
123 static unsigned int dw_wdt_find_best_top(struct dw_wdt *dw_wdt,
124 unsigned int timeout, u32 *top_val)
126 int idx;
129 * Find a TOP with timeout greater or equal to the requested number.
130 * Note we'll select a TOP with maximum timeout if the requested
131 * timeout couldn't be reached.
133 for (idx = 0; idx < DW_WDT_NUM_TOPS; ++idx) {
134 if (dw_wdt->timeouts[idx].sec >= timeout)
135 break;
138 if (idx == DW_WDT_NUM_TOPS)
139 --idx;
141 *top_val = dw_wdt->timeouts[idx].top_val;
143 return dw_wdt->timeouts[idx].sec;
146 static unsigned int dw_wdt_get_min_timeout(struct dw_wdt *dw_wdt)
148 int idx;
151 * We'll find a timeout greater or equal to one second anyway because
152 * the driver probe would have failed if there was none.
154 for (idx = 0; idx < DW_WDT_NUM_TOPS; ++idx) {
155 if (dw_wdt->timeouts[idx].sec)
156 break;
159 return dw_wdt->timeouts[idx].sec;
162 static unsigned int dw_wdt_get_max_timeout_ms(struct dw_wdt *dw_wdt)
164 struct dw_wdt_timeout *timeout = &dw_wdt->timeouts[DW_WDT_NUM_TOPS - 1];
165 u64 msec;
167 msec = (u64)timeout->sec * MSEC_PER_SEC + timeout->msec;
169 return msec < UINT_MAX ? msec : UINT_MAX;
172 static unsigned int dw_wdt_get_timeout(struct dw_wdt *dw_wdt)
174 int top_val = readl(dw_wdt->regs + WDOG_TIMEOUT_RANGE_REG_OFFSET) & 0xF;
175 int idx;
177 for (idx = 0; idx < DW_WDT_NUM_TOPS; ++idx) {
178 if (dw_wdt->timeouts[idx].top_val == top_val)
179 break;
183 * In IRQ mode due to the two stages counter, the actual timeout is
184 * twice greater than the TOP setting.
186 return dw_wdt->timeouts[idx].sec * dw_wdt->rmod;
189 static int dw_wdt_ping(struct watchdog_device *wdd)
191 struct dw_wdt *dw_wdt = to_dw_wdt(wdd);
193 writel(WDOG_COUNTER_RESTART_KICK_VALUE, dw_wdt->regs +
194 WDOG_COUNTER_RESTART_REG_OFFSET);
196 return 0;
199 static int dw_wdt_set_timeout(struct watchdog_device *wdd, unsigned int top_s)
201 struct dw_wdt *dw_wdt = to_dw_wdt(wdd);
202 unsigned int timeout;
203 u32 top_val;
206 * Note IRQ mode being enabled means having a non-zero pre-timeout
207 * setup. In this case we try to find a TOP as close to the half of the
208 * requested timeout as possible since DW Watchdog IRQ mode is designed
209 * in two stages way - first timeout rises the pre-timeout interrupt,
210 * second timeout performs the system reset. So basically the effective
211 * watchdog-caused reset happens after two watchdog TOPs elapsed.
213 timeout = dw_wdt_find_best_top(dw_wdt, DIV_ROUND_UP(top_s, dw_wdt->rmod),
214 &top_val);
215 if (dw_wdt->rmod == DW_WDT_RMOD_IRQ)
216 wdd->pretimeout = timeout;
217 else
218 wdd->pretimeout = 0;
221 * Set the new value in the watchdog. Some versions of dw_wdt
222 * have have TOPINIT in the TIMEOUT_RANGE register (as per
223 * CP_WDT_DUAL_TOP in WDT_COMP_PARAMS_1). On those we
224 * effectively get a pat of the watchdog right here.
226 writel(top_val | top_val << WDOG_TIMEOUT_RANGE_TOPINIT_SHIFT,
227 dw_wdt->regs + WDOG_TIMEOUT_RANGE_REG_OFFSET);
229 /* Kick new TOP value into the watchdog counter if activated. */
230 if (watchdog_active(wdd))
231 dw_wdt_ping(wdd);
234 * In case users set bigger timeout value than HW can support,
235 * kernel(watchdog_dev.c) helps to feed watchdog before
236 * wdd->max_hw_heartbeat_ms
238 if (top_s * 1000 <= wdd->max_hw_heartbeat_ms)
239 wdd->timeout = timeout * dw_wdt->rmod;
240 else
241 wdd->timeout = top_s;
243 return 0;
246 static int dw_wdt_set_pretimeout(struct watchdog_device *wdd, unsigned int req)
248 struct dw_wdt *dw_wdt = to_dw_wdt(wdd);
251 * We ignore actual value of the timeout passed from user-space
252 * using it as a flag whether the pretimeout functionality is intended
253 * to be activated.
255 dw_wdt_update_mode(dw_wdt, req ? DW_WDT_RMOD_IRQ : DW_WDT_RMOD_RESET);
256 dw_wdt_set_timeout(wdd, wdd->timeout);
258 return 0;
261 static void dw_wdt_arm_system_reset(struct dw_wdt *dw_wdt)
263 u32 val = readl(dw_wdt->regs + WDOG_CONTROL_REG_OFFSET);
265 /* Disable/enable interrupt mode depending on the RMOD flag. */
266 if (dw_wdt->rmod == DW_WDT_RMOD_IRQ)
267 val |= WDOG_CONTROL_REG_RESP_MODE_MASK;
268 else
269 val &= ~WDOG_CONTROL_REG_RESP_MODE_MASK;
270 /* Enable watchdog. */
271 val |= WDOG_CONTROL_REG_WDT_EN_MASK;
272 writel(val, dw_wdt->regs + WDOG_CONTROL_REG_OFFSET);
275 static int dw_wdt_start(struct watchdog_device *wdd)
277 struct dw_wdt *dw_wdt = to_dw_wdt(wdd);
279 dw_wdt_set_timeout(wdd, wdd->timeout);
280 dw_wdt_ping(&dw_wdt->wdd);
281 dw_wdt_arm_system_reset(dw_wdt);
283 return 0;
286 static int dw_wdt_stop(struct watchdog_device *wdd)
288 struct dw_wdt *dw_wdt = to_dw_wdt(wdd);
290 if (!dw_wdt->rst) {
291 set_bit(WDOG_HW_RUNNING, &wdd->status);
292 return 0;
295 reset_control_assert(dw_wdt->rst);
296 reset_control_deassert(dw_wdt->rst);
298 return 0;
301 static int dw_wdt_restart(struct watchdog_device *wdd,
302 unsigned long action, void *data)
304 struct dw_wdt *dw_wdt = to_dw_wdt(wdd);
306 writel(0, dw_wdt->regs + WDOG_TIMEOUT_RANGE_REG_OFFSET);
307 dw_wdt_update_mode(dw_wdt, DW_WDT_RMOD_RESET);
308 if (dw_wdt_is_enabled(dw_wdt))
309 writel(WDOG_COUNTER_RESTART_KICK_VALUE,
310 dw_wdt->regs + WDOG_COUNTER_RESTART_REG_OFFSET);
311 else
312 dw_wdt_arm_system_reset(dw_wdt);
314 /* wait for reset to assert... */
315 mdelay(500);
317 return 0;
320 static unsigned int dw_wdt_get_timeleft(struct watchdog_device *wdd)
322 struct dw_wdt *dw_wdt = to_dw_wdt(wdd);
323 unsigned int sec;
324 u32 val;
326 val = readl(dw_wdt->regs + WDOG_CURRENT_COUNT_REG_OFFSET);
327 sec = val / dw_wdt->rate;
329 if (dw_wdt->rmod == DW_WDT_RMOD_IRQ) {
330 val = readl(dw_wdt->regs + WDOG_INTERRUPT_STATUS_REG_OFFSET);
331 if (!val)
332 sec += wdd->pretimeout;
335 return sec;
338 static const struct watchdog_info dw_wdt_ident = {
339 .options = WDIOF_KEEPALIVEPING | WDIOF_SETTIMEOUT |
340 WDIOF_MAGICCLOSE,
341 .identity = "Synopsys DesignWare Watchdog",
344 static const struct watchdog_info dw_wdt_pt_ident = {
345 .options = WDIOF_KEEPALIVEPING | WDIOF_SETTIMEOUT |
346 WDIOF_PRETIMEOUT | WDIOF_MAGICCLOSE,
347 .identity = "Synopsys DesignWare Watchdog",
350 static const struct watchdog_ops dw_wdt_ops = {
351 .owner = THIS_MODULE,
352 .start = dw_wdt_start,
353 .stop = dw_wdt_stop,
354 .ping = dw_wdt_ping,
355 .set_timeout = dw_wdt_set_timeout,
356 .set_pretimeout = dw_wdt_set_pretimeout,
357 .get_timeleft = dw_wdt_get_timeleft,
358 .restart = dw_wdt_restart,
361 static irqreturn_t dw_wdt_irq(int irq, void *devid)
363 struct dw_wdt *dw_wdt = devid;
364 u32 val;
367 * We don't clear the IRQ status. It's supposed to be done by the
368 * following ping operations.
370 val = readl(dw_wdt->regs + WDOG_INTERRUPT_STATUS_REG_OFFSET);
371 if (!val)
372 return IRQ_NONE;
374 watchdog_notify_pretimeout(&dw_wdt->wdd);
376 return IRQ_HANDLED;
379 #ifdef CONFIG_PM_SLEEP
380 static int dw_wdt_suspend(struct device *dev)
382 struct dw_wdt *dw_wdt = dev_get_drvdata(dev);
384 dw_wdt->control = readl(dw_wdt->regs + WDOG_CONTROL_REG_OFFSET);
385 dw_wdt->timeout = readl(dw_wdt->regs + WDOG_TIMEOUT_RANGE_REG_OFFSET);
387 clk_disable_unprepare(dw_wdt->pclk);
388 clk_disable_unprepare(dw_wdt->clk);
390 return 0;
393 static int dw_wdt_resume(struct device *dev)
395 struct dw_wdt *dw_wdt = dev_get_drvdata(dev);
396 int err = clk_prepare_enable(dw_wdt->clk);
398 if (err)
399 return err;
401 err = clk_prepare_enable(dw_wdt->pclk);
402 if (err) {
403 clk_disable_unprepare(dw_wdt->clk);
404 return err;
407 writel(dw_wdt->timeout, dw_wdt->regs + WDOG_TIMEOUT_RANGE_REG_OFFSET);
408 writel(dw_wdt->control, dw_wdt->regs + WDOG_CONTROL_REG_OFFSET);
410 dw_wdt_ping(&dw_wdt->wdd);
412 return 0;
414 #endif /* CONFIG_PM_SLEEP */
416 static SIMPLE_DEV_PM_OPS(dw_wdt_pm_ops, dw_wdt_suspend, dw_wdt_resume);
419 * In case if DW WDT IP core is synthesized with fixed TOP feature disabled the
420 * TOPs array can be arbitrary ordered with nearly any sixteen uint numbers
421 * depending on the system engineer imagination. The next method handles the
422 * passed TOPs array to pre-calculate the effective timeouts and to sort the
423 * TOP items out in the ascending order with respect to the timeouts.
426 static void dw_wdt_handle_tops(struct dw_wdt *dw_wdt, const u32 *tops)
428 struct dw_wdt_timeout tout, *dst;
429 int val, tidx;
430 u64 msec;
433 * We walk over the passed TOPs array and calculate corresponding
434 * timeouts in seconds and milliseconds. The milliseconds granularity
435 * is needed to distinguish the TOPs with very close timeouts and to
436 * set the watchdog max heartbeat setting further.
438 for (val = 0; val < DW_WDT_NUM_TOPS; ++val) {
439 tout.top_val = val;
440 tout.sec = tops[val] / dw_wdt->rate;
441 msec = (u64)tops[val] * MSEC_PER_SEC;
442 do_div(msec, dw_wdt->rate);
443 tout.msec = msec - ((u64)tout.sec * MSEC_PER_SEC);
446 * Find a suitable place for the current TOP in the timeouts
447 * array so that the list is remained in the ascending order.
449 for (tidx = 0; tidx < val; ++tidx) {
450 dst = &dw_wdt->timeouts[tidx];
451 if (tout.sec > dst->sec || (tout.sec == dst->sec &&
452 tout.msec >= dst->msec))
453 continue;
454 else
455 swap(*dst, tout);
458 dw_wdt->timeouts[val] = tout;
462 static int dw_wdt_init_timeouts(struct dw_wdt *dw_wdt, struct device *dev)
464 u32 data, of_tops[DW_WDT_NUM_TOPS];
465 const u32 *tops;
466 int ret;
469 * Retrieve custom or fixed counter values depending on the
470 * WDT_USE_FIX_TOP flag found in the component specific parameters
471 * #1 register.
473 data = readl(dw_wdt->regs + WDOG_COMP_PARAMS_1_REG_OFFSET);
474 if (data & WDOG_COMP_PARAMS_1_USE_FIX_TOP) {
475 tops = dw_wdt_fix_tops;
476 } else {
477 ret = of_property_read_variable_u32_array(dev_of_node(dev),
478 "snps,watchdog-tops", of_tops, DW_WDT_NUM_TOPS,
479 DW_WDT_NUM_TOPS);
480 if (ret < 0) {
481 dev_warn(dev, "No valid TOPs array specified\n");
482 tops = dw_wdt_fix_tops;
483 } else {
484 tops = of_tops;
488 /* Convert the specified TOPs into an array of watchdog timeouts. */
489 dw_wdt_handle_tops(dw_wdt, tops);
490 if (!dw_wdt->timeouts[DW_WDT_NUM_TOPS - 1].sec) {
491 dev_err(dev, "No any valid TOP detected\n");
492 return -EINVAL;
495 return 0;
498 #ifdef CONFIG_DEBUG_FS
500 #define DW_WDT_DBGFS_REG(_name, _off) \
502 .name = _name, \
503 .offset = _off \
506 static const struct debugfs_reg32 dw_wdt_dbgfs_regs[] = {
507 DW_WDT_DBGFS_REG("cr", WDOG_CONTROL_REG_OFFSET),
508 DW_WDT_DBGFS_REG("torr", WDOG_TIMEOUT_RANGE_REG_OFFSET),
509 DW_WDT_DBGFS_REG("ccvr", WDOG_CURRENT_COUNT_REG_OFFSET),
510 DW_WDT_DBGFS_REG("crr", WDOG_COUNTER_RESTART_REG_OFFSET),
511 DW_WDT_DBGFS_REG("stat", WDOG_INTERRUPT_STATUS_REG_OFFSET),
512 DW_WDT_DBGFS_REG("param5", WDOG_COMP_PARAMS_5_REG_OFFSET),
513 DW_WDT_DBGFS_REG("param4", WDOG_COMP_PARAMS_4_REG_OFFSET),
514 DW_WDT_DBGFS_REG("param3", WDOG_COMP_PARAMS_3_REG_OFFSET),
515 DW_WDT_DBGFS_REG("param2", WDOG_COMP_PARAMS_2_REG_OFFSET),
516 DW_WDT_DBGFS_REG("param1", WDOG_COMP_PARAMS_1_REG_OFFSET),
517 DW_WDT_DBGFS_REG("version", WDOG_COMP_VERSION_REG_OFFSET),
518 DW_WDT_DBGFS_REG("type", WDOG_COMP_TYPE_REG_OFFSET)
521 static void dw_wdt_dbgfs_init(struct dw_wdt *dw_wdt)
523 struct device *dev = dw_wdt->wdd.parent;
524 struct debugfs_regset32 *regset;
526 regset = devm_kzalloc(dev, sizeof(*regset), GFP_KERNEL);
527 if (!regset)
528 return;
530 regset->regs = dw_wdt_dbgfs_regs;
531 regset->nregs = ARRAY_SIZE(dw_wdt_dbgfs_regs);
532 regset->base = dw_wdt->regs;
534 dw_wdt->dbgfs_dir = debugfs_create_dir(dev_name(dev), NULL);
536 debugfs_create_regset32("registers", 0444, dw_wdt->dbgfs_dir, regset);
539 static void dw_wdt_dbgfs_clear(struct dw_wdt *dw_wdt)
541 debugfs_remove_recursive(dw_wdt->dbgfs_dir);
544 #else /* !CONFIG_DEBUG_FS */
546 static void dw_wdt_dbgfs_init(struct dw_wdt *dw_wdt) {}
547 static void dw_wdt_dbgfs_clear(struct dw_wdt *dw_wdt) {}
549 #endif /* !CONFIG_DEBUG_FS */
551 static int dw_wdt_drv_probe(struct platform_device *pdev)
553 struct device *dev = &pdev->dev;
554 struct watchdog_device *wdd;
555 struct dw_wdt *dw_wdt;
556 int ret;
558 dw_wdt = devm_kzalloc(dev, sizeof(*dw_wdt), GFP_KERNEL);
559 if (!dw_wdt)
560 return -ENOMEM;
562 dw_wdt->regs = devm_platform_ioremap_resource(pdev, 0);
563 if (IS_ERR(dw_wdt->regs))
564 return PTR_ERR(dw_wdt->regs);
567 * Try to request the watchdog dedicated timer clock source. It must
568 * be supplied if asynchronous mode is enabled. Otherwise fallback
569 * to the common timer/bus clocks configuration, in which the very
570 * first found clock supply both timer and APB signals.
572 dw_wdt->clk = devm_clk_get(dev, "tclk");
573 if (IS_ERR(dw_wdt->clk)) {
574 dw_wdt->clk = devm_clk_get(dev, NULL);
575 if (IS_ERR(dw_wdt->clk))
576 return PTR_ERR(dw_wdt->clk);
579 ret = clk_prepare_enable(dw_wdt->clk);
580 if (ret)
581 return ret;
583 dw_wdt->rate = clk_get_rate(dw_wdt->clk);
584 if (dw_wdt->rate == 0) {
585 ret = -EINVAL;
586 goto out_disable_clk;
590 * Request APB clock if device is configured with async clocks mode.
591 * In this case both tclk and pclk clocks are supposed to be specified.
592 * Alas we can't know for sure whether async mode was really activated,
593 * so the pclk phandle reference is left optional. If it couldn't be
594 * found we consider the device configured in synchronous clocks mode.
596 dw_wdt->pclk = devm_clk_get_optional(dev, "pclk");
597 if (IS_ERR(dw_wdt->pclk)) {
598 ret = PTR_ERR(dw_wdt->pclk);
599 goto out_disable_clk;
602 ret = clk_prepare_enable(dw_wdt->pclk);
603 if (ret)
604 goto out_disable_clk;
606 dw_wdt->rst = devm_reset_control_get_optional_shared(&pdev->dev, NULL);
607 if (IS_ERR(dw_wdt->rst)) {
608 ret = PTR_ERR(dw_wdt->rst);
609 goto out_disable_pclk;
612 /* Enable normal reset without pre-timeout by default. */
613 dw_wdt_update_mode(dw_wdt, DW_WDT_RMOD_RESET);
616 * Pre-timeout IRQ is optional, since some hardware may lack support
617 * of it. Note we must request rising-edge IRQ, since the lane is left
618 * pending either until the next watchdog kick event or up to the
619 * system reset.
621 ret = platform_get_irq_optional(pdev, 0);
622 if (ret > 0) {
623 ret = devm_request_irq(dev, ret, dw_wdt_irq,
624 IRQF_SHARED | IRQF_TRIGGER_RISING,
625 pdev->name, dw_wdt);
626 if (ret)
627 goto out_disable_pclk;
629 dw_wdt->wdd.info = &dw_wdt_pt_ident;
630 } else {
631 if (ret == -EPROBE_DEFER)
632 goto out_disable_pclk;
634 dw_wdt->wdd.info = &dw_wdt_ident;
637 reset_control_deassert(dw_wdt->rst);
639 ret = dw_wdt_init_timeouts(dw_wdt, dev);
640 if (ret)
641 goto out_disable_clk;
643 wdd = &dw_wdt->wdd;
644 wdd->ops = &dw_wdt_ops;
645 wdd->min_timeout = dw_wdt_get_min_timeout(dw_wdt);
646 wdd->max_hw_heartbeat_ms = dw_wdt_get_max_timeout_ms(dw_wdt);
647 wdd->parent = dev;
649 watchdog_set_drvdata(wdd, dw_wdt);
650 watchdog_set_nowayout(wdd, nowayout);
651 watchdog_init_timeout(wdd, 0, dev);
654 * If the watchdog is already running, use its already configured
655 * timeout. Otherwise use the default or the value provided through
656 * devicetree.
658 if (dw_wdt_is_enabled(dw_wdt)) {
659 wdd->timeout = dw_wdt_get_timeout(dw_wdt);
660 set_bit(WDOG_HW_RUNNING, &wdd->status);
661 } else {
662 wdd->timeout = DW_WDT_DEFAULT_SECONDS;
663 watchdog_init_timeout(wdd, 0, dev);
666 platform_set_drvdata(pdev, dw_wdt);
668 watchdog_set_restart_priority(wdd, 128);
670 ret = watchdog_register_device(wdd);
671 if (ret)
672 goto out_disable_pclk;
674 dw_wdt_dbgfs_init(dw_wdt);
676 return 0;
678 out_disable_pclk:
679 clk_disable_unprepare(dw_wdt->pclk);
681 out_disable_clk:
682 clk_disable_unprepare(dw_wdt->clk);
683 return ret;
686 static int dw_wdt_drv_remove(struct platform_device *pdev)
688 struct dw_wdt *dw_wdt = platform_get_drvdata(pdev);
690 dw_wdt_dbgfs_clear(dw_wdt);
692 watchdog_unregister_device(&dw_wdt->wdd);
693 reset_control_assert(dw_wdt->rst);
694 clk_disable_unprepare(dw_wdt->pclk);
695 clk_disable_unprepare(dw_wdt->clk);
697 return 0;
700 #ifdef CONFIG_OF
701 static const struct of_device_id dw_wdt_of_match[] = {
702 { .compatible = "snps,dw-wdt", },
703 { /* sentinel */ }
705 MODULE_DEVICE_TABLE(of, dw_wdt_of_match);
706 #endif
708 static struct platform_driver dw_wdt_driver = {
709 .probe = dw_wdt_drv_probe,
710 .remove = dw_wdt_drv_remove,
711 .driver = {
712 .name = "dw_wdt",
713 .of_match_table = of_match_ptr(dw_wdt_of_match),
714 .pm = &dw_wdt_pm_ops,
718 module_platform_driver(dw_wdt_driver);
720 MODULE_AUTHOR("Jamie Iles");
721 MODULE_DESCRIPTION("Synopsys DesignWare Watchdog Driver");
722 MODULE_LICENSE("GPL");