Merge tag 'regmap-fix-v5.11-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux/fpc-iii.git] / fs / btrfs / block-group.c
blob52f2198d44c95c513d942af7a50f6807820cd931
1 // SPDX-License-Identifier: GPL-2.0
3 #include "misc.h"
4 #include "ctree.h"
5 #include "block-group.h"
6 #include "space-info.h"
7 #include "disk-io.h"
8 #include "free-space-cache.h"
9 #include "free-space-tree.h"
10 #include "volumes.h"
11 #include "transaction.h"
12 #include "ref-verify.h"
13 #include "sysfs.h"
14 #include "tree-log.h"
15 #include "delalloc-space.h"
16 #include "discard.h"
17 #include "raid56.h"
20 * Return target flags in extended format or 0 if restripe for this chunk_type
21 * is not in progress
23 * Should be called with balance_lock held
25 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
27 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
28 u64 target = 0;
30 if (!bctl)
31 return 0;
33 if (flags & BTRFS_BLOCK_GROUP_DATA &&
34 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
35 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
36 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
37 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
38 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
39 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
40 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
41 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
44 return target;
48 * @flags: available profiles in extended format (see ctree.h)
50 * Return reduced profile in chunk format. If profile changing is in progress
51 * (either running or paused) picks the target profile (if it's already
52 * available), otherwise falls back to plain reducing.
54 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
56 u64 num_devices = fs_info->fs_devices->rw_devices;
57 u64 target;
58 u64 raid_type;
59 u64 allowed = 0;
62 * See if restripe for this chunk_type is in progress, if so try to
63 * reduce to the target profile
65 spin_lock(&fs_info->balance_lock);
66 target = get_restripe_target(fs_info, flags);
67 if (target) {
68 spin_unlock(&fs_info->balance_lock);
69 return extended_to_chunk(target);
71 spin_unlock(&fs_info->balance_lock);
73 /* First, mask out the RAID levels which aren't possible */
74 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
75 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
76 allowed |= btrfs_raid_array[raid_type].bg_flag;
78 allowed &= flags;
80 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
81 allowed = BTRFS_BLOCK_GROUP_RAID6;
82 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
83 allowed = BTRFS_BLOCK_GROUP_RAID5;
84 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
85 allowed = BTRFS_BLOCK_GROUP_RAID10;
86 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
87 allowed = BTRFS_BLOCK_GROUP_RAID1;
88 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
89 allowed = BTRFS_BLOCK_GROUP_RAID0;
91 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
93 return extended_to_chunk(flags | allowed);
96 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
98 unsigned seq;
99 u64 flags;
101 do {
102 flags = orig_flags;
103 seq = read_seqbegin(&fs_info->profiles_lock);
105 if (flags & BTRFS_BLOCK_GROUP_DATA)
106 flags |= fs_info->avail_data_alloc_bits;
107 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
108 flags |= fs_info->avail_system_alloc_bits;
109 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
110 flags |= fs_info->avail_metadata_alloc_bits;
111 } while (read_seqretry(&fs_info->profiles_lock, seq));
113 return btrfs_reduce_alloc_profile(fs_info, flags);
116 void btrfs_get_block_group(struct btrfs_block_group *cache)
118 refcount_inc(&cache->refs);
121 void btrfs_put_block_group(struct btrfs_block_group *cache)
123 if (refcount_dec_and_test(&cache->refs)) {
124 WARN_ON(cache->pinned > 0);
125 WARN_ON(cache->reserved > 0);
128 * A block_group shouldn't be on the discard_list anymore.
129 * Remove the block_group from the discard_list to prevent us
130 * from causing a panic due to NULL pointer dereference.
132 if (WARN_ON(!list_empty(&cache->discard_list)))
133 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
134 cache);
137 * If not empty, someone is still holding mutex of
138 * full_stripe_lock, which can only be released by caller.
139 * And it will definitely cause use-after-free when caller
140 * tries to release full stripe lock.
142 * No better way to resolve, but only to warn.
144 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
145 kfree(cache->free_space_ctl);
146 kfree(cache);
151 * This adds the block group to the fs_info rb tree for the block group cache
153 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
154 struct btrfs_block_group *block_group)
156 struct rb_node **p;
157 struct rb_node *parent = NULL;
158 struct btrfs_block_group *cache;
160 ASSERT(block_group->length != 0);
162 spin_lock(&info->block_group_cache_lock);
163 p = &info->block_group_cache_tree.rb_node;
165 while (*p) {
166 parent = *p;
167 cache = rb_entry(parent, struct btrfs_block_group, cache_node);
168 if (block_group->start < cache->start) {
169 p = &(*p)->rb_left;
170 } else if (block_group->start > cache->start) {
171 p = &(*p)->rb_right;
172 } else {
173 spin_unlock(&info->block_group_cache_lock);
174 return -EEXIST;
178 rb_link_node(&block_group->cache_node, parent, p);
179 rb_insert_color(&block_group->cache_node,
180 &info->block_group_cache_tree);
182 if (info->first_logical_byte > block_group->start)
183 info->first_logical_byte = block_group->start;
185 spin_unlock(&info->block_group_cache_lock);
187 return 0;
191 * This will return the block group at or after bytenr if contains is 0, else
192 * it will return the block group that contains the bytenr
194 static struct btrfs_block_group *block_group_cache_tree_search(
195 struct btrfs_fs_info *info, u64 bytenr, int contains)
197 struct btrfs_block_group *cache, *ret = NULL;
198 struct rb_node *n;
199 u64 end, start;
201 spin_lock(&info->block_group_cache_lock);
202 n = info->block_group_cache_tree.rb_node;
204 while (n) {
205 cache = rb_entry(n, struct btrfs_block_group, cache_node);
206 end = cache->start + cache->length - 1;
207 start = cache->start;
209 if (bytenr < start) {
210 if (!contains && (!ret || start < ret->start))
211 ret = cache;
212 n = n->rb_left;
213 } else if (bytenr > start) {
214 if (contains && bytenr <= end) {
215 ret = cache;
216 break;
218 n = n->rb_right;
219 } else {
220 ret = cache;
221 break;
224 if (ret) {
225 btrfs_get_block_group(ret);
226 if (bytenr == 0 && info->first_logical_byte > ret->start)
227 info->first_logical_byte = ret->start;
229 spin_unlock(&info->block_group_cache_lock);
231 return ret;
235 * Return the block group that starts at or after bytenr
237 struct btrfs_block_group *btrfs_lookup_first_block_group(
238 struct btrfs_fs_info *info, u64 bytenr)
240 return block_group_cache_tree_search(info, bytenr, 0);
244 * Return the block group that contains the given bytenr
246 struct btrfs_block_group *btrfs_lookup_block_group(
247 struct btrfs_fs_info *info, u64 bytenr)
249 return block_group_cache_tree_search(info, bytenr, 1);
252 struct btrfs_block_group *btrfs_next_block_group(
253 struct btrfs_block_group *cache)
255 struct btrfs_fs_info *fs_info = cache->fs_info;
256 struct rb_node *node;
258 spin_lock(&fs_info->block_group_cache_lock);
260 /* If our block group was removed, we need a full search. */
261 if (RB_EMPTY_NODE(&cache->cache_node)) {
262 const u64 next_bytenr = cache->start + cache->length;
264 spin_unlock(&fs_info->block_group_cache_lock);
265 btrfs_put_block_group(cache);
266 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
268 node = rb_next(&cache->cache_node);
269 btrfs_put_block_group(cache);
270 if (node) {
271 cache = rb_entry(node, struct btrfs_block_group, cache_node);
272 btrfs_get_block_group(cache);
273 } else
274 cache = NULL;
275 spin_unlock(&fs_info->block_group_cache_lock);
276 return cache;
279 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
281 struct btrfs_block_group *bg;
282 bool ret = true;
284 bg = btrfs_lookup_block_group(fs_info, bytenr);
285 if (!bg)
286 return false;
288 spin_lock(&bg->lock);
289 if (bg->ro)
290 ret = false;
291 else
292 atomic_inc(&bg->nocow_writers);
293 spin_unlock(&bg->lock);
295 /* No put on block group, done by btrfs_dec_nocow_writers */
296 if (!ret)
297 btrfs_put_block_group(bg);
299 return ret;
302 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
304 struct btrfs_block_group *bg;
306 bg = btrfs_lookup_block_group(fs_info, bytenr);
307 ASSERT(bg);
308 if (atomic_dec_and_test(&bg->nocow_writers))
309 wake_up_var(&bg->nocow_writers);
311 * Once for our lookup and once for the lookup done by a previous call
312 * to btrfs_inc_nocow_writers()
314 btrfs_put_block_group(bg);
315 btrfs_put_block_group(bg);
318 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
320 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
323 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
324 const u64 start)
326 struct btrfs_block_group *bg;
328 bg = btrfs_lookup_block_group(fs_info, start);
329 ASSERT(bg);
330 if (atomic_dec_and_test(&bg->reservations))
331 wake_up_var(&bg->reservations);
332 btrfs_put_block_group(bg);
335 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
337 struct btrfs_space_info *space_info = bg->space_info;
339 ASSERT(bg->ro);
341 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
342 return;
345 * Our block group is read only but before we set it to read only,
346 * some task might have had allocated an extent from it already, but it
347 * has not yet created a respective ordered extent (and added it to a
348 * root's list of ordered extents).
349 * Therefore wait for any task currently allocating extents, since the
350 * block group's reservations counter is incremented while a read lock
351 * on the groups' semaphore is held and decremented after releasing
352 * the read access on that semaphore and creating the ordered extent.
354 down_write(&space_info->groups_sem);
355 up_write(&space_info->groups_sem);
357 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
360 struct btrfs_caching_control *btrfs_get_caching_control(
361 struct btrfs_block_group *cache)
363 struct btrfs_caching_control *ctl;
365 spin_lock(&cache->lock);
366 if (!cache->caching_ctl) {
367 spin_unlock(&cache->lock);
368 return NULL;
371 ctl = cache->caching_ctl;
372 refcount_inc(&ctl->count);
373 spin_unlock(&cache->lock);
374 return ctl;
377 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
379 if (refcount_dec_and_test(&ctl->count))
380 kfree(ctl);
384 * When we wait for progress in the block group caching, its because our
385 * allocation attempt failed at least once. So, we must sleep and let some
386 * progress happen before we try again.
388 * This function will sleep at least once waiting for new free space to show
389 * up, and then it will check the block group free space numbers for our min
390 * num_bytes. Another option is to have it go ahead and look in the rbtree for
391 * a free extent of a given size, but this is a good start.
393 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
394 * any of the information in this block group.
396 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
397 u64 num_bytes)
399 struct btrfs_caching_control *caching_ctl;
401 caching_ctl = btrfs_get_caching_control(cache);
402 if (!caching_ctl)
403 return;
405 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
406 (cache->free_space_ctl->free_space >= num_bytes));
408 btrfs_put_caching_control(caching_ctl);
411 int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
413 struct btrfs_caching_control *caching_ctl;
414 int ret = 0;
416 caching_ctl = btrfs_get_caching_control(cache);
417 if (!caching_ctl)
418 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
420 wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
421 if (cache->cached == BTRFS_CACHE_ERROR)
422 ret = -EIO;
423 btrfs_put_caching_control(caching_ctl);
424 return ret;
427 static bool space_cache_v1_done(struct btrfs_block_group *cache)
429 bool ret;
431 spin_lock(&cache->lock);
432 ret = cache->cached != BTRFS_CACHE_FAST;
433 spin_unlock(&cache->lock);
435 return ret;
438 void btrfs_wait_space_cache_v1_finished(struct btrfs_block_group *cache,
439 struct btrfs_caching_control *caching_ctl)
441 wait_event(caching_ctl->wait, space_cache_v1_done(cache));
444 #ifdef CONFIG_BTRFS_DEBUG
445 static void fragment_free_space(struct btrfs_block_group *block_group)
447 struct btrfs_fs_info *fs_info = block_group->fs_info;
448 u64 start = block_group->start;
449 u64 len = block_group->length;
450 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
451 fs_info->nodesize : fs_info->sectorsize;
452 u64 step = chunk << 1;
454 while (len > chunk) {
455 btrfs_remove_free_space(block_group, start, chunk);
456 start += step;
457 if (len < step)
458 len = 0;
459 else
460 len -= step;
463 #endif
466 * This is only called by btrfs_cache_block_group, since we could have freed
467 * extents we need to check the pinned_extents for any extents that can't be
468 * used yet since their free space will be released as soon as the transaction
469 * commits.
471 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
473 struct btrfs_fs_info *info = block_group->fs_info;
474 u64 extent_start, extent_end, size, total_added = 0;
475 int ret;
477 while (start < end) {
478 ret = find_first_extent_bit(&info->excluded_extents, start,
479 &extent_start, &extent_end,
480 EXTENT_DIRTY | EXTENT_UPTODATE,
481 NULL);
482 if (ret)
483 break;
485 if (extent_start <= start) {
486 start = extent_end + 1;
487 } else if (extent_start > start && extent_start < end) {
488 size = extent_start - start;
489 total_added += size;
490 ret = btrfs_add_free_space_async_trimmed(block_group,
491 start, size);
492 BUG_ON(ret); /* -ENOMEM or logic error */
493 start = extent_end + 1;
494 } else {
495 break;
499 if (start < end) {
500 size = end - start;
501 total_added += size;
502 ret = btrfs_add_free_space_async_trimmed(block_group, start,
503 size);
504 BUG_ON(ret); /* -ENOMEM or logic error */
507 return total_added;
510 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
512 struct btrfs_block_group *block_group = caching_ctl->block_group;
513 struct btrfs_fs_info *fs_info = block_group->fs_info;
514 struct btrfs_root *extent_root = fs_info->extent_root;
515 struct btrfs_path *path;
516 struct extent_buffer *leaf;
517 struct btrfs_key key;
518 u64 total_found = 0;
519 u64 last = 0;
520 u32 nritems;
521 int ret;
522 bool wakeup = true;
524 path = btrfs_alloc_path();
525 if (!path)
526 return -ENOMEM;
528 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
530 #ifdef CONFIG_BTRFS_DEBUG
532 * If we're fragmenting we don't want to make anybody think we can
533 * allocate from this block group until we've had a chance to fragment
534 * the free space.
536 if (btrfs_should_fragment_free_space(block_group))
537 wakeup = false;
538 #endif
540 * We don't want to deadlock with somebody trying to allocate a new
541 * extent for the extent root while also trying to search the extent
542 * root to add free space. So we skip locking and search the commit
543 * root, since its read-only
545 path->skip_locking = 1;
546 path->search_commit_root = 1;
547 path->reada = READA_FORWARD;
549 key.objectid = last;
550 key.offset = 0;
551 key.type = BTRFS_EXTENT_ITEM_KEY;
553 next:
554 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
555 if (ret < 0)
556 goto out;
558 leaf = path->nodes[0];
559 nritems = btrfs_header_nritems(leaf);
561 while (1) {
562 if (btrfs_fs_closing(fs_info) > 1) {
563 last = (u64)-1;
564 break;
567 if (path->slots[0] < nritems) {
568 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
569 } else {
570 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
571 if (ret)
572 break;
574 if (need_resched() ||
575 rwsem_is_contended(&fs_info->commit_root_sem)) {
576 if (wakeup)
577 caching_ctl->progress = last;
578 btrfs_release_path(path);
579 up_read(&fs_info->commit_root_sem);
580 mutex_unlock(&caching_ctl->mutex);
581 cond_resched();
582 mutex_lock(&caching_ctl->mutex);
583 down_read(&fs_info->commit_root_sem);
584 goto next;
587 ret = btrfs_next_leaf(extent_root, path);
588 if (ret < 0)
589 goto out;
590 if (ret)
591 break;
592 leaf = path->nodes[0];
593 nritems = btrfs_header_nritems(leaf);
594 continue;
597 if (key.objectid < last) {
598 key.objectid = last;
599 key.offset = 0;
600 key.type = BTRFS_EXTENT_ITEM_KEY;
602 if (wakeup)
603 caching_ctl->progress = last;
604 btrfs_release_path(path);
605 goto next;
608 if (key.objectid < block_group->start) {
609 path->slots[0]++;
610 continue;
613 if (key.objectid >= block_group->start + block_group->length)
614 break;
616 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
617 key.type == BTRFS_METADATA_ITEM_KEY) {
618 total_found += add_new_free_space(block_group, last,
619 key.objectid);
620 if (key.type == BTRFS_METADATA_ITEM_KEY)
621 last = key.objectid +
622 fs_info->nodesize;
623 else
624 last = key.objectid + key.offset;
626 if (total_found > CACHING_CTL_WAKE_UP) {
627 total_found = 0;
628 if (wakeup)
629 wake_up(&caching_ctl->wait);
632 path->slots[0]++;
634 ret = 0;
636 total_found += add_new_free_space(block_group, last,
637 block_group->start + block_group->length);
638 caching_ctl->progress = (u64)-1;
640 out:
641 btrfs_free_path(path);
642 return ret;
645 static noinline void caching_thread(struct btrfs_work *work)
647 struct btrfs_block_group *block_group;
648 struct btrfs_fs_info *fs_info;
649 struct btrfs_caching_control *caching_ctl;
650 int ret;
652 caching_ctl = container_of(work, struct btrfs_caching_control, work);
653 block_group = caching_ctl->block_group;
654 fs_info = block_group->fs_info;
656 mutex_lock(&caching_ctl->mutex);
657 down_read(&fs_info->commit_root_sem);
659 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
660 ret = load_free_space_cache(block_group);
661 if (ret == 1) {
662 ret = 0;
663 goto done;
667 * We failed to load the space cache, set ourselves to
668 * CACHE_STARTED and carry on.
670 spin_lock(&block_group->lock);
671 block_group->cached = BTRFS_CACHE_STARTED;
672 spin_unlock(&block_group->lock);
673 wake_up(&caching_ctl->wait);
676 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
677 ret = load_free_space_tree(caching_ctl);
678 else
679 ret = load_extent_tree_free(caching_ctl);
680 done:
681 spin_lock(&block_group->lock);
682 block_group->caching_ctl = NULL;
683 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
684 spin_unlock(&block_group->lock);
686 #ifdef CONFIG_BTRFS_DEBUG
687 if (btrfs_should_fragment_free_space(block_group)) {
688 u64 bytes_used;
690 spin_lock(&block_group->space_info->lock);
691 spin_lock(&block_group->lock);
692 bytes_used = block_group->length - block_group->used;
693 block_group->space_info->bytes_used += bytes_used >> 1;
694 spin_unlock(&block_group->lock);
695 spin_unlock(&block_group->space_info->lock);
696 fragment_free_space(block_group);
698 #endif
700 caching_ctl->progress = (u64)-1;
702 up_read(&fs_info->commit_root_sem);
703 btrfs_free_excluded_extents(block_group);
704 mutex_unlock(&caching_ctl->mutex);
706 wake_up(&caching_ctl->wait);
708 btrfs_put_caching_control(caching_ctl);
709 btrfs_put_block_group(block_group);
712 int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only)
714 DEFINE_WAIT(wait);
715 struct btrfs_fs_info *fs_info = cache->fs_info;
716 struct btrfs_caching_control *caching_ctl = NULL;
717 int ret = 0;
719 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
720 if (!caching_ctl)
721 return -ENOMEM;
723 INIT_LIST_HEAD(&caching_ctl->list);
724 mutex_init(&caching_ctl->mutex);
725 init_waitqueue_head(&caching_ctl->wait);
726 caching_ctl->block_group = cache;
727 caching_ctl->progress = cache->start;
728 refcount_set(&caching_ctl->count, 2);
729 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
731 spin_lock(&cache->lock);
732 if (cache->cached != BTRFS_CACHE_NO) {
733 kfree(caching_ctl);
735 caching_ctl = cache->caching_ctl;
736 if (caching_ctl)
737 refcount_inc(&caching_ctl->count);
738 spin_unlock(&cache->lock);
739 goto out;
741 WARN_ON(cache->caching_ctl);
742 cache->caching_ctl = caching_ctl;
743 if (btrfs_test_opt(fs_info, SPACE_CACHE))
744 cache->cached = BTRFS_CACHE_FAST;
745 else
746 cache->cached = BTRFS_CACHE_STARTED;
747 cache->has_caching_ctl = 1;
748 spin_unlock(&cache->lock);
750 spin_lock(&fs_info->block_group_cache_lock);
751 refcount_inc(&caching_ctl->count);
752 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
753 spin_unlock(&fs_info->block_group_cache_lock);
755 btrfs_get_block_group(cache);
757 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
758 out:
759 if (load_cache_only && caching_ctl)
760 btrfs_wait_space_cache_v1_finished(cache, caching_ctl);
761 if (caching_ctl)
762 btrfs_put_caching_control(caching_ctl);
764 return ret;
767 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
769 u64 extra_flags = chunk_to_extended(flags) &
770 BTRFS_EXTENDED_PROFILE_MASK;
772 write_seqlock(&fs_info->profiles_lock);
773 if (flags & BTRFS_BLOCK_GROUP_DATA)
774 fs_info->avail_data_alloc_bits &= ~extra_flags;
775 if (flags & BTRFS_BLOCK_GROUP_METADATA)
776 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
777 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
778 fs_info->avail_system_alloc_bits &= ~extra_flags;
779 write_sequnlock(&fs_info->profiles_lock);
783 * Clear incompat bits for the following feature(s):
785 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
786 * in the whole filesystem
788 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
790 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
792 bool found_raid56 = false;
793 bool found_raid1c34 = false;
795 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
796 (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
797 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
798 struct list_head *head = &fs_info->space_info;
799 struct btrfs_space_info *sinfo;
801 list_for_each_entry_rcu(sinfo, head, list) {
802 down_read(&sinfo->groups_sem);
803 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
804 found_raid56 = true;
805 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
806 found_raid56 = true;
807 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
808 found_raid1c34 = true;
809 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
810 found_raid1c34 = true;
811 up_read(&sinfo->groups_sem);
813 if (!found_raid56)
814 btrfs_clear_fs_incompat(fs_info, RAID56);
815 if (!found_raid1c34)
816 btrfs_clear_fs_incompat(fs_info, RAID1C34);
820 static int remove_block_group_item(struct btrfs_trans_handle *trans,
821 struct btrfs_path *path,
822 struct btrfs_block_group *block_group)
824 struct btrfs_fs_info *fs_info = trans->fs_info;
825 struct btrfs_root *root;
826 struct btrfs_key key;
827 int ret;
829 root = fs_info->extent_root;
830 key.objectid = block_group->start;
831 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
832 key.offset = block_group->length;
834 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
835 if (ret > 0)
836 ret = -ENOENT;
837 if (ret < 0)
838 return ret;
840 ret = btrfs_del_item(trans, root, path);
841 return ret;
844 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
845 u64 group_start, struct extent_map *em)
847 struct btrfs_fs_info *fs_info = trans->fs_info;
848 struct btrfs_path *path;
849 struct btrfs_block_group *block_group;
850 struct btrfs_free_cluster *cluster;
851 struct inode *inode;
852 struct kobject *kobj = NULL;
853 int ret;
854 int index;
855 int factor;
856 struct btrfs_caching_control *caching_ctl = NULL;
857 bool remove_em;
858 bool remove_rsv = false;
860 block_group = btrfs_lookup_block_group(fs_info, group_start);
861 BUG_ON(!block_group);
862 BUG_ON(!block_group->ro);
864 trace_btrfs_remove_block_group(block_group);
866 * Free the reserved super bytes from this block group before
867 * remove it.
869 btrfs_free_excluded_extents(block_group);
870 btrfs_free_ref_tree_range(fs_info, block_group->start,
871 block_group->length);
873 index = btrfs_bg_flags_to_raid_index(block_group->flags);
874 factor = btrfs_bg_type_to_factor(block_group->flags);
876 /* make sure this block group isn't part of an allocation cluster */
877 cluster = &fs_info->data_alloc_cluster;
878 spin_lock(&cluster->refill_lock);
879 btrfs_return_cluster_to_free_space(block_group, cluster);
880 spin_unlock(&cluster->refill_lock);
883 * make sure this block group isn't part of a metadata
884 * allocation cluster
886 cluster = &fs_info->meta_alloc_cluster;
887 spin_lock(&cluster->refill_lock);
888 btrfs_return_cluster_to_free_space(block_group, cluster);
889 spin_unlock(&cluster->refill_lock);
891 path = btrfs_alloc_path();
892 if (!path) {
893 ret = -ENOMEM;
894 goto out;
898 * get the inode first so any iput calls done for the io_list
899 * aren't the final iput (no unlinks allowed now)
901 inode = lookup_free_space_inode(block_group, path);
903 mutex_lock(&trans->transaction->cache_write_mutex);
905 * Make sure our free space cache IO is done before removing the
906 * free space inode
908 spin_lock(&trans->transaction->dirty_bgs_lock);
909 if (!list_empty(&block_group->io_list)) {
910 list_del_init(&block_group->io_list);
912 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
914 spin_unlock(&trans->transaction->dirty_bgs_lock);
915 btrfs_wait_cache_io(trans, block_group, path);
916 btrfs_put_block_group(block_group);
917 spin_lock(&trans->transaction->dirty_bgs_lock);
920 if (!list_empty(&block_group->dirty_list)) {
921 list_del_init(&block_group->dirty_list);
922 remove_rsv = true;
923 btrfs_put_block_group(block_group);
925 spin_unlock(&trans->transaction->dirty_bgs_lock);
926 mutex_unlock(&trans->transaction->cache_write_mutex);
928 ret = btrfs_remove_free_space_inode(trans, inode, block_group);
929 if (ret)
930 goto out;
932 spin_lock(&fs_info->block_group_cache_lock);
933 rb_erase(&block_group->cache_node,
934 &fs_info->block_group_cache_tree);
935 RB_CLEAR_NODE(&block_group->cache_node);
937 /* Once for the block groups rbtree */
938 btrfs_put_block_group(block_group);
940 if (fs_info->first_logical_byte == block_group->start)
941 fs_info->first_logical_byte = (u64)-1;
942 spin_unlock(&fs_info->block_group_cache_lock);
944 down_write(&block_group->space_info->groups_sem);
946 * we must use list_del_init so people can check to see if they
947 * are still on the list after taking the semaphore
949 list_del_init(&block_group->list);
950 if (list_empty(&block_group->space_info->block_groups[index])) {
951 kobj = block_group->space_info->block_group_kobjs[index];
952 block_group->space_info->block_group_kobjs[index] = NULL;
953 clear_avail_alloc_bits(fs_info, block_group->flags);
955 up_write(&block_group->space_info->groups_sem);
956 clear_incompat_bg_bits(fs_info, block_group->flags);
957 if (kobj) {
958 kobject_del(kobj);
959 kobject_put(kobj);
962 if (block_group->has_caching_ctl)
963 caching_ctl = btrfs_get_caching_control(block_group);
964 if (block_group->cached == BTRFS_CACHE_STARTED)
965 btrfs_wait_block_group_cache_done(block_group);
966 if (block_group->has_caching_ctl) {
967 spin_lock(&fs_info->block_group_cache_lock);
968 if (!caching_ctl) {
969 struct btrfs_caching_control *ctl;
971 list_for_each_entry(ctl,
972 &fs_info->caching_block_groups, list)
973 if (ctl->block_group == block_group) {
974 caching_ctl = ctl;
975 refcount_inc(&caching_ctl->count);
976 break;
979 if (caching_ctl)
980 list_del_init(&caching_ctl->list);
981 spin_unlock(&fs_info->block_group_cache_lock);
982 if (caching_ctl) {
983 /* Once for the caching bgs list and once for us. */
984 btrfs_put_caching_control(caching_ctl);
985 btrfs_put_caching_control(caching_ctl);
989 spin_lock(&trans->transaction->dirty_bgs_lock);
990 WARN_ON(!list_empty(&block_group->dirty_list));
991 WARN_ON(!list_empty(&block_group->io_list));
992 spin_unlock(&trans->transaction->dirty_bgs_lock);
994 btrfs_remove_free_space_cache(block_group);
996 spin_lock(&block_group->space_info->lock);
997 list_del_init(&block_group->ro_list);
999 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1000 WARN_ON(block_group->space_info->total_bytes
1001 < block_group->length);
1002 WARN_ON(block_group->space_info->bytes_readonly
1003 < block_group->length);
1004 WARN_ON(block_group->space_info->disk_total
1005 < block_group->length * factor);
1007 block_group->space_info->total_bytes -= block_group->length;
1008 block_group->space_info->bytes_readonly -= block_group->length;
1009 block_group->space_info->disk_total -= block_group->length * factor;
1011 spin_unlock(&block_group->space_info->lock);
1014 * Remove the free space for the block group from the free space tree
1015 * and the block group's item from the extent tree before marking the
1016 * block group as removed. This is to prevent races with tasks that
1017 * freeze and unfreeze a block group, this task and another task
1018 * allocating a new block group - the unfreeze task ends up removing
1019 * the block group's extent map before the task calling this function
1020 * deletes the block group item from the extent tree, allowing for
1021 * another task to attempt to create another block group with the same
1022 * item key (and failing with -EEXIST and a transaction abort).
1024 ret = remove_block_group_free_space(trans, block_group);
1025 if (ret)
1026 goto out;
1028 ret = remove_block_group_item(trans, path, block_group);
1029 if (ret < 0)
1030 goto out;
1032 spin_lock(&block_group->lock);
1033 block_group->removed = 1;
1035 * At this point trimming or scrub can't start on this block group,
1036 * because we removed the block group from the rbtree
1037 * fs_info->block_group_cache_tree so no one can't find it anymore and
1038 * even if someone already got this block group before we removed it
1039 * from the rbtree, they have already incremented block_group->frozen -
1040 * if they didn't, for the trimming case they won't find any free space
1041 * entries because we already removed them all when we called
1042 * btrfs_remove_free_space_cache().
1044 * And we must not remove the extent map from the fs_info->mapping_tree
1045 * to prevent the same logical address range and physical device space
1046 * ranges from being reused for a new block group. This is needed to
1047 * avoid races with trimming and scrub.
1049 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1050 * completely transactionless, so while it is trimming a range the
1051 * currently running transaction might finish and a new one start,
1052 * allowing for new block groups to be created that can reuse the same
1053 * physical device locations unless we take this special care.
1055 * There may also be an implicit trim operation if the file system
1056 * is mounted with -odiscard. The same protections must remain
1057 * in place until the extents have been discarded completely when
1058 * the transaction commit has completed.
1060 remove_em = (atomic_read(&block_group->frozen) == 0);
1061 spin_unlock(&block_group->lock);
1063 if (remove_em) {
1064 struct extent_map_tree *em_tree;
1066 em_tree = &fs_info->mapping_tree;
1067 write_lock(&em_tree->lock);
1068 remove_extent_mapping(em_tree, em);
1069 write_unlock(&em_tree->lock);
1070 /* once for the tree */
1071 free_extent_map(em);
1074 out:
1075 /* Once for the lookup reference */
1076 btrfs_put_block_group(block_group);
1077 if (remove_rsv)
1078 btrfs_delayed_refs_rsv_release(fs_info, 1);
1079 btrfs_free_path(path);
1080 return ret;
1083 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1084 struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1086 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1087 struct extent_map *em;
1088 struct map_lookup *map;
1089 unsigned int num_items;
1091 read_lock(&em_tree->lock);
1092 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1093 read_unlock(&em_tree->lock);
1094 ASSERT(em && em->start == chunk_offset);
1097 * We need to reserve 3 + N units from the metadata space info in order
1098 * to remove a block group (done at btrfs_remove_chunk() and at
1099 * btrfs_remove_block_group()), which are used for:
1101 * 1 unit for adding the free space inode's orphan (located in the tree
1102 * of tree roots).
1103 * 1 unit for deleting the block group item (located in the extent
1104 * tree).
1105 * 1 unit for deleting the free space item (located in tree of tree
1106 * roots).
1107 * N units for deleting N device extent items corresponding to each
1108 * stripe (located in the device tree).
1110 * In order to remove a block group we also need to reserve units in the
1111 * system space info in order to update the chunk tree (update one or
1112 * more device items and remove one chunk item), but this is done at
1113 * btrfs_remove_chunk() through a call to check_system_chunk().
1115 map = em->map_lookup;
1116 num_items = 3 + map->num_stripes;
1117 free_extent_map(em);
1119 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
1120 num_items);
1124 * Mark block group @cache read-only, so later write won't happen to block
1125 * group @cache.
1127 * If @force is not set, this function will only mark the block group readonly
1128 * if we have enough free space (1M) in other metadata/system block groups.
1129 * If @force is not set, this function will mark the block group readonly
1130 * without checking free space.
1132 * NOTE: This function doesn't care if other block groups can contain all the
1133 * data in this block group. That check should be done by relocation routine,
1134 * not this function.
1136 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1138 struct btrfs_space_info *sinfo = cache->space_info;
1139 u64 num_bytes;
1140 int ret = -ENOSPC;
1142 spin_lock(&sinfo->lock);
1143 spin_lock(&cache->lock);
1145 if (cache->ro) {
1146 cache->ro++;
1147 ret = 0;
1148 goto out;
1151 num_bytes = cache->length - cache->reserved - cache->pinned -
1152 cache->bytes_super - cache->used;
1155 * Data never overcommits, even in mixed mode, so do just the straight
1156 * check of left over space in how much we have allocated.
1158 if (force) {
1159 ret = 0;
1160 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1161 u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1164 * Here we make sure if we mark this bg RO, we still have enough
1165 * free space as buffer.
1167 if (sinfo_used + num_bytes <= sinfo->total_bytes)
1168 ret = 0;
1169 } else {
1171 * We overcommit metadata, so we need to do the
1172 * btrfs_can_overcommit check here, and we need to pass in
1173 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1174 * leeway to allow us to mark this block group as read only.
1176 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1177 BTRFS_RESERVE_NO_FLUSH))
1178 ret = 0;
1181 if (!ret) {
1182 sinfo->bytes_readonly += num_bytes;
1183 cache->ro++;
1184 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1186 out:
1187 spin_unlock(&cache->lock);
1188 spin_unlock(&sinfo->lock);
1189 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1190 btrfs_info(cache->fs_info,
1191 "unable to make block group %llu ro", cache->start);
1192 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1194 return ret;
1197 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1198 struct btrfs_block_group *bg)
1200 struct btrfs_fs_info *fs_info = bg->fs_info;
1201 struct btrfs_transaction *prev_trans = NULL;
1202 const u64 start = bg->start;
1203 const u64 end = start + bg->length - 1;
1204 int ret;
1206 spin_lock(&fs_info->trans_lock);
1207 if (trans->transaction->list.prev != &fs_info->trans_list) {
1208 prev_trans = list_last_entry(&trans->transaction->list,
1209 struct btrfs_transaction, list);
1210 refcount_inc(&prev_trans->use_count);
1212 spin_unlock(&fs_info->trans_lock);
1215 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1216 * btrfs_finish_extent_commit(). If we are at transaction N, another
1217 * task might be running finish_extent_commit() for the previous
1218 * transaction N - 1, and have seen a range belonging to the block
1219 * group in pinned_extents before we were able to clear the whole block
1220 * group range from pinned_extents. This means that task can lookup for
1221 * the block group after we unpinned it from pinned_extents and removed
1222 * it, leading to a BUG_ON() at unpin_extent_range().
1224 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1225 if (prev_trans) {
1226 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1227 EXTENT_DIRTY);
1228 if (ret)
1229 goto out;
1232 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1233 EXTENT_DIRTY);
1234 out:
1235 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1236 if (prev_trans)
1237 btrfs_put_transaction(prev_trans);
1239 return ret == 0;
1243 * Process the unused_bgs list and remove any that don't have any allocated
1244 * space inside of them.
1246 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1248 struct btrfs_block_group *block_group;
1249 struct btrfs_space_info *space_info;
1250 struct btrfs_trans_handle *trans;
1251 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1252 int ret = 0;
1254 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1255 return;
1257 spin_lock(&fs_info->unused_bgs_lock);
1258 while (!list_empty(&fs_info->unused_bgs)) {
1259 int trimming;
1261 block_group = list_first_entry(&fs_info->unused_bgs,
1262 struct btrfs_block_group,
1263 bg_list);
1264 list_del_init(&block_group->bg_list);
1266 space_info = block_group->space_info;
1268 if (ret || btrfs_mixed_space_info(space_info)) {
1269 btrfs_put_block_group(block_group);
1270 continue;
1272 spin_unlock(&fs_info->unused_bgs_lock);
1274 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1276 mutex_lock(&fs_info->delete_unused_bgs_mutex);
1278 /* Don't want to race with allocators so take the groups_sem */
1279 down_write(&space_info->groups_sem);
1282 * Async discard moves the final block group discard to be prior
1283 * to the unused_bgs code path. Therefore, if it's not fully
1284 * trimmed, punt it back to the async discard lists.
1286 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1287 !btrfs_is_free_space_trimmed(block_group)) {
1288 trace_btrfs_skip_unused_block_group(block_group);
1289 up_write(&space_info->groups_sem);
1290 /* Requeue if we failed because of async discard */
1291 btrfs_discard_queue_work(&fs_info->discard_ctl,
1292 block_group);
1293 goto next;
1296 spin_lock(&block_group->lock);
1297 if (block_group->reserved || block_group->pinned ||
1298 block_group->used || block_group->ro ||
1299 list_is_singular(&block_group->list)) {
1301 * We want to bail if we made new allocations or have
1302 * outstanding allocations in this block group. We do
1303 * the ro check in case balance is currently acting on
1304 * this block group.
1306 trace_btrfs_skip_unused_block_group(block_group);
1307 spin_unlock(&block_group->lock);
1308 up_write(&space_info->groups_sem);
1309 goto next;
1311 spin_unlock(&block_group->lock);
1313 /* We don't want to force the issue, only flip if it's ok. */
1314 ret = inc_block_group_ro(block_group, 0);
1315 up_write(&space_info->groups_sem);
1316 if (ret < 0) {
1317 ret = 0;
1318 goto next;
1322 * Want to do this before we do anything else so we can recover
1323 * properly if we fail to join the transaction.
1325 trans = btrfs_start_trans_remove_block_group(fs_info,
1326 block_group->start);
1327 if (IS_ERR(trans)) {
1328 btrfs_dec_block_group_ro(block_group);
1329 ret = PTR_ERR(trans);
1330 goto next;
1334 * We could have pending pinned extents for this block group,
1335 * just delete them, we don't care about them anymore.
1337 if (!clean_pinned_extents(trans, block_group)) {
1338 btrfs_dec_block_group_ro(block_group);
1339 goto end_trans;
1343 * At this point, the block_group is read only and should fail
1344 * new allocations. However, btrfs_finish_extent_commit() can
1345 * cause this block_group to be placed back on the discard
1346 * lists because now the block_group isn't fully discarded.
1347 * Bail here and try again later after discarding everything.
1349 spin_lock(&fs_info->discard_ctl.lock);
1350 if (!list_empty(&block_group->discard_list)) {
1351 spin_unlock(&fs_info->discard_ctl.lock);
1352 btrfs_dec_block_group_ro(block_group);
1353 btrfs_discard_queue_work(&fs_info->discard_ctl,
1354 block_group);
1355 goto end_trans;
1357 spin_unlock(&fs_info->discard_ctl.lock);
1359 /* Reset pinned so btrfs_put_block_group doesn't complain */
1360 spin_lock(&space_info->lock);
1361 spin_lock(&block_group->lock);
1363 btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1364 -block_group->pinned);
1365 space_info->bytes_readonly += block_group->pinned;
1366 percpu_counter_add_batch(&space_info->total_bytes_pinned,
1367 -block_group->pinned,
1368 BTRFS_TOTAL_BYTES_PINNED_BATCH);
1369 block_group->pinned = 0;
1371 spin_unlock(&block_group->lock);
1372 spin_unlock(&space_info->lock);
1375 * The normal path here is an unused block group is passed here,
1376 * then trimming is handled in the transaction commit path.
1377 * Async discard interposes before this to do the trimming
1378 * before coming down the unused block group path as trimming
1379 * will no longer be done later in the transaction commit path.
1381 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1382 goto flip_async;
1384 /* DISCARD can flip during remount */
1385 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC);
1387 /* Implicit trim during transaction commit. */
1388 if (trimming)
1389 btrfs_freeze_block_group(block_group);
1392 * Btrfs_remove_chunk will abort the transaction if things go
1393 * horribly wrong.
1395 ret = btrfs_remove_chunk(trans, block_group->start);
1397 if (ret) {
1398 if (trimming)
1399 btrfs_unfreeze_block_group(block_group);
1400 goto end_trans;
1404 * If we're not mounted with -odiscard, we can just forget
1405 * about this block group. Otherwise we'll need to wait
1406 * until transaction commit to do the actual discard.
1408 if (trimming) {
1409 spin_lock(&fs_info->unused_bgs_lock);
1411 * A concurrent scrub might have added us to the list
1412 * fs_info->unused_bgs, so use a list_move operation
1413 * to add the block group to the deleted_bgs list.
1415 list_move(&block_group->bg_list,
1416 &trans->transaction->deleted_bgs);
1417 spin_unlock(&fs_info->unused_bgs_lock);
1418 btrfs_get_block_group(block_group);
1420 end_trans:
1421 btrfs_end_transaction(trans);
1422 next:
1423 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
1424 btrfs_put_block_group(block_group);
1425 spin_lock(&fs_info->unused_bgs_lock);
1427 spin_unlock(&fs_info->unused_bgs_lock);
1428 return;
1430 flip_async:
1431 btrfs_end_transaction(trans);
1432 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
1433 btrfs_put_block_group(block_group);
1434 btrfs_discard_punt_unused_bgs_list(fs_info);
1437 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1439 struct btrfs_fs_info *fs_info = bg->fs_info;
1441 spin_lock(&fs_info->unused_bgs_lock);
1442 if (list_empty(&bg->bg_list)) {
1443 btrfs_get_block_group(bg);
1444 trace_btrfs_add_unused_block_group(bg);
1445 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1447 spin_unlock(&fs_info->unused_bgs_lock);
1450 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1451 struct btrfs_path *path)
1453 struct extent_map_tree *em_tree;
1454 struct extent_map *em;
1455 struct btrfs_block_group_item bg;
1456 struct extent_buffer *leaf;
1457 int slot;
1458 u64 flags;
1459 int ret = 0;
1461 slot = path->slots[0];
1462 leaf = path->nodes[0];
1464 em_tree = &fs_info->mapping_tree;
1465 read_lock(&em_tree->lock);
1466 em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1467 read_unlock(&em_tree->lock);
1468 if (!em) {
1469 btrfs_err(fs_info,
1470 "logical %llu len %llu found bg but no related chunk",
1471 key->objectid, key->offset);
1472 return -ENOENT;
1475 if (em->start != key->objectid || em->len != key->offset) {
1476 btrfs_err(fs_info,
1477 "block group %llu len %llu mismatch with chunk %llu len %llu",
1478 key->objectid, key->offset, em->start, em->len);
1479 ret = -EUCLEAN;
1480 goto out_free_em;
1483 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1484 sizeof(bg));
1485 flags = btrfs_stack_block_group_flags(&bg) &
1486 BTRFS_BLOCK_GROUP_TYPE_MASK;
1488 if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1489 btrfs_err(fs_info,
1490 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1491 key->objectid, key->offset, flags,
1492 (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1493 ret = -EUCLEAN;
1496 out_free_em:
1497 free_extent_map(em);
1498 return ret;
1501 static int find_first_block_group(struct btrfs_fs_info *fs_info,
1502 struct btrfs_path *path,
1503 struct btrfs_key *key)
1505 struct btrfs_root *root = fs_info->extent_root;
1506 int ret;
1507 struct btrfs_key found_key;
1508 struct extent_buffer *leaf;
1509 int slot;
1511 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1512 if (ret < 0)
1513 return ret;
1515 while (1) {
1516 slot = path->slots[0];
1517 leaf = path->nodes[0];
1518 if (slot >= btrfs_header_nritems(leaf)) {
1519 ret = btrfs_next_leaf(root, path);
1520 if (ret == 0)
1521 continue;
1522 if (ret < 0)
1523 goto out;
1524 break;
1526 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1528 if (found_key.objectid >= key->objectid &&
1529 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1530 ret = read_bg_from_eb(fs_info, &found_key, path);
1531 break;
1534 path->slots[0]++;
1536 out:
1537 return ret;
1540 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1542 u64 extra_flags = chunk_to_extended(flags) &
1543 BTRFS_EXTENDED_PROFILE_MASK;
1545 write_seqlock(&fs_info->profiles_lock);
1546 if (flags & BTRFS_BLOCK_GROUP_DATA)
1547 fs_info->avail_data_alloc_bits |= extra_flags;
1548 if (flags & BTRFS_BLOCK_GROUP_METADATA)
1549 fs_info->avail_metadata_alloc_bits |= extra_flags;
1550 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1551 fs_info->avail_system_alloc_bits |= extra_flags;
1552 write_sequnlock(&fs_info->profiles_lock);
1556 * btrfs_rmap_block - Map a physical disk address to a list of logical addresses
1557 * @chunk_start: logical address of block group
1558 * @physical: physical address to map to logical addresses
1559 * @logical: return array of logical addresses which map to @physical
1560 * @naddrs: length of @logical
1561 * @stripe_len: size of IO stripe for the given block group
1563 * Maps a particular @physical disk address to a list of @logical addresses.
1564 * Used primarily to exclude those portions of a block group that contain super
1565 * block copies.
1567 EXPORT_FOR_TESTS
1568 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1569 u64 physical, u64 **logical, int *naddrs, int *stripe_len)
1571 struct extent_map *em;
1572 struct map_lookup *map;
1573 u64 *buf;
1574 u64 bytenr;
1575 u64 data_stripe_length;
1576 u64 io_stripe_size;
1577 int i, nr = 0;
1578 int ret = 0;
1580 em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1581 if (IS_ERR(em))
1582 return -EIO;
1584 map = em->map_lookup;
1585 data_stripe_length = em->orig_block_len;
1586 io_stripe_size = map->stripe_len;
1588 /* For RAID5/6 adjust to a full IO stripe length */
1589 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1590 io_stripe_size = map->stripe_len * nr_data_stripes(map);
1592 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1593 if (!buf) {
1594 ret = -ENOMEM;
1595 goto out;
1598 for (i = 0; i < map->num_stripes; i++) {
1599 bool already_inserted = false;
1600 u64 stripe_nr;
1601 int j;
1603 if (!in_range(physical, map->stripes[i].physical,
1604 data_stripe_length))
1605 continue;
1607 stripe_nr = physical - map->stripes[i].physical;
1608 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
1610 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1611 stripe_nr = stripe_nr * map->num_stripes + i;
1612 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
1613 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1614 stripe_nr = stripe_nr * map->num_stripes + i;
1617 * The remaining case would be for RAID56, multiply by
1618 * nr_data_stripes(). Alternatively, just use rmap_len below
1619 * instead of map->stripe_len
1622 bytenr = chunk_start + stripe_nr * io_stripe_size;
1624 /* Ensure we don't add duplicate addresses */
1625 for (j = 0; j < nr; j++) {
1626 if (buf[j] == bytenr) {
1627 already_inserted = true;
1628 break;
1632 if (!already_inserted)
1633 buf[nr++] = bytenr;
1636 *logical = buf;
1637 *naddrs = nr;
1638 *stripe_len = io_stripe_size;
1639 out:
1640 free_extent_map(em);
1641 return ret;
1644 static int exclude_super_stripes(struct btrfs_block_group *cache)
1646 struct btrfs_fs_info *fs_info = cache->fs_info;
1647 const bool zoned = btrfs_is_zoned(fs_info);
1648 u64 bytenr;
1649 u64 *logical;
1650 int stripe_len;
1651 int i, nr, ret;
1653 if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1654 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
1655 cache->bytes_super += stripe_len;
1656 ret = btrfs_add_excluded_extent(fs_info, cache->start,
1657 stripe_len);
1658 if (ret)
1659 return ret;
1662 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1663 bytenr = btrfs_sb_offset(i);
1664 ret = btrfs_rmap_block(fs_info, cache->start,
1665 bytenr, &logical, &nr, &stripe_len);
1666 if (ret)
1667 return ret;
1669 /* Shouldn't have super stripes in sequential zones */
1670 if (zoned && nr) {
1671 btrfs_err(fs_info,
1672 "zoned: block group %llu must not contain super block",
1673 cache->start);
1674 return -EUCLEAN;
1677 while (nr--) {
1678 u64 len = min_t(u64, stripe_len,
1679 cache->start + cache->length - logical[nr]);
1681 cache->bytes_super += len;
1682 ret = btrfs_add_excluded_extent(fs_info, logical[nr],
1683 len);
1684 if (ret) {
1685 kfree(logical);
1686 return ret;
1690 kfree(logical);
1692 return 0;
1695 static void link_block_group(struct btrfs_block_group *cache)
1697 struct btrfs_space_info *space_info = cache->space_info;
1698 int index = btrfs_bg_flags_to_raid_index(cache->flags);
1700 down_write(&space_info->groups_sem);
1701 list_add_tail(&cache->list, &space_info->block_groups[index]);
1702 up_write(&space_info->groups_sem);
1705 static struct btrfs_block_group *btrfs_create_block_group_cache(
1706 struct btrfs_fs_info *fs_info, u64 start)
1708 struct btrfs_block_group *cache;
1710 cache = kzalloc(sizeof(*cache), GFP_NOFS);
1711 if (!cache)
1712 return NULL;
1714 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1715 GFP_NOFS);
1716 if (!cache->free_space_ctl) {
1717 kfree(cache);
1718 return NULL;
1721 cache->start = start;
1723 cache->fs_info = fs_info;
1724 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1726 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
1728 refcount_set(&cache->refs, 1);
1729 spin_lock_init(&cache->lock);
1730 init_rwsem(&cache->data_rwsem);
1731 INIT_LIST_HEAD(&cache->list);
1732 INIT_LIST_HEAD(&cache->cluster_list);
1733 INIT_LIST_HEAD(&cache->bg_list);
1734 INIT_LIST_HEAD(&cache->ro_list);
1735 INIT_LIST_HEAD(&cache->discard_list);
1736 INIT_LIST_HEAD(&cache->dirty_list);
1737 INIT_LIST_HEAD(&cache->io_list);
1738 btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
1739 atomic_set(&cache->frozen, 0);
1740 mutex_init(&cache->free_space_lock);
1741 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
1743 return cache;
1747 * Iterate all chunks and verify that each of them has the corresponding block
1748 * group
1750 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1752 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1753 struct extent_map *em;
1754 struct btrfs_block_group *bg;
1755 u64 start = 0;
1756 int ret = 0;
1758 while (1) {
1759 read_lock(&map_tree->lock);
1761 * lookup_extent_mapping will return the first extent map
1762 * intersecting the range, so setting @len to 1 is enough to
1763 * get the first chunk.
1765 em = lookup_extent_mapping(map_tree, start, 1);
1766 read_unlock(&map_tree->lock);
1767 if (!em)
1768 break;
1770 bg = btrfs_lookup_block_group(fs_info, em->start);
1771 if (!bg) {
1772 btrfs_err(fs_info,
1773 "chunk start=%llu len=%llu doesn't have corresponding block group",
1774 em->start, em->len);
1775 ret = -EUCLEAN;
1776 free_extent_map(em);
1777 break;
1779 if (bg->start != em->start || bg->length != em->len ||
1780 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1781 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1782 btrfs_err(fs_info,
1783 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1784 em->start, em->len,
1785 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
1786 bg->start, bg->length,
1787 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1788 ret = -EUCLEAN;
1789 free_extent_map(em);
1790 btrfs_put_block_group(bg);
1791 break;
1793 start = em->start + em->len;
1794 free_extent_map(em);
1795 btrfs_put_block_group(bg);
1797 return ret;
1800 static void read_block_group_item(struct btrfs_block_group *cache,
1801 struct btrfs_path *path,
1802 const struct btrfs_key *key)
1804 struct extent_buffer *leaf = path->nodes[0];
1805 struct btrfs_block_group_item bgi;
1806 int slot = path->slots[0];
1808 cache->length = key->offset;
1810 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
1811 sizeof(bgi));
1812 cache->used = btrfs_stack_block_group_used(&bgi);
1813 cache->flags = btrfs_stack_block_group_flags(&bgi);
1816 static int read_one_block_group(struct btrfs_fs_info *info,
1817 struct btrfs_path *path,
1818 const struct btrfs_key *key,
1819 int need_clear)
1821 struct btrfs_block_group *cache;
1822 struct btrfs_space_info *space_info;
1823 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
1824 int ret;
1826 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
1828 cache = btrfs_create_block_group_cache(info, key->objectid);
1829 if (!cache)
1830 return -ENOMEM;
1832 read_block_group_item(cache, path, key);
1834 set_free_space_tree_thresholds(cache);
1836 if (need_clear) {
1838 * When we mount with old space cache, we need to
1839 * set BTRFS_DC_CLEAR and set dirty flag.
1841 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
1842 * truncate the old free space cache inode and
1843 * setup a new one.
1844 * b) Setting 'dirty flag' makes sure that we flush
1845 * the new space cache info onto disk.
1847 if (btrfs_test_opt(info, SPACE_CACHE))
1848 cache->disk_cache_state = BTRFS_DC_CLEAR;
1850 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
1851 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
1852 btrfs_err(info,
1853 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
1854 cache->start);
1855 ret = -EINVAL;
1856 goto error;
1860 * We need to exclude the super stripes now so that the space info has
1861 * super bytes accounted for, otherwise we'll think we have more space
1862 * than we actually do.
1864 ret = exclude_super_stripes(cache);
1865 if (ret) {
1866 /* We may have excluded something, so call this just in case. */
1867 btrfs_free_excluded_extents(cache);
1868 goto error;
1872 * Check for two cases, either we are full, and therefore don't need
1873 * to bother with the caching work since we won't find any space, or we
1874 * are empty, and we can just add all the space in and be done with it.
1875 * This saves us _a_lot_ of time, particularly in the full case.
1877 if (cache->length == cache->used) {
1878 cache->last_byte_to_unpin = (u64)-1;
1879 cache->cached = BTRFS_CACHE_FINISHED;
1880 btrfs_free_excluded_extents(cache);
1881 } else if (cache->used == 0) {
1882 cache->last_byte_to_unpin = (u64)-1;
1883 cache->cached = BTRFS_CACHE_FINISHED;
1884 add_new_free_space(cache, cache->start,
1885 cache->start + cache->length);
1886 btrfs_free_excluded_extents(cache);
1889 ret = btrfs_add_block_group_cache(info, cache);
1890 if (ret) {
1891 btrfs_remove_free_space_cache(cache);
1892 goto error;
1894 trace_btrfs_add_block_group(info, cache, 0);
1895 btrfs_update_space_info(info, cache->flags, cache->length,
1896 cache->used, cache->bytes_super, &space_info);
1898 cache->space_info = space_info;
1900 link_block_group(cache);
1902 set_avail_alloc_bits(info, cache->flags);
1903 if (btrfs_chunk_readonly(info, cache->start)) {
1904 inc_block_group_ro(cache, 1);
1905 } else if (cache->used == 0) {
1906 ASSERT(list_empty(&cache->bg_list));
1907 if (btrfs_test_opt(info, DISCARD_ASYNC))
1908 btrfs_discard_queue_work(&info->discard_ctl, cache);
1909 else
1910 btrfs_mark_bg_unused(cache);
1912 return 0;
1913 error:
1914 btrfs_put_block_group(cache);
1915 return ret;
1918 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
1920 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1921 struct btrfs_space_info *space_info;
1922 struct rb_node *node;
1923 int ret = 0;
1925 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
1926 struct extent_map *em;
1927 struct map_lookup *map;
1928 struct btrfs_block_group *bg;
1930 em = rb_entry(node, struct extent_map, rb_node);
1931 map = em->map_lookup;
1932 bg = btrfs_create_block_group_cache(fs_info, em->start);
1933 if (!bg) {
1934 ret = -ENOMEM;
1935 break;
1938 /* Fill dummy cache as FULL */
1939 bg->length = em->len;
1940 bg->flags = map->type;
1941 bg->last_byte_to_unpin = (u64)-1;
1942 bg->cached = BTRFS_CACHE_FINISHED;
1943 bg->used = em->len;
1944 bg->flags = map->type;
1945 ret = btrfs_add_block_group_cache(fs_info, bg);
1946 if (ret) {
1947 btrfs_remove_free_space_cache(bg);
1948 btrfs_put_block_group(bg);
1949 break;
1951 btrfs_update_space_info(fs_info, bg->flags, em->len, em->len,
1952 0, &space_info);
1953 bg->space_info = space_info;
1954 link_block_group(bg);
1956 set_avail_alloc_bits(fs_info, bg->flags);
1958 if (!ret)
1959 btrfs_init_global_block_rsv(fs_info);
1960 return ret;
1963 int btrfs_read_block_groups(struct btrfs_fs_info *info)
1965 struct btrfs_path *path;
1966 int ret;
1967 struct btrfs_block_group *cache;
1968 struct btrfs_space_info *space_info;
1969 struct btrfs_key key;
1970 int need_clear = 0;
1971 u64 cache_gen;
1973 if (!info->extent_root)
1974 return fill_dummy_bgs(info);
1976 key.objectid = 0;
1977 key.offset = 0;
1978 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1979 path = btrfs_alloc_path();
1980 if (!path)
1981 return -ENOMEM;
1983 cache_gen = btrfs_super_cache_generation(info->super_copy);
1984 if (btrfs_test_opt(info, SPACE_CACHE) &&
1985 btrfs_super_generation(info->super_copy) != cache_gen)
1986 need_clear = 1;
1987 if (btrfs_test_opt(info, CLEAR_CACHE))
1988 need_clear = 1;
1990 while (1) {
1991 ret = find_first_block_group(info, path, &key);
1992 if (ret > 0)
1993 break;
1994 if (ret != 0)
1995 goto error;
1997 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1998 ret = read_one_block_group(info, path, &key, need_clear);
1999 if (ret < 0)
2000 goto error;
2001 key.objectid += key.offset;
2002 key.offset = 0;
2003 btrfs_release_path(path);
2005 btrfs_release_path(path);
2007 list_for_each_entry(space_info, &info->space_info, list) {
2008 int i;
2010 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2011 if (list_empty(&space_info->block_groups[i]))
2012 continue;
2013 cache = list_first_entry(&space_info->block_groups[i],
2014 struct btrfs_block_group,
2015 list);
2016 btrfs_sysfs_add_block_group_type(cache);
2019 if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2020 (BTRFS_BLOCK_GROUP_RAID10 |
2021 BTRFS_BLOCK_GROUP_RAID1_MASK |
2022 BTRFS_BLOCK_GROUP_RAID56_MASK |
2023 BTRFS_BLOCK_GROUP_DUP)))
2024 continue;
2026 * Avoid allocating from un-mirrored block group if there are
2027 * mirrored block groups.
2029 list_for_each_entry(cache,
2030 &space_info->block_groups[BTRFS_RAID_RAID0],
2031 list)
2032 inc_block_group_ro(cache, 1);
2033 list_for_each_entry(cache,
2034 &space_info->block_groups[BTRFS_RAID_SINGLE],
2035 list)
2036 inc_block_group_ro(cache, 1);
2039 btrfs_init_global_block_rsv(info);
2040 ret = check_chunk_block_group_mappings(info);
2041 error:
2042 btrfs_free_path(path);
2043 return ret;
2046 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2047 struct btrfs_block_group *block_group)
2049 struct btrfs_fs_info *fs_info = trans->fs_info;
2050 struct btrfs_block_group_item bgi;
2051 struct btrfs_root *root;
2052 struct btrfs_key key;
2054 spin_lock(&block_group->lock);
2055 btrfs_set_stack_block_group_used(&bgi, block_group->used);
2056 btrfs_set_stack_block_group_chunk_objectid(&bgi,
2057 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2058 btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2059 key.objectid = block_group->start;
2060 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2061 key.offset = block_group->length;
2062 spin_unlock(&block_group->lock);
2064 root = fs_info->extent_root;
2065 return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2068 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2070 struct btrfs_fs_info *fs_info = trans->fs_info;
2071 struct btrfs_block_group *block_group;
2072 int ret = 0;
2074 if (!trans->can_flush_pending_bgs)
2075 return;
2077 while (!list_empty(&trans->new_bgs)) {
2078 int index;
2080 block_group = list_first_entry(&trans->new_bgs,
2081 struct btrfs_block_group,
2082 bg_list);
2083 if (ret)
2084 goto next;
2086 index = btrfs_bg_flags_to_raid_index(block_group->flags);
2088 ret = insert_block_group_item(trans, block_group);
2089 if (ret)
2090 btrfs_abort_transaction(trans, ret);
2091 ret = btrfs_finish_chunk_alloc(trans, block_group->start,
2092 block_group->length);
2093 if (ret)
2094 btrfs_abort_transaction(trans, ret);
2095 add_block_group_free_space(trans, block_group);
2098 * If we restriped during balance, we may have added a new raid
2099 * type, so now add the sysfs entries when it is safe to do so.
2100 * We don't have to worry about locking here as it's handled in
2101 * btrfs_sysfs_add_block_group_type.
2103 if (block_group->space_info->block_group_kobjs[index] == NULL)
2104 btrfs_sysfs_add_block_group_type(block_group);
2106 /* Already aborted the transaction if it failed. */
2107 next:
2108 btrfs_delayed_refs_rsv_release(fs_info, 1);
2109 list_del_init(&block_group->bg_list);
2111 btrfs_trans_release_chunk_metadata(trans);
2114 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
2115 u64 type, u64 chunk_offset, u64 size)
2117 struct btrfs_fs_info *fs_info = trans->fs_info;
2118 struct btrfs_block_group *cache;
2119 int ret;
2121 btrfs_set_log_full_commit(trans);
2123 cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2124 if (!cache)
2125 return -ENOMEM;
2127 cache->length = size;
2128 set_free_space_tree_thresholds(cache);
2129 cache->used = bytes_used;
2130 cache->flags = type;
2131 cache->last_byte_to_unpin = (u64)-1;
2132 cache->cached = BTRFS_CACHE_FINISHED;
2133 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2134 cache->needs_free_space = 1;
2135 ret = exclude_super_stripes(cache);
2136 if (ret) {
2137 /* We may have excluded something, so call this just in case */
2138 btrfs_free_excluded_extents(cache);
2139 btrfs_put_block_group(cache);
2140 return ret;
2143 add_new_free_space(cache, chunk_offset, chunk_offset + size);
2145 btrfs_free_excluded_extents(cache);
2147 #ifdef CONFIG_BTRFS_DEBUG
2148 if (btrfs_should_fragment_free_space(cache)) {
2149 u64 new_bytes_used = size - bytes_used;
2151 bytes_used += new_bytes_used >> 1;
2152 fragment_free_space(cache);
2154 #endif
2156 * Ensure the corresponding space_info object is created and
2157 * assigned to our block group. We want our bg to be added to the rbtree
2158 * with its ->space_info set.
2160 cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2161 ASSERT(cache->space_info);
2163 ret = btrfs_add_block_group_cache(fs_info, cache);
2164 if (ret) {
2165 btrfs_remove_free_space_cache(cache);
2166 btrfs_put_block_group(cache);
2167 return ret;
2171 * Now that our block group has its ->space_info set and is inserted in
2172 * the rbtree, update the space info's counters.
2174 trace_btrfs_add_block_group(fs_info, cache, 1);
2175 btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
2176 cache->bytes_super, &cache->space_info);
2177 btrfs_update_global_block_rsv(fs_info);
2179 link_block_group(cache);
2181 list_add_tail(&cache->bg_list, &trans->new_bgs);
2182 trans->delayed_ref_updates++;
2183 btrfs_update_delayed_refs_rsv(trans);
2185 set_avail_alloc_bits(fs_info, type);
2186 return 0;
2190 * Mark one block group RO, can be called several times for the same block
2191 * group.
2193 * @cache: the destination block group
2194 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to
2195 * ensure we still have some free space after marking this
2196 * block group RO.
2198 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2199 bool do_chunk_alloc)
2201 struct btrfs_fs_info *fs_info = cache->fs_info;
2202 struct btrfs_trans_handle *trans;
2203 u64 alloc_flags;
2204 int ret;
2206 again:
2207 trans = btrfs_join_transaction(fs_info->extent_root);
2208 if (IS_ERR(trans))
2209 return PTR_ERR(trans);
2212 * we're not allowed to set block groups readonly after the dirty
2213 * block groups cache has started writing. If it already started,
2214 * back off and let this transaction commit
2216 mutex_lock(&fs_info->ro_block_group_mutex);
2217 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2218 u64 transid = trans->transid;
2220 mutex_unlock(&fs_info->ro_block_group_mutex);
2221 btrfs_end_transaction(trans);
2223 ret = btrfs_wait_for_commit(fs_info, transid);
2224 if (ret)
2225 return ret;
2226 goto again;
2229 if (do_chunk_alloc) {
2231 * If we are changing raid levels, try to allocate a
2232 * corresponding block group with the new raid level.
2234 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2235 if (alloc_flags != cache->flags) {
2236 ret = btrfs_chunk_alloc(trans, alloc_flags,
2237 CHUNK_ALLOC_FORCE);
2239 * ENOSPC is allowed here, we may have enough space
2240 * already allocated at the new raid level to carry on
2242 if (ret == -ENOSPC)
2243 ret = 0;
2244 if (ret < 0)
2245 goto out;
2249 ret = inc_block_group_ro(cache, 0);
2250 if (!do_chunk_alloc)
2251 goto unlock_out;
2252 if (!ret)
2253 goto out;
2254 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2255 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2256 if (ret < 0)
2257 goto out;
2258 ret = inc_block_group_ro(cache, 0);
2259 out:
2260 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2261 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2262 mutex_lock(&fs_info->chunk_mutex);
2263 check_system_chunk(trans, alloc_flags);
2264 mutex_unlock(&fs_info->chunk_mutex);
2266 unlock_out:
2267 mutex_unlock(&fs_info->ro_block_group_mutex);
2269 btrfs_end_transaction(trans);
2270 return ret;
2273 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2275 struct btrfs_space_info *sinfo = cache->space_info;
2276 u64 num_bytes;
2278 BUG_ON(!cache->ro);
2280 spin_lock(&sinfo->lock);
2281 spin_lock(&cache->lock);
2282 if (!--cache->ro) {
2283 num_bytes = cache->length - cache->reserved -
2284 cache->pinned - cache->bytes_super - cache->used;
2285 sinfo->bytes_readonly -= num_bytes;
2286 list_del_init(&cache->ro_list);
2288 spin_unlock(&cache->lock);
2289 spin_unlock(&sinfo->lock);
2292 static int update_block_group_item(struct btrfs_trans_handle *trans,
2293 struct btrfs_path *path,
2294 struct btrfs_block_group *cache)
2296 struct btrfs_fs_info *fs_info = trans->fs_info;
2297 int ret;
2298 struct btrfs_root *root = fs_info->extent_root;
2299 unsigned long bi;
2300 struct extent_buffer *leaf;
2301 struct btrfs_block_group_item bgi;
2302 struct btrfs_key key;
2304 key.objectid = cache->start;
2305 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2306 key.offset = cache->length;
2308 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2309 if (ret) {
2310 if (ret > 0)
2311 ret = -ENOENT;
2312 goto fail;
2315 leaf = path->nodes[0];
2316 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2317 btrfs_set_stack_block_group_used(&bgi, cache->used);
2318 btrfs_set_stack_block_group_chunk_objectid(&bgi,
2319 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2320 btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2321 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2322 btrfs_mark_buffer_dirty(leaf);
2323 fail:
2324 btrfs_release_path(path);
2325 return ret;
2329 static int cache_save_setup(struct btrfs_block_group *block_group,
2330 struct btrfs_trans_handle *trans,
2331 struct btrfs_path *path)
2333 struct btrfs_fs_info *fs_info = block_group->fs_info;
2334 struct btrfs_root *root = fs_info->tree_root;
2335 struct inode *inode = NULL;
2336 struct extent_changeset *data_reserved = NULL;
2337 u64 alloc_hint = 0;
2338 int dcs = BTRFS_DC_ERROR;
2339 u64 num_pages = 0;
2340 int retries = 0;
2341 int ret = 0;
2343 if (!btrfs_test_opt(fs_info, SPACE_CACHE))
2344 return 0;
2347 * If this block group is smaller than 100 megs don't bother caching the
2348 * block group.
2350 if (block_group->length < (100 * SZ_1M)) {
2351 spin_lock(&block_group->lock);
2352 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2353 spin_unlock(&block_group->lock);
2354 return 0;
2357 if (TRANS_ABORTED(trans))
2358 return 0;
2359 again:
2360 inode = lookup_free_space_inode(block_group, path);
2361 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2362 ret = PTR_ERR(inode);
2363 btrfs_release_path(path);
2364 goto out;
2367 if (IS_ERR(inode)) {
2368 BUG_ON(retries);
2369 retries++;
2371 if (block_group->ro)
2372 goto out_free;
2374 ret = create_free_space_inode(trans, block_group, path);
2375 if (ret)
2376 goto out_free;
2377 goto again;
2381 * We want to set the generation to 0, that way if anything goes wrong
2382 * from here on out we know not to trust this cache when we load up next
2383 * time.
2385 BTRFS_I(inode)->generation = 0;
2386 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2387 if (ret) {
2389 * So theoretically we could recover from this, simply set the
2390 * super cache generation to 0 so we know to invalidate the
2391 * cache, but then we'd have to keep track of the block groups
2392 * that fail this way so we know we _have_ to reset this cache
2393 * before the next commit or risk reading stale cache. So to
2394 * limit our exposure to horrible edge cases lets just abort the
2395 * transaction, this only happens in really bad situations
2396 * anyway.
2398 btrfs_abort_transaction(trans, ret);
2399 goto out_put;
2401 WARN_ON(ret);
2403 /* We've already setup this transaction, go ahead and exit */
2404 if (block_group->cache_generation == trans->transid &&
2405 i_size_read(inode)) {
2406 dcs = BTRFS_DC_SETUP;
2407 goto out_put;
2410 if (i_size_read(inode) > 0) {
2411 ret = btrfs_check_trunc_cache_free_space(fs_info,
2412 &fs_info->global_block_rsv);
2413 if (ret)
2414 goto out_put;
2416 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2417 if (ret)
2418 goto out_put;
2421 spin_lock(&block_group->lock);
2422 if (block_group->cached != BTRFS_CACHE_FINISHED ||
2423 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2425 * don't bother trying to write stuff out _if_
2426 * a) we're not cached,
2427 * b) we're with nospace_cache mount option,
2428 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2430 dcs = BTRFS_DC_WRITTEN;
2431 spin_unlock(&block_group->lock);
2432 goto out_put;
2434 spin_unlock(&block_group->lock);
2437 * We hit an ENOSPC when setting up the cache in this transaction, just
2438 * skip doing the setup, we've already cleared the cache so we're safe.
2440 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2441 ret = -ENOSPC;
2442 goto out_put;
2446 * Try to preallocate enough space based on how big the block group is.
2447 * Keep in mind this has to include any pinned space which could end up
2448 * taking up quite a bit since it's not folded into the other space
2449 * cache.
2451 num_pages = div_u64(block_group->length, SZ_256M);
2452 if (!num_pages)
2453 num_pages = 1;
2455 num_pages *= 16;
2456 num_pages *= PAGE_SIZE;
2458 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
2459 num_pages);
2460 if (ret)
2461 goto out_put;
2463 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2464 num_pages, num_pages,
2465 &alloc_hint);
2467 * Our cache requires contiguous chunks so that we don't modify a bunch
2468 * of metadata or split extents when writing the cache out, which means
2469 * we can enospc if we are heavily fragmented in addition to just normal
2470 * out of space conditions. So if we hit this just skip setting up any
2471 * other block groups for this transaction, maybe we'll unpin enough
2472 * space the next time around.
2474 if (!ret)
2475 dcs = BTRFS_DC_SETUP;
2476 else if (ret == -ENOSPC)
2477 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2479 out_put:
2480 iput(inode);
2481 out_free:
2482 btrfs_release_path(path);
2483 out:
2484 spin_lock(&block_group->lock);
2485 if (!ret && dcs == BTRFS_DC_SETUP)
2486 block_group->cache_generation = trans->transid;
2487 block_group->disk_cache_state = dcs;
2488 spin_unlock(&block_group->lock);
2490 extent_changeset_free(data_reserved);
2491 return ret;
2494 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2496 struct btrfs_fs_info *fs_info = trans->fs_info;
2497 struct btrfs_block_group *cache, *tmp;
2498 struct btrfs_transaction *cur_trans = trans->transaction;
2499 struct btrfs_path *path;
2501 if (list_empty(&cur_trans->dirty_bgs) ||
2502 !btrfs_test_opt(fs_info, SPACE_CACHE))
2503 return 0;
2505 path = btrfs_alloc_path();
2506 if (!path)
2507 return -ENOMEM;
2509 /* Could add new block groups, use _safe just in case */
2510 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2511 dirty_list) {
2512 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2513 cache_save_setup(cache, trans, path);
2516 btrfs_free_path(path);
2517 return 0;
2521 * Transaction commit does final block group cache writeback during a critical
2522 * section where nothing is allowed to change the FS. This is required in
2523 * order for the cache to actually match the block group, but can introduce a
2524 * lot of latency into the commit.
2526 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2527 * There's a chance we'll have to redo some of it if the block group changes
2528 * again during the commit, but it greatly reduces the commit latency by
2529 * getting rid of the easy block groups while we're still allowing others to
2530 * join the commit.
2532 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2534 struct btrfs_fs_info *fs_info = trans->fs_info;
2535 struct btrfs_block_group *cache;
2536 struct btrfs_transaction *cur_trans = trans->transaction;
2537 int ret = 0;
2538 int should_put;
2539 struct btrfs_path *path = NULL;
2540 LIST_HEAD(dirty);
2541 struct list_head *io = &cur_trans->io_bgs;
2542 int num_started = 0;
2543 int loops = 0;
2545 spin_lock(&cur_trans->dirty_bgs_lock);
2546 if (list_empty(&cur_trans->dirty_bgs)) {
2547 spin_unlock(&cur_trans->dirty_bgs_lock);
2548 return 0;
2550 list_splice_init(&cur_trans->dirty_bgs, &dirty);
2551 spin_unlock(&cur_trans->dirty_bgs_lock);
2553 again:
2554 /* Make sure all the block groups on our dirty list actually exist */
2555 btrfs_create_pending_block_groups(trans);
2557 if (!path) {
2558 path = btrfs_alloc_path();
2559 if (!path)
2560 return -ENOMEM;
2564 * cache_write_mutex is here only to save us from balance or automatic
2565 * removal of empty block groups deleting this block group while we are
2566 * writing out the cache
2568 mutex_lock(&trans->transaction->cache_write_mutex);
2569 while (!list_empty(&dirty)) {
2570 bool drop_reserve = true;
2572 cache = list_first_entry(&dirty, struct btrfs_block_group,
2573 dirty_list);
2575 * This can happen if something re-dirties a block group that
2576 * is already under IO. Just wait for it to finish and then do
2577 * it all again
2579 if (!list_empty(&cache->io_list)) {
2580 list_del_init(&cache->io_list);
2581 btrfs_wait_cache_io(trans, cache, path);
2582 btrfs_put_block_group(cache);
2587 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
2588 * it should update the cache_state. Don't delete until after
2589 * we wait.
2591 * Since we're not running in the commit critical section
2592 * we need the dirty_bgs_lock to protect from update_block_group
2594 spin_lock(&cur_trans->dirty_bgs_lock);
2595 list_del_init(&cache->dirty_list);
2596 spin_unlock(&cur_trans->dirty_bgs_lock);
2598 should_put = 1;
2600 cache_save_setup(cache, trans, path);
2602 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
2603 cache->io_ctl.inode = NULL;
2604 ret = btrfs_write_out_cache(trans, cache, path);
2605 if (ret == 0 && cache->io_ctl.inode) {
2606 num_started++;
2607 should_put = 0;
2610 * The cache_write_mutex is protecting the
2611 * io_list, also refer to the definition of
2612 * btrfs_transaction::io_bgs for more details
2614 list_add_tail(&cache->io_list, io);
2615 } else {
2617 * If we failed to write the cache, the
2618 * generation will be bad and life goes on
2620 ret = 0;
2623 if (!ret) {
2624 ret = update_block_group_item(trans, path, cache);
2626 * Our block group might still be attached to the list
2627 * of new block groups in the transaction handle of some
2628 * other task (struct btrfs_trans_handle->new_bgs). This
2629 * means its block group item isn't yet in the extent
2630 * tree. If this happens ignore the error, as we will
2631 * try again later in the critical section of the
2632 * transaction commit.
2634 if (ret == -ENOENT) {
2635 ret = 0;
2636 spin_lock(&cur_trans->dirty_bgs_lock);
2637 if (list_empty(&cache->dirty_list)) {
2638 list_add_tail(&cache->dirty_list,
2639 &cur_trans->dirty_bgs);
2640 btrfs_get_block_group(cache);
2641 drop_reserve = false;
2643 spin_unlock(&cur_trans->dirty_bgs_lock);
2644 } else if (ret) {
2645 btrfs_abort_transaction(trans, ret);
2649 /* If it's not on the io list, we need to put the block group */
2650 if (should_put)
2651 btrfs_put_block_group(cache);
2652 if (drop_reserve)
2653 btrfs_delayed_refs_rsv_release(fs_info, 1);
2655 if (ret)
2656 break;
2659 * Avoid blocking other tasks for too long. It might even save
2660 * us from writing caches for block groups that are going to be
2661 * removed.
2663 mutex_unlock(&trans->transaction->cache_write_mutex);
2664 mutex_lock(&trans->transaction->cache_write_mutex);
2666 mutex_unlock(&trans->transaction->cache_write_mutex);
2669 * Go through delayed refs for all the stuff we've just kicked off
2670 * and then loop back (just once)
2672 ret = btrfs_run_delayed_refs(trans, 0);
2673 if (!ret && loops == 0) {
2674 loops++;
2675 spin_lock(&cur_trans->dirty_bgs_lock);
2676 list_splice_init(&cur_trans->dirty_bgs, &dirty);
2678 * dirty_bgs_lock protects us from concurrent block group
2679 * deletes too (not just cache_write_mutex).
2681 if (!list_empty(&dirty)) {
2682 spin_unlock(&cur_trans->dirty_bgs_lock);
2683 goto again;
2685 spin_unlock(&cur_trans->dirty_bgs_lock);
2686 } else if (ret < 0) {
2687 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
2690 btrfs_free_path(path);
2691 return ret;
2694 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
2696 struct btrfs_fs_info *fs_info = trans->fs_info;
2697 struct btrfs_block_group *cache;
2698 struct btrfs_transaction *cur_trans = trans->transaction;
2699 int ret = 0;
2700 int should_put;
2701 struct btrfs_path *path;
2702 struct list_head *io = &cur_trans->io_bgs;
2703 int num_started = 0;
2705 path = btrfs_alloc_path();
2706 if (!path)
2707 return -ENOMEM;
2710 * Even though we are in the critical section of the transaction commit,
2711 * we can still have concurrent tasks adding elements to this
2712 * transaction's list of dirty block groups. These tasks correspond to
2713 * endio free space workers started when writeback finishes for a
2714 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
2715 * allocate new block groups as a result of COWing nodes of the root
2716 * tree when updating the free space inode. The writeback for the space
2717 * caches is triggered by an earlier call to
2718 * btrfs_start_dirty_block_groups() and iterations of the following
2719 * loop.
2720 * Also we want to do the cache_save_setup first and then run the
2721 * delayed refs to make sure we have the best chance at doing this all
2722 * in one shot.
2724 spin_lock(&cur_trans->dirty_bgs_lock);
2725 while (!list_empty(&cur_trans->dirty_bgs)) {
2726 cache = list_first_entry(&cur_trans->dirty_bgs,
2727 struct btrfs_block_group,
2728 dirty_list);
2731 * This can happen if cache_save_setup re-dirties a block group
2732 * that is already under IO. Just wait for it to finish and
2733 * then do it all again
2735 if (!list_empty(&cache->io_list)) {
2736 spin_unlock(&cur_trans->dirty_bgs_lock);
2737 list_del_init(&cache->io_list);
2738 btrfs_wait_cache_io(trans, cache, path);
2739 btrfs_put_block_group(cache);
2740 spin_lock(&cur_trans->dirty_bgs_lock);
2744 * Don't remove from the dirty list until after we've waited on
2745 * any pending IO
2747 list_del_init(&cache->dirty_list);
2748 spin_unlock(&cur_trans->dirty_bgs_lock);
2749 should_put = 1;
2751 cache_save_setup(cache, trans, path);
2753 if (!ret)
2754 ret = btrfs_run_delayed_refs(trans,
2755 (unsigned long) -1);
2757 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
2758 cache->io_ctl.inode = NULL;
2759 ret = btrfs_write_out_cache(trans, cache, path);
2760 if (ret == 0 && cache->io_ctl.inode) {
2761 num_started++;
2762 should_put = 0;
2763 list_add_tail(&cache->io_list, io);
2764 } else {
2766 * If we failed to write the cache, the
2767 * generation will be bad and life goes on
2769 ret = 0;
2772 if (!ret) {
2773 ret = update_block_group_item(trans, path, cache);
2775 * One of the free space endio workers might have
2776 * created a new block group while updating a free space
2777 * cache's inode (at inode.c:btrfs_finish_ordered_io())
2778 * and hasn't released its transaction handle yet, in
2779 * which case the new block group is still attached to
2780 * its transaction handle and its creation has not
2781 * finished yet (no block group item in the extent tree
2782 * yet, etc). If this is the case, wait for all free
2783 * space endio workers to finish and retry. This is a
2784 * very rare case so no need for a more efficient and
2785 * complex approach.
2787 if (ret == -ENOENT) {
2788 wait_event(cur_trans->writer_wait,
2789 atomic_read(&cur_trans->num_writers) == 1);
2790 ret = update_block_group_item(trans, path, cache);
2792 if (ret)
2793 btrfs_abort_transaction(trans, ret);
2796 /* If its not on the io list, we need to put the block group */
2797 if (should_put)
2798 btrfs_put_block_group(cache);
2799 btrfs_delayed_refs_rsv_release(fs_info, 1);
2800 spin_lock(&cur_trans->dirty_bgs_lock);
2802 spin_unlock(&cur_trans->dirty_bgs_lock);
2805 * Refer to the definition of io_bgs member for details why it's safe
2806 * to use it without any locking
2808 while (!list_empty(io)) {
2809 cache = list_first_entry(io, struct btrfs_block_group,
2810 io_list);
2811 list_del_init(&cache->io_list);
2812 btrfs_wait_cache_io(trans, cache, path);
2813 btrfs_put_block_group(cache);
2816 btrfs_free_path(path);
2817 return ret;
2820 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
2821 u64 bytenr, u64 num_bytes, int alloc)
2823 struct btrfs_fs_info *info = trans->fs_info;
2824 struct btrfs_block_group *cache = NULL;
2825 u64 total = num_bytes;
2826 u64 old_val;
2827 u64 byte_in_group;
2828 int factor;
2829 int ret = 0;
2831 /* Block accounting for super block */
2832 spin_lock(&info->delalloc_root_lock);
2833 old_val = btrfs_super_bytes_used(info->super_copy);
2834 if (alloc)
2835 old_val += num_bytes;
2836 else
2837 old_val -= num_bytes;
2838 btrfs_set_super_bytes_used(info->super_copy, old_val);
2839 spin_unlock(&info->delalloc_root_lock);
2841 while (total) {
2842 cache = btrfs_lookup_block_group(info, bytenr);
2843 if (!cache) {
2844 ret = -ENOENT;
2845 break;
2847 factor = btrfs_bg_type_to_factor(cache->flags);
2850 * If this block group has free space cache written out, we
2851 * need to make sure to load it if we are removing space. This
2852 * is because we need the unpinning stage to actually add the
2853 * space back to the block group, otherwise we will leak space.
2855 if (!alloc && !btrfs_block_group_done(cache))
2856 btrfs_cache_block_group(cache, 1);
2858 byte_in_group = bytenr - cache->start;
2859 WARN_ON(byte_in_group > cache->length);
2861 spin_lock(&cache->space_info->lock);
2862 spin_lock(&cache->lock);
2864 if (btrfs_test_opt(info, SPACE_CACHE) &&
2865 cache->disk_cache_state < BTRFS_DC_CLEAR)
2866 cache->disk_cache_state = BTRFS_DC_CLEAR;
2868 old_val = cache->used;
2869 num_bytes = min(total, cache->length - byte_in_group);
2870 if (alloc) {
2871 old_val += num_bytes;
2872 cache->used = old_val;
2873 cache->reserved -= num_bytes;
2874 cache->space_info->bytes_reserved -= num_bytes;
2875 cache->space_info->bytes_used += num_bytes;
2876 cache->space_info->disk_used += num_bytes * factor;
2877 spin_unlock(&cache->lock);
2878 spin_unlock(&cache->space_info->lock);
2879 } else {
2880 old_val -= num_bytes;
2881 cache->used = old_val;
2882 cache->pinned += num_bytes;
2883 btrfs_space_info_update_bytes_pinned(info,
2884 cache->space_info, num_bytes);
2885 cache->space_info->bytes_used -= num_bytes;
2886 cache->space_info->disk_used -= num_bytes * factor;
2887 spin_unlock(&cache->lock);
2888 spin_unlock(&cache->space_info->lock);
2890 percpu_counter_add_batch(
2891 &cache->space_info->total_bytes_pinned,
2892 num_bytes,
2893 BTRFS_TOTAL_BYTES_PINNED_BATCH);
2894 set_extent_dirty(&trans->transaction->pinned_extents,
2895 bytenr, bytenr + num_bytes - 1,
2896 GFP_NOFS | __GFP_NOFAIL);
2899 spin_lock(&trans->transaction->dirty_bgs_lock);
2900 if (list_empty(&cache->dirty_list)) {
2901 list_add_tail(&cache->dirty_list,
2902 &trans->transaction->dirty_bgs);
2903 trans->delayed_ref_updates++;
2904 btrfs_get_block_group(cache);
2906 spin_unlock(&trans->transaction->dirty_bgs_lock);
2909 * No longer have used bytes in this block group, queue it for
2910 * deletion. We do this after adding the block group to the
2911 * dirty list to avoid races between cleaner kthread and space
2912 * cache writeout.
2914 if (!alloc && old_val == 0) {
2915 if (!btrfs_test_opt(info, DISCARD_ASYNC))
2916 btrfs_mark_bg_unused(cache);
2919 btrfs_put_block_group(cache);
2920 total -= num_bytes;
2921 bytenr += num_bytes;
2924 /* Modified block groups are accounted for in the delayed_refs_rsv. */
2925 btrfs_update_delayed_refs_rsv(trans);
2926 return ret;
2930 * btrfs_add_reserved_bytes - update the block_group and space info counters
2931 * @cache: The cache we are manipulating
2932 * @ram_bytes: The number of bytes of file content, and will be same to
2933 * @num_bytes except for the compress path.
2934 * @num_bytes: The number of bytes in question
2935 * @delalloc: The blocks are allocated for the delalloc write
2937 * This is called by the allocator when it reserves space. If this is a
2938 * reservation and the block group has become read only we cannot make the
2939 * reservation and return -EAGAIN, otherwise this function always succeeds.
2941 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
2942 u64 ram_bytes, u64 num_bytes, int delalloc)
2944 struct btrfs_space_info *space_info = cache->space_info;
2945 int ret = 0;
2947 spin_lock(&space_info->lock);
2948 spin_lock(&cache->lock);
2949 if (cache->ro) {
2950 ret = -EAGAIN;
2951 } else {
2952 cache->reserved += num_bytes;
2953 space_info->bytes_reserved += num_bytes;
2954 trace_btrfs_space_reservation(cache->fs_info, "space_info",
2955 space_info->flags, num_bytes, 1);
2956 btrfs_space_info_update_bytes_may_use(cache->fs_info,
2957 space_info, -ram_bytes);
2958 if (delalloc)
2959 cache->delalloc_bytes += num_bytes;
2962 * Compression can use less space than we reserved, so wake
2963 * tickets if that happens
2965 if (num_bytes < ram_bytes)
2966 btrfs_try_granting_tickets(cache->fs_info, space_info);
2968 spin_unlock(&cache->lock);
2969 spin_unlock(&space_info->lock);
2970 return ret;
2974 * btrfs_free_reserved_bytes - update the block_group and space info counters
2975 * @cache: The cache we are manipulating
2976 * @num_bytes: The number of bytes in question
2977 * @delalloc: The blocks are allocated for the delalloc write
2979 * This is called by somebody who is freeing space that was never actually used
2980 * on disk. For example if you reserve some space for a new leaf in transaction
2981 * A and before transaction A commits you free that leaf, you call this with
2982 * reserve set to 0 in order to clear the reservation.
2984 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
2985 u64 num_bytes, int delalloc)
2987 struct btrfs_space_info *space_info = cache->space_info;
2989 spin_lock(&space_info->lock);
2990 spin_lock(&cache->lock);
2991 if (cache->ro)
2992 space_info->bytes_readonly += num_bytes;
2993 cache->reserved -= num_bytes;
2994 space_info->bytes_reserved -= num_bytes;
2995 space_info->max_extent_size = 0;
2997 if (delalloc)
2998 cache->delalloc_bytes -= num_bytes;
2999 spin_unlock(&cache->lock);
3001 btrfs_try_granting_tickets(cache->fs_info, space_info);
3002 spin_unlock(&space_info->lock);
3005 static void force_metadata_allocation(struct btrfs_fs_info *info)
3007 struct list_head *head = &info->space_info;
3008 struct btrfs_space_info *found;
3010 list_for_each_entry(found, head, list) {
3011 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3012 found->force_alloc = CHUNK_ALLOC_FORCE;
3016 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3017 struct btrfs_space_info *sinfo, int force)
3019 u64 bytes_used = btrfs_space_info_used(sinfo, false);
3020 u64 thresh;
3022 if (force == CHUNK_ALLOC_FORCE)
3023 return 1;
3026 * in limited mode, we want to have some free space up to
3027 * about 1% of the FS size.
3029 if (force == CHUNK_ALLOC_LIMITED) {
3030 thresh = btrfs_super_total_bytes(fs_info->super_copy);
3031 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
3033 if (sinfo->total_bytes - bytes_used < thresh)
3034 return 1;
3037 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
3038 return 0;
3039 return 1;
3042 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3044 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3046 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3050 * If force is CHUNK_ALLOC_FORCE:
3051 * - return 1 if it successfully allocates a chunk,
3052 * - return errors including -ENOSPC otherwise.
3053 * If force is NOT CHUNK_ALLOC_FORCE:
3054 * - return 0 if it doesn't need to allocate a new chunk,
3055 * - return 1 if it successfully allocates a chunk,
3056 * - return errors including -ENOSPC otherwise.
3058 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3059 enum btrfs_chunk_alloc_enum force)
3061 struct btrfs_fs_info *fs_info = trans->fs_info;
3062 struct btrfs_space_info *space_info;
3063 bool wait_for_alloc = false;
3064 bool should_alloc = false;
3065 int ret = 0;
3067 /* Don't re-enter if we're already allocating a chunk */
3068 if (trans->allocating_chunk)
3069 return -ENOSPC;
3071 space_info = btrfs_find_space_info(fs_info, flags);
3072 ASSERT(space_info);
3074 do {
3075 spin_lock(&space_info->lock);
3076 if (force < space_info->force_alloc)
3077 force = space_info->force_alloc;
3078 should_alloc = should_alloc_chunk(fs_info, space_info, force);
3079 if (space_info->full) {
3080 /* No more free physical space */
3081 if (should_alloc)
3082 ret = -ENOSPC;
3083 else
3084 ret = 0;
3085 spin_unlock(&space_info->lock);
3086 return ret;
3087 } else if (!should_alloc) {
3088 spin_unlock(&space_info->lock);
3089 return 0;
3090 } else if (space_info->chunk_alloc) {
3092 * Someone is already allocating, so we need to block
3093 * until this someone is finished and then loop to
3094 * recheck if we should continue with our allocation
3095 * attempt.
3097 wait_for_alloc = true;
3098 spin_unlock(&space_info->lock);
3099 mutex_lock(&fs_info->chunk_mutex);
3100 mutex_unlock(&fs_info->chunk_mutex);
3101 } else {
3102 /* Proceed with allocation */
3103 space_info->chunk_alloc = 1;
3104 wait_for_alloc = false;
3105 spin_unlock(&space_info->lock);
3108 cond_resched();
3109 } while (wait_for_alloc);
3111 mutex_lock(&fs_info->chunk_mutex);
3112 trans->allocating_chunk = true;
3115 * If we have mixed data/metadata chunks we want to make sure we keep
3116 * allocating mixed chunks instead of individual chunks.
3118 if (btrfs_mixed_space_info(space_info))
3119 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3122 * if we're doing a data chunk, go ahead and make sure that
3123 * we keep a reasonable number of metadata chunks allocated in the
3124 * FS as well.
3126 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3127 fs_info->data_chunk_allocations++;
3128 if (!(fs_info->data_chunk_allocations %
3129 fs_info->metadata_ratio))
3130 force_metadata_allocation(fs_info);
3134 * Check if we have enough space in SYSTEM chunk because we may need
3135 * to update devices.
3137 check_system_chunk(trans, flags);
3139 ret = btrfs_alloc_chunk(trans, flags);
3140 trans->allocating_chunk = false;
3142 spin_lock(&space_info->lock);
3143 if (ret < 0) {
3144 if (ret == -ENOSPC)
3145 space_info->full = 1;
3146 else
3147 goto out;
3148 } else {
3149 ret = 1;
3150 space_info->max_extent_size = 0;
3153 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3154 out:
3155 space_info->chunk_alloc = 0;
3156 spin_unlock(&space_info->lock);
3157 mutex_unlock(&fs_info->chunk_mutex);
3159 * When we allocate a new chunk we reserve space in the chunk block
3160 * reserve to make sure we can COW nodes/leafs in the chunk tree or
3161 * add new nodes/leafs to it if we end up needing to do it when
3162 * inserting the chunk item and updating device items as part of the
3163 * second phase of chunk allocation, performed by
3164 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
3165 * large number of new block groups to create in our transaction
3166 * handle's new_bgs list to avoid exhausting the chunk block reserve
3167 * in extreme cases - like having a single transaction create many new
3168 * block groups when starting to write out the free space caches of all
3169 * the block groups that were made dirty during the lifetime of the
3170 * transaction.
3172 if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
3173 btrfs_create_pending_block_groups(trans);
3175 return ret;
3178 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3180 u64 num_dev;
3182 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3183 if (!num_dev)
3184 num_dev = fs_info->fs_devices->rw_devices;
3186 return num_dev;
3190 * Reserve space in the system space for allocating or removing a chunk
3192 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3194 struct btrfs_fs_info *fs_info = trans->fs_info;
3195 struct btrfs_space_info *info;
3196 u64 left;
3197 u64 thresh;
3198 int ret = 0;
3199 u64 num_devs;
3202 * Needed because we can end up allocating a system chunk and for an
3203 * atomic and race free space reservation in the chunk block reserve.
3205 lockdep_assert_held(&fs_info->chunk_mutex);
3207 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3208 spin_lock(&info->lock);
3209 left = info->total_bytes - btrfs_space_info_used(info, true);
3210 spin_unlock(&info->lock);
3212 num_devs = get_profile_num_devs(fs_info, type);
3214 /* num_devs device items to update and 1 chunk item to add or remove */
3215 thresh = btrfs_calc_metadata_size(fs_info, num_devs) +
3216 btrfs_calc_insert_metadata_size(fs_info, 1);
3218 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3219 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3220 left, thresh, type);
3221 btrfs_dump_space_info(fs_info, info, 0, 0);
3224 if (left < thresh) {
3225 u64 flags = btrfs_system_alloc_profile(fs_info);
3228 * Ignore failure to create system chunk. We might end up not
3229 * needing it, as we might not need to COW all nodes/leafs from
3230 * the paths we visit in the chunk tree (they were already COWed
3231 * or created in the current transaction for example).
3233 ret = btrfs_alloc_chunk(trans, flags);
3236 if (!ret) {
3237 ret = btrfs_block_rsv_add(fs_info->chunk_root,
3238 &fs_info->chunk_block_rsv,
3239 thresh, BTRFS_RESERVE_NO_FLUSH);
3240 if (!ret)
3241 trans->chunk_bytes_reserved += thresh;
3245 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3247 struct btrfs_block_group *block_group;
3248 u64 last = 0;
3250 while (1) {
3251 struct inode *inode;
3253 block_group = btrfs_lookup_first_block_group(info, last);
3254 while (block_group) {
3255 btrfs_wait_block_group_cache_done(block_group);
3256 spin_lock(&block_group->lock);
3257 if (block_group->iref)
3258 break;
3259 spin_unlock(&block_group->lock);
3260 block_group = btrfs_next_block_group(block_group);
3262 if (!block_group) {
3263 if (last == 0)
3264 break;
3265 last = 0;
3266 continue;
3269 inode = block_group->inode;
3270 block_group->iref = 0;
3271 block_group->inode = NULL;
3272 spin_unlock(&block_group->lock);
3273 ASSERT(block_group->io_ctl.inode == NULL);
3274 iput(inode);
3275 last = block_group->start + block_group->length;
3276 btrfs_put_block_group(block_group);
3281 * Must be called only after stopping all workers, since we could have block
3282 * group caching kthreads running, and therefore they could race with us if we
3283 * freed the block groups before stopping them.
3285 int btrfs_free_block_groups(struct btrfs_fs_info *info)
3287 struct btrfs_block_group *block_group;
3288 struct btrfs_space_info *space_info;
3289 struct btrfs_caching_control *caching_ctl;
3290 struct rb_node *n;
3292 spin_lock(&info->block_group_cache_lock);
3293 while (!list_empty(&info->caching_block_groups)) {
3294 caching_ctl = list_entry(info->caching_block_groups.next,
3295 struct btrfs_caching_control, list);
3296 list_del(&caching_ctl->list);
3297 btrfs_put_caching_control(caching_ctl);
3299 spin_unlock(&info->block_group_cache_lock);
3301 spin_lock(&info->unused_bgs_lock);
3302 while (!list_empty(&info->unused_bgs)) {
3303 block_group = list_first_entry(&info->unused_bgs,
3304 struct btrfs_block_group,
3305 bg_list);
3306 list_del_init(&block_group->bg_list);
3307 btrfs_put_block_group(block_group);
3309 spin_unlock(&info->unused_bgs_lock);
3311 spin_lock(&info->block_group_cache_lock);
3312 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
3313 block_group = rb_entry(n, struct btrfs_block_group,
3314 cache_node);
3315 rb_erase(&block_group->cache_node,
3316 &info->block_group_cache_tree);
3317 RB_CLEAR_NODE(&block_group->cache_node);
3318 spin_unlock(&info->block_group_cache_lock);
3320 down_write(&block_group->space_info->groups_sem);
3321 list_del(&block_group->list);
3322 up_write(&block_group->space_info->groups_sem);
3325 * We haven't cached this block group, which means we could
3326 * possibly have excluded extents on this block group.
3328 if (block_group->cached == BTRFS_CACHE_NO ||
3329 block_group->cached == BTRFS_CACHE_ERROR)
3330 btrfs_free_excluded_extents(block_group);
3332 btrfs_remove_free_space_cache(block_group);
3333 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
3334 ASSERT(list_empty(&block_group->dirty_list));
3335 ASSERT(list_empty(&block_group->io_list));
3336 ASSERT(list_empty(&block_group->bg_list));
3337 ASSERT(refcount_read(&block_group->refs) == 1);
3338 btrfs_put_block_group(block_group);
3340 spin_lock(&info->block_group_cache_lock);
3342 spin_unlock(&info->block_group_cache_lock);
3344 btrfs_release_global_block_rsv(info);
3346 while (!list_empty(&info->space_info)) {
3347 space_info = list_entry(info->space_info.next,
3348 struct btrfs_space_info,
3349 list);
3352 * Do not hide this behind enospc_debug, this is actually
3353 * important and indicates a real bug if this happens.
3355 if (WARN_ON(space_info->bytes_pinned > 0 ||
3356 space_info->bytes_reserved > 0 ||
3357 space_info->bytes_may_use > 0))
3358 btrfs_dump_space_info(info, space_info, 0, 0);
3359 WARN_ON(space_info->reclaim_size > 0);
3360 list_del(&space_info->list);
3361 btrfs_sysfs_remove_space_info(space_info);
3363 return 0;
3366 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
3368 atomic_inc(&cache->frozen);
3371 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
3373 struct btrfs_fs_info *fs_info = block_group->fs_info;
3374 struct extent_map_tree *em_tree;
3375 struct extent_map *em;
3376 bool cleanup;
3378 spin_lock(&block_group->lock);
3379 cleanup = (atomic_dec_and_test(&block_group->frozen) &&
3380 block_group->removed);
3381 spin_unlock(&block_group->lock);
3383 if (cleanup) {
3384 em_tree = &fs_info->mapping_tree;
3385 write_lock(&em_tree->lock);
3386 em = lookup_extent_mapping(em_tree, block_group->start,
3388 BUG_ON(!em); /* logic error, can't happen */
3389 remove_extent_mapping(em_tree, em);
3390 write_unlock(&em_tree->lock);
3392 /* once for us and once for the tree */
3393 free_extent_map(em);
3394 free_extent_map(em);
3397 * We may have left one free space entry and other possible
3398 * tasks trimming this block group have left 1 entry each one.
3399 * Free them if any.
3401 __btrfs_remove_free_space_cache(block_group->free_space_ctl);