Merge tag 'regmap-fix-v5.11-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux/fpc-iii.git] / fs / btrfs / ctree.c
blobcc89b63d65a4dfbd0ad0d95f9ebe02df58c281ce
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007,2008 Oracle. All rights reserved.
4 */
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include "ctree.h"
11 #include "disk-io.h"
12 #include "transaction.h"
13 #include "print-tree.h"
14 #include "locking.h"
15 #include "volumes.h"
16 #include "qgroup.h"
18 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
19 *root, struct btrfs_path *path, int level);
20 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
21 const struct btrfs_key *ins_key, struct btrfs_path *path,
22 int data_size, int extend);
23 static int push_node_left(struct btrfs_trans_handle *trans,
24 struct extent_buffer *dst,
25 struct extent_buffer *src, int empty);
26 static int balance_node_right(struct btrfs_trans_handle *trans,
27 struct extent_buffer *dst_buf,
28 struct extent_buffer *src_buf);
29 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
30 int level, int slot);
32 static const struct btrfs_csums {
33 u16 size;
34 const char name[10];
35 const char driver[12];
36 } btrfs_csums[] = {
37 [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
38 [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
39 [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
40 [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
41 .driver = "blake2b-256" },
44 int btrfs_super_csum_size(const struct btrfs_super_block *s)
46 u16 t = btrfs_super_csum_type(s);
48 * csum type is validated at mount time
50 return btrfs_csums[t].size;
53 const char *btrfs_super_csum_name(u16 csum_type)
55 /* csum type is validated at mount time */
56 return btrfs_csums[csum_type].name;
60 * Return driver name if defined, otherwise the name that's also a valid driver
61 * name
63 const char *btrfs_super_csum_driver(u16 csum_type)
65 /* csum type is validated at mount time */
66 return btrfs_csums[csum_type].driver[0] ?
67 btrfs_csums[csum_type].driver :
68 btrfs_csums[csum_type].name;
71 size_t __attribute_const__ btrfs_get_num_csums(void)
73 return ARRAY_SIZE(btrfs_csums);
76 struct btrfs_path *btrfs_alloc_path(void)
78 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
81 /* this also releases the path */
82 void btrfs_free_path(struct btrfs_path *p)
84 if (!p)
85 return;
86 btrfs_release_path(p);
87 kmem_cache_free(btrfs_path_cachep, p);
91 * path release drops references on the extent buffers in the path
92 * and it drops any locks held by this path
94 * It is safe to call this on paths that no locks or extent buffers held.
96 noinline void btrfs_release_path(struct btrfs_path *p)
98 int i;
100 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
101 p->slots[i] = 0;
102 if (!p->nodes[i])
103 continue;
104 if (p->locks[i]) {
105 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
106 p->locks[i] = 0;
108 free_extent_buffer(p->nodes[i]);
109 p->nodes[i] = NULL;
114 * safely gets a reference on the root node of a tree. A lock
115 * is not taken, so a concurrent writer may put a different node
116 * at the root of the tree. See btrfs_lock_root_node for the
117 * looping required.
119 * The extent buffer returned by this has a reference taken, so
120 * it won't disappear. It may stop being the root of the tree
121 * at any time because there are no locks held.
123 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
125 struct extent_buffer *eb;
127 while (1) {
128 rcu_read_lock();
129 eb = rcu_dereference(root->node);
132 * RCU really hurts here, we could free up the root node because
133 * it was COWed but we may not get the new root node yet so do
134 * the inc_not_zero dance and if it doesn't work then
135 * synchronize_rcu and try again.
137 if (atomic_inc_not_zero(&eb->refs)) {
138 rcu_read_unlock();
139 break;
141 rcu_read_unlock();
142 synchronize_rcu();
144 return eb;
148 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
149 * just get put onto a simple dirty list. Transaction walks this list to make
150 * sure they get properly updated on disk.
152 static void add_root_to_dirty_list(struct btrfs_root *root)
154 struct btrfs_fs_info *fs_info = root->fs_info;
156 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
157 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
158 return;
160 spin_lock(&fs_info->trans_lock);
161 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
162 /* Want the extent tree to be the last on the list */
163 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
164 list_move_tail(&root->dirty_list,
165 &fs_info->dirty_cowonly_roots);
166 else
167 list_move(&root->dirty_list,
168 &fs_info->dirty_cowonly_roots);
170 spin_unlock(&fs_info->trans_lock);
174 * used by snapshot creation to make a copy of a root for a tree with
175 * a given objectid. The buffer with the new root node is returned in
176 * cow_ret, and this func returns zero on success or a negative error code.
178 int btrfs_copy_root(struct btrfs_trans_handle *trans,
179 struct btrfs_root *root,
180 struct extent_buffer *buf,
181 struct extent_buffer **cow_ret, u64 new_root_objectid)
183 struct btrfs_fs_info *fs_info = root->fs_info;
184 struct extent_buffer *cow;
185 int ret = 0;
186 int level;
187 struct btrfs_disk_key disk_key;
189 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
190 trans->transid != fs_info->running_transaction->transid);
191 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
192 trans->transid != root->last_trans);
194 level = btrfs_header_level(buf);
195 if (level == 0)
196 btrfs_item_key(buf, &disk_key, 0);
197 else
198 btrfs_node_key(buf, &disk_key, 0);
200 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
201 &disk_key, level, buf->start, 0,
202 BTRFS_NESTING_NEW_ROOT);
203 if (IS_ERR(cow))
204 return PTR_ERR(cow);
206 copy_extent_buffer_full(cow, buf);
207 btrfs_set_header_bytenr(cow, cow->start);
208 btrfs_set_header_generation(cow, trans->transid);
209 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
210 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
211 BTRFS_HEADER_FLAG_RELOC);
212 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
213 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
214 else
215 btrfs_set_header_owner(cow, new_root_objectid);
217 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
219 WARN_ON(btrfs_header_generation(buf) > trans->transid);
220 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
221 ret = btrfs_inc_ref(trans, root, cow, 1);
222 else
223 ret = btrfs_inc_ref(trans, root, cow, 0);
225 if (ret)
226 return ret;
228 btrfs_mark_buffer_dirty(cow);
229 *cow_ret = cow;
230 return 0;
233 enum mod_log_op {
234 MOD_LOG_KEY_REPLACE,
235 MOD_LOG_KEY_ADD,
236 MOD_LOG_KEY_REMOVE,
237 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
238 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
239 MOD_LOG_MOVE_KEYS,
240 MOD_LOG_ROOT_REPLACE,
243 struct tree_mod_root {
244 u64 logical;
245 u8 level;
248 struct tree_mod_elem {
249 struct rb_node node;
250 u64 logical;
251 u64 seq;
252 enum mod_log_op op;
254 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
255 int slot;
257 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
258 u64 generation;
260 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
261 struct btrfs_disk_key key;
262 u64 blockptr;
264 /* this is used for op == MOD_LOG_MOVE_KEYS */
265 struct {
266 int dst_slot;
267 int nr_items;
268 } move;
270 /* this is used for op == MOD_LOG_ROOT_REPLACE */
271 struct tree_mod_root old_root;
275 * Pull a new tree mod seq number for our operation.
277 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
279 return atomic64_inc_return(&fs_info->tree_mod_seq);
283 * This adds a new blocker to the tree mod log's blocker list if the @elem
284 * passed does not already have a sequence number set. So when a caller expects
285 * to record tree modifications, it should ensure to set elem->seq to zero
286 * before calling btrfs_get_tree_mod_seq.
287 * Returns a fresh, unused tree log modification sequence number, even if no new
288 * blocker was added.
290 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
291 struct seq_list *elem)
293 write_lock(&fs_info->tree_mod_log_lock);
294 if (!elem->seq) {
295 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
296 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
298 write_unlock(&fs_info->tree_mod_log_lock);
300 return elem->seq;
303 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
304 struct seq_list *elem)
306 struct rb_root *tm_root;
307 struct rb_node *node;
308 struct rb_node *next;
309 struct tree_mod_elem *tm;
310 u64 min_seq = (u64)-1;
311 u64 seq_putting = elem->seq;
313 if (!seq_putting)
314 return;
316 write_lock(&fs_info->tree_mod_log_lock);
317 list_del(&elem->list);
318 elem->seq = 0;
320 if (!list_empty(&fs_info->tree_mod_seq_list)) {
321 struct seq_list *first;
323 first = list_first_entry(&fs_info->tree_mod_seq_list,
324 struct seq_list, list);
325 if (seq_putting > first->seq) {
327 * Blocker with lower sequence number exists, we
328 * cannot remove anything from the log.
330 write_unlock(&fs_info->tree_mod_log_lock);
331 return;
333 min_seq = first->seq;
337 * anything that's lower than the lowest existing (read: blocked)
338 * sequence number can be removed from the tree.
340 tm_root = &fs_info->tree_mod_log;
341 for (node = rb_first(tm_root); node; node = next) {
342 next = rb_next(node);
343 tm = rb_entry(node, struct tree_mod_elem, node);
344 if (tm->seq >= min_seq)
345 continue;
346 rb_erase(node, tm_root);
347 kfree(tm);
349 write_unlock(&fs_info->tree_mod_log_lock);
353 * key order of the log:
354 * node/leaf start address -> sequence
356 * The 'start address' is the logical address of the *new* root node
357 * for root replace operations, or the logical address of the affected
358 * block for all other operations.
360 static noinline int
361 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
363 struct rb_root *tm_root;
364 struct rb_node **new;
365 struct rb_node *parent = NULL;
366 struct tree_mod_elem *cur;
368 lockdep_assert_held_write(&fs_info->tree_mod_log_lock);
370 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
372 tm_root = &fs_info->tree_mod_log;
373 new = &tm_root->rb_node;
374 while (*new) {
375 cur = rb_entry(*new, struct tree_mod_elem, node);
376 parent = *new;
377 if (cur->logical < tm->logical)
378 new = &((*new)->rb_left);
379 else if (cur->logical > tm->logical)
380 new = &((*new)->rb_right);
381 else if (cur->seq < tm->seq)
382 new = &((*new)->rb_left);
383 else if (cur->seq > tm->seq)
384 new = &((*new)->rb_right);
385 else
386 return -EEXIST;
389 rb_link_node(&tm->node, parent, new);
390 rb_insert_color(&tm->node, tm_root);
391 return 0;
395 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
396 * returns zero with the tree_mod_log_lock acquired. The caller must hold
397 * this until all tree mod log insertions are recorded in the rb tree and then
398 * write unlock fs_info::tree_mod_log_lock.
400 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
401 struct extent_buffer *eb) {
402 smp_mb();
403 if (list_empty(&(fs_info)->tree_mod_seq_list))
404 return 1;
405 if (eb && btrfs_header_level(eb) == 0)
406 return 1;
408 write_lock(&fs_info->tree_mod_log_lock);
409 if (list_empty(&(fs_info)->tree_mod_seq_list)) {
410 write_unlock(&fs_info->tree_mod_log_lock);
411 return 1;
414 return 0;
417 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
418 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
419 struct extent_buffer *eb)
421 smp_mb();
422 if (list_empty(&(fs_info)->tree_mod_seq_list))
423 return 0;
424 if (eb && btrfs_header_level(eb) == 0)
425 return 0;
427 return 1;
430 static struct tree_mod_elem *
431 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
432 enum mod_log_op op, gfp_t flags)
434 struct tree_mod_elem *tm;
436 tm = kzalloc(sizeof(*tm), flags);
437 if (!tm)
438 return NULL;
440 tm->logical = eb->start;
441 if (op != MOD_LOG_KEY_ADD) {
442 btrfs_node_key(eb, &tm->key, slot);
443 tm->blockptr = btrfs_node_blockptr(eb, slot);
445 tm->op = op;
446 tm->slot = slot;
447 tm->generation = btrfs_node_ptr_generation(eb, slot);
448 RB_CLEAR_NODE(&tm->node);
450 return tm;
453 static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
454 enum mod_log_op op, gfp_t flags)
456 struct tree_mod_elem *tm;
457 int ret;
459 if (!tree_mod_need_log(eb->fs_info, eb))
460 return 0;
462 tm = alloc_tree_mod_elem(eb, slot, op, flags);
463 if (!tm)
464 return -ENOMEM;
466 if (tree_mod_dont_log(eb->fs_info, eb)) {
467 kfree(tm);
468 return 0;
471 ret = __tree_mod_log_insert(eb->fs_info, tm);
472 write_unlock(&eb->fs_info->tree_mod_log_lock);
473 if (ret)
474 kfree(tm);
476 return ret;
479 static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
480 int dst_slot, int src_slot, int nr_items)
482 struct tree_mod_elem *tm = NULL;
483 struct tree_mod_elem **tm_list = NULL;
484 int ret = 0;
485 int i;
486 int locked = 0;
488 if (!tree_mod_need_log(eb->fs_info, eb))
489 return 0;
491 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
492 if (!tm_list)
493 return -ENOMEM;
495 tm = kzalloc(sizeof(*tm), GFP_NOFS);
496 if (!tm) {
497 ret = -ENOMEM;
498 goto free_tms;
501 tm->logical = eb->start;
502 tm->slot = src_slot;
503 tm->move.dst_slot = dst_slot;
504 tm->move.nr_items = nr_items;
505 tm->op = MOD_LOG_MOVE_KEYS;
507 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
508 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
509 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
510 if (!tm_list[i]) {
511 ret = -ENOMEM;
512 goto free_tms;
516 if (tree_mod_dont_log(eb->fs_info, eb))
517 goto free_tms;
518 locked = 1;
521 * When we override something during the move, we log these removals.
522 * This can only happen when we move towards the beginning of the
523 * buffer, i.e. dst_slot < src_slot.
525 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
526 ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
527 if (ret)
528 goto free_tms;
531 ret = __tree_mod_log_insert(eb->fs_info, tm);
532 if (ret)
533 goto free_tms;
534 write_unlock(&eb->fs_info->tree_mod_log_lock);
535 kfree(tm_list);
537 return 0;
538 free_tms:
539 for (i = 0; i < nr_items; i++) {
540 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
541 rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
542 kfree(tm_list[i]);
544 if (locked)
545 write_unlock(&eb->fs_info->tree_mod_log_lock);
546 kfree(tm_list);
547 kfree(tm);
549 return ret;
552 static inline int
553 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
554 struct tree_mod_elem **tm_list,
555 int nritems)
557 int i, j;
558 int ret;
560 for (i = nritems - 1; i >= 0; i--) {
561 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
562 if (ret) {
563 for (j = nritems - 1; j > i; j--)
564 rb_erase(&tm_list[j]->node,
565 &fs_info->tree_mod_log);
566 return ret;
570 return 0;
573 static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
574 struct extent_buffer *new_root, int log_removal)
576 struct btrfs_fs_info *fs_info = old_root->fs_info;
577 struct tree_mod_elem *tm = NULL;
578 struct tree_mod_elem **tm_list = NULL;
579 int nritems = 0;
580 int ret = 0;
581 int i;
583 if (!tree_mod_need_log(fs_info, NULL))
584 return 0;
586 if (log_removal && btrfs_header_level(old_root) > 0) {
587 nritems = btrfs_header_nritems(old_root);
588 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
589 GFP_NOFS);
590 if (!tm_list) {
591 ret = -ENOMEM;
592 goto free_tms;
594 for (i = 0; i < nritems; i++) {
595 tm_list[i] = alloc_tree_mod_elem(old_root, i,
596 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
597 if (!tm_list[i]) {
598 ret = -ENOMEM;
599 goto free_tms;
604 tm = kzalloc(sizeof(*tm), GFP_NOFS);
605 if (!tm) {
606 ret = -ENOMEM;
607 goto free_tms;
610 tm->logical = new_root->start;
611 tm->old_root.logical = old_root->start;
612 tm->old_root.level = btrfs_header_level(old_root);
613 tm->generation = btrfs_header_generation(old_root);
614 tm->op = MOD_LOG_ROOT_REPLACE;
616 if (tree_mod_dont_log(fs_info, NULL))
617 goto free_tms;
619 if (tm_list)
620 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
621 if (!ret)
622 ret = __tree_mod_log_insert(fs_info, tm);
624 write_unlock(&fs_info->tree_mod_log_lock);
625 if (ret)
626 goto free_tms;
627 kfree(tm_list);
629 return ret;
631 free_tms:
632 if (tm_list) {
633 for (i = 0; i < nritems; i++)
634 kfree(tm_list[i]);
635 kfree(tm_list);
637 kfree(tm);
639 return ret;
642 static struct tree_mod_elem *
643 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
644 int smallest)
646 struct rb_root *tm_root;
647 struct rb_node *node;
648 struct tree_mod_elem *cur = NULL;
649 struct tree_mod_elem *found = NULL;
651 read_lock(&fs_info->tree_mod_log_lock);
652 tm_root = &fs_info->tree_mod_log;
653 node = tm_root->rb_node;
654 while (node) {
655 cur = rb_entry(node, struct tree_mod_elem, node);
656 if (cur->logical < start) {
657 node = node->rb_left;
658 } else if (cur->logical > start) {
659 node = node->rb_right;
660 } else if (cur->seq < min_seq) {
661 node = node->rb_left;
662 } else if (!smallest) {
663 /* we want the node with the highest seq */
664 if (found)
665 BUG_ON(found->seq > cur->seq);
666 found = cur;
667 node = node->rb_left;
668 } else if (cur->seq > min_seq) {
669 /* we want the node with the smallest seq */
670 if (found)
671 BUG_ON(found->seq < cur->seq);
672 found = cur;
673 node = node->rb_right;
674 } else {
675 found = cur;
676 break;
679 read_unlock(&fs_info->tree_mod_log_lock);
681 return found;
685 * this returns the element from the log with the smallest time sequence
686 * value that's in the log (the oldest log item). any element with a time
687 * sequence lower than min_seq will be ignored.
689 static struct tree_mod_elem *
690 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
691 u64 min_seq)
693 return __tree_mod_log_search(fs_info, start, min_seq, 1);
697 * this returns the element from the log with the largest time sequence
698 * value that's in the log (the most recent log item). any element with
699 * a time sequence lower than min_seq will be ignored.
701 static struct tree_mod_elem *
702 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
704 return __tree_mod_log_search(fs_info, start, min_seq, 0);
707 static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst,
708 struct extent_buffer *src, unsigned long dst_offset,
709 unsigned long src_offset, int nr_items)
711 struct btrfs_fs_info *fs_info = dst->fs_info;
712 int ret = 0;
713 struct tree_mod_elem **tm_list = NULL;
714 struct tree_mod_elem **tm_list_add, **tm_list_rem;
715 int i;
716 int locked = 0;
718 if (!tree_mod_need_log(fs_info, NULL))
719 return 0;
721 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
722 return 0;
724 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
725 GFP_NOFS);
726 if (!tm_list)
727 return -ENOMEM;
729 tm_list_add = tm_list;
730 tm_list_rem = tm_list + nr_items;
731 for (i = 0; i < nr_items; i++) {
732 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
733 MOD_LOG_KEY_REMOVE, GFP_NOFS);
734 if (!tm_list_rem[i]) {
735 ret = -ENOMEM;
736 goto free_tms;
739 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
740 MOD_LOG_KEY_ADD, GFP_NOFS);
741 if (!tm_list_add[i]) {
742 ret = -ENOMEM;
743 goto free_tms;
747 if (tree_mod_dont_log(fs_info, NULL))
748 goto free_tms;
749 locked = 1;
751 for (i = 0; i < nr_items; i++) {
752 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
753 if (ret)
754 goto free_tms;
755 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
756 if (ret)
757 goto free_tms;
760 write_unlock(&fs_info->tree_mod_log_lock);
761 kfree(tm_list);
763 return 0;
765 free_tms:
766 for (i = 0; i < nr_items * 2; i++) {
767 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
768 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
769 kfree(tm_list[i]);
771 if (locked)
772 write_unlock(&fs_info->tree_mod_log_lock);
773 kfree(tm_list);
775 return ret;
778 static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
780 struct tree_mod_elem **tm_list = NULL;
781 int nritems = 0;
782 int i;
783 int ret = 0;
785 if (btrfs_header_level(eb) == 0)
786 return 0;
788 if (!tree_mod_need_log(eb->fs_info, NULL))
789 return 0;
791 nritems = btrfs_header_nritems(eb);
792 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
793 if (!tm_list)
794 return -ENOMEM;
796 for (i = 0; i < nritems; i++) {
797 tm_list[i] = alloc_tree_mod_elem(eb, i,
798 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
799 if (!tm_list[i]) {
800 ret = -ENOMEM;
801 goto free_tms;
805 if (tree_mod_dont_log(eb->fs_info, eb))
806 goto free_tms;
808 ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
809 write_unlock(&eb->fs_info->tree_mod_log_lock);
810 if (ret)
811 goto free_tms;
812 kfree(tm_list);
814 return 0;
816 free_tms:
817 for (i = 0; i < nritems; i++)
818 kfree(tm_list[i]);
819 kfree(tm_list);
821 return ret;
825 * check if the tree block can be shared by multiple trees
827 int btrfs_block_can_be_shared(struct btrfs_root *root,
828 struct extent_buffer *buf)
831 * Tree blocks not in shareable trees and tree roots are never shared.
832 * If a block was allocated after the last snapshot and the block was
833 * not allocated by tree relocation, we know the block is not shared.
835 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
836 buf != root->node && buf != root->commit_root &&
837 (btrfs_header_generation(buf) <=
838 btrfs_root_last_snapshot(&root->root_item) ||
839 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
840 return 1;
842 return 0;
845 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
846 struct btrfs_root *root,
847 struct extent_buffer *buf,
848 struct extent_buffer *cow,
849 int *last_ref)
851 struct btrfs_fs_info *fs_info = root->fs_info;
852 u64 refs;
853 u64 owner;
854 u64 flags;
855 u64 new_flags = 0;
856 int ret;
859 * Backrefs update rules:
861 * Always use full backrefs for extent pointers in tree block
862 * allocated by tree relocation.
864 * If a shared tree block is no longer referenced by its owner
865 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
866 * use full backrefs for extent pointers in tree block.
868 * If a tree block is been relocating
869 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
870 * use full backrefs for extent pointers in tree block.
871 * The reason for this is some operations (such as drop tree)
872 * are only allowed for blocks use full backrefs.
875 if (btrfs_block_can_be_shared(root, buf)) {
876 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
877 btrfs_header_level(buf), 1,
878 &refs, &flags);
879 if (ret)
880 return ret;
881 if (refs == 0) {
882 ret = -EROFS;
883 btrfs_handle_fs_error(fs_info, ret, NULL);
884 return ret;
886 } else {
887 refs = 1;
888 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
889 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
890 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
891 else
892 flags = 0;
895 owner = btrfs_header_owner(buf);
896 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
897 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
899 if (refs > 1) {
900 if ((owner == root->root_key.objectid ||
901 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
902 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
903 ret = btrfs_inc_ref(trans, root, buf, 1);
904 if (ret)
905 return ret;
907 if (root->root_key.objectid ==
908 BTRFS_TREE_RELOC_OBJECTID) {
909 ret = btrfs_dec_ref(trans, root, buf, 0);
910 if (ret)
911 return ret;
912 ret = btrfs_inc_ref(trans, root, cow, 1);
913 if (ret)
914 return ret;
916 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
917 } else {
919 if (root->root_key.objectid ==
920 BTRFS_TREE_RELOC_OBJECTID)
921 ret = btrfs_inc_ref(trans, root, cow, 1);
922 else
923 ret = btrfs_inc_ref(trans, root, cow, 0);
924 if (ret)
925 return ret;
927 if (new_flags != 0) {
928 int level = btrfs_header_level(buf);
930 ret = btrfs_set_disk_extent_flags(trans, buf,
931 new_flags, level, 0);
932 if (ret)
933 return ret;
935 } else {
936 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
937 if (root->root_key.objectid ==
938 BTRFS_TREE_RELOC_OBJECTID)
939 ret = btrfs_inc_ref(trans, root, cow, 1);
940 else
941 ret = btrfs_inc_ref(trans, root, cow, 0);
942 if (ret)
943 return ret;
944 ret = btrfs_dec_ref(trans, root, buf, 1);
945 if (ret)
946 return ret;
948 btrfs_clean_tree_block(buf);
949 *last_ref = 1;
951 return 0;
954 static struct extent_buffer *alloc_tree_block_no_bg_flush(
955 struct btrfs_trans_handle *trans,
956 struct btrfs_root *root,
957 u64 parent_start,
958 const struct btrfs_disk_key *disk_key,
959 int level,
960 u64 hint,
961 u64 empty_size,
962 enum btrfs_lock_nesting nest)
964 struct btrfs_fs_info *fs_info = root->fs_info;
965 struct extent_buffer *ret;
968 * If we are COWing a node/leaf from the extent, chunk, device or free
969 * space trees, make sure that we do not finish block group creation of
970 * pending block groups. We do this to avoid a deadlock.
971 * COWing can result in allocation of a new chunk, and flushing pending
972 * block groups (btrfs_create_pending_block_groups()) can be triggered
973 * when finishing allocation of a new chunk. Creation of a pending block
974 * group modifies the extent, chunk, device and free space trees,
975 * therefore we could deadlock with ourselves since we are holding a
976 * lock on an extent buffer that btrfs_create_pending_block_groups() may
977 * try to COW later.
978 * For similar reasons, we also need to delay flushing pending block
979 * groups when splitting a leaf or node, from one of those trees, since
980 * we are holding a write lock on it and its parent or when inserting a
981 * new root node for one of those trees.
983 if (root == fs_info->extent_root ||
984 root == fs_info->chunk_root ||
985 root == fs_info->dev_root ||
986 root == fs_info->free_space_root)
987 trans->can_flush_pending_bgs = false;
989 ret = btrfs_alloc_tree_block(trans, root, parent_start,
990 root->root_key.objectid, disk_key, level,
991 hint, empty_size, nest);
992 trans->can_flush_pending_bgs = true;
994 return ret;
998 * does the dirty work in cow of a single block. The parent block (if
999 * supplied) is updated to point to the new cow copy. The new buffer is marked
1000 * dirty and returned locked. If you modify the block it needs to be marked
1001 * dirty again.
1003 * search_start -- an allocation hint for the new block
1005 * empty_size -- a hint that you plan on doing more cow. This is the size in
1006 * bytes the allocator should try to find free next to the block it returns.
1007 * This is just a hint and may be ignored by the allocator.
1009 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1010 struct btrfs_root *root,
1011 struct extent_buffer *buf,
1012 struct extent_buffer *parent, int parent_slot,
1013 struct extent_buffer **cow_ret,
1014 u64 search_start, u64 empty_size,
1015 enum btrfs_lock_nesting nest)
1017 struct btrfs_fs_info *fs_info = root->fs_info;
1018 struct btrfs_disk_key disk_key;
1019 struct extent_buffer *cow;
1020 int level, ret;
1021 int last_ref = 0;
1022 int unlock_orig = 0;
1023 u64 parent_start = 0;
1025 if (*cow_ret == buf)
1026 unlock_orig = 1;
1028 btrfs_assert_tree_locked(buf);
1030 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
1031 trans->transid != fs_info->running_transaction->transid);
1032 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
1033 trans->transid != root->last_trans);
1035 level = btrfs_header_level(buf);
1037 if (level == 0)
1038 btrfs_item_key(buf, &disk_key, 0);
1039 else
1040 btrfs_node_key(buf, &disk_key, 0);
1042 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1043 parent_start = parent->start;
1045 cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key,
1046 level, search_start, empty_size, nest);
1047 if (IS_ERR(cow))
1048 return PTR_ERR(cow);
1050 /* cow is set to blocking by btrfs_init_new_buffer */
1052 copy_extent_buffer_full(cow, buf);
1053 btrfs_set_header_bytenr(cow, cow->start);
1054 btrfs_set_header_generation(cow, trans->transid);
1055 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1056 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1057 BTRFS_HEADER_FLAG_RELOC);
1058 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1059 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1060 else
1061 btrfs_set_header_owner(cow, root->root_key.objectid);
1063 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
1065 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1066 if (ret) {
1067 btrfs_tree_unlock(cow);
1068 free_extent_buffer(cow);
1069 btrfs_abort_transaction(trans, ret);
1070 return ret;
1073 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
1074 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1075 if (ret) {
1076 btrfs_tree_unlock(cow);
1077 free_extent_buffer(cow);
1078 btrfs_abort_transaction(trans, ret);
1079 return ret;
1083 if (buf == root->node) {
1084 WARN_ON(parent && parent != buf);
1085 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1086 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1087 parent_start = buf->start;
1089 atomic_inc(&cow->refs);
1090 ret = tree_mod_log_insert_root(root->node, cow, 1);
1091 BUG_ON(ret < 0);
1092 rcu_assign_pointer(root->node, cow);
1094 btrfs_free_tree_block(trans, root, buf, parent_start,
1095 last_ref);
1096 free_extent_buffer(buf);
1097 add_root_to_dirty_list(root);
1098 } else {
1099 WARN_ON(trans->transid != btrfs_header_generation(parent));
1100 tree_mod_log_insert_key(parent, parent_slot,
1101 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1102 btrfs_set_node_blockptr(parent, parent_slot,
1103 cow->start);
1104 btrfs_set_node_ptr_generation(parent, parent_slot,
1105 trans->transid);
1106 btrfs_mark_buffer_dirty(parent);
1107 if (last_ref) {
1108 ret = tree_mod_log_free_eb(buf);
1109 if (ret) {
1110 btrfs_tree_unlock(cow);
1111 free_extent_buffer(cow);
1112 btrfs_abort_transaction(trans, ret);
1113 return ret;
1116 btrfs_free_tree_block(trans, root, buf, parent_start,
1117 last_ref);
1119 if (unlock_orig)
1120 btrfs_tree_unlock(buf);
1121 free_extent_buffer_stale(buf);
1122 btrfs_mark_buffer_dirty(cow);
1123 *cow_ret = cow;
1124 return 0;
1128 * returns the logical address of the oldest predecessor of the given root.
1129 * entries older than time_seq are ignored.
1131 static struct tree_mod_elem *__tree_mod_log_oldest_root(
1132 struct extent_buffer *eb_root, u64 time_seq)
1134 struct tree_mod_elem *tm;
1135 struct tree_mod_elem *found = NULL;
1136 u64 root_logical = eb_root->start;
1137 int looped = 0;
1139 if (!time_seq)
1140 return NULL;
1143 * the very last operation that's logged for a root is the
1144 * replacement operation (if it is replaced at all). this has
1145 * the logical address of the *new* root, making it the very
1146 * first operation that's logged for this root.
1148 while (1) {
1149 tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
1150 time_seq);
1151 if (!looped && !tm)
1152 return NULL;
1154 * if there are no tree operation for the oldest root, we simply
1155 * return it. this should only happen if that (old) root is at
1156 * level 0.
1158 if (!tm)
1159 break;
1162 * if there's an operation that's not a root replacement, we
1163 * found the oldest version of our root. normally, we'll find a
1164 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1166 if (tm->op != MOD_LOG_ROOT_REPLACE)
1167 break;
1169 found = tm;
1170 root_logical = tm->old_root.logical;
1171 looped = 1;
1174 /* if there's no old root to return, return what we found instead */
1175 if (!found)
1176 found = tm;
1178 return found;
1182 * tm is a pointer to the first operation to rewind within eb. then, all
1183 * previous operations will be rewound (until we reach something older than
1184 * time_seq).
1186 static void
1187 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1188 u64 time_seq, struct tree_mod_elem *first_tm)
1190 u32 n;
1191 struct rb_node *next;
1192 struct tree_mod_elem *tm = first_tm;
1193 unsigned long o_dst;
1194 unsigned long o_src;
1195 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1197 n = btrfs_header_nritems(eb);
1198 read_lock(&fs_info->tree_mod_log_lock);
1199 while (tm && tm->seq >= time_seq) {
1201 * all the operations are recorded with the operator used for
1202 * the modification. as we're going backwards, we do the
1203 * opposite of each operation here.
1205 switch (tm->op) {
1206 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1207 BUG_ON(tm->slot < n);
1208 fallthrough;
1209 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1210 case MOD_LOG_KEY_REMOVE:
1211 btrfs_set_node_key(eb, &tm->key, tm->slot);
1212 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1213 btrfs_set_node_ptr_generation(eb, tm->slot,
1214 tm->generation);
1215 n++;
1216 break;
1217 case MOD_LOG_KEY_REPLACE:
1218 BUG_ON(tm->slot >= n);
1219 btrfs_set_node_key(eb, &tm->key, tm->slot);
1220 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1221 btrfs_set_node_ptr_generation(eb, tm->slot,
1222 tm->generation);
1223 break;
1224 case MOD_LOG_KEY_ADD:
1225 /* if a move operation is needed it's in the log */
1226 n--;
1227 break;
1228 case MOD_LOG_MOVE_KEYS:
1229 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1230 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1231 memmove_extent_buffer(eb, o_dst, o_src,
1232 tm->move.nr_items * p_size);
1233 break;
1234 case MOD_LOG_ROOT_REPLACE:
1236 * this operation is special. for roots, this must be
1237 * handled explicitly before rewinding.
1238 * for non-roots, this operation may exist if the node
1239 * was a root: root A -> child B; then A gets empty and
1240 * B is promoted to the new root. in the mod log, we'll
1241 * have a root-replace operation for B, a tree block
1242 * that is no root. we simply ignore that operation.
1244 break;
1246 next = rb_next(&tm->node);
1247 if (!next)
1248 break;
1249 tm = rb_entry(next, struct tree_mod_elem, node);
1250 if (tm->logical != first_tm->logical)
1251 break;
1253 read_unlock(&fs_info->tree_mod_log_lock);
1254 btrfs_set_header_nritems(eb, n);
1258 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1259 * is returned. If rewind operations happen, a fresh buffer is returned. The
1260 * returned buffer is always read-locked. If the returned buffer is not the
1261 * input buffer, the lock on the input buffer is released and the input buffer
1262 * is freed (its refcount is decremented).
1264 static struct extent_buffer *
1265 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1266 struct extent_buffer *eb, u64 time_seq)
1268 struct extent_buffer *eb_rewin;
1269 struct tree_mod_elem *tm;
1271 if (!time_seq)
1272 return eb;
1274 if (btrfs_header_level(eb) == 0)
1275 return eb;
1277 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1278 if (!tm)
1279 return eb;
1281 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1282 BUG_ON(tm->slot != 0);
1283 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1284 if (!eb_rewin) {
1285 btrfs_tree_read_unlock(eb);
1286 free_extent_buffer(eb);
1287 return NULL;
1289 btrfs_set_header_bytenr(eb_rewin, eb->start);
1290 btrfs_set_header_backref_rev(eb_rewin,
1291 btrfs_header_backref_rev(eb));
1292 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1293 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1294 } else {
1295 eb_rewin = btrfs_clone_extent_buffer(eb);
1296 if (!eb_rewin) {
1297 btrfs_tree_read_unlock(eb);
1298 free_extent_buffer(eb);
1299 return NULL;
1303 btrfs_tree_read_unlock(eb);
1304 free_extent_buffer(eb);
1306 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb_rewin),
1307 eb_rewin, btrfs_header_level(eb_rewin));
1308 btrfs_tree_read_lock(eb_rewin);
1309 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1310 WARN_ON(btrfs_header_nritems(eb_rewin) >
1311 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1313 return eb_rewin;
1317 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1318 * value. If there are no changes, the current root->root_node is returned. If
1319 * anything changed in between, there's a fresh buffer allocated on which the
1320 * rewind operations are done. In any case, the returned buffer is read locked.
1321 * Returns NULL on error (with no locks held).
1323 static inline struct extent_buffer *
1324 get_old_root(struct btrfs_root *root, u64 time_seq)
1326 struct btrfs_fs_info *fs_info = root->fs_info;
1327 struct tree_mod_elem *tm;
1328 struct extent_buffer *eb = NULL;
1329 struct extent_buffer *eb_root;
1330 u64 eb_root_owner = 0;
1331 struct extent_buffer *old;
1332 struct tree_mod_root *old_root = NULL;
1333 u64 old_generation = 0;
1334 u64 logical;
1335 int level;
1337 eb_root = btrfs_read_lock_root_node(root);
1338 tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1339 if (!tm)
1340 return eb_root;
1342 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1343 old_root = &tm->old_root;
1344 old_generation = tm->generation;
1345 logical = old_root->logical;
1346 level = old_root->level;
1347 } else {
1348 logical = eb_root->start;
1349 level = btrfs_header_level(eb_root);
1352 tm = tree_mod_log_search(fs_info, logical, time_seq);
1353 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1354 btrfs_tree_read_unlock(eb_root);
1355 free_extent_buffer(eb_root);
1356 old = read_tree_block(fs_info, logical, root->root_key.objectid,
1357 0, level, NULL);
1358 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1359 if (!IS_ERR(old))
1360 free_extent_buffer(old);
1361 btrfs_warn(fs_info,
1362 "failed to read tree block %llu from get_old_root",
1363 logical);
1364 } else {
1365 eb = btrfs_clone_extent_buffer(old);
1366 free_extent_buffer(old);
1368 } else if (old_root) {
1369 eb_root_owner = btrfs_header_owner(eb_root);
1370 btrfs_tree_read_unlock(eb_root);
1371 free_extent_buffer(eb_root);
1372 eb = alloc_dummy_extent_buffer(fs_info, logical);
1373 } else {
1374 eb = btrfs_clone_extent_buffer(eb_root);
1375 btrfs_tree_read_unlock(eb_root);
1376 free_extent_buffer(eb_root);
1379 if (!eb)
1380 return NULL;
1381 if (old_root) {
1382 btrfs_set_header_bytenr(eb, eb->start);
1383 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1384 btrfs_set_header_owner(eb, eb_root_owner);
1385 btrfs_set_header_level(eb, old_root->level);
1386 btrfs_set_header_generation(eb, old_generation);
1388 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), eb,
1389 btrfs_header_level(eb));
1390 btrfs_tree_read_lock(eb);
1391 if (tm)
1392 __tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1393 else
1394 WARN_ON(btrfs_header_level(eb) != 0);
1395 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1397 return eb;
1400 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1402 struct tree_mod_elem *tm;
1403 int level;
1404 struct extent_buffer *eb_root = btrfs_root_node(root);
1406 tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1407 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1408 level = tm->old_root.level;
1409 } else {
1410 level = btrfs_header_level(eb_root);
1412 free_extent_buffer(eb_root);
1414 return level;
1417 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1418 struct btrfs_root *root,
1419 struct extent_buffer *buf)
1421 if (btrfs_is_testing(root->fs_info))
1422 return 0;
1424 /* Ensure we can see the FORCE_COW bit */
1425 smp_mb__before_atomic();
1428 * We do not need to cow a block if
1429 * 1) this block is not created or changed in this transaction;
1430 * 2) this block does not belong to TREE_RELOC tree;
1431 * 3) the root is not forced COW.
1433 * What is forced COW:
1434 * when we create snapshot during committing the transaction,
1435 * after we've finished copying src root, we must COW the shared
1436 * block to ensure the metadata consistency.
1438 if (btrfs_header_generation(buf) == trans->transid &&
1439 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1440 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1441 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1442 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1443 return 0;
1444 return 1;
1448 * cows a single block, see __btrfs_cow_block for the real work.
1449 * This version of it has extra checks so that a block isn't COWed more than
1450 * once per transaction, as long as it hasn't been written yet
1452 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1453 struct btrfs_root *root, struct extent_buffer *buf,
1454 struct extent_buffer *parent, int parent_slot,
1455 struct extent_buffer **cow_ret,
1456 enum btrfs_lock_nesting nest)
1458 struct btrfs_fs_info *fs_info = root->fs_info;
1459 u64 search_start;
1460 int ret;
1462 if (test_bit(BTRFS_ROOT_DELETING, &root->state))
1463 btrfs_err(fs_info,
1464 "COW'ing blocks on a fs root that's being dropped");
1466 if (trans->transaction != fs_info->running_transaction)
1467 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1468 trans->transid,
1469 fs_info->running_transaction->transid);
1471 if (trans->transid != fs_info->generation)
1472 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1473 trans->transid, fs_info->generation);
1475 if (!should_cow_block(trans, root, buf)) {
1476 trans->dirty = true;
1477 *cow_ret = buf;
1478 return 0;
1481 search_start = buf->start & ~((u64)SZ_1G - 1);
1484 * Before CoWing this block for later modification, check if it's
1485 * the subtree root and do the delayed subtree trace if needed.
1487 * Also We don't care about the error, as it's handled internally.
1489 btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
1490 ret = __btrfs_cow_block(trans, root, buf, parent,
1491 parent_slot, cow_ret, search_start, 0, nest);
1493 trace_btrfs_cow_block(root, buf, *cow_ret);
1495 return ret;
1499 * helper function for defrag to decide if two blocks pointed to by a
1500 * node are actually close by
1502 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1504 if (blocknr < other && other - (blocknr + blocksize) < 32768)
1505 return 1;
1506 if (blocknr > other && blocknr - (other + blocksize) < 32768)
1507 return 1;
1508 return 0;
1511 #ifdef __LITTLE_ENDIAN
1514 * Compare two keys, on little-endian the disk order is same as CPU order and
1515 * we can avoid the conversion.
1517 static int comp_keys(const struct btrfs_disk_key *disk_key,
1518 const struct btrfs_key *k2)
1520 const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
1522 return btrfs_comp_cpu_keys(k1, k2);
1525 #else
1528 * compare two keys in a memcmp fashion
1530 static int comp_keys(const struct btrfs_disk_key *disk,
1531 const struct btrfs_key *k2)
1533 struct btrfs_key k1;
1535 btrfs_disk_key_to_cpu(&k1, disk);
1537 return btrfs_comp_cpu_keys(&k1, k2);
1539 #endif
1542 * same as comp_keys only with two btrfs_key's
1544 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1546 if (k1->objectid > k2->objectid)
1547 return 1;
1548 if (k1->objectid < k2->objectid)
1549 return -1;
1550 if (k1->type > k2->type)
1551 return 1;
1552 if (k1->type < k2->type)
1553 return -1;
1554 if (k1->offset > k2->offset)
1555 return 1;
1556 if (k1->offset < k2->offset)
1557 return -1;
1558 return 0;
1562 * this is used by the defrag code to go through all the
1563 * leaves pointed to by a node and reallocate them so that
1564 * disk order is close to key order
1566 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1567 struct btrfs_root *root, struct extent_buffer *parent,
1568 int start_slot, u64 *last_ret,
1569 struct btrfs_key *progress)
1571 struct btrfs_fs_info *fs_info = root->fs_info;
1572 struct extent_buffer *cur;
1573 u64 blocknr;
1574 u64 search_start = *last_ret;
1575 u64 last_block = 0;
1576 u64 other;
1577 u32 parent_nritems;
1578 int end_slot;
1579 int i;
1580 int err = 0;
1581 u32 blocksize;
1582 int progress_passed = 0;
1583 struct btrfs_disk_key disk_key;
1585 WARN_ON(trans->transaction != fs_info->running_transaction);
1586 WARN_ON(trans->transid != fs_info->generation);
1588 parent_nritems = btrfs_header_nritems(parent);
1589 blocksize = fs_info->nodesize;
1590 end_slot = parent_nritems - 1;
1592 if (parent_nritems <= 1)
1593 return 0;
1595 for (i = start_slot; i <= end_slot; i++) {
1596 int close = 1;
1598 btrfs_node_key(parent, &disk_key, i);
1599 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1600 continue;
1602 progress_passed = 1;
1603 blocknr = btrfs_node_blockptr(parent, i);
1604 if (last_block == 0)
1605 last_block = blocknr;
1607 if (i > 0) {
1608 other = btrfs_node_blockptr(parent, i - 1);
1609 close = close_blocks(blocknr, other, blocksize);
1611 if (!close && i < end_slot) {
1612 other = btrfs_node_blockptr(parent, i + 1);
1613 close = close_blocks(blocknr, other, blocksize);
1615 if (close) {
1616 last_block = blocknr;
1617 continue;
1620 cur = btrfs_read_node_slot(parent, i);
1621 if (IS_ERR(cur))
1622 return PTR_ERR(cur);
1623 if (search_start == 0)
1624 search_start = last_block;
1626 btrfs_tree_lock(cur);
1627 err = __btrfs_cow_block(trans, root, cur, parent, i,
1628 &cur, search_start,
1629 min(16 * blocksize,
1630 (end_slot - i) * blocksize),
1631 BTRFS_NESTING_COW);
1632 if (err) {
1633 btrfs_tree_unlock(cur);
1634 free_extent_buffer(cur);
1635 break;
1637 search_start = cur->start;
1638 last_block = cur->start;
1639 *last_ret = search_start;
1640 btrfs_tree_unlock(cur);
1641 free_extent_buffer(cur);
1643 return err;
1647 * search for key in the extent_buffer. The items start at offset p,
1648 * and they are item_size apart. There are 'max' items in p.
1650 * the slot in the array is returned via slot, and it points to
1651 * the place where you would insert key if it is not found in
1652 * the array.
1654 * slot may point to max if the key is bigger than all of the keys
1656 static noinline int generic_bin_search(struct extent_buffer *eb,
1657 unsigned long p, int item_size,
1658 const struct btrfs_key *key,
1659 int max, int *slot)
1661 int low = 0;
1662 int high = max;
1663 int ret;
1664 const int key_size = sizeof(struct btrfs_disk_key);
1666 if (low > high) {
1667 btrfs_err(eb->fs_info,
1668 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1669 __func__, low, high, eb->start,
1670 btrfs_header_owner(eb), btrfs_header_level(eb));
1671 return -EINVAL;
1674 while (low < high) {
1675 unsigned long oip;
1676 unsigned long offset;
1677 struct btrfs_disk_key *tmp;
1678 struct btrfs_disk_key unaligned;
1679 int mid;
1681 mid = (low + high) / 2;
1682 offset = p + mid * item_size;
1683 oip = offset_in_page(offset);
1685 if (oip + key_size <= PAGE_SIZE) {
1686 const unsigned long idx = get_eb_page_index(offset);
1687 char *kaddr = page_address(eb->pages[idx]);
1689 oip = get_eb_offset_in_page(eb, offset);
1690 tmp = (struct btrfs_disk_key *)(kaddr + oip);
1691 } else {
1692 read_extent_buffer(eb, &unaligned, offset, key_size);
1693 tmp = &unaligned;
1696 ret = comp_keys(tmp, key);
1698 if (ret < 0)
1699 low = mid + 1;
1700 else if (ret > 0)
1701 high = mid;
1702 else {
1703 *slot = mid;
1704 return 0;
1707 *slot = low;
1708 return 1;
1712 * simple bin_search frontend that does the right thing for
1713 * leaves vs nodes
1715 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1716 int *slot)
1718 if (btrfs_header_level(eb) == 0)
1719 return generic_bin_search(eb,
1720 offsetof(struct btrfs_leaf, items),
1721 sizeof(struct btrfs_item),
1722 key, btrfs_header_nritems(eb),
1723 slot);
1724 else
1725 return generic_bin_search(eb,
1726 offsetof(struct btrfs_node, ptrs),
1727 sizeof(struct btrfs_key_ptr),
1728 key, btrfs_header_nritems(eb),
1729 slot);
1732 static void root_add_used(struct btrfs_root *root, u32 size)
1734 spin_lock(&root->accounting_lock);
1735 btrfs_set_root_used(&root->root_item,
1736 btrfs_root_used(&root->root_item) + size);
1737 spin_unlock(&root->accounting_lock);
1740 static void root_sub_used(struct btrfs_root *root, u32 size)
1742 spin_lock(&root->accounting_lock);
1743 btrfs_set_root_used(&root->root_item,
1744 btrfs_root_used(&root->root_item) - size);
1745 spin_unlock(&root->accounting_lock);
1748 /* given a node and slot number, this reads the blocks it points to. The
1749 * extent buffer is returned with a reference taken (but unlocked).
1751 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
1752 int slot)
1754 int level = btrfs_header_level(parent);
1755 struct extent_buffer *eb;
1756 struct btrfs_key first_key;
1758 if (slot < 0 || slot >= btrfs_header_nritems(parent))
1759 return ERR_PTR(-ENOENT);
1761 BUG_ON(level == 0);
1763 btrfs_node_key_to_cpu(parent, &first_key, slot);
1764 eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
1765 btrfs_header_owner(parent),
1766 btrfs_node_ptr_generation(parent, slot),
1767 level - 1, &first_key);
1768 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1769 free_extent_buffer(eb);
1770 eb = ERR_PTR(-EIO);
1773 return eb;
1777 * node level balancing, used to make sure nodes are in proper order for
1778 * item deletion. We balance from the top down, so we have to make sure
1779 * that a deletion won't leave an node completely empty later on.
1781 static noinline int balance_level(struct btrfs_trans_handle *trans,
1782 struct btrfs_root *root,
1783 struct btrfs_path *path, int level)
1785 struct btrfs_fs_info *fs_info = root->fs_info;
1786 struct extent_buffer *right = NULL;
1787 struct extent_buffer *mid;
1788 struct extent_buffer *left = NULL;
1789 struct extent_buffer *parent = NULL;
1790 int ret = 0;
1791 int wret;
1792 int pslot;
1793 int orig_slot = path->slots[level];
1794 u64 orig_ptr;
1796 ASSERT(level > 0);
1798 mid = path->nodes[level];
1800 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
1801 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1803 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1805 if (level < BTRFS_MAX_LEVEL - 1) {
1806 parent = path->nodes[level + 1];
1807 pslot = path->slots[level + 1];
1811 * deal with the case where there is only one pointer in the root
1812 * by promoting the node below to a root
1814 if (!parent) {
1815 struct extent_buffer *child;
1817 if (btrfs_header_nritems(mid) != 1)
1818 return 0;
1820 /* promote the child to a root */
1821 child = btrfs_read_node_slot(mid, 0);
1822 if (IS_ERR(child)) {
1823 ret = PTR_ERR(child);
1824 btrfs_handle_fs_error(fs_info, ret, NULL);
1825 goto enospc;
1828 btrfs_tree_lock(child);
1829 ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
1830 BTRFS_NESTING_COW);
1831 if (ret) {
1832 btrfs_tree_unlock(child);
1833 free_extent_buffer(child);
1834 goto enospc;
1837 ret = tree_mod_log_insert_root(root->node, child, 1);
1838 BUG_ON(ret < 0);
1839 rcu_assign_pointer(root->node, child);
1841 add_root_to_dirty_list(root);
1842 btrfs_tree_unlock(child);
1844 path->locks[level] = 0;
1845 path->nodes[level] = NULL;
1846 btrfs_clean_tree_block(mid);
1847 btrfs_tree_unlock(mid);
1848 /* once for the path */
1849 free_extent_buffer(mid);
1851 root_sub_used(root, mid->len);
1852 btrfs_free_tree_block(trans, root, mid, 0, 1);
1853 /* once for the root ptr */
1854 free_extent_buffer_stale(mid);
1855 return 0;
1857 if (btrfs_header_nritems(mid) >
1858 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1859 return 0;
1861 left = btrfs_read_node_slot(parent, pslot - 1);
1862 if (IS_ERR(left))
1863 left = NULL;
1865 if (left) {
1866 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1867 wret = btrfs_cow_block(trans, root, left,
1868 parent, pslot - 1, &left,
1869 BTRFS_NESTING_LEFT_COW);
1870 if (wret) {
1871 ret = wret;
1872 goto enospc;
1876 right = btrfs_read_node_slot(parent, pslot + 1);
1877 if (IS_ERR(right))
1878 right = NULL;
1880 if (right) {
1881 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1882 wret = btrfs_cow_block(trans, root, right,
1883 parent, pslot + 1, &right,
1884 BTRFS_NESTING_RIGHT_COW);
1885 if (wret) {
1886 ret = wret;
1887 goto enospc;
1891 /* first, try to make some room in the middle buffer */
1892 if (left) {
1893 orig_slot += btrfs_header_nritems(left);
1894 wret = push_node_left(trans, left, mid, 1);
1895 if (wret < 0)
1896 ret = wret;
1900 * then try to empty the right most buffer into the middle
1902 if (right) {
1903 wret = push_node_left(trans, mid, right, 1);
1904 if (wret < 0 && wret != -ENOSPC)
1905 ret = wret;
1906 if (btrfs_header_nritems(right) == 0) {
1907 btrfs_clean_tree_block(right);
1908 btrfs_tree_unlock(right);
1909 del_ptr(root, path, level + 1, pslot + 1);
1910 root_sub_used(root, right->len);
1911 btrfs_free_tree_block(trans, root, right, 0, 1);
1912 free_extent_buffer_stale(right);
1913 right = NULL;
1914 } else {
1915 struct btrfs_disk_key right_key;
1916 btrfs_node_key(right, &right_key, 0);
1917 ret = tree_mod_log_insert_key(parent, pslot + 1,
1918 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1919 BUG_ON(ret < 0);
1920 btrfs_set_node_key(parent, &right_key, pslot + 1);
1921 btrfs_mark_buffer_dirty(parent);
1924 if (btrfs_header_nritems(mid) == 1) {
1926 * we're not allowed to leave a node with one item in the
1927 * tree during a delete. A deletion from lower in the tree
1928 * could try to delete the only pointer in this node.
1929 * So, pull some keys from the left.
1930 * There has to be a left pointer at this point because
1931 * otherwise we would have pulled some pointers from the
1932 * right
1934 if (!left) {
1935 ret = -EROFS;
1936 btrfs_handle_fs_error(fs_info, ret, NULL);
1937 goto enospc;
1939 wret = balance_node_right(trans, mid, left);
1940 if (wret < 0) {
1941 ret = wret;
1942 goto enospc;
1944 if (wret == 1) {
1945 wret = push_node_left(trans, left, mid, 1);
1946 if (wret < 0)
1947 ret = wret;
1949 BUG_ON(wret == 1);
1951 if (btrfs_header_nritems(mid) == 0) {
1952 btrfs_clean_tree_block(mid);
1953 btrfs_tree_unlock(mid);
1954 del_ptr(root, path, level + 1, pslot);
1955 root_sub_used(root, mid->len);
1956 btrfs_free_tree_block(trans, root, mid, 0, 1);
1957 free_extent_buffer_stale(mid);
1958 mid = NULL;
1959 } else {
1960 /* update the parent key to reflect our changes */
1961 struct btrfs_disk_key mid_key;
1962 btrfs_node_key(mid, &mid_key, 0);
1963 ret = tree_mod_log_insert_key(parent, pslot,
1964 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1965 BUG_ON(ret < 0);
1966 btrfs_set_node_key(parent, &mid_key, pslot);
1967 btrfs_mark_buffer_dirty(parent);
1970 /* update the path */
1971 if (left) {
1972 if (btrfs_header_nritems(left) > orig_slot) {
1973 atomic_inc(&left->refs);
1974 /* left was locked after cow */
1975 path->nodes[level] = left;
1976 path->slots[level + 1] -= 1;
1977 path->slots[level] = orig_slot;
1978 if (mid) {
1979 btrfs_tree_unlock(mid);
1980 free_extent_buffer(mid);
1982 } else {
1983 orig_slot -= btrfs_header_nritems(left);
1984 path->slots[level] = orig_slot;
1987 /* double check we haven't messed things up */
1988 if (orig_ptr !=
1989 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1990 BUG();
1991 enospc:
1992 if (right) {
1993 btrfs_tree_unlock(right);
1994 free_extent_buffer(right);
1996 if (left) {
1997 if (path->nodes[level] != left)
1998 btrfs_tree_unlock(left);
1999 free_extent_buffer(left);
2001 return ret;
2004 /* Node balancing for insertion. Here we only split or push nodes around
2005 * when they are completely full. This is also done top down, so we
2006 * have to be pessimistic.
2008 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2009 struct btrfs_root *root,
2010 struct btrfs_path *path, int level)
2012 struct btrfs_fs_info *fs_info = root->fs_info;
2013 struct extent_buffer *right = NULL;
2014 struct extent_buffer *mid;
2015 struct extent_buffer *left = NULL;
2016 struct extent_buffer *parent = NULL;
2017 int ret = 0;
2018 int wret;
2019 int pslot;
2020 int orig_slot = path->slots[level];
2022 if (level == 0)
2023 return 1;
2025 mid = path->nodes[level];
2026 WARN_ON(btrfs_header_generation(mid) != trans->transid);
2028 if (level < BTRFS_MAX_LEVEL - 1) {
2029 parent = path->nodes[level + 1];
2030 pslot = path->slots[level + 1];
2033 if (!parent)
2034 return 1;
2036 left = btrfs_read_node_slot(parent, pslot - 1);
2037 if (IS_ERR(left))
2038 left = NULL;
2040 /* first, try to make some room in the middle buffer */
2041 if (left) {
2042 u32 left_nr;
2044 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
2046 left_nr = btrfs_header_nritems(left);
2047 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2048 wret = 1;
2049 } else {
2050 ret = btrfs_cow_block(trans, root, left, parent,
2051 pslot - 1, &left,
2052 BTRFS_NESTING_LEFT_COW);
2053 if (ret)
2054 wret = 1;
2055 else {
2056 wret = push_node_left(trans, left, mid, 0);
2059 if (wret < 0)
2060 ret = wret;
2061 if (wret == 0) {
2062 struct btrfs_disk_key disk_key;
2063 orig_slot += left_nr;
2064 btrfs_node_key(mid, &disk_key, 0);
2065 ret = tree_mod_log_insert_key(parent, pslot,
2066 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2067 BUG_ON(ret < 0);
2068 btrfs_set_node_key(parent, &disk_key, pslot);
2069 btrfs_mark_buffer_dirty(parent);
2070 if (btrfs_header_nritems(left) > orig_slot) {
2071 path->nodes[level] = left;
2072 path->slots[level + 1] -= 1;
2073 path->slots[level] = orig_slot;
2074 btrfs_tree_unlock(mid);
2075 free_extent_buffer(mid);
2076 } else {
2077 orig_slot -=
2078 btrfs_header_nritems(left);
2079 path->slots[level] = orig_slot;
2080 btrfs_tree_unlock(left);
2081 free_extent_buffer(left);
2083 return 0;
2085 btrfs_tree_unlock(left);
2086 free_extent_buffer(left);
2088 right = btrfs_read_node_slot(parent, pslot + 1);
2089 if (IS_ERR(right))
2090 right = NULL;
2093 * then try to empty the right most buffer into the middle
2095 if (right) {
2096 u32 right_nr;
2098 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
2100 right_nr = btrfs_header_nritems(right);
2101 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2102 wret = 1;
2103 } else {
2104 ret = btrfs_cow_block(trans, root, right,
2105 parent, pslot + 1,
2106 &right, BTRFS_NESTING_RIGHT_COW);
2107 if (ret)
2108 wret = 1;
2109 else {
2110 wret = balance_node_right(trans, right, mid);
2113 if (wret < 0)
2114 ret = wret;
2115 if (wret == 0) {
2116 struct btrfs_disk_key disk_key;
2118 btrfs_node_key(right, &disk_key, 0);
2119 ret = tree_mod_log_insert_key(parent, pslot + 1,
2120 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2121 BUG_ON(ret < 0);
2122 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2123 btrfs_mark_buffer_dirty(parent);
2125 if (btrfs_header_nritems(mid) <= orig_slot) {
2126 path->nodes[level] = right;
2127 path->slots[level + 1] += 1;
2128 path->slots[level] = orig_slot -
2129 btrfs_header_nritems(mid);
2130 btrfs_tree_unlock(mid);
2131 free_extent_buffer(mid);
2132 } else {
2133 btrfs_tree_unlock(right);
2134 free_extent_buffer(right);
2136 return 0;
2138 btrfs_tree_unlock(right);
2139 free_extent_buffer(right);
2141 return 1;
2145 * readahead one full node of leaves, finding things that are close
2146 * to the block in 'slot', and triggering ra on them.
2148 static void reada_for_search(struct btrfs_fs_info *fs_info,
2149 struct btrfs_path *path,
2150 int level, int slot, u64 objectid)
2152 struct extent_buffer *node;
2153 struct btrfs_disk_key disk_key;
2154 u32 nritems;
2155 u64 search;
2156 u64 target;
2157 u64 nread = 0;
2158 struct extent_buffer *eb;
2159 u32 nr;
2160 u32 blocksize;
2161 u32 nscan = 0;
2163 if (level != 1)
2164 return;
2166 if (!path->nodes[level])
2167 return;
2169 node = path->nodes[level];
2171 search = btrfs_node_blockptr(node, slot);
2172 blocksize = fs_info->nodesize;
2173 eb = find_extent_buffer(fs_info, search);
2174 if (eb) {
2175 free_extent_buffer(eb);
2176 return;
2179 target = search;
2181 nritems = btrfs_header_nritems(node);
2182 nr = slot;
2184 while (1) {
2185 if (path->reada == READA_BACK) {
2186 if (nr == 0)
2187 break;
2188 nr--;
2189 } else if (path->reada == READA_FORWARD) {
2190 nr++;
2191 if (nr >= nritems)
2192 break;
2194 if (path->reada == READA_BACK && objectid) {
2195 btrfs_node_key(node, &disk_key, nr);
2196 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2197 break;
2199 search = btrfs_node_blockptr(node, nr);
2200 if ((search <= target && target - search <= 65536) ||
2201 (search > target && search - target <= 65536)) {
2202 btrfs_readahead_node_child(node, nr);
2203 nread += blocksize;
2205 nscan++;
2206 if ((nread > 65536 || nscan > 32))
2207 break;
2211 static noinline void reada_for_balance(struct btrfs_path *path, int level)
2213 struct extent_buffer *parent;
2214 int slot;
2215 int nritems;
2217 parent = path->nodes[level + 1];
2218 if (!parent)
2219 return;
2221 nritems = btrfs_header_nritems(parent);
2222 slot = path->slots[level + 1];
2224 if (slot > 0)
2225 btrfs_readahead_node_child(parent, slot - 1);
2226 if (slot + 1 < nritems)
2227 btrfs_readahead_node_child(parent, slot + 1);
2232 * when we walk down the tree, it is usually safe to unlock the higher layers
2233 * in the tree. The exceptions are when our path goes through slot 0, because
2234 * operations on the tree might require changing key pointers higher up in the
2235 * tree.
2237 * callers might also have set path->keep_locks, which tells this code to keep
2238 * the lock if the path points to the last slot in the block. This is part of
2239 * walking through the tree, and selecting the next slot in the higher block.
2241 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2242 * if lowest_unlock is 1, level 0 won't be unlocked
2244 static noinline void unlock_up(struct btrfs_path *path, int level,
2245 int lowest_unlock, int min_write_lock_level,
2246 int *write_lock_level)
2248 int i;
2249 int skip_level = level;
2250 int no_skips = 0;
2251 struct extent_buffer *t;
2253 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2254 if (!path->nodes[i])
2255 break;
2256 if (!path->locks[i])
2257 break;
2258 if (!no_skips && path->slots[i] == 0) {
2259 skip_level = i + 1;
2260 continue;
2262 if (!no_skips && path->keep_locks) {
2263 u32 nritems;
2264 t = path->nodes[i];
2265 nritems = btrfs_header_nritems(t);
2266 if (nritems < 1 || path->slots[i] >= nritems - 1) {
2267 skip_level = i + 1;
2268 continue;
2271 if (skip_level < i && i >= lowest_unlock)
2272 no_skips = 1;
2274 t = path->nodes[i];
2275 if (i >= lowest_unlock && i > skip_level) {
2276 btrfs_tree_unlock_rw(t, path->locks[i]);
2277 path->locks[i] = 0;
2278 if (write_lock_level &&
2279 i > min_write_lock_level &&
2280 i <= *write_lock_level) {
2281 *write_lock_level = i - 1;
2288 * helper function for btrfs_search_slot. The goal is to find a block
2289 * in cache without setting the path to blocking. If we find the block
2290 * we return zero and the path is unchanged.
2292 * If we can't find the block, we set the path blocking and do some
2293 * reada. -EAGAIN is returned and the search must be repeated.
2295 static int
2296 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2297 struct extent_buffer **eb_ret, int level, int slot,
2298 const struct btrfs_key *key)
2300 struct btrfs_fs_info *fs_info = root->fs_info;
2301 u64 blocknr;
2302 u64 gen;
2303 struct extent_buffer *tmp;
2304 struct btrfs_key first_key;
2305 int ret;
2306 int parent_level;
2308 blocknr = btrfs_node_blockptr(*eb_ret, slot);
2309 gen = btrfs_node_ptr_generation(*eb_ret, slot);
2310 parent_level = btrfs_header_level(*eb_ret);
2311 btrfs_node_key_to_cpu(*eb_ret, &first_key, slot);
2313 tmp = find_extent_buffer(fs_info, blocknr);
2314 if (tmp) {
2315 /* first we do an atomic uptodate check */
2316 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2318 * Do extra check for first_key, eb can be stale due to
2319 * being cached, read from scrub, or have multiple
2320 * parents (shared tree blocks).
2322 if (btrfs_verify_level_key(tmp,
2323 parent_level - 1, &first_key, gen)) {
2324 free_extent_buffer(tmp);
2325 return -EUCLEAN;
2327 *eb_ret = tmp;
2328 return 0;
2331 /* now we're allowed to do a blocking uptodate check */
2332 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2333 if (!ret) {
2334 *eb_ret = tmp;
2335 return 0;
2337 free_extent_buffer(tmp);
2338 btrfs_release_path(p);
2339 return -EIO;
2343 * reduce lock contention at high levels
2344 * of the btree by dropping locks before
2345 * we read. Don't release the lock on the current
2346 * level because we need to walk this node to figure
2347 * out which blocks to read.
2349 btrfs_unlock_up_safe(p, level + 1);
2351 if (p->reada != READA_NONE)
2352 reada_for_search(fs_info, p, level, slot, key->objectid);
2354 ret = -EAGAIN;
2355 tmp = read_tree_block(fs_info, blocknr, root->root_key.objectid,
2356 gen, parent_level - 1, &first_key);
2357 if (!IS_ERR(tmp)) {
2359 * If the read above didn't mark this buffer up to date,
2360 * it will never end up being up to date. Set ret to EIO now
2361 * and give up so that our caller doesn't loop forever
2362 * on our EAGAINs.
2364 if (!extent_buffer_uptodate(tmp))
2365 ret = -EIO;
2366 free_extent_buffer(tmp);
2367 } else {
2368 ret = PTR_ERR(tmp);
2371 btrfs_release_path(p);
2372 return ret;
2376 * helper function for btrfs_search_slot. This does all of the checks
2377 * for node-level blocks and does any balancing required based on
2378 * the ins_len.
2380 * If no extra work was required, zero is returned. If we had to
2381 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2382 * start over
2384 static int
2385 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2386 struct btrfs_root *root, struct btrfs_path *p,
2387 struct extent_buffer *b, int level, int ins_len,
2388 int *write_lock_level)
2390 struct btrfs_fs_info *fs_info = root->fs_info;
2391 int ret = 0;
2393 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2394 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2396 if (*write_lock_level < level + 1) {
2397 *write_lock_level = level + 1;
2398 btrfs_release_path(p);
2399 return -EAGAIN;
2402 reada_for_balance(p, level);
2403 ret = split_node(trans, root, p, level);
2405 b = p->nodes[level];
2406 } else if (ins_len < 0 && btrfs_header_nritems(b) <
2407 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2409 if (*write_lock_level < level + 1) {
2410 *write_lock_level = level + 1;
2411 btrfs_release_path(p);
2412 return -EAGAIN;
2415 reada_for_balance(p, level);
2416 ret = balance_level(trans, root, p, level);
2417 if (ret)
2418 return ret;
2420 b = p->nodes[level];
2421 if (!b) {
2422 btrfs_release_path(p);
2423 return -EAGAIN;
2425 BUG_ON(btrfs_header_nritems(b) == 1);
2427 return ret;
2430 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2431 u64 iobjectid, u64 ioff, u8 key_type,
2432 struct btrfs_key *found_key)
2434 int ret;
2435 struct btrfs_key key;
2436 struct extent_buffer *eb;
2438 ASSERT(path);
2439 ASSERT(found_key);
2441 key.type = key_type;
2442 key.objectid = iobjectid;
2443 key.offset = ioff;
2445 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2446 if (ret < 0)
2447 return ret;
2449 eb = path->nodes[0];
2450 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2451 ret = btrfs_next_leaf(fs_root, path);
2452 if (ret)
2453 return ret;
2454 eb = path->nodes[0];
2457 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2458 if (found_key->type != key.type ||
2459 found_key->objectid != key.objectid)
2460 return 1;
2462 return 0;
2465 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
2466 struct btrfs_path *p,
2467 int write_lock_level)
2469 struct btrfs_fs_info *fs_info = root->fs_info;
2470 struct extent_buffer *b;
2471 int root_lock;
2472 int level = 0;
2474 /* We try very hard to do read locks on the root */
2475 root_lock = BTRFS_READ_LOCK;
2477 if (p->search_commit_root) {
2479 * The commit roots are read only so we always do read locks,
2480 * and we always must hold the commit_root_sem when doing
2481 * searches on them, the only exception is send where we don't
2482 * want to block transaction commits for a long time, so
2483 * we need to clone the commit root in order to avoid races
2484 * with transaction commits that create a snapshot of one of
2485 * the roots used by a send operation.
2487 if (p->need_commit_sem) {
2488 down_read(&fs_info->commit_root_sem);
2489 b = btrfs_clone_extent_buffer(root->commit_root);
2490 up_read(&fs_info->commit_root_sem);
2491 if (!b)
2492 return ERR_PTR(-ENOMEM);
2494 } else {
2495 b = root->commit_root;
2496 atomic_inc(&b->refs);
2498 level = btrfs_header_level(b);
2500 * Ensure that all callers have set skip_locking when
2501 * p->search_commit_root = 1.
2503 ASSERT(p->skip_locking == 1);
2505 goto out;
2508 if (p->skip_locking) {
2509 b = btrfs_root_node(root);
2510 level = btrfs_header_level(b);
2511 goto out;
2515 * If the level is set to maximum, we can skip trying to get the read
2516 * lock.
2518 if (write_lock_level < BTRFS_MAX_LEVEL) {
2520 * We don't know the level of the root node until we actually
2521 * have it read locked
2523 b = btrfs_read_lock_root_node(root);
2524 level = btrfs_header_level(b);
2525 if (level > write_lock_level)
2526 goto out;
2528 /* Whoops, must trade for write lock */
2529 btrfs_tree_read_unlock(b);
2530 free_extent_buffer(b);
2533 b = btrfs_lock_root_node(root);
2534 root_lock = BTRFS_WRITE_LOCK;
2536 /* The level might have changed, check again */
2537 level = btrfs_header_level(b);
2539 out:
2540 p->nodes[level] = b;
2541 if (!p->skip_locking)
2542 p->locks[level] = root_lock;
2544 * Callers are responsible for dropping b's references.
2546 return b;
2551 * btrfs_search_slot - look for a key in a tree and perform necessary
2552 * modifications to preserve tree invariants.
2554 * @trans: Handle of transaction, used when modifying the tree
2555 * @p: Holds all btree nodes along the search path
2556 * @root: The root node of the tree
2557 * @key: The key we are looking for
2558 * @ins_len: Indicates purpose of search:
2559 * >0 for inserts it's size of item inserted (*)
2560 * <0 for deletions
2561 * 0 for plain searches, not modifying the tree
2563 * (*) If size of item inserted doesn't include
2564 * sizeof(struct btrfs_item), then p->search_for_extension must
2565 * be set.
2566 * @cow: boolean should CoW operations be performed. Must always be 1
2567 * when modifying the tree.
2569 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2570 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2572 * If @key is found, 0 is returned and you can find the item in the leaf level
2573 * of the path (level 0)
2575 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2576 * points to the slot where it should be inserted
2578 * If an error is encountered while searching the tree a negative error number
2579 * is returned
2581 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2582 const struct btrfs_key *key, struct btrfs_path *p,
2583 int ins_len, int cow)
2585 struct extent_buffer *b;
2586 int slot;
2587 int ret;
2588 int err;
2589 int level;
2590 int lowest_unlock = 1;
2591 /* everything at write_lock_level or lower must be write locked */
2592 int write_lock_level = 0;
2593 u8 lowest_level = 0;
2594 int min_write_lock_level;
2595 int prev_cmp;
2597 lowest_level = p->lowest_level;
2598 WARN_ON(lowest_level && ins_len > 0);
2599 WARN_ON(p->nodes[0] != NULL);
2600 BUG_ON(!cow && ins_len);
2602 if (ins_len < 0) {
2603 lowest_unlock = 2;
2605 /* when we are removing items, we might have to go up to level
2606 * two as we update tree pointers Make sure we keep write
2607 * for those levels as well
2609 write_lock_level = 2;
2610 } else if (ins_len > 0) {
2612 * for inserting items, make sure we have a write lock on
2613 * level 1 so we can update keys
2615 write_lock_level = 1;
2618 if (!cow)
2619 write_lock_level = -1;
2621 if (cow && (p->keep_locks || p->lowest_level))
2622 write_lock_level = BTRFS_MAX_LEVEL;
2624 min_write_lock_level = write_lock_level;
2626 again:
2627 prev_cmp = -1;
2628 b = btrfs_search_slot_get_root(root, p, write_lock_level);
2629 if (IS_ERR(b)) {
2630 ret = PTR_ERR(b);
2631 goto done;
2634 while (b) {
2635 int dec = 0;
2637 level = btrfs_header_level(b);
2639 if (cow) {
2640 bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2643 * if we don't really need to cow this block
2644 * then we don't want to set the path blocking,
2645 * so we test it here
2647 if (!should_cow_block(trans, root, b)) {
2648 trans->dirty = true;
2649 goto cow_done;
2653 * must have write locks on this node and the
2654 * parent
2656 if (level > write_lock_level ||
2657 (level + 1 > write_lock_level &&
2658 level + 1 < BTRFS_MAX_LEVEL &&
2659 p->nodes[level + 1])) {
2660 write_lock_level = level + 1;
2661 btrfs_release_path(p);
2662 goto again;
2665 if (last_level)
2666 err = btrfs_cow_block(trans, root, b, NULL, 0,
2668 BTRFS_NESTING_COW);
2669 else
2670 err = btrfs_cow_block(trans, root, b,
2671 p->nodes[level + 1],
2672 p->slots[level + 1], &b,
2673 BTRFS_NESTING_COW);
2674 if (err) {
2675 ret = err;
2676 goto done;
2679 cow_done:
2680 p->nodes[level] = b;
2682 * Leave path with blocking locks to avoid massive
2683 * lock context switch, this is made on purpose.
2687 * we have a lock on b and as long as we aren't changing
2688 * the tree, there is no way to for the items in b to change.
2689 * It is safe to drop the lock on our parent before we
2690 * go through the expensive btree search on b.
2692 * If we're inserting or deleting (ins_len != 0), then we might
2693 * be changing slot zero, which may require changing the parent.
2694 * So, we can't drop the lock until after we know which slot
2695 * we're operating on.
2697 if (!ins_len && !p->keep_locks) {
2698 int u = level + 1;
2700 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2701 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2702 p->locks[u] = 0;
2707 * If btrfs_bin_search returns an exact match (prev_cmp == 0)
2708 * we can safely assume the target key will always be in slot 0
2709 * on lower levels due to the invariants BTRFS' btree provides,
2710 * namely that a btrfs_key_ptr entry always points to the
2711 * lowest key in the child node, thus we can skip searching
2712 * lower levels
2714 if (prev_cmp == 0) {
2715 slot = 0;
2716 ret = 0;
2717 } else {
2718 ret = btrfs_bin_search(b, key, &slot);
2719 prev_cmp = ret;
2720 if (ret < 0)
2721 goto done;
2724 if (level == 0) {
2725 p->slots[level] = slot;
2727 * Item key already exists. In this case, if we are
2728 * allowed to insert the item (for example, in dir_item
2729 * case, item key collision is allowed), it will be
2730 * merged with the original item. Only the item size
2731 * grows, no new btrfs item will be added. If
2732 * search_for_extension is not set, ins_len already
2733 * accounts the size btrfs_item, deduct it here so leaf
2734 * space check will be correct.
2736 if (ret == 0 && ins_len > 0 && !p->search_for_extension) {
2737 ASSERT(ins_len >= sizeof(struct btrfs_item));
2738 ins_len -= sizeof(struct btrfs_item);
2740 if (ins_len > 0 &&
2741 btrfs_leaf_free_space(b) < ins_len) {
2742 if (write_lock_level < 1) {
2743 write_lock_level = 1;
2744 btrfs_release_path(p);
2745 goto again;
2748 err = split_leaf(trans, root, key,
2749 p, ins_len, ret == 0);
2751 BUG_ON(err > 0);
2752 if (err) {
2753 ret = err;
2754 goto done;
2757 if (!p->search_for_split)
2758 unlock_up(p, level, lowest_unlock,
2759 min_write_lock_level, NULL);
2760 goto done;
2762 if (ret && slot > 0) {
2763 dec = 1;
2764 slot--;
2766 p->slots[level] = slot;
2767 err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2768 &write_lock_level);
2769 if (err == -EAGAIN)
2770 goto again;
2771 if (err) {
2772 ret = err;
2773 goto done;
2775 b = p->nodes[level];
2776 slot = p->slots[level];
2779 * Slot 0 is special, if we change the key we have to update
2780 * the parent pointer which means we must have a write lock on
2781 * the parent
2783 if (slot == 0 && ins_len && write_lock_level < level + 1) {
2784 write_lock_level = level + 1;
2785 btrfs_release_path(p);
2786 goto again;
2789 unlock_up(p, level, lowest_unlock, min_write_lock_level,
2790 &write_lock_level);
2792 if (level == lowest_level) {
2793 if (dec)
2794 p->slots[level]++;
2795 goto done;
2798 err = read_block_for_search(root, p, &b, level, slot, key);
2799 if (err == -EAGAIN)
2800 goto again;
2801 if (err) {
2802 ret = err;
2803 goto done;
2806 if (!p->skip_locking) {
2807 level = btrfs_header_level(b);
2808 if (level <= write_lock_level) {
2809 btrfs_tree_lock(b);
2810 p->locks[level] = BTRFS_WRITE_LOCK;
2811 } else {
2812 btrfs_tree_read_lock(b);
2813 p->locks[level] = BTRFS_READ_LOCK;
2815 p->nodes[level] = b;
2818 ret = 1;
2819 done:
2820 if (ret < 0 && !p->skip_release_on_error)
2821 btrfs_release_path(p);
2822 return ret;
2826 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2827 * current state of the tree together with the operations recorded in the tree
2828 * modification log to search for the key in a previous version of this tree, as
2829 * denoted by the time_seq parameter.
2831 * Naturally, there is no support for insert, delete or cow operations.
2833 * The resulting path and return value will be set up as if we called
2834 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2836 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2837 struct btrfs_path *p, u64 time_seq)
2839 struct btrfs_fs_info *fs_info = root->fs_info;
2840 struct extent_buffer *b;
2841 int slot;
2842 int ret;
2843 int err;
2844 int level;
2845 int lowest_unlock = 1;
2846 u8 lowest_level = 0;
2848 lowest_level = p->lowest_level;
2849 WARN_ON(p->nodes[0] != NULL);
2851 if (p->search_commit_root) {
2852 BUG_ON(time_seq);
2853 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2856 again:
2857 b = get_old_root(root, time_seq);
2858 if (!b) {
2859 ret = -EIO;
2860 goto done;
2862 level = btrfs_header_level(b);
2863 p->locks[level] = BTRFS_READ_LOCK;
2865 while (b) {
2866 int dec = 0;
2868 level = btrfs_header_level(b);
2869 p->nodes[level] = b;
2872 * we have a lock on b and as long as we aren't changing
2873 * the tree, there is no way to for the items in b to change.
2874 * It is safe to drop the lock on our parent before we
2875 * go through the expensive btree search on b.
2877 btrfs_unlock_up_safe(p, level + 1);
2879 ret = btrfs_bin_search(b, key, &slot);
2880 if (ret < 0)
2881 goto done;
2883 if (level == 0) {
2884 p->slots[level] = slot;
2885 unlock_up(p, level, lowest_unlock, 0, NULL);
2886 goto done;
2889 if (ret && slot > 0) {
2890 dec = 1;
2891 slot--;
2893 p->slots[level] = slot;
2894 unlock_up(p, level, lowest_unlock, 0, NULL);
2896 if (level == lowest_level) {
2897 if (dec)
2898 p->slots[level]++;
2899 goto done;
2902 err = read_block_for_search(root, p, &b, level, slot, key);
2903 if (err == -EAGAIN)
2904 goto again;
2905 if (err) {
2906 ret = err;
2907 goto done;
2910 level = btrfs_header_level(b);
2911 btrfs_tree_read_lock(b);
2912 b = tree_mod_log_rewind(fs_info, p, b, time_seq);
2913 if (!b) {
2914 ret = -ENOMEM;
2915 goto done;
2917 p->locks[level] = BTRFS_READ_LOCK;
2918 p->nodes[level] = b;
2920 ret = 1;
2921 done:
2922 if (ret < 0)
2923 btrfs_release_path(p);
2925 return ret;
2929 * helper to use instead of search slot if no exact match is needed but
2930 * instead the next or previous item should be returned.
2931 * When find_higher is true, the next higher item is returned, the next lower
2932 * otherwise.
2933 * When return_any and find_higher are both true, and no higher item is found,
2934 * return the next lower instead.
2935 * When return_any is true and find_higher is false, and no lower item is found,
2936 * return the next higher instead.
2937 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2938 * < 0 on error
2940 int btrfs_search_slot_for_read(struct btrfs_root *root,
2941 const struct btrfs_key *key,
2942 struct btrfs_path *p, int find_higher,
2943 int return_any)
2945 int ret;
2946 struct extent_buffer *leaf;
2948 again:
2949 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2950 if (ret <= 0)
2951 return ret;
2953 * a return value of 1 means the path is at the position where the
2954 * item should be inserted. Normally this is the next bigger item,
2955 * but in case the previous item is the last in a leaf, path points
2956 * to the first free slot in the previous leaf, i.e. at an invalid
2957 * item.
2959 leaf = p->nodes[0];
2961 if (find_higher) {
2962 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2963 ret = btrfs_next_leaf(root, p);
2964 if (ret <= 0)
2965 return ret;
2966 if (!return_any)
2967 return 1;
2969 * no higher item found, return the next
2970 * lower instead
2972 return_any = 0;
2973 find_higher = 0;
2974 btrfs_release_path(p);
2975 goto again;
2977 } else {
2978 if (p->slots[0] == 0) {
2979 ret = btrfs_prev_leaf(root, p);
2980 if (ret < 0)
2981 return ret;
2982 if (!ret) {
2983 leaf = p->nodes[0];
2984 if (p->slots[0] == btrfs_header_nritems(leaf))
2985 p->slots[0]--;
2986 return 0;
2988 if (!return_any)
2989 return 1;
2991 * no lower item found, return the next
2992 * higher instead
2994 return_any = 0;
2995 find_higher = 1;
2996 btrfs_release_path(p);
2997 goto again;
2998 } else {
2999 --p->slots[0];
3002 return 0;
3006 * adjust the pointers going up the tree, starting at level
3007 * making sure the right key of each node is points to 'key'.
3008 * This is used after shifting pointers to the left, so it stops
3009 * fixing up pointers when a given leaf/node is not in slot 0 of the
3010 * higher levels
3013 static void fixup_low_keys(struct btrfs_path *path,
3014 struct btrfs_disk_key *key, int level)
3016 int i;
3017 struct extent_buffer *t;
3018 int ret;
3020 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3021 int tslot = path->slots[i];
3023 if (!path->nodes[i])
3024 break;
3025 t = path->nodes[i];
3026 ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
3027 GFP_ATOMIC);
3028 BUG_ON(ret < 0);
3029 btrfs_set_node_key(t, key, tslot);
3030 btrfs_mark_buffer_dirty(path->nodes[i]);
3031 if (tslot != 0)
3032 break;
3037 * update item key.
3039 * This function isn't completely safe. It's the caller's responsibility
3040 * that the new key won't break the order
3042 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3043 struct btrfs_path *path,
3044 const struct btrfs_key *new_key)
3046 struct btrfs_disk_key disk_key;
3047 struct extent_buffer *eb;
3048 int slot;
3050 eb = path->nodes[0];
3051 slot = path->slots[0];
3052 if (slot > 0) {
3053 btrfs_item_key(eb, &disk_key, slot - 1);
3054 if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
3055 btrfs_crit(fs_info,
3056 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3057 slot, btrfs_disk_key_objectid(&disk_key),
3058 btrfs_disk_key_type(&disk_key),
3059 btrfs_disk_key_offset(&disk_key),
3060 new_key->objectid, new_key->type,
3061 new_key->offset);
3062 btrfs_print_leaf(eb);
3063 BUG();
3066 if (slot < btrfs_header_nritems(eb) - 1) {
3067 btrfs_item_key(eb, &disk_key, slot + 1);
3068 if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
3069 btrfs_crit(fs_info,
3070 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3071 slot, btrfs_disk_key_objectid(&disk_key),
3072 btrfs_disk_key_type(&disk_key),
3073 btrfs_disk_key_offset(&disk_key),
3074 new_key->objectid, new_key->type,
3075 new_key->offset);
3076 btrfs_print_leaf(eb);
3077 BUG();
3081 btrfs_cpu_key_to_disk(&disk_key, new_key);
3082 btrfs_set_item_key(eb, &disk_key, slot);
3083 btrfs_mark_buffer_dirty(eb);
3084 if (slot == 0)
3085 fixup_low_keys(path, &disk_key, 1);
3089 * Check key order of two sibling extent buffers.
3091 * Return true if something is wrong.
3092 * Return false if everything is fine.
3094 * Tree-checker only works inside one tree block, thus the following
3095 * corruption can not be detected by tree-checker:
3097 * Leaf @left | Leaf @right
3098 * --------------------------------------------------------------
3099 * | 1 | 2 | 3 | 4 | 5 | f6 | | 7 | 8 |
3101 * Key f6 in leaf @left itself is valid, but not valid when the next
3102 * key in leaf @right is 7.
3103 * This can only be checked at tree block merge time.
3104 * And since tree checker has ensured all key order in each tree block
3105 * is correct, we only need to bother the last key of @left and the first
3106 * key of @right.
3108 static bool check_sibling_keys(struct extent_buffer *left,
3109 struct extent_buffer *right)
3111 struct btrfs_key left_last;
3112 struct btrfs_key right_first;
3113 int level = btrfs_header_level(left);
3114 int nr_left = btrfs_header_nritems(left);
3115 int nr_right = btrfs_header_nritems(right);
3117 /* No key to check in one of the tree blocks */
3118 if (!nr_left || !nr_right)
3119 return false;
3121 if (level) {
3122 btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
3123 btrfs_node_key_to_cpu(right, &right_first, 0);
3124 } else {
3125 btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
3126 btrfs_item_key_to_cpu(right, &right_first, 0);
3129 if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) {
3130 btrfs_crit(left->fs_info,
3131 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
3132 left_last.objectid, left_last.type,
3133 left_last.offset, right_first.objectid,
3134 right_first.type, right_first.offset);
3135 return true;
3137 return false;
3141 * try to push data from one node into the next node left in the
3142 * tree.
3144 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3145 * error, and > 0 if there was no room in the left hand block.
3147 static int push_node_left(struct btrfs_trans_handle *trans,
3148 struct extent_buffer *dst,
3149 struct extent_buffer *src, int empty)
3151 struct btrfs_fs_info *fs_info = trans->fs_info;
3152 int push_items = 0;
3153 int src_nritems;
3154 int dst_nritems;
3155 int ret = 0;
3157 src_nritems = btrfs_header_nritems(src);
3158 dst_nritems = btrfs_header_nritems(dst);
3159 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3160 WARN_ON(btrfs_header_generation(src) != trans->transid);
3161 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3163 if (!empty && src_nritems <= 8)
3164 return 1;
3166 if (push_items <= 0)
3167 return 1;
3169 if (empty) {
3170 push_items = min(src_nritems, push_items);
3171 if (push_items < src_nritems) {
3172 /* leave at least 8 pointers in the node if
3173 * we aren't going to empty it
3175 if (src_nritems - push_items < 8) {
3176 if (push_items <= 8)
3177 return 1;
3178 push_items -= 8;
3181 } else
3182 push_items = min(src_nritems - 8, push_items);
3184 /* dst is the left eb, src is the middle eb */
3185 if (check_sibling_keys(dst, src)) {
3186 ret = -EUCLEAN;
3187 btrfs_abort_transaction(trans, ret);
3188 return ret;
3190 ret = tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
3191 if (ret) {
3192 btrfs_abort_transaction(trans, ret);
3193 return ret;
3195 copy_extent_buffer(dst, src,
3196 btrfs_node_key_ptr_offset(dst_nritems),
3197 btrfs_node_key_ptr_offset(0),
3198 push_items * sizeof(struct btrfs_key_ptr));
3200 if (push_items < src_nritems) {
3202 * Don't call tree_mod_log_insert_move here, key removal was
3203 * already fully logged by tree_mod_log_eb_copy above.
3205 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3206 btrfs_node_key_ptr_offset(push_items),
3207 (src_nritems - push_items) *
3208 sizeof(struct btrfs_key_ptr));
3210 btrfs_set_header_nritems(src, src_nritems - push_items);
3211 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3212 btrfs_mark_buffer_dirty(src);
3213 btrfs_mark_buffer_dirty(dst);
3215 return ret;
3219 * try to push data from one node into the next node right in the
3220 * tree.
3222 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3223 * error, and > 0 if there was no room in the right hand block.
3225 * this will only push up to 1/2 the contents of the left node over
3227 static int balance_node_right(struct btrfs_trans_handle *trans,
3228 struct extent_buffer *dst,
3229 struct extent_buffer *src)
3231 struct btrfs_fs_info *fs_info = trans->fs_info;
3232 int push_items = 0;
3233 int max_push;
3234 int src_nritems;
3235 int dst_nritems;
3236 int ret = 0;
3238 WARN_ON(btrfs_header_generation(src) != trans->transid);
3239 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3241 src_nritems = btrfs_header_nritems(src);
3242 dst_nritems = btrfs_header_nritems(dst);
3243 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3244 if (push_items <= 0)
3245 return 1;
3247 if (src_nritems < 4)
3248 return 1;
3250 max_push = src_nritems / 2 + 1;
3251 /* don't try to empty the node */
3252 if (max_push >= src_nritems)
3253 return 1;
3255 if (max_push < push_items)
3256 push_items = max_push;
3258 /* dst is the right eb, src is the middle eb */
3259 if (check_sibling_keys(src, dst)) {
3260 ret = -EUCLEAN;
3261 btrfs_abort_transaction(trans, ret);
3262 return ret;
3264 ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
3265 BUG_ON(ret < 0);
3266 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3267 btrfs_node_key_ptr_offset(0),
3268 (dst_nritems) *
3269 sizeof(struct btrfs_key_ptr));
3271 ret = tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
3272 push_items);
3273 if (ret) {
3274 btrfs_abort_transaction(trans, ret);
3275 return ret;
3277 copy_extent_buffer(dst, src,
3278 btrfs_node_key_ptr_offset(0),
3279 btrfs_node_key_ptr_offset(src_nritems - push_items),
3280 push_items * sizeof(struct btrfs_key_ptr));
3282 btrfs_set_header_nritems(src, src_nritems - push_items);
3283 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3285 btrfs_mark_buffer_dirty(src);
3286 btrfs_mark_buffer_dirty(dst);
3288 return ret;
3292 * helper function to insert a new root level in the tree.
3293 * A new node is allocated, and a single item is inserted to
3294 * point to the existing root
3296 * returns zero on success or < 0 on failure.
3298 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3299 struct btrfs_root *root,
3300 struct btrfs_path *path, int level)
3302 struct btrfs_fs_info *fs_info = root->fs_info;
3303 u64 lower_gen;
3304 struct extent_buffer *lower;
3305 struct extent_buffer *c;
3306 struct extent_buffer *old;
3307 struct btrfs_disk_key lower_key;
3308 int ret;
3310 BUG_ON(path->nodes[level]);
3311 BUG_ON(path->nodes[level-1] != root->node);
3313 lower = path->nodes[level-1];
3314 if (level == 1)
3315 btrfs_item_key(lower, &lower_key, 0);
3316 else
3317 btrfs_node_key(lower, &lower_key, 0);
3319 c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level,
3320 root->node->start, 0,
3321 BTRFS_NESTING_NEW_ROOT);
3322 if (IS_ERR(c))
3323 return PTR_ERR(c);
3325 root_add_used(root, fs_info->nodesize);
3327 btrfs_set_header_nritems(c, 1);
3328 btrfs_set_node_key(c, &lower_key, 0);
3329 btrfs_set_node_blockptr(c, 0, lower->start);
3330 lower_gen = btrfs_header_generation(lower);
3331 WARN_ON(lower_gen != trans->transid);
3333 btrfs_set_node_ptr_generation(c, 0, lower_gen);
3335 btrfs_mark_buffer_dirty(c);
3337 old = root->node;
3338 ret = tree_mod_log_insert_root(root->node, c, 0);
3339 BUG_ON(ret < 0);
3340 rcu_assign_pointer(root->node, c);
3342 /* the super has an extra ref to root->node */
3343 free_extent_buffer(old);
3345 add_root_to_dirty_list(root);
3346 atomic_inc(&c->refs);
3347 path->nodes[level] = c;
3348 path->locks[level] = BTRFS_WRITE_LOCK;
3349 path->slots[level] = 0;
3350 return 0;
3354 * worker function to insert a single pointer in a node.
3355 * the node should have enough room for the pointer already
3357 * slot and level indicate where you want the key to go, and
3358 * blocknr is the block the key points to.
3360 static void insert_ptr(struct btrfs_trans_handle *trans,
3361 struct btrfs_path *path,
3362 struct btrfs_disk_key *key, u64 bytenr,
3363 int slot, int level)
3365 struct extent_buffer *lower;
3366 int nritems;
3367 int ret;
3369 BUG_ON(!path->nodes[level]);
3370 btrfs_assert_tree_locked(path->nodes[level]);
3371 lower = path->nodes[level];
3372 nritems = btrfs_header_nritems(lower);
3373 BUG_ON(slot > nritems);
3374 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
3375 if (slot != nritems) {
3376 if (level) {
3377 ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3378 nritems - slot);
3379 BUG_ON(ret < 0);
3381 memmove_extent_buffer(lower,
3382 btrfs_node_key_ptr_offset(slot + 1),
3383 btrfs_node_key_ptr_offset(slot),
3384 (nritems - slot) * sizeof(struct btrfs_key_ptr));
3386 if (level) {
3387 ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
3388 GFP_NOFS);
3389 BUG_ON(ret < 0);
3391 btrfs_set_node_key(lower, key, slot);
3392 btrfs_set_node_blockptr(lower, slot, bytenr);
3393 WARN_ON(trans->transid == 0);
3394 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3395 btrfs_set_header_nritems(lower, nritems + 1);
3396 btrfs_mark_buffer_dirty(lower);
3400 * split the node at the specified level in path in two.
3401 * The path is corrected to point to the appropriate node after the split
3403 * Before splitting this tries to make some room in the node by pushing
3404 * left and right, if either one works, it returns right away.
3406 * returns 0 on success and < 0 on failure
3408 static noinline int split_node(struct btrfs_trans_handle *trans,
3409 struct btrfs_root *root,
3410 struct btrfs_path *path, int level)
3412 struct btrfs_fs_info *fs_info = root->fs_info;
3413 struct extent_buffer *c;
3414 struct extent_buffer *split;
3415 struct btrfs_disk_key disk_key;
3416 int mid;
3417 int ret;
3418 u32 c_nritems;
3420 c = path->nodes[level];
3421 WARN_ON(btrfs_header_generation(c) != trans->transid);
3422 if (c == root->node) {
3424 * trying to split the root, lets make a new one
3426 * tree mod log: We don't log_removal old root in
3427 * insert_new_root, because that root buffer will be kept as a
3428 * normal node. We are going to log removal of half of the
3429 * elements below with tree_mod_log_eb_copy. We're holding a
3430 * tree lock on the buffer, which is why we cannot race with
3431 * other tree_mod_log users.
3433 ret = insert_new_root(trans, root, path, level + 1);
3434 if (ret)
3435 return ret;
3436 } else {
3437 ret = push_nodes_for_insert(trans, root, path, level);
3438 c = path->nodes[level];
3439 if (!ret && btrfs_header_nritems(c) <
3440 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3441 return 0;
3442 if (ret < 0)
3443 return ret;
3446 c_nritems = btrfs_header_nritems(c);
3447 mid = (c_nritems + 1) / 2;
3448 btrfs_node_key(c, &disk_key, mid);
3450 split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level,
3451 c->start, 0, BTRFS_NESTING_SPLIT);
3452 if (IS_ERR(split))
3453 return PTR_ERR(split);
3455 root_add_used(root, fs_info->nodesize);
3456 ASSERT(btrfs_header_level(c) == level);
3458 ret = tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3459 if (ret) {
3460 btrfs_abort_transaction(trans, ret);
3461 return ret;
3463 copy_extent_buffer(split, c,
3464 btrfs_node_key_ptr_offset(0),
3465 btrfs_node_key_ptr_offset(mid),
3466 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3467 btrfs_set_header_nritems(split, c_nritems - mid);
3468 btrfs_set_header_nritems(c, mid);
3470 btrfs_mark_buffer_dirty(c);
3471 btrfs_mark_buffer_dirty(split);
3473 insert_ptr(trans, path, &disk_key, split->start,
3474 path->slots[level + 1] + 1, level + 1);
3476 if (path->slots[level] >= mid) {
3477 path->slots[level] -= mid;
3478 btrfs_tree_unlock(c);
3479 free_extent_buffer(c);
3480 path->nodes[level] = split;
3481 path->slots[level + 1] += 1;
3482 } else {
3483 btrfs_tree_unlock(split);
3484 free_extent_buffer(split);
3486 return 0;
3490 * how many bytes are required to store the items in a leaf. start
3491 * and nr indicate which items in the leaf to check. This totals up the
3492 * space used both by the item structs and the item data
3494 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3496 struct btrfs_item *start_item;
3497 struct btrfs_item *end_item;
3498 int data_len;
3499 int nritems = btrfs_header_nritems(l);
3500 int end = min(nritems, start + nr) - 1;
3502 if (!nr)
3503 return 0;
3504 start_item = btrfs_item_nr(start);
3505 end_item = btrfs_item_nr(end);
3506 data_len = btrfs_item_offset(l, start_item) +
3507 btrfs_item_size(l, start_item);
3508 data_len = data_len - btrfs_item_offset(l, end_item);
3509 data_len += sizeof(struct btrfs_item) * nr;
3510 WARN_ON(data_len < 0);
3511 return data_len;
3515 * The space between the end of the leaf items and
3516 * the start of the leaf data. IOW, how much room
3517 * the leaf has left for both items and data
3519 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
3521 struct btrfs_fs_info *fs_info = leaf->fs_info;
3522 int nritems = btrfs_header_nritems(leaf);
3523 int ret;
3525 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3526 if (ret < 0) {
3527 btrfs_crit(fs_info,
3528 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3529 ret,
3530 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3531 leaf_space_used(leaf, 0, nritems), nritems);
3533 return ret;
3537 * min slot controls the lowest index we're willing to push to the
3538 * right. We'll push up to and including min_slot, but no lower
3540 static noinline int __push_leaf_right(struct btrfs_path *path,
3541 int data_size, int empty,
3542 struct extent_buffer *right,
3543 int free_space, u32 left_nritems,
3544 u32 min_slot)
3546 struct btrfs_fs_info *fs_info = right->fs_info;
3547 struct extent_buffer *left = path->nodes[0];
3548 struct extent_buffer *upper = path->nodes[1];
3549 struct btrfs_map_token token;
3550 struct btrfs_disk_key disk_key;
3551 int slot;
3552 u32 i;
3553 int push_space = 0;
3554 int push_items = 0;
3555 struct btrfs_item *item;
3556 u32 nr;
3557 u32 right_nritems;
3558 u32 data_end;
3559 u32 this_item_size;
3561 if (empty)
3562 nr = 0;
3563 else
3564 nr = max_t(u32, 1, min_slot);
3566 if (path->slots[0] >= left_nritems)
3567 push_space += data_size;
3569 slot = path->slots[1];
3570 i = left_nritems - 1;
3571 while (i >= nr) {
3572 item = btrfs_item_nr(i);
3574 if (!empty && push_items > 0) {
3575 if (path->slots[0] > i)
3576 break;
3577 if (path->slots[0] == i) {
3578 int space = btrfs_leaf_free_space(left);
3580 if (space + push_space * 2 > free_space)
3581 break;
3585 if (path->slots[0] == i)
3586 push_space += data_size;
3588 this_item_size = btrfs_item_size(left, item);
3589 if (this_item_size + sizeof(*item) + push_space > free_space)
3590 break;
3592 push_items++;
3593 push_space += this_item_size + sizeof(*item);
3594 if (i == 0)
3595 break;
3596 i--;
3599 if (push_items == 0)
3600 goto out_unlock;
3602 WARN_ON(!empty && push_items == left_nritems);
3604 /* push left to right */
3605 right_nritems = btrfs_header_nritems(right);
3607 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3608 push_space -= leaf_data_end(left);
3610 /* make room in the right data area */
3611 data_end = leaf_data_end(right);
3612 memmove_extent_buffer(right,
3613 BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3614 BTRFS_LEAF_DATA_OFFSET + data_end,
3615 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3617 /* copy from the left data area */
3618 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3619 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3620 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
3621 push_space);
3623 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3624 btrfs_item_nr_offset(0),
3625 right_nritems * sizeof(struct btrfs_item));
3627 /* copy the items from left to right */
3628 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3629 btrfs_item_nr_offset(left_nritems - push_items),
3630 push_items * sizeof(struct btrfs_item));
3632 /* update the item pointers */
3633 btrfs_init_map_token(&token, right);
3634 right_nritems += push_items;
3635 btrfs_set_header_nritems(right, right_nritems);
3636 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3637 for (i = 0; i < right_nritems; i++) {
3638 item = btrfs_item_nr(i);
3639 push_space -= btrfs_token_item_size(&token, item);
3640 btrfs_set_token_item_offset(&token, item, push_space);
3643 left_nritems -= push_items;
3644 btrfs_set_header_nritems(left, left_nritems);
3646 if (left_nritems)
3647 btrfs_mark_buffer_dirty(left);
3648 else
3649 btrfs_clean_tree_block(left);
3651 btrfs_mark_buffer_dirty(right);
3653 btrfs_item_key(right, &disk_key, 0);
3654 btrfs_set_node_key(upper, &disk_key, slot + 1);
3655 btrfs_mark_buffer_dirty(upper);
3657 /* then fixup the leaf pointer in the path */
3658 if (path->slots[0] >= left_nritems) {
3659 path->slots[0] -= left_nritems;
3660 if (btrfs_header_nritems(path->nodes[0]) == 0)
3661 btrfs_clean_tree_block(path->nodes[0]);
3662 btrfs_tree_unlock(path->nodes[0]);
3663 free_extent_buffer(path->nodes[0]);
3664 path->nodes[0] = right;
3665 path->slots[1] += 1;
3666 } else {
3667 btrfs_tree_unlock(right);
3668 free_extent_buffer(right);
3670 return 0;
3672 out_unlock:
3673 btrfs_tree_unlock(right);
3674 free_extent_buffer(right);
3675 return 1;
3679 * push some data in the path leaf to the right, trying to free up at
3680 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3682 * returns 1 if the push failed because the other node didn't have enough
3683 * room, 0 if everything worked out and < 0 if there were major errors.
3685 * this will push starting from min_slot to the end of the leaf. It won't
3686 * push any slot lower than min_slot
3688 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3689 *root, struct btrfs_path *path,
3690 int min_data_size, int data_size,
3691 int empty, u32 min_slot)
3693 struct extent_buffer *left = path->nodes[0];
3694 struct extent_buffer *right;
3695 struct extent_buffer *upper;
3696 int slot;
3697 int free_space;
3698 u32 left_nritems;
3699 int ret;
3701 if (!path->nodes[1])
3702 return 1;
3704 slot = path->slots[1];
3705 upper = path->nodes[1];
3706 if (slot >= btrfs_header_nritems(upper) - 1)
3707 return 1;
3709 btrfs_assert_tree_locked(path->nodes[1]);
3711 right = btrfs_read_node_slot(upper, slot + 1);
3713 * slot + 1 is not valid or we fail to read the right node,
3714 * no big deal, just return.
3716 if (IS_ERR(right))
3717 return 1;
3719 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
3721 free_space = btrfs_leaf_free_space(right);
3722 if (free_space < data_size)
3723 goto out_unlock;
3725 /* cow and double check */
3726 ret = btrfs_cow_block(trans, root, right, upper,
3727 slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3728 if (ret)
3729 goto out_unlock;
3731 free_space = btrfs_leaf_free_space(right);
3732 if (free_space < data_size)
3733 goto out_unlock;
3735 left_nritems = btrfs_header_nritems(left);
3736 if (left_nritems == 0)
3737 goto out_unlock;
3739 if (check_sibling_keys(left, right)) {
3740 ret = -EUCLEAN;
3741 btrfs_tree_unlock(right);
3742 free_extent_buffer(right);
3743 return ret;
3745 if (path->slots[0] == left_nritems && !empty) {
3746 /* Key greater than all keys in the leaf, right neighbor has
3747 * enough room for it and we're not emptying our leaf to delete
3748 * it, therefore use right neighbor to insert the new item and
3749 * no need to touch/dirty our left leaf. */
3750 btrfs_tree_unlock(left);
3751 free_extent_buffer(left);
3752 path->nodes[0] = right;
3753 path->slots[0] = 0;
3754 path->slots[1]++;
3755 return 0;
3758 return __push_leaf_right(path, min_data_size, empty,
3759 right, free_space, left_nritems, min_slot);
3760 out_unlock:
3761 btrfs_tree_unlock(right);
3762 free_extent_buffer(right);
3763 return 1;
3767 * push some data in the path leaf to the left, trying to free up at
3768 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3770 * max_slot can put a limit on how far into the leaf we'll push items. The
3771 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3772 * items
3774 static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
3775 int empty, struct extent_buffer *left,
3776 int free_space, u32 right_nritems,
3777 u32 max_slot)
3779 struct btrfs_fs_info *fs_info = left->fs_info;
3780 struct btrfs_disk_key disk_key;
3781 struct extent_buffer *right = path->nodes[0];
3782 int i;
3783 int push_space = 0;
3784 int push_items = 0;
3785 struct btrfs_item *item;
3786 u32 old_left_nritems;
3787 u32 nr;
3788 int ret = 0;
3789 u32 this_item_size;
3790 u32 old_left_item_size;
3791 struct btrfs_map_token token;
3793 if (empty)
3794 nr = min(right_nritems, max_slot);
3795 else
3796 nr = min(right_nritems - 1, max_slot);
3798 for (i = 0; i < nr; i++) {
3799 item = btrfs_item_nr(i);
3801 if (!empty && push_items > 0) {
3802 if (path->slots[0] < i)
3803 break;
3804 if (path->slots[0] == i) {
3805 int space = btrfs_leaf_free_space(right);
3807 if (space + push_space * 2 > free_space)
3808 break;
3812 if (path->slots[0] == i)
3813 push_space += data_size;
3815 this_item_size = btrfs_item_size(right, item);
3816 if (this_item_size + sizeof(*item) + push_space > free_space)
3817 break;
3819 push_items++;
3820 push_space += this_item_size + sizeof(*item);
3823 if (push_items == 0) {
3824 ret = 1;
3825 goto out;
3827 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3829 /* push data from right to left */
3830 copy_extent_buffer(left, right,
3831 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3832 btrfs_item_nr_offset(0),
3833 push_items * sizeof(struct btrfs_item));
3835 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3836 btrfs_item_offset_nr(right, push_items - 1);
3838 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3839 leaf_data_end(left) - push_space,
3840 BTRFS_LEAF_DATA_OFFSET +
3841 btrfs_item_offset_nr(right, push_items - 1),
3842 push_space);
3843 old_left_nritems = btrfs_header_nritems(left);
3844 BUG_ON(old_left_nritems <= 0);
3846 btrfs_init_map_token(&token, left);
3847 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3848 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3849 u32 ioff;
3851 item = btrfs_item_nr(i);
3853 ioff = btrfs_token_item_offset(&token, item);
3854 btrfs_set_token_item_offset(&token, item,
3855 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3857 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3859 /* fixup right node */
3860 if (push_items > right_nritems)
3861 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3862 right_nritems);
3864 if (push_items < right_nritems) {
3865 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3866 leaf_data_end(right);
3867 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3868 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3869 BTRFS_LEAF_DATA_OFFSET +
3870 leaf_data_end(right), push_space);
3872 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3873 btrfs_item_nr_offset(push_items),
3874 (btrfs_header_nritems(right) - push_items) *
3875 sizeof(struct btrfs_item));
3878 btrfs_init_map_token(&token, right);
3879 right_nritems -= push_items;
3880 btrfs_set_header_nritems(right, right_nritems);
3881 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3882 for (i = 0; i < right_nritems; i++) {
3883 item = btrfs_item_nr(i);
3885 push_space = push_space - btrfs_token_item_size(&token, item);
3886 btrfs_set_token_item_offset(&token, item, push_space);
3889 btrfs_mark_buffer_dirty(left);
3890 if (right_nritems)
3891 btrfs_mark_buffer_dirty(right);
3892 else
3893 btrfs_clean_tree_block(right);
3895 btrfs_item_key(right, &disk_key, 0);
3896 fixup_low_keys(path, &disk_key, 1);
3898 /* then fixup the leaf pointer in the path */
3899 if (path->slots[0] < push_items) {
3900 path->slots[0] += old_left_nritems;
3901 btrfs_tree_unlock(path->nodes[0]);
3902 free_extent_buffer(path->nodes[0]);
3903 path->nodes[0] = left;
3904 path->slots[1] -= 1;
3905 } else {
3906 btrfs_tree_unlock(left);
3907 free_extent_buffer(left);
3908 path->slots[0] -= push_items;
3910 BUG_ON(path->slots[0] < 0);
3911 return ret;
3912 out:
3913 btrfs_tree_unlock(left);
3914 free_extent_buffer(left);
3915 return ret;
3919 * push some data in the path leaf to the left, trying to free up at
3920 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3922 * max_slot can put a limit on how far into the leaf we'll push items. The
3923 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3924 * items
3926 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3927 *root, struct btrfs_path *path, int min_data_size,
3928 int data_size, int empty, u32 max_slot)
3930 struct extent_buffer *right = path->nodes[0];
3931 struct extent_buffer *left;
3932 int slot;
3933 int free_space;
3934 u32 right_nritems;
3935 int ret = 0;
3937 slot = path->slots[1];
3938 if (slot == 0)
3939 return 1;
3940 if (!path->nodes[1])
3941 return 1;
3943 right_nritems = btrfs_header_nritems(right);
3944 if (right_nritems == 0)
3945 return 1;
3947 btrfs_assert_tree_locked(path->nodes[1]);
3949 left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3951 * slot - 1 is not valid or we fail to read the left node,
3952 * no big deal, just return.
3954 if (IS_ERR(left))
3955 return 1;
3957 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
3959 free_space = btrfs_leaf_free_space(left);
3960 if (free_space < data_size) {
3961 ret = 1;
3962 goto out;
3965 /* cow and double check */
3966 ret = btrfs_cow_block(trans, root, left,
3967 path->nodes[1], slot - 1, &left,
3968 BTRFS_NESTING_LEFT_COW);
3969 if (ret) {
3970 /* we hit -ENOSPC, but it isn't fatal here */
3971 if (ret == -ENOSPC)
3972 ret = 1;
3973 goto out;
3976 free_space = btrfs_leaf_free_space(left);
3977 if (free_space < data_size) {
3978 ret = 1;
3979 goto out;
3982 if (check_sibling_keys(left, right)) {
3983 ret = -EUCLEAN;
3984 goto out;
3986 return __push_leaf_left(path, min_data_size,
3987 empty, left, free_space, right_nritems,
3988 max_slot);
3989 out:
3990 btrfs_tree_unlock(left);
3991 free_extent_buffer(left);
3992 return ret;
3996 * split the path's leaf in two, making sure there is at least data_size
3997 * available for the resulting leaf level of the path.
3999 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4000 struct btrfs_path *path,
4001 struct extent_buffer *l,
4002 struct extent_buffer *right,
4003 int slot, int mid, int nritems)
4005 struct btrfs_fs_info *fs_info = trans->fs_info;
4006 int data_copy_size;
4007 int rt_data_off;
4008 int i;
4009 struct btrfs_disk_key disk_key;
4010 struct btrfs_map_token token;
4012 nritems = nritems - mid;
4013 btrfs_set_header_nritems(right, nritems);
4014 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l);
4016 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4017 btrfs_item_nr_offset(mid),
4018 nritems * sizeof(struct btrfs_item));
4020 copy_extent_buffer(right, l,
4021 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4022 data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4023 leaf_data_end(l), data_copy_size);
4025 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4027 btrfs_init_map_token(&token, right);
4028 for (i = 0; i < nritems; i++) {
4029 struct btrfs_item *item = btrfs_item_nr(i);
4030 u32 ioff;
4032 ioff = btrfs_token_item_offset(&token, item);
4033 btrfs_set_token_item_offset(&token, item, ioff + rt_data_off);
4036 btrfs_set_header_nritems(l, mid);
4037 btrfs_item_key(right, &disk_key, 0);
4038 insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
4040 btrfs_mark_buffer_dirty(right);
4041 btrfs_mark_buffer_dirty(l);
4042 BUG_ON(path->slots[0] != slot);
4044 if (mid <= slot) {
4045 btrfs_tree_unlock(path->nodes[0]);
4046 free_extent_buffer(path->nodes[0]);
4047 path->nodes[0] = right;
4048 path->slots[0] -= mid;
4049 path->slots[1] += 1;
4050 } else {
4051 btrfs_tree_unlock(right);
4052 free_extent_buffer(right);
4055 BUG_ON(path->slots[0] < 0);
4059 * double splits happen when we need to insert a big item in the middle
4060 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4061 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4062 * A B C
4064 * We avoid this by trying to push the items on either side of our target
4065 * into the adjacent leaves. If all goes well we can avoid the double split
4066 * completely.
4068 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4069 struct btrfs_root *root,
4070 struct btrfs_path *path,
4071 int data_size)
4073 int ret;
4074 int progress = 0;
4075 int slot;
4076 u32 nritems;
4077 int space_needed = data_size;
4079 slot = path->slots[0];
4080 if (slot < btrfs_header_nritems(path->nodes[0]))
4081 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4084 * try to push all the items after our slot into the
4085 * right leaf
4087 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4088 if (ret < 0)
4089 return ret;
4091 if (ret == 0)
4092 progress++;
4094 nritems = btrfs_header_nritems(path->nodes[0]);
4096 * our goal is to get our slot at the start or end of a leaf. If
4097 * we've done so we're done
4099 if (path->slots[0] == 0 || path->slots[0] == nritems)
4100 return 0;
4102 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4103 return 0;
4105 /* try to push all the items before our slot into the next leaf */
4106 slot = path->slots[0];
4107 space_needed = data_size;
4108 if (slot > 0)
4109 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4110 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4111 if (ret < 0)
4112 return ret;
4114 if (ret == 0)
4115 progress++;
4117 if (progress)
4118 return 0;
4119 return 1;
4123 * split the path's leaf in two, making sure there is at least data_size
4124 * available for the resulting leaf level of the path.
4126 * returns 0 if all went well and < 0 on failure.
4128 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4129 struct btrfs_root *root,
4130 const struct btrfs_key *ins_key,
4131 struct btrfs_path *path, int data_size,
4132 int extend)
4134 struct btrfs_disk_key disk_key;
4135 struct extent_buffer *l;
4136 u32 nritems;
4137 int mid;
4138 int slot;
4139 struct extent_buffer *right;
4140 struct btrfs_fs_info *fs_info = root->fs_info;
4141 int ret = 0;
4142 int wret;
4143 int split;
4144 int num_doubles = 0;
4145 int tried_avoid_double = 0;
4147 l = path->nodes[0];
4148 slot = path->slots[0];
4149 if (extend && data_size + btrfs_item_size_nr(l, slot) +
4150 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4151 return -EOVERFLOW;
4153 /* first try to make some room by pushing left and right */
4154 if (data_size && path->nodes[1]) {
4155 int space_needed = data_size;
4157 if (slot < btrfs_header_nritems(l))
4158 space_needed -= btrfs_leaf_free_space(l);
4160 wret = push_leaf_right(trans, root, path, space_needed,
4161 space_needed, 0, 0);
4162 if (wret < 0)
4163 return wret;
4164 if (wret) {
4165 space_needed = data_size;
4166 if (slot > 0)
4167 space_needed -= btrfs_leaf_free_space(l);
4168 wret = push_leaf_left(trans, root, path, space_needed,
4169 space_needed, 0, (u32)-1);
4170 if (wret < 0)
4171 return wret;
4173 l = path->nodes[0];
4175 /* did the pushes work? */
4176 if (btrfs_leaf_free_space(l) >= data_size)
4177 return 0;
4180 if (!path->nodes[1]) {
4181 ret = insert_new_root(trans, root, path, 1);
4182 if (ret)
4183 return ret;
4185 again:
4186 split = 1;
4187 l = path->nodes[0];
4188 slot = path->slots[0];
4189 nritems = btrfs_header_nritems(l);
4190 mid = (nritems + 1) / 2;
4192 if (mid <= slot) {
4193 if (nritems == 1 ||
4194 leaf_space_used(l, mid, nritems - mid) + data_size >
4195 BTRFS_LEAF_DATA_SIZE(fs_info)) {
4196 if (slot >= nritems) {
4197 split = 0;
4198 } else {
4199 mid = slot;
4200 if (mid != nritems &&
4201 leaf_space_used(l, mid, nritems - mid) +
4202 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4203 if (data_size && !tried_avoid_double)
4204 goto push_for_double;
4205 split = 2;
4209 } else {
4210 if (leaf_space_used(l, 0, mid) + data_size >
4211 BTRFS_LEAF_DATA_SIZE(fs_info)) {
4212 if (!extend && data_size && slot == 0) {
4213 split = 0;
4214 } else if ((extend || !data_size) && slot == 0) {
4215 mid = 1;
4216 } else {
4217 mid = slot;
4218 if (mid != nritems &&
4219 leaf_space_used(l, mid, nritems - mid) +
4220 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4221 if (data_size && !tried_avoid_double)
4222 goto push_for_double;
4223 split = 2;
4229 if (split == 0)
4230 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4231 else
4232 btrfs_item_key(l, &disk_key, mid);
4235 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
4236 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
4237 * subclasses, which is 8 at the time of this patch, and we've maxed it
4238 * out. In the future we could add a
4239 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
4240 * use BTRFS_NESTING_NEW_ROOT.
4242 right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0,
4243 l->start, 0, num_doubles ?
4244 BTRFS_NESTING_NEW_ROOT :
4245 BTRFS_NESTING_SPLIT);
4246 if (IS_ERR(right))
4247 return PTR_ERR(right);
4249 root_add_used(root, fs_info->nodesize);
4251 if (split == 0) {
4252 if (mid <= slot) {
4253 btrfs_set_header_nritems(right, 0);
4254 insert_ptr(trans, path, &disk_key,
4255 right->start, path->slots[1] + 1, 1);
4256 btrfs_tree_unlock(path->nodes[0]);
4257 free_extent_buffer(path->nodes[0]);
4258 path->nodes[0] = right;
4259 path->slots[0] = 0;
4260 path->slots[1] += 1;
4261 } else {
4262 btrfs_set_header_nritems(right, 0);
4263 insert_ptr(trans, path, &disk_key,
4264 right->start, path->slots[1], 1);
4265 btrfs_tree_unlock(path->nodes[0]);
4266 free_extent_buffer(path->nodes[0]);
4267 path->nodes[0] = right;
4268 path->slots[0] = 0;
4269 if (path->slots[1] == 0)
4270 fixup_low_keys(path, &disk_key, 1);
4273 * We create a new leaf 'right' for the required ins_len and
4274 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4275 * the content of ins_len to 'right'.
4277 return ret;
4280 copy_for_split(trans, path, l, right, slot, mid, nritems);
4282 if (split == 2) {
4283 BUG_ON(num_doubles != 0);
4284 num_doubles++;
4285 goto again;
4288 return 0;
4290 push_for_double:
4291 push_for_double_split(trans, root, path, data_size);
4292 tried_avoid_double = 1;
4293 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4294 return 0;
4295 goto again;
4298 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4299 struct btrfs_root *root,
4300 struct btrfs_path *path, int ins_len)
4302 struct btrfs_key key;
4303 struct extent_buffer *leaf;
4304 struct btrfs_file_extent_item *fi;
4305 u64 extent_len = 0;
4306 u32 item_size;
4307 int ret;
4309 leaf = path->nodes[0];
4310 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4312 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4313 key.type != BTRFS_EXTENT_CSUM_KEY);
4315 if (btrfs_leaf_free_space(leaf) >= ins_len)
4316 return 0;
4318 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4319 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4320 fi = btrfs_item_ptr(leaf, path->slots[0],
4321 struct btrfs_file_extent_item);
4322 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4324 btrfs_release_path(path);
4326 path->keep_locks = 1;
4327 path->search_for_split = 1;
4328 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4329 path->search_for_split = 0;
4330 if (ret > 0)
4331 ret = -EAGAIN;
4332 if (ret < 0)
4333 goto err;
4335 ret = -EAGAIN;
4336 leaf = path->nodes[0];
4337 /* if our item isn't there, return now */
4338 if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4339 goto err;
4341 /* the leaf has changed, it now has room. return now */
4342 if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
4343 goto err;
4345 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4346 fi = btrfs_item_ptr(leaf, path->slots[0],
4347 struct btrfs_file_extent_item);
4348 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4349 goto err;
4352 ret = split_leaf(trans, root, &key, path, ins_len, 1);
4353 if (ret)
4354 goto err;
4356 path->keep_locks = 0;
4357 btrfs_unlock_up_safe(path, 1);
4358 return 0;
4359 err:
4360 path->keep_locks = 0;
4361 return ret;
4364 static noinline int split_item(struct btrfs_path *path,
4365 const struct btrfs_key *new_key,
4366 unsigned long split_offset)
4368 struct extent_buffer *leaf;
4369 struct btrfs_item *item;
4370 struct btrfs_item *new_item;
4371 int slot;
4372 char *buf;
4373 u32 nritems;
4374 u32 item_size;
4375 u32 orig_offset;
4376 struct btrfs_disk_key disk_key;
4378 leaf = path->nodes[0];
4379 BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
4381 item = btrfs_item_nr(path->slots[0]);
4382 orig_offset = btrfs_item_offset(leaf, item);
4383 item_size = btrfs_item_size(leaf, item);
4385 buf = kmalloc(item_size, GFP_NOFS);
4386 if (!buf)
4387 return -ENOMEM;
4389 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4390 path->slots[0]), item_size);
4392 slot = path->slots[0] + 1;
4393 nritems = btrfs_header_nritems(leaf);
4394 if (slot != nritems) {
4395 /* shift the items */
4396 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4397 btrfs_item_nr_offset(slot),
4398 (nritems - slot) * sizeof(struct btrfs_item));
4401 btrfs_cpu_key_to_disk(&disk_key, new_key);
4402 btrfs_set_item_key(leaf, &disk_key, slot);
4404 new_item = btrfs_item_nr(slot);
4406 btrfs_set_item_offset(leaf, new_item, orig_offset);
4407 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4409 btrfs_set_item_offset(leaf, item,
4410 orig_offset + item_size - split_offset);
4411 btrfs_set_item_size(leaf, item, split_offset);
4413 btrfs_set_header_nritems(leaf, nritems + 1);
4415 /* write the data for the start of the original item */
4416 write_extent_buffer(leaf, buf,
4417 btrfs_item_ptr_offset(leaf, path->slots[0]),
4418 split_offset);
4420 /* write the data for the new item */
4421 write_extent_buffer(leaf, buf + split_offset,
4422 btrfs_item_ptr_offset(leaf, slot),
4423 item_size - split_offset);
4424 btrfs_mark_buffer_dirty(leaf);
4426 BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4427 kfree(buf);
4428 return 0;
4432 * This function splits a single item into two items,
4433 * giving 'new_key' to the new item and splitting the
4434 * old one at split_offset (from the start of the item).
4436 * The path may be released by this operation. After
4437 * the split, the path is pointing to the old item. The
4438 * new item is going to be in the same node as the old one.
4440 * Note, the item being split must be smaller enough to live alone on
4441 * a tree block with room for one extra struct btrfs_item
4443 * This allows us to split the item in place, keeping a lock on the
4444 * leaf the entire time.
4446 int btrfs_split_item(struct btrfs_trans_handle *trans,
4447 struct btrfs_root *root,
4448 struct btrfs_path *path,
4449 const struct btrfs_key *new_key,
4450 unsigned long split_offset)
4452 int ret;
4453 ret = setup_leaf_for_split(trans, root, path,
4454 sizeof(struct btrfs_item));
4455 if (ret)
4456 return ret;
4458 ret = split_item(path, new_key, split_offset);
4459 return ret;
4463 * This function duplicate a item, giving 'new_key' to the new item.
4464 * It guarantees both items live in the same tree leaf and the new item
4465 * is contiguous with the original item.
4467 * This allows us to split file extent in place, keeping a lock on the
4468 * leaf the entire time.
4470 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4471 struct btrfs_root *root,
4472 struct btrfs_path *path,
4473 const struct btrfs_key *new_key)
4475 struct extent_buffer *leaf;
4476 int ret;
4477 u32 item_size;
4479 leaf = path->nodes[0];
4480 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4481 ret = setup_leaf_for_split(trans, root, path,
4482 item_size + sizeof(struct btrfs_item));
4483 if (ret)
4484 return ret;
4486 path->slots[0]++;
4487 setup_items_for_insert(root, path, new_key, &item_size, 1);
4488 leaf = path->nodes[0];
4489 memcpy_extent_buffer(leaf,
4490 btrfs_item_ptr_offset(leaf, path->slots[0]),
4491 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4492 item_size);
4493 return 0;
4497 * make the item pointed to by the path smaller. new_size indicates
4498 * how small to make it, and from_end tells us if we just chop bytes
4499 * off the end of the item or if we shift the item to chop bytes off
4500 * the front.
4502 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
4504 int slot;
4505 struct extent_buffer *leaf;
4506 struct btrfs_item *item;
4507 u32 nritems;
4508 unsigned int data_end;
4509 unsigned int old_data_start;
4510 unsigned int old_size;
4511 unsigned int size_diff;
4512 int i;
4513 struct btrfs_map_token token;
4515 leaf = path->nodes[0];
4516 slot = path->slots[0];
4518 old_size = btrfs_item_size_nr(leaf, slot);
4519 if (old_size == new_size)
4520 return;
4522 nritems = btrfs_header_nritems(leaf);
4523 data_end = leaf_data_end(leaf);
4525 old_data_start = btrfs_item_offset_nr(leaf, slot);
4527 size_diff = old_size - new_size;
4529 BUG_ON(slot < 0);
4530 BUG_ON(slot >= nritems);
4533 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4535 /* first correct the data pointers */
4536 btrfs_init_map_token(&token, leaf);
4537 for (i = slot; i < nritems; i++) {
4538 u32 ioff;
4539 item = btrfs_item_nr(i);
4541 ioff = btrfs_token_item_offset(&token, item);
4542 btrfs_set_token_item_offset(&token, item, ioff + size_diff);
4545 /* shift the data */
4546 if (from_end) {
4547 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4548 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4549 data_end, old_data_start + new_size - data_end);
4550 } else {
4551 struct btrfs_disk_key disk_key;
4552 u64 offset;
4554 btrfs_item_key(leaf, &disk_key, slot);
4556 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4557 unsigned long ptr;
4558 struct btrfs_file_extent_item *fi;
4560 fi = btrfs_item_ptr(leaf, slot,
4561 struct btrfs_file_extent_item);
4562 fi = (struct btrfs_file_extent_item *)(
4563 (unsigned long)fi - size_diff);
4565 if (btrfs_file_extent_type(leaf, fi) ==
4566 BTRFS_FILE_EXTENT_INLINE) {
4567 ptr = btrfs_item_ptr_offset(leaf, slot);
4568 memmove_extent_buffer(leaf, ptr,
4569 (unsigned long)fi,
4570 BTRFS_FILE_EXTENT_INLINE_DATA_START);
4574 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4575 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4576 data_end, old_data_start - data_end);
4578 offset = btrfs_disk_key_offset(&disk_key);
4579 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4580 btrfs_set_item_key(leaf, &disk_key, slot);
4581 if (slot == 0)
4582 fixup_low_keys(path, &disk_key, 1);
4585 item = btrfs_item_nr(slot);
4586 btrfs_set_item_size(leaf, item, new_size);
4587 btrfs_mark_buffer_dirty(leaf);
4589 if (btrfs_leaf_free_space(leaf) < 0) {
4590 btrfs_print_leaf(leaf);
4591 BUG();
4596 * make the item pointed to by the path bigger, data_size is the added size.
4598 void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
4600 int slot;
4601 struct extent_buffer *leaf;
4602 struct btrfs_item *item;
4603 u32 nritems;
4604 unsigned int data_end;
4605 unsigned int old_data;
4606 unsigned int old_size;
4607 int i;
4608 struct btrfs_map_token token;
4610 leaf = path->nodes[0];
4612 nritems = btrfs_header_nritems(leaf);
4613 data_end = leaf_data_end(leaf);
4615 if (btrfs_leaf_free_space(leaf) < data_size) {
4616 btrfs_print_leaf(leaf);
4617 BUG();
4619 slot = path->slots[0];
4620 old_data = btrfs_item_end_nr(leaf, slot);
4622 BUG_ON(slot < 0);
4623 if (slot >= nritems) {
4624 btrfs_print_leaf(leaf);
4625 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4626 slot, nritems);
4627 BUG();
4631 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4633 /* first correct the data pointers */
4634 btrfs_init_map_token(&token, leaf);
4635 for (i = slot; i < nritems; i++) {
4636 u32 ioff;
4637 item = btrfs_item_nr(i);
4639 ioff = btrfs_token_item_offset(&token, item);
4640 btrfs_set_token_item_offset(&token, item, ioff - data_size);
4643 /* shift the data */
4644 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4645 data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4646 data_end, old_data - data_end);
4648 data_end = old_data;
4649 old_size = btrfs_item_size_nr(leaf, slot);
4650 item = btrfs_item_nr(slot);
4651 btrfs_set_item_size(leaf, item, old_size + data_size);
4652 btrfs_mark_buffer_dirty(leaf);
4654 if (btrfs_leaf_free_space(leaf) < 0) {
4655 btrfs_print_leaf(leaf);
4656 BUG();
4661 * setup_items_for_insert - Helper called before inserting one or more items
4662 * to a leaf. Main purpose is to save stack depth by doing the bulk of the work
4663 * in a function that doesn't call btrfs_search_slot
4665 * @root: root we are inserting items to
4666 * @path: points to the leaf/slot where we are going to insert new items
4667 * @cpu_key: array of keys for items to be inserted
4668 * @data_size: size of the body of each item we are going to insert
4669 * @nr: size of @cpu_key/@data_size arrays
4671 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4672 const struct btrfs_key *cpu_key, u32 *data_size,
4673 int nr)
4675 struct btrfs_fs_info *fs_info = root->fs_info;
4676 struct btrfs_item *item;
4677 int i;
4678 u32 nritems;
4679 unsigned int data_end;
4680 struct btrfs_disk_key disk_key;
4681 struct extent_buffer *leaf;
4682 int slot;
4683 struct btrfs_map_token token;
4684 u32 total_size;
4685 u32 total_data = 0;
4687 for (i = 0; i < nr; i++)
4688 total_data += data_size[i];
4689 total_size = total_data + (nr * sizeof(struct btrfs_item));
4691 if (path->slots[0] == 0) {
4692 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4693 fixup_low_keys(path, &disk_key, 1);
4695 btrfs_unlock_up_safe(path, 1);
4697 leaf = path->nodes[0];
4698 slot = path->slots[0];
4700 nritems = btrfs_header_nritems(leaf);
4701 data_end = leaf_data_end(leaf);
4703 if (btrfs_leaf_free_space(leaf) < total_size) {
4704 btrfs_print_leaf(leaf);
4705 btrfs_crit(fs_info, "not enough freespace need %u have %d",
4706 total_size, btrfs_leaf_free_space(leaf));
4707 BUG();
4710 btrfs_init_map_token(&token, leaf);
4711 if (slot != nritems) {
4712 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4714 if (old_data < data_end) {
4715 btrfs_print_leaf(leaf);
4716 btrfs_crit(fs_info,
4717 "item at slot %d with data offset %u beyond data end of leaf %u",
4718 slot, old_data, data_end);
4719 BUG();
4722 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4724 /* first correct the data pointers */
4725 for (i = slot; i < nritems; i++) {
4726 u32 ioff;
4728 item = btrfs_item_nr(i);
4729 ioff = btrfs_token_item_offset(&token, item);
4730 btrfs_set_token_item_offset(&token, item,
4731 ioff - total_data);
4733 /* shift the items */
4734 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4735 btrfs_item_nr_offset(slot),
4736 (nritems - slot) * sizeof(struct btrfs_item));
4738 /* shift the data */
4739 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4740 data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
4741 data_end, old_data - data_end);
4742 data_end = old_data;
4745 /* setup the item for the new data */
4746 for (i = 0; i < nr; i++) {
4747 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4748 btrfs_set_item_key(leaf, &disk_key, slot + i);
4749 item = btrfs_item_nr(slot + i);
4750 data_end -= data_size[i];
4751 btrfs_set_token_item_offset(&token, item, data_end);
4752 btrfs_set_token_item_size(&token, item, data_size[i]);
4755 btrfs_set_header_nritems(leaf, nritems + nr);
4756 btrfs_mark_buffer_dirty(leaf);
4758 if (btrfs_leaf_free_space(leaf) < 0) {
4759 btrfs_print_leaf(leaf);
4760 BUG();
4765 * Given a key and some data, insert items into the tree.
4766 * This does all the path init required, making room in the tree if needed.
4768 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4769 struct btrfs_root *root,
4770 struct btrfs_path *path,
4771 const struct btrfs_key *cpu_key, u32 *data_size,
4772 int nr)
4774 int ret = 0;
4775 int slot;
4776 int i;
4777 u32 total_size = 0;
4778 u32 total_data = 0;
4780 for (i = 0; i < nr; i++)
4781 total_data += data_size[i];
4783 total_size = total_data + (nr * sizeof(struct btrfs_item));
4784 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4785 if (ret == 0)
4786 return -EEXIST;
4787 if (ret < 0)
4788 return ret;
4790 slot = path->slots[0];
4791 BUG_ON(slot < 0);
4793 setup_items_for_insert(root, path, cpu_key, data_size, nr);
4794 return 0;
4798 * Given a key and some data, insert an item into the tree.
4799 * This does all the path init required, making room in the tree if needed.
4801 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4802 const struct btrfs_key *cpu_key, void *data,
4803 u32 data_size)
4805 int ret = 0;
4806 struct btrfs_path *path;
4807 struct extent_buffer *leaf;
4808 unsigned long ptr;
4810 path = btrfs_alloc_path();
4811 if (!path)
4812 return -ENOMEM;
4813 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4814 if (!ret) {
4815 leaf = path->nodes[0];
4816 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4817 write_extent_buffer(leaf, data, ptr, data_size);
4818 btrfs_mark_buffer_dirty(leaf);
4820 btrfs_free_path(path);
4821 return ret;
4825 * delete the pointer from a given node.
4827 * the tree should have been previously balanced so the deletion does not
4828 * empty a node.
4830 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4831 int level, int slot)
4833 struct extent_buffer *parent = path->nodes[level];
4834 u32 nritems;
4835 int ret;
4837 nritems = btrfs_header_nritems(parent);
4838 if (slot != nritems - 1) {
4839 if (level) {
4840 ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4841 nritems - slot - 1);
4842 BUG_ON(ret < 0);
4844 memmove_extent_buffer(parent,
4845 btrfs_node_key_ptr_offset(slot),
4846 btrfs_node_key_ptr_offset(slot + 1),
4847 sizeof(struct btrfs_key_ptr) *
4848 (nritems - slot - 1));
4849 } else if (level) {
4850 ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
4851 GFP_NOFS);
4852 BUG_ON(ret < 0);
4855 nritems--;
4856 btrfs_set_header_nritems(parent, nritems);
4857 if (nritems == 0 && parent == root->node) {
4858 BUG_ON(btrfs_header_level(root->node) != 1);
4859 /* just turn the root into a leaf and break */
4860 btrfs_set_header_level(root->node, 0);
4861 } else if (slot == 0) {
4862 struct btrfs_disk_key disk_key;
4864 btrfs_node_key(parent, &disk_key, 0);
4865 fixup_low_keys(path, &disk_key, level + 1);
4867 btrfs_mark_buffer_dirty(parent);
4871 * a helper function to delete the leaf pointed to by path->slots[1] and
4872 * path->nodes[1].
4874 * This deletes the pointer in path->nodes[1] and frees the leaf
4875 * block extent. zero is returned if it all worked out, < 0 otherwise.
4877 * The path must have already been setup for deleting the leaf, including
4878 * all the proper balancing. path->nodes[1] must be locked.
4880 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4881 struct btrfs_root *root,
4882 struct btrfs_path *path,
4883 struct extent_buffer *leaf)
4885 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4886 del_ptr(root, path, 1, path->slots[1]);
4889 * btrfs_free_extent is expensive, we want to make sure we
4890 * aren't holding any locks when we call it
4892 btrfs_unlock_up_safe(path, 0);
4894 root_sub_used(root, leaf->len);
4896 atomic_inc(&leaf->refs);
4897 btrfs_free_tree_block(trans, root, leaf, 0, 1);
4898 free_extent_buffer_stale(leaf);
4901 * delete the item at the leaf level in path. If that empties
4902 * the leaf, remove it from the tree
4904 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4905 struct btrfs_path *path, int slot, int nr)
4907 struct btrfs_fs_info *fs_info = root->fs_info;
4908 struct extent_buffer *leaf;
4909 struct btrfs_item *item;
4910 u32 last_off;
4911 u32 dsize = 0;
4912 int ret = 0;
4913 int wret;
4914 int i;
4915 u32 nritems;
4917 leaf = path->nodes[0];
4918 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4920 for (i = 0; i < nr; i++)
4921 dsize += btrfs_item_size_nr(leaf, slot + i);
4923 nritems = btrfs_header_nritems(leaf);
4925 if (slot + nr != nritems) {
4926 int data_end = leaf_data_end(leaf);
4927 struct btrfs_map_token token;
4929 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4930 data_end + dsize,
4931 BTRFS_LEAF_DATA_OFFSET + data_end,
4932 last_off - data_end);
4934 btrfs_init_map_token(&token, leaf);
4935 for (i = slot + nr; i < nritems; i++) {
4936 u32 ioff;
4938 item = btrfs_item_nr(i);
4939 ioff = btrfs_token_item_offset(&token, item);
4940 btrfs_set_token_item_offset(&token, item, ioff + dsize);
4943 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4944 btrfs_item_nr_offset(slot + nr),
4945 sizeof(struct btrfs_item) *
4946 (nritems - slot - nr));
4948 btrfs_set_header_nritems(leaf, nritems - nr);
4949 nritems -= nr;
4951 /* delete the leaf if we've emptied it */
4952 if (nritems == 0) {
4953 if (leaf == root->node) {
4954 btrfs_set_header_level(leaf, 0);
4955 } else {
4956 btrfs_clean_tree_block(leaf);
4957 btrfs_del_leaf(trans, root, path, leaf);
4959 } else {
4960 int used = leaf_space_used(leaf, 0, nritems);
4961 if (slot == 0) {
4962 struct btrfs_disk_key disk_key;
4964 btrfs_item_key(leaf, &disk_key, 0);
4965 fixup_low_keys(path, &disk_key, 1);
4968 /* delete the leaf if it is mostly empty */
4969 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4970 /* push_leaf_left fixes the path.
4971 * make sure the path still points to our leaf
4972 * for possible call to del_ptr below
4974 slot = path->slots[1];
4975 atomic_inc(&leaf->refs);
4977 wret = push_leaf_left(trans, root, path, 1, 1,
4978 1, (u32)-1);
4979 if (wret < 0 && wret != -ENOSPC)
4980 ret = wret;
4982 if (path->nodes[0] == leaf &&
4983 btrfs_header_nritems(leaf)) {
4984 wret = push_leaf_right(trans, root, path, 1,
4985 1, 1, 0);
4986 if (wret < 0 && wret != -ENOSPC)
4987 ret = wret;
4990 if (btrfs_header_nritems(leaf) == 0) {
4991 path->slots[1] = slot;
4992 btrfs_del_leaf(trans, root, path, leaf);
4993 free_extent_buffer(leaf);
4994 ret = 0;
4995 } else {
4996 /* if we're still in the path, make sure
4997 * we're dirty. Otherwise, one of the
4998 * push_leaf functions must have already
4999 * dirtied this buffer
5001 if (path->nodes[0] == leaf)
5002 btrfs_mark_buffer_dirty(leaf);
5003 free_extent_buffer(leaf);
5005 } else {
5006 btrfs_mark_buffer_dirty(leaf);
5009 return ret;
5013 * search the tree again to find a leaf with lesser keys
5014 * returns 0 if it found something or 1 if there are no lesser leaves.
5015 * returns < 0 on io errors.
5017 * This may release the path, and so you may lose any locks held at the
5018 * time you call it.
5020 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5022 struct btrfs_key key;
5023 struct btrfs_disk_key found_key;
5024 int ret;
5026 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5028 if (key.offset > 0) {
5029 key.offset--;
5030 } else if (key.type > 0) {
5031 key.type--;
5032 key.offset = (u64)-1;
5033 } else if (key.objectid > 0) {
5034 key.objectid--;
5035 key.type = (u8)-1;
5036 key.offset = (u64)-1;
5037 } else {
5038 return 1;
5041 btrfs_release_path(path);
5042 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5043 if (ret < 0)
5044 return ret;
5045 btrfs_item_key(path->nodes[0], &found_key, 0);
5046 ret = comp_keys(&found_key, &key);
5048 * We might have had an item with the previous key in the tree right
5049 * before we released our path. And after we released our path, that
5050 * item might have been pushed to the first slot (0) of the leaf we
5051 * were holding due to a tree balance. Alternatively, an item with the
5052 * previous key can exist as the only element of a leaf (big fat item).
5053 * Therefore account for these 2 cases, so that our callers (like
5054 * btrfs_previous_item) don't miss an existing item with a key matching
5055 * the previous key we computed above.
5057 if (ret <= 0)
5058 return 0;
5059 return 1;
5063 * A helper function to walk down the tree starting at min_key, and looking
5064 * for nodes or leaves that are have a minimum transaction id.
5065 * This is used by the btree defrag code, and tree logging
5067 * This does not cow, but it does stuff the starting key it finds back
5068 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5069 * key and get a writable path.
5071 * This honors path->lowest_level to prevent descent past a given level
5072 * of the tree.
5074 * min_trans indicates the oldest transaction that you are interested
5075 * in walking through. Any nodes or leaves older than min_trans are
5076 * skipped over (without reading them).
5078 * returns zero if something useful was found, < 0 on error and 1 if there
5079 * was nothing in the tree that matched the search criteria.
5081 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5082 struct btrfs_path *path,
5083 u64 min_trans)
5085 struct extent_buffer *cur;
5086 struct btrfs_key found_key;
5087 int slot;
5088 int sret;
5089 u32 nritems;
5090 int level;
5091 int ret = 1;
5092 int keep_locks = path->keep_locks;
5094 path->keep_locks = 1;
5095 again:
5096 cur = btrfs_read_lock_root_node(root);
5097 level = btrfs_header_level(cur);
5098 WARN_ON(path->nodes[level]);
5099 path->nodes[level] = cur;
5100 path->locks[level] = BTRFS_READ_LOCK;
5102 if (btrfs_header_generation(cur) < min_trans) {
5103 ret = 1;
5104 goto out;
5106 while (1) {
5107 nritems = btrfs_header_nritems(cur);
5108 level = btrfs_header_level(cur);
5109 sret = btrfs_bin_search(cur, min_key, &slot);
5110 if (sret < 0) {
5111 ret = sret;
5112 goto out;
5115 /* at the lowest level, we're done, setup the path and exit */
5116 if (level == path->lowest_level) {
5117 if (slot >= nritems)
5118 goto find_next_key;
5119 ret = 0;
5120 path->slots[level] = slot;
5121 btrfs_item_key_to_cpu(cur, &found_key, slot);
5122 goto out;
5124 if (sret && slot > 0)
5125 slot--;
5127 * check this node pointer against the min_trans parameters.
5128 * If it is too old, skip to the next one.
5130 while (slot < nritems) {
5131 u64 gen;
5133 gen = btrfs_node_ptr_generation(cur, slot);
5134 if (gen < min_trans) {
5135 slot++;
5136 continue;
5138 break;
5140 find_next_key:
5142 * we didn't find a candidate key in this node, walk forward
5143 * and find another one
5145 if (slot >= nritems) {
5146 path->slots[level] = slot;
5147 sret = btrfs_find_next_key(root, path, min_key, level,
5148 min_trans);
5149 if (sret == 0) {
5150 btrfs_release_path(path);
5151 goto again;
5152 } else {
5153 goto out;
5156 /* save our key for returning back */
5157 btrfs_node_key_to_cpu(cur, &found_key, slot);
5158 path->slots[level] = slot;
5159 if (level == path->lowest_level) {
5160 ret = 0;
5161 goto out;
5163 cur = btrfs_read_node_slot(cur, slot);
5164 if (IS_ERR(cur)) {
5165 ret = PTR_ERR(cur);
5166 goto out;
5169 btrfs_tree_read_lock(cur);
5171 path->locks[level - 1] = BTRFS_READ_LOCK;
5172 path->nodes[level - 1] = cur;
5173 unlock_up(path, level, 1, 0, NULL);
5175 out:
5176 path->keep_locks = keep_locks;
5177 if (ret == 0) {
5178 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5179 memcpy(min_key, &found_key, sizeof(found_key));
5181 return ret;
5185 * this is similar to btrfs_next_leaf, but does not try to preserve
5186 * and fixup the path. It looks for and returns the next key in the
5187 * tree based on the current path and the min_trans parameters.
5189 * 0 is returned if another key is found, < 0 if there are any errors
5190 * and 1 is returned if there are no higher keys in the tree
5192 * path->keep_locks should be set to 1 on the search made before
5193 * calling this function.
5195 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5196 struct btrfs_key *key, int level, u64 min_trans)
5198 int slot;
5199 struct extent_buffer *c;
5201 WARN_ON(!path->keep_locks && !path->skip_locking);
5202 while (level < BTRFS_MAX_LEVEL) {
5203 if (!path->nodes[level])
5204 return 1;
5206 slot = path->slots[level] + 1;
5207 c = path->nodes[level];
5208 next:
5209 if (slot >= btrfs_header_nritems(c)) {
5210 int ret;
5211 int orig_lowest;
5212 struct btrfs_key cur_key;
5213 if (level + 1 >= BTRFS_MAX_LEVEL ||
5214 !path->nodes[level + 1])
5215 return 1;
5217 if (path->locks[level + 1] || path->skip_locking) {
5218 level++;
5219 continue;
5222 slot = btrfs_header_nritems(c) - 1;
5223 if (level == 0)
5224 btrfs_item_key_to_cpu(c, &cur_key, slot);
5225 else
5226 btrfs_node_key_to_cpu(c, &cur_key, slot);
5228 orig_lowest = path->lowest_level;
5229 btrfs_release_path(path);
5230 path->lowest_level = level;
5231 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5232 0, 0);
5233 path->lowest_level = orig_lowest;
5234 if (ret < 0)
5235 return ret;
5237 c = path->nodes[level];
5238 slot = path->slots[level];
5239 if (ret == 0)
5240 slot++;
5241 goto next;
5244 if (level == 0)
5245 btrfs_item_key_to_cpu(c, key, slot);
5246 else {
5247 u64 gen = btrfs_node_ptr_generation(c, slot);
5249 if (gen < min_trans) {
5250 slot++;
5251 goto next;
5253 btrfs_node_key_to_cpu(c, key, slot);
5255 return 0;
5257 return 1;
5261 * search the tree again to find a leaf with greater keys
5262 * returns 0 if it found something or 1 if there are no greater leaves.
5263 * returns < 0 on io errors.
5265 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5267 return btrfs_next_old_leaf(root, path, 0);
5270 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5271 u64 time_seq)
5273 int slot;
5274 int level;
5275 struct extent_buffer *c;
5276 struct extent_buffer *next;
5277 struct btrfs_key key;
5278 u32 nritems;
5279 int ret;
5280 int i;
5282 nritems = btrfs_header_nritems(path->nodes[0]);
5283 if (nritems == 0)
5284 return 1;
5286 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5287 again:
5288 level = 1;
5289 next = NULL;
5290 btrfs_release_path(path);
5292 path->keep_locks = 1;
5294 if (time_seq)
5295 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5296 else
5297 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5298 path->keep_locks = 0;
5300 if (ret < 0)
5301 return ret;
5303 nritems = btrfs_header_nritems(path->nodes[0]);
5305 * by releasing the path above we dropped all our locks. A balance
5306 * could have added more items next to the key that used to be
5307 * at the very end of the block. So, check again here and
5308 * advance the path if there are now more items available.
5310 if (nritems > 0 && path->slots[0] < nritems - 1) {
5311 if (ret == 0)
5312 path->slots[0]++;
5313 ret = 0;
5314 goto done;
5317 * So the above check misses one case:
5318 * - after releasing the path above, someone has removed the item that
5319 * used to be at the very end of the block, and balance between leafs
5320 * gets another one with bigger key.offset to replace it.
5322 * This one should be returned as well, or we can get leaf corruption
5323 * later(esp. in __btrfs_drop_extents()).
5325 * And a bit more explanation about this check,
5326 * with ret > 0, the key isn't found, the path points to the slot
5327 * where it should be inserted, so the path->slots[0] item must be the
5328 * bigger one.
5330 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5331 ret = 0;
5332 goto done;
5335 while (level < BTRFS_MAX_LEVEL) {
5336 if (!path->nodes[level]) {
5337 ret = 1;
5338 goto done;
5341 slot = path->slots[level] + 1;
5342 c = path->nodes[level];
5343 if (slot >= btrfs_header_nritems(c)) {
5344 level++;
5345 if (level == BTRFS_MAX_LEVEL) {
5346 ret = 1;
5347 goto done;
5349 continue;
5354 * Our current level is where we're going to start from, and to
5355 * make sure lockdep doesn't complain we need to drop our locks
5356 * and nodes from 0 to our current level.
5358 for (i = 0; i < level; i++) {
5359 if (path->locks[level]) {
5360 btrfs_tree_read_unlock(path->nodes[i]);
5361 path->locks[i] = 0;
5363 free_extent_buffer(path->nodes[i]);
5364 path->nodes[i] = NULL;
5367 next = c;
5368 ret = read_block_for_search(root, path, &next, level,
5369 slot, &key);
5370 if (ret == -EAGAIN)
5371 goto again;
5373 if (ret < 0) {
5374 btrfs_release_path(path);
5375 goto done;
5378 if (!path->skip_locking) {
5379 ret = btrfs_try_tree_read_lock(next);
5380 if (!ret && time_seq) {
5382 * If we don't get the lock, we may be racing
5383 * with push_leaf_left, holding that lock while
5384 * itself waiting for the leaf we've currently
5385 * locked. To solve this situation, we give up
5386 * on our lock and cycle.
5388 free_extent_buffer(next);
5389 btrfs_release_path(path);
5390 cond_resched();
5391 goto again;
5393 if (!ret)
5394 btrfs_tree_read_lock(next);
5396 break;
5398 path->slots[level] = slot;
5399 while (1) {
5400 level--;
5401 path->nodes[level] = next;
5402 path->slots[level] = 0;
5403 if (!path->skip_locking)
5404 path->locks[level] = BTRFS_READ_LOCK;
5405 if (!level)
5406 break;
5408 ret = read_block_for_search(root, path, &next, level,
5409 0, &key);
5410 if (ret == -EAGAIN)
5411 goto again;
5413 if (ret < 0) {
5414 btrfs_release_path(path);
5415 goto done;
5418 if (!path->skip_locking)
5419 btrfs_tree_read_lock(next);
5421 ret = 0;
5422 done:
5423 unlock_up(path, 0, 1, 0, NULL);
5425 return ret;
5429 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5430 * searching until it gets past min_objectid or finds an item of 'type'
5432 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5434 int btrfs_previous_item(struct btrfs_root *root,
5435 struct btrfs_path *path, u64 min_objectid,
5436 int type)
5438 struct btrfs_key found_key;
5439 struct extent_buffer *leaf;
5440 u32 nritems;
5441 int ret;
5443 while (1) {
5444 if (path->slots[0] == 0) {
5445 ret = btrfs_prev_leaf(root, path);
5446 if (ret != 0)
5447 return ret;
5448 } else {
5449 path->slots[0]--;
5451 leaf = path->nodes[0];
5452 nritems = btrfs_header_nritems(leaf);
5453 if (nritems == 0)
5454 return 1;
5455 if (path->slots[0] == nritems)
5456 path->slots[0]--;
5458 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5459 if (found_key.objectid < min_objectid)
5460 break;
5461 if (found_key.type == type)
5462 return 0;
5463 if (found_key.objectid == min_objectid &&
5464 found_key.type < type)
5465 break;
5467 return 1;
5471 * search in extent tree to find a previous Metadata/Data extent item with
5472 * min objecitd.
5474 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5476 int btrfs_previous_extent_item(struct btrfs_root *root,
5477 struct btrfs_path *path, u64 min_objectid)
5479 struct btrfs_key found_key;
5480 struct extent_buffer *leaf;
5481 u32 nritems;
5482 int ret;
5484 while (1) {
5485 if (path->slots[0] == 0) {
5486 ret = btrfs_prev_leaf(root, path);
5487 if (ret != 0)
5488 return ret;
5489 } else {
5490 path->slots[0]--;
5492 leaf = path->nodes[0];
5493 nritems = btrfs_header_nritems(leaf);
5494 if (nritems == 0)
5495 return 1;
5496 if (path->slots[0] == nritems)
5497 path->slots[0]--;
5499 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5500 if (found_key.objectid < min_objectid)
5501 break;
5502 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5503 found_key.type == BTRFS_METADATA_ITEM_KEY)
5504 return 0;
5505 if (found_key.objectid == min_objectid &&
5506 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5507 break;
5509 return 1;