1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2011 STRATO. All rights reserved.
7 #include <linux/rbtree.h>
8 #include <trace/events/btrfs.h>
13 #include "transaction.h"
14 #include "delayed-ref.h"
18 /* Just an arbitrary number so we can be sure this happened */
19 #define BACKREF_FOUND_SHARED 6
21 struct extent_inode_elem
{
24 struct extent_inode_elem
*next
;
27 static int check_extent_in_eb(const struct btrfs_key
*key
,
28 const struct extent_buffer
*eb
,
29 const struct btrfs_file_extent_item
*fi
,
31 struct extent_inode_elem
**eie
,
35 struct extent_inode_elem
*e
;
38 !btrfs_file_extent_compression(eb
, fi
) &&
39 !btrfs_file_extent_encryption(eb
, fi
) &&
40 !btrfs_file_extent_other_encoding(eb
, fi
)) {
44 data_offset
= btrfs_file_extent_offset(eb
, fi
);
45 data_len
= btrfs_file_extent_num_bytes(eb
, fi
);
47 if (extent_item_pos
< data_offset
||
48 extent_item_pos
>= data_offset
+ data_len
)
50 offset
= extent_item_pos
- data_offset
;
53 e
= kmalloc(sizeof(*e
), GFP_NOFS
);
58 e
->inum
= key
->objectid
;
59 e
->offset
= key
->offset
+ offset
;
65 static void free_inode_elem_list(struct extent_inode_elem
*eie
)
67 struct extent_inode_elem
*eie_next
;
69 for (; eie
; eie
= eie_next
) {
75 static int find_extent_in_eb(const struct extent_buffer
*eb
,
76 u64 wanted_disk_byte
, u64 extent_item_pos
,
77 struct extent_inode_elem
**eie
,
82 struct btrfs_file_extent_item
*fi
;
89 * from the shared data ref, we only have the leaf but we need
90 * the key. thus, we must look into all items and see that we
91 * find one (some) with a reference to our extent item.
93 nritems
= btrfs_header_nritems(eb
);
94 for (slot
= 0; slot
< nritems
; ++slot
) {
95 btrfs_item_key_to_cpu(eb
, &key
, slot
);
96 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
98 fi
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
99 extent_type
= btrfs_file_extent_type(eb
, fi
);
100 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
)
102 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
103 disk_byte
= btrfs_file_extent_disk_bytenr(eb
, fi
);
104 if (disk_byte
!= wanted_disk_byte
)
107 ret
= check_extent_in_eb(&key
, eb
, fi
, extent_item_pos
, eie
, ignore_offset
);
116 struct rb_root_cached root
;
120 #define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 }
123 struct preftree direct
; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
124 struct preftree indirect
; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
125 struct preftree indirect_missing_keys
;
129 * Checks for a shared extent during backref search.
131 * The share_count tracks prelim_refs (direct and indirect) having a
133 * - incremented when a ref->count transitions to >0
134 * - decremented when a ref->count transitions to <1
142 static inline int extent_is_shared(struct share_check
*sc
)
144 return (sc
&& sc
->share_count
> 1) ? BACKREF_FOUND_SHARED
: 0;
147 static struct kmem_cache
*btrfs_prelim_ref_cache
;
149 int __init
btrfs_prelim_ref_init(void)
151 btrfs_prelim_ref_cache
= kmem_cache_create("btrfs_prelim_ref",
152 sizeof(struct prelim_ref
),
156 if (!btrfs_prelim_ref_cache
)
161 void __cold
btrfs_prelim_ref_exit(void)
163 kmem_cache_destroy(btrfs_prelim_ref_cache
);
166 static void free_pref(struct prelim_ref
*ref
)
168 kmem_cache_free(btrfs_prelim_ref_cache
, ref
);
172 * Return 0 when both refs are for the same block (and can be merged).
173 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
174 * indicates a 'higher' block.
176 static int prelim_ref_compare(struct prelim_ref
*ref1
,
177 struct prelim_ref
*ref2
)
179 if (ref1
->level
< ref2
->level
)
181 if (ref1
->level
> ref2
->level
)
183 if (ref1
->root_id
< ref2
->root_id
)
185 if (ref1
->root_id
> ref2
->root_id
)
187 if (ref1
->key_for_search
.type
< ref2
->key_for_search
.type
)
189 if (ref1
->key_for_search
.type
> ref2
->key_for_search
.type
)
191 if (ref1
->key_for_search
.objectid
< ref2
->key_for_search
.objectid
)
193 if (ref1
->key_for_search
.objectid
> ref2
->key_for_search
.objectid
)
195 if (ref1
->key_for_search
.offset
< ref2
->key_for_search
.offset
)
197 if (ref1
->key_for_search
.offset
> ref2
->key_for_search
.offset
)
199 if (ref1
->parent
< ref2
->parent
)
201 if (ref1
->parent
> ref2
->parent
)
207 static void update_share_count(struct share_check
*sc
, int oldcount
,
210 if ((!sc
) || (oldcount
== 0 && newcount
< 1))
213 if (oldcount
> 0 && newcount
< 1)
215 else if (oldcount
< 1 && newcount
> 0)
220 * Add @newref to the @root rbtree, merging identical refs.
222 * Callers should assume that newref has been freed after calling.
224 static void prelim_ref_insert(const struct btrfs_fs_info
*fs_info
,
225 struct preftree
*preftree
,
226 struct prelim_ref
*newref
,
227 struct share_check
*sc
)
229 struct rb_root_cached
*root
;
231 struct rb_node
*parent
= NULL
;
232 struct prelim_ref
*ref
;
234 bool leftmost
= true;
236 root
= &preftree
->root
;
237 p
= &root
->rb_root
.rb_node
;
241 ref
= rb_entry(parent
, struct prelim_ref
, rbnode
);
242 result
= prelim_ref_compare(ref
, newref
);
245 } else if (result
> 0) {
249 /* Identical refs, merge them and free @newref */
250 struct extent_inode_elem
*eie
= ref
->inode_list
;
252 while (eie
&& eie
->next
)
256 ref
->inode_list
= newref
->inode_list
;
258 eie
->next
= newref
->inode_list
;
259 trace_btrfs_prelim_ref_merge(fs_info
, ref
, newref
,
262 * A delayed ref can have newref->count < 0.
263 * The ref->count is updated to follow any
264 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
266 update_share_count(sc
, ref
->count
,
267 ref
->count
+ newref
->count
);
268 ref
->count
+= newref
->count
;
274 update_share_count(sc
, 0, newref
->count
);
276 trace_btrfs_prelim_ref_insert(fs_info
, newref
, NULL
, preftree
->count
);
277 rb_link_node(&newref
->rbnode
, parent
, p
);
278 rb_insert_color_cached(&newref
->rbnode
, root
, leftmost
);
282 * Release the entire tree. We don't care about internal consistency so
283 * just free everything and then reset the tree root.
285 static void prelim_release(struct preftree
*preftree
)
287 struct prelim_ref
*ref
, *next_ref
;
289 rbtree_postorder_for_each_entry_safe(ref
, next_ref
,
290 &preftree
->root
.rb_root
, rbnode
)
293 preftree
->root
= RB_ROOT_CACHED
;
298 * the rules for all callers of this function are:
299 * - obtaining the parent is the goal
300 * - if you add a key, you must know that it is a correct key
301 * - if you cannot add the parent or a correct key, then we will look into the
302 * block later to set a correct key
306 * backref type | shared | indirect | shared | indirect
307 * information | tree | tree | data | data
308 * --------------------+--------+----------+--------+----------
309 * parent logical | y | - | - | -
310 * key to resolve | - | y | y | y
311 * tree block logical | - | - | - | -
312 * root for resolving | y | y | y | y
314 * - column 1: we've the parent -> done
315 * - column 2, 3, 4: we use the key to find the parent
317 * on disk refs (inline or keyed)
318 * ==============================
319 * backref type | shared | indirect | shared | indirect
320 * information | tree | tree | data | data
321 * --------------------+--------+----------+--------+----------
322 * parent logical | y | - | y | -
323 * key to resolve | - | - | - | y
324 * tree block logical | y | y | y | y
325 * root for resolving | - | y | y | y
327 * - column 1, 3: we've the parent -> done
328 * - column 2: we take the first key from the block to find the parent
329 * (see add_missing_keys)
330 * - column 4: we use the key to find the parent
332 * additional information that's available but not required to find the parent
333 * block might help in merging entries to gain some speed.
335 static int add_prelim_ref(const struct btrfs_fs_info
*fs_info
,
336 struct preftree
*preftree
, u64 root_id
,
337 const struct btrfs_key
*key
, int level
, u64 parent
,
338 u64 wanted_disk_byte
, int count
,
339 struct share_check
*sc
, gfp_t gfp_mask
)
341 struct prelim_ref
*ref
;
343 if (root_id
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
346 ref
= kmem_cache_alloc(btrfs_prelim_ref_cache
, gfp_mask
);
350 ref
->root_id
= root_id
;
352 ref
->key_for_search
= *key
;
354 memset(&ref
->key_for_search
, 0, sizeof(ref
->key_for_search
));
356 ref
->inode_list
= NULL
;
359 ref
->parent
= parent
;
360 ref
->wanted_disk_byte
= wanted_disk_byte
;
361 prelim_ref_insert(fs_info
, preftree
, ref
, sc
);
362 return extent_is_shared(sc
);
365 /* direct refs use root == 0, key == NULL */
366 static int add_direct_ref(const struct btrfs_fs_info
*fs_info
,
367 struct preftrees
*preftrees
, int level
, u64 parent
,
368 u64 wanted_disk_byte
, int count
,
369 struct share_check
*sc
, gfp_t gfp_mask
)
371 return add_prelim_ref(fs_info
, &preftrees
->direct
, 0, NULL
, level
,
372 parent
, wanted_disk_byte
, count
, sc
, gfp_mask
);
375 /* indirect refs use parent == 0 */
376 static int add_indirect_ref(const struct btrfs_fs_info
*fs_info
,
377 struct preftrees
*preftrees
, u64 root_id
,
378 const struct btrfs_key
*key
, int level
,
379 u64 wanted_disk_byte
, int count
,
380 struct share_check
*sc
, gfp_t gfp_mask
)
382 struct preftree
*tree
= &preftrees
->indirect
;
385 tree
= &preftrees
->indirect_missing_keys
;
386 return add_prelim_ref(fs_info
, tree
, root_id
, key
, level
, 0,
387 wanted_disk_byte
, count
, sc
, gfp_mask
);
390 static int is_shared_data_backref(struct preftrees
*preftrees
, u64 bytenr
)
392 struct rb_node
**p
= &preftrees
->direct
.root
.rb_root
.rb_node
;
393 struct rb_node
*parent
= NULL
;
394 struct prelim_ref
*ref
= NULL
;
395 struct prelim_ref target
= {};
398 target
.parent
= bytenr
;
402 ref
= rb_entry(parent
, struct prelim_ref
, rbnode
);
403 result
= prelim_ref_compare(ref
, &target
);
415 static int add_all_parents(struct btrfs_root
*root
, struct btrfs_path
*path
,
416 struct ulist
*parents
,
417 struct preftrees
*preftrees
, struct prelim_ref
*ref
,
418 int level
, u64 time_seq
, const u64
*extent_item_pos
,
423 struct extent_buffer
*eb
;
424 struct btrfs_key key
;
425 struct btrfs_key
*key_for_search
= &ref
->key_for_search
;
426 struct btrfs_file_extent_item
*fi
;
427 struct extent_inode_elem
*eie
= NULL
, *old
= NULL
;
429 u64 wanted_disk_byte
= ref
->wanted_disk_byte
;
434 eb
= path
->nodes
[level
];
435 ret
= ulist_add(parents
, eb
->start
, 0, GFP_NOFS
);
442 * 1. We normally enter this function with the path already pointing to
443 * the first item to check. But sometimes, we may enter it with
445 * 2. We are searching for normal backref but bytenr of this leaf
446 * matches shared data backref
447 * 3. The leaf owner is not equal to the root we are searching
449 * For these cases, go to the next leaf before we continue.
452 if (path
->slots
[0] >= btrfs_header_nritems(eb
) ||
453 is_shared_data_backref(preftrees
, eb
->start
) ||
454 ref
->root_id
!= btrfs_header_owner(eb
)) {
455 if (time_seq
== SEQ_LAST
)
456 ret
= btrfs_next_leaf(root
, path
);
458 ret
= btrfs_next_old_leaf(root
, path
, time_seq
);
461 while (!ret
&& count
< ref
->count
) {
463 slot
= path
->slots
[0];
465 btrfs_item_key_to_cpu(eb
, &key
, slot
);
467 if (key
.objectid
!= key_for_search
->objectid
||
468 key
.type
!= BTRFS_EXTENT_DATA_KEY
)
472 * We are searching for normal backref but bytenr of this leaf
473 * matches shared data backref, OR
474 * the leaf owner is not equal to the root we are searching for
477 (is_shared_data_backref(preftrees
, eb
->start
) ||
478 ref
->root_id
!= btrfs_header_owner(eb
))) {
479 if (time_seq
== SEQ_LAST
)
480 ret
= btrfs_next_leaf(root
, path
);
482 ret
= btrfs_next_old_leaf(root
, path
, time_seq
);
485 fi
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
486 disk_byte
= btrfs_file_extent_disk_bytenr(eb
, fi
);
487 data_offset
= btrfs_file_extent_offset(eb
, fi
);
489 if (disk_byte
== wanted_disk_byte
) {
492 if (ref
->key_for_search
.offset
== key
.offset
- data_offset
)
496 if (extent_item_pos
) {
497 ret
= check_extent_in_eb(&key
, eb
, fi
,
499 &eie
, ignore_offset
);
505 ret
= ulist_add_merge_ptr(parents
, eb
->start
,
506 eie
, (void **)&old
, GFP_NOFS
);
509 if (!ret
&& extent_item_pos
) {
517 if (time_seq
== SEQ_LAST
)
518 ret
= btrfs_next_item(root
, path
);
520 ret
= btrfs_next_old_item(root
, path
, time_seq
);
526 free_inode_elem_list(eie
);
531 * resolve an indirect backref in the form (root_id, key, level)
532 * to a logical address
534 static int resolve_indirect_ref(struct btrfs_fs_info
*fs_info
,
535 struct btrfs_path
*path
, u64 time_seq
,
536 struct preftrees
*preftrees
,
537 struct prelim_ref
*ref
, struct ulist
*parents
,
538 const u64
*extent_item_pos
, bool ignore_offset
)
540 struct btrfs_root
*root
;
541 struct extent_buffer
*eb
;
544 int level
= ref
->level
;
545 struct btrfs_key search_key
= ref
->key_for_search
;
548 * If we're search_commit_root we could possibly be holding locks on
549 * other tree nodes. This happens when qgroups does backref walks when
550 * adding new delayed refs. To deal with this we need to look in cache
551 * for the root, and if we don't find it then we need to search the
552 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage
555 if (path
->search_commit_root
)
556 root
= btrfs_get_fs_root_commit_root(fs_info
, path
, ref
->root_id
);
558 root
= btrfs_get_fs_root(fs_info
, ref
->root_id
, false);
564 if (!path
->search_commit_root
&&
565 test_bit(BTRFS_ROOT_DELETING
, &root
->state
)) {
570 if (btrfs_is_testing(fs_info
)) {
575 if (path
->search_commit_root
)
576 root_level
= btrfs_header_level(root
->commit_root
);
577 else if (time_seq
== SEQ_LAST
)
578 root_level
= btrfs_header_level(root
->node
);
580 root_level
= btrfs_old_root_level(root
, time_seq
);
582 if (root_level
+ 1 == level
)
586 * We can often find data backrefs with an offset that is too large
587 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
588 * subtracting a file's offset with the data offset of its
589 * corresponding extent data item. This can happen for example in the
592 * So if we detect such case we set the search key's offset to zero to
593 * make sure we will find the matching file extent item at
594 * add_all_parents(), otherwise we will miss it because the offset
595 * taken form the backref is much larger then the offset of the file
596 * extent item. This can make us scan a very large number of file
597 * extent items, but at least it will not make us miss any.
599 * This is an ugly workaround for a behaviour that should have never
600 * existed, but it does and a fix for the clone ioctl would touch a lot
601 * of places, cause backwards incompatibility and would not fix the
602 * problem for extents cloned with older kernels.
604 if (search_key
.type
== BTRFS_EXTENT_DATA_KEY
&&
605 search_key
.offset
>= LLONG_MAX
)
606 search_key
.offset
= 0;
607 path
->lowest_level
= level
;
608 if (time_seq
== SEQ_LAST
)
609 ret
= btrfs_search_slot(NULL
, root
, &search_key
, path
, 0, 0);
611 ret
= btrfs_search_old_slot(root
, &search_key
, path
, time_seq
);
614 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
615 ref
->root_id
, level
, ref
->count
, ret
,
616 ref
->key_for_search
.objectid
, ref
->key_for_search
.type
,
617 ref
->key_for_search
.offset
);
621 eb
= path
->nodes
[level
];
623 if (WARN_ON(!level
)) {
628 eb
= path
->nodes
[level
];
631 ret
= add_all_parents(root
, path
, parents
, preftrees
, ref
, level
,
632 time_seq
, extent_item_pos
, ignore_offset
);
634 btrfs_put_root(root
);
636 path
->lowest_level
= 0;
637 btrfs_release_path(path
);
641 static struct extent_inode_elem
*
642 unode_aux_to_inode_list(struct ulist_node
*node
)
646 return (struct extent_inode_elem
*)(uintptr_t)node
->aux
;
650 * We maintain three separate rbtrees: one for direct refs, one for
651 * indirect refs which have a key, and one for indirect refs which do not
652 * have a key. Each tree does merge on insertion.
654 * Once all of the references are located, we iterate over the tree of
655 * indirect refs with missing keys. An appropriate key is located and
656 * the ref is moved onto the tree for indirect refs. After all missing
657 * keys are thus located, we iterate over the indirect ref tree, resolve
658 * each reference, and then insert the resolved reference onto the
659 * direct tree (merging there too).
661 * New backrefs (i.e., for parent nodes) are added to the appropriate
662 * rbtree as they are encountered. The new backrefs are subsequently
665 static int resolve_indirect_refs(struct btrfs_fs_info
*fs_info
,
666 struct btrfs_path
*path
, u64 time_seq
,
667 struct preftrees
*preftrees
,
668 const u64
*extent_item_pos
,
669 struct share_check
*sc
, bool ignore_offset
)
673 struct ulist
*parents
;
674 struct ulist_node
*node
;
675 struct ulist_iterator uiter
;
676 struct rb_node
*rnode
;
678 parents
= ulist_alloc(GFP_NOFS
);
683 * We could trade memory usage for performance here by iterating
684 * the tree, allocating new refs for each insertion, and then
685 * freeing the entire indirect tree when we're done. In some test
686 * cases, the tree can grow quite large (~200k objects).
688 while ((rnode
= rb_first_cached(&preftrees
->indirect
.root
))) {
689 struct prelim_ref
*ref
;
691 ref
= rb_entry(rnode
, struct prelim_ref
, rbnode
);
692 if (WARN(ref
->parent
,
693 "BUG: direct ref found in indirect tree")) {
698 rb_erase_cached(&ref
->rbnode
, &preftrees
->indirect
.root
);
699 preftrees
->indirect
.count
--;
701 if (ref
->count
== 0) {
706 if (sc
&& sc
->root_objectid
&&
707 ref
->root_id
!= sc
->root_objectid
) {
709 ret
= BACKREF_FOUND_SHARED
;
712 err
= resolve_indirect_ref(fs_info
, path
, time_seq
, preftrees
,
713 ref
, parents
, extent_item_pos
,
716 * we can only tolerate ENOENT,otherwise,we should catch error
717 * and return directly.
719 if (err
== -ENOENT
) {
720 prelim_ref_insert(fs_info
, &preftrees
->direct
, ref
,
729 /* we put the first parent into the ref at hand */
730 ULIST_ITER_INIT(&uiter
);
731 node
= ulist_next(parents
, &uiter
);
732 ref
->parent
= node
? node
->val
: 0;
733 ref
->inode_list
= unode_aux_to_inode_list(node
);
735 /* Add a prelim_ref(s) for any other parent(s). */
736 while ((node
= ulist_next(parents
, &uiter
))) {
737 struct prelim_ref
*new_ref
;
739 new_ref
= kmem_cache_alloc(btrfs_prelim_ref_cache
,
746 memcpy(new_ref
, ref
, sizeof(*ref
));
747 new_ref
->parent
= node
->val
;
748 new_ref
->inode_list
= unode_aux_to_inode_list(node
);
749 prelim_ref_insert(fs_info
, &preftrees
->direct
,
754 * Now it's a direct ref, put it in the direct tree. We must
755 * do this last because the ref could be merged/freed here.
757 prelim_ref_insert(fs_info
, &preftrees
->direct
, ref
, NULL
);
759 ulist_reinit(parents
);
768 * read tree blocks and add keys where required.
770 static int add_missing_keys(struct btrfs_fs_info
*fs_info
,
771 struct preftrees
*preftrees
, bool lock
)
773 struct prelim_ref
*ref
;
774 struct extent_buffer
*eb
;
775 struct preftree
*tree
= &preftrees
->indirect_missing_keys
;
776 struct rb_node
*node
;
778 while ((node
= rb_first_cached(&tree
->root
))) {
779 ref
= rb_entry(node
, struct prelim_ref
, rbnode
);
780 rb_erase_cached(node
, &tree
->root
);
782 BUG_ON(ref
->parent
); /* should not be a direct ref */
783 BUG_ON(ref
->key_for_search
.type
);
784 BUG_ON(!ref
->wanted_disk_byte
);
786 eb
= read_tree_block(fs_info
, ref
->wanted_disk_byte
,
787 ref
->root_id
, 0, ref
->level
- 1, NULL
);
791 } else if (!extent_buffer_uptodate(eb
)) {
793 free_extent_buffer(eb
);
797 btrfs_tree_read_lock(eb
);
798 if (btrfs_header_level(eb
) == 0)
799 btrfs_item_key_to_cpu(eb
, &ref
->key_for_search
, 0);
801 btrfs_node_key_to_cpu(eb
, &ref
->key_for_search
, 0);
803 btrfs_tree_read_unlock(eb
);
804 free_extent_buffer(eb
);
805 prelim_ref_insert(fs_info
, &preftrees
->indirect
, ref
, NULL
);
812 * add all currently queued delayed refs from this head whose seq nr is
813 * smaller or equal that seq to the list
815 static int add_delayed_refs(const struct btrfs_fs_info
*fs_info
,
816 struct btrfs_delayed_ref_head
*head
, u64 seq
,
817 struct preftrees
*preftrees
, struct share_check
*sc
)
819 struct btrfs_delayed_ref_node
*node
;
820 struct btrfs_delayed_extent_op
*extent_op
= head
->extent_op
;
821 struct btrfs_key key
;
822 struct btrfs_key tmp_op_key
;
827 if (extent_op
&& extent_op
->update_key
)
828 btrfs_disk_key_to_cpu(&tmp_op_key
, &extent_op
->key
);
830 spin_lock(&head
->lock
);
831 for (n
= rb_first_cached(&head
->ref_tree
); n
; n
= rb_next(n
)) {
832 node
= rb_entry(n
, struct btrfs_delayed_ref_node
,
837 switch (node
->action
) {
838 case BTRFS_ADD_DELAYED_EXTENT
:
839 case BTRFS_UPDATE_DELAYED_HEAD
:
842 case BTRFS_ADD_DELAYED_REF
:
843 count
= node
->ref_mod
;
845 case BTRFS_DROP_DELAYED_REF
:
846 count
= node
->ref_mod
* -1;
851 switch (node
->type
) {
852 case BTRFS_TREE_BLOCK_REF_KEY
: {
853 /* NORMAL INDIRECT METADATA backref */
854 struct btrfs_delayed_tree_ref
*ref
;
856 ref
= btrfs_delayed_node_to_tree_ref(node
);
857 ret
= add_indirect_ref(fs_info
, preftrees
, ref
->root
,
858 &tmp_op_key
, ref
->level
+ 1,
859 node
->bytenr
, count
, sc
,
863 case BTRFS_SHARED_BLOCK_REF_KEY
: {
864 /* SHARED DIRECT METADATA backref */
865 struct btrfs_delayed_tree_ref
*ref
;
867 ref
= btrfs_delayed_node_to_tree_ref(node
);
869 ret
= add_direct_ref(fs_info
, preftrees
, ref
->level
+ 1,
870 ref
->parent
, node
->bytenr
, count
,
874 case BTRFS_EXTENT_DATA_REF_KEY
: {
875 /* NORMAL INDIRECT DATA backref */
876 struct btrfs_delayed_data_ref
*ref
;
877 ref
= btrfs_delayed_node_to_data_ref(node
);
879 key
.objectid
= ref
->objectid
;
880 key
.type
= BTRFS_EXTENT_DATA_KEY
;
881 key
.offset
= ref
->offset
;
884 * Found a inum that doesn't match our known inum, we
887 if (sc
&& sc
->inum
&& ref
->objectid
!= sc
->inum
) {
888 ret
= BACKREF_FOUND_SHARED
;
892 ret
= add_indirect_ref(fs_info
, preftrees
, ref
->root
,
893 &key
, 0, node
->bytenr
, count
, sc
,
897 case BTRFS_SHARED_DATA_REF_KEY
: {
898 /* SHARED DIRECT FULL backref */
899 struct btrfs_delayed_data_ref
*ref
;
901 ref
= btrfs_delayed_node_to_data_ref(node
);
903 ret
= add_direct_ref(fs_info
, preftrees
, 0, ref
->parent
,
904 node
->bytenr
, count
, sc
,
912 * We must ignore BACKREF_FOUND_SHARED until all delayed
913 * refs have been checked.
915 if (ret
&& (ret
!= BACKREF_FOUND_SHARED
))
919 ret
= extent_is_shared(sc
);
921 spin_unlock(&head
->lock
);
926 * add all inline backrefs for bytenr to the list
928 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
930 static int add_inline_refs(const struct btrfs_fs_info
*fs_info
,
931 struct btrfs_path
*path
, u64 bytenr
,
932 int *info_level
, struct preftrees
*preftrees
,
933 struct share_check
*sc
)
937 struct extent_buffer
*leaf
;
938 struct btrfs_key key
;
939 struct btrfs_key found_key
;
942 struct btrfs_extent_item
*ei
;
947 * enumerate all inline refs
949 leaf
= path
->nodes
[0];
950 slot
= path
->slots
[0];
952 item_size
= btrfs_item_size_nr(leaf
, slot
);
953 BUG_ON(item_size
< sizeof(*ei
));
955 ei
= btrfs_item_ptr(leaf
, slot
, struct btrfs_extent_item
);
956 flags
= btrfs_extent_flags(leaf
, ei
);
957 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
959 ptr
= (unsigned long)(ei
+ 1);
960 end
= (unsigned long)ei
+ item_size
;
962 if (found_key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
963 flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
964 struct btrfs_tree_block_info
*info
;
966 info
= (struct btrfs_tree_block_info
*)ptr
;
967 *info_level
= btrfs_tree_block_level(leaf
, info
);
968 ptr
+= sizeof(struct btrfs_tree_block_info
);
970 } else if (found_key
.type
== BTRFS_METADATA_ITEM_KEY
) {
971 *info_level
= found_key
.offset
;
973 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_DATA
));
977 struct btrfs_extent_inline_ref
*iref
;
981 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
982 type
= btrfs_get_extent_inline_ref_type(leaf
, iref
,
984 if (type
== BTRFS_REF_TYPE_INVALID
)
987 offset
= btrfs_extent_inline_ref_offset(leaf
, iref
);
990 case BTRFS_SHARED_BLOCK_REF_KEY
:
991 ret
= add_direct_ref(fs_info
, preftrees
,
992 *info_level
+ 1, offset
,
993 bytenr
, 1, NULL
, GFP_NOFS
);
995 case BTRFS_SHARED_DATA_REF_KEY
: {
996 struct btrfs_shared_data_ref
*sdref
;
999 sdref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1000 count
= btrfs_shared_data_ref_count(leaf
, sdref
);
1002 ret
= add_direct_ref(fs_info
, preftrees
, 0, offset
,
1003 bytenr
, count
, sc
, GFP_NOFS
);
1006 case BTRFS_TREE_BLOCK_REF_KEY
:
1007 ret
= add_indirect_ref(fs_info
, preftrees
, offset
,
1008 NULL
, *info_level
+ 1,
1009 bytenr
, 1, NULL
, GFP_NOFS
);
1011 case BTRFS_EXTENT_DATA_REF_KEY
: {
1012 struct btrfs_extent_data_ref
*dref
;
1016 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1017 count
= btrfs_extent_data_ref_count(leaf
, dref
);
1018 key
.objectid
= btrfs_extent_data_ref_objectid(leaf
,
1020 key
.type
= BTRFS_EXTENT_DATA_KEY
;
1021 key
.offset
= btrfs_extent_data_ref_offset(leaf
, dref
);
1023 if (sc
&& sc
->inum
&& key
.objectid
!= sc
->inum
) {
1024 ret
= BACKREF_FOUND_SHARED
;
1028 root
= btrfs_extent_data_ref_root(leaf
, dref
);
1030 ret
= add_indirect_ref(fs_info
, preftrees
, root
,
1031 &key
, 0, bytenr
, count
,
1040 ptr
+= btrfs_extent_inline_ref_size(type
);
1047 * add all non-inline backrefs for bytenr to the list
1049 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1051 static int add_keyed_refs(struct btrfs_fs_info
*fs_info
,
1052 struct btrfs_path
*path
, u64 bytenr
,
1053 int info_level
, struct preftrees
*preftrees
,
1054 struct share_check
*sc
)
1056 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
1059 struct extent_buffer
*leaf
;
1060 struct btrfs_key key
;
1063 ret
= btrfs_next_item(extent_root
, path
);
1071 slot
= path
->slots
[0];
1072 leaf
= path
->nodes
[0];
1073 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
1075 if (key
.objectid
!= bytenr
)
1077 if (key
.type
< BTRFS_TREE_BLOCK_REF_KEY
)
1079 if (key
.type
> BTRFS_SHARED_DATA_REF_KEY
)
1083 case BTRFS_SHARED_BLOCK_REF_KEY
:
1084 /* SHARED DIRECT METADATA backref */
1085 ret
= add_direct_ref(fs_info
, preftrees
,
1086 info_level
+ 1, key
.offset
,
1087 bytenr
, 1, NULL
, GFP_NOFS
);
1089 case BTRFS_SHARED_DATA_REF_KEY
: {
1090 /* SHARED DIRECT FULL backref */
1091 struct btrfs_shared_data_ref
*sdref
;
1094 sdref
= btrfs_item_ptr(leaf
, slot
,
1095 struct btrfs_shared_data_ref
);
1096 count
= btrfs_shared_data_ref_count(leaf
, sdref
);
1097 ret
= add_direct_ref(fs_info
, preftrees
, 0,
1098 key
.offset
, bytenr
, count
,
1102 case BTRFS_TREE_BLOCK_REF_KEY
:
1103 /* NORMAL INDIRECT METADATA backref */
1104 ret
= add_indirect_ref(fs_info
, preftrees
, key
.offset
,
1105 NULL
, info_level
+ 1, bytenr
,
1108 case BTRFS_EXTENT_DATA_REF_KEY
: {
1109 /* NORMAL INDIRECT DATA backref */
1110 struct btrfs_extent_data_ref
*dref
;
1114 dref
= btrfs_item_ptr(leaf
, slot
,
1115 struct btrfs_extent_data_ref
);
1116 count
= btrfs_extent_data_ref_count(leaf
, dref
);
1117 key
.objectid
= btrfs_extent_data_ref_objectid(leaf
,
1119 key
.type
= BTRFS_EXTENT_DATA_KEY
;
1120 key
.offset
= btrfs_extent_data_ref_offset(leaf
, dref
);
1122 if (sc
&& sc
->inum
&& key
.objectid
!= sc
->inum
) {
1123 ret
= BACKREF_FOUND_SHARED
;
1127 root
= btrfs_extent_data_ref_root(leaf
, dref
);
1128 ret
= add_indirect_ref(fs_info
, preftrees
, root
,
1129 &key
, 0, bytenr
, count
,
1145 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1146 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1147 * indirect refs to their parent bytenr.
1148 * When roots are found, they're added to the roots list
1150 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
1151 * much like trans == NULL case, the difference only lies in it will not
1153 * The special case is for qgroup to search roots in commit_transaction().
1155 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1156 * shared extent is detected.
1158 * Otherwise this returns 0 for success and <0 for an error.
1160 * If ignore_offset is set to false, only extent refs whose offsets match
1161 * extent_item_pos are returned. If true, every extent ref is returned
1162 * and extent_item_pos is ignored.
1164 * FIXME some caching might speed things up
1166 static int find_parent_nodes(struct btrfs_trans_handle
*trans
,
1167 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1168 u64 time_seq
, struct ulist
*refs
,
1169 struct ulist
*roots
, const u64
*extent_item_pos
,
1170 struct share_check
*sc
, bool ignore_offset
)
1172 struct btrfs_key key
;
1173 struct btrfs_path
*path
;
1174 struct btrfs_delayed_ref_root
*delayed_refs
= NULL
;
1175 struct btrfs_delayed_ref_head
*head
;
1178 struct prelim_ref
*ref
;
1179 struct rb_node
*node
;
1180 struct extent_inode_elem
*eie
= NULL
;
1181 struct preftrees preftrees
= {
1182 .direct
= PREFTREE_INIT
,
1183 .indirect
= PREFTREE_INIT
,
1184 .indirect_missing_keys
= PREFTREE_INIT
1187 key
.objectid
= bytenr
;
1188 key
.offset
= (u64
)-1;
1189 if (btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
1190 key
.type
= BTRFS_METADATA_ITEM_KEY
;
1192 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1194 path
= btrfs_alloc_path();
1198 path
->search_commit_root
= 1;
1199 path
->skip_locking
= 1;
1202 if (time_seq
== SEQ_LAST
)
1203 path
->skip_locking
= 1;
1206 * grab both a lock on the path and a lock on the delayed ref head.
1207 * We need both to get a consistent picture of how the refs look
1208 * at a specified point in time
1213 ret
= btrfs_search_slot(trans
, fs_info
->extent_root
, &key
, path
, 0, 0);
1218 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1219 if (trans
&& likely(trans
->type
!= __TRANS_DUMMY
) &&
1220 time_seq
!= SEQ_LAST
) {
1222 if (trans
&& time_seq
!= SEQ_LAST
) {
1225 * look if there are updates for this ref queued and lock the
1228 delayed_refs
= &trans
->transaction
->delayed_refs
;
1229 spin_lock(&delayed_refs
->lock
);
1230 head
= btrfs_find_delayed_ref_head(delayed_refs
, bytenr
);
1232 if (!mutex_trylock(&head
->mutex
)) {
1233 refcount_inc(&head
->refs
);
1234 spin_unlock(&delayed_refs
->lock
);
1236 btrfs_release_path(path
);
1239 * Mutex was contended, block until it's
1240 * released and try again
1242 mutex_lock(&head
->mutex
);
1243 mutex_unlock(&head
->mutex
);
1244 btrfs_put_delayed_ref_head(head
);
1247 spin_unlock(&delayed_refs
->lock
);
1248 ret
= add_delayed_refs(fs_info
, head
, time_seq
,
1250 mutex_unlock(&head
->mutex
);
1254 spin_unlock(&delayed_refs
->lock
);
1258 if (path
->slots
[0]) {
1259 struct extent_buffer
*leaf
;
1263 leaf
= path
->nodes
[0];
1264 slot
= path
->slots
[0];
1265 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
1266 if (key
.objectid
== bytenr
&&
1267 (key
.type
== BTRFS_EXTENT_ITEM_KEY
||
1268 key
.type
== BTRFS_METADATA_ITEM_KEY
)) {
1269 ret
= add_inline_refs(fs_info
, path
, bytenr
,
1270 &info_level
, &preftrees
, sc
);
1273 ret
= add_keyed_refs(fs_info
, path
, bytenr
, info_level
,
1280 btrfs_release_path(path
);
1282 ret
= add_missing_keys(fs_info
, &preftrees
, path
->skip_locking
== 0);
1286 WARN_ON(!RB_EMPTY_ROOT(&preftrees
.indirect_missing_keys
.root
.rb_root
));
1288 ret
= resolve_indirect_refs(fs_info
, path
, time_seq
, &preftrees
,
1289 extent_item_pos
, sc
, ignore_offset
);
1293 WARN_ON(!RB_EMPTY_ROOT(&preftrees
.indirect
.root
.rb_root
));
1296 * This walks the tree of merged and resolved refs. Tree blocks are
1297 * read in as needed. Unique entries are added to the ulist, and
1298 * the list of found roots is updated.
1300 * We release the entire tree in one go before returning.
1302 node
= rb_first_cached(&preftrees
.direct
.root
);
1304 ref
= rb_entry(node
, struct prelim_ref
, rbnode
);
1305 node
= rb_next(&ref
->rbnode
);
1307 * ref->count < 0 can happen here if there are delayed
1308 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1309 * prelim_ref_insert() relies on this when merging
1310 * identical refs to keep the overall count correct.
1311 * prelim_ref_insert() will merge only those refs
1312 * which compare identically. Any refs having
1313 * e.g. different offsets would not be merged,
1314 * and would retain their original ref->count < 0.
1316 if (roots
&& ref
->count
&& ref
->root_id
&& ref
->parent
== 0) {
1317 if (sc
&& sc
->root_objectid
&&
1318 ref
->root_id
!= sc
->root_objectid
) {
1319 ret
= BACKREF_FOUND_SHARED
;
1323 /* no parent == root of tree */
1324 ret
= ulist_add(roots
, ref
->root_id
, 0, GFP_NOFS
);
1328 if (ref
->count
&& ref
->parent
) {
1329 if (extent_item_pos
&& !ref
->inode_list
&&
1331 struct extent_buffer
*eb
;
1333 eb
= read_tree_block(fs_info
, ref
->parent
, 0,
1334 0, ref
->level
, NULL
);
1338 } else if (!extent_buffer_uptodate(eb
)) {
1339 free_extent_buffer(eb
);
1344 if (!path
->skip_locking
)
1345 btrfs_tree_read_lock(eb
);
1346 ret
= find_extent_in_eb(eb
, bytenr
,
1347 *extent_item_pos
, &eie
, ignore_offset
);
1348 if (!path
->skip_locking
)
1349 btrfs_tree_read_unlock(eb
);
1350 free_extent_buffer(eb
);
1353 ref
->inode_list
= eie
;
1355 ret
= ulist_add_merge_ptr(refs
, ref
->parent
,
1357 (void **)&eie
, GFP_NOFS
);
1360 if (!ret
&& extent_item_pos
) {
1362 * we've recorded that parent, so we must extend
1363 * its inode list here
1368 eie
->next
= ref
->inode_list
;
1376 btrfs_free_path(path
);
1378 prelim_release(&preftrees
.direct
);
1379 prelim_release(&preftrees
.indirect
);
1380 prelim_release(&preftrees
.indirect_missing_keys
);
1383 free_inode_elem_list(eie
);
1387 static void free_leaf_list(struct ulist
*blocks
)
1389 struct ulist_node
*node
= NULL
;
1390 struct extent_inode_elem
*eie
;
1391 struct ulist_iterator uiter
;
1393 ULIST_ITER_INIT(&uiter
);
1394 while ((node
= ulist_next(blocks
, &uiter
))) {
1397 eie
= unode_aux_to_inode_list(node
);
1398 free_inode_elem_list(eie
);
1406 * Finds all leafs with a reference to the specified combination of bytenr and
1407 * offset. key_list_head will point to a list of corresponding keys (caller must
1408 * free each list element). The leafs will be stored in the leafs ulist, which
1409 * must be freed with ulist_free.
1411 * returns 0 on success, <0 on error
1413 int btrfs_find_all_leafs(struct btrfs_trans_handle
*trans
,
1414 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1415 u64 time_seq
, struct ulist
**leafs
,
1416 const u64
*extent_item_pos
, bool ignore_offset
)
1420 *leafs
= ulist_alloc(GFP_NOFS
);
1424 ret
= find_parent_nodes(trans
, fs_info
, bytenr
, time_seq
,
1425 *leafs
, NULL
, extent_item_pos
, NULL
, ignore_offset
);
1426 if (ret
< 0 && ret
!= -ENOENT
) {
1427 free_leaf_list(*leafs
);
1435 * walk all backrefs for a given extent to find all roots that reference this
1436 * extent. Walking a backref means finding all extents that reference this
1437 * extent and in turn walk the backrefs of those, too. Naturally this is a
1438 * recursive process, but here it is implemented in an iterative fashion: We
1439 * find all referencing extents for the extent in question and put them on a
1440 * list. In turn, we find all referencing extents for those, further appending
1441 * to the list. The way we iterate the list allows adding more elements after
1442 * the current while iterating. The process stops when we reach the end of the
1443 * list. Found roots are added to the roots list.
1445 * returns 0 on success, < 0 on error.
1447 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle
*trans
,
1448 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1449 u64 time_seq
, struct ulist
**roots
,
1453 struct ulist_node
*node
= NULL
;
1454 struct ulist_iterator uiter
;
1457 tmp
= ulist_alloc(GFP_NOFS
);
1460 *roots
= ulist_alloc(GFP_NOFS
);
1466 ULIST_ITER_INIT(&uiter
);
1468 ret
= find_parent_nodes(trans
, fs_info
, bytenr
, time_seq
,
1469 tmp
, *roots
, NULL
, NULL
, ignore_offset
);
1470 if (ret
< 0 && ret
!= -ENOENT
) {
1476 node
= ulist_next(tmp
, &uiter
);
1487 int btrfs_find_all_roots(struct btrfs_trans_handle
*trans
,
1488 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1489 u64 time_seq
, struct ulist
**roots
,
1495 down_read(&fs_info
->commit_root_sem
);
1496 ret
= btrfs_find_all_roots_safe(trans
, fs_info
, bytenr
,
1497 time_seq
, roots
, ignore_offset
);
1499 up_read(&fs_info
->commit_root_sem
);
1504 * btrfs_check_shared - tell us whether an extent is shared
1506 * btrfs_check_shared uses the backref walking code but will short
1507 * circuit as soon as it finds a root or inode that doesn't match the
1508 * one passed in. This provides a significant performance benefit for
1509 * callers (such as fiemap) which want to know whether the extent is
1510 * shared but do not need a ref count.
1512 * This attempts to attach to the running transaction in order to account for
1513 * delayed refs, but continues on even when no running transaction exists.
1515 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1517 int btrfs_check_shared(struct btrfs_root
*root
, u64 inum
, u64 bytenr
,
1518 struct ulist
*roots
, struct ulist
*tmp
)
1520 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1521 struct btrfs_trans_handle
*trans
;
1522 struct ulist_iterator uiter
;
1523 struct ulist_node
*node
;
1524 struct seq_list elem
= SEQ_LIST_INIT(elem
);
1526 struct share_check shared
= {
1527 .root_objectid
= root
->root_key
.objectid
,
1535 trans
= btrfs_join_transaction_nostart(root
);
1536 if (IS_ERR(trans
)) {
1537 if (PTR_ERR(trans
) != -ENOENT
&& PTR_ERR(trans
) != -EROFS
) {
1538 ret
= PTR_ERR(trans
);
1542 down_read(&fs_info
->commit_root_sem
);
1544 btrfs_get_tree_mod_seq(fs_info
, &elem
);
1547 ULIST_ITER_INIT(&uiter
);
1549 ret
= find_parent_nodes(trans
, fs_info
, bytenr
, elem
.seq
, tmp
,
1550 roots
, NULL
, &shared
, false);
1551 if (ret
== BACKREF_FOUND_SHARED
) {
1552 /* this is the only condition under which we return 1 */
1556 if (ret
< 0 && ret
!= -ENOENT
)
1559 node
= ulist_next(tmp
, &uiter
);
1563 shared
.share_count
= 0;
1568 btrfs_put_tree_mod_seq(fs_info
, &elem
);
1569 btrfs_end_transaction(trans
);
1571 up_read(&fs_info
->commit_root_sem
);
1574 ulist_release(roots
);
1579 int btrfs_find_one_extref(struct btrfs_root
*root
, u64 inode_objectid
,
1580 u64 start_off
, struct btrfs_path
*path
,
1581 struct btrfs_inode_extref
**ret_extref
,
1585 struct btrfs_key key
;
1586 struct btrfs_key found_key
;
1587 struct btrfs_inode_extref
*extref
;
1588 const struct extent_buffer
*leaf
;
1591 key
.objectid
= inode_objectid
;
1592 key
.type
= BTRFS_INODE_EXTREF_KEY
;
1593 key
.offset
= start_off
;
1595 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1600 leaf
= path
->nodes
[0];
1601 slot
= path
->slots
[0];
1602 if (slot
>= btrfs_header_nritems(leaf
)) {
1604 * If the item at offset is not found,
1605 * btrfs_search_slot will point us to the slot
1606 * where it should be inserted. In our case
1607 * that will be the slot directly before the
1608 * next INODE_REF_KEY_V2 item. In the case
1609 * that we're pointing to the last slot in a
1610 * leaf, we must move one leaf over.
1612 ret
= btrfs_next_leaf(root
, path
);
1621 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
1624 * Check that we're still looking at an extended ref key for
1625 * this particular objectid. If we have different
1626 * objectid or type then there are no more to be found
1627 * in the tree and we can exit.
1630 if (found_key
.objectid
!= inode_objectid
)
1632 if (found_key
.type
!= BTRFS_INODE_EXTREF_KEY
)
1636 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1637 extref
= (struct btrfs_inode_extref
*)ptr
;
1638 *ret_extref
= extref
;
1640 *found_off
= found_key
.offset
;
1648 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1649 * Elements of the path are separated by '/' and the path is guaranteed to be
1650 * 0-terminated. the path is only given within the current file system.
1651 * Therefore, it never starts with a '/'. the caller is responsible to provide
1652 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1653 * the start point of the resulting string is returned. this pointer is within
1655 * in case the path buffer would overflow, the pointer is decremented further
1656 * as if output was written to the buffer, though no more output is actually
1657 * generated. that way, the caller can determine how much space would be
1658 * required for the path to fit into the buffer. in that case, the returned
1659 * value will be smaller than dest. callers must check this!
1661 char *btrfs_ref_to_path(struct btrfs_root
*fs_root
, struct btrfs_path
*path
,
1662 u32 name_len
, unsigned long name_off
,
1663 struct extent_buffer
*eb_in
, u64 parent
,
1664 char *dest
, u32 size
)
1669 s64 bytes_left
= ((s64
)size
) - 1;
1670 struct extent_buffer
*eb
= eb_in
;
1671 struct btrfs_key found_key
;
1672 struct btrfs_inode_ref
*iref
;
1674 if (bytes_left
>= 0)
1675 dest
[bytes_left
] = '\0';
1678 bytes_left
-= name_len
;
1679 if (bytes_left
>= 0)
1680 read_extent_buffer(eb
, dest
+ bytes_left
,
1681 name_off
, name_len
);
1683 if (!path
->skip_locking
)
1684 btrfs_tree_read_unlock(eb
);
1685 free_extent_buffer(eb
);
1687 ret
= btrfs_find_item(fs_root
, path
, parent
, 0,
1688 BTRFS_INODE_REF_KEY
, &found_key
);
1694 next_inum
= found_key
.offset
;
1696 /* regular exit ahead */
1697 if (parent
== next_inum
)
1700 slot
= path
->slots
[0];
1701 eb
= path
->nodes
[0];
1702 /* make sure we can use eb after releasing the path */
1704 path
->nodes
[0] = NULL
;
1707 btrfs_release_path(path
);
1708 iref
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_ref
);
1710 name_len
= btrfs_inode_ref_name_len(eb
, iref
);
1711 name_off
= (unsigned long)(iref
+ 1);
1715 if (bytes_left
>= 0)
1716 dest
[bytes_left
] = '/';
1719 btrfs_release_path(path
);
1722 return ERR_PTR(ret
);
1724 return dest
+ bytes_left
;
1728 * this makes the path point to (logical EXTENT_ITEM *)
1729 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1730 * tree blocks and <0 on error.
1732 int extent_from_logical(struct btrfs_fs_info
*fs_info
, u64 logical
,
1733 struct btrfs_path
*path
, struct btrfs_key
*found_key
,
1740 const struct extent_buffer
*eb
;
1741 struct btrfs_extent_item
*ei
;
1742 struct btrfs_key key
;
1744 if (btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
1745 key
.type
= BTRFS_METADATA_ITEM_KEY
;
1747 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1748 key
.objectid
= logical
;
1749 key
.offset
= (u64
)-1;
1751 ret
= btrfs_search_slot(NULL
, fs_info
->extent_root
, &key
, path
, 0, 0);
1755 ret
= btrfs_previous_extent_item(fs_info
->extent_root
, path
, 0);
1761 btrfs_item_key_to_cpu(path
->nodes
[0], found_key
, path
->slots
[0]);
1762 if (found_key
->type
== BTRFS_METADATA_ITEM_KEY
)
1763 size
= fs_info
->nodesize
;
1764 else if (found_key
->type
== BTRFS_EXTENT_ITEM_KEY
)
1765 size
= found_key
->offset
;
1767 if (found_key
->objectid
> logical
||
1768 found_key
->objectid
+ size
<= logical
) {
1769 btrfs_debug(fs_info
,
1770 "logical %llu is not within any extent", logical
);
1774 eb
= path
->nodes
[0];
1775 item_size
= btrfs_item_size_nr(eb
, path
->slots
[0]);
1776 BUG_ON(item_size
< sizeof(*ei
));
1778 ei
= btrfs_item_ptr(eb
, path
->slots
[0], struct btrfs_extent_item
);
1779 flags
= btrfs_extent_flags(eb
, ei
);
1781 btrfs_debug(fs_info
,
1782 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1783 logical
, logical
- found_key
->objectid
, found_key
->objectid
,
1784 found_key
->offset
, flags
, item_size
);
1786 WARN_ON(!flags_ret
);
1788 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
)
1789 *flags_ret
= BTRFS_EXTENT_FLAG_TREE_BLOCK
;
1790 else if (flags
& BTRFS_EXTENT_FLAG_DATA
)
1791 *flags_ret
= BTRFS_EXTENT_FLAG_DATA
;
1801 * helper function to iterate extent inline refs. ptr must point to a 0 value
1802 * for the first call and may be modified. it is used to track state.
1803 * if more refs exist, 0 is returned and the next call to
1804 * get_extent_inline_ref must pass the modified ptr parameter to get the
1805 * next ref. after the last ref was processed, 1 is returned.
1806 * returns <0 on error
1808 static int get_extent_inline_ref(unsigned long *ptr
,
1809 const struct extent_buffer
*eb
,
1810 const struct btrfs_key
*key
,
1811 const struct btrfs_extent_item
*ei
,
1813 struct btrfs_extent_inline_ref
**out_eiref
,
1818 struct btrfs_tree_block_info
*info
;
1822 flags
= btrfs_extent_flags(eb
, ei
);
1823 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
1824 if (key
->type
== BTRFS_METADATA_ITEM_KEY
) {
1825 /* a skinny metadata extent */
1827 (struct btrfs_extent_inline_ref
*)(ei
+ 1);
1829 WARN_ON(key
->type
!= BTRFS_EXTENT_ITEM_KEY
);
1830 info
= (struct btrfs_tree_block_info
*)(ei
+ 1);
1832 (struct btrfs_extent_inline_ref
*)(info
+ 1);
1835 *out_eiref
= (struct btrfs_extent_inline_ref
*)(ei
+ 1);
1837 *ptr
= (unsigned long)*out_eiref
;
1838 if ((unsigned long)(*ptr
) >= (unsigned long)ei
+ item_size
)
1842 end
= (unsigned long)ei
+ item_size
;
1843 *out_eiref
= (struct btrfs_extent_inline_ref
*)(*ptr
);
1844 *out_type
= btrfs_get_extent_inline_ref_type(eb
, *out_eiref
,
1845 BTRFS_REF_TYPE_ANY
);
1846 if (*out_type
== BTRFS_REF_TYPE_INVALID
)
1849 *ptr
+= btrfs_extent_inline_ref_size(*out_type
);
1850 WARN_ON(*ptr
> end
);
1852 return 1; /* last */
1858 * reads the tree block backref for an extent. tree level and root are returned
1859 * through out_level and out_root. ptr must point to a 0 value for the first
1860 * call and may be modified (see get_extent_inline_ref comment).
1861 * returns 0 if data was provided, 1 if there was no more data to provide or
1864 int tree_backref_for_extent(unsigned long *ptr
, struct extent_buffer
*eb
,
1865 struct btrfs_key
*key
, struct btrfs_extent_item
*ei
,
1866 u32 item_size
, u64
*out_root
, u8
*out_level
)
1870 struct btrfs_extent_inline_ref
*eiref
;
1872 if (*ptr
== (unsigned long)-1)
1876 ret
= get_extent_inline_ref(ptr
, eb
, key
, ei
, item_size
,
1881 if (type
== BTRFS_TREE_BLOCK_REF_KEY
||
1882 type
== BTRFS_SHARED_BLOCK_REF_KEY
)
1889 /* we can treat both ref types equally here */
1890 *out_root
= btrfs_extent_inline_ref_offset(eb
, eiref
);
1892 if (key
->type
== BTRFS_EXTENT_ITEM_KEY
) {
1893 struct btrfs_tree_block_info
*info
;
1895 info
= (struct btrfs_tree_block_info
*)(ei
+ 1);
1896 *out_level
= btrfs_tree_block_level(eb
, info
);
1898 ASSERT(key
->type
== BTRFS_METADATA_ITEM_KEY
);
1899 *out_level
= (u8
)key
->offset
;
1903 *ptr
= (unsigned long)-1;
1908 static int iterate_leaf_refs(struct btrfs_fs_info
*fs_info
,
1909 struct extent_inode_elem
*inode_list
,
1910 u64 root
, u64 extent_item_objectid
,
1911 iterate_extent_inodes_t
*iterate
, void *ctx
)
1913 struct extent_inode_elem
*eie
;
1916 for (eie
= inode_list
; eie
; eie
= eie
->next
) {
1917 btrfs_debug(fs_info
,
1918 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1919 extent_item_objectid
, eie
->inum
,
1921 ret
= iterate(eie
->inum
, eie
->offset
, root
, ctx
);
1923 btrfs_debug(fs_info
,
1924 "stopping iteration for %llu due to ret=%d",
1925 extent_item_objectid
, ret
);
1934 * calls iterate() for every inode that references the extent identified by
1935 * the given parameters.
1936 * when the iterator function returns a non-zero value, iteration stops.
1938 int iterate_extent_inodes(struct btrfs_fs_info
*fs_info
,
1939 u64 extent_item_objectid
, u64 extent_item_pos
,
1940 int search_commit_root
,
1941 iterate_extent_inodes_t
*iterate
, void *ctx
,
1945 struct btrfs_trans_handle
*trans
= NULL
;
1946 struct ulist
*refs
= NULL
;
1947 struct ulist
*roots
= NULL
;
1948 struct ulist_node
*ref_node
= NULL
;
1949 struct ulist_node
*root_node
= NULL
;
1950 struct seq_list tree_mod_seq_elem
= SEQ_LIST_INIT(tree_mod_seq_elem
);
1951 struct ulist_iterator ref_uiter
;
1952 struct ulist_iterator root_uiter
;
1954 btrfs_debug(fs_info
, "resolving all inodes for extent %llu",
1955 extent_item_objectid
);
1957 if (!search_commit_root
) {
1958 trans
= btrfs_attach_transaction(fs_info
->extent_root
);
1959 if (IS_ERR(trans
)) {
1960 if (PTR_ERR(trans
) != -ENOENT
&&
1961 PTR_ERR(trans
) != -EROFS
)
1962 return PTR_ERR(trans
);
1968 btrfs_get_tree_mod_seq(fs_info
, &tree_mod_seq_elem
);
1970 down_read(&fs_info
->commit_root_sem
);
1972 ret
= btrfs_find_all_leafs(trans
, fs_info
, extent_item_objectid
,
1973 tree_mod_seq_elem
.seq
, &refs
,
1974 &extent_item_pos
, ignore_offset
);
1978 ULIST_ITER_INIT(&ref_uiter
);
1979 while (!ret
&& (ref_node
= ulist_next(refs
, &ref_uiter
))) {
1980 ret
= btrfs_find_all_roots_safe(trans
, fs_info
, ref_node
->val
,
1981 tree_mod_seq_elem
.seq
, &roots
,
1985 ULIST_ITER_INIT(&root_uiter
);
1986 while (!ret
&& (root_node
= ulist_next(roots
, &root_uiter
))) {
1987 btrfs_debug(fs_info
,
1988 "root %llu references leaf %llu, data list %#llx",
1989 root_node
->val
, ref_node
->val
,
1991 ret
= iterate_leaf_refs(fs_info
,
1992 (struct extent_inode_elem
*)
1993 (uintptr_t)ref_node
->aux
,
1995 extent_item_objectid
,
2001 free_leaf_list(refs
);
2004 btrfs_put_tree_mod_seq(fs_info
, &tree_mod_seq_elem
);
2005 btrfs_end_transaction(trans
);
2007 up_read(&fs_info
->commit_root_sem
);
2013 int iterate_inodes_from_logical(u64 logical
, struct btrfs_fs_info
*fs_info
,
2014 struct btrfs_path
*path
,
2015 iterate_extent_inodes_t
*iterate
, void *ctx
,
2019 u64 extent_item_pos
;
2021 struct btrfs_key found_key
;
2022 int search_commit_root
= path
->search_commit_root
;
2024 ret
= extent_from_logical(fs_info
, logical
, path
, &found_key
, &flags
);
2025 btrfs_release_path(path
);
2028 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
)
2031 extent_item_pos
= logical
- found_key
.objectid
;
2032 ret
= iterate_extent_inodes(fs_info
, found_key
.objectid
,
2033 extent_item_pos
, search_commit_root
,
2034 iterate
, ctx
, ignore_offset
);
2039 typedef int (iterate_irefs_t
)(u64 parent
, u32 name_len
, unsigned long name_off
,
2040 struct extent_buffer
*eb
, void *ctx
);
2042 static int iterate_inode_refs(u64 inum
, struct btrfs_root
*fs_root
,
2043 struct btrfs_path
*path
,
2044 iterate_irefs_t
*iterate
, void *ctx
)
2053 struct extent_buffer
*eb
;
2054 struct btrfs_item
*item
;
2055 struct btrfs_inode_ref
*iref
;
2056 struct btrfs_key found_key
;
2059 ret
= btrfs_find_item(fs_root
, path
, inum
,
2060 parent
? parent
+ 1 : 0, BTRFS_INODE_REF_KEY
,
2066 ret
= found
? 0 : -ENOENT
;
2071 parent
= found_key
.offset
;
2072 slot
= path
->slots
[0];
2073 eb
= btrfs_clone_extent_buffer(path
->nodes
[0]);
2078 btrfs_release_path(path
);
2080 item
= btrfs_item_nr(slot
);
2081 iref
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_ref
);
2083 for (cur
= 0; cur
< btrfs_item_size(eb
, item
); cur
+= len
) {
2084 name_len
= btrfs_inode_ref_name_len(eb
, iref
);
2085 /* path must be released before calling iterate()! */
2086 btrfs_debug(fs_root
->fs_info
,
2087 "following ref at offset %u for inode %llu in tree %llu",
2088 cur
, found_key
.objectid
,
2089 fs_root
->root_key
.objectid
);
2090 ret
= iterate(parent
, name_len
,
2091 (unsigned long)(iref
+ 1), eb
, ctx
);
2094 len
= sizeof(*iref
) + name_len
;
2095 iref
= (struct btrfs_inode_ref
*)((char *)iref
+ len
);
2097 free_extent_buffer(eb
);
2100 btrfs_release_path(path
);
2105 static int iterate_inode_extrefs(u64 inum
, struct btrfs_root
*fs_root
,
2106 struct btrfs_path
*path
,
2107 iterate_irefs_t
*iterate
, void *ctx
)
2114 struct extent_buffer
*eb
;
2115 struct btrfs_inode_extref
*extref
;
2121 ret
= btrfs_find_one_extref(fs_root
, inum
, offset
, path
, &extref
,
2126 ret
= found
? 0 : -ENOENT
;
2131 slot
= path
->slots
[0];
2132 eb
= btrfs_clone_extent_buffer(path
->nodes
[0]);
2137 btrfs_release_path(path
);
2139 item_size
= btrfs_item_size_nr(eb
, slot
);
2140 ptr
= btrfs_item_ptr_offset(eb
, slot
);
2143 while (cur_offset
< item_size
) {
2146 extref
= (struct btrfs_inode_extref
*)(ptr
+ cur_offset
);
2147 parent
= btrfs_inode_extref_parent(eb
, extref
);
2148 name_len
= btrfs_inode_extref_name_len(eb
, extref
);
2149 ret
= iterate(parent
, name_len
,
2150 (unsigned long)&extref
->name
, eb
, ctx
);
2154 cur_offset
+= btrfs_inode_extref_name_len(eb
, extref
);
2155 cur_offset
+= sizeof(*extref
);
2157 free_extent_buffer(eb
);
2162 btrfs_release_path(path
);
2167 static int iterate_irefs(u64 inum
, struct btrfs_root
*fs_root
,
2168 struct btrfs_path
*path
, iterate_irefs_t
*iterate
,
2174 ret
= iterate_inode_refs(inum
, fs_root
, path
, iterate
, ctx
);
2177 else if (ret
!= -ENOENT
)
2180 ret
= iterate_inode_extrefs(inum
, fs_root
, path
, iterate
, ctx
);
2181 if (ret
== -ENOENT
&& found_refs
)
2188 * returns 0 if the path could be dumped (probably truncated)
2189 * returns <0 in case of an error
2191 static int inode_to_path(u64 inum
, u32 name_len
, unsigned long name_off
,
2192 struct extent_buffer
*eb
, void *ctx
)
2194 struct inode_fs_paths
*ipath
= ctx
;
2197 int i
= ipath
->fspath
->elem_cnt
;
2198 const int s_ptr
= sizeof(char *);
2201 bytes_left
= ipath
->fspath
->bytes_left
> s_ptr
?
2202 ipath
->fspath
->bytes_left
- s_ptr
: 0;
2204 fspath_min
= (char *)ipath
->fspath
->val
+ (i
+ 1) * s_ptr
;
2205 fspath
= btrfs_ref_to_path(ipath
->fs_root
, ipath
->btrfs_path
, name_len
,
2206 name_off
, eb
, inum
, fspath_min
, bytes_left
);
2208 return PTR_ERR(fspath
);
2210 if (fspath
> fspath_min
) {
2211 ipath
->fspath
->val
[i
] = (u64
)(unsigned long)fspath
;
2212 ++ipath
->fspath
->elem_cnt
;
2213 ipath
->fspath
->bytes_left
= fspath
- fspath_min
;
2215 ++ipath
->fspath
->elem_missed
;
2216 ipath
->fspath
->bytes_missing
+= fspath_min
- fspath
;
2217 ipath
->fspath
->bytes_left
= 0;
2224 * this dumps all file system paths to the inode into the ipath struct, provided
2225 * is has been created large enough. each path is zero-terminated and accessed
2226 * from ipath->fspath->val[i].
2227 * when it returns, there are ipath->fspath->elem_cnt number of paths available
2228 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2229 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2230 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2231 * have been needed to return all paths.
2233 int paths_from_inode(u64 inum
, struct inode_fs_paths
*ipath
)
2235 return iterate_irefs(inum
, ipath
->fs_root
, ipath
->btrfs_path
,
2236 inode_to_path
, ipath
);
2239 struct btrfs_data_container
*init_data_container(u32 total_bytes
)
2241 struct btrfs_data_container
*data
;
2244 alloc_bytes
= max_t(size_t, total_bytes
, sizeof(*data
));
2245 data
= kvmalloc(alloc_bytes
, GFP_KERNEL
);
2247 return ERR_PTR(-ENOMEM
);
2249 if (total_bytes
>= sizeof(*data
)) {
2250 data
->bytes_left
= total_bytes
- sizeof(*data
);
2251 data
->bytes_missing
= 0;
2253 data
->bytes_missing
= sizeof(*data
) - total_bytes
;
2254 data
->bytes_left
= 0;
2258 data
->elem_missed
= 0;
2264 * allocates space to return multiple file system paths for an inode.
2265 * total_bytes to allocate are passed, note that space usable for actual path
2266 * information will be total_bytes - sizeof(struct inode_fs_paths).
2267 * the returned pointer must be freed with free_ipath() in the end.
2269 struct inode_fs_paths
*init_ipath(s32 total_bytes
, struct btrfs_root
*fs_root
,
2270 struct btrfs_path
*path
)
2272 struct inode_fs_paths
*ifp
;
2273 struct btrfs_data_container
*fspath
;
2275 fspath
= init_data_container(total_bytes
);
2277 return ERR_CAST(fspath
);
2279 ifp
= kmalloc(sizeof(*ifp
), GFP_KERNEL
);
2282 return ERR_PTR(-ENOMEM
);
2285 ifp
->btrfs_path
= path
;
2286 ifp
->fspath
= fspath
;
2287 ifp
->fs_root
= fs_root
;
2292 void free_ipath(struct inode_fs_paths
*ipath
)
2296 kvfree(ipath
->fspath
);
2300 struct btrfs_backref_iter
*btrfs_backref_iter_alloc(
2301 struct btrfs_fs_info
*fs_info
, gfp_t gfp_flag
)
2303 struct btrfs_backref_iter
*ret
;
2305 ret
= kzalloc(sizeof(*ret
), gfp_flag
);
2309 ret
->path
= btrfs_alloc_path();
2315 /* Current backref iterator only supports iteration in commit root */
2316 ret
->path
->search_commit_root
= 1;
2317 ret
->path
->skip_locking
= 1;
2318 ret
->fs_info
= fs_info
;
2323 int btrfs_backref_iter_start(struct btrfs_backref_iter
*iter
, u64 bytenr
)
2325 struct btrfs_fs_info
*fs_info
= iter
->fs_info
;
2326 struct btrfs_path
*path
= iter
->path
;
2327 struct btrfs_extent_item
*ei
;
2328 struct btrfs_key key
;
2331 key
.objectid
= bytenr
;
2332 key
.type
= BTRFS_METADATA_ITEM_KEY
;
2333 key
.offset
= (u64
)-1;
2334 iter
->bytenr
= bytenr
;
2336 ret
= btrfs_search_slot(NULL
, fs_info
->extent_root
, &key
, path
, 0, 0);
2343 if (path
->slots
[0] == 0) {
2344 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG
));
2350 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
2351 if ((key
.type
!= BTRFS_EXTENT_ITEM_KEY
&&
2352 key
.type
!= BTRFS_METADATA_ITEM_KEY
) || key
.objectid
!= bytenr
) {
2356 memcpy(&iter
->cur_key
, &key
, sizeof(key
));
2357 iter
->item_ptr
= (u32
)btrfs_item_ptr_offset(path
->nodes
[0],
2359 iter
->end_ptr
= (u32
)(iter
->item_ptr
+
2360 btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]));
2361 ei
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2362 struct btrfs_extent_item
);
2365 * Only support iteration on tree backref yet.
2367 * This is an extra precaution for non skinny-metadata, where
2368 * EXTENT_ITEM is also used for tree blocks, that we can only use
2369 * extent flags to determine if it's a tree block.
2371 if (btrfs_extent_flags(path
->nodes
[0], ei
) & BTRFS_EXTENT_FLAG_DATA
) {
2375 iter
->cur_ptr
= (u32
)(iter
->item_ptr
+ sizeof(*ei
));
2377 /* If there is no inline backref, go search for keyed backref */
2378 if (iter
->cur_ptr
>= iter
->end_ptr
) {
2379 ret
= btrfs_next_item(fs_info
->extent_root
, path
);
2381 /* No inline nor keyed ref */
2389 btrfs_item_key_to_cpu(path
->nodes
[0], &iter
->cur_key
,
2391 if (iter
->cur_key
.objectid
!= bytenr
||
2392 (iter
->cur_key
.type
!= BTRFS_SHARED_BLOCK_REF_KEY
&&
2393 iter
->cur_key
.type
!= BTRFS_TREE_BLOCK_REF_KEY
)) {
2397 iter
->cur_ptr
= (u32
)btrfs_item_ptr_offset(path
->nodes
[0],
2399 iter
->item_ptr
= iter
->cur_ptr
;
2400 iter
->end_ptr
= (u32
)(iter
->item_ptr
+ btrfs_item_size_nr(
2401 path
->nodes
[0], path
->slots
[0]));
2406 btrfs_backref_iter_release(iter
);
2411 * Go to the next backref item of current bytenr, can be either inlined or
2414 * Caller needs to check whether it's inline ref or not by iter->cur_key.
2416 * Return 0 if we get next backref without problem.
2417 * Return >0 if there is no extra backref for this bytenr.
2418 * Return <0 if there is something wrong happened.
2420 int btrfs_backref_iter_next(struct btrfs_backref_iter
*iter
)
2422 struct extent_buffer
*eb
= btrfs_backref_get_eb(iter
);
2423 struct btrfs_path
*path
= iter
->path
;
2424 struct btrfs_extent_inline_ref
*iref
;
2428 if (btrfs_backref_iter_is_inline_ref(iter
)) {
2429 /* We're still inside the inline refs */
2430 ASSERT(iter
->cur_ptr
< iter
->end_ptr
);
2432 if (btrfs_backref_has_tree_block_info(iter
)) {
2433 /* First tree block info */
2434 size
= sizeof(struct btrfs_tree_block_info
);
2436 /* Use inline ref type to determine the size */
2439 iref
= (struct btrfs_extent_inline_ref
*)
2440 ((unsigned long)iter
->cur_ptr
);
2441 type
= btrfs_extent_inline_ref_type(eb
, iref
);
2443 size
= btrfs_extent_inline_ref_size(type
);
2445 iter
->cur_ptr
+= size
;
2446 if (iter
->cur_ptr
< iter
->end_ptr
)
2449 /* All inline items iterated, fall through */
2452 /* We're at keyed items, there is no inline item, go to the next one */
2453 ret
= btrfs_next_item(iter
->fs_info
->extent_root
, iter
->path
);
2457 btrfs_item_key_to_cpu(path
->nodes
[0], &iter
->cur_key
, path
->slots
[0]);
2458 if (iter
->cur_key
.objectid
!= iter
->bytenr
||
2459 (iter
->cur_key
.type
!= BTRFS_TREE_BLOCK_REF_KEY
&&
2460 iter
->cur_key
.type
!= BTRFS_SHARED_BLOCK_REF_KEY
))
2462 iter
->item_ptr
= (u32
)btrfs_item_ptr_offset(path
->nodes
[0],
2464 iter
->cur_ptr
= iter
->item_ptr
;
2465 iter
->end_ptr
= iter
->item_ptr
+ (u32
)btrfs_item_size_nr(path
->nodes
[0],
2470 void btrfs_backref_init_cache(struct btrfs_fs_info
*fs_info
,
2471 struct btrfs_backref_cache
*cache
, int is_reloc
)
2475 cache
->rb_root
= RB_ROOT
;
2476 for (i
= 0; i
< BTRFS_MAX_LEVEL
; i
++)
2477 INIT_LIST_HEAD(&cache
->pending
[i
]);
2478 INIT_LIST_HEAD(&cache
->changed
);
2479 INIT_LIST_HEAD(&cache
->detached
);
2480 INIT_LIST_HEAD(&cache
->leaves
);
2481 INIT_LIST_HEAD(&cache
->pending_edge
);
2482 INIT_LIST_HEAD(&cache
->useless_node
);
2483 cache
->fs_info
= fs_info
;
2484 cache
->is_reloc
= is_reloc
;
2487 struct btrfs_backref_node
*btrfs_backref_alloc_node(
2488 struct btrfs_backref_cache
*cache
, u64 bytenr
, int level
)
2490 struct btrfs_backref_node
*node
;
2492 ASSERT(level
>= 0 && level
< BTRFS_MAX_LEVEL
);
2493 node
= kzalloc(sizeof(*node
), GFP_NOFS
);
2497 INIT_LIST_HEAD(&node
->list
);
2498 INIT_LIST_HEAD(&node
->upper
);
2499 INIT_LIST_HEAD(&node
->lower
);
2500 RB_CLEAR_NODE(&node
->rb_node
);
2502 node
->level
= level
;
2503 node
->bytenr
= bytenr
;
2508 struct btrfs_backref_edge
*btrfs_backref_alloc_edge(
2509 struct btrfs_backref_cache
*cache
)
2511 struct btrfs_backref_edge
*edge
;
2513 edge
= kzalloc(sizeof(*edge
), GFP_NOFS
);
2520 * Drop the backref node from cache, also cleaning up all its
2521 * upper edges and any uncached nodes in the path.
2523 * This cleanup happens bottom up, thus the node should either
2524 * be the lowest node in the cache or a detached node.
2526 void btrfs_backref_cleanup_node(struct btrfs_backref_cache
*cache
,
2527 struct btrfs_backref_node
*node
)
2529 struct btrfs_backref_node
*upper
;
2530 struct btrfs_backref_edge
*edge
;
2535 BUG_ON(!node
->lowest
&& !node
->detached
);
2536 while (!list_empty(&node
->upper
)) {
2537 edge
= list_entry(node
->upper
.next
, struct btrfs_backref_edge
,
2539 upper
= edge
->node
[UPPER
];
2540 list_del(&edge
->list
[LOWER
]);
2541 list_del(&edge
->list
[UPPER
]);
2542 btrfs_backref_free_edge(cache
, edge
);
2544 if (RB_EMPTY_NODE(&upper
->rb_node
)) {
2545 BUG_ON(!list_empty(&node
->upper
));
2546 btrfs_backref_drop_node(cache
, node
);
2552 * Add the node to leaf node list if no other child block
2555 if (list_empty(&upper
->lower
)) {
2556 list_add_tail(&upper
->lower
, &cache
->leaves
);
2561 btrfs_backref_drop_node(cache
, node
);
2565 * Release all nodes/edges from current cache
2567 void btrfs_backref_release_cache(struct btrfs_backref_cache
*cache
)
2569 struct btrfs_backref_node
*node
;
2572 while (!list_empty(&cache
->detached
)) {
2573 node
= list_entry(cache
->detached
.next
,
2574 struct btrfs_backref_node
, list
);
2575 btrfs_backref_cleanup_node(cache
, node
);
2578 while (!list_empty(&cache
->leaves
)) {
2579 node
= list_entry(cache
->leaves
.next
,
2580 struct btrfs_backref_node
, lower
);
2581 btrfs_backref_cleanup_node(cache
, node
);
2584 cache
->last_trans
= 0;
2586 for (i
= 0; i
< BTRFS_MAX_LEVEL
; i
++)
2587 ASSERT(list_empty(&cache
->pending
[i
]));
2588 ASSERT(list_empty(&cache
->pending_edge
));
2589 ASSERT(list_empty(&cache
->useless_node
));
2590 ASSERT(list_empty(&cache
->changed
));
2591 ASSERT(list_empty(&cache
->detached
));
2592 ASSERT(RB_EMPTY_ROOT(&cache
->rb_root
));
2593 ASSERT(!cache
->nr_nodes
);
2594 ASSERT(!cache
->nr_edges
);
2598 * Handle direct tree backref
2600 * Direct tree backref means, the backref item shows its parent bytenr
2601 * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
2603 * @ref_key: The converted backref key.
2604 * For keyed backref, it's the item key.
2605 * For inlined backref, objectid is the bytenr,
2606 * type is btrfs_inline_ref_type, offset is
2607 * btrfs_inline_ref_offset.
2609 static int handle_direct_tree_backref(struct btrfs_backref_cache
*cache
,
2610 struct btrfs_key
*ref_key
,
2611 struct btrfs_backref_node
*cur
)
2613 struct btrfs_backref_edge
*edge
;
2614 struct btrfs_backref_node
*upper
;
2615 struct rb_node
*rb_node
;
2617 ASSERT(ref_key
->type
== BTRFS_SHARED_BLOCK_REF_KEY
);
2619 /* Only reloc root uses backref pointing to itself */
2620 if (ref_key
->objectid
== ref_key
->offset
) {
2621 struct btrfs_root
*root
;
2623 cur
->is_reloc_root
= 1;
2624 /* Only reloc backref cache cares about a specific root */
2625 if (cache
->is_reloc
) {
2626 root
= find_reloc_root(cache
->fs_info
, cur
->bytenr
);
2632 * For generic purpose backref cache, reloc root node
2635 list_add(&cur
->list
, &cache
->useless_node
);
2640 edge
= btrfs_backref_alloc_edge(cache
);
2644 rb_node
= rb_simple_search(&cache
->rb_root
, ref_key
->offset
);
2646 /* Parent node not yet cached */
2647 upper
= btrfs_backref_alloc_node(cache
, ref_key
->offset
,
2650 btrfs_backref_free_edge(cache
, edge
);
2655 * Backrefs for the upper level block isn't cached, add the
2656 * block to pending list
2658 list_add_tail(&edge
->list
[UPPER
], &cache
->pending_edge
);
2660 /* Parent node already cached */
2661 upper
= rb_entry(rb_node
, struct btrfs_backref_node
, rb_node
);
2662 ASSERT(upper
->checked
);
2663 INIT_LIST_HEAD(&edge
->list
[UPPER
]);
2665 btrfs_backref_link_edge(edge
, cur
, upper
, LINK_LOWER
);
2670 * Handle indirect tree backref
2672 * Indirect tree backref means, we only know which tree the node belongs to.
2673 * We still need to do a tree search to find out the parents. This is for
2674 * TREE_BLOCK_REF backref (keyed or inlined).
2676 * @ref_key: The same as @ref_key in handle_direct_tree_backref()
2677 * @tree_key: The first key of this tree block.
2678 * @path: A clean (released) path, to avoid allocating path everytime
2679 * the function get called.
2681 static int handle_indirect_tree_backref(struct btrfs_backref_cache
*cache
,
2682 struct btrfs_path
*path
,
2683 struct btrfs_key
*ref_key
,
2684 struct btrfs_key
*tree_key
,
2685 struct btrfs_backref_node
*cur
)
2687 struct btrfs_fs_info
*fs_info
= cache
->fs_info
;
2688 struct btrfs_backref_node
*upper
;
2689 struct btrfs_backref_node
*lower
;
2690 struct btrfs_backref_edge
*edge
;
2691 struct extent_buffer
*eb
;
2692 struct btrfs_root
*root
;
2693 struct rb_node
*rb_node
;
2695 bool need_check
= true;
2698 root
= btrfs_get_fs_root(fs_info
, ref_key
->offset
, false);
2700 return PTR_ERR(root
);
2701 if (!test_bit(BTRFS_ROOT_SHAREABLE
, &root
->state
))
2704 if (btrfs_root_level(&root
->root_item
) == cur
->level
) {
2706 ASSERT(btrfs_root_bytenr(&root
->root_item
) == cur
->bytenr
);
2708 * For reloc backref cache, we may ignore reloc root. But for
2709 * general purpose backref cache, we can't rely on
2710 * btrfs_should_ignore_reloc_root() as it may conflict with
2711 * current running relocation and lead to missing root.
2713 * For general purpose backref cache, reloc root detection is
2714 * completely relying on direct backref (key->offset is parent
2715 * bytenr), thus only do such check for reloc cache.
2717 if (btrfs_should_ignore_reloc_root(root
) && cache
->is_reloc
) {
2718 btrfs_put_root(root
);
2719 list_add(&cur
->list
, &cache
->useless_node
);
2726 level
= cur
->level
+ 1;
2728 /* Search the tree to find parent blocks referring to the block */
2729 path
->search_commit_root
= 1;
2730 path
->skip_locking
= 1;
2731 path
->lowest_level
= level
;
2732 ret
= btrfs_search_slot(NULL
, root
, tree_key
, path
, 0, 0);
2733 path
->lowest_level
= 0;
2735 btrfs_put_root(root
);
2738 if (ret
> 0 && path
->slots
[level
] > 0)
2739 path
->slots
[level
]--;
2741 eb
= path
->nodes
[level
];
2742 if (btrfs_node_blockptr(eb
, path
->slots
[level
]) != cur
->bytenr
) {
2744 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
2745 cur
->bytenr
, level
- 1, root
->root_key
.objectid
,
2746 tree_key
->objectid
, tree_key
->type
, tree_key
->offset
);
2747 btrfs_put_root(root
);
2753 /* Add all nodes and edges in the path */
2754 for (; level
< BTRFS_MAX_LEVEL
; level
++) {
2755 if (!path
->nodes
[level
]) {
2756 ASSERT(btrfs_root_bytenr(&root
->root_item
) ==
2758 /* Same as previous should_ignore_reloc_root() call */
2759 if (btrfs_should_ignore_reloc_root(root
) &&
2761 btrfs_put_root(root
);
2762 list_add(&lower
->list
, &cache
->useless_node
);
2769 edge
= btrfs_backref_alloc_edge(cache
);
2771 btrfs_put_root(root
);
2776 eb
= path
->nodes
[level
];
2777 rb_node
= rb_simple_search(&cache
->rb_root
, eb
->start
);
2779 upper
= btrfs_backref_alloc_node(cache
, eb
->start
,
2782 btrfs_put_root(root
);
2783 btrfs_backref_free_edge(cache
, edge
);
2787 upper
->owner
= btrfs_header_owner(eb
);
2788 if (!test_bit(BTRFS_ROOT_SHAREABLE
, &root
->state
))
2792 * If we know the block isn't shared we can avoid
2793 * checking its backrefs.
2795 if (btrfs_block_can_be_shared(root
, eb
))
2801 * Add the block to pending list if we need to check its
2802 * backrefs, we only do this once while walking up a
2803 * tree as we will catch anything else later on.
2805 if (!upper
->checked
&& need_check
) {
2807 list_add_tail(&edge
->list
[UPPER
],
2808 &cache
->pending_edge
);
2812 INIT_LIST_HEAD(&edge
->list
[UPPER
]);
2815 upper
= rb_entry(rb_node
, struct btrfs_backref_node
,
2817 ASSERT(upper
->checked
);
2818 INIT_LIST_HEAD(&edge
->list
[UPPER
]);
2820 upper
->owner
= btrfs_header_owner(eb
);
2822 btrfs_backref_link_edge(edge
, lower
, upper
, LINK_LOWER
);
2825 btrfs_put_root(root
);
2832 btrfs_release_path(path
);
2837 * Add backref node @cur into @cache.
2839 * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
2840 * links aren't yet bi-directional. Needs to finish such links.
2841 * Use btrfs_backref_finish_upper_links() to finish such linkage.
2843 * @path: Released path for indirect tree backref lookup
2844 * @iter: Released backref iter for extent tree search
2845 * @node_key: The first key of the tree block
2847 int btrfs_backref_add_tree_node(struct btrfs_backref_cache
*cache
,
2848 struct btrfs_path
*path
,
2849 struct btrfs_backref_iter
*iter
,
2850 struct btrfs_key
*node_key
,
2851 struct btrfs_backref_node
*cur
)
2853 struct btrfs_fs_info
*fs_info
= cache
->fs_info
;
2854 struct btrfs_backref_edge
*edge
;
2855 struct btrfs_backref_node
*exist
;
2858 ret
= btrfs_backref_iter_start(iter
, cur
->bytenr
);
2862 * We skip the first btrfs_tree_block_info, as we don't use the key
2863 * stored in it, but fetch it from the tree block
2865 if (btrfs_backref_has_tree_block_info(iter
)) {
2866 ret
= btrfs_backref_iter_next(iter
);
2869 /* No extra backref? This means the tree block is corrupted */
2875 WARN_ON(cur
->checked
);
2876 if (!list_empty(&cur
->upper
)) {
2878 * The backref was added previously when processing backref of
2879 * type BTRFS_TREE_BLOCK_REF_KEY
2881 ASSERT(list_is_singular(&cur
->upper
));
2882 edge
= list_entry(cur
->upper
.next
, struct btrfs_backref_edge
,
2884 ASSERT(list_empty(&edge
->list
[UPPER
]));
2885 exist
= edge
->node
[UPPER
];
2887 * Add the upper level block to pending list if we need check
2890 if (!exist
->checked
)
2891 list_add_tail(&edge
->list
[UPPER
], &cache
->pending_edge
);
2896 for (; ret
== 0; ret
= btrfs_backref_iter_next(iter
)) {
2897 struct extent_buffer
*eb
;
2898 struct btrfs_key key
;
2902 eb
= btrfs_backref_get_eb(iter
);
2904 key
.objectid
= iter
->bytenr
;
2905 if (btrfs_backref_iter_is_inline_ref(iter
)) {
2906 struct btrfs_extent_inline_ref
*iref
;
2908 /* Update key for inline backref */
2909 iref
= (struct btrfs_extent_inline_ref
*)
2910 ((unsigned long)iter
->cur_ptr
);
2911 type
= btrfs_get_extent_inline_ref_type(eb
, iref
,
2912 BTRFS_REF_TYPE_BLOCK
);
2913 if (type
== BTRFS_REF_TYPE_INVALID
) {
2918 key
.offset
= btrfs_extent_inline_ref_offset(eb
, iref
);
2920 key
.type
= iter
->cur_key
.type
;
2921 key
.offset
= iter
->cur_key
.offset
;
2925 * Parent node found and matches current inline ref, no need to
2926 * rebuild this node for this inline ref
2929 ((key
.type
== BTRFS_TREE_BLOCK_REF_KEY
&&
2930 exist
->owner
== key
.offset
) ||
2931 (key
.type
== BTRFS_SHARED_BLOCK_REF_KEY
&&
2932 exist
->bytenr
== key
.offset
))) {
2937 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */
2938 if (key
.type
== BTRFS_SHARED_BLOCK_REF_KEY
) {
2939 ret
= handle_direct_tree_backref(cache
, &key
, cur
);
2943 } else if (unlikely(key
.type
== BTRFS_EXTENT_REF_V0_KEY
)) {
2945 btrfs_print_v0_err(fs_info
);
2946 btrfs_handle_fs_error(fs_info
, ret
, NULL
);
2948 } else if (key
.type
!= BTRFS_TREE_BLOCK_REF_KEY
) {
2953 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
2954 * means the root objectid. We need to search the tree to get
2955 * its parent bytenr.
2957 ret
= handle_indirect_tree_backref(cache
, path
, &key
, node_key
,
2966 btrfs_backref_iter_release(iter
);
2971 * Finish the upwards linkage created by btrfs_backref_add_tree_node()
2973 int btrfs_backref_finish_upper_links(struct btrfs_backref_cache
*cache
,
2974 struct btrfs_backref_node
*start
)
2976 struct list_head
*useless_node
= &cache
->useless_node
;
2977 struct btrfs_backref_edge
*edge
;
2978 struct rb_node
*rb_node
;
2979 LIST_HEAD(pending_edge
);
2981 ASSERT(start
->checked
);
2983 /* Insert this node to cache if it's not COW-only */
2984 if (!start
->cowonly
) {
2985 rb_node
= rb_simple_insert(&cache
->rb_root
, start
->bytenr
,
2988 btrfs_backref_panic(cache
->fs_info
, start
->bytenr
,
2990 list_add_tail(&start
->lower
, &cache
->leaves
);
2994 * Use breadth first search to iterate all related edges.
2996 * The starting points are all the edges of this node
2998 list_for_each_entry(edge
, &start
->upper
, list
[LOWER
])
2999 list_add_tail(&edge
->list
[UPPER
], &pending_edge
);
3001 while (!list_empty(&pending_edge
)) {
3002 struct btrfs_backref_node
*upper
;
3003 struct btrfs_backref_node
*lower
;
3005 edge
= list_first_entry(&pending_edge
,
3006 struct btrfs_backref_edge
, list
[UPPER
]);
3007 list_del_init(&edge
->list
[UPPER
]);
3008 upper
= edge
->node
[UPPER
];
3009 lower
= edge
->node
[LOWER
];
3011 /* Parent is detached, no need to keep any edges */
3012 if (upper
->detached
) {
3013 list_del(&edge
->list
[LOWER
]);
3014 btrfs_backref_free_edge(cache
, edge
);
3016 /* Lower node is orphan, queue for cleanup */
3017 if (list_empty(&lower
->upper
))
3018 list_add(&lower
->list
, useless_node
);
3023 * All new nodes added in current build_backref_tree() haven't
3024 * been linked to the cache rb tree.
3025 * So if we have upper->rb_node populated, this means a cache
3026 * hit. We only need to link the edge, as @upper and all its
3027 * parents have already been linked.
3029 if (!RB_EMPTY_NODE(&upper
->rb_node
)) {
3030 if (upper
->lowest
) {
3031 list_del_init(&upper
->lower
);
3035 list_add_tail(&edge
->list
[UPPER
], &upper
->lower
);
3039 /* Sanity check, we shouldn't have any unchecked nodes */
3040 if (!upper
->checked
) {
3045 /* Sanity check, COW-only node has non-COW-only parent */
3046 if (start
->cowonly
!= upper
->cowonly
) {
3051 /* Only cache non-COW-only (subvolume trees) tree blocks */
3052 if (!upper
->cowonly
) {
3053 rb_node
= rb_simple_insert(&cache
->rb_root
, upper
->bytenr
,
3056 btrfs_backref_panic(cache
->fs_info
,
3057 upper
->bytenr
, -EEXIST
);
3062 list_add_tail(&edge
->list
[UPPER
], &upper
->lower
);
3065 * Also queue all the parent edges of this uncached node
3066 * to finish the upper linkage
3068 list_for_each_entry(edge
, &upper
->upper
, list
[LOWER
])
3069 list_add_tail(&edge
->list
[UPPER
], &pending_edge
);
3074 void btrfs_backref_error_cleanup(struct btrfs_backref_cache
*cache
,
3075 struct btrfs_backref_node
*node
)
3077 struct btrfs_backref_node
*lower
;
3078 struct btrfs_backref_node
*upper
;
3079 struct btrfs_backref_edge
*edge
;
3081 while (!list_empty(&cache
->useless_node
)) {
3082 lower
= list_first_entry(&cache
->useless_node
,
3083 struct btrfs_backref_node
, list
);
3084 list_del_init(&lower
->list
);
3086 while (!list_empty(&cache
->pending_edge
)) {
3087 edge
= list_first_entry(&cache
->pending_edge
,
3088 struct btrfs_backref_edge
, list
[UPPER
]);
3089 list_del(&edge
->list
[UPPER
]);
3090 list_del(&edge
->list
[LOWER
]);
3091 lower
= edge
->node
[LOWER
];
3092 upper
= edge
->node
[UPPER
];
3093 btrfs_backref_free_edge(cache
, edge
);
3096 * Lower is no longer linked to any upper backref nodes and
3097 * isn't in the cache, we can free it ourselves.
3099 if (list_empty(&lower
->upper
) &&
3100 RB_EMPTY_NODE(&lower
->rb_node
))
3101 list_add(&lower
->list
, &cache
->useless_node
);
3103 if (!RB_EMPTY_NODE(&upper
->rb_node
))
3106 /* Add this guy's upper edges to the list to process */
3107 list_for_each_entry(edge
, &upper
->upper
, list
[LOWER
])
3108 list_add_tail(&edge
->list
[UPPER
],
3109 &cache
->pending_edge
);
3110 if (list_empty(&upper
->upper
))
3111 list_add(&upper
->list
, &cache
->useless_node
);
3114 while (!list_empty(&cache
->useless_node
)) {
3115 lower
= list_first_entry(&cache
->useless_node
,
3116 struct btrfs_backref_node
, list
);
3117 list_del_init(&lower
->list
);
3120 btrfs_backref_free_node(cache
, lower
);
3123 btrfs_backref_cleanup_node(cache
, node
);
3124 ASSERT(list_empty(&cache
->useless_node
) &&
3125 list_empty(&cache
->pending_edge
));