1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2011 Fujitsu. All rights reserved.
4 * Written by Miao Xie <miaox@cn.fujitsu.com>
7 #include <linux/slab.h>
8 #include <linux/iversion.h>
9 #include <linux/sched/mm.h>
11 #include "delayed-inode.h"
13 #include "transaction.h"
18 #define BTRFS_DELAYED_WRITEBACK 512
19 #define BTRFS_DELAYED_BACKGROUND 128
20 #define BTRFS_DELAYED_BATCH 16
22 static struct kmem_cache
*delayed_node_cache
;
24 int __init
btrfs_delayed_inode_init(void)
26 delayed_node_cache
= kmem_cache_create("btrfs_delayed_node",
27 sizeof(struct btrfs_delayed_node
),
31 if (!delayed_node_cache
)
36 void __cold
btrfs_delayed_inode_exit(void)
38 kmem_cache_destroy(delayed_node_cache
);
41 static inline void btrfs_init_delayed_node(
42 struct btrfs_delayed_node
*delayed_node
,
43 struct btrfs_root
*root
, u64 inode_id
)
45 delayed_node
->root
= root
;
46 delayed_node
->inode_id
= inode_id
;
47 refcount_set(&delayed_node
->refs
, 0);
48 delayed_node
->ins_root
= RB_ROOT_CACHED
;
49 delayed_node
->del_root
= RB_ROOT_CACHED
;
50 mutex_init(&delayed_node
->mutex
);
51 INIT_LIST_HEAD(&delayed_node
->n_list
);
52 INIT_LIST_HEAD(&delayed_node
->p_list
);
55 static inline int btrfs_is_continuous_delayed_item(
56 struct btrfs_delayed_item
*item1
,
57 struct btrfs_delayed_item
*item2
)
59 if (item1
->key
.type
== BTRFS_DIR_INDEX_KEY
&&
60 item1
->key
.objectid
== item2
->key
.objectid
&&
61 item1
->key
.type
== item2
->key
.type
&&
62 item1
->key
.offset
+ 1 == item2
->key
.offset
)
67 static struct btrfs_delayed_node
*btrfs_get_delayed_node(
68 struct btrfs_inode
*btrfs_inode
)
70 struct btrfs_root
*root
= btrfs_inode
->root
;
71 u64 ino
= btrfs_ino(btrfs_inode
);
72 struct btrfs_delayed_node
*node
;
74 node
= READ_ONCE(btrfs_inode
->delayed_node
);
76 refcount_inc(&node
->refs
);
80 spin_lock(&root
->inode_lock
);
81 node
= radix_tree_lookup(&root
->delayed_nodes_tree
, ino
);
84 if (btrfs_inode
->delayed_node
) {
85 refcount_inc(&node
->refs
); /* can be accessed */
86 BUG_ON(btrfs_inode
->delayed_node
!= node
);
87 spin_unlock(&root
->inode_lock
);
92 * It's possible that we're racing into the middle of removing
93 * this node from the radix tree. In this case, the refcount
94 * was zero and it should never go back to one. Just return
95 * NULL like it was never in the radix at all; our release
96 * function is in the process of removing it.
98 * Some implementations of refcount_inc refuse to bump the
99 * refcount once it has hit zero. If we don't do this dance
100 * here, refcount_inc() may decide to just WARN_ONCE() instead
101 * of actually bumping the refcount.
103 * If this node is properly in the radix, we want to bump the
104 * refcount twice, once for the inode and once for this get
107 if (refcount_inc_not_zero(&node
->refs
)) {
108 refcount_inc(&node
->refs
);
109 btrfs_inode
->delayed_node
= node
;
114 spin_unlock(&root
->inode_lock
);
117 spin_unlock(&root
->inode_lock
);
122 /* Will return either the node or PTR_ERR(-ENOMEM) */
123 static struct btrfs_delayed_node
*btrfs_get_or_create_delayed_node(
124 struct btrfs_inode
*btrfs_inode
)
126 struct btrfs_delayed_node
*node
;
127 struct btrfs_root
*root
= btrfs_inode
->root
;
128 u64 ino
= btrfs_ino(btrfs_inode
);
132 node
= btrfs_get_delayed_node(btrfs_inode
);
136 node
= kmem_cache_zalloc(delayed_node_cache
, GFP_NOFS
);
138 return ERR_PTR(-ENOMEM
);
139 btrfs_init_delayed_node(node
, root
, ino
);
141 /* cached in the btrfs inode and can be accessed */
142 refcount_set(&node
->refs
, 2);
144 ret
= radix_tree_preload(GFP_NOFS
);
146 kmem_cache_free(delayed_node_cache
, node
);
150 spin_lock(&root
->inode_lock
);
151 ret
= radix_tree_insert(&root
->delayed_nodes_tree
, ino
, node
);
152 if (ret
== -EEXIST
) {
153 spin_unlock(&root
->inode_lock
);
154 kmem_cache_free(delayed_node_cache
, node
);
155 radix_tree_preload_end();
158 btrfs_inode
->delayed_node
= node
;
159 spin_unlock(&root
->inode_lock
);
160 radix_tree_preload_end();
166 * Call it when holding delayed_node->mutex
168 * If mod = 1, add this node into the prepared list.
170 static void btrfs_queue_delayed_node(struct btrfs_delayed_root
*root
,
171 struct btrfs_delayed_node
*node
,
174 spin_lock(&root
->lock
);
175 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST
, &node
->flags
)) {
176 if (!list_empty(&node
->p_list
))
177 list_move_tail(&node
->p_list
, &root
->prepare_list
);
179 list_add_tail(&node
->p_list
, &root
->prepare_list
);
181 list_add_tail(&node
->n_list
, &root
->node_list
);
182 list_add_tail(&node
->p_list
, &root
->prepare_list
);
183 refcount_inc(&node
->refs
); /* inserted into list */
185 set_bit(BTRFS_DELAYED_NODE_IN_LIST
, &node
->flags
);
187 spin_unlock(&root
->lock
);
190 /* Call it when holding delayed_node->mutex */
191 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root
*root
,
192 struct btrfs_delayed_node
*node
)
194 spin_lock(&root
->lock
);
195 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST
, &node
->flags
)) {
197 refcount_dec(&node
->refs
); /* not in the list */
198 list_del_init(&node
->n_list
);
199 if (!list_empty(&node
->p_list
))
200 list_del_init(&node
->p_list
);
201 clear_bit(BTRFS_DELAYED_NODE_IN_LIST
, &node
->flags
);
203 spin_unlock(&root
->lock
);
206 static struct btrfs_delayed_node
*btrfs_first_delayed_node(
207 struct btrfs_delayed_root
*delayed_root
)
210 struct btrfs_delayed_node
*node
= NULL
;
212 spin_lock(&delayed_root
->lock
);
213 if (list_empty(&delayed_root
->node_list
))
216 p
= delayed_root
->node_list
.next
;
217 node
= list_entry(p
, struct btrfs_delayed_node
, n_list
);
218 refcount_inc(&node
->refs
);
220 spin_unlock(&delayed_root
->lock
);
225 static struct btrfs_delayed_node
*btrfs_next_delayed_node(
226 struct btrfs_delayed_node
*node
)
228 struct btrfs_delayed_root
*delayed_root
;
230 struct btrfs_delayed_node
*next
= NULL
;
232 delayed_root
= node
->root
->fs_info
->delayed_root
;
233 spin_lock(&delayed_root
->lock
);
234 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST
, &node
->flags
)) {
235 /* not in the list */
236 if (list_empty(&delayed_root
->node_list
))
238 p
= delayed_root
->node_list
.next
;
239 } else if (list_is_last(&node
->n_list
, &delayed_root
->node_list
))
242 p
= node
->n_list
.next
;
244 next
= list_entry(p
, struct btrfs_delayed_node
, n_list
);
245 refcount_inc(&next
->refs
);
247 spin_unlock(&delayed_root
->lock
);
252 static void __btrfs_release_delayed_node(
253 struct btrfs_delayed_node
*delayed_node
,
256 struct btrfs_delayed_root
*delayed_root
;
261 delayed_root
= delayed_node
->root
->fs_info
->delayed_root
;
263 mutex_lock(&delayed_node
->mutex
);
264 if (delayed_node
->count
)
265 btrfs_queue_delayed_node(delayed_root
, delayed_node
, mod
);
267 btrfs_dequeue_delayed_node(delayed_root
, delayed_node
);
268 mutex_unlock(&delayed_node
->mutex
);
270 if (refcount_dec_and_test(&delayed_node
->refs
)) {
271 struct btrfs_root
*root
= delayed_node
->root
;
273 spin_lock(&root
->inode_lock
);
275 * Once our refcount goes to zero, nobody is allowed to bump it
276 * back up. We can delete it now.
278 ASSERT(refcount_read(&delayed_node
->refs
) == 0);
279 radix_tree_delete(&root
->delayed_nodes_tree
,
280 delayed_node
->inode_id
);
281 spin_unlock(&root
->inode_lock
);
282 kmem_cache_free(delayed_node_cache
, delayed_node
);
286 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node
*node
)
288 __btrfs_release_delayed_node(node
, 0);
291 static struct btrfs_delayed_node
*btrfs_first_prepared_delayed_node(
292 struct btrfs_delayed_root
*delayed_root
)
295 struct btrfs_delayed_node
*node
= NULL
;
297 spin_lock(&delayed_root
->lock
);
298 if (list_empty(&delayed_root
->prepare_list
))
301 p
= delayed_root
->prepare_list
.next
;
303 node
= list_entry(p
, struct btrfs_delayed_node
, p_list
);
304 refcount_inc(&node
->refs
);
306 spin_unlock(&delayed_root
->lock
);
311 static inline void btrfs_release_prepared_delayed_node(
312 struct btrfs_delayed_node
*node
)
314 __btrfs_release_delayed_node(node
, 1);
317 static struct btrfs_delayed_item
*btrfs_alloc_delayed_item(u32 data_len
)
319 struct btrfs_delayed_item
*item
;
320 item
= kmalloc(sizeof(*item
) + data_len
, GFP_NOFS
);
322 item
->data_len
= data_len
;
323 item
->ins_or_del
= 0;
324 item
->bytes_reserved
= 0;
325 item
->delayed_node
= NULL
;
326 refcount_set(&item
->refs
, 1);
332 * __btrfs_lookup_delayed_item - look up the delayed item by key
333 * @delayed_node: pointer to the delayed node
334 * @key: the key to look up
335 * @prev: used to store the prev item if the right item isn't found
336 * @next: used to store the next item if the right item isn't found
338 * Note: if we don't find the right item, we will return the prev item and
341 static struct btrfs_delayed_item
*__btrfs_lookup_delayed_item(
342 struct rb_root
*root
,
343 struct btrfs_key
*key
,
344 struct btrfs_delayed_item
**prev
,
345 struct btrfs_delayed_item
**next
)
347 struct rb_node
*node
, *prev_node
= NULL
;
348 struct btrfs_delayed_item
*delayed_item
= NULL
;
351 node
= root
->rb_node
;
354 delayed_item
= rb_entry(node
, struct btrfs_delayed_item
,
357 ret
= btrfs_comp_cpu_keys(&delayed_item
->key
, key
);
359 node
= node
->rb_right
;
361 node
= node
->rb_left
;
370 *prev
= delayed_item
;
371 else if ((node
= rb_prev(prev_node
)) != NULL
) {
372 *prev
= rb_entry(node
, struct btrfs_delayed_item
,
382 *next
= delayed_item
;
383 else if ((node
= rb_next(prev_node
)) != NULL
) {
384 *next
= rb_entry(node
, struct btrfs_delayed_item
,
392 static struct btrfs_delayed_item
*__btrfs_lookup_delayed_insertion_item(
393 struct btrfs_delayed_node
*delayed_node
,
394 struct btrfs_key
*key
)
396 return __btrfs_lookup_delayed_item(&delayed_node
->ins_root
.rb_root
, key
,
400 static int __btrfs_add_delayed_item(struct btrfs_delayed_node
*delayed_node
,
401 struct btrfs_delayed_item
*ins
,
404 struct rb_node
**p
, *node
;
405 struct rb_node
*parent_node
= NULL
;
406 struct rb_root_cached
*root
;
407 struct btrfs_delayed_item
*item
;
409 bool leftmost
= true;
411 if (action
== BTRFS_DELAYED_INSERTION_ITEM
)
412 root
= &delayed_node
->ins_root
;
413 else if (action
== BTRFS_DELAYED_DELETION_ITEM
)
414 root
= &delayed_node
->del_root
;
417 p
= &root
->rb_root
.rb_node
;
418 node
= &ins
->rb_node
;
422 item
= rb_entry(parent_node
, struct btrfs_delayed_item
,
425 cmp
= btrfs_comp_cpu_keys(&item
->key
, &ins
->key
);
429 } else if (cmp
> 0) {
436 rb_link_node(node
, parent_node
, p
);
437 rb_insert_color_cached(node
, root
, leftmost
);
438 ins
->delayed_node
= delayed_node
;
439 ins
->ins_or_del
= action
;
441 if (ins
->key
.type
== BTRFS_DIR_INDEX_KEY
&&
442 action
== BTRFS_DELAYED_INSERTION_ITEM
&&
443 ins
->key
.offset
>= delayed_node
->index_cnt
)
444 delayed_node
->index_cnt
= ins
->key
.offset
+ 1;
446 delayed_node
->count
++;
447 atomic_inc(&delayed_node
->root
->fs_info
->delayed_root
->items
);
451 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node
*node
,
452 struct btrfs_delayed_item
*item
)
454 return __btrfs_add_delayed_item(node
, item
,
455 BTRFS_DELAYED_INSERTION_ITEM
);
458 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node
*node
,
459 struct btrfs_delayed_item
*item
)
461 return __btrfs_add_delayed_item(node
, item
,
462 BTRFS_DELAYED_DELETION_ITEM
);
465 static void finish_one_item(struct btrfs_delayed_root
*delayed_root
)
467 int seq
= atomic_inc_return(&delayed_root
->items_seq
);
469 /* atomic_dec_return implies a barrier */
470 if ((atomic_dec_return(&delayed_root
->items
) <
471 BTRFS_DELAYED_BACKGROUND
|| seq
% BTRFS_DELAYED_BATCH
== 0))
472 cond_wake_up_nomb(&delayed_root
->wait
);
475 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item
*delayed_item
)
477 struct rb_root_cached
*root
;
478 struct btrfs_delayed_root
*delayed_root
;
480 /* Not associated with any delayed_node */
481 if (!delayed_item
->delayed_node
)
483 delayed_root
= delayed_item
->delayed_node
->root
->fs_info
->delayed_root
;
485 BUG_ON(!delayed_root
);
486 BUG_ON(delayed_item
->ins_or_del
!= BTRFS_DELAYED_DELETION_ITEM
&&
487 delayed_item
->ins_or_del
!= BTRFS_DELAYED_INSERTION_ITEM
);
489 if (delayed_item
->ins_or_del
== BTRFS_DELAYED_INSERTION_ITEM
)
490 root
= &delayed_item
->delayed_node
->ins_root
;
492 root
= &delayed_item
->delayed_node
->del_root
;
494 rb_erase_cached(&delayed_item
->rb_node
, root
);
495 delayed_item
->delayed_node
->count
--;
497 finish_one_item(delayed_root
);
500 static void btrfs_release_delayed_item(struct btrfs_delayed_item
*item
)
503 __btrfs_remove_delayed_item(item
);
504 if (refcount_dec_and_test(&item
->refs
))
509 static struct btrfs_delayed_item
*__btrfs_first_delayed_insertion_item(
510 struct btrfs_delayed_node
*delayed_node
)
513 struct btrfs_delayed_item
*item
= NULL
;
515 p
= rb_first_cached(&delayed_node
->ins_root
);
517 item
= rb_entry(p
, struct btrfs_delayed_item
, rb_node
);
522 static struct btrfs_delayed_item
*__btrfs_first_delayed_deletion_item(
523 struct btrfs_delayed_node
*delayed_node
)
526 struct btrfs_delayed_item
*item
= NULL
;
528 p
= rb_first_cached(&delayed_node
->del_root
);
530 item
= rb_entry(p
, struct btrfs_delayed_item
, rb_node
);
535 static struct btrfs_delayed_item
*__btrfs_next_delayed_item(
536 struct btrfs_delayed_item
*item
)
539 struct btrfs_delayed_item
*next
= NULL
;
541 p
= rb_next(&item
->rb_node
);
543 next
= rb_entry(p
, struct btrfs_delayed_item
, rb_node
);
548 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle
*trans
,
549 struct btrfs_root
*root
,
550 struct btrfs_delayed_item
*item
)
552 struct btrfs_block_rsv
*src_rsv
;
553 struct btrfs_block_rsv
*dst_rsv
;
554 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
558 if (!trans
->bytes_reserved
)
561 src_rsv
= trans
->block_rsv
;
562 dst_rsv
= &fs_info
->delayed_block_rsv
;
564 num_bytes
= btrfs_calc_insert_metadata_size(fs_info
, 1);
567 * Here we migrate space rsv from transaction rsv, since have already
568 * reserved space when starting a transaction. So no need to reserve
571 ret
= btrfs_block_rsv_migrate(src_rsv
, dst_rsv
, num_bytes
, true);
573 trace_btrfs_space_reservation(fs_info
, "delayed_item",
576 item
->bytes_reserved
= num_bytes
;
582 static void btrfs_delayed_item_release_metadata(struct btrfs_root
*root
,
583 struct btrfs_delayed_item
*item
)
585 struct btrfs_block_rsv
*rsv
;
586 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
588 if (!item
->bytes_reserved
)
591 rsv
= &fs_info
->delayed_block_rsv
;
593 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
594 * to release/reserve qgroup space.
596 trace_btrfs_space_reservation(fs_info
, "delayed_item",
597 item
->key
.objectid
, item
->bytes_reserved
,
599 btrfs_block_rsv_release(fs_info
, rsv
, item
->bytes_reserved
, NULL
);
602 static int btrfs_delayed_inode_reserve_metadata(
603 struct btrfs_trans_handle
*trans
,
604 struct btrfs_root
*root
,
605 struct btrfs_inode
*inode
,
606 struct btrfs_delayed_node
*node
)
608 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
609 struct btrfs_block_rsv
*src_rsv
;
610 struct btrfs_block_rsv
*dst_rsv
;
614 src_rsv
= trans
->block_rsv
;
615 dst_rsv
= &fs_info
->delayed_block_rsv
;
617 num_bytes
= btrfs_calc_metadata_size(fs_info
, 1);
620 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
621 * which doesn't reserve space for speed. This is a problem since we
622 * still need to reserve space for this update, so try to reserve the
625 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
626 * we always reserve enough to update the inode item.
628 if (!src_rsv
|| (!trans
->bytes_reserved
&&
629 src_rsv
->type
!= BTRFS_BLOCK_RSV_DELALLOC
)) {
630 ret
= btrfs_qgroup_reserve_meta_prealloc(root
, num_bytes
, true);
633 ret
= btrfs_block_rsv_add(root
, dst_rsv
, num_bytes
,
634 BTRFS_RESERVE_NO_FLUSH
);
636 * Since we're under a transaction reserve_metadata_bytes could
637 * try to commit the transaction which will make it return
638 * EAGAIN to make us stop the transaction we have, so return
639 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
641 if (ret
== -EAGAIN
) {
643 btrfs_qgroup_free_meta_prealloc(root
, num_bytes
);
646 node
->bytes_reserved
= num_bytes
;
647 trace_btrfs_space_reservation(fs_info
,
652 btrfs_qgroup_free_meta_prealloc(root
, fs_info
->nodesize
);
657 ret
= btrfs_block_rsv_migrate(src_rsv
, dst_rsv
, num_bytes
, true);
659 trace_btrfs_space_reservation(fs_info
, "delayed_inode",
660 btrfs_ino(inode
), num_bytes
, 1);
661 node
->bytes_reserved
= num_bytes
;
667 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info
*fs_info
,
668 struct btrfs_delayed_node
*node
,
671 struct btrfs_block_rsv
*rsv
;
673 if (!node
->bytes_reserved
)
676 rsv
= &fs_info
->delayed_block_rsv
;
677 trace_btrfs_space_reservation(fs_info
, "delayed_inode",
678 node
->inode_id
, node
->bytes_reserved
, 0);
679 btrfs_block_rsv_release(fs_info
, rsv
, node
->bytes_reserved
, NULL
);
681 btrfs_qgroup_free_meta_prealloc(node
->root
,
682 node
->bytes_reserved
);
684 btrfs_qgroup_convert_reserved_meta(node
->root
,
685 node
->bytes_reserved
);
686 node
->bytes_reserved
= 0;
690 * This helper will insert some continuous items into the same leaf according
691 * to the free space of the leaf.
693 static int btrfs_batch_insert_items(struct btrfs_root
*root
,
694 struct btrfs_path
*path
,
695 struct btrfs_delayed_item
*item
)
697 struct btrfs_delayed_item
*curr
, *next
;
699 int total_data_size
= 0, total_size
= 0;
700 struct extent_buffer
*leaf
;
702 struct btrfs_key
*keys
;
704 struct list_head head
;
710 BUG_ON(!path
->nodes
[0]);
712 leaf
= path
->nodes
[0];
713 free_space
= btrfs_leaf_free_space(leaf
);
714 INIT_LIST_HEAD(&head
);
720 * count the number of the continuous items that we can insert in batch
722 while (total_size
+ next
->data_len
+ sizeof(struct btrfs_item
) <=
724 total_data_size
+= next
->data_len
;
725 total_size
+= next
->data_len
+ sizeof(struct btrfs_item
);
726 list_add_tail(&next
->tree_list
, &head
);
730 next
= __btrfs_next_delayed_item(curr
);
734 if (!btrfs_is_continuous_delayed_item(curr
, next
))
743 keys
= kmalloc_array(nitems
, sizeof(struct btrfs_key
), GFP_NOFS
);
749 data_size
= kmalloc_array(nitems
, sizeof(u32
), GFP_NOFS
);
755 /* get keys of all the delayed items */
757 list_for_each_entry(next
, &head
, tree_list
) {
759 data_size
[i
] = next
->data_len
;
763 /* insert the keys of the items */
764 setup_items_for_insert(root
, path
, keys
, data_size
, nitems
);
766 /* insert the dir index items */
767 slot
= path
->slots
[0];
768 list_for_each_entry_safe(curr
, next
, &head
, tree_list
) {
769 data_ptr
= btrfs_item_ptr(leaf
, slot
, char);
770 write_extent_buffer(leaf
, &curr
->data
,
771 (unsigned long)data_ptr
,
775 btrfs_delayed_item_release_metadata(root
, curr
);
777 list_del(&curr
->tree_list
);
778 btrfs_release_delayed_item(curr
);
789 * This helper can just do simple insertion that needn't extend item for new
790 * data, such as directory name index insertion, inode insertion.
792 static int btrfs_insert_delayed_item(struct btrfs_trans_handle
*trans
,
793 struct btrfs_root
*root
,
794 struct btrfs_path
*path
,
795 struct btrfs_delayed_item
*delayed_item
)
797 struct extent_buffer
*leaf
;
798 unsigned int nofs_flag
;
802 nofs_flag
= memalloc_nofs_save();
803 ret
= btrfs_insert_empty_item(trans
, root
, path
, &delayed_item
->key
,
804 delayed_item
->data_len
);
805 memalloc_nofs_restore(nofs_flag
);
806 if (ret
< 0 && ret
!= -EEXIST
)
809 leaf
= path
->nodes
[0];
811 ptr
= btrfs_item_ptr(leaf
, path
->slots
[0], char);
813 write_extent_buffer(leaf
, delayed_item
->data
, (unsigned long)ptr
,
814 delayed_item
->data_len
);
815 btrfs_mark_buffer_dirty(leaf
);
817 btrfs_delayed_item_release_metadata(root
, delayed_item
);
822 * we insert an item first, then if there are some continuous items, we try
823 * to insert those items into the same leaf.
825 static int btrfs_insert_delayed_items(struct btrfs_trans_handle
*trans
,
826 struct btrfs_path
*path
,
827 struct btrfs_root
*root
,
828 struct btrfs_delayed_node
*node
)
830 struct btrfs_delayed_item
*curr
, *prev
;
834 mutex_lock(&node
->mutex
);
835 curr
= __btrfs_first_delayed_insertion_item(node
);
839 ret
= btrfs_insert_delayed_item(trans
, root
, path
, curr
);
841 btrfs_release_path(path
);
846 curr
= __btrfs_next_delayed_item(prev
);
847 if (curr
&& btrfs_is_continuous_delayed_item(prev
, curr
)) {
848 /* insert the continuous items into the same leaf */
850 btrfs_batch_insert_items(root
, path
, curr
);
852 btrfs_release_delayed_item(prev
);
853 btrfs_mark_buffer_dirty(path
->nodes
[0]);
855 btrfs_release_path(path
);
856 mutex_unlock(&node
->mutex
);
860 mutex_unlock(&node
->mutex
);
864 static int btrfs_batch_delete_items(struct btrfs_trans_handle
*trans
,
865 struct btrfs_root
*root
,
866 struct btrfs_path
*path
,
867 struct btrfs_delayed_item
*item
)
869 struct btrfs_delayed_item
*curr
, *next
;
870 struct extent_buffer
*leaf
;
871 struct btrfs_key key
;
872 struct list_head head
;
873 int nitems
, i
, last_item
;
876 BUG_ON(!path
->nodes
[0]);
878 leaf
= path
->nodes
[0];
881 last_item
= btrfs_header_nritems(leaf
) - 1;
883 return -ENOENT
; /* FIXME: Is errno suitable? */
886 INIT_LIST_HEAD(&head
);
887 btrfs_item_key_to_cpu(leaf
, &key
, i
);
890 * count the number of the dir index items that we can delete in batch
892 while (btrfs_comp_cpu_keys(&next
->key
, &key
) == 0) {
893 list_add_tail(&next
->tree_list
, &head
);
897 next
= __btrfs_next_delayed_item(curr
);
901 if (!btrfs_is_continuous_delayed_item(curr
, next
))
907 btrfs_item_key_to_cpu(leaf
, &key
, i
);
913 ret
= btrfs_del_items(trans
, root
, path
, path
->slots
[0], nitems
);
917 list_for_each_entry_safe(curr
, next
, &head
, tree_list
) {
918 btrfs_delayed_item_release_metadata(root
, curr
);
919 list_del(&curr
->tree_list
);
920 btrfs_release_delayed_item(curr
);
927 static int btrfs_delete_delayed_items(struct btrfs_trans_handle
*trans
,
928 struct btrfs_path
*path
,
929 struct btrfs_root
*root
,
930 struct btrfs_delayed_node
*node
)
932 struct btrfs_delayed_item
*curr
, *prev
;
933 unsigned int nofs_flag
;
937 mutex_lock(&node
->mutex
);
938 curr
= __btrfs_first_delayed_deletion_item(node
);
942 nofs_flag
= memalloc_nofs_save();
943 ret
= btrfs_search_slot(trans
, root
, &curr
->key
, path
, -1, 1);
944 memalloc_nofs_restore(nofs_flag
);
949 * can't find the item which the node points to, so this node
950 * is invalid, just drop it.
953 curr
= __btrfs_next_delayed_item(prev
);
954 btrfs_release_delayed_item(prev
);
956 btrfs_release_path(path
);
958 mutex_unlock(&node
->mutex
);
964 btrfs_batch_delete_items(trans
, root
, path
, curr
);
965 btrfs_release_path(path
);
966 mutex_unlock(&node
->mutex
);
970 btrfs_release_path(path
);
971 mutex_unlock(&node
->mutex
);
975 static void btrfs_release_delayed_inode(struct btrfs_delayed_node
*delayed_node
)
977 struct btrfs_delayed_root
*delayed_root
;
980 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &delayed_node
->flags
)) {
981 BUG_ON(!delayed_node
->root
);
982 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &delayed_node
->flags
);
983 delayed_node
->count
--;
985 delayed_root
= delayed_node
->root
->fs_info
->delayed_root
;
986 finish_one_item(delayed_root
);
990 static void btrfs_release_delayed_iref(struct btrfs_delayed_node
*delayed_node
)
992 struct btrfs_delayed_root
*delayed_root
;
994 ASSERT(delayed_node
->root
);
995 clear_bit(BTRFS_DELAYED_NODE_DEL_IREF
, &delayed_node
->flags
);
996 delayed_node
->count
--;
998 delayed_root
= delayed_node
->root
->fs_info
->delayed_root
;
999 finish_one_item(delayed_root
);
1002 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle
*trans
,
1003 struct btrfs_root
*root
,
1004 struct btrfs_path
*path
,
1005 struct btrfs_delayed_node
*node
)
1007 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1008 struct btrfs_key key
;
1009 struct btrfs_inode_item
*inode_item
;
1010 struct extent_buffer
*leaf
;
1011 unsigned int nofs_flag
;
1015 key
.objectid
= node
->inode_id
;
1016 key
.type
= BTRFS_INODE_ITEM_KEY
;
1019 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF
, &node
->flags
))
1024 nofs_flag
= memalloc_nofs_save();
1025 ret
= btrfs_lookup_inode(trans
, root
, path
, &key
, mod
);
1026 memalloc_nofs_restore(nofs_flag
);
1028 btrfs_release_path(path
);
1030 } else if (ret
< 0) {
1034 leaf
= path
->nodes
[0];
1035 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
1036 struct btrfs_inode_item
);
1037 write_extent_buffer(leaf
, &node
->inode_item
, (unsigned long)inode_item
,
1038 sizeof(struct btrfs_inode_item
));
1039 btrfs_mark_buffer_dirty(leaf
);
1041 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF
, &node
->flags
))
1045 if (path
->slots
[0] >= btrfs_header_nritems(leaf
))
1048 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1049 if (key
.objectid
!= node
->inode_id
)
1052 if (key
.type
!= BTRFS_INODE_REF_KEY
&&
1053 key
.type
!= BTRFS_INODE_EXTREF_KEY
)
1057 * Delayed iref deletion is for the inode who has only one link,
1058 * so there is only one iref. The case that several irefs are
1059 * in the same item doesn't exist.
1061 btrfs_del_item(trans
, root
, path
);
1063 btrfs_release_delayed_iref(node
);
1065 btrfs_release_path(path
);
1067 btrfs_delayed_inode_release_metadata(fs_info
, node
, (ret
< 0));
1068 btrfs_release_delayed_inode(node
);
1073 btrfs_release_path(path
);
1075 key
.type
= BTRFS_INODE_EXTREF_KEY
;
1078 nofs_flag
= memalloc_nofs_save();
1079 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1080 memalloc_nofs_restore(nofs_flag
);
1086 leaf
= path
->nodes
[0];
1091 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle
*trans
,
1092 struct btrfs_root
*root
,
1093 struct btrfs_path
*path
,
1094 struct btrfs_delayed_node
*node
)
1098 mutex_lock(&node
->mutex
);
1099 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &node
->flags
)) {
1100 mutex_unlock(&node
->mutex
);
1104 ret
= __btrfs_update_delayed_inode(trans
, root
, path
, node
);
1105 mutex_unlock(&node
->mutex
);
1110 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle
*trans
,
1111 struct btrfs_path
*path
,
1112 struct btrfs_delayed_node
*node
)
1116 ret
= btrfs_insert_delayed_items(trans
, path
, node
->root
, node
);
1120 ret
= btrfs_delete_delayed_items(trans
, path
, node
->root
, node
);
1124 ret
= btrfs_update_delayed_inode(trans
, node
->root
, path
, node
);
1129 * Called when committing the transaction.
1130 * Returns 0 on success.
1131 * Returns < 0 on error and returns with an aborted transaction with any
1132 * outstanding delayed items cleaned up.
1134 static int __btrfs_run_delayed_items(struct btrfs_trans_handle
*trans
, int nr
)
1136 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1137 struct btrfs_delayed_root
*delayed_root
;
1138 struct btrfs_delayed_node
*curr_node
, *prev_node
;
1139 struct btrfs_path
*path
;
1140 struct btrfs_block_rsv
*block_rsv
;
1142 bool count
= (nr
> 0);
1144 if (TRANS_ABORTED(trans
))
1147 path
= btrfs_alloc_path();
1151 block_rsv
= trans
->block_rsv
;
1152 trans
->block_rsv
= &fs_info
->delayed_block_rsv
;
1154 delayed_root
= fs_info
->delayed_root
;
1156 curr_node
= btrfs_first_delayed_node(delayed_root
);
1157 while (curr_node
&& (!count
|| (count
&& nr
--))) {
1158 ret
= __btrfs_commit_inode_delayed_items(trans
, path
,
1161 btrfs_release_delayed_node(curr_node
);
1163 btrfs_abort_transaction(trans
, ret
);
1167 prev_node
= curr_node
;
1168 curr_node
= btrfs_next_delayed_node(curr_node
);
1169 btrfs_release_delayed_node(prev_node
);
1173 btrfs_release_delayed_node(curr_node
);
1174 btrfs_free_path(path
);
1175 trans
->block_rsv
= block_rsv
;
1180 int btrfs_run_delayed_items(struct btrfs_trans_handle
*trans
)
1182 return __btrfs_run_delayed_items(trans
, -1);
1185 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle
*trans
, int nr
)
1187 return __btrfs_run_delayed_items(trans
, nr
);
1190 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle
*trans
,
1191 struct btrfs_inode
*inode
)
1193 struct btrfs_delayed_node
*delayed_node
= btrfs_get_delayed_node(inode
);
1194 struct btrfs_path
*path
;
1195 struct btrfs_block_rsv
*block_rsv
;
1201 mutex_lock(&delayed_node
->mutex
);
1202 if (!delayed_node
->count
) {
1203 mutex_unlock(&delayed_node
->mutex
);
1204 btrfs_release_delayed_node(delayed_node
);
1207 mutex_unlock(&delayed_node
->mutex
);
1209 path
= btrfs_alloc_path();
1211 btrfs_release_delayed_node(delayed_node
);
1215 block_rsv
= trans
->block_rsv
;
1216 trans
->block_rsv
= &delayed_node
->root
->fs_info
->delayed_block_rsv
;
1218 ret
= __btrfs_commit_inode_delayed_items(trans
, path
, delayed_node
);
1220 btrfs_release_delayed_node(delayed_node
);
1221 btrfs_free_path(path
);
1222 trans
->block_rsv
= block_rsv
;
1227 int btrfs_commit_inode_delayed_inode(struct btrfs_inode
*inode
)
1229 struct btrfs_fs_info
*fs_info
= inode
->root
->fs_info
;
1230 struct btrfs_trans_handle
*trans
;
1231 struct btrfs_delayed_node
*delayed_node
= btrfs_get_delayed_node(inode
);
1232 struct btrfs_path
*path
;
1233 struct btrfs_block_rsv
*block_rsv
;
1239 mutex_lock(&delayed_node
->mutex
);
1240 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &delayed_node
->flags
)) {
1241 mutex_unlock(&delayed_node
->mutex
);
1242 btrfs_release_delayed_node(delayed_node
);
1245 mutex_unlock(&delayed_node
->mutex
);
1247 trans
= btrfs_join_transaction(delayed_node
->root
);
1248 if (IS_ERR(trans
)) {
1249 ret
= PTR_ERR(trans
);
1253 path
= btrfs_alloc_path();
1259 block_rsv
= trans
->block_rsv
;
1260 trans
->block_rsv
= &fs_info
->delayed_block_rsv
;
1262 mutex_lock(&delayed_node
->mutex
);
1263 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &delayed_node
->flags
))
1264 ret
= __btrfs_update_delayed_inode(trans
, delayed_node
->root
,
1265 path
, delayed_node
);
1268 mutex_unlock(&delayed_node
->mutex
);
1270 btrfs_free_path(path
);
1271 trans
->block_rsv
= block_rsv
;
1273 btrfs_end_transaction(trans
);
1274 btrfs_btree_balance_dirty(fs_info
);
1276 btrfs_release_delayed_node(delayed_node
);
1281 void btrfs_remove_delayed_node(struct btrfs_inode
*inode
)
1283 struct btrfs_delayed_node
*delayed_node
;
1285 delayed_node
= READ_ONCE(inode
->delayed_node
);
1289 inode
->delayed_node
= NULL
;
1290 btrfs_release_delayed_node(delayed_node
);
1293 struct btrfs_async_delayed_work
{
1294 struct btrfs_delayed_root
*delayed_root
;
1296 struct btrfs_work work
;
1299 static void btrfs_async_run_delayed_root(struct btrfs_work
*work
)
1301 struct btrfs_async_delayed_work
*async_work
;
1302 struct btrfs_delayed_root
*delayed_root
;
1303 struct btrfs_trans_handle
*trans
;
1304 struct btrfs_path
*path
;
1305 struct btrfs_delayed_node
*delayed_node
= NULL
;
1306 struct btrfs_root
*root
;
1307 struct btrfs_block_rsv
*block_rsv
;
1310 async_work
= container_of(work
, struct btrfs_async_delayed_work
, work
);
1311 delayed_root
= async_work
->delayed_root
;
1313 path
= btrfs_alloc_path();
1318 if (atomic_read(&delayed_root
->items
) <
1319 BTRFS_DELAYED_BACKGROUND
/ 2)
1322 delayed_node
= btrfs_first_prepared_delayed_node(delayed_root
);
1326 root
= delayed_node
->root
;
1328 trans
= btrfs_join_transaction(root
);
1329 if (IS_ERR(trans
)) {
1330 btrfs_release_path(path
);
1331 btrfs_release_prepared_delayed_node(delayed_node
);
1336 block_rsv
= trans
->block_rsv
;
1337 trans
->block_rsv
= &root
->fs_info
->delayed_block_rsv
;
1339 __btrfs_commit_inode_delayed_items(trans
, path
, delayed_node
);
1341 trans
->block_rsv
= block_rsv
;
1342 btrfs_end_transaction(trans
);
1343 btrfs_btree_balance_dirty_nodelay(root
->fs_info
);
1345 btrfs_release_path(path
);
1346 btrfs_release_prepared_delayed_node(delayed_node
);
1349 } while ((async_work
->nr
== 0 && total_done
< BTRFS_DELAYED_WRITEBACK
)
1350 || total_done
< async_work
->nr
);
1352 btrfs_free_path(path
);
1354 wake_up(&delayed_root
->wait
);
1359 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root
*delayed_root
,
1360 struct btrfs_fs_info
*fs_info
, int nr
)
1362 struct btrfs_async_delayed_work
*async_work
;
1364 async_work
= kmalloc(sizeof(*async_work
), GFP_NOFS
);
1368 async_work
->delayed_root
= delayed_root
;
1369 btrfs_init_work(&async_work
->work
, btrfs_async_run_delayed_root
, NULL
,
1371 async_work
->nr
= nr
;
1373 btrfs_queue_work(fs_info
->delayed_workers
, &async_work
->work
);
1377 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info
*fs_info
)
1379 WARN_ON(btrfs_first_delayed_node(fs_info
->delayed_root
));
1382 static int could_end_wait(struct btrfs_delayed_root
*delayed_root
, int seq
)
1384 int val
= atomic_read(&delayed_root
->items_seq
);
1386 if (val
< seq
|| val
>= seq
+ BTRFS_DELAYED_BATCH
)
1389 if (atomic_read(&delayed_root
->items
) < BTRFS_DELAYED_BACKGROUND
)
1395 void btrfs_balance_delayed_items(struct btrfs_fs_info
*fs_info
)
1397 struct btrfs_delayed_root
*delayed_root
= fs_info
->delayed_root
;
1399 if ((atomic_read(&delayed_root
->items
) < BTRFS_DELAYED_BACKGROUND
) ||
1400 btrfs_workqueue_normal_congested(fs_info
->delayed_workers
))
1403 if (atomic_read(&delayed_root
->items
) >= BTRFS_DELAYED_WRITEBACK
) {
1407 seq
= atomic_read(&delayed_root
->items_seq
);
1409 ret
= btrfs_wq_run_delayed_node(delayed_root
, fs_info
, 0);
1413 wait_event_interruptible(delayed_root
->wait
,
1414 could_end_wait(delayed_root
, seq
));
1418 btrfs_wq_run_delayed_node(delayed_root
, fs_info
, BTRFS_DELAYED_BATCH
);
1421 /* Will return 0 or -ENOMEM */
1422 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle
*trans
,
1423 const char *name
, int name_len
,
1424 struct btrfs_inode
*dir
,
1425 struct btrfs_disk_key
*disk_key
, u8 type
,
1428 struct btrfs_delayed_node
*delayed_node
;
1429 struct btrfs_delayed_item
*delayed_item
;
1430 struct btrfs_dir_item
*dir_item
;
1433 delayed_node
= btrfs_get_or_create_delayed_node(dir
);
1434 if (IS_ERR(delayed_node
))
1435 return PTR_ERR(delayed_node
);
1437 delayed_item
= btrfs_alloc_delayed_item(sizeof(*dir_item
) + name_len
);
1438 if (!delayed_item
) {
1443 delayed_item
->key
.objectid
= btrfs_ino(dir
);
1444 delayed_item
->key
.type
= BTRFS_DIR_INDEX_KEY
;
1445 delayed_item
->key
.offset
= index
;
1447 dir_item
= (struct btrfs_dir_item
*)delayed_item
->data
;
1448 dir_item
->location
= *disk_key
;
1449 btrfs_set_stack_dir_transid(dir_item
, trans
->transid
);
1450 btrfs_set_stack_dir_data_len(dir_item
, 0);
1451 btrfs_set_stack_dir_name_len(dir_item
, name_len
);
1452 btrfs_set_stack_dir_type(dir_item
, type
);
1453 memcpy((char *)(dir_item
+ 1), name
, name_len
);
1455 ret
= btrfs_delayed_item_reserve_metadata(trans
, dir
->root
, delayed_item
);
1457 * we have reserved enough space when we start a new transaction,
1458 * so reserving metadata failure is impossible
1462 mutex_lock(&delayed_node
->mutex
);
1463 ret
= __btrfs_add_delayed_insertion_item(delayed_node
, delayed_item
);
1464 if (unlikely(ret
)) {
1465 btrfs_err(trans
->fs_info
,
1466 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1467 name_len
, name
, delayed_node
->root
->root_key
.objectid
,
1468 delayed_node
->inode_id
, ret
);
1471 mutex_unlock(&delayed_node
->mutex
);
1474 btrfs_release_delayed_node(delayed_node
);
1478 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info
*fs_info
,
1479 struct btrfs_delayed_node
*node
,
1480 struct btrfs_key
*key
)
1482 struct btrfs_delayed_item
*item
;
1484 mutex_lock(&node
->mutex
);
1485 item
= __btrfs_lookup_delayed_insertion_item(node
, key
);
1487 mutex_unlock(&node
->mutex
);
1491 btrfs_delayed_item_release_metadata(node
->root
, item
);
1492 btrfs_release_delayed_item(item
);
1493 mutex_unlock(&node
->mutex
);
1497 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle
*trans
,
1498 struct btrfs_inode
*dir
, u64 index
)
1500 struct btrfs_delayed_node
*node
;
1501 struct btrfs_delayed_item
*item
;
1502 struct btrfs_key item_key
;
1505 node
= btrfs_get_or_create_delayed_node(dir
);
1507 return PTR_ERR(node
);
1509 item_key
.objectid
= btrfs_ino(dir
);
1510 item_key
.type
= BTRFS_DIR_INDEX_KEY
;
1511 item_key
.offset
= index
;
1513 ret
= btrfs_delete_delayed_insertion_item(trans
->fs_info
, node
,
1518 item
= btrfs_alloc_delayed_item(0);
1524 item
->key
= item_key
;
1526 ret
= btrfs_delayed_item_reserve_metadata(trans
, dir
->root
, item
);
1528 * we have reserved enough space when we start a new transaction,
1529 * so reserving metadata failure is impossible.
1532 btrfs_err(trans
->fs_info
,
1533 "metadata reservation failed for delayed dir item deltiona, should have been reserved");
1534 btrfs_release_delayed_item(item
);
1538 mutex_lock(&node
->mutex
);
1539 ret
= __btrfs_add_delayed_deletion_item(node
, item
);
1540 if (unlikely(ret
)) {
1541 btrfs_err(trans
->fs_info
,
1542 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1543 index
, node
->root
->root_key
.objectid
,
1544 node
->inode_id
, ret
);
1545 btrfs_delayed_item_release_metadata(dir
->root
, item
);
1546 btrfs_release_delayed_item(item
);
1548 mutex_unlock(&node
->mutex
);
1550 btrfs_release_delayed_node(node
);
1554 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode
*inode
)
1556 struct btrfs_delayed_node
*delayed_node
= btrfs_get_delayed_node(inode
);
1562 * Since we have held i_mutex of this directory, it is impossible that
1563 * a new directory index is added into the delayed node and index_cnt
1564 * is updated now. So we needn't lock the delayed node.
1566 if (!delayed_node
->index_cnt
) {
1567 btrfs_release_delayed_node(delayed_node
);
1571 inode
->index_cnt
= delayed_node
->index_cnt
;
1572 btrfs_release_delayed_node(delayed_node
);
1576 bool btrfs_readdir_get_delayed_items(struct inode
*inode
,
1577 struct list_head
*ins_list
,
1578 struct list_head
*del_list
)
1580 struct btrfs_delayed_node
*delayed_node
;
1581 struct btrfs_delayed_item
*item
;
1583 delayed_node
= btrfs_get_delayed_node(BTRFS_I(inode
));
1588 * We can only do one readdir with delayed items at a time because of
1589 * item->readdir_list.
1591 inode_unlock_shared(inode
);
1594 mutex_lock(&delayed_node
->mutex
);
1595 item
= __btrfs_first_delayed_insertion_item(delayed_node
);
1597 refcount_inc(&item
->refs
);
1598 list_add_tail(&item
->readdir_list
, ins_list
);
1599 item
= __btrfs_next_delayed_item(item
);
1602 item
= __btrfs_first_delayed_deletion_item(delayed_node
);
1604 refcount_inc(&item
->refs
);
1605 list_add_tail(&item
->readdir_list
, del_list
);
1606 item
= __btrfs_next_delayed_item(item
);
1608 mutex_unlock(&delayed_node
->mutex
);
1610 * This delayed node is still cached in the btrfs inode, so refs
1611 * must be > 1 now, and we needn't check it is going to be freed
1614 * Besides that, this function is used to read dir, we do not
1615 * insert/delete delayed items in this period. So we also needn't
1616 * requeue or dequeue this delayed node.
1618 refcount_dec(&delayed_node
->refs
);
1623 void btrfs_readdir_put_delayed_items(struct inode
*inode
,
1624 struct list_head
*ins_list
,
1625 struct list_head
*del_list
)
1627 struct btrfs_delayed_item
*curr
, *next
;
1629 list_for_each_entry_safe(curr
, next
, ins_list
, readdir_list
) {
1630 list_del(&curr
->readdir_list
);
1631 if (refcount_dec_and_test(&curr
->refs
))
1635 list_for_each_entry_safe(curr
, next
, del_list
, readdir_list
) {
1636 list_del(&curr
->readdir_list
);
1637 if (refcount_dec_and_test(&curr
->refs
))
1642 * The VFS is going to do up_read(), so we need to downgrade back to a
1645 downgrade_write(&inode
->i_rwsem
);
1648 int btrfs_should_delete_dir_index(struct list_head
*del_list
,
1651 struct btrfs_delayed_item
*curr
;
1654 list_for_each_entry(curr
, del_list
, readdir_list
) {
1655 if (curr
->key
.offset
> index
)
1657 if (curr
->key
.offset
== index
) {
1666 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1669 int btrfs_readdir_delayed_dir_index(struct dir_context
*ctx
,
1670 struct list_head
*ins_list
)
1672 struct btrfs_dir_item
*di
;
1673 struct btrfs_delayed_item
*curr
, *next
;
1674 struct btrfs_key location
;
1678 unsigned char d_type
;
1680 if (list_empty(ins_list
))
1684 * Changing the data of the delayed item is impossible. So
1685 * we needn't lock them. And we have held i_mutex of the
1686 * directory, nobody can delete any directory indexes now.
1688 list_for_each_entry_safe(curr
, next
, ins_list
, readdir_list
) {
1689 list_del(&curr
->readdir_list
);
1691 if (curr
->key
.offset
< ctx
->pos
) {
1692 if (refcount_dec_and_test(&curr
->refs
))
1697 ctx
->pos
= curr
->key
.offset
;
1699 di
= (struct btrfs_dir_item
*)curr
->data
;
1700 name
= (char *)(di
+ 1);
1701 name_len
= btrfs_stack_dir_name_len(di
);
1703 d_type
= fs_ftype_to_dtype(di
->type
);
1704 btrfs_disk_key_to_cpu(&location
, &di
->location
);
1706 over
= !dir_emit(ctx
, name
, name_len
,
1707 location
.objectid
, d_type
);
1709 if (refcount_dec_and_test(&curr
->refs
))
1719 static void fill_stack_inode_item(struct btrfs_trans_handle
*trans
,
1720 struct btrfs_inode_item
*inode_item
,
1721 struct inode
*inode
)
1723 btrfs_set_stack_inode_uid(inode_item
, i_uid_read(inode
));
1724 btrfs_set_stack_inode_gid(inode_item
, i_gid_read(inode
));
1725 btrfs_set_stack_inode_size(inode_item
, BTRFS_I(inode
)->disk_i_size
);
1726 btrfs_set_stack_inode_mode(inode_item
, inode
->i_mode
);
1727 btrfs_set_stack_inode_nlink(inode_item
, inode
->i_nlink
);
1728 btrfs_set_stack_inode_nbytes(inode_item
, inode_get_bytes(inode
));
1729 btrfs_set_stack_inode_generation(inode_item
,
1730 BTRFS_I(inode
)->generation
);
1731 btrfs_set_stack_inode_sequence(inode_item
,
1732 inode_peek_iversion(inode
));
1733 btrfs_set_stack_inode_transid(inode_item
, trans
->transid
);
1734 btrfs_set_stack_inode_rdev(inode_item
, inode
->i_rdev
);
1735 btrfs_set_stack_inode_flags(inode_item
, BTRFS_I(inode
)->flags
);
1736 btrfs_set_stack_inode_block_group(inode_item
, 0);
1738 btrfs_set_stack_timespec_sec(&inode_item
->atime
,
1739 inode
->i_atime
.tv_sec
);
1740 btrfs_set_stack_timespec_nsec(&inode_item
->atime
,
1741 inode
->i_atime
.tv_nsec
);
1743 btrfs_set_stack_timespec_sec(&inode_item
->mtime
,
1744 inode
->i_mtime
.tv_sec
);
1745 btrfs_set_stack_timespec_nsec(&inode_item
->mtime
,
1746 inode
->i_mtime
.tv_nsec
);
1748 btrfs_set_stack_timespec_sec(&inode_item
->ctime
,
1749 inode
->i_ctime
.tv_sec
);
1750 btrfs_set_stack_timespec_nsec(&inode_item
->ctime
,
1751 inode
->i_ctime
.tv_nsec
);
1753 btrfs_set_stack_timespec_sec(&inode_item
->otime
,
1754 BTRFS_I(inode
)->i_otime
.tv_sec
);
1755 btrfs_set_stack_timespec_nsec(&inode_item
->otime
,
1756 BTRFS_I(inode
)->i_otime
.tv_nsec
);
1759 int btrfs_fill_inode(struct inode
*inode
, u32
*rdev
)
1761 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
1762 struct btrfs_delayed_node
*delayed_node
;
1763 struct btrfs_inode_item
*inode_item
;
1765 delayed_node
= btrfs_get_delayed_node(BTRFS_I(inode
));
1769 mutex_lock(&delayed_node
->mutex
);
1770 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &delayed_node
->flags
)) {
1771 mutex_unlock(&delayed_node
->mutex
);
1772 btrfs_release_delayed_node(delayed_node
);
1776 inode_item
= &delayed_node
->inode_item
;
1778 i_uid_write(inode
, btrfs_stack_inode_uid(inode_item
));
1779 i_gid_write(inode
, btrfs_stack_inode_gid(inode_item
));
1780 btrfs_i_size_write(BTRFS_I(inode
), btrfs_stack_inode_size(inode_item
));
1781 btrfs_inode_set_file_extent_range(BTRFS_I(inode
), 0,
1782 round_up(i_size_read(inode
), fs_info
->sectorsize
));
1783 inode
->i_mode
= btrfs_stack_inode_mode(inode_item
);
1784 set_nlink(inode
, btrfs_stack_inode_nlink(inode_item
));
1785 inode_set_bytes(inode
, btrfs_stack_inode_nbytes(inode_item
));
1786 BTRFS_I(inode
)->generation
= btrfs_stack_inode_generation(inode_item
);
1787 BTRFS_I(inode
)->last_trans
= btrfs_stack_inode_transid(inode_item
);
1789 inode_set_iversion_queried(inode
,
1790 btrfs_stack_inode_sequence(inode_item
));
1792 *rdev
= btrfs_stack_inode_rdev(inode_item
);
1793 BTRFS_I(inode
)->flags
= btrfs_stack_inode_flags(inode_item
);
1795 inode
->i_atime
.tv_sec
= btrfs_stack_timespec_sec(&inode_item
->atime
);
1796 inode
->i_atime
.tv_nsec
= btrfs_stack_timespec_nsec(&inode_item
->atime
);
1798 inode
->i_mtime
.tv_sec
= btrfs_stack_timespec_sec(&inode_item
->mtime
);
1799 inode
->i_mtime
.tv_nsec
= btrfs_stack_timespec_nsec(&inode_item
->mtime
);
1801 inode
->i_ctime
.tv_sec
= btrfs_stack_timespec_sec(&inode_item
->ctime
);
1802 inode
->i_ctime
.tv_nsec
= btrfs_stack_timespec_nsec(&inode_item
->ctime
);
1804 BTRFS_I(inode
)->i_otime
.tv_sec
=
1805 btrfs_stack_timespec_sec(&inode_item
->otime
);
1806 BTRFS_I(inode
)->i_otime
.tv_nsec
=
1807 btrfs_stack_timespec_nsec(&inode_item
->otime
);
1809 inode
->i_generation
= BTRFS_I(inode
)->generation
;
1810 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
1812 mutex_unlock(&delayed_node
->mutex
);
1813 btrfs_release_delayed_node(delayed_node
);
1817 int btrfs_delayed_update_inode(struct btrfs_trans_handle
*trans
,
1818 struct btrfs_root
*root
,
1819 struct btrfs_inode
*inode
)
1821 struct btrfs_delayed_node
*delayed_node
;
1824 delayed_node
= btrfs_get_or_create_delayed_node(inode
);
1825 if (IS_ERR(delayed_node
))
1826 return PTR_ERR(delayed_node
);
1828 mutex_lock(&delayed_node
->mutex
);
1829 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &delayed_node
->flags
)) {
1830 fill_stack_inode_item(trans
, &delayed_node
->inode_item
,
1835 ret
= btrfs_delayed_inode_reserve_metadata(trans
, root
, inode
,
1840 fill_stack_inode_item(trans
, &delayed_node
->inode_item
, &inode
->vfs_inode
);
1841 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &delayed_node
->flags
);
1842 delayed_node
->count
++;
1843 atomic_inc(&root
->fs_info
->delayed_root
->items
);
1845 mutex_unlock(&delayed_node
->mutex
);
1846 btrfs_release_delayed_node(delayed_node
);
1850 int btrfs_delayed_delete_inode_ref(struct btrfs_inode
*inode
)
1852 struct btrfs_fs_info
*fs_info
= inode
->root
->fs_info
;
1853 struct btrfs_delayed_node
*delayed_node
;
1856 * we don't do delayed inode updates during log recovery because it
1857 * leads to enospc problems. This means we also can't do
1858 * delayed inode refs
1860 if (test_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
))
1863 delayed_node
= btrfs_get_or_create_delayed_node(inode
);
1864 if (IS_ERR(delayed_node
))
1865 return PTR_ERR(delayed_node
);
1868 * We don't reserve space for inode ref deletion is because:
1869 * - We ONLY do async inode ref deletion for the inode who has only
1870 * one link(i_nlink == 1), it means there is only one inode ref.
1871 * And in most case, the inode ref and the inode item are in the
1872 * same leaf, and we will deal with them at the same time.
1873 * Since we are sure we will reserve the space for the inode item,
1874 * it is unnecessary to reserve space for inode ref deletion.
1875 * - If the inode ref and the inode item are not in the same leaf,
1876 * We also needn't worry about enospc problem, because we reserve
1877 * much more space for the inode update than it needs.
1878 * - At the worst, we can steal some space from the global reservation.
1881 mutex_lock(&delayed_node
->mutex
);
1882 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF
, &delayed_node
->flags
))
1885 set_bit(BTRFS_DELAYED_NODE_DEL_IREF
, &delayed_node
->flags
);
1886 delayed_node
->count
++;
1887 atomic_inc(&fs_info
->delayed_root
->items
);
1889 mutex_unlock(&delayed_node
->mutex
);
1890 btrfs_release_delayed_node(delayed_node
);
1894 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node
*delayed_node
)
1896 struct btrfs_root
*root
= delayed_node
->root
;
1897 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1898 struct btrfs_delayed_item
*curr_item
, *prev_item
;
1900 mutex_lock(&delayed_node
->mutex
);
1901 curr_item
= __btrfs_first_delayed_insertion_item(delayed_node
);
1903 btrfs_delayed_item_release_metadata(root
, curr_item
);
1904 prev_item
= curr_item
;
1905 curr_item
= __btrfs_next_delayed_item(prev_item
);
1906 btrfs_release_delayed_item(prev_item
);
1909 curr_item
= __btrfs_first_delayed_deletion_item(delayed_node
);
1911 btrfs_delayed_item_release_metadata(root
, curr_item
);
1912 prev_item
= curr_item
;
1913 curr_item
= __btrfs_next_delayed_item(prev_item
);
1914 btrfs_release_delayed_item(prev_item
);
1917 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF
, &delayed_node
->flags
))
1918 btrfs_release_delayed_iref(delayed_node
);
1920 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY
, &delayed_node
->flags
)) {
1921 btrfs_delayed_inode_release_metadata(fs_info
, delayed_node
, false);
1922 btrfs_release_delayed_inode(delayed_node
);
1924 mutex_unlock(&delayed_node
->mutex
);
1927 void btrfs_kill_delayed_inode_items(struct btrfs_inode
*inode
)
1929 struct btrfs_delayed_node
*delayed_node
;
1931 delayed_node
= btrfs_get_delayed_node(inode
);
1935 __btrfs_kill_delayed_node(delayed_node
);
1936 btrfs_release_delayed_node(delayed_node
);
1939 void btrfs_kill_all_delayed_nodes(struct btrfs_root
*root
)
1942 struct btrfs_delayed_node
*delayed_nodes
[8];
1946 spin_lock(&root
->inode_lock
);
1947 n
= radix_tree_gang_lookup(&root
->delayed_nodes_tree
,
1948 (void **)delayed_nodes
, inode_id
,
1949 ARRAY_SIZE(delayed_nodes
));
1951 spin_unlock(&root
->inode_lock
);
1955 inode_id
= delayed_nodes
[n
- 1]->inode_id
+ 1;
1956 for (i
= 0; i
< n
; i
++) {
1958 * Don't increase refs in case the node is dead and
1959 * about to be removed from the tree in the loop below
1961 if (!refcount_inc_not_zero(&delayed_nodes
[i
]->refs
))
1962 delayed_nodes
[i
] = NULL
;
1964 spin_unlock(&root
->inode_lock
);
1966 for (i
= 0; i
< n
; i
++) {
1967 if (!delayed_nodes
[i
])
1969 __btrfs_kill_delayed_node(delayed_nodes
[i
]);
1970 btrfs_release_delayed_node(delayed_nodes
[i
]);
1975 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info
*fs_info
)
1977 struct btrfs_delayed_node
*curr_node
, *prev_node
;
1979 curr_node
= btrfs_first_delayed_node(fs_info
->delayed_root
);
1981 __btrfs_kill_delayed_node(curr_node
);
1983 prev_node
= curr_node
;
1984 curr_node
= btrfs_next_delayed_node(curr_node
);
1985 btrfs_release_delayed_node(prev_node
);