Merge tag 'regmap-fix-v5.11-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux/fpc-iii.git] / fs / btrfs / compression.c
blob5ae3fa0386b769faf048d18f7ea928294e4f81a6
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/highmem.h>
12 #include <linux/time.h>
13 #include <linux/init.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sched/mm.h>
19 #include <linux/log2.h>
20 #include <crypto/hash.h>
21 #include "misc.h"
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "ordered-data.h"
28 #include "compression.h"
29 #include "extent_io.h"
30 #include "extent_map.h"
32 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
34 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
36 switch (type) {
37 case BTRFS_COMPRESS_ZLIB:
38 case BTRFS_COMPRESS_LZO:
39 case BTRFS_COMPRESS_ZSTD:
40 case BTRFS_COMPRESS_NONE:
41 return btrfs_compress_types[type];
42 default:
43 break;
46 return NULL;
49 bool btrfs_compress_is_valid_type(const char *str, size_t len)
51 int i;
53 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
54 size_t comp_len = strlen(btrfs_compress_types[i]);
56 if (len < comp_len)
57 continue;
59 if (!strncmp(btrfs_compress_types[i], str, comp_len))
60 return true;
62 return false;
65 static int compression_compress_pages(int type, struct list_head *ws,
66 struct address_space *mapping, u64 start, struct page **pages,
67 unsigned long *out_pages, unsigned long *total_in,
68 unsigned long *total_out)
70 switch (type) {
71 case BTRFS_COMPRESS_ZLIB:
72 return zlib_compress_pages(ws, mapping, start, pages,
73 out_pages, total_in, total_out);
74 case BTRFS_COMPRESS_LZO:
75 return lzo_compress_pages(ws, mapping, start, pages,
76 out_pages, total_in, total_out);
77 case BTRFS_COMPRESS_ZSTD:
78 return zstd_compress_pages(ws, mapping, start, pages,
79 out_pages, total_in, total_out);
80 case BTRFS_COMPRESS_NONE:
81 default:
83 * This can't happen, the type is validated several times
84 * before we get here. As a sane fallback, return what the
85 * callers will understand as 'no compression happened'.
87 return -E2BIG;
91 static int compression_decompress_bio(int type, struct list_head *ws,
92 struct compressed_bio *cb)
94 switch (type) {
95 case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
96 case BTRFS_COMPRESS_LZO: return lzo_decompress_bio(ws, cb);
97 case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
98 case BTRFS_COMPRESS_NONE:
99 default:
101 * This can't happen, the type is validated several times
102 * before we get here.
104 BUG();
108 static int compression_decompress(int type, struct list_head *ws,
109 unsigned char *data_in, struct page *dest_page,
110 unsigned long start_byte, size_t srclen, size_t destlen)
112 switch (type) {
113 case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
114 start_byte, srclen, destlen);
115 case BTRFS_COMPRESS_LZO: return lzo_decompress(ws, data_in, dest_page,
116 start_byte, srclen, destlen);
117 case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
118 start_byte, srclen, destlen);
119 case BTRFS_COMPRESS_NONE:
120 default:
122 * This can't happen, the type is validated several times
123 * before we get here.
125 BUG();
129 static int btrfs_decompress_bio(struct compressed_bio *cb);
131 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
132 unsigned long disk_size)
134 return sizeof(struct compressed_bio) +
135 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size;
138 static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
139 u64 disk_start)
141 struct btrfs_fs_info *fs_info = inode->root->fs_info;
142 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
143 const u32 csum_size = fs_info->csum_size;
144 struct page *page;
145 unsigned long i;
146 char *kaddr;
147 u8 csum[BTRFS_CSUM_SIZE];
148 struct compressed_bio *cb = bio->bi_private;
149 u8 *cb_sum = cb->sums;
151 if (!fs_info->csum_root || (inode->flags & BTRFS_INODE_NODATASUM))
152 return 0;
154 shash->tfm = fs_info->csum_shash;
156 for (i = 0; i < cb->nr_pages; i++) {
157 page = cb->compressed_pages[i];
159 kaddr = kmap_atomic(page);
160 crypto_shash_digest(shash, kaddr, PAGE_SIZE, csum);
161 kunmap_atomic(kaddr);
163 if (memcmp(&csum, cb_sum, csum_size)) {
164 btrfs_print_data_csum_error(inode, disk_start,
165 csum, cb_sum, cb->mirror_num);
166 if (btrfs_io_bio(bio)->device)
167 btrfs_dev_stat_inc_and_print(
168 btrfs_io_bio(bio)->device,
169 BTRFS_DEV_STAT_CORRUPTION_ERRS);
170 return -EIO;
172 cb_sum += csum_size;
174 return 0;
177 /* when we finish reading compressed pages from the disk, we
178 * decompress them and then run the bio end_io routines on the
179 * decompressed pages (in the inode address space).
181 * This allows the checksumming and other IO error handling routines
182 * to work normally
184 * The compressed pages are freed here, and it must be run
185 * in process context
187 static void end_compressed_bio_read(struct bio *bio)
189 struct compressed_bio *cb = bio->bi_private;
190 struct inode *inode;
191 struct page *page;
192 unsigned long index;
193 unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
194 int ret = 0;
196 if (bio->bi_status)
197 cb->errors = 1;
199 /* if there are more bios still pending for this compressed
200 * extent, just exit
202 if (!refcount_dec_and_test(&cb->pending_bios))
203 goto out;
206 * Record the correct mirror_num in cb->orig_bio so that
207 * read-repair can work properly.
209 btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
210 cb->mirror_num = mirror;
213 * Some IO in this cb have failed, just skip checksum as there
214 * is no way it could be correct.
216 if (cb->errors == 1)
217 goto csum_failed;
219 inode = cb->inode;
220 ret = check_compressed_csum(BTRFS_I(inode), bio,
221 bio->bi_iter.bi_sector << 9);
222 if (ret)
223 goto csum_failed;
225 /* ok, we're the last bio for this extent, lets start
226 * the decompression.
228 ret = btrfs_decompress_bio(cb);
230 csum_failed:
231 if (ret)
232 cb->errors = 1;
234 /* release the compressed pages */
235 index = 0;
236 for (index = 0; index < cb->nr_pages; index++) {
237 page = cb->compressed_pages[index];
238 page->mapping = NULL;
239 put_page(page);
242 /* do io completion on the original bio */
243 if (cb->errors) {
244 bio_io_error(cb->orig_bio);
245 } else {
246 struct bio_vec *bvec;
247 struct bvec_iter_all iter_all;
250 * we have verified the checksum already, set page
251 * checked so the end_io handlers know about it
253 ASSERT(!bio_flagged(bio, BIO_CLONED));
254 bio_for_each_segment_all(bvec, cb->orig_bio, iter_all)
255 SetPageChecked(bvec->bv_page);
257 bio_endio(cb->orig_bio);
260 /* finally free the cb struct */
261 kfree(cb->compressed_pages);
262 kfree(cb);
263 out:
264 bio_put(bio);
268 * Clear the writeback bits on all of the file
269 * pages for a compressed write
271 static noinline void end_compressed_writeback(struct inode *inode,
272 const struct compressed_bio *cb)
274 unsigned long index = cb->start >> PAGE_SHIFT;
275 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
276 struct page *pages[16];
277 unsigned long nr_pages = end_index - index + 1;
278 int i;
279 int ret;
281 if (cb->errors)
282 mapping_set_error(inode->i_mapping, -EIO);
284 while (nr_pages > 0) {
285 ret = find_get_pages_contig(inode->i_mapping, index,
286 min_t(unsigned long,
287 nr_pages, ARRAY_SIZE(pages)), pages);
288 if (ret == 0) {
289 nr_pages -= 1;
290 index += 1;
291 continue;
293 for (i = 0; i < ret; i++) {
294 if (cb->errors)
295 SetPageError(pages[i]);
296 end_page_writeback(pages[i]);
297 put_page(pages[i]);
299 nr_pages -= ret;
300 index += ret;
302 /* the inode may be gone now */
306 * do the cleanup once all the compressed pages hit the disk.
307 * This will clear writeback on the file pages and free the compressed
308 * pages.
310 * This also calls the writeback end hooks for the file pages so that
311 * metadata and checksums can be updated in the file.
313 static void end_compressed_bio_write(struct bio *bio)
315 struct compressed_bio *cb = bio->bi_private;
316 struct inode *inode;
317 struct page *page;
318 unsigned long index;
320 if (bio->bi_status)
321 cb->errors = 1;
323 /* if there are more bios still pending for this compressed
324 * extent, just exit
326 if (!refcount_dec_and_test(&cb->pending_bios))
327 goto out;
329 /* ok, we're the last bio for this extent, step one is to
330 * call back into the FS and do all the end_io operations
332 inode = cb->inode;
333 cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
334 btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0],
335 cb->start, cb->start + cb->len - 1,
336 bio->bi_status == BLK_STS_OK);
337 cb->compressed_pages[0]->mapping = NULL;
339 end_compressed_writeback(inode, cb);
340 /* note, our inode could be gone now */
343 * release the compressed pages, these came from alloc_page and
344 * are not attached to the inode at all
346 index = 0;
347 for (index = 0; index < cb->nr_pages; index++) {
348 page = cb->compressed_pages[index];
349 page->mapping = NULL;
350 put_page(page);
353 /* finally free the cb struct */
354 kfree(cb->compressed_pages);
355 kfree(cb);
356 out:
357 bio_put(bio);
361 * worker function to build and submit bios for previously compressed pages.
362 * The corresponding pages in the inode should be marked for writeback
363 * and the compressed pages should have a reference on them for dropping
364 * when the IO is complete.
366 * This also checksums the file bytes and gets things ready for
367 * the end io hooks.
369 blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
370 unsigned long len, u64 disk_start,
371 unsigned long compressed_len,
372 struct page **compressed_pages,
373 unsigned long nr_pages,
374 unsigned int write_flags,
375 struct cgroup_subsys_state *blkcg_css)
377 struct btrfs_fs_info *fs_info = inode->root->fs_info;
378 struct bio *bio = NULL;
379 struct compressed_bio *cb;
380 unsigned long bytes_left;
381 int pg_index = 0;
382 struct page *page;
383 u64 first_byte = disk_start;
384 blk_status_t ret;
385 int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
387 WARN_ON(!PAGE_ALIGNED(start));
388 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
389 if (!cb)
390 return BLK_STS_RESOURCE;
391 refcount_set(&cb->pending_bios, 0);
392 cb->errors = 0;
393 cb->inode = &inode->vfs_inode;
394 cb->start = start;
395 cb->len = len;
396 cb->mirror_num = 0;
397 cb->compressed_pages = compressed_pages;
398 cb->compressed_len = compressed_len;
399 cb->orig_bio = NULL;
400 cb->nr_pages = nr_pages;
402 bio = btrfs_bio_alloc(first_byte);
403 bio->bi_opf = REQ_OP_WRITE | write_flags;
404 bio->bi_private = cb;
405 bio->bi_end_io = end_compressed_bio_write;
407 if (blkcg_css) {
408 bio->bi_opf |= REQ_CGROUP_PUNT;
409 kthread_associate_blkcg(blkcg_css);
411 refcount_set(&cb->pending_bios, 1);
413 /* create and submit bios for the compressed pages */
414 bytes_left = compressed_len;
415 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
416 int submit = 0;
418 page = compressed_pages[pg_index];
419 page->mapping = inode->vfs_inode.i_mapping;
420 if (bio->bi_iter.bi_size)
421 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
424 page->mapping = NULL;
425 if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
426 PAGE_SIZE) {
428 * inc the count before we submit the bio so
429 * we know the end IO handler won't happen before
430 * we inc the count. Otherwise, the cb might get
431 * freed before we're done setting it up
433 refcount_inc(&cb->pending_bios);
434 ret = btrfs_bio_wq_end_io(fs_info, bio,
435 BTRFS_WQ_ENDIO_DATA);
436 BUG_ON(ret); /* -ENOMEM */
438 if (!skip_sum) {
439 ret = btrfs_csum_one_bio(inode, bio, start, 1);
440 BUG_ON(ret); /* -ENOMEM */
443 ret = btrfs_map_bio(fs_info, bio, 0);
444 if (ret) {
445 bio->bi_status = ret;
446 bio_endio(bio);
449 bio = btrfs_bio_alloc(first_byte);
450 bio->bi_opf = REQ_OP_WRITE | write_flags;
451 bio->bi_private = cb;
452 bio->bi_end_io = end_compressed_bio_write;
453 if (blkcg_css)
454 bio->bi_opf |= REQ_CGROUP_PUNT;
455 bio_add_page(bio, page, PAGE_SIZE, 0);
457 if (bytes_left < PAGE_SIZE) {
458 btrfs_info(fs_info,
459 "bytes left %lu compress len %lu nr %lu",
460 bytes_left, cb->compressed_len, cb->nr_pages);
462 bytes_left -= PAGE_SIZE;
463 first_byte += PAGE_SIZE;
464 cond_resched();
467 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
468 BUG_ON(ret); /* -ENOMEM */
470 if (!skip_sum) {
471 ret = btrfs_csum_one_bio(inode, bio, start, 1);
472 BUG_ON(ret); /* -ENOMEM */
475 ret = btrfs_map_bio(fs_info, bio, 0);
476 if (ret) {
477 bio->bi_status = ret;
478 bio_endio(bio);
481 if (blkcg_css)
482 kthread_associate_blkcg(NULL);
484 return 0;
487 static u64 bio_end_offset(struct bio *bio)
489 struct bio_vec *last = bio_last_bvec_all(bio);
491 return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
494 static noinline int add_ra_bio_pages(struct inode *inode,
495 u64 compressed_end,
496 struct compressed_bio *cb)
498 unsigned long end_index;
499 unsigned long pg_index;
500 u64 last_offset;
501 u64 isize = i_size_read(inode);
502 int ret;
503 struct page *page;
504 unsigned long nr_pages = 0;
505 struct extent_map *em;
506 struct address_space *mapping = inode->i_mapping;
507 struct extent_map_tree *em_tree;
508 struct extent_io_tree *tree;
509 u64 end;
510 int misses = 0;
512 last_offset = bio_end_offset(cb->orig_bio);
513 em_tree = &BTRFS_I(inode)->extent_tree;
514 tree = &BTRFS_I(inode)->io_tree;
516 if (isize == 0)
517 return 0;
519 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
521 while (last_offset < compressed_end) {
522 pg_index = last_offset >> PAGE_SHIFT;
524 if (pg_index > end_index)
525 break;
527 page = xa_load(&mapping->i_pages, pg_index);
528 if (page && !xa_is_value(page)) {
529 misses++;
530 if (misses > 4)
531 break;
532 goto next;
535 page = __page_cache_alloc(mapping_gfp_constraint(mapping,
536 ~__GFP_FS));
537 if (!page)
538 break;
540 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
541 put_page(page);
542 goto next;
545 end = last_offset + PAGE_SIZE - 1;
547 * at this point, we have a locked page in the page cache
548 * for these bytes in the file. But, we have to make
549 * sure they map to this compressed extent on disk.
551 set_page_extent_mapped(page);
552 lock_extent(tree, last_offset, end);
553 read_lock(&em_tree->lock);
554 em = lookup_extent_mapping(em_tree, last_offset,
555 PAGE_SIZE);
556 read_unlock(&em_tree->lock);
558 if (!em || last_offset < em->start ||
559 (last_offset + PAGE_SIZE > extent_map_end(em)) ||
560 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
561 free_extent_map(em);
562 unlock_extent(tree, last_offset, end);
563 unlock_page(page);
564 put_page(page);
565 break;
567 free_extent_map(em);
569 if (page->index == end_index) {
570 char *userpage;
571 size_t zero_offset = offset_in_page(isize);
573 if (zero_offset) {
574 int zeros;
575 zeros = PAGE_SIZE - zero_offset;
576 userpage = kmap_atomic(page);
577 memset(userpage + zero_offset, 0, zeros);
578 flush_dcache_page(page);
579 kunmap_atomic(userpage);
583 ret = bio_add_page(cb->orig_bio, page,
584 PAGE_SIZE, 0);
586 if (ret == PAGE_SIZE) {
587 nr_pages++;
588 put_page(page);
589 } else {
590 unlock_extent(tree, last_offset, end);
591 unlock_page(page);
592 put_page(page);
593 break;
595 next:
596 last_offset += PAGE_SIZE;
598 return 0;
602 * for a compressed read, the bio we get passed has all the inode pages
603 * in it. We don't actually do IO on those pages but allocate new ones
604 * to hold the compressed pages on disk.
606 * bio->bi_iter.bi_sector points to the compressed extent on disk
607 * bio->bi_io_vec points to all of the inode pages
609 * After the compressed pages are read, we copy the bytes into the
610 * bio we were passed and then call the bio end_io calls
612 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
613 int mirror_num, unsigned long bio_flags)
615 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
616 struct extent_map_tree *em_tree;
617 struct compressed_bio *cb;
618 unsigned long compressed_len;
619 unsigned long nr_pages;
620 unsigned long pg_index;
621 struct page *page;
622 struct bio *comp_bio;
623 u64 cur_disk_byte = bio->bi_iter.bi_sector << 9;
624 u64 em_len;
625 u64 em_start;
626 struct extent_map *em;
627 blk_status_t ret = BLK_STS_RESOURCE;
628 int faili = 0;
629 u8 *sums;
631 em_tree = &BTRFS_I(inode)->extent_tree;
633 /* we need the actual starting offset of this extent in the file */
634 read_lock(&em_tree->lock);
635 em = lookup_extent_mapping(em_tree,
636 page_offset(bio_first_page_all(bio)),
637 PAGE_SIZE);
638 read_unlock(&em_tree->lock);
639 if (!em)
640 return BLK_STS_IOERR;
642 compressed_len = em->block_len;
643 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
644 if (!cb)
645 goto out;
647 refcount_set(&cb->pending_bios, 0);
648 cb->errors = 0;
649 cb->inode = inode;
650 cb->mirror_num = mirror_num;
651 sums = cb->sums;
653 cb->start = em->orig_start;
654 em_len = em->len;
655 em_start = em->start;
657 free_extent_map(em);
658 em = NULL;
660 cb->len = bio->bi_iter.bi_size;
661 cb->compressed_len = compressed_len;
662 cb->compress_type = extent_compress_type(bio_flags);
663 cb->orig_bio = bio;
665 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
666 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
667 GFP_NOFS);
668 if (!cb->compressed_pages)
669 goto fail1;
671 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
672 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
673 __GFP_HIGHMEM);
674 if (!cb->compressed_pages[pg_index]) {
675 faili = pg_index - 1;
676 ret = BLK_STS_RESOURCE;
677 goto fail2;
680 faili = nr_pages - 1;
681 cb->nr_pages = nr_pages;
683 add_ra_bio_pages(inode, em_start + em_len, cb);
685 /* include any pages we added in add_ra-bio_pages */
686 cb->len = bio->bi_iter.bi_size;
688 comp_bio = btrfs_bio_alloc(cur_disk_byte);
689 comp_bio->bi_opf = REQ_OP_READ;
690 comp_bio->bi_private = cb;
691 comp_bio->bi_end_io = end_compressed_bio_read;
692 refcount_set(&cb->pending_bios, 1);
694 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
695 int submit = 0;
697 page = cb->compressed_pages[pg_index];
698 page->mapping = inode->i_mapping;
699 page->index = em_start >> PAGE_SHIFT;
701 if (comp_bio->bi_iter.bi_size)
702 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE,
703 comp_bio, 0);
705 page->mapping = NULL;
706 if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
707 PAGE_SIZE) {
708 unsigned int nr_sectors;
710 ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
711 BTRFS_WQ_ENDIO_DATA);
712 BUG_ON(ret); /* -ENOMEM */
715 * inc the count before we submit the bio so
716 * we know the end IO handler won't happen before
717 * we inc the count. Otherwise, the cb might get
718 * freed before we're done setting it up
720 refcount_inc(&cb->pending_bios);
722 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
723 BUG_ON(ret); /* -ENOMEM */
725 nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
726 fs_info->sectorsize);
727 sums += fs_info->csum_size * nr_sectors;
729 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
730 if (ret) {
731 comp_bio->bi_status = ret;
732 bio_endio(comp_bio);
735 comp_bio = btrfs_bio_alloc(cur_disk_byte);
736 comp_bio->bi_opf = REQ_OP_READ;
737 comp_bio->bi_private = cb;
738 comp_bio->bi_end_io = end_compressed_bio_read;
740 bio_add_page(comp_bio, page, PAGE_SIZE, 0);
742 cur_disk_byte += PAGE_SIZE;
745 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
746 BUG_ON(ret); /* -ENOMEM */
748 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
749 BUG_ON(ret); /* -ENOMEM */
751 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
752 if (ret) {
753 comp_bio->bi_status = ret;
754 bio_endio(comp_bio);
757 return 0;
759 fail2:
760 while (faili >= 0) {
761 __free_page(cb->compressed_pages[faili]);
762 faili--;
765 kfree(cb->compressed_pages);
766 fail1:
767 kfree(cb);
768 out:
769 free_extent_map(em);
770 return ret;
774 * Heuristic uses systematic sampling to collect data from the input data
775 * range, the logic can be tuned by the following constants:
777 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
778 * @SAMPLING_INTERVAL - range from which the sampled data can be collected
780 #define SAMPLING_READ_SIZE (16)
781 #define SAMPLING_INTERVAL (256)
784 * For statistical analysis of the input data we consider bytes that form a
785 * Galois Field of 256 objects. Each object has an attribute count, ie. how
786 * many times the object appeared in the sample.
788 #define BUCKET_SIZE (256)
791 * The size of the sample is based on a statistical sampling rule of thumb.
792 * The common way is to perform sampling tests as long as the number of
793 * elements in each cell is at least 5.
795 * Instead of 5, we choose 32 to obtain more accurate results.
796 * If the data contain the maximum number of symbols, which is 256, we obtain a
797 * sample size bound by 8192.
799 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
800 * from up to 512 locations.
802 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \
803 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
805 struct bucket_item {
806 u32 count;
809 struct heuristic_ws {
810 /* Partial copy of input data */
811 u8 *sample;
812 u32 sample_size;
813 /* Buckets store counters for each byte value */
814 struct bucket_item *bucket;
815 /* Sorting buffer */
816 struct bucket_item *bucket_b;
817 struct list_head list;
820 static struct workspace_manager heuristic_wsm;
822 static void free_heuristic_ws(struct list_head *ws)
824 struct heuristic_ws *workspace;
826 workspace = list_entry(ws, struct heuristic_ws, list);
828 kvfree(workspace->sample);
829 kfree(workspace->bucket);
830 kfree(workspace->bucket_b);
831 kfree(workspace);
834 static struct list_head *alloc_heuristic_ws(unsigned int level)
836 struct heuristic_ws *ws;
838 ws = kzalloc(sizeof(*ws), GFP_KERNEL);
839 if (!ws)
840 return ERR_PTR(-ENOMEM);
842 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
843 if (!ws->sample)
844 goto fail;
846 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
847 if (!ws->bucket)
848 goto fail;
850 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
851 if (!ws->bucket_b)
852 goto fail;
854 INIT_LIST_HEAD(&ws->list);
855 return &ws->list;
856 fail:
857 free_heuristic_ws(&ws->list);
858 return ERR_PTR(-ENOMEM);
861 const struct btrfs_compress_op btrfs_heuristic_compress = {
862 .workspace_manager = &heuristic_wsm,
865 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
866 /* The heuristic is represented as compression type 0 */
867 &btrfs_heuristic_compress,
868 &btrfs_zlib_compress,
869 &btrfs_lzo_compress,
870 &btrfs_zstd_compress,
873 static struct list_head *alloc_workspace(int type, unsigned int level)
875 switch (type) {
876 case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
877 case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
878 case BTRFS_COMPRESS_LZO: return lzo_alloc_workspace(level);
879 case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
880 default:
882 * This can't happen, the type is validated several times
883 * before we get here.
885 BUG();
889 static void free_workspace(int type, struct list_head *ws)
891 switch (type) {
892 case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
893 case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
894 case BTRFS_COMPRESS_LZO: return lzo_free_workspace(ws);
895 case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
896 default:
898 * This can't happen, the type is validated several times
899 * before we get here.
901 BUG();
905 static void btrfs_init_workspace_manager(int type)
907 struct workspace_manager *wsm;
908 struct list_head *workspace;
910 wsm = btrfs_compress_op[type]->workspace_manager;
911 INIT_LIST_HEAD(&wsm->idle_ws);
912 spin_lock_init(&wsm->ws_lock);
913 atomic_set(&wsm->total_ws, 0);
914 init_waitqueue_head(&wsm->ws_wait);
917 * Preallocate one workspace for each compression type so we can
918 * guarantee forward progress in the worst case
920 workspace = alloc_workspace(type, 0);
921 if (IS_ERR(workspace)) {
922 pr_warn(
923 "BTRFS: cannot preallocate compression workspace, will try later\n");
924 } else {
925 atomic_set(&wsm->total_ws, 1);
926 wsm->free_ws = 1;
927 list_add(workspace, &wsm->idle_ws);
931 static void btrfs_cleanup_workspace_manager(int type)
933 struct workspace_manager *wsman;
934 struct list_head *ws;
936 wsman = btrfs_compress_op[type]->workspace_manager;
937 while (!list_empty(&wsman->idle_ws)) {
938 ws = wsman->idle_ws.next;
939 list_del(ws);
940 free_workspace(type, ws);
941 atomic_dec(&wsman->total_ws);
946 * This finds an available workspace or allocates a new one.
947 * If it's not possible to allocate a new one, waits until there's one.
948 * Preallocation makes a forward progress guarantees and we do not return
949 * errors.
951 struct list_head *btrfs_get_workspace(int type, unsigned int level)
953 struct workspace_manager *wsm;
954 struct list_head *workspace;
955 int cpus = num_online_cpus();
956 unsigned nofs_flag;
957 struct list_head *idle_ws;
958 spinlock_t *ws_lock;
959 atomic_t *total_ws;
960 wait_queue_head_t *ws_wait;
961 int *free_ws;
963 wsm = btrfs_compress_op[type]->workspace_manager;
964 idle_ws = &wsm->idle_ws;
965 ws_lock = &wsm->ws_lock;
966 total_ws = &wsm->total_ws;
967 ws_wait = &wsm->ws_wait;
968 free_ws = &wsm->free_ws;
970 again:
971 spin_lock(ws_lock);
972 if (!list_empty(idle_ws)) {
973 workspace = idle_ws->next;
974 list_del(workspace);
975 (*free_ws)--;
976 spin_unlock(ws_lock);
977 return workspace;
980 if (atomic_read(total_ws) > cpus) {
981 DEFINE_WAIT(wait);
983 spin_unlock(ws_lock);
984 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
985 if (atomic_read(total_ws) > cpus && !*free_ws)
986 schedule();
987 finish_wait(ws_wait, &wait);
988 goto again;
990 atomic_inc(total_ws);
991 spin_unlock(ws_lock);
994 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
995 * to turn it off here because we might get called from the restricted
996 * context of btrfs_compress_bio/btrfs_compress_pages
998 nofs_flag = memalloc_nofs_save();
999 workspace = alloc_workspace(type, level);
1000 memalloc_nofs_restore(nofs_flag);
1002 if (IS_ERR(workspace)) {
1003 atomic_dec(total_ws);
1004 wake_up(ws_wait);
1007 * Do not return the error but go back to waiting. There's a
1008 * workspace preallocated for each type and the compression
1009 * time is bounded so we get to a workspace eventually. This
1010 * makes our caller's life easier.
1012 * To prevent silent and low-probability deadlocks (when the
1013 * initial preallocation fails), check if there are any
1014 * workspaces at all.
1016 if (atomic_read(total_ws) == 0) {
1017 static DEFINE_RATELIMIT_STATE(_rs,
1018 /* once per minute */ 60 * HZ,
1019 /* no burst */ 1);
1021 if (__ratelimit(&_rs)) {
1022 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1025 goto again;
1027 return workspace;
1030 static struct list_head *get_workspace(int type, int level)
1032 switch (type) {
1033 case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1034 case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1035 case BTRFS_COMPRESS_LZO: return btrfs_get_workspace(type, level);
1036 case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
1037 default:
1039 * This can't happen, the type is validated several times
1040 * before we get here.
1042 BUG();
1047 * put a workspace struct back on the list or free it if we have enough
1048 * idle ones sitting around
1050 void btrfs_put_workspace(int type, struct list_head *ws)
1052 struct workspace_manager *wsm;
1053 struct list_head *idle_ws;
1054 spinlock_t *ws_lock;
1055 atomic_t *total_ws;
1056 wait_queue_head_t *ws_wait;
1057 int *free_ws;
1059 wsm = btrfs_compress_op[type]->workspace_manager;
1060 idle_ws = &wsm->idle_ws;
1061 ws_lock = &wsm->ws_lock;
1062 total_ws = &wsm->total_ws;
1063 ws_wait = &wsm->ws_wait;
1064 free_ws = &wsm->free_ws;
1066 spin_lock(ws_lock);
1067 if (*free_ws <= num_online_cpus()) {
1068 list_add(ws, idle_ws);
1069 (*free_ws)++;
1070 spin_unlock(ws_lock);
1071 goto wake;
1073 spin_unlock(ws_lock);
1075 free_workspace(type, ws);
1076 atomic_dec(total_ws);
1077 wake:
1078 cond_wake_up(ws_wait);
1081 static void put_workspace(int type, struct list_head *ws)
1083 switch (type) {
1084 case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
1085 case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
1086 case BTRFS_COMPRESS_LZO: return btrfs_put_workspace(type, ws);
1087 case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
1088 default:
1090 * This can't happen, the type is validated several times
1091 * before we get here.
1093 BUG();
1098 * Adjust @level according to the limits of the compression algorithm or
1099 * fallback to default
1101 static unsigned int btrfs_compress_set_level(int type, unsigned level)
1103 const struct btrfs_compress_op *ops = btrfs_compress_op[type];
1105 if (level == 0)
1106 level = ops->default_level;
1107 else
1108 level = min(level, ops->max_level);
1110 return level;
1114 * Given an address space and start and length, compress the bytes into @pages
1115 * that are allocated on demand.
1117 * @type_level is encoded algorithm and level, where level 0 means whatever
1118 * default the algorithm chooses and is opaque here;
1119 * - compression algo are 0-3
1120 * - the level are bits 4-7
1122 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1123 * and returns number of actually allocated pages
1125 * @total_in is used to return the number of bytes actually read. It
1126 * may be smaller than the input length if we had to exit early because we
1127 * ran out of room in the pages array or because we cross the
1128 * max_out threshold.
1130 * @total_out is an in/out parameter, must be set to the input length and will
1131 * be also used to return the total number of compressed bytes
1133 * @max_out tells us the max number of bytes that we're allowed to
1134 * stuff into pages
1136 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1137 u64 start, struct page **pages,
1138 unsigned long *out_pages,
1139 unsigned long *total_in,
1140 unsigned long *total_out)
1142 int type = btrfs_compress_type(type_level);
1143 int level = btrfs_compress_level(type_level);
1144 struct list_head *workspace;
1145 int ret;
1147 level = btrfs_compress_set_level(type, level);
1148 workspace = get_workspace(type, level);
1149 ret = compression_compress_pages(type, workspace, mapping, start, pages,
1150 out_pages, total_in, total_out);
1151 put_workspace(type, workspace);
1152 return ret;
1156 * pages_in is an array of pages with compressed data.
1158 * disk_start is the starting logical offset of this array in the file
1160 * orig_bio contains the pages from the file that we want to decompress into
1162 * srclen is the number of bytes in pages_in
1164 * The basic idea is that we have a bio that was created by readpages.
1165 * The pages in the bio are for the uncompressed data, and they may not
1166 * be contiguous. They all correspond to the range of bytes covered by
1167 * the compressed extent.
1169 static int btrfs_decompress_bio(struct compressed_bio *cb)
1171 struct list_head *workspace;
1172 int ret;
1173 int type = cb->compress_type;
1175 workspace = get_workspace(type, 0);
1176 ret = compression_decompress_bio(type, workspace, cb);
1177 put_workspace(type, workspace);
1179 return ret;
1183 * a less complex decompression routine. Our compressed data fits in a
1184 * single page, and we want to read a single page out of it.
1185 * start_byte tells us the offset into the compressed data we're interested in
1187 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1188 unsigned long start_byte, size_t srclen, size_t destlen)
1190 struct list_head *workspace;
1191 int ret;
1193 workspace = get_workspace(type, 0);
1194 ret = compression_decompress(type, workspace, data_in, dest_page,
1195 start_byte, srclen, destlen);
1196 put_workspace(type, workspace);
1198 return ret;
1201 void __init btrfs_init_compress(void)
1203 btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1204 btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1205 btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1206 zstd_init_workspace_manager();
1209 void __cold btrfs_exit_compress(void)
1211 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1212 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1213 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1214 zstd_cleanup_workspace_manager();
1218 * Copy uncompressed data from working buffer to pages.
1220 * buf_start is the byte offset we're of the start of our workspace buffer.
1222 * total_out is the last byte of the buffer
1224 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1225 unsigned long total_out, u64 disk_start,
1226 struct bio *bio)
1228 unsigned long buf_offset;
1229 unsigned long current_buf_start;
1230 unsigned long start_byte;
1231 unsigned long prev_start_byte;
1232 unsigned long working_bytes = total_out - buf_start;
1233 unsigned long bytes;
1234 char *kaddr;
1235 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1238 * start byte is the first byte of the page we're currently
1239 * copying into relative to the start of the compressed data.
1241 start_byte = page_offset(bvec.bv_page) - disk_start;
1243 /* we haven't yet hit data corresponding to this page */
1244 if (total_out <= start_byte)
1245 return 1;
1248 * the start of the data we care about is offset into
1249 * the middle of our working buffer
1251 if (total_out > start_byte && buf_start < start_byte) {
1252 buf_offset = start_byte - buf_start;
1253 working_bytes -= buf_offset;
1254 } else {
1255 buf_offset = 0;
1257 current_buf_start = buf_start;
1259 /* copy bytes from the working buffer into the pages */
1260 while (working_bytes > 0) {
1261 bytes = min_t(unsigned long, bvec.bv_len,
1262 PAGE_SIZE - (buf_offset % PAGE_SIZE));
1263 bytes = min(bytes, working_bytes);
1265 kaddr = kmap_atomic(bvec.bv_page);
1266 memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1267 kunmap_atomic(kaddr);
1268 flush_dcache_page(bvec.bv_page);
1270 buf_offset += bytes;
1271 working_bytes -= bytes;
1272 current_buf_start += bytes;
1274 /* check if we need to pick another page */
1275 bio_advance(bio, bytes);
1276 if (!bio->bi_iter.bi_size)
1277 return 0;
1278 bvec = bio_iter_iovec(bio, bio->bi_iter);
1279 prev_start_byte = start_byte;
1280 start_byte = page_offset(bvec.bv_page) - disk_start;
1283 * We need to make sure we're only adjusting
1284 * our offset into compression working buffer when
1285 * we're switching pages. Otherwise we can incorrectly
1286 * keep copying when we were actually done.
1288 if (start_byte != prev_start_byte) {
1290 * make sure our new page is covered by this
1291 * working buffer
1293 if (total_out <= start_byte)
1294 return 1;
1297 * the next page in the biovec might not be adjacent
1298 * to the last page, but it might still be found
1299 * inside this working buffer. bump our offset pointer
1301 if (total_out > start_byte &&
1302 current_buf_start < start_byte) {
1303 buf_offset = start_byte - buf_start;
1304 working_bytes = total_out - start_byte;
1305 current_buf_start = buf_start + buf_offset;
1310 return 1;
1314 * Shannon Entropy calculation
1316 * Pure byte distribution analysis fails to determine compressibility of data.
1317 * Try calculating entropy to estimate the average minimum number of bits
1318 * needed to encode the sampled data.
1320 * For convenience, return the percentage of needed bits, instead of amount of
1321 * bits directly.
1323 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1324 * and can be compressible with high probability
1326 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1328 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1330 #define ENTROPY_LVL_ACEPTABLE (65)
1331 #define ENTROPY_LVL_HIGH (80)
1334 * For increasead precision in shannon_entropy calculation,
1335 * let's do pow(n, M) to save more digits after comma:
1337 * - maximum int bit length is 64
1338 * - ilog2(MAX_SAMPLE_SIZE) -> 13
1339 * - 13 * 4 = 52 < 64 -> M = 4
1341 * So use pow(n, 4).
1343 static inline u32 ilog2_w(u64 n)
1345 return ilog2(n * n * n * n);
1348 static u32 shannon_entropy(struct heuristic_ws *ws)
1350 const u32 entropy_max = 8 * ilog2_w(2);
1351 u32 entropy_sum = 0;
1352 u32 p, p_base, sz_base;
1353 u32 i;
1355 sz_base = ilog2_w(ws->sample_size);
1356 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1357 p = ws->bucket[i].count;
1358 p_base = ilog2_w(p);
1359 entropy_sum += p * (sz_base - p_base);
1362 entropy_sum /= ws->sample_size;
1363 return entropy_sum * 100 / entropy_max;
1366 #define RADIX_BASE 4U
1367 #define COUNTERS_SIZE (1U << RADIX_BASE)
1369 static u8 get4bits(u64 num, int shift) {
1370 u8 low4bits;
1372 num >>= shift;
1373 /* Reverse order */
1374 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1375 return low4bits;
1379 * Use 4 bits as radix base
1380 * Use 16 u32 counters for calculating new position in buf array
1382 * @array - array that will be sorted
1383 * @array_buf - buffer array to store sorting results
1384 * must be equal in size to @array
1385 * @num - array size
1387 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1388 int num)
1390 u64 max_num;
1391 u64 buf_num;
1392 u32 counters[COUNTERS_SIZE];
1393 u32 new_addr;
1394 u32 addr;
1395 int bitlen;
1396 int shift;
1397 int i;
1400 * Try avoid useless loop iterations for small numbers stored in big
1401 * counters. Example: 48 33 4 ... in 64bit array
1403 max_num = array[0].count;
1404 for (i = 1; i < num; i++) {
1405 buf_num = array[i].count;
1406 if (buf_num > max_num)
1407 max_num = buf_num;
1410 buf_num = ilog2(max_num);
1411 bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1413 shift = 0;
1414 while (shift < bitlen) {
1415 memset(counters, 0, sizeof(counters));
1417 for (i = 0; i < num; i++) {
1418 buf_num = array[i].count;
1419 addr = get4bits(buf_num, shift);
1420 counters[addr]++;
1423 for (i = 1; i < COUNTERS_SIZE; i++)
1424 counters[i] += counters[i - 1];
1426 for (i = num - 1; i >= 0; i--) {
1427 buf_num = array[i].count;
1428 addr = get4bits(buf_num, shift);
1429 counters[addr]--;
1430 new_addr = counters[addr];
1431 array_buf[new_addr] = array[i];
1434 shift += RADIX_BASE;
1437 * Normal radix expects to move data from a temporary array, to
1438 * the main one. But that requires some CPU time. Avoid that
1439 * by doing another sort iteration to original array instead of
1440 * memcpy()
1442 memset(counters, 0, sizeof(counters));
1444 for (i = 0; i < num; i ++) {
1445 buf_num = array_buf[i].count;
1446 addr = get4bits(buf_num, shift);
1447 counters[addr]++;
1450 for (i = 1; i < COUNTERS_SIZE; i++)
1451 counters[i] += counters[i - 1];
1453 for (i = num - 1; i >= 0; i--) {
1454 buf_num = array_buf[i].count;
1455 addr = get4bits(buf_num, shift);
1456 counters[addr]--;
1457 new_addr = counters[addr];
1458 array[new_addr] = array_buf[i];
1461 shift += RADIX_BASE;
1466 * Size of the core byte set - how many bytes cover 90% of the sample
1468 * There are several types of structured binary data that use nearly all byte
1469 * values. The distribution can be uniform and counts in all buckets will be
1470 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1472 * Other possibility is normal (Gaussian) distribution, where the data could
1473 * be potentially compressible, but we have to take a few more steps to decide
1474 * how much.
1476 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently,
1477 * compression algo can easy fix that
1478 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1479 * probability is not compressible
1481 #define BYTE_CORE_SET_LOW (64)
1482 #define BYTE_CORE_SET_HIGH (200)
1484 static int byte_core_set_size(struct heuristic_ws *ws)
1486 u32 i;
1487 u32 coreset_sum = 0;
1488 const u32 core_set_threshold = ws->sample_size * 90 / 100;
1489 struct bucket_item *bucket = ws->bucket;
1491 /* Sort in reverse order */
1492 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1494 for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1495 coreset_sum += bucket[i].count;
1497 if (coreset_sum > core_set_threshold)
1498 return i;
1500 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1501 coreset_sum += bucket[i].count;
1502 if (coreset_sum > core_set_threshold)
1503 break;
1506 return i;
1510 * Count byte values in buckets.
1511 * This heuristic can detect textual data (configs, xml, json, html, etc).
1512 * Because in most text-like data byte set is restricted to limited number of
1513 * possible characters, and that restriction in most cases makes data easy to
1514 * compress.
1516 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1517 * less - compressible
1518 * more - need additional analysis
1520 #define BYTE_SET_THRESHOLD (64)
1522 static u32 byte_set_size(const struct heuristic_ws *ws)
1524 u32 i;
1525 u32 byte_set_size = 0;
1527 for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1528 if (ws->bucket[i].count > 0)
1529 byte_set_size++;
1533 * Continue collecting count of byte values in buckets. If the byte
1534 * set size is bigger then the threshold, it's pointless to continue,
1535 * the detection technique would fail for this type of data.
1537 for (; i < BUCKET_SIZE; i++) {
1538 if (ws->bucket[i].count > 0) {
1539 byte_set_size++;
1540 if (byte_set_size > BYTE_SET_THRESHOLD)
1541 return byte_set_size;
1545 return byte_set_size;
1548 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1550 const u32 half_of_sample = ws->sample_size / 2;
1551 const u8 *data = ws->sample;
1553 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1556 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1557 struct heuristic_ws *ws)
1559 struct page *page;
1560 u64 index, index_end;
1561 u32 i, curr_sample_pos;
1562 u8 *in_data;
1565 * Compression handles the input data by chunks of 128KiB
1566 * (defined by BTRFS_MAX_UNCOMPRESSED)
1568 * We do the same for the heuristic and loop over the whole range.
1570 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1571 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1573 if (end - start > BTRFS_MAX_UNCOMPRESSED)
1574 end = start + BTRFS_MAX_UNCOMPRESSED;
1576 index = start >> PAGE_SHIFT;
1577 index_end = end >> PAGE_SHIFT;
1579 /* Don't miss unaligned end */
1580 if (!IS_ALIGNED(end, PAGE_SIZE))
1581 index_end++;
1583 curr_sample_pos = 0;
1584 while (index < index_end) {
1585 page = find_get_page(inode->i_mapping, index);
1586 in_data = kmap(page);
1587 /* Handle case where the start is not aligned to PAGE_SIZE */
1588 i = start % PAGE_SIZE;
1589 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1590 /* Don't sample any garbage from the last page */
1591 if (start > end - SAMPLING_READ_SIZE)
1592 break;
1593 memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1594 SAMPLING_READ_SIZE);
1595 i += SAMPLING_INTERVAL;
1596 start += SAMPLING_INTERVAL;
1597 curr_sample_pos += SAMPLING_READ_SIZE;
1599 kunmap(page);
1600 put_page(page);
1602 index++;
1605 ws->sample_size = curr_sample_pos;
1609 * Compression heuristic.
1611 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1612 * quickly (compared to direct compression) detect data characteristics
1613 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1614 * data.
1616 * The following types of analysis can be performed:
1617 * - detect mostly zero data
1618 * - detect data with low "byte set" size (text, etc)
1619 * - detect data with low/high "core byte" set
1621 * Return non-zero if the compression should be done, 0 otherwise.
1623 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1625 struct list_head *ws_list = get_workspace(0, 0);
1626 struct heuristic_ws *ws;
1627 u32 i;
1628 u8 byte;
1629 int ret = 0;
1631 ws = list_entry(ws_list, struct heuristic_ws, list);
1633 heuristic_collect_sample(inode, start, end, ws);
1635 if (sample_repeated_patterns(ws)) {
1636 ret = 1;
1637 goto out;
1640 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1642 for (i = 0; i < ws->sample_size; i++) {
1643 byte = ws->sample[i];
1644 ws->bucket[byte].count++;
1647 i = byte_set_size(ws);
1648 if (i < BYTE_SET_THRESHOLD) {
1649 ret = 2;
1650 goto out;
1653 i = byte_core_set_size(ws);
1654 if (i <= BYTE_CORE_SET_LOW) {
1655 ret = 3;
1656 goto out;
1659 if (i >= BYTE_CORE_SET_HIGH) {
1660 ret = 0;
1661 goto out;
1664 i = shannon_entropy(ws);
1665 if (i <= ENTROPY_LVL_ACEPTABLE) {
1666 ret = 4;
1667 goto out;
1671 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1672 * needed to give green light to compression.
1674 * For now just assume that compression at that level is not worth the
1675 * resources because:
1677 * 1. it is possible to defrag the data later
1679 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1680 * values, every bucket has counter at level ~54. The heuristic would
1681 * be confused. This can happen when data have some internal repeated
1682 * patterns like "abbacbbc...". This can be detected by analyzing
1683 * pairs of bytes, which is too costly.
1685 if (i < ENTROPY_LVL_HIGH) {
1686 ret = 5;
1687 goto out;
1688 } else {
1689 ret = 0;
1690 goto out;
1693 out:
1694 put_workspace(0, ws_list);
1695 return ret;
1699 * Convert the compression suffix (eg. after "zlib" starting with ":") to
1700 * level, unrecognized string will set the default level
1702 unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1704 unsigned int level = 0;
1705 int ret;
1707 if (!type)
1708 return 0;
1710 if (str[0] == ':') {
1711 ret = kstrtouint(str + 1, 10, &level);
1712 if (ret)
1713 level = 0;
1716 level = btrfs_compress_set_level(type, level);
1718 return level;