Merge tag 'regmap-fix-v5.11-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux/fpc-iii.git] / fs / aio.c
blob1f32da13d39ee603cfd42e3d2af8f318f8bb0ea3
1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 * Copyright 2018 Christoph Hellwig.
10 * See ../COPYING for licensing terms.
12 #define pr_fmt(fmt) "%s: " fmt, __func__
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
25 #include <linux/sched/signal.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/mm.h>
29 #include <linux/mman.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 #include <linux/timer.h>
33 #include <linux/aio.h>
34 #include <linux/highmem.h>
35 #include <linux/workqueue.h>
36 #include <linux/security.h>
37 #include <linux/eventfd.h>
38 #include <linux/blkdev.h>
39 #include <linux/compat.h>
40 #include <linux/migrate.h>
41 #include <linux/ramfs.h>
42 #include <linux/percpu-refcount.h>
43 #include <linux/mount.h>
44 #include <linux/pseudo_fs.h>
46 #include <linux/uaccess.h>
47 #include <linux/nospec.h>
49 #include "internal.h"
51 #define KIOCB_KEY 0
53 #define AIO_RING_MAGIC 0xa10a10a1
54 #define AIO_RING_COMPAT_FEATURES 1
55 #define AIO_RING_INCOMPAT_FEATURES 0
56 struct aio_ring {
57 unsigned id; /* kernel internal index number */
58 unsigned nr; /* number of io_events */
59 unsigned head; /* Written to by userland or under ring_lock
60 * mutex by aio_read_events_ring(). */
61 unsigned tail;
63 unsigned magic;
64 unsigned compat_features;
65 unsigned incompat_features;
66 unsigned header_length; /* size of aio_ring */
69 struct io_event io_events[];
70 }; /* 128 bytes + ring size */
73 * Plugging is meant to work with larger batches of IOs. If we don't
74 * have more than the below, then don't bother setting up a plug.
76 #define AIO_PLUG_THRESHOLD 2
78 #define AIO_RING_PAGES 8
80 struct kioctx_table {
81 struct rcu_head rcu;
82 unsigned nr;
83 struct kioctx __rcu *table[];
86 struct kioctx_cpu {
87 unsigned reqs_available;
90 struct ctx_rq_wait {
91 struct completion comp;
92 atomic_t count;
95 struct kioctx {
96 struct percpu_ref users;
97 atomic_t dead;
99 struct percpu_ref reqs;
101 unsigned long user_id;
103 struct __percpu kioctx_cpu *cpu;
106 * For percpu reqs_available, number of slots we move to/from global
107 * counter at a time:
109 unsigned req_batch;
111 * This is what userspace passed to io_setup(), it's not used for
112 * anything but counting against the global max_reqs quota.
114 * The real limit is nr_events - 1, which will be larger (see
115 * aio_setup_ring())
117 unsigned max_reqs;
119 /* Size of ringbuffer, in units of struct io_event */
120 unsigned nr_events;
122 unsigned long mmap_base;
123 unsigned long mmap_size;
125 struct page **ring_pages;
126 long nr_pages;
128 struct rcu_work free_rwork; /* see free_ioctx() */
131 * signals when all in-flight requests are done
133 struct ctx_rq_wait *rq_wait;
135 struct {
137 * This counts the number of available slots in the ringbuffer,
138 * so we avoid overflowing it: it's decremented (if positive)
139 * when allocating a kiocb and incremented when the resulting
140 * io_event is pulled off the ringbuffer.
142 * We batch accesses to it with a percpu version.
144 atomic_t reqs_available;
145 } ____cacheline_aligned_in_smp;
147 struct {
148 spinlock_t ctx_lock;
149 struct list_head active_reqs; /* used for cancellation */
150 } ____cacheline_aligned_in_smp;
152 struct {
153 struct mutex ring_lock;
154 wait_queue_head_t wait;
155 } ____cacheline_aligned_in_smp;
157 struct {
158 unsigned tail;
159 unsigned completed_events;
160 spinlock_t completion_lock;
161 } ____cacheline_aligned_in_smp;
163 struct page *internal_pages[AIO_RING_PAGES];
164 struct file *aio_ring_file;
166 unsigned id;
170 * First field must be the file pointer in all the
171 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
173 struct fsync_iocb {
174 struct file *file;
175 struct work_struct work;
176 bool datasync;
177 struct cred *creds;
180 struct poll_iocb {
181 struct file *file;
182 struct wait_queue_head *head;
183 __poll_t events;
184 bool done;
185 bool cancelled;
186 struct wait_queue_entry wait;
187 struct work_struct work;
191 * NOTE! Each of the iocb union members has the file pointer
192 * as the first entry in their struct definition. So you can
193 * access the file pointer through any of the sub-structs,
194 * or directly as just 'ki_filp' in this struct.
196 struct aio_kiocb {
197 union {
198 struct file *ki_filp;
199 struct kiocb rw;
200 struct fsync_iocb fsync;
201 struct poll_iocb poll;
204 struct kioctx *ki_ctx;
205 kiocb_cancel_fn *ki_cancel;
207 struct io_event ki_res;
209 struct list_head ki_list; /* the aio core uses this
210 * for cancellation */
211 refcount_t ki_refcnt;
214 * If the aio_resfd field of the userspace iocb is not zero,
215 * this is the underlying eventfd context to deliver events to.
217 struct eventfd_ctx *ki_eventfd;
220 /*------ sysctl variables----*/
221 static DEFINE_SPINLOCK(aio_nr_lock);
222 unsigned long aio_nr; /* current system wide number of aio requests */
223 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
224 /*----end sysctl variables---*/
226 static struct kmem_cache *kiocb_cachep;
227 static struct kmem_cache *kioctx_cachep;
229 static struct vfsmount *aio_mnt;
231 static const struct file_operations aio_ring_fops;
232 static const struct address_space_operations aio_ctx_aops;
234 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
236 struct file *file;
237 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
238 if (IS_ERR(inode))
239 return ERR_CAST(inode);
241 inode->i_mapping->a_ops = &aio_ctx_aops;
242 inode->i_mapping->private_data = ctx;
243 inode->i_size = PAGE_SIZE * nr_pages;
245 file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
246 O_RDWR, &aio_ring_fops);
247 if (IS_ERR(file))
248 iput(inode);
249 return file;
252 static int aio_init_fs_context(struct fs_context *fc)
254 if (!init_pseudo(fc, AIO_RING_MAGIC))
255 return -ENOMEM;
256 fc->s_iflags |= SB_I_NOEXEC;
257 return 0;
260 /* aio_setup
261 * Creates the slab caches used by the aio routines, panic on
262 * failure as this is done early during the boot sequence.
264 static int __init aio_setup(void)
266 static struct file_system_type aio_fs = {
267 .name = "aio",
268 .init_fs_context = aio_init_fs_context,
269 .kill_sb = kill_anon_super,
271 aio_mnt = kern_mount(&aio_fs);
272 if (IS_ERR(aio_mnt))
273 panic("Failed to create aio fs mount.");
275 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
276 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
277 return 0;
279 __initcall(aio_setup);
281 static void put_aio_ring_file(struct kioctx *ctx)
283 struct file *aio_ring_file = ctx->aio_ring_file;
284 struct address_space *i_mapping;
286 if (aio_ring_file) {
287 truncate_setsize(file_inode(aio_ring_file), 0);
289 /* Prevent further access to the kioctx from migratepages */
290 i_mapping = aio_ring_file->f_mapping;
291 spin_lock(&i_mapping->private_lock);
292 i_mapping->private_data = NULL;
293 ctx->aio_ring_file = NULL;
294 spin_unlock(&i_mapping->private_lock);
296 fput(aio_ring_file);
300 static void aio_free_ring(struct kioctx *ctx)
302 int i;
304 /* Disconnect the kiotx from the ring file. This prevents future
305 * accesses to the kioctx from page migration.
307 put_aio_ring_file(ctx);
309 for (i = 0; i < ctx->nr_pages; i++) {
310 struct page *page;
311 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
312 page_count(ctx->ring_pages[i]));
313 page = ctx->ring_pages[i];
314 if (!page)
315 continue;
316 ctx->ring_pages[i] = NULL;
317 put_page(page);
320 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
321 kfree(ctx->ring_pages);
322 ctx->ring_pages = NULL;
326 static int aio_ring_mremap(struct vm_area_struct *vma, unsigned long flags)
328 struct file *file = vma->vm_file;
329 struct mm_struct *mm = vma->vm_mm;
330 struct kioctx_table *table;
331 int i, res = -EINVAL;
333 if (flags & MREMAP_DONTUNMAP)
334 return -EINVAL;
336 spin_lock(&mm->ioctx_lock);
337 rcu_read_lock();
338 table = rcu_dereference(mm->ioctx_table);
339 for (i = 0; i < table->nr; i++) {
340 struct kioctx *ctx;
342 ctx = rcu_dereference(table->table[i]);
343 if (ctx && ctx->aio_ring_file == file) {
344 if (!atomic_read(&ctx->dead)) {
345 ctx->user_id = ctx->mmap_base = vma->vm_start;
346 res = 0;
348 break;
352 rcu_read_unlock();
353 spin_unlock(&mm->ioctx_lock);
354 return res;
357 static const struct vm_operations_struct aio_ring_vm_ops = {
358 .mremap = aio_ring_mremap,
359 #if IS_ENABLED(CONFIG_MMU)
360 .fault = filemap_fault,
361 .map_pages = filemap_map_pages,
362 .page_mkwrite = filemap_page_mkwrite,
363 #endif
366 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
368 vma->vm_flags |= VM_DONTEXPAND;
369 vma->vm_ops = &aio_ring_vm_ops;
370 return 0;
373 static const struct file_operations aio_ring_fops = {
374 .mmap = aio_ring_mmap,
377 #if IS_ENABLED(CONFIG_MIGRATION)
378 static int aio_migratepage(struct address_space *mapping, struct page *new,
379 struct page *old, enum migrate_mode mode)
381 struct kioctx *ctx;
382 unsigned long flags;
383 pgoff_t idx;
384 int rc;
387 * We cannot support the _NO_COPY case here, because copy needs to
388 * happen under the ctx->completion_lock. That does not work with the
389 * migration workflow of MIGRATE_SYNC_NO_COPY.
391 if (mode == MIGRATE_SYNC_NO_COPY)
392 return -EINVAL;
394 rc = 0;
396 /* mapping->private_lock here protects against the kioctx teardown. */
397 spin_lock(&mapping->private_lock);
398 ctx = mapping->private_data;
399 if (!ctx) {
400 rc = -EINVAL;
401 goto out;
404 /* The ring_lock mutex. The prevents aio_read_events() from writing
405 * to the ring's head, and prevents page migration from mucking in
406 * a partially initialized kiotx.
408 if (!mutex_trylock(&ctx->ring_lock)) {
409 rc = -EAGAIN;
410 goto out;
413 idx = old->index;
414 if (idx < (pgoff_t)ctx->nr_pages) {
415 /* Make sure the old page hasn't already been changed */
416 if (ctx->ring_pages[idx] != old)
417 rc = -EAGAIN;
418 } else
419 rc = -EINVAL;
421 if (rc != 0)
422 goto out_unlock;
424 /* Writeback must be complete */
425 BUG_ON(PageWriteback(old));
426 get_page(new);
428 rc = migrate_page_move_mapping(mapping, new, old, 1);
429 if (rc != MIGRATEPAGE_SUCCESS) {
430 put_page(new);
431 goto out_unlock;
434 /* Take completion_lock to prevent other writes to the ring buffer
435 * while the old page is copied to the new. This prevents new
436 * events from being lost.
438 spin_lock_irqsave(&ctx->completion_lock, flags);
439 migrate_page_copy(new, old);
440 BUG_ON(ctx->ring_pages[idx] != old);
441 ctx->ring_pages[idx] = new;
442 spin_unlock_irqrestore(&ctx->completion_lock, flags);
444 /* The old page is no longer accessible. */
445 put_page(old);
447 out_unlock:
448 mutex_unlock(&ctx->ring_lock);
449 out:
450 spin_unlock(&mapping->private_lock);
451 return rc;
453 #endif
455 static const struct address_space_operations aio_ctx_aops = {
456 .set_page_dirty = __set_page_dirty_no_writeback,
457 #if IS_ENABLED(CONFIG_MIGRATION)
458 .migratepage = aio_migratepage,
459 #endif
462 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
464 struct aio_ring *ring;
465 struct mm_struct *mm = current->mm;
466 unsigned long size, unused;
467 int nr_pages;
468 int i;
469 struct file *file;
471 /* Compensate for the ring buffer's head/tail overlap entry */
472 nr_events += 2; /* 1 is required, 2 for good luck */
474 size = sizeof(struct aio_ring);
475 size += sizeof(struct io_event) * nr_events;
477 nr_pages = PFN_UP(size);
478 if (nr_pages < 0)
479 return -EINVAL;
481 file = aio_private_file(ctx, nr_pages);
482 if (IS_ERR(file)) {
483 ctx->aio_ring_file = NULL;
484 return -ENOMEM;
487 ctx->aio_ring_file = file;
488 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
489 / sizeof(struct io_event);
491 ctx->ring_pages = ctx->internal_pages;
492 if (nr_pages > AIO_RING_PAGES) {
493 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
494 GFP_KERNEL);
495 if (!ctx->ring_pages) {
496 put_aio_ring_file(ctx);
497 return -ENOMEM;
501 for (i = 0; i < nr_pages; i++) {
502 struct page *page;
503 page = find_or_create_page(file->f_mapping,
504 i, GFP_HIGHUSER | __GFP_ZERO);
505 if (!page)
506 break;
507 pr_debug("pid(%d) page[%d]->count=%d\n",
508 current->pid, i, page_count(page));
509 SetPageUptodate(page);
510 unlock_page(page);
512 ctx->ring_pages[i] = page;
514 ctx->nr_pages = i;
516 if (unlikely(i != nr_pages)) {
517 aio_free_ring(ctx);
518 return -ENOMEM;
521 ctx->mmap_size = nr_pages * PAGE_SIZE;
522 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
524 if (mmap_write_lock_killable(mm)) {
525 ctx->mmap_size = 0;
526 aio_free_ring(ctx);
527 return -EINTR;
530 ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size,
531 PROT_READ | PROT_WRITE,
532 MAP_SHARED, 0, &unused, NULL);
533 mmap_write_unlock(mm);
534 if (IS_ERR((void *)ctx->mmap_base)) {
535 ctx->mmap_size = 0;
536 aio_free_ring(ctx);
537 return -ENOMEM;
540 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
542 ctx->user_id = ctx->mmap_base;
543 ctx->nr_events = nr_events; /* trusted copy */
545 ring = kmap_atomic(ctx->ring_pages[0]);
546 ring->nr = nr_events; /* user copy */
547 ring->id = ~0U;
548 ring->head = ring->tail = 0;
549 ring->magic = AIO_RING_MAGIC;
550 ring->compat_features = AIO_RING_COMPAT_FEATURES;
551 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
552 ring->header_length = sizeof(struct aio_ring);
553 kunmap_atomic(ring);
554 flush_dcache_page(ctx->ring_pages[0]);
556 return 0;
559 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
560 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
561 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
563 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
565 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
566 struct kioctx *ctx = req->ki_ctx;
567 unsigned long flags;
569 if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
570 return;
572 spin_lock_irqsave(&ctx->ctx_lock, flags);
573 list_add_tail(&req->ki_list, &ctx->active_reqs);
574 req->ki_cancel = cancel;
575 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
577 EXPORT_SYMBOL(kiocb_set_cancel_fn);
580 * free_ioctx() should be RCU delayed to synchronize against the RCU
581 * protected lookup_ioctx() and also needs process context to call
582 * aio_free_ring(). Use rcu_work.
584 static void free_ioctx(struct work_struct *work)
586 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
587 free_rwork);
588 pr_debug("freeing %p\n", ctx);
590 aio_free_ring(ctx);
591 free_percpu(ctx->cpu);
592 percpu_ref_exit(&ctx->reqs);
593 percpu_ref_exit(&ctx->users);
594 kmem_cache_free(kioctx_cachep, ctx);
597 static void free_ioctx_reqs(struct percpu_ref *ref)
599 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
601 /* At this point we know that there are no any in-flight requests */
602 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
603 complete(&ctx->rq_wait->comp);
605 /* Synchronize against RCU protected table->table[] dereferences */
606 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
607 queue_rcu_work(system_wq, &ctx->free_rwork);
611 * When this function runs, the kioctx has been removed from the "hash table"
612 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
613 * now it's safe to cancel any that need to be.
615 static void free_ioctx_users(struct percpu_ref *ref)
617 struct kioctx *ctx = container_of(ref, struct kioctx, users);
618 struct aio_kiocb *req;
620 spin_lock_irq(&ctx->ctx_lock);
622 while (!list_empty(&ctx->active_reqs)) {
623 req = list_first_entry(&ctx->active_reqs,
624 struct aio_kiocb, ki_list);
625 req->ki_cancel(&req->rw);
626 list_del_init(&req->ki_list);
629 spin_unlock_irq(&ctx->ctx_lock);
631 percpu_ref_kill(&ctx->reqs);
632 percpu_ref_put(&ctx->reqs);
635 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
637 unsigned i, new_nr;
638 struct kioctx_table *table, *old;
639 struct aio_ring *ring;
641 spin_lock(&mm->ioctx_lock);
642 table = rcu_dereference_raw(mm->ioctx_table);
644 while (1) {
645 if (table)
646 for (i = 0; i < table->nr; i++)
647 if (!rcu_access_pointer(table->table[i])) {
648 ctx->id = i;
649 rcu_assign_pointer(table->table[i], ctx);
650 spin_unlock(&mm->ioctx_lock);
652 /* While kioctx setup is in progress,
653 * we are protected from page migration
654 * changes ring_pages by ->ring_lock.
656 ring = kmap_atomic(ctx->ring_pages[0]);
657 ring->id = ctx->id;
658 kunmap_atomic(ring);
659 return 0;
662 new_nr = (table ? table->nr : 1) * 4;
663 spin_unlock(&mm->ioctx_lock);
665 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
666 new_nr, GFP_KERNEL);
667 if (!table)
668 return -ENOMEM;
670 table->nr = new_nr;
672 spin_lock(&mm->ioctx_lock);
673 old = rcu_dereference_raw(mm->ioctx_table);
675 if (!old) {
676 rcu_assign_pointer(mm->ioctx_table, table);
677 } else if (table->nr > old->nr) {
678 memcpy(table->table, old->table,
679 old->nr * sizeof(struct kioctx *));
681 rcu_assign_pointer(mm->ioctx_table, table);
682 kfree_rcu(old, rcu);
683 } else {
684 kfree(table);
685 table = old;
690 static void aio_nr_sub(unsigned nr)
692 spin_lock(&aio_nr_lock);
693 if (WARN_ON(aio_nr - nr > aio_nr))
694 aio_nr = 0;
695 else
696 aio_nr -= nr;
697 spin_unlock(&aio_nr_lock);
700 /* ioctx_alloc
701 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
703 static struct kioctx *ioctx_alloc(unsigned nr_events)
705 struct mm_struct *mm = current->mm;
706 struct kioctx *ctx;
707 int err = -ENOMEM;
710 * Store the original nr_events -- what userspace passed to io_setup(),
711 * for counting against the global limit -- before it changes.
713 unsigned int max_reqs = nr_events;
716 * We keep track of the number of available ringbuffer slots, to prevent
717 * overflow (reqs_available), and we also use percpu counters for this.
719 * So since up to half the slots might be on other cpu's percpu counters
720 * and unavailable, double nr_events so userspace sees what they
721 * expected: additionally, we move req_batch slots to/from percpu
722 * counters at a time, so make sure that isn't 0:
724 nr_events = max(nr_events, num_possible_cpus() * 4);
725 nr_events *= 2;
727 /* Prevent overflows */
728 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
729 pr_debug("ENOMEM: nr_events too high\n");
730 return ERR_PTR(-EINVAL);
733 if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
734 return ERR_PTR(-EAGAIN);
736 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
737 if (!ctx)
738 return ERR_PTR(-ENOMEM);
740 ctx->max_reqs = max_reqs;
742 spin_lock_init(&ctx->ctx_lock);
743 spin_lock_init(&ctx->completion_lock);
744 mutex_init(&ctx->ring_lock);
745 /* Protect against page migration throughout kiotx setup by keeping
746 * the ring_lock mutex held until setup is complete. */
747 mutex_lock(&ctx->ring_lock);
748 init_waitqueue_head(&ctx->wait);
750 INIT_LIST_HEAD(&ctx->active_reqs);
752 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
753 goto err;
755 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
756 goto err;
758 ctx->cpu = alloc_percpu(struct kioctx_cpu);
759 if (!ctx->cpu)
760 goto err;
762 err = aio_setup_ring(ctx, nr_events);
763 if (err < 0)
764 goto err;
766 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
767 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
768 if (ctx->req_batch < 1)
769 ctx->req_batch = 1;
771 /* limit the number of system wide aios */
772 spin_lock(&aio_nr_lock);
773 if (aio_nr + ctx->max_reqs > aio_max_nr ||
774 aio_nr + ctx->max_reqs < aio_nr) {
775 spin_unlock(&aio_nr_lock);
776 err = -EAGAIN;
777 goto err_ctx;
779 aio_nr += ctx->max_reqs;
780 spin_unlock(&aio_nr_lock);
782 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
783 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
785 err = ioctx_add_table(ctx, mm);
786 if (err)
787 goto err_cleanup;
789 /* Release the ring_lock mutex now that all setup is complete. */
790 mutex_unlock(&ctx->ring_lock);
792 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
793 ctx, ctx->user_id, mm, ctx->nr_events);
794 return ctx;
796 err_cleanup:
797 aio_nr_sub(ctx->max_reqs);
798 err_ctx:
799 atomic_set(&ctx->dead, 1);
800 if (ctx->mmap_size)
801 vm_munmap(ctx->mmap_base, ctx->mmap_size);
802 aio_free_ring(ctx);
803 err:
804 mutex_unlock(&ctx->ring_lock);
805 free_percpu(ctx->cpu);
806 percpu_ref_exit(&ctx->reqs);
807 percpu_ref_exit(&ctx->users);
808 kmem_cache_free(kioctx_cachep, ctx);
809 pr_debug("error allocating ioctx %d\n", err);
810 return ERR_PTR(err);
813 /* kill_ioctx
814 * Cancels all outstanding aio requests on an aio context. Used
815 * when the processes owning a context have all exited to encourage
816 * the rapid destruction of the kioctx.
818 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
819 struct ctx_rq_wait *wait)
821 struct kioctx_table *table;
823 spin_lock(&mm->ioctx_lock);
824 if (atomic_xchg(&ctx->dead, 1)) {
825 spin_unlock(&mm->ioctx_lock);
826 return -EINVAL;
829 table = rcu_dereference_raw(mm->ioctx_table);
830 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
831 RCU_INIT_POINTER(table->table[ctx->id], NULL);
832 spin_unlock(&mm->ioctx_lock);
834 /* free_ioctx_reqs() will do the necessary RCU synchronization */
835 wake_up_all(&ctx->wait);
838 * It'd be more correct to do this in free_ioctx(), after all
839 * the outstanding kiocbs have finished - but by then io_destroy
840 * has already returned, so io_setup() could potentially return
841 * -EAGAIN with no ioctxs actually in use (as far as userspace
842 * could tell).
844 aio_nr_sub(ctx->max_reqs);
846 if (ctx->mmap_size)
847 vm_munmap(ctx->mmap_base, ctx->mmap_size);
849 ctx->rq_wait = wait;
850 percpu_ref_kill(&ctx->users);
851 return 0;
855 * exit_aio: called when the last user of mm goes away. At this point, there is
856 * no way for any new requests to be submited or any of the io_* syscalls to be
857 * called on the context.
859 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
860 * them.
862 void exit_aio(struct mm_struct *mm)
864 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
865 struct ctx_rq_wait wait;
866 int i, skipped;
868 if (!table)
869 return;
871 atomic_set(&wait.count, table->nr);
872 init_completion(&wait.comp);
874 skipped = 0;
875 for (i = 0; i < table->nr; ++i) {
876 struct kioctx *ctx =
877 rcu_dereference_protected(table->table[i], true);
879 if (!ctx) {
880 skipped++;
881 continue;
885 * We don't need to bother with munmap() here - exit_mmap(mm)
886 * is coming and it'll unmap everything. And we simply can't,
887 * this is not necessarily our ->mm.
888 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
889 * that it needs to unmap the area, just set it to 0.
891 ctx->mmap_size = 0;
892 kill_ioctx(mm, ctx, &wait);
895 if (!atomic_sub_and_test(skipped, &wait.count)) {
896 /* Wait until all IO for the context are done. */
897 wait_for_completion(&wait.comp);
900 RCU_INIT_POINTER(mm->ioctx_table, NULL);
901 kfree(table);
904 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
906 struct kioctx_cpu *kcpu;
907 unsigned long flags;
909 local_irq_save(flags);
910 kcpu = this_cpu_ptr(ctx->cpu);
911 kcpu->reqs_available += nr;
913 while (kcpu->reqs_available >= ctx->req_batch * 2) {
914 kcpu->reqs_available -= ctx->req_batch;
915 atomic_add(ctx->req_batch, &ctx->reqs_available);
918 local_irq_restore(flags);
921 static bool __get_reqs_available(struct kioctx *ctx)
923 struct kioctx_cpu *kcpu;
924 bool ret = false;
925 unsigned long flags;
927 local_irq_save(flags);
928 kcpu = this_cpu_ptr(ctx->cpu);
929 if (!kcpu->reqs_available) {
930 int old, avail = atomic_read(&ctx->reqs_available);
932 do {
933 if (avail < ctx->req_batch)
934 goto out;
936 old = avail;
937 avail = atomic_cmpxchg(&ctx->reqs_available,
938 avail, avail - ctx->req_batch);
939 } while (avail != old);
941 kcpu->reqs_available += ctx->req_batch;
944 ret = true;
945 kcpu->reqs_available--;
946 out:
947 local_irq_restore(flags);
948 return ret;
951 /* refill_reqs_available
952 * Updates the reqs_available reference counts used for tracking the
953 * number of free slots in the completion ring. This can be called
954 * from aio_complete() (to optimistically update reqs_available) or
955 * from aio_get_req() (the we're out of events case). It must be
956 * called holding ctx->completion_lock.
958 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
959 unsigned tail)
961 unsigned events_in_ring, completed;
963 /* Clamp head since userland can write to it. */
964 head %= ctx->nr_events;
965 if (head <= tail)
966 events_in_ring = tail - head;
967 else
968 events_in_ring = ctx->nr_events - (head - tail);
970 completed = ctx->completed_events;
971 if (events_in_ring < completed)
972 completed -= events_in_ring;
973 else
974 completed = 0;
976 if (!completed)
977 return;
979 ctx->completed_events -= completed;
980 put_reqs_available(ctx, completed);
983 /* user_refill_reqs_available
984 * Called to refill reqs_available when aio_get_req() encounters an
985 * out of space in the completion ring.
987 static void user_refill_reqs_available(struct kioctx *ctx)
989 spin_lock_irq(&ctx->completion_lock);
990 if (ctx->completed_events) {
991 struct aio_ring *ring;
992 unsigned head;
994 /* Access of ring->head may race with aio_read_events_ring()
995 * here, but that's okay since whether we read the old version
996 * or the new version, and either will be valid. The important
997 * part is that head cannot pass tail since we prevent
998 * aio_complete() from updating tail by holding
999 * ctx->completion_lock. Even if head is invalid, the check
1000 * against ctx->completed_events below will make sure we do the
1001 * safe/right thing.
1003 ring = kmap_atomic(ctx->ring_pages[0]);
1004 head = ring->head;
1005 kunmap_atomic(ring);
1007 refill_reqs_available(ctx, head, ctx->tail);
1010 spin_unlock_irq(&ctx->completion_lock);
1013 static bool get_reqs_available(struct kioctx *ctx)
1015 if (__get_reqs_available(ctx))
1016 return true;
1017 user_refill_reqs_available(ctx);
1018 return __get_reqs_available(ctx);
1021 /* aio_get_req
1022 * Allocate a slot for an aio request.
1023 * Returns NULL if no requests are free.
1025 * The refcount is initialized to 2 - one for the async op completion,
1026 * one for the synchronous code that does this.
1028 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1030 struct aio_kiocb *req;
1032 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1033 if (unlikely(!req))
1034 return NULL;
1036 if (unlikely(!get_reqs_available(ctx))) {
1037 kmem_cache_free(kiocb_cachep, req);
1038 return NULL;
1041 percpu_ref_get(&ctx->reqs);
1042 req->ki_ctx = ctx;
1043 INIT_LIST_HEAD(&req->ki_list);
1044 refcount_set(&req->ki_refcnt, 2);
1045 req->ki_eventfd = NULL;
1046 return req;
1049 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1051 struct aio_ring __user *ring = (void __user *)ctx_id;
1052 struct mm_struct *mm = current->mm;
1053 struct kioctx *ctx, *ret = NULL;
1054 struct kioctx_table *table;
1055 unsigned id;
1057 if (get_user(id, &ring->id))
1058 return NULL;
1060 rcu_read_lock();
1061 table = rcu_dereference(mm->ioctx_table);
1063 if (!table || id >= table->nr)
1064 goto out;
1066 id = array_index_nospec(id, table->nr);
1067 ctx = rcu_dereference(table->table[id]);
1068 if (ctx && ctx->user_id == ctx_id) {
1069 if (percpu_ref_tryget_live(&ctx->users))
1070 ret = ctx;
1072 out:
1073 rcu_read_unlock();
1074 return ret;
1077 static inline void iocb_destroy(struct aio_kiocb *iocb)
1079 if (iocb->ki_eventfd)
1080 eventfd_ctx_put(iocb->ki_eventfd);
1081 if (iocb->ki_filp)
1082 fput(iocb->ki_filp);
1083 percpu_ref_put(&iocb->ki_ctx->reqs);
1084 kmem_cache_free(kiocb_cachep, iocb);
1087 /* aio_complete
1088 * Called when the io request on the given iocb is complete.
1090 static void aio_complete(struct aio_kiocb *iocb)
1092 struct kioctx *ctx = iocb->ki_ctx;
1093 struct aio_ring *ring;
1094 struct io_event *ev_page, *event;
1095 unsigned tail, pos, head;
1096 unsigned long flags;
1099 * Add a completion event to the ring buffer. Must be done holding
1100 * ctx->completion_lock to prevent other code from messing with the tail
1101 * pointer since we might be called from irq context.
1103 spin_lock_irqsave(&ctx->completion_lock, flags);
1105 tail = ctx->tail;
1106 pos = tail + AIO_EVENTS_OFFSET;
1108 if (++tail >= ctx->nr_events)
1109 tail = 0;
1111 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1112 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1114 *event = iocb->ki_res;
1116 kunmap_atomic(ev_page);
1117 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1119 pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1120 (void __user *)(unsigned long)iocb->ki_res.obj,
1121 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1123 /* after flagging the request as done, we
1124 * must never even look at it again
1126 smp_wmb(); /* make event visible before updating tail */
1128 ctx->tail = tail;
1130 ring = kmap_atomic(ctx->ring_pages[0]);
1131 head = ring->head;
1132 ring->tail = tail;
1133 kunmap_atomic(ring);
1134 flush_dcache_page(ctx->ring_pages[0]);
1136 ctx->completed_events++;
1137 if (ctx->completed_events > 1)
1138 refill_reqs_available(ctx, head, tail);
1139 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1141 pr_debug("added to ring %p at [%u]\n", iocb, tail);
1144 * Check if the user asked us to deliver the result through an
1145 * eventfd. The eventfd_signal() function is safe to be called
1146 * from IRQ context.
1148 if (iocb->ki_eventfd)
1149 eventfd_signal(iocb->ki_eventfd, 1);
1152 * We have to order our ring_info tail store above and test
1153 * of the wait list below outside the wait lock. This is
1154 * like in wake_up_bit() where clearing a bit has to be
1155 * ordered with the unlocked test.
1157 smp_mb();
1159 if (waitqueue_active(&ctx->wait))
1160 wake_up(&ctx->wait);
1163 static inline void iocb_put(struct aio_kiocb *iocb)
1165 if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1166 aio_complete(iocb);
1167 iocb_destroy(iocb);
1171 /* aio_read_events_ring
1172 * Pull an event off of the ioctx's event ring. Returns the number of
1173 * events fetched
1175 static long aio_read_events_ring(struct kioctx *ctx,
1176 struct io_event __user *event, long nr)
1178 struct aio_ring *ring;
1179 unsigned head, tail, pos;
1180 long ret = 0;
1181 int copy_ret;
1184 * The mutex can block and wake us up and that will cause
1185 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1186 * and repeat. This should be rare enough that it doesn't cause
1187 * peformance issues. See the comment in read_events() for more detail.
1189 sched_annotate_sleep();
1190 mutex_lock(&ctx->ring_lock);
1192 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1193 ring = kmap_atomic(ctx->ring_pages[0]);
1194 head = ring->head;
1195 tail = ring->tail;
1196 kunmap_atomic(ring);
1199 * Ensure that once we've read the current tail pointer, that
1200 * we also see the events that were stored up to the tail.
1202 smp_rmb();
1204 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1206 if (head == tail)
1207 goto out;
1209 head %= ctx->nr_events;
1210 tail %= ctx->nr_events;
1212 while (ret < nr) {
1213 long avail;
1214 struct io_event *ev;
1215 struct page *page;
1217 avail = (head <= tail ? tail : ctx->nr_events) - head;
1218 if (head == tail)
1219 break;
1221 pos = head + AIO_EVENTS_OFFSET;
1222 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1223 pos %= AIO_EVENTS_PER_PAGE;
1225 avail = min(avail, nr - ret);
1226 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1228 ev = kmap(page);
1229 copy_ret = copy_to_user(event + ret, ev + pos,
1230 sizeof(*ev) * avail);
1231 kunmap(page);
1233 if (unlikely(copy_ret)) {
1234 ret = -EFAULT;
1235 goto out;
1238 ret += avail;
1239 head += avail;
1240 head %= ctx->nr_events;
1243 ring = kmap_atomic(ctx->ring_pages[0]);
1244 ring->head = head;
1245 kunmap_atomic(ring);
1246 flush_dcache_page(ctx->ring_pages[0]);
1248 pr_debug("%li h%u t%u\n", ret, head, tail);
1249 out:
1250 mutex_unlock(&ctx->ring_lock);
1252 return ret;
1255 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1256 struct io_event __user *event, long *i)
1258 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1260 if (ret > 0)
1261 *i += ret;
1263 if (unlikely(atomic_read(&ctx->dead)))
1264 ret = -EINVAL;
1266 if (!*i)
1267 *i = ret;
1269 return ret < 0 || *i >= min_nr;
1272 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1273 struct io_event __user *event,
1274 ktime_t until)
1276 long ret = 0;
1279 * Note that aio_read_events() is being called as the conditional - i.e.
1280 * we're calling it after prepare_to_wait() has set task state to
1281 * TASK_INTERRUPTIBLE.
1283 * But aio_read_events() can block, and if it blocks it's going to flip
1284 * the task state back to TASK_RUNNING.
1286 * This should be ok, provided it doesn't flip the state back to
1287 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1288 * will only happen if the mutex_lock() call blocks, and we then find
1289 * the ringbuffer empty. So in practice we should be ok, but it's
1290 * something to be aware of when touching this code.
1292 if (until == 0)
1293 aio_read_events(ctx, min_nr, nr, event, &ret);
1294 else
1295 wait_event_interruptible_hrtimeout(ctx->wait,
1296 aio_read_events(ctx, min_nr, nr, event, &ret),
1297 until);
1298 return ret;
1301 /* sys_io_setup:
1302 * Create an aio_context capable of receiving at least nr_events.
1303 * ctxp must not point to an aio_context that already exists, and
1304 * must be initialized to 0 prior to the call. On successful
1305 * creation of the aio_context, *ctxp is filled in with the resulting
1306 * handle. May fail with -EINVAL if *ctxp is not initialized,
1307 * if the specified nr_events exceeds internal limits. May fail
1308 * with -EAGAIN if the specified nr_events exceeds the user's limit
1309 * of available events. May fail with -ENOMEM if insufficient kernel
1310 * resources are available. May fail with -EFAULT if an invalid
1311 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1312 * implemented.
1314 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1316 struct kioctx *ioctx = NULL;
1317 unsigned long ctx;
1318 long ret;
1320 ret = get_user(ctx, ctxp);
1321 if (unlikely(ret))
1322 goto out;
1324 ret = -EINVAL;
1325 if (unlikely(ctx || nr_events == 0)) {
1326 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1327 ctx, nr_events);
1328 goto out;
1331 ioctx = ioctx_alloc(nr_events);
1332 ret = PTR_ERR(ioctx);
1333 if (!IS_ERR(ioctx)) {
1334 ret = put_user(ioctx->user_id, ctxp);
1335 if (ret)
1336 kill_ioctx(current->mm, ioctx, NULL);
1337 percpu_ref_put(&ioctx->users);
1340 out:
1341 return ret;
1344 #ifdef CONFIG_COMPAT
1345 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1347 struct kioctx *ioctx = NULL;
1348 unsigned long ctx;
1349 long ret;
1351 ret = get_user(ctx, ctx32p);
1352 if (unlikely(ret))
1353 goto out;
1355 ret = -EINVAL;
1356 if (unlikely(ctx || nr_events == 0)) {
1357 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1358 ctx, nr_events);
1359 goto out;
1362 ioctx = ioctx_alloc(nr_events);
1363 ret = PTR_ERR(ioctx);
1364 if (!IS_ERR(ioctx)) {
1365 /* truncating is ok because it's a user address */
1366 ret = put_user((u32)ioctx->user_id, ctx32p);
1367 if (ret)
1368 kill_ioctx(current->mm, ioctx, NULL);
1369 percpu_ref_put(&ioctx->users);
1372 out:
1373 return ret;
1375 #endif
1377 /* sys_io_destroy:
1378 * Destroy the aio_context specified. May cancel any outstanding
1379 * AIOs and block on completion. Will fail with -ENOSYS if not
1380 * implemented. May fail with -EINVAL if the context pointed to
1381 * is invalid.
1383 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1385 struct kioctx *ioctx = lookup_ioctx(ctx);
1386 if (likely(NULL != ioctx)) {
1387 struct ctx_rq_wait wait;
1388 int ret;
1390 init_completion(&wait.comp);
1391 atomic_set(&wait.count, 1);
1393 /* Pass requests_done to kill_ioctx() where it can be set
1394 * in a thread-safe way. If we try to set it here then we have
1395 * a race condition if two io_destroy() called simultaneously.
1397 ret = kill_ioctx(current->mm, ioctx, &wait);
1398 percpu_ref_put(&ioctx->users);
1400 /* Wait until all IO for the context are done. Otherwise kernel
1401 * keep using user-space buffers even if user thinks the context
1402 * is destroyed.
1404 if (!ret)
1405 wait_for_completion(&wait.comp);
1407 return ret;
1409 pr_debug("EINVAL: invalid context id\n");
1410 return -EINVAL;
1413 static void aio_remove_iocb(struct aio_kiocb *iocb)
1415 struct kioctx *ctx = iocb->ki_ctx;
1416 unsigned long flags;
1418 spin_lock_irqsave(&ctx->ctx_lock, flags);
1419 list_del(&iocb->ki_list);
1420 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1423 static void aio_complete_rw(struct kiocb *kiocb, long res, long res2)
1425 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1427 if (!list_empty_careful(&iocb->ki_list))
1428 aio_remove_iocb(iocb);
1430 if (kiocb->ki_flags & IOCB_WRITE) {
1431 struct inode *inode = file_inode(kiocb->ki_filp);
1434 * Tell lockdep we inherited freeze protection from submission
1435 * thread.
1437 if (S_ISREG(inode->i_mode))
1438 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1439 file_end_write(kiocb->ki_filp);
1442 iocb->ki_res.res = res;
1443 iocb->ki_res.res2 = res2;
1444 iocb_put(iocb);
1447 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
1449 int ret;
1451 req->ki_complete = aio_complete_rw;
1452 req->private = NULL;
1453 req->ki_pos = iocb->aio_offset;
1454 req->ki_flags = iocb_flags(req->ki_filp);
1455 if (iocb->aio_flags & IOCB_FLAG_RESFD)
1456 req->ki_flags |= IOCB_EVENTFD;
1457 req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
1458 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1460 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1461 * aio_reqprio is interpreted as an I/O scheduling
1462 * class and priority.
1464 ret = ioprio_check_cap(iocb->aio_reqprio);
1465 if (ret) {
1466 pr_debug("aio ioprio check cap error: %d\n", ret);
1467 return ret;
1470 req->ki_ioprio = iocb->aio_reqprio;
1471 } else
1472 req->ki_ioprio = get_current_ioprio();
1474 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1475 if (unlikely(ret))
1476 return ret;
1478 req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1479 return 0;
1482 static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1483 struct iovec **iovec, bool vectored, bool compat,
1484 struct iov_iter *iter)
1486 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1487 size_t len = iocb->aio_nbytes;
1489 if (!vectored) {
1490 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1491 *iovec = NULL;
1492 return ret;
1495 return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat);
1498 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1500 switch (ret) {
1501 case -EIOCBQUEUED:
1502 break;
1503 case -ERESTARTSYS:
1504 case -ERESTARTNOINTR:
1505 case -ERESTARTNOHAND:
1506 case -ERESTART_RESTARTBLOCK:
1508 * There's no easy way to restart the syscall since other AIO's
1509 * may be already running. Just fail this IO with EINTR.
1511 ret = -EINTR;
1512 fallthrough;
1513 default:
1514 req->ki_complete(req, ret, 0);
1518 static int aio_read(struct kiocb *req, const struct iocb *iocb,
1519 bool vectored, bool compat)
1521 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1522 struct iov_iter iter;
1523 struct file *file;
1524 int ret;
1526 ret = aio_prep_rw(req, iocb);
1527 if (ret)
1528 return ret;
1529 file = req->ki_filp;
1530 if (unlikely(!(file->f_mode & FMODE_READ)))
1531 return -EBADF;
1532 ret = -EINVAL;
1533 if (unlikely(!file->f_op->read_iter))
1534 return -EINVAL;
1536 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1537 if (ret < 0)
1538 return ret;
1539 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1540 if (!ret)
1541 aio_rw_done(req, call_read_iter(file, req, &iter));
1542 kfree(iovec);
1543 return ret;
1546 static int aio_write(struct kiocb *req, const struct iocb *iocb,
1547 bool vectored, bool compat)
1549 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1550 struct iov_iter iter;
1551 struct file *file;
1552 int ret;
1554 ret = aio_prep_rw(req, iocb);
1555 if (ret)
1556 return ret;
1557 file = req->ki_filp;
1559 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1560 return -EBADF;
1561 if (unlikely(!file->f_op->write_iter))
1562 return -EINVAL;
1564 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1565 if (ret < 0)
1566 return ret;
1567 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1568 if (!ret) {
1570 * Open-code file_start_write here to grab freeze protection,
1571 * which will be released by another thread in
1572 * aio_complete_rw(). Fool lockdep by telling it the lock got
1573 * released so that it doesn't complain about the held lock when
1574 * we return to userspace.
1576 if (S_ISREG(file_inode(file)->i_mode)) {
1577 sb_start_write(file_inode(file)->i_sb);
1578 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1580 req->ki_flags |= IOCB_WRITE;
1581 aio_rw_done(req, call_write_iter(file, req, &iter));
1583 kfree(iovec);
1584 return ret;
1587 static void aio_fsync_work(struct work_struct *work)
1589 struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
1590 const struct cred *old_cred = override_creds(iocb->fsync.creds);
1592 iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
1593 revert_creds(old_cred);
1594 put_cred(iocb->fsync.creds);
1595 iocb_put(iocb);
1598 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1599 bool datasync)
1601 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1602 iocb->aio_rw_flags))
1603 return -EINVAL;
1605 if (unlikely(!req->file->f_op->fsync))
1606 return -EINVAL;
1608 req->creds = prepare_creds();
1609 if (!req->creds)
1610 return -ENOMEM;
1612 req->datasync = datasync;
1613 INIT_WORK(&req->work, aio_fsync_work);
1614 schedule_work(&req->work);
1615 return 0;
1618 static void aio_poll_put_work(struct work_struct *work)
1620 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1621 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1623 iocb_put(iocb);
1626 static void aio_poll_complete_work(struct work_struct *work)
1628 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1629 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1630 struct poll_table_struct pt = { ._key = req->events };
1631 struct kioctx *ctx = iocb->ki_ctx;
1632 __poll_t mask = 0;
1634 if (!READ_ONCE(req->cancelled))
1635 mask = vfs_poll(req->file, &pt) & req->events;
1638 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1639 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1640 * synchronize with them. In the cancellation case the list_del_init
1641 * itself is not actually needed, but harmless so we keep it in to
1642 * avoid further branches in the fast path.
1644 spin_lock_irq(&ctx->ctx_lock);
1645 if (!mask && !READ_ONCE(req->cancelled)) {
1646 add_wait_queue(req->head, &req->wait);
1647 spin_unlock_irq(&ctx->ctx_lock);
1648 return;
1650 list_del_init(&iocb->ki_list);
1651 iocb->ki_res.res = mangle_poll(mask);
1652 req->done = true;
1653 spin_unlock_irq(&ctx->ctx_lock);
1655 iocb_put(iocb);
1658 /* assumes we are called with irqs disabled */
1659 static int aio_poll_cancel(struct kiocb *iocb)
1661 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1662 struct poll_iocb *req = &aiocb->poll;
1664 spin_lock(&req->head->lock);
1665 WRITE_ONCE(req->cancelled, true);
1666 if (!list_empty(&req->wait.entry)) {
1667 list_del_init(&req->wait.entry);
1668 schedule_work(&aiocb->poll.work);
1670 spin_unlock(&req->head->lock);
1672 return 0;
1675 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1676 void *key)
1678 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1679 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1680 __poll_t mask = key_to_poll(key);
1681 unsigned long flags;
1683 /* for instances that support it check for an event match first: */
1684 if (mask && !(mask & req->events))
1685 return 0;
1687 list_del_init(&req->wait.entry);
1689 if (mask && spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
1690 struct kioctx *ctx = iocb->ki_ctx;
1693 * Try to complete the iocb inline if we can. Use
1694 * irqsave/irqrestore because not all filesystems (e.g. fuse)
1695 * call this function with IRQs disabled and because IRQs
1696 * have to be disabled before ctx_lock is obtained.
1698 list_del(&iocb->ki_list);
1699 iocb->ki_res.res = mangle_poll(mask);
1700 req->done = true;
1701 if (iocb->ki_eventfd && eventfd_signal_count()) {
1702 iocb = NULL;
1703 INIT_WORK(&req->work, aio_poll_put_work);
1704 schedule_work(&req->work);
1706 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1707 if (iocb)
1708 iocb_put(iocb);
1709 } else {
1710 schedule_work(&req->work);
1712 return 1;
1715 struct aio_poll_table {
1716 struct poll_table_struct pt;
1717 struct aio_kiocb *iocb;
1718 int error;
1721 static void
1722 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1723 struct poll_table_struct *p)
1725 struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1727 /* multiple wait queues per file are not supported */
1728 if (unlikely(pt->iocb->poll.head)) {
1729 pt->error = -EINVAL;
1730 return;
1733 pt->error = 0;
1734 pt->iocb->poll.head = head;
1735 add_wait_queue(head, &pt->iocb->poll.wait);
1738 static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
1740 struct kioctx *ctx = aiocb->ki_ctx;
1741 struct poll_iocb *req = &aiocb->poll;
1742 struct aio_poll_table apt;
1743 bool cancel = false;
1744 __poll_t mask;
1746 /* reject any unknown events outside the normal event mask. */
1747 if ((u16)iocb->aio_buf != iocb->aio_buf)
1748 return -EINVAL;
1749 /* reject fields that are not defined for poll */
1750 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1751 return -EINVAL;
1753 INIT_WORK(&req->work, aio_poll_complete_work);
1754 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1756 req->head = NULL;
1757 req->done = false;
1758 req->cancelled = false;
1760 apt.pt._qproc = aio_poll_queue_proc;
1761 apt.pt._key = req->events;
1762 apt.iocb = aiocb;
1763 apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1765 /* initialized the list so that we can do list_empty checks */
1766 INIT_LIST_HEAD(&req->wait.entry);
1767 init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1769 mask = vfs_poll(req->file, &apt.pt) & req->events;
1770 spin_lock_irq(&ctx->ctx_lock);
1771 if (likely(req->head)) {
1772 spin_lock(&req->head->lock);
1773 if (unlikely(list_empty(&req->wait.entry))) {
1774 if (apt.error)
1775 cancel = true;
1776 apt.error = 0;
1777 mask = 0;
1779 if (mask || apt.error) {
1780 list_del_init(&req->wait.entry);
1781 } else if (cancel) {
1782 WRITE_ONCE(req->cancelled, true);
1783 } else if (!req->done) { /* actually waiting for an event */
1784 list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1785 aiocb->ki_cancel = aio_poll_cancel;
1787 spin_unlock(&req->head->lock);
1789 if (mask) { /* no async, we'd stolen it */
1790 aiocb->ki_res.res = mangle_poll(mask);
1791 apt.error = 0;
1793 spin_unlock_irq(&ctx->ctx_lock);
1794 if (mask)
1795 iocb_put(aiocb);
1796 return apt.error;
1799 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1800 struct iocb __user *user_iocb, struct aio_kiocb *req,
1801 bool compat)
1803 req->ki_filp = fget(iocb->aio_fildes);
1804 if (unlikely(!req->ki_filp))
1805 return -EBADF;
1807 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1808 struct eventfd_ctx *eventfd;
1810 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1811 * instance of the file* now. The file descriptor must be
1812 * an eventfd() fd, and will be signaled for each completed
1813 * event using the eventfd_signal() function.
1815 eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
1816 if (IS_ERR(eventfd))
1817 return PTR_ERR(eventfd);
1819 req->ki_eventfd = eventfd;
1822 if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
1823 pr_debug("EFAULT: aio_key\n");
1824 return -EFAULT;
1827 req->ki_res.obj = (u64)(unsigned long)user_iocb;
1828 req->ki_res.data = iocb->aio_data;
1829 req->ki_res.res = 0;
1830 req->ki_res.res2 = 0;
1832 switch (iocb->aio_lio_opcode) {
1833 case IOCB_CMD_PREAD:
1834 return aio_read(&req->rw, iocb, false, compat);
1835 case IOCB_CMD_PWRITE:
1836 return aio_write(&req->rw, iocb, false, compat);
1837 case IOCB_CMD_PREADV:
1838 return aio_read(&req->rw, iocb, true, compat);
1839 case IOCB_CMD_PWRITEV:
1840 return aio_write(&req->rw, iocb, true, compat);
1841 case IOCB_CMD_FSYNC:
1842 return aio_fsync(&req->fsync, iocb, false);
1843 case IOCB_CMD_FDSYNC:
1844 return aio_fsync(&req->fsync, iocb, true);
1845 case IOCB_CMD_POLL:
1846 return aio_poll(req, iocb);
1847 default:
1848 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1849 return -EINVAL;
1853 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1854 bool compat)
1856 struct aio_kiocb *req;
1857 struct iocb iocb;
1858 int err;
1860 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1861 return -EFAULT;
1863 /* enforce forwards compatibility on users */
1864 if (unlikely(iocb.aio_reserved2)) {
1865 pr_debug("EINVAL: reserve field set\n");
1866 return -EINVAL;
1869 /* prevent overflows */
1870 if (unlikely(
1871 (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
1872 (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
1873 ((ssize_t)iocb.aio_nbytes < 0)
1874 )) {
1875 pr_debug("EINVAL: overflow check\n");
1876 return -EINVAL;
1879 req = aio_get_req(ctx);
1880 if (unlikely(!req))
1881 return -EAGAIN;
1883 err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
1885 /* Done with the synchronous reference */
1886 iocb_put(req);
1889 * If err is 0, we'd either done aio_complete() ourselves or have
1890 * arranged for that to be done asynchronously. Anything non-zero
1891 * means that we need to destroy req ourselves.
1893 if (unlikely(err)) {
1894 iocb_destroy(req);
1895 put_reqs_available(ctx, 1);
1897 return err;
1900 /* sys_io_submit:
1901 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1902 * the number of iocbs queued. May return -EINVAL if the aio_context
1903 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1904 * *iocbpp[0] is not properly initialized, if the operation specified
1905 * is invalid for the file descriptor in the iocb. May fail with
1906 * -EFAULT if any of the data structures point to invalid data. May
1907 * fail with -EBADF if the file descriptor specified in the first
1908 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1909 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1910 * fail with -ENOSYS if not implemented.
1912 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1913 struct iocb __user * __user *, iocbpp)
1915 struct kioctx *ctx;
1916 long ret = 0;
1917 int i = 0;
1918 struct blk_plug plug;
1920 if (unlikely(nr < 0))
1921 return -EINVAL;
1923 ctx = lookup_ioctx(ctx_id);
1924 if (unlikely(!ctx)) {
1925 pr_debug("EINVAL: invalid context id\n");
1926 return -EINVAL;
1929 if (nr > ctx->nr_events)
1930 nr = ctx->nr_events;
1932 if (nr > AIO_PLUG_THRESHOLD)
1933 blk_start_plug(&plug);
1934 for (i = 0; i < nr; i++) {
1935 struct iocb __user *user_iocb;
1937 if (unlikely(get_user(user_iocb, iocbpp + i))) {
1938 ret = -EFAULT;
1939 break;
1942 ret = io_submit_one(ctx, user_iocb, false);
1943 if (ret)
1944 break;
1946 if (nr > AIO_PLUG_THRESHOLD)
1947 blk_finish_plug(&plug);
1949 percpu_ref_put(&ctx->users);
1950 return i ? i : ret;
1953 #ifdef CONFIG_COMPAT
1954 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
1955 int, nr, compat_uptr_t __user *, iocbpp)
1957 struct kioctx *ctx;
1958 long ret = 0;
1959 int i = 0;
1960 struct blk_plug plug;
1962 if (unlikely(nr < 0))
1963 return -EINVAL;
1965 ctx = lookup_ioctx(ctx_id);
1966 if (unlikely(!ctx)) {
1967 pr_debug("EINVAL: invalid context id\n");
1968 return -EINVAL;
1971 if (nr > ctx->nr_events)
1972 nr = ctx->nr_events;
1974 if (nr > AIO_PLUG_THRESHOLD)
1975 blk_start_plug(&plug);
1976 for (i = 0; i < nr; i++) {
1977 compat_uptr_t user_iocb;
1979 if (unlikely(get_user(user_iocb, iocbpp + i))) {
1980 ret = -EFAULT;
1981 break;
1984 ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
1985 if (ret)
1986 break;
1988 if (nr > AIO_PLUG_THRESHOLD)
1989 blk_finish_plug(&plug);
1991 percpu_ref_put(&ctx->users);
1992 return i ? i : ret;
1994 #endif
1996 /* sys_io_cancel:
1997 * Attempts to cancel an iocb previously passed to io_submit. If
1998 * the operation is successfully cancelled, the resulting event is
1999 * copied into the memory pointed to by result without being placed
2000 * into the completion queue and 0 is returned. May fail with
2001 * -EFAULT if any of the data structures pointed to are invalid.
2002 * May fail with -EINVAL if aio_context specified by ctx_id is
2003 * invalid. May fail with -EAGAIN if the iocb specified was not
2004 * cancelled. Will fail with -ENOSYS if not implemented.
2006 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2007 struct io_event __user *, result)
2009 struct kioctx *ctx;
2010 struct aio_kiocb *kiocb;
2011 int ret = -EINVAL;
2012 u32 key;
2013 u64 obj = (u64)(unsigned long)iocb;
2015 if (unlikely(get_user(key, &iocb->aio_key)))
2016 return -EFAULT;
2017 if (unlikely(key != KIOCB_KEY))
2018 return -EINVAL;
2020 ctx = lookup_ioctx(ctx_id);
2021 if (unlikely(!ctx))
2022 return -EINVAL;
2024 spin_lock_irq(&ctx->ctx_lock);
2025 /* TODO: use a hash or array, this sucks. */
2026 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2027 if (kiocb->ki_res.obj == obj) {
2028 ret = kiocb->ki_cancel(&kiocb->rw);
2029 list_del_init(&kiocb->ki_list);
2030 break;
2033 spin_unlock_irq(&ctx->ctx_lock);
2035 if (!ret) {
2037 * The result argument is no longer used - the io_event is
2038 * always delivered via the ring buffer. -EINPROGRESS indicates
2039 * cancellation is progress:
2041 ret = -EINPROGRESS;
2044 percpu_ref_put(&ctx->users);
2046 return ret;
2049 static long do_io_getevents(aio_context_t ctx_id,
2050 long min_nr,
2051 long nr,
2052 struct io_event __user *events,
2053 struct timespec64 *ts)
2055 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2056 struct kioctx *ioctx = lookup_ioctx(ctx_id);
2057 long ret = -EINVAL;
2059 if (likely(ioctx)) {
2060 if (likely(min_nr <= nr && min_nr >= 0))
2061 ret = read_events(ioctx, min_nr, nr, events, until);
2062 percpu_ref_put(&ioctx->users);
2065 return ret;
2068 /* io_getevents:
2069 * Attempts to read at least min_nr events and up to nr events from
2070 * the completion queue for the aio_context specified by ctx_id. If
2071 * it succeeds, the number of read events is returned. May fail with
2072 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2073 * out of range, if timeout is out of range. May fail with -EFAULT
2074 * if any of the memory specified is invalid. May return 0 or
2075 * < min_nr if the timeout specified by timeout has elapsed
2076 * before sufficient events are available, where timeout == NULL
2077 * specifies an infinite timeout. Note that the timeout pointed to by
2078 * timeout is relative. Will fail with -ENOSYS if not implemented.
2080 #ifdef CONFIG_64BIT
2082 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2083 long, min_nr,
2084 long, nr,
2085 struct io_event __user *, events,
2086 struct __kernel_timespec __user *, timeout)
2088 struct timespec64 ts;
2089 int ret;
2091 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2092 return -EFAULT;
2094 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2095 if (!ret && signal_pending(current))
2096 ret = -EINTR;
2097 return ret;
2100 #endif
2102 struct __aio_sigset {
2103 const sigset_t __user *sigmask;
2104 size_t sigsetsize;
2107 SYSCALL_DEFINE6(io_pgetevents,
2108 aio_context_t, ctx_id,
2109 long, min_nr,
2110 long, nr,
2111 struct io_event __user *, events,
2112 struct __kernel_timespec __user *, timeout,
2113 const struct __aio_sigset __user *, usig)
2115 struct __aio_sigset ksig = { NULL, };
2116 struct timespec64 ts;
2117 bool interrupted;
2118 int ret;
2120 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2121 return -EFAULT;
2123 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2124 return -EFAULT;
2126 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2127 if (ret)
2128 return ret;
2130 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2132 interrupted = signal_pending(current);
2133 restore_saved_sigmask_unless(interrupted);
2134 if (interrupted && !ret)
2135 ret = -ERESTARTNOHAND;
2137 return ret;
2140 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2142 SYSCALL_DEFINE6(io_pgetevents_time32,
2143 aio_context_t, ctx_id,
2144 long, min_nr,
2145 long, nr,
2146 struct io_event __user *, events,
2147 struct old_timespec32 __user *, timeout,
2148 const struct __aio_sigset __user *, usig)
2150 struct __aio_sigset ksig = { NULL, };
2151 struct timespec64 ts;
2152 bool interrupted;
2153 int ret;
2155 if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2156 return -EFAULT;
2158 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2159 return -EFAULT;
2162 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2163 if (ret)
2164 return ret;
2166 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2168 interrupted = signal_pending(current);
2169 restore_saved_sigmask_unless(interrupted);
2170 if (interrupted && !ret)
2171 ret = -ERESTARTNOHAND;
2173 return ret;
2176 #endif
2178 #if defined(CONFIG_COMPAT_32BIT_TIME)
2180 SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2181 __s32, min_nr,
2182 __s32, nr,
2183 struct io_event __user *, events,
2184 struct old_timespec32 __user *, timeout)
2186 struct timespec64 t;
2187 int ret;
2189 if (timeout && get_old_timespec32(&t, timeout))
2190 return -EFAULT;
2192 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2193 if (!ret && signal_pending(current))
2194 ret = -EINTR;
2195 return ret;
2198 #endif
2200 #ifdef CONFIG_COMPAT
2202 struct __compat_aio_sigset {
2203 compat_uptr_t sigmask;
2204 compat_size_t sigsetsize;
2207 #if defined(CONFIG_COMPAT_32BIT_TIME)
2209 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2210 compat_aio_context_t, ctx_id,
2211 compat_long_t, min_nr,
2212 compat_long_t, nr,
2213 struct io_event __user *, events,
2214 struct old_timespec32 __user *, timeout,
2215 const struct __compat_aio_sigset __user *, usig)
2217 struct __compat_aio_sigset ksig = { 0, };
2218 struct timespec64 t;
2219 bool interrupted;
2220 int ret;
2222 if (timeout && get_old_timespec32(&t, timeout))
2223 return -EFAULT;
2225 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2226 return -EFAULT;
2228 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2229 if (ret)
2230 return ret;
2232 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2234 interrupted = signal_pending(current);
2235 restore_saved_sigmask_unless(interrupted);
2236 if (interrupted && !ret)
2237 ret = -ERESTARTNOHAND;
2239 return ret;
2242 #endif
2244 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2245 compat_aio_context_t, ctx_id,
2246 compat_long_t, min_nr,
2247 compat_long_t, nr,
2248 struct io_event __user *, events,
2249 struct __kernel_timespec __user *, timeout,
2250 const struct __compat_aio_sigset __user *, usig)
2252 struct __compat_aio_sigset ksig = { 0, };
2253 struct timespec64 t;
2254 bool interrupted;
2255 int ret;
2257 if (timeout && get_timespec64(&t, timeout))
2258 return -EFAULT;
2260 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2261 return -EFAULT;
2263 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2264 if (ret)
2265 return ret;
2267 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2269 interrupted = signal_pending(current);
2270 restore_saved_sigmask_unless(interrupted);
2271 if (interrupted && !ret)
2272 ret = -ERESTARTNOHAND;
2274 return ret;
2276 #endif