1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2008 Oracle. All rights reserved.
6 #include <linux/kernel.h>
8 #include <linux/file.h>
10 #include <linux/pagemap.h>
11 #include <linux/highmem.h>
12 #include <linux/time.h>
13 #include <linux/init.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sched/mm.h>
19 #include <linux/log2.h>
20 #include <crypto/hash.h>
24 #include "transaction.h"
25 #include "btrfs_inode.h"
27 #include "ordered-data.h"
28 #include "compression.h"
29 #include "extent_io.h"
30 #include "extent_map.h"
32 static const char* const btrfs_compress_types
[] = { "", "zlib", "lzo", "zstd" };
34 const char* btrfs_compress_type2str(enum btrfs_compression_type type
)
37 case BTRFS_COMPRESS_ZLIB
:
38 case BTRFS_COMPRESS_LZO
:
39 case BTRFS_COMPRESS_ZSTD
:
40 case BTRFS_COMPRESS_NONE
:
41 return btrfs_compress_types
[type
];
49 bool btrfs_compress_is_valid_type(const char *str
, size_t len
)
53 for (i
= 1; i
< ARRAY_SIZE(btrfs_compress_types
); i
++) {
54 size_t comp_len
= strlen(btrfs_compress_types
[i
]);
59 if (!strncmp(btrfs_compress_types
[i
], str
, comp_len
))
65 static int compression_compress_pages(int type
, struct list_head
*ws
,
66 struct address_space
*mapping
, u64 start
, struct page
**pages
,
67 unsigned long *out_pages
, unsigned long *total_in
,
68 unsigned long *total_out
)
71 case BTRFS_COMPRESS_ZLIB
:
72 return zlib_compress_pages(ws
, mapping
, start
, pages
,
73 out_pages
, total_in
, total_out
);
74 case BTRFS_COMPRESS_LZO
:
75 return lzo_compress_pages(ws
, mapping
, start
, pages
,
76 out_pages
, total_in
, total_out
);
77 case BTRFS_COMPRESS_ZSTD
:
78 return zstd_compress_pages(ws
, mapping
, start
, pages
,
79 out_pages
, total_in
, total_out
);
80 case BTRFS_COMPRESS_NONE
:
83 * This can't happen, the type is validated several times
84 * before we get here. As a sane fallback, return what the
85 * callers will understand as 'no compression happened'.
91 static int compression_decompress_bio(int type
, struct list_head
*ws
,
92 struct compressed_bio
*cb
)
95 case BTRFS_COMPRESS_ZLIB
: return zlib_decompress_bio(ws
, cb
);
96 case BTRFS_COMPRESS_LZO
: return lzo_decompress_bio(ws
, cb
);
97 case BTRFS_COMPRESS_ZSTD
: return zstd_decompress_bio(ws
, cb
);
98 case BTRFS_COMPRESS_NONE
:
101 * This can't happen, the type is validated several times
102 * before we get here.
108 static int compression_decompress(int type
, struct list_head
*ws
,
109 unsigned char *data_in
, struct page
*dest_page
,
110 unsigned long start_byte
, size_t srclen
, size_t destlen
)
113 case BTRFS_COMPRESS_ZLIB
: return zlib_decompress(ws
, data_in
, dest_page
,
114 start_byte
, srclen
, destlen
);
115 case BTRFS_COMPRESS_LZO
: return lzo_decompress(ws
, data_in
, dest_page
,
116 start_byte
, srclen
, destlen
);
117 case BTRFS_COMPRESS_ZSTD
: return zstd_decompress(ws
, data_in
, dest_page
,
118 start_byte
, srclen
, destlen
);
119 case BTRFS_COMPRESS_NONE
:
122 * This can't happen, the type is validated several times
123 * before we get here.
129 static int btrfs_decompress_bio(struct compressed_bio
*cb
);
131 static inline int compressed_bio_size(struct btrfs_fs_info
*fs_info
,
132 unsigned long disk_size
)
134 return sizeof(struct compressed_bio
) +
135 (DIV_ROUND_UP(disk_size
, fs_info
->sectorsize
)) * fs_info
->csum_size
;
138 static int check_compressed_csum(struct btrfs_inode
*inode
, struct bio
*bio
,
141 struct btrfs_fs_info
*fs_info
= inode
->root
->fs_info
;
142 SHASH_DESC_ON_STACK(shash
, fs_info
->csum_shash
);
143 const u32 csum_size
= fs_info
->csum_size
;
147 u8 csum
[BTRFS_CSUM_SIZE
];
148 struct compressed_bio
*cb
= bio
->bi_private
;
149 u8
*cb_sum
= cb
->sums
;
151 if (!fs_info
->csum_root
|| (inode
->flags
& BTRFS_INODE_NODATASUM
))
154 shash
->tfm
= fs_info
->csum_shash
;
156 for (i
= 0; i
< cb
->nr_pages
; i
++) {
157 page
= cb
->compressed_pages
[i
];
159 kaddr
= kmap_atomic(page
);
160 crypto_shash_digest(shash
, kaddr
, PAGE_SIZE
, csum
);
161 kunmap_atomic(kaddr
);
163 if (memcmp(&csum
, cb_sum
, csum_size
)) {
164 btrfs_print_data_csum_error(inode
, disk_start
,
165 csum
, cb_sum
, cb
->mirror_num
);
166 if (btrfs_io_bio(bio
)->device
)
167 btrfs_dev_stat_inc_and_print(
168 btrfs_io_bio(bio
)->device
,
169 BTRFS_DEV_STAT_CORRUPTION_ERRS
);
177 /* when we finish reading compressed pages from the disk, we
178 * decompress them and then run the bio end_io routines on the
179 * decompressed pages (in the inode address space).
181 * This allows the checksumming and other IO error handling routines
184 * The compressed pages are freed here, and it must be run
187 static void end_compressed_bio_read(struct bio
*bio
)
189 struct compressed_bio
*cb
= bio
->bi_private
;
193 unsigned int mirror
= btrfs_io_bio(bio
)->mirror_num
;
199 /* if there are more bios still pending for this compressed
202 if (!refcount_dec_and_test(&cb
->pending_bios
))
206 * Record the correct mirror_num in cb->orig_bio so that
207 * read-repair can work properly.
209 btrfs_io_bio(cb
->orig_bio
)->mirror_num
= mirror
;
210 cb
->mirror_num
= mirror
;
213 * Some IO in this cb have failed, just skip checksum as there
214 * is no way it could be correct.
220 ret
= check_compressed_csum(BTRFS_I(inode
), bio
,
221 bio
->bi_iter
.bi_sector
<< 9);
225 /* ok, we're the last bio for this extent, lets start
228 ret
= btrfs_decompress_bio(cb
);
234 /* release the compressed pages */
236 for (index
= 0; index
< cb
->nr_pages
; index
++) {
237 page
= cb
->compressed_pages
[index
];
238 page
->mapping
= NULL
;
242 /* do io completion on the original bio */
244 bio_io_error(cb
->orig_bio
);
246 struct bio_vec
*bvec
;
247 struct bvec_iter_all iter_all
;
250 * we have verified the checksum already, set page
251 * checked so the end_io handlers know about it
253 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
254 bio_for_each_segment_all(bvec
, cb
->orig_bio
, iter_all
)
255 SetPageChecked(bvec
->bv_page
);
257 bio_endio(cb
->orig_bio
);
260 /* finally free the cb struct */
261 kfree(cb
->compressed_pages
);
268 * Clear the writeback bits on all of the file
269 * pages for a compressed write
271 static noinline
void end_compressed_writeback(struct inode
*inode
,
272 const struct compressed_bio
*cb
)
274 unsigned long index
= cb
->start
>> PAGE_SHIFT
;
275 unsigned long end_index
= (cb
->start
+ cb
->len
- 1) >> PAGE_SHIFT
;
276 struct page
*pages
[16];
277 unsigned long nr_pages
= end_index
- index
+ 1;
282 mapping_set_error(inode
->i_mapping
, -EIO
);
284 while (nr_pages
> 0) {
285 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
287 nr_pages
, ARRAY_SIZE(pages
)), pages
);
293 for (i
= 0; i
< ret
; i
++) {
295 SetPageError(pages
[i
]);
296 end_page_writeback(pages
[i
]);
302 /* the inode may be gone now */
306 * do the cleanup once all the compressed pages hit the disk.
307 * This will clear writeback on the file pages and free the compressed
310 * This also calls the writeback end hooks for the file pages so that
311 * metadata and checksums can be updated in the file.
313 static void end_compressed_bio_write(struct bio
*bio
)
315 struct compressed_bio
*cb
= bio
->bi_private
;
323 /* if there are more bios still pending for this compressed
326 if (!refcount_dec_and_test(&cb
->pending_bios
))
329 /* ok, we're the last bio for this extent, step one is to
330 * call back into the FS and do all the end_io operations
333 cb
->compressed_pages
[0]->mapping
= cb
->inode
->i_mapping
;
334 btrfs_writepage_endio_finish_ordered(cb
->compressed_pages
[0],
335 cb
->start
, cb
->start
+ cb
->len
- 1,
336 bio
->bi_status
== BLK_STS_OK
);
337 cb
->compressed_pages
[0]->mapping
= NULL
;
339 end_compressed_writeback(inode
, cb
);
340 /* note, our inode could be gone now */
343 * release the compressed pages, these came from alloc_page and
344 * are not attached to the inode at all
347 for (index
= 0; index
< cb
->nr_pages
; index
++) {
348 page
= cb
->compressed_pages
[index
];
349 page
->mapping
= NULL
;
353 /* finally free the cb struct */
354 kfree(cb
->compressed_pages
);
361 * worker function to build and submit bios for previously compressed pages.
362 * The corresponding pages in the inode should be marked for writeback
363 * and the compressed pages should have a reference on them for dropping
364 * when the IO is complete.
366 * This also checksums the file bytes and gets things ready for
369 blk_status_t
btrfs_submit_compressed_write(struct btrfs_inode
*inode
, u64 start
,
370 unsigned long len
, u64 disk_start
,
371 unsigned long compressed_len
,
372 struct page
**compressed_pages
,
373 unsigned long nr_pages
,
374 unsigned int write_flags
,
375 struct cgroup_subsys_state
*blkcg_css
)
377 struct btrfs_fs_info
*fs_info
= inode
->root
->fs_info
;
378 struct bio
*bio
= NULL
;
379 struct compressed_bio
*cb
;
380 unsigned long bytes_left
;
383 u64 first_byte
= disk_start
;
385 int skip_sum
= inode
->flags
& BTRFS_INODE_NODATASUM
;
387 WARN_ON(!PAGE_ALIGNED(start
));
388 cb
= kmalloc(compressed_bio_size(fs_info
, compressed_len
), GFP_NOFS
);
390 return BLK_STS_RESOURCE
;
391 refcount_set(&cb
->pending_bios
, 0);
393 cb
->inode
= &inode
->vfs_inode
;
397 cb
->compressed_pages
= compressed_pages
;
398 cb
->compressed_len
= compressed_len
;
400 cb
->nr_pages
= nr_pages
;
402 bio
= btrfs_bio_alloc(first_byte
);
403 bio
->bi_opf
= REQ_OP_WRITE
| write_flags
;
404 bio
->bi_private
= cb
;
405 bio
->bi_end_io
= end_compressed_bio_write
;
408 bio
->bi_opf
|= REQ_CGROUP_PUNT
;
409 kthread_associate_blkcg(blkcg_css
);
411 refcount_set(&cb
->pending_bios
, 1);
413 /* create and submit bios for the compressed pages */
414 bytes_left
= compressed_len
;
415 for (pg_index
= 0; pg_index
< cb
->nr_pages
; pg_index
++) {
418 page
= compressed_pages
[pg_index
];
419 page
->mapping
= inode
->vfs_inode
.i_mapping
;
420 if (bio
->bi_iter
.bi_size
)
421 submit
= btrfs_bio_fits_in_stripe(page
, PAGE_SIZE
, bio
,
424 page
->mapping
= NULL
;
425 if (submit
|| bio_add_page(bio
, page
, PAGE_SIZE
, 0) <
428 * inc the count before we submit the bio so
429 * we know the end IO handler won't happen before
430 * we inc the count. Otherwise, the cb might get
431 * freed before we're done setting it up
433 refcount_inc(&cb
->pending_bios
);
434 ret
= btrfs_bio_wq_end_io(fs_info
, bio
,
435 BTRFS_WQ_ENDIO_DATA
);
436 BUG_ON(ret
); /* -ENOMEM */
439 ret
= btrfs_csum_one_bio(inode
, bio
, start
, 1);
440 BUG_ON(ret
); /* -ENOMEM */
443 ret
= btrfs_map_bio(fs_info
, bio
, 0);
445 bio
->bi_status
= ret
;
449 bio
= btrfs_bio_alloc(first_byte
);
450 bio
->bi_opf
= REQ_OP_WRITE
| write_flags
;
451 bio
->bi_private
= cb
;
452 bio
->bi_end_io
= end_compressed_bio_write
;
454 bio
->bi_opf
|= REQ_CGROUP_PUNT
;
455 bio_add_page(bio
, page
, PAGE_SIZE
, 0);
457 if (bytes_left
< PAGE_SIZE
) {
459 "bytes left %lu compress len %lu nr %lu",
460 bytes_left
, cb
->compressed_len
, cb
->nr_pages
);
462 bytes_left
-= PAGE_SIZE
;
463 first_byte
+= PAGE_SIZE
;
467 ret
= btrfs_bio_wq_end_io(fs_info
, bio
, BTRFS_WQ_ENDIO_DATA
);
468 BUG_ON(ret
); /* -ENOMEM */
471 ret
= btrfs_csum_one_bio(inode
, bio
, start
, 1);
472 BUG_ON(ret
); /* -ENOMEM */
475 ret
= btrfs_map_bio(fs_info
, bio
, 0);
477 bio
->bi_status
= ret
;
482 kthread_associate_blkcg(NULL
);
487 static u64
bio_end_offset(struct bio
*bio
)
489 struct bio_vec
*last
= bio_last_bvec_all(bio
);
491 return page_offset(last
->bv_page
) + last
->bv_len
+ last
->bv_offset
;
494 static noinline
int add_ra_bio_pages(struct inode
*inode
,
496 struct compressed_bio
*cb
)
498 unsigned long end_index
;
499 unsigned long pg_index
;
501 u64 isize
= i_size_read(inode
);
504 unsigned long nr_pages
= 0;
505 struct extent_map
*em
;
506 struct address_space
*mapping
= inode
->i_mapping
;
507 struct extent_map_tree
*em_tree
;
508 struct extent_io_tree
*tree
;
512 last_offset
= bio_end_offset(cb
->orig_bio
);
513 em_tree
= &BTRFS_I(inode
)->extent_tree
;
514 tree
= &BTRFS_I(inode
)->io_tree
;
519 end_index
= (i_size_read(inode
) - 1) >> PAGE_SHIFT
;
521 while (last_offset
< compressed_end
) {
522 pg_index
= last_offset
>> PAGE_SHIFT
;
524 if (pg_index
> end_index
)
527 page
= xa_load(&mapping
->i_pages
, pg_index
);
528 if (page
&& !xa_is_value(page
)) {
535 page
= __page_cache_alloc(mapping_gfp_constraint(mapping
,
540 if (add_to_page_cache_lru(page
, mapping
, pg_index
, GFP_NOFS
)) {
545 end
= last_offset
+ PAGE_SIZE
- 1;
547 * at this point, we have a locked page in the page cache
548 * for these bytes in the file. But, we have to make
549 * sure they map to this compressed extent on disk.
551 set_page_extent_mapped(page
);
552 lock_extent(tree
, last_offset
, end
);
553 read_lock(&em_tree
->lock
);
554 em
= lookup_extent_mapping(em_tree
, last_offset
,
556 read_unlock(&em_tree
->lock
);
558 if (!em
|| last_offset
< em
->start
||
559 (last_offset
+ PAGE_SIZE
> extent_map_end(em
)) ||
560 (em
->block_start
>> 9) != cb
->orig_bio
->bi_iter
.bi_sector
) {
562 unlock_extent(tree
, last_offset
, end
);
569 if (page
->index
== end_index
) {
571 size_t zero_offset
= offset_in_page(isize
);
575 zeros
= PAGE_SIZE
- zero_offset
;
576 userpage
= kmap_atomic(page
);
577 memset(userpage
+ zero_offset
, 0, zeros
);
578 flush_dcache_page(page
);
579 kunmap_atomic(userpage
);
583 ret
= bio_add_page(cb
->orig_bio
, page
,
586 if (ret
== PAGE_SIZE
) {
590 unlock_extent(tree
, last_offset
, end
);
596 last_offset
+= PAGE_SIZE
;
602 * for a compressed read, the bio we get passed has all the inode pages
603 * in it. We don't actually do IO on those pages but allocate new ones
604 * to hold the compressed pages on disk.
606 * bio->bi_iter.bi_sector points to the compressed extent on disk
607 * bio->bi_io_vec points to all of the inode pages
609 * After the compressed pages are read, we copy the bytes into the
610 * bio we were passed and then call the bio end_io calls
612 blk_status_t
btrfs_submit_compressed_read(struct inode
*inode
, struct bio
*bio
,
613 int mirror_num
, unsigned long bio_flags
)
615 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
616 struct extent_map_tree
*em_tree
;
617 struct compressed_bio
*cb
;
618 unsigned long compressed_len
;
619 unsigned long nr_pages
;
620 unsigned long pg_index
;
622 struct bio
*comp_bio
;
623 u64 cur_disk_byte
= bio
->bi_iter
.bi_sector
<< 9;
626 struct extent_map
*em
;
627 blk_status_t ret
= BLK_STS_RESOURCE
;
631 em_tree
= &BTRFS_I(inode
)->extent_tree
;
633 /* we need the actual starting offset of this extent in the file */
634 read_lock(&em_tree
->lock
);
635 em
= lookup_extent_mapping(em_tree
,
636 page_offset(bio_first_page_all(bio
)),
638 read_unlock(&em_tree
->lock
);
640 return BLK_STS_IOERR
;
642 compressed_len
= em
->block_len
;
643 cb
= kmalloc(compressed_bio_size(fs_info
, compressed_len
), GFP_NOFS
);
647 refcount_set(&cb
->pending_bios
, 0);
650 cb
->mirror_num
= mirror_num
;
653 cb
->start
= em
->orig_start
;
655 em_start
= em
->start
;
660 cb
->len
= bio
->bi_iter
.bi_size
;
661 cb
->compressed_len
= compressed_len
;
662 cb
->compress_type
= extent_compress_type(bio_flags
);
665 nr_pages
= DIV_ROUND_UP(compressed_len
, PAGE_SIZE
);
666 cb
->compressed_pages
= kcalloc(nr_pages
, sizeof(struct page
*),
668 if (!cb
->compressed_pages
)
671 for (pg_index
= 0; pg_index
< nr_pages
; pg_index
++) {
672 cb
->compressed_pages
[pg_index
] = alloc_page(GFP_NOFS
|
674 if (!cb
->compressed_pages
[pg_index
]) {
675 faili
= pg_index
- 1;
676 ret
= BLK_STS_RESOURCE
;
680 faili
= nr_pages
- 1;
681 cb
->nr_pages
= nr_pages
;
683 add_ra_bio_pages(inode
, em_start
+ em_len
, cb
);
685 /* include any pages we added in add_ra-bio_pages */
686 cb
->len
= bio
->bi_iter
.bi_size
;
688 comp_bio
= btrfs_bio_alloc(cur_disk_byte
);
689 comp_bio
->bi_opf
= REQ_OP_READ
;
690 comp_bio
->bi_private
= cb
;
691 comp_bio
->bi_end_io
= end_compressed_bio_read
;
692 refcount_set(&cb
->pending_bios
, 1);
694 for (pg_index
= 0; pg_index
< nr_pages
; pg_index
++) {
697 page
= cb
->compressed_pages
[pg_index
];
698 page
->mapping
= inode
->i_mapping
;
699 page
->index
= em_start
>> PAGE_SHIFT
;
701 if (comp_bio
->bi_iter
.bi_size
)
702 submit
= btrfs_bio_fits_in_stripe(page
, PAGE_SIZE
,
705 page
->mapping
= NULL
;
706 if (submit
|| bio_add_page(comp_bio
, page
, PAGE_SIZE
, 0) <
708 unsigned int nr_sectors
;
710 ret
= btrfs_bio_wq_end_io(fs_info
, comp_bio
,
711 BTRFS_WQ_ENDIO_DATA
);
712 BUG_ON(ret
); /* -ENOMEM */
715 * inc the count before we submit the bio so
716 * we know the end IO handler won't happen before
717 * we inc the count. Otherwise, the cb might get
718 * freed before we're done setting it up
720 refcount_inc(&cb
->pending_bios
);
722 ret
= btrfs_lookup_bio_sums(inode
, comp_bio
, sums
);
723 BUG_ON(ret
); /* -ENOMEM */
725 nr_sectors
= DIV_ROUND_UP(comp_bio
->bi_iter
.bi_size
,
726 fs_info
->sectorsize
);
727 sums
+= fs_info
->csum_size
* nr_sectors
;
729 ret
= btrfs_map_bio(fs_info
, comp_bio
, mirror_num
);
731 comp_bio
->bi_status
= ret
;
735 comp_bio
= btrfs_bio_alloc(cur_disk_byte
);
736 comp_bio
->bi_opf
= REQ_OP_READ
;
737 comp_bio
->bi_private
= cb
;
738 comp_bio
->bi_end_io
= end_compressed_bio_read
;
740 bio_add_page(comp_bio
, page
, PAGE_SIZE
, 0);
742 cur_disk_byte
+= PAGE_SIZE
;
745 ret
= btrfs_bio_wq_end_io(fs_info
, comp_bio
, BTRFS_WQ_ENDIO_DATA
);
746 BUG_ON(ret
); /* -ENOMEM */
748 ret
= btrfs_lookup_bio_sums(inode
, comp_bio
, sums
);
749 BUG_ON(ret
); /* -ENOMEM */
751 ret
= btrfs_map_bio(fs_info
, comp_bio
, mirror_num
);
753 comp_bio
->bi_status
= ret
;
761 __free_page(cb
->compressed_pages
[faili
]);
765 kfree(cb
->compressed_pages
);
774 * Heuristic uses systematic sampling to collect data from the input data
775 * range, the logic can be tuned by the following constants:
777 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
778 * @SAMPLING_INTERVAL - range from which the sampled data can be collected
780 #define SAMPLING_READ_SIZE (16)
781 #define SAMPLING_INTERVAL (256)
784 * For statistical analysis of the input data we consider bytes that form a
785 * Galois Field of 256 objects. Each object has an attribute count, ie. how
786 * many times the object appeared in the sample.
788 #define BUCKET_SIZE (256)
791 * The size of the sample is based on a statistical sampling rule of thumb.
792 * The common way is to perform sampling tests as long as the number of
793 * elements in each cell is at least 5.
795 * Instead of 5, we choose 32 to obtain more accurate results.
796 * If the data contain the maximum number of symbols, which is 256, we obtain a
797 * sample size bound by 8192.
799 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
800 * from up to 512 locations.
802 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \
803 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
809 struct heuristic_ws
{
810 /* Partial copy of input data */
813 /* Buckets store counters for each byte value */
814 struct bucket_item
*bucket
;
816 struct bucket_item
*bucket_b
;
817 struct list_head list
;
820 static struct workspace_manager heuristic_wsm
;
822 static void free_heuristic_ws(struct list_head
*ws
)
824 struct heuristic_ws
*workspace
;
826 workspace
= list_entry(ws
, struct heuristic_ws
, list
);
828 kvfree(workspace
->sample
);
829 kfree(workspace
->bucket
);
830 kfree(workspace
->bucket_b
);
834 static struct list_head
*alloc_heuristic_ws(unsigned int level
)
836 struct heuristic_ws
*ws
;
838 ws
= kzalloc(sizeof(*ws
), GFP_KERNEL
);
840 return ERR_PTR(-ENOMEM
);
842 ws
->sample
= kvmalloc(MAX_SAMPLE_SIZE
, GFP_KERNEL
);
846 ws
->bucket
= kcalloc(BUCKET_SIZE
, sizeof(*ws
->bucket
), GFP_KERNEL
);
850 ws
->bucket_b
= kcalloc(BUCKET_SIZE
, sizeof(*ws
->bucket_b
), GFP_KERNEL
);
854 INIT_LIST_HEAD(&ws
->list
);
857 free_heuristic_ws(&ws
->list
);
858 return ERR_PTR(-ENOMEM
);
861 const struct btrfs_compress_op btrfs_heuristic_compress
= {
862 .workspace_manager
= &heuristic_wsm
,
865 static const struct btrfs_compress_op
* const btrfs_compress_op
[] = {
866 /* The heuristic is represented as compression type 0 */
867 &btrfs_heuristic_compress
,
868 &btrfs_zlib_compress
,
870 &btrfs_zstd_compress
,
873 static struct list_head
*alloc_workspace(int type
, unsigned int level
)
876 case BTRFS_COMPRESS_NONE
: return alloc_heuristic_ws(level
);
877 case BTRFS_COMPRESS_ZLIB
: return zlib_alloc_workspace(level
);
878 case BTRFS_COMPRESS_LZO
: return lzo_alloc_workspace(level
);
879 case BTRFS_COMPRESS_ZSTD
: return zstd_alloc_workspace(level
);
882 * This can't happen, the type is validated several times
883 * before we get here.
889 static void free_workspace(int type
, struct list_head
*ws
)
892 case BTRFS_COMPRESS_NONE
: return free_heuristic_ws(ws
);
893 case BTRFS_COMPRESS_ZLIB
: return zlib_free_workspace(ws
);
894 case BTRFS_COMPRESS_LZO
: return lzo_free_workspace(ws
);
895 case BTRFS_COMPRESS_ZSTD
: return zstd_free_workspace(ws
);
898 * This can't happen, the type is validated several times
899 * before we get here.
905 static void btrfs_init_workspace_manager(int type
)
907 struct workspace_manager
*wsm
;
908 struct list_head
*workspace
;
910 wsm
= btrfs_compress_op
[type
]->workspace_manager
;
911 INIT_LIST_HEAD(&wsm
->idle_ws
);
912 spin_lock_init(&wsm
->ws_lock
);
913 atomic_set(&wsm
->total_ws
, 0);
914 init_waitqueue_head(&wsm
->ws_wait
);
917 * Preallocate one workspace for each compression type so we can
918 * guarantee forward progress in the worst case
920 workspace
= alloc_workspace(type
, 0);
921 if (IS_ERR(workspace
)) {
923 "BTRFS: cannot preallocate compression workspace, will try later\n");
925 atomic_set(&wsm
->total_ws
, 1);
927 list_add(workspace
, &wsm
->idle_ws
);
931 static void btrfs_cleanup_workspace_manager(int type
)
933 struct workspace_manager
*wsman
;
934 struct list_head
*ws
;
936 wsman
= btrfs_compress_op
[type
]->workspace_manager
;
937 while (!list_empty(&wsman
->idle_ws
)) {
938 ws
= wsman
->idle_ws
.next
;
940 free_workspace(type
, ws
);
941 atomic_dec(&wsman
->total_ws
);
946 * This finds an available workspace or allocates a new one.
947 * If it's not possible to allocate a new one, waits until there's one.
948 * Preallocation makes a forward progress guarantees and we do not return
951 struct list_head
*btrfs_get_workspace(int type
, unsigned int level
)
953 struct workspace_manager
*wsm
;
954 struct list_head
*workspace
;
955 int cpus
= num_online_cpus();
957 struct list_head
*idle_ws
;
960 wait_queue_head_t
*ws_wait
;
963 wsm
= btrfs_compress_op
[type
]->workspace_manager
;
964 idle_ws
= &wsm
->idle_ws
;
965 ws_lock
= &wsm
->ws_lock
;
966 total_ws
= &wsm
->total_ws
;
967 ws_wait
= &wsm
->ws_wait
;
968 free_ws
= &wsm
->free_ws
;
972 if (!list_empty(idle_ws
)) {
973 workspace
= idle_ws
->next
;
976 spin_unlock(ws_lock
);
980 if (atomic_read(total_ws
) > cpus
) {
983 spin_unlock(ws_lock
);
984 prepare_to_wait(ws_wait
, &wait
, TASK_UNINTERRUPTIBLE
);
985 if (atomic_read(total_ws
) > cpus
&& !*free_ws
)
987 finish_wait(ws_wait
, &wait
);
990 atomic_inc(total_ws
);
991 spin_unlock(ws_lock
);
994 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
995 * to turn it off here because we might get called from the restricted
996 * context of btrfs_compress_bio/btrfs_compress_pages
998 nofs_flag
= memalloc_nofs_save();
999 workspace
= alloc_workspace(type
, level
);
1000 memalloc_nofs_restore(nofs_flag
);
1002 if (IS_ERR(workspace
)) {
1003 atomic_dec(total_ws
);
1007 * Do not return the error but go back to waiting. There's a
1008 * workspace preallocated for each type and the compression
1009 * time is bounded so we get to a workspace eventually. This
1010 * makes our caller's life easier.
1012 * To prevent silent and low-probability deadlocks (when the
1013 * initial preallocation fails), check if there are any
1014 * workspaces at all.
1016 if (atomic_read(total_ws
) == 0) {
1017 static DEFINE_RATELIMIT_STATE(_rs
,
1018 /* once per minute */ 60 * HZ
,
1021 if (__ratelimit(&_rs
)) {
1022 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1030 static struct list_head
*get_workspace(int type
, int level
)
1033 case BTRFS_COMPRESS_NONE
: return btrfs_get_workspace(type
, level
);
1034 case BTRFS_COMPRESS_ZLIB
: return zlib_get_workspace(level
);
1035 case BTRFS_COMPRESS_LZO
: return btrfs_get_workspace(type
, level
);
1036 case BTRFS_COMPRESS_ZSTD
: return zstd_get_workspace(level
);
1039 * This can't happen, the type is validated several times
1040 * before we get here.
1047 * put a workspace struct back on the list or free it if we have enough
1048 * idle ones sitting around
1050 void btrfs_put_workspace(int type
, struct list_head
*ws
)
1052 struct workspace_manager
*wsm
;
1053 struct list_head
*idle_ws
;
1054 spinlock_t
*ws_lock
;
1056 wait_queue_head_t
*ws_wait
;
1059 wsm
= btrfs_compress_op
[type
]->workspace_manager
;
1060 idle_ws
= &wsm
->idle_ws
;
1061 ws_lock
= &wsm
->ws_lock
;
1062 total_ws
= &wsm
->total_ws
;
1063 ws_wait
= &wsm
->ws_wait
;
1064 free_ws
= &wsm
->free_ws
;
1067 if (*free_ws
<= num_online_cpus()) {
1068 list_add(ws
, idle_ws
);
1070 spin_unlock(ws_lock
);
1073 spin_unlock(ws_lock
);
1075 free_workspace(type
, ws
);
1076 atomic_dec(total_ws
);
1078 cond_wake_up(ws_wait
);
1081 static void put_workspace(int type
, struct list_head
*ws
)
1084 case BTRFS_COMPRESS_NONE
: return btrfs_put_workspace(type
, ws
);
1085 case BTRFS_COMPRESS_ZLIB
: return btrfs_put_workspace(type
, ws
);
1086 case BTRFS_COMPRESS_LZO
: return btrfs_put_workspace(type
, ws
);
1087 case BTRFS_COMPRESS_ZSTD
: return zstd_put_workspace(ws
);
1090 * This can't happen, the type is validated several times
1091 * before we get here.
1098 * Adjust @level according to the limits of the compression algorithm or
1099 * fallback to default
1101 static unsigned int btrfs_compress_set_level(int type
, unsigned level
)
1103 const struct btrfs_compress_op
*ops
= btrfs_compress_op
[type
];
1106 level
= ops
->default_level
;
1108 level
= min(level
, ops
->max_level
);
1114 * Given an address space and start and length, compress the bytes into @pages
1115 * that are allocated on demand.
1117 * @type_level is encoded algorithm and level, where level 0 means whatever
1118 * default the algorithm chooses and is opaque here;
1119 * - compression algo are 0-3
1120 * - the level are bits 4-7
1122 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1123 * and returns number of actually allocated pages
1125 * @total_in is used to return the number of bytes actually read. It
1126 * may be smaller than the input length if we had to exit early because we
1127 * ran out of room in the pages array or because we cross the
1128 * max_out threshold.
1130 * @total_out is an in/out parameter, must be set to the input length and will
1131 * be also used to return the total number of compressed bytes
1133 * @max_out tells us the max number of bytes that we're allowed to
1136 int btrfs_compress_pages(unsigned int type_level
, struct address_space
*mapping
,
1137 u64 start
, struct page
**pages
,
1138 unsigned long *out_pages
,
1139 unsigned long *total_in
,
1140 unsigned long *total_out
)
1142 int type
= btrfs_compress_type(type_level
);
1143 int level
= btrfs_compress_level(type_level
);
1144 struct list_head
*workspace
;
1147 level
= btrfs_compress_set_level(type
, level
);
1148 workspace
= get_workspace(type
, level
);
1149 ret
= compression_compress_pages(type
, workspace
, mapping
, start
, pages
,
1150 out_pages
, total_in
, total_out
);
1151 put_workspace(type
, workspace
);
1156 * pages_in is an array of pages with compressed data.
1158 * disk_start is the starting logical offset of this array in the file
1160 * orig_bio contains the pages from the file that we want to decompress into
1162 * srclen is the number of bytes in pages_in
1164 * The basic idea is that we have a bio that was created by readpages.
1165 * The pages in the bio are for the uncompressed data, and they may not
1166 * be contiguous. They all correspond to the range of bytes covered by
1167 * the compressed extent.
1169 static int btrfs_decompress_bio(struct compressed_bio
*cb
)
1171 struct list_head
*workspace
;
1173 int type
= cb
->compress_type
;
1175 workspace
= get_workspace(type
, 0);
1176 ret
= compression_decompress_bio(type
, workspace
, cb
);
1177 put_workspace(type
, workspace
);
1183 * a less complex decompression routine. Our compressed data fits in a
1184 * single page, and we want to read a single page out of it.
1185 * start_byte tells us the offset into the compressed data we're interested in
1187 int btrfs_decompress(int type
, unsigned char *data_in
, struct page
*dest_page
,
1188 unsigned long start_byte
, size_t srclen
, size_t destlen
)
1190 struct list_head
*workspace
;
1193 workspace
= get_workspace(type
, 0);
1194 ret
= compression_decompress(type
, workspace
, data_in
, dest_page
,
1195 start_byte
, srclen
, destlen
);
1196 put_workspace(type
, workspace
);
1201 void __init
btrfs_init_compress(void)
1203 btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE
);
1204 btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB
);
1205 btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO
);
1206 zstd_init_workspace_manager();
1209 void __cold
btrfs_exit_compress(void)
1211 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE
);
1212 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB
);
1213 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO
);
1214 zstd_cleanup_workspace_manager();
1218 * Copy uncompressed data from working buffer to pages.
1220 * buf_start is the byte offset we're of the start of our workspace buffer.
1222 * total_out is the last byte of the buffer
1224 int btrfs_decompress_buf2page(const char *buf
, unsigned long buf_start
,
1225 unsigned long total_out
, u64 disk_start
,
1228 unsigned long buf_offset
;
1229 unsigned long current_buf_start
;
1230 unsigned long start_byte
;
1231 unsigned long prev_start_byte
;
1232 unsigned long working_bytes
= total_out
- buf_start
;
1233 unsigned long bytes
;
1235 struct bio_vec bvec
= bio_iter_iovec(bio
, bio
->bi_iter
);
1238 * start byte is the first byte of the page we're currently
1239 * copying into relative to the start of the compressed data.
1241 start_byte
= page_offset(bvec
.bv_page
) - disk_start
;
1243 /* we haven't yet hit data corresponding to this page */
1244 if (total_out
<= start_byte
)
1248 * the start of the data we care about is offset into
1249 * the middle of our working buffer
1251 if (total_out
> start_byte
&& buf_start
< start_byte
) {
1252 buf_offset
= start_byte
- buf_start
;
1253 working_bytes
-= buf_offset
;
1257 current_buf_start
= buf_start
;
1259 /* copy bytes from the working buffer into the pages */
1260 while (working_bytes
> 0) {
1261 bytes
= min_t(unsigned long, bvec
.bv_len
,
1262 PAGE_SIZE
- (buf_offset
% PAGE_SIZE
));
1263 bytes
= min(bytes
, working_bytes
);
1265 kaddr
= kmap_atomic(bvec
.bv_page
);
1266 memcpy(kaddr
+ bvec
.bv_offset
, buf
+ buf_offset
, bytes
);
1267 kunmap_atomic(kaddr
);
1268 flush_dcache_page(bvec
.bv_page
);
1270 buf_offset
+= bytes
;
1271 working_bytes
-= bytes
;
1272 current_buf_start
+= bytes
;
1274 /* check if we need to pick another page */
1275 bio_advance(bio
, bytes
);
1276 if (!bio
->bi_iter
.bi_size
)
1278 bvec
= bio_iter_iovec(bio
, bio
->bi_iter
);
1279 prev_start_byte
= start_byte
;
1280 start_byte
= page_offset(bvec
.bv_page
) - disk_start
;
1283 * We need to make sure we're only adjusting
1284 * our offset into compression working buffer when
1285 * we're switching pages. Otherwise we can incorrectly
1286 * keep copying when we were actually done.
1288 if (start_byte
!= prev_start_byte
) {
1290 * make sure our new page is covered by this
1293 if (total_out
<= start_byte
)
1297 * the next page in the biovec might not be adjacent
1298 * to the last page, but it might still be found
1299 * inside this working buffer. bump our offset pointer
1301 if (total_out
> start_byte
&&
1302 current_buf_start
< start_byte
) {
1303 buf_offset
= start_byte
- buf_start
;
1304 working_bytes
= total_out
- start_byte
;
1305 current_buf_start
= buf_start
+ buf_offset
;
1314 * Shannon Entropy calculation
1316 * Pure byte distribution analysis fails to determine compressibility of data.
1317 * Try calculating entropy to estimate the average minimum number of bits
1318 * needed to encode the sampled data.
1320 * For convenience, return the percentage of needed bits, instead of amount of
1323 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1324 * and can be compressible with high probability
1326 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1328 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1330 #define ENTROPY_LVL_ACEPTABLE (65)
1331 #define ENTROPY_LVL_HIGH (80)
1334 * For increasead precision in shannon_entropy calculation,
1335 * let's do pow(n, M) to save more digits after comma:
1337 * - maximum int bit length is 64
1338 * - ilog2(MAX_SAMPLE_SIZE) -> 13
1339 * - 13 * 4 = 52 < 64 -> M = 4
1343 static inline u32
ilog2_w(u64 n
)
1345 return ilog2(n
* n
* n
* n
);
1348 static u32
shannon_entropy(struct heuristic_ws
*ws
)
1350 const u32 entropy_max
= 8 * ilog2_w(2);
1351 u32 entropy_sum
= 0;
1352 u32 p
, p_base
, sz_base
;
1355 sz_base
= ilog2_w(ws
->sample_size
);
1356 for (i
= 0; i
< BUCKET_SIZE
&& ws
->bucket
[i
].count
> 0; i
++) {
1357 p
= ws
->bucket
[i
].count
;
1358 p_base
= ilog2_w(p
);
1359 entropy_sum
+= p
* (sz_base
- p_base
);
1362 entropy_sum
/= ws
->sample_size
;
1363 return entropy_sum
* 100 / entropy_max
;
1366 #define RADIX_BASE 4U
1367 #define COUNTERS_SIZE (1U << RADIX_BASE)
1369 static u8
get4bits(u64 num
, int shift
) {
1374 low4bits
= (COUNTERS_SIZE
- 1) - (num
% COUNTERS_SIZE
);
1379 * Use 4 bits as radix base
1380 * Use 16 u32 counters for calculating new position in buf array
1382 * @array - array that will be sorted
1383 * @array_buf - buffer array to store sorting results
1384 * must be equal in size to @array
1387 static void radix_sort(struct bucket_item
*array
, struct bucket_item
*array_buf
,
1392 u32 counters
[COUNTERS_SIZE
];
1400 * Try avoid useless loop iterations for small numbers stored in big
1401 * counters. Example: 48 33 4 ... in 64bit array
1403 max_num
= array
[0].count
;
1404 for (i
= 1; i
< num
; i
++) {
1405 buf_num
= array
[i
].count
;
1406 if (buf_num
> max_num
)
1410 buf_num
= ilog2(max_num
);
1411 bitlen
= ALIGN(buf_num
, RADIX_BASE
* 2);
1414 while (shift
< bitlen
) {
1415 memset(counters
, 0, sizeof(counters
));
1417 for (i
= 0; i
< num
; i
++) {
1418 buf_num
= array
[i
].count
;
1419 addr
= get4bits(buf_num
, shift
);
1423 for (i
= 1; i
< COUNTERS_SIZE
; i
++)
1424 counters
[i
] += counters
[i
- 1];
1426 for (i
= num
- 1; i
>= 0; i
--) {
1427 buf_num
= array
[i
].count
;
1428 addr
= get4bits(buf_num
, shift
);
1430 new_addr
= counters
[addr
];
1431 array_buf
[new_addr
] = array
[i
];
1434 shift
+= RADIX_BASE
;
1437 * Normal radix expects to move data from a temporary array, to
1438 * the main one. But that requires some CPU time. Avoid that
1439 * by doing another sort iteration to original array instead of
1442 memset(counters
, 0, sizeof(counters
));
1444 for (i
= 0; i
< num
; i
++) {
1445 buf_num
= array_buf
[i
].count
;
1446 addr
= get4bits(buf_num
, shift
);
1450 for (i
= 1; i
< COUNTERS_SIZE
; i
++)
1451 counters
[i
] += counters
[i
- 1];
1453 for (i
= num
- 1; i
>= 0; i
--) {
1454 buf_num
= array_buf
[i
].count
;
1455 addr
= get4bits(buf_num
, shift
);
1457 new_addr
= counters
[addr
];
1458 array
[new_addr
] = array_buf
[i
];
1461 shift
+= RADIX_BASE
;
1466 * Size of the core byte set - how many bytes cover 90% of the sample
1468 * There are several types of structured binary data that use nearly all byte
1469 * values. The distribution can be uniform and counts in all buckets will be
1470 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1472 * Other possibility is normal (Gaussian) distribution, where the data could
1473 * be potentially compressible, but we have to take a few more steps to decide
1476 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently,
1477 * compression algo can easy fix that
1478 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1479 * probability is not compressible
1481 #define BYTE_CORE_SET_LOW (64)
1482 #define BYTE_CORE_SET_HIGH (200)
1484 static int byte_core_set_size(struct heuristic_ws
*ws
)
1487 u32 coreset_sum
= 0;
1488 const u32 core_set_threshold
= ws
->sample_size
* 90 / 100;
1489 struct bucket_item
*bucket
= ws
->bucket
;
1491 /* Sort in reverse order */
1492 radix_sort(ws
->bucket
, ws
->bucket_b
, BUCKET_SIZE
);
1494 for (i
= 0; i
< BYTE_CORE_SET_LOW
; i
++)
1495 coreset_sum
+= bucket
[i
].count
;
1497 if (coreset_sum
> core_set_threshold
)
1500 for (; i
< BYTE_CORE_SET_HIGH
&& bucket
[i
].count
> 0; i
++) {
1501 coreset_sum
+= bucket
[i
].count
;
1502 if (coreset_sum
> core_set_threshold
)
1510 * Count byte values in buckets.
1511 * This heuristic can detect textual data (configs, xml, json, html, etc).
1512 * Because in most text-like data byte set is restricted to limited number of
1513 * possible characters, and that restriction in most cases makes data easy to
1516 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1517 * less - compressible
1518 * more - need additional analysis
1520 #define BYTE_SET_THRESHOLD (64)
1522 static u32
byte_set_size(const struct heuristic_ws
*ws
)
1525 u32 byte_set_size
= 0;
1527 for (i
= 0; i
< BYTE_SET_THRESHOLD
; i
++) {
1528 if (ws
->bucket
[i
].count
> 0)
1533 * Continue collecting count of byte values in buckets. If the byte
1534 * set size is bigger then the threshold, it's pointless to continue,
1535 * the detection technique would fail for this type of data.
1537 for (; i
< BUCKET_SIZE
; i
++) {
1538 if (ws
->bucket
[i
].count
> 0) {
1540 if (byte_set_size
> BYTE_SET_THRESHOLD
)
1541 return byte_set_size
;
1545 return byte_set_size
;
1548 static bool sample_repeated_patterns(struct heuristic_ws
*ws
)
1550 const u32 half_of_sample
= ws
->sample_size
/ 2;
1551 const u8
*data
= ws
->sample
;
1553 return memcmp(&data
[0], &data
[half_of_sample
], half_of_sample
) == 0;
1556 static void heuristic_collect_sample(struct inode
*inode
, u64 start
, u64 end
,
1557 struct heuristic_ws
*ws
)
1560 u64 index
, index_end
;
1561 u32 i
, curr_sample_pos
;
1565 * Compression handles the input data by chunks of 128KiB
1566 * (defined by BTRFS_MAX_UNCOMPRESSED)
1568 * We do the same for the heuristic and loop over the whole range.
1570 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1571 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1573 if (end
- start
> BTRFS_MAX_UNCOMPRESSED
)
1574 end
= start
+ BTRFS_MAX_UNCOMPRESSED
;
1576 index
= start
>> PAGE_SHIFT
;
1577 index_end
= end
>> PAGE_SHIFT
;
1579 /* Don't miss unaligned end */
1580 if (!IS_ALIGNED(end
, PAGE_SIZE
))
1583 curr_sample_pos
= 0;
1584 while (index
< index_end
) {
1585 page
= find_get_page(inode
->i_mapping
, index
);
1586 in_data
= kmap(page
);
1587 /* Handle case where the start is not aligned to PAGE_SIZE */
1588 i
= start
% PAGE_SIZE
;
1589 while (i
< PAGE_SIZE
- SAMPLING_READ_SIZE
) {
1590 /* Don't sample any garbage from the last page */
1591 if (start
> end
- SAMPLING_READ_SIZE
)
1593 memcpy(&ws
->sample
[curr_sample_pos
], &in_data
[i
],
1594 SAMPLING_READ_SIZE
);
1595 i
+= SAMPLING_INTERVAL
;
1596 start
+= SAMPLING_INTERVAL
;
1597 curr_sample_pos
+= SAMPLING_READ_SIZE
;
1605 ws
->sample_size
= curr_sample_pos
;
1609 * Compression heuristic.
1611 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1612 * quickly (compared to direct compression) detect data characteristics
1613 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1616 * The following types of analysis can be performed:
1617 * - detect mostly zero data
1618 * - detect data with low "byte set" size (text, etc)
1619 * - detect data with low/high "core byte" set
1621 * Return non-zero if the compression should be done, 0 otherwise.
1623 int btrfs_compress_heuristic(struct inode
*inode
, u64 start
, u64 end
)
1625 struct list_head
*ws_list
= get_workspace(0, 0);
1626 struct heuristic_ws
*ws
;
1631 ws
= list_entry(ws_list
, struct heuristic_ws
, list
);
1633 heuristic_collect_sample(inode
, start
, end
, ws
);
1635 if (sample_repeated_patterns(ws
)) {
1640 memset(ws
->bucket
, 0, sizeof(*ws
->bucket
)*BUCKET_SIZE
);
1642 for (i
= 0; i
< ws
->sample_size
; i
++) {
1643 byte
= ws
->sample
[i
];
1644 ws
->bucket
[byte
].count
++;
1647 i
= byte_set_size(ws
);
1648 if (i
< BYTE_SET_THRESHOLD
) {
1653 i
= byte_core_set_size(ws
);
1654 if (i
<= BYTE_CORE_SET_LOW
) {
1659 if (i
>= BYTE_CORE_SET_HIGH
) {
1664 i
= shannon_entropy(ws
);
1665 if (i
<= ENTROPY_LVL_ACEPTABLE
) {
1671 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1672 * needed to give green light to compression.
1674 * For now just assume that compression at that level is not worth the
1675 * resources because:
1677 * 1. it is possible to defrag the data later
1679 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1680 * values, every bucket has counter at level ~54. The heuristic would
1681 * be confused. This can happen when data have some internal repeated
1682 * patterns like "abbacbbc...". This can be detected by analyzing
1683 * pairs of bytes, which is too costly.
1685 if (i
< ENTROPY_LVL_HIGH
) {
1694 put_workspace(0, ws_list
);
1699 * Convert the compression suffix (eg. after "zlib" starting with ":") to
1700 * level, unrecognized string will set the default level
1702 unsigned int btrfs_compress_str2level(unsigned int type
, const char *str
)
1704 unsigned int level
= 0;
1710 if (str
[0] == ':') {
1711 ret
= kstrtouint(str
+ 1, 10, &level
);
1716 level
= btrfs_compress_set_level(type
, level
);