1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
24 #include "transaction.h"
25 #include "btrfs_inode.h"
27 #include "print-tree.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "check-integrity.h"
33 #include "rcu-string.h"
34 #include "dev-replace.h"
38 #include "compression.h"
39 #include "tree-checker.h"
40 #include "ref-verify.h"
41 #include "block-group.h"
43 #include "space-info.h"
46 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
53 static void end_workqueue_fn(struct btrfs_work
*work
);
54 static void btrfs_destroy_ordered_extents(struct btrfs_root
*root
);
55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
56 struct btrfs_fs_info
*fs_info
);
57 static void btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
);
58 static int btrfs_destroy_marked_extents(struct btrfs_fs_info
*fs_info
,
59 struct extent_io_tree
*dirty_pages
,
61 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info
*fs_info
,
62 struct extent_io_tree
*pinned_extents
);
63 static int btrfs_cleanup_transaction(struct btrfs_fs_info
*fs_info
);
64 static void btrfs_error_commit_super(struct btrfs_fs_info
*fs_info
);
67 * btrfs_end_io_wq structs are used to do processing in task context when an IO
68 * is complete. This is used during reads to verify checksums, and it is used
69 * by writes to insert metadata for new file extents after IO is complete.
71 struct btrfs_end_io_wq
{
75 struct btrfs_fs_info
*info
;
77 enum btrfs_wq_endio_type metadata
;
78 struct btrfs_work work
;
81 static struct kmem_cache
*btrfs_end_io_wq_cache
;
83 int __init
btrfs_end_io_wq_init(void)
85 btrfs_end_io_wq_cache
= kmem_cache_create("btrfs_end_io_wq",
86 sizeof(struct btrfs_end_io_wq
),
90 if (!btrfs_end_io_wq_cache
)
95 void __cold
btrfs_end_io_wq_exit(void)
97 kmem_cache_destroy(btrfs_end_io_wq_cache
);
100 static void btrfs_free_csum_hash(struct btrfs_fs_info
*fs_info
)
102 if (fs_info
->csum_shash
)
103 crypto_free_shash(fs_info
->csum_shash
);
107 * async submit bios are used to offload expensive checksumming
108 * onto the worker threads. They checksum file and metadata bios
109 * just before they are sent down the IO stack.
111 struct async_submit_bio
{
114 extent_submit_bio_start_t
*submit_bio_start
;
117 /* Optional parameter for submit_bio_start used by direct io */
119 struct btrfs_work work
;
124 * Lockdep class keys for extent_buffer->lock's in this root. For a given
125 * eb, the lockdep key is determined by the btrfs_root it belongs to and
126 * the level the eb occupies in the tree.
128 * Different roots are used for different purposes and may nest inside each
129 * other and they require separate keysets. As lockdep keys should be
130 * static, assign keysets according to the purpose of the root as indicated
131 * by btrfs_root->root_key.objectid. This ensures that all special purpose
132 * roots have separate keysets.
134 * Lock-nesting across peer nodes is always done with the immediate parent
135 * node locked thus preventing deadlock. As lockdep doesn't know this, use
136 * subclass to avoid triggering lockdep warning in such cases.
138 * The key is set by the readpage_end_io_hook after the buffer has passed
139 * csum validation but before the pages are unlocked. It is also set by
140 * btrfs_init_new_buffer on freshly allocated blocks.
142 * We also add a check to make sure the highest level of the tree is the
143 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
144 * needs update as well.
146 #ifdef CONFIG_DEBUG_LOCK_ALLOC
147 # if BTRFS_MAX_LEVEL != 8
151 #define DEFINE_LEVEL(stem, level) \
152 .names[level] = "btrfs-" stem "-0" #level,
154 #define DEFINE_NAME(stem) \
155 DEFINE_LEVEL(stem, 0) \
156 DEFINE_LEVEL(stem, 1) \
157 DEFINE_LEVEL(stem, 2) \
158 DEFINE_LEVEL(stem, 3) \
159 DEFINE_LEVEL(stem, 4) \
160 DEFINE_LEVEL(stem, 5) \
161 DEFINE_LEVEL(stem, 6) \
162 DEFINE_LEVEL(stem, 7)
164 static struct btrfs_lockdep_keyset
{
165 u64 id
; /* root objectid */
166 /* Longest entry: btrfs-free-space-00 */
167 char names
[BTRFS_MAX_LEVEL
][20];
168 struct lock_class_key keys
[BTRFS_MAX_LEVEL
];
169 } btrfs_lockdep_keysets
[] = {
170 { .id
= BTRFS_ROOT_TREE_OBJECTID
, DEFINE_NAME("root") },
171 { .id
= BTRFS_EXTENT_TREE_OBJECTID
, DEFINE_NAME("extent") },
172 { .id
= BTRFS_CHUNK_TREE_OBJECTID
, DEFINE_NAME("chunk") },
173 { .id
= BTRFS_DEV_TREE_OBJECTID
, DEFINE_NAME("dev") },
174 { .id
= BTRFS_CSUM_TREE_OBJECTID
, DEFINE_NAME("csum") },
175 { .id
= BTRFS_QUOTA_TREE_OBJECTID
, DEFINE_NAME("quota") },
176 { .id
= BTRFS_TREE_LOG_OBJECTID
, DEFINE_NAME("log") },
177 { .id
= BTRFS_TREE_RELOC_OBJECTID
, DEFINE_NAME("treloc") },
178 { .id
= BTRFS_DATA_RELOC_TREE_OBJECTID
, DEFINE_NAME("dreloc") },
179 { .id
= BTRFS_UUID_TREE_OBJECTID
, DEFINE_NAME("uuid") },
180 { .id
= BTRFS_FREE_SPACE_TREE_OBJECTID
, DEFINE_NAME("free-space") },
181 { .id
= 0, DEFINE_NAME("tree") },
187 void btrfs_set_buffer_lockdep_class(u64 objectid
, struct extent_buffer
*eb
,
190 struct btrfs_lockdep_keyset
*ks
;
192 BUG_ON(level
>= ARRAY_SIZE(ks
->keys
));
194 /* find the matching keyset, id 0 is the default entry */
195 for (ks
= btrfs_lockdep_keysets
; ks
->id
; ks
++)
196 if (ks
->id
== objectid
)
199 lockdep_set_class_and_name(&eb
->lock
,
200 &ks
->keys
[level
], ks
->names
[level
]);
206 * Compute the csum of a btree block and store the result to provided buffer.
208 static void csum_tree_block(struct extent_buffer
*buf
, u8
*result
)
210 struct btrfs_fs_info
*fs_info
= buf
->fs_info
;
211 const int num_pages
= fs_info
->nodesize
>> PAGE_SHIFT
;
212 const int first_page_part
= min_t(u32
, PAGE_SIZE
, fs_info
->nodesize
);
213 SHASH_DESC_ON_STACK(shash
, fs_info
->csum_shash
);
217 shash
->tfm
= fs_info
->csum_shash
;
218 crypto_shash_init(shash
);
219 kaddr
= page_address(buf
->pages
[0]) + offset_in_page(buf
->start
);
220 crypto_shash_update(shash
, kaddr
+ BTRFS_CSUM_SIZE
,
221 first_page_part
- BTRFS_CSUM_SIZE
);
223 for (i
= 1; i
< num_pages
; i
++) {
224 kaddr
= page_address(buf
->pages
[i
]);
225 crypto_shash_update(shash
, kaddr
, PAGE_SIZE
);
227 memset(result
, 0, BTRFS_CSUM_SIZE
);
228 crypto_shash_final(shash
, result
);
232 * we can't consider a given block up to date unless the transid of the
233 * block matches the transid in the parent node's pointer. This is how we
234 * detect blocks that either didn't get written at all or got written
235 * in the wrong place.
237 static int verify_parent_transid(struct extent_io_tree
*io_tree
,
238 struct extent_buffer
*eb
, u64 parent_transid
,
241 struct extent_state
*cached_state
= NULL
;
243 bool need_lock
= (current
->journal_info
== BTRFS_SEND_TRANS_STUB
);
245 if (!parent_transid
|| btrfs_header_generation(eb
) == parent_transid
)
252 btrfs_tree_read_lock(eb
);
254 lock_extent_bits(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
256 if (extent_buffer_uptodate(eb
) &&
257 btrfs_header_generation(eb
) == parent_transid
) {
261 btrfs_err_rl(eb
->fs_info
,
262 "parent transid verify failed on %llu wanted %llu found %llu",
264 parent_transid
, btrfs_header_generation(eb
));
268 * Things reading via commit roots that don't have normal protection,
269 * like send, can have a really old block in cache that may point at a
270 * block that has been freed and re-allocated. So don't clear uptodate
271 * if we find an eb that is under IO (dirty/writeback) because we could
272 * end up reading in the stale data and then writing it back out and
273 * making everybody very sad.
275 if (!extent_buffer_under_io(eb
))
276 clear_extent_buffer_uptodate(eb
);
278 unlock_extent_cached(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
281 btrfs_tree_read_unlock(eb
);
285 static bool btrfs_supported_super_csum(u16 csum_type
)
288 case BTRFS_CSUM_TYPE_CRC32
:
289 case BTRFS_CSUM_TYPE_XXHASH
:
290 case BTRFS_CSUM_TYPE_SHA256
:
291 case BTRFS_CSUM_TYPE_BLAKE2
:
299 * Return 0 if the superblock checksum type matches the checksum value of that
300 * algorithm. Pass the raw disk superblock data.
302 static int btrfs_check_super_csum(struct btrfs_fs_info
*fs_info
,
305 struct btrfs_super_block
*disk_sb
=
306 (struct btrfs_super_block
*)raw_disk_sb
;
307 char result
[BTRFS_CSUM_SIZE
];
308 SHASH_DESC_ON_STACK(shash
, fs_info
->csum_shash
);
310 shash
->tfm
= fs_info
->csum_shash
;
313 * The super_block structure does not span the whole
314 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
315 * filled with zeros and is included in the checksum.
317 crypto_shash_digest(shash
, raw_disk_sb
+ BTRFS_CSUM_SIZE
,
318 BTRFS_SUPER_INFO_SIZE
- BTRFS_CSUM_SIZE
, result
);
320 if (memcmp(disk_sb
->csum
, result
, fs_info
->csum_size
))
326 int btrfs_verify_level_key(struct extent_buffer
*eb
, int level
,
327 struct btrfs_key
*first_key
, u64 parent_transid
)
329 struct btrfs_fs_info
*fs_info
= eb
->fs_info
;
331 struct btrfs_key found_key
;
334 found_level
= btrfs_header_level(eb
);
335 if (found_level
!= level
) {
336 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG
),
337 KERN_ERR
"BTRFS: tree level check failed\n");
339 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
340 eb
->start
, level
, found_level
);
348 * For live tree block (new tree blocks in current transaction),
349 * we need proper lock context to avoid race, which is impossible here.
350 * So we only checks tree blocks which is read from disk, whose
351 * generation <= fs_info->last_trans_committed.
353 if (btrfs_header_generation(eb
) > fs_info
->last_trans_committed
)
356 /* We have @first_key, so this @eb must have at least one item */
357 if (btrfs_header_nritems(eb
) == 0) {
359 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
361 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG
));
366 btrfs_node_key_to_cpu(eb
, &found_key
, 0);
368 btrfs_item_key_to_cpu(eb
, &found_key
, 0);
369 ret
= btrfs_comp_cpu_keys(first_key
, &found_key
);
372 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG
),
373 KERN_ERR
"BTRFS: tree first key check failed\n");
375 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
376 eb
->start
, parent_transid
, first_key
->objectid
,
377 first_key
->type
, first_key
->offset
,
378 found_key
.objectid
, found_key
.type
,
385 * helper to read a given tree block, doing retries as required when
386 * the checksums don't match and we have alternate mirrors to try.
388 * @parent_transid: expected transid, skip check if 0
389 * @level: expected level, mandatory check
390 * @first_key: expected key of first slot, skip check if NULL
392 static int btree_read_extent_buffer_pages(struct extent_buffer
*eb
,
393 u64 parent_transid
, int level
,
394 struct btrfs_key
*first_key
)
396 struct btrfs_fs_info
*fs_info
= eb
->fs_info
;
397 struct extent_io_tree
*io_tree
;
402 int failed_mirror
= 0;
404 io_tree
= &BTRFS_I(fs_info
->btree_inode
)->io_tree
;
406 clear_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
407 ret
= read_extent_buffer_pages(eb
, WAIT_COMPLETE
, mirror_num
);
409 if (verify_parent_transid(io_tree
, eb
,
412 else if (btrfs_verify_level_key(eb
, level
,
413 first_key
, parent_transid
))
419 num_copies
= btrfs_num_copies(fs_info
,
424 if (!failed_mirror
) {
426 failed_mirror
= eb
->read_mirror
;
430 if (mirror_num
== failed_mirror
)
433 if (mirror_num
> num_copies
)
437 if (failed
&& !ret
&& failed_mirror
)
438 btrfs_repair_eb_io_failure(eb
, failed_mirror
);
444 * Checksum a dirty tree block before IO. This has extra checks to make sure
445 * we only fill in the checksum field in the first page of a multi-page block.
446 * For subpage extent buffers we need bvec to also read the offset in the page.
448 static int csum_dirty_buffer(struct btrfs_fs_info
*fs_info
, struct bio_vec
*bvec
)
450 struct page
*page
= bvec
->bv_page
;
451 u64 start
= page_offset(page
);
453 u8 result
[BTRFS_CSUM_SIZE
];
454 struct extent_buffer
*eb
;
457 eb
= (struct extent_buffer
*)page
->private;
458 if (page
!= eb
->pages
[0])
461 found_start
= btrfs_header_bytenr(eb
);
463 * Please do not consolidate these warnings into a single if.
464 * It is useful to know what went wrong.
466 if (WARN_ON(found_start
!= start
))
468 if (WARN_ON(!PageUptodate(page
)))
471 ASSERT(memcmp_extent_buffer(eb
, fs_info
->fs_devices
->metadata_uuid
,
472 offsetof(struct btrfs_header
, fsid
),
473 BTRFS_FSID_SIZE
) == 0);
475 csum_tree_block(eb
, result
);
477 if (btrfs_header_level(eb
))
478 ret
= btrfs_check_node(eb
);
480 ret
= btrfs_check_leaf_full(eb
);
483 btrfs_print_tree(eb
, 0);
485 "block=%llu write time tree block corruption detected",
487 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG
));
490 write_extent_buffer(eb
, result
, 0, fs_info
->csum_size
);
495 static int check_tree_block_fsid(struct extent_buffer
*eb
)
497 struct btrfs_fs_info
*fs_info
= eb
->fs_info
;
498 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
, *seed_devs
;
499 u8 fsid
[BTRFS_FSID_SIZE
];
502 read_extent_buffer(eb
, fsid
, offsetof(struct btrfs_header
, fsid
),
505 * Checking the incompat flag is only valid for the current fs. For
506 * seed devices it's forbidden to have their uuid changed so reading
507 * ->fsid in this case is fine
509 if (btrfs_fs_incompat(fs_info
, METADATA_UUID
))
510 metadata_uuid
= fs_devices
->metadata_uuid
;
512 metadata_uuid
= fs_devices
->fsid
;
514 if (!memcmp(fsid
, metadata_uuid
, BTRFS_FSID_SIZE
))
517 list_for_each_entry(seed_devs
, &fs_devices
->seed_list
, seed_list
)
518 if (!memcmp(fsid
, seed_devs
->fsid
, BTRFS_FSID_SIZE
))
524 /* Do basic extent buffer checks at read time */
525 static int validate_extent_buffer(struct extent_buffer
*eb
)
527 struct btrfs_fs_info
*fs_info
= eb
->fs_info
;
529 const u32 csum_size
= fs_info
->csum_size
;
531 u8 result
[BTRFS_CSUM_SIZE
];
534 found_start
= btrfs_header_bytenr(eb
);
535 if (found_start
!= eb
->start
) {
536 btrfs_err_rl(fs_info
, "bad tree block start, want %llu have %llu",
537 eb
->start
, found_start
);
541 if (check_tree_block_fsid(eb
)) {
542 btrfs_err_rl(fs_info
, "bad fsid on block %llu",
547 found_level
= btrfs_header_level(eb
);
548 if (found_level
>= BTRFS_MAX_LEVEL
) {
549 btrfs_err(fs_info
, "bad tree block level %d on %llu",
550 (int)btrfs_header_level(eb
), eb
->start
);
555 csum_tree_block(eb
, result
);
557 if (memcmp_extent_buffer(eb
, result
, 0, csum_size
)) {
558 u8 val
[BTRFS_CSUM_SIZE
] = { 0 };
560 read_extent_buffer(eb
, &val
, 0, csum_size
);
561 btrfs_warn_rl(fs_info
,
562 "%s checksum verify failed on %llu wanted " CSUM_FMT
" found " CSUM_FMT
" level %d",
563 fs_info
->sb
->s_id
, eb
->start
,
564 CSUM_FMT_VALUE(csum_size
, val
),
565 CSUM_FMT_VALUE(csum_size
, result
),
566 btrfs_header_level(eb
));
572 * If this is a leaf block and it is corrupt, set the corrupt bit so
573 * that we don't try and read the other copies of this block, just
576 if (found_level
== 0 && btrfs_check_leaf_full(eb
)) {
577 set_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
581 if (found_level
> 0 && btrfs_check_node(eb
))
585 set_extent_buffer_uptodate(eb
);
588 "block=%llu read time tree block corruption detected",
594 int btrfs_validate_metadata_buffer(struct btrfs_io_bio
*io_bio
,
595 struct page
*page
, u64 start
, u64 end
,
598 struct extent_buffer
*eb
;
602 ASSERT(page
->private);
603 eb
= (struct extent_buffer
*)page
->private;
606 * The pending IO might have been the only thing that kept this buffer
607 * in memory. Make sure we have a ref for all this other checks
609 atomic_inc(&eb
->refs
);
611 reads_done
= atomic_dec_and_test(&eb
->io_pages
);
615 eb
->read_mirror
= mirror
;
616 if (test_bit(EXTENT_BUFFER_READ_ERR
, &eb
->bflags
)) {
620 ret
= validate_extent_buffer(eb
);
623 test_and_clear_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
))
624 btree_readahead_hook(eb
, ret
);
628 * our io error hook is going to dec the io pages
629 * again, we have to make sure it has something
632 atomic_inc(&eb
->io_pages
);
633 clear_extent_buffer_uptodate(eb
);
635 free_extent_buffer(eb
);
640 static void end_workqueue_bio(struct bio
*bio
)
642 struct btrfs_end_io_wq
*end_io_wq
= bio
->bi_private
;
643 struct btrfs_fs_info
*fs_info
;
644 struct btrfs_workqueue
*wq
;
646 fs_info
= end_io_wq
->info
;
647 end_io_wq
->status
= bio
->bi_status
;
649 if (bio_op(bio
) == REQ_OP_WRITE
) {
650 if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_METADATA
)
651 wq
= fs_info
->endio_meta_write_workers
;
652 else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_FREE_SPACE
)
653 wq
= fs_info
->endio_freespace_worker
;
654 else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_RAID56
)
655 wq
= fs_info
->endio_raid56_workers
;
657 wq
= fs_info
->endio_write_workers
;
659 if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_RAID56
)
660 wq
= fs_info
->endio_raid56_workers
;
661 else if (end_io_wq
->metadata
)
662 wq
= fs_info
->endio_meta_workers
;
664 wq
= fs_info
->endio_workers
;
667 btrfs_init_work(&end_io_wq
->work
, end_workqueue_fn
, NULL
, NULL
);
668 btrfs_queue_work(wq
, &end_io_wq
->work
);
671 blk_status_t
btrfs_bio_wq_end_io(struct btrfs_fs_info
*info
, struct bio
*bio
,
672 enum btrfs_wq_endio_type metadata
)
674 struct btrfs_end_io_wq
*end_io_wq
;
676 end_io_wq
= kmem_cache_alloc(btrfs_end_io_wq_cache
, GFP_NOFS
);
678 return BLK_STS_RESOURCE
;
680 end_io_wq
->private = bio
->bi_private
;
681 end_io_wq
->end_io
= bio
->bi_end_io
;
682 end_io_wq
->info
= info
;
683 end_io_wq
->status
= 0;
684 end_io_wq
->bio
= bio
;
685 end_io_wq
->metadata
= metadata
;
687 bio
->bi_private
= end_io_wq
;
688 bio
->bi_end_io
= end_workqueue_bio
;
692 static void run_one_async_start(struct btrfs_work
*work
)
694 struct async_submit_bio
*async
;
697 async
= container_of(work
, struct async_submit_bio
, work
);
698 ret
= async
->submit_bio_start(async
->inode
, async
->bio
,
699 async
->dio_file_offset
);
705 * In order to insert checksums into the metadata in large chunks, we wait
706 * until bio submission time. All the pages in the bio are checksummed and
707 * sums are attached onto the ordered extent record.
709 * At IO completion time the csums attached on the ordered extent record are
710 * inserted into the tree.
712 static void run_one_async_done(struct btrfs_work
*work
)
714 struct async_submit_bio
*async
;
718 async
= container_of(work
, struct async_submit_bio
, work
);
719 inode
= async
->inode
;
721 /* If an error occurred we just want to clean up the bio and move on */
723 async
->bio
->bi_status
= async
->status
;
724 bio_endio(async
->bio
);
729 * All of the bios that pass through here are from async helpers.
730 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
731 * This changes nothing when cgroups aren't in use.
733 async
->bio
->bi_opf
|= REQ_CGROUP_PUNT
;
734 ret
= btrfs_map_bio(btrfs_sb(inode
->i_sb
), async
->bio
, async
->mirror_num
);
736 async
->bio
->bi_status
= ret
;
737 bio_endio(async
->bio
);
741 static void run_one_async_free(struct btrfs_work
*work
)
743 struct async_submit_bio
*async
;
745 async
= container_of(work
, struct async_submit_bio
, work
);
749 blk_status_t
btrfs_wq_submit_bio(struct inode
*inode
, struct bio
*bio
,
750 int mirror_num
, unsigned long bio_flags
,
752 extent_submit_bio_start_t
*submit_bio_start
)
754 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
755 struct async_submit_bio
*async
;
757 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
759 return BLK_STS_RESOURCE
;
761 async
->inode
= inode
;
763 async
->mirror_num
= mirror_num
;
764 async
->submit_bio_start
= submit_bio_start
;
766 btrfs_init_work(&async
->work
, run_one_async_start
, run_one_async_done
,
769 async
->dio_file_offset
= dio_file_offset
;
773 if (op_is_sync(bio
->bi_opf
))
774 btrfs_set_work_high_priority(&async
->work
);
776 btrfs_queue_work(fs_info
->workers
, &async
->work
);
780 static blk_status_t
btree_csum_one_bio(struct bio
*bio
)
782 struct bio_vec
*bvec
;
783 struct btrfs_root
*root
;
785 struct bvec_iter_all iter_all
;
787 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
788 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
789 root
= BTRFS_I(bvec
->bv_page
->mapping
->host
)->root
;
790 ret
= csum_dirty_buffer(root
->fs_info
, bvec
);
795 return errno_to_blk_status(ret
);
798 static blk_status_t
btree_submit_bio_start(struct inode
*inode
, struct bio
*bio
,
802 * when we're called for a write, we're already in the async
803 * submission context. Just jump into btrfs_map_bio
805 return btree_csum_one_bio(bio
);
808 static int check_async_write(struct btrfs_fs_info
*fs_info
,
809 struct btrfs_inode
*bi
)
811 if (atomic_read(&bi
->sync_writers
))
813 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST
, &fs_info
->flags
))
818 blk_status_t
btrfs_submit_metadata_bio(struct inode
*inode
, struct bio
*bio
,
819 int mirror_num
, unsigned long bio_flags
)
821 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
822 int async
= check_async_write(fs_info
, BTRFS_I(inode
));
825 if (bio_op(bio
) != REQ_OP_WRITE
) {
827 * called for a read, do the setup so that checksum validation
828 * can happen in the async kernel threads
830 ret
= btrfs_bio_wq_end_io(fs_info
, bio
,
831 BTRFS_WQ_ENDIO_METADATA
);
834 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
);
836 ret
= btree_csum_one_bio(bio
);
839 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
);
842 * kthread helpers are used to submit writes so that
843 * checksumming can happen in parallel across all CPUs
845 ret
= btrfs_wq_submit_bio(inode
, bio
, mirror_num
, 0,
846 0, btree_submit_bio_start
);
854 bio
->bi_status
= ret
;
859 #ifdef CONFIG_MIGRATION
860 static int btree_migratepage(struct address_space
*mapping
,
861 struct page
*newpage
, struct page
*page
,
862 enum migrate_mode mode
)
865 * we can't safely write a btree page from here,
866 * we haven't done the locking hook
871 * Buffers may be managed in a filesystem specific way.
872 * We must have no buffers or drop them.
874 if (page_has_private(page
) &&
875 !try_to_release_page(page
, GFP_KERNEL
))
877 return migrate_page(mapping
, newpage
, page
, mode
);
882 static int btree_writepages(struct address_space
*mapping
,
883 struct writeback_control
*wbc
)
885 struct btrfs_fs_info
*fs_info
;
888 if (wbc
->sync_mode
== WB_SYNC_NONE
) {
890 if (wbc
->for_kupdate
)
893 fs_info
= BTRFS_I(mapping
->host
)->root
->fs_info
;
894 /* this is a bit racy, but that's ok */
895 ret
= __percpu_counter_compare(&fs_info
->dirty_metadata_bytes
,
896 BTRFS_DIRTY_METADATA_THRESH
,
897 fs_info
->dirty_metadata_batch
);
901 return btree_write_cache_pages(mapping
, wbc
);
904 static int btree_releasepage(struct page
*page
, gfp_t gfp_flags
)
906 if (PageWriteback(page
) || PageDirty(page
))
909 return try_release_extent_buffer(page
);
912 static void btree_invalidatepage(struct page
*page
, unsigned int offset
,
915 struct extent_io_tree
*tree
;
916 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
917 extent_invalidatepage(tree
, page
, offset
);
918 btree_releasepage(page
, GFP_NOFS
);
919 if (PagePrivate(page
)) {
920 btrfs_warn(BTRFS_I(page
->mapping
->host
)->root
->fs_info
,
921 "page private not zero on page %llu",
922 (unsigned long long)page_offset(page
));
923 detach_page_private(page
);
927 static int btree_set_page_dirty(struct page
*page
)
930 struct extent_buffer
*eb
;
932 BUG_ON(!PagePrivate(page
));
933 eb
= (struct extent_buffer
*)page
->private;
935 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
));
936 BUG_ON(!atomic_read(&eb
->refs
));
937 btrfs_assert_tree_locked(eb
);
939 return __set_page_dirty_nobuffers(page
);
942 static const struct address_space_operations btree_aops
= {
943 .writepages
= btree_writepages
,
944 .releasepage
= btree_releasepage
,
945 .invalidatepage
= btree_invalidatepage
,
946 #ifdef CONFIG_MIGRATION
947 .migratepage
= btree_migratepage
,
949 .set_page_dirty
= btree_set_page_dirty
,
952 struct extent_buffer
*btrfs_find_create_tree_block(
953 struct btrfs_fs_info
*fs_info
,
954 u64 bytenr
, u64 owner_root
,
957 if (btrfs_is_testing(fs_info
))
958 return alloc_test_extent_buffer(fs_info
, bytenr
);
959 return alloc_extent_buffer(fs_info
, bytenr
, owner_root
, level
);
963 * Read tree block at logical address @bytenr and do variant basic but critical
966 * @owner_root: the objectid of the root owner for this block.
967 * @parent_transid: expected transid of this tree block, skip check if 0
968 * @level: expected level, mandatory check
969 * @first_key: expected key in slot 0, skip check if NULL
971 struct extent_buffer
*read_tree_block(struct btrfs_fs_info
*fs_info
, u64 bytenr
,
972 u64 owner_root
, u64 parent_transid
,
973 int level
, struct btrfs_key
*first_key
)
975 struct extent_buffer
*buf
= NULL
;
978 buf
= btrfs_find_create_tree_block(fs_info
, bytenr
, owner_root
, level
);
982 ret
= btree_read_extent_buffer_pages(buf
, parent_transid
,
985 free_extent_buffer_stale(buf
);
992 void btrfs_clean_tree_block(struct extent_buffer
*buf
)
994 struct btrfs_fs_info
*fs_info
= buf
->fs_info
;
995 if (btrfs_header_generation(buf
) ==
996 fs_info
->running_transaction
->transid
) {
997 btrfs_assert_tree_locked(buf
);
999 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
)) {
1000 percpu_counter_add_batch(&fs_info
->dirty_metadata_bytes
,
1002 fs_info
->dirty_metadata_batch
);
1003 clear_extent_buffer_dirty(buf
);
1008 static void __setup_root(struct btrfs_root
*root
, struct btrfs_fs_info
*fs_info
,
1011 bool dummy
= test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO
, &fs_info
->fs_state
);
1012 root
->fs_info
= fs_info
;
1014 root
->commit_root
= NULL
;
1016 root
->orphan_cleanup_state
= 0;
1018 root
->last_trans
= 0;
1019 root
->highest_objectid
= 0;
1020 root
->nr_delalloc_inodes
= 0;
1021 root
->nr_ordered_extents
= 0;
1022 root
->inode_tree
= RB_ROOT
;
1023 INIT_RADIX_TREE(&root
->delayed_nodes_tree
, GFP_ATOMIC
);
1024 root
->block_rsv
= NULL
;
1026 INIT_LIST_HEAD(&root
->dirty_list
);
1027 INIT_LIST_HEAD(&root
->root_list
);
1028 INIT_LIST_HEAD(&root
->delalloc_inodes
);
1029 INIT_LIST_HEAD(&root
->delalloc_root
);
1030 INIT_LIST_HEAD(&root
->ordered_extents
);
1031 INIT_LIST_HEAD(&root
->ordered_root
);
1032 INIT_LIST_HEAD(&root
->reloc_dirty_list
);
1033 INIT_LIST_HEAD(&root
->logged_list
[0]);
1034 INIT_LIST_HEAD(&root
->logged_list
[1]);
1035 spin_lock_init(&root
->inode_lock
);
1036 spin_lock_init(&root
->delalloc_lock
);
1037 spin_lock_init(&root
->ordered_extent_lock
);
1038 spin_lock_init(&root
->accounting_lock
);
1039 spin_lock_init(&root
->log_extents_lock
[0]);
1040 spin_lock_init(&root
->log_extents_lock
[1]);
1041 spin_lock_init(&root
->qgroup_meta_rsv_lock
);
1042 mutex_init(&root
->objectid_mutex
);
1043 mutex_init(&root
->log_mutex
);
1044 mutex_init(&root
->ordered_extent_mutex
);
1045 mutex_init(&root
->delalloc_mutex
);
1046 init_waitqueue_head(&root
->qgroup_flush_wait
);
1047 init_waitqueue_head(&root
->log_writer_wait
);
1048 init_waitqueue_head(&root
->log_commit_wait
[0]);
1049 init_waitqueue_head(&root
->log_commit_wait
[1]);
1050 INIT_LIST_HEAD(&root
->log_ctxs
[0]);
1051 INIT_LIST_HEAD(&root
->log_ctxs
[1]);
1052 atomic_set(&root
->log_commit
[0], 0);
1053 atomic_set(&root
->log_commit
[1], 0);
1054 atomic_set(&root
->log_writers
, 0);
1055 atomic_set(&root
->log_batch
, 0);
1056 refcount_set(&root
->refs
, 1);
1057 atomic_set(&root
->snapshot_force_cow
, 0);
1058 atomic_set(&root
->nr_swapfiles
, 0);
1059 root
->log_transid
= 0;
1060 root
->log_transid_committed
= -1;
1061 root
->last_log_commit
= 0;
1063 extent_io_tree_init(fs_info
, &root
->dirty_log_pages
,
1064 IO_TREE_ROOT_DIRTY_LOG_PAGES
, NULL
);
1065 extent_io_tree_init(fs_info
, &root
->log_csum_range
,
1066 IO_TREE_LOG_CSUM_RANGE
, NULL
);
1069 memset(&root
->root_key
, 0, sizeof(root
->root_key
));
1070 memset(&root
->root_item
, 0, sizeof(root
->root_item
));
1071 memset(&root
->defrag_progress
, 0, sizeof(root
->defrag_progress
));
1072 root
->root_key
.objectid
= objectid
;
1075 spin_lock_init(&root
->root_item_lock
);
1076 btrfs_qgroup_init_swapped_blocks(&root
->swapped_blocks
);
1077 #ifdef CONFIG_BTRFS_DEBUG
1078 INIT_LIST_HEAD(&root
->leak_list
);
1079 spin_lock(&fs_info
->fs_roots_radix_lock
);
1080 list_add_tail(&root
->leak_list
, &fs_info
->allocated_roots
);
1081 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1085 static struct btrfs_root
*btrfs_alloc_root(struct btrfs_fs_info
*fs_info
,
1086 u64 objectid
, gfp_t flags
)
1088 struct btrfs_root
*root
= kzalloc(sizeof(*root
), flags
);
1090 __setup_root(root
, fs_info
, objectid
);
1094 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1095 /* Should only be used by the testing infrastructure */
1096 struct btrfs_root
*btrfs_alloc_dummy_root(struct btrfs_fs_info
*fs_info
)
1098 struct btrfs_root
*root
;
1101 return ERR_PTR(-EINVAL
);
1103 root
= btrfs_alloc_root(fs_info
, BTRFS_ROOT_TREE_OBJECTID
, GFP_KERNEL
);
1105 return ERR_PTR(-ENOMEM
);
1107 /* We don't use the stripesize in selftest, set it as sectorsize */
1108 root
->alloc_bytenr
= 0;
1114 struct btrfs_root
*btrfs_create_tree(struct btrfs_trans_handle
*trans
,
1117 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1118 struct extent_buffer
*leaf
;
1119 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1120 struct btrfs_root
*root
;
1121 struct btrfs_key key
;
1122 unsigned int nofs_flag
;
1126 * We're holding a transaction handle, so use a NOFS memory allocation
1127 * context to avoid deadlock if reclaim happens.
1129 nofs_flag
= memalloc_nofs_save();
1130 root
= btrfs_alloc_root(fs_info
, objectid
, GFP_KERNEL
);
1131 memalloc_nofs_restore(nofs_flag
);
1133 return ERR_PTR(-ENOMEM
);
1135 root
->root_key
.objectid
= objectid
;
1136 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1137 root
->root_key
.offset
= 0;
1139 leaf
= btrfs_alloc_tree_block(trans
, root
, 0, objectid
, NULL
, 0, 0, 0,
1140 BTRFS_NESTING_NORMAL
);
1142 ret
= PTR_ERR(leaf
);
1148 btrfs_mark_buffer_dirty(leaf
);
1150 root
->commit_root
= btrfs_root_node(root
);
1151 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
1153 btrfs_set_root_flags(&root
->root_item
, 0);
1154 btrfs_set_root_limit(&root
->root_item
, 0);
1155 btrfs_set_root_bytenr(&root
->root_item
, leaf
->start
);
1156 btrfs_set_root_generation(&root
->root_item
, trans
->transid
);
1157 btrfs_set_root_level(&root
->root_item
, 0);
1158 btrfs_set_root_refs(&root
->root_item
, 1);
1159 btrfs_set_root_used(&root
->root_item
, leaf
->len
);
1160 btrfs_set_root_last_snapshot(&root
->root_item
, 0);
1161 btrfs_set_root_dirid(&root
->root_item
, 0);
1162 if (is_fstree(objectid
))
1163 generate_random_guid(root
->root_item
.uuid
);
1165 export_guid(root
->root_item
.uuid
, &guid_null
);
1166 btrfs_set_root_drop_level(&root
->root_item
, 0);
1168 btrfs_tree_unlock(leaf
);
1170 key
.objectid
= objectid
;
1171 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1173 ret
= btrfs_insert_root(trans
, tree_root
, &key
, &root
->root_item
);
1181 btrfs_tree_unlock(leaf
);
1183 btrfs_put_root(root
);
1185 return ERR_PTR(ret
);
1188 static struct btrfs_root
*alloc_log_tree(struct btrfs_trans_handle
*trans
,
1189 struct btrfs_fs_info
*fs_info
)
1191 struct btrfs_root
*root
;
1192 struct extent_buffer
*leaf
;
1194 root
= btrfs_alloc_root(fs_info
, BTRFS_TREE_LOG_OBJECTID
, GFP_NOFS
);
1196 return ERR_PTR(-ENOMEM
);
1198 root
->root_key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
1199 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1200 root
->root_key
.offset
= BTRFS_TREE_LOG_OBJECTID
;
1203 * DON'T set SHAREABLE bit for log trees.
1205 * Log trees are not exposed to user space thus can't be snapshotted,
1206 * and they go away before a real commit is actually done.
1208 * They do store pointers to file data extents, and those reference
1209 * counts still get updated (along with back refs to the log tree).
1212 leaf
= btrfs_alloc_tree_block(trans
, root
, 0, BTRFS_TREE_LOG_OBJECTID
,
1213 NULL
, 0, 0, 0, BTRFS_NESTING_NORMAL
);
1215 btrfs_put_root(root
);
1216 return ERR_CAST(leaf
);
1221 btrfs_mark_buffer_dirty(root
->node
);
1222 btrfs_tree_unlock(root
->node
);
1226 int btrfs_init_log_root_tree(struct btrfs_trans_handle
*trans
,
1227 struct btrfs_fs_info
*fs_info
)
1229 struct btrfs_root
*log_root
;
1231 log_root
= alloc_log_tree(trans
, fs_info
);
1232 if (IS_ERR(log_root
))
1233 return PTR_ERR(log_root
);
1234 WARN_ON(fs_info
->log_root_tree
);
1235 fs_info
->log_root_tree
= log_root
;
1239 int btrfs_add_log_tree(struct btrfs_trans_handle
*trans
,
1240 struct btrfs_root
*root
)
1242 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1243 struct btrfs_root
*log_root
;
1244 struct btrfs_inode_item
*inode_item
;
1246 log_root
= alloc_log_tree(trans
, fs_info
);
1247 if (IS_ERR(log_root
))
1248 return PTR_ERR(log_root
);
1250 log_root
->last_trans
= trans
->transid
;
1251 log_root
->root_key
.offset
= root
->root_key
.objectid
;
1253 inode_item
= &log_root
->root_item
.inode
;
1254 btrfs_set_stack_inode_generation(inode_item
, 1);
1255 btrfs_set_stack_inode_size(inode_item
, 3);
1256 btrfs_set_stack_inode_nlink(inode_item
, 1);
1257 btrfs_set_stack_inode_nbytes(inode_item
,
1259 btrfs_set_stack_inode_mode(inode_item
, S_IFDIR
| 0755);
1261 btrfs_set_root_node(&log_root
->root_item
, log_root
->node
);
1263 WARN_ON(root
->log_root
);
1264 root
->log_root
= log_root
;
1265 root
->log_transid
= 0;
1266 root
->log_transid_committed
= -1;
1267 root
->last_log_commit
= 0;
1271 static struct btrfs_root
*read_tree_root_path(struct btrfs_root
*tree_root
,
1272 struct btrfs_path
*path
,
1273 struct btrfs_key
*key
)
1275 struct btrfs_root
*root
;
1276 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
1281 root
= btrfs_alloc_root(fs_info
, key
->objectid
, GFP_NOFS
);
1283 return ERR_PTR(-ENOMEM
);
1285 ret
= btrfs_find_root(tree_root
, key
, path
,
1286 &root
->root_item
, &root
->root_key
);
1293 generation
= btrfs_root_generation(&root
->root_item
);
1294 level
= btrfs_root_level(&root
->root_item
);
1295 root
->node
= read_tree_block(fs_info
,
1296 btrfs_root_bytenr(&root
->root_item
),
1297 key
->objectid
, generation
, level
, NULL
);
1298 if (IS_ERR(root
->node
)) {
1299 ret
= PTR_ERR(root
->node
);
1302 } else if (!btrfs_buffer_uptodate(root
->node
, generation
, 0)) {
1306 root
->commit_root
= btrfs_root_node(root
);
1309 btrfs_put_root(root
);
1310 return ERR_PTR(ret
);
1313 struct btrfs_root
*btrfs_read_tree_root(struct btrfs_root
*tree_root
,
1314 struct btrfs_key
*key
)
1316 struct btrfs_root
*root
;
1317 struct btrfs_path
*path
;
1319 path
= btrfs_alloc_path();
1321 return ERR_PTR(-ENOMEM
);
1322 root
= read_tree_root_path(tree_root
, path
, key
);
1323 btrfs_free_path(path
);
1329 * Initialize subvolume root in-memory structure
1331 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1333 static int btrfs_init_fs_root(struct btrfs_root
*root
, dev_t anon_dev
)
1336 unsigned int nofs_flag
;
1339 * We might be called under a transaction (e.g. indirect backref
1340 * resolution) which could deadlock if it triggers memory reclaim
1342 nofs_flag
= memalloc_nofs_save();
1343 ret
= btrfs_drew_lock_init(&root
->snapshot_lock
);
1344 memalloc_nofs_restore(nofs_flag
);
1348 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
&&
1349 root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
) {
1350 set_bit(BTRFS_ROOT_SHAREABLE
, &root
->state
);
1351 btrfs_check_and_init_root_item(&root
->root_item
);
1355 * Don't assign anonymous block device to roots that are not exposed to
1356 * userspace, the id pool is limited to 1M
1358 if (is_fstree(root
->root_key
.objectid
) &&
1359 btrfs_root_refs(&root
->root_item
) > 0) {
1361 ret
= get_anon_bdev(&root
->anon_dev
);
1365 root
->anon_dev
= anon_dev
;
1369 mutex_lock(&root
->objectid_mutex
);
1370 ret
= btrfs_find_highest_objectid(root
,
1371 &root
->highest_objectid
);
1373 mutex_unlock(&root
->objectid_mutex
);
1377 ASSERT(root
->highest_objectid
<= BTRFS_LAST_FREE_OBJECTID
);
1379 mutex_unlock(&root
->objectid_mutex
);
1383 /* The caller is responsible to call btrfs_free_fs_root */
1387 static struct btrfs_root
*btrfs_lookup_fs_root(struct btrfs_fs_info
*fs_info
,
1390 struct btrfs_root
*root
;
1392 spin_lock(&fs_info
->fs_roots_radix_lock
);
1393 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1394 (unsigned long)root_id
);
1396 root
= btrfs_grab_root(root
);
1397 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1401 static struct btrfs_root
*btrfs_get_global_root(struct btrfs_fs_info
*fs_info
,
1404 if (objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1405 return btrfs_grab_root(fs_info
->tree_root
);
1406 if (objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1407 return btrfs_grab_root(fs_info
->extent_root
);
1408 if (objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
1409 return btrfs_grab_root(fs_info
->chunk_root
);
1410 if (objectid
== BTRFS_DEV_TREE_OBJECTID
)
1411 return btrfs_grab_root(fs_info
->dev_root
);
1412 if (objectid
== BTRFS_CSUM_TREE_OBJECTID
)
1413 return btrfs_grab_root(fs_info
->csum_root
);
1414 if (objectid
== BTRFS_QUOTA_TREE_OBJECTID
)
1415 return btrfs_grab_root(fs_info
->quota_root
) ?
1416 fs_info
->quota_root
: ERR_PTR(-ENOENT
);
1417 if (objectid
== BTRFS_UUID_TREE_OBJECTID
)
1418 return btrfs_grab_root(fs_info
->uuid_root
) ?
1419 fs_info
->uuid_root
: ERR_PTR(-ENOENT
);
1420 if (objectid
== BTRFS_FREE_SPACE_TREE_OBJECTID
)
1421 return btrfs_grab_root(fs_info
->free_space_root
) ?
1422 fs_info
->free_space_root
: ERR_PTR(-ENOENT
);
1426 int btrfs_insert_fs_root(struct btrfs_fs_info
*fs_info
,
1427 struct btrfs_root
*root
)
1431 ret
= radix_tree_preload(GFP_NOFS
);
1435 spin_lock(&fs_info
->fs_roots_radix_lock
);
1436 ret
= radix_tree_insert(&fs_info
->fs_roots_radix
,
1437 (unsigned long)root
->root_key
.objectid
,
1440 btrfs_grab_root(root
);
1441 set_bit(BTRFS_ROOT_IN_RADIX
, &root
->state
);
1443 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1444 radix_tree_preload_end();
1449 void btrfs_check_leaked_roots(struct btrfs_fs_info
*fs_info
)
1451 #ifdef CONFIG_BTRFS_DEBUG
1452 struct btrfs_root
*root
;
1454 while (!list_empty(&fs_info
->allocated_roots
)) {
1455 char buf
[BTRFS_ROOT_NAME_BUF_LEN
];
1457 root
= list_first_entry(&fs_info
->allocated_roots
,
1458 struct btrfs_root
, leak_list
);
1459 btrfs_err(fs_info
, "leaked root %s refcount %d",
1460 btrfs_root_name(root
->root_key
.objectid
, buf
),
1461 refcount_read(&root
->refs
));
1462 while (refcount_read(&root
->refs
) > 1)
1463 btrfs_put_root(root
);
1464 btrfs_put_root(root
);
1469 void btrfs_free_fs_info(struct btrfs_fs_info
*fs_info
)
1471 percpu_counter_destroy(&fs_info
->dirty_metadata_bytes
);
1472 percpu_counter_destroy(&fs_info
->delalloc_bytes
);
1473 percpu_counter_destroy(&fs_info
->dio_bytes
);
1474 percpu_counter_destroy(&fs_info
->dev_replace
.bio_counter
);
1475 btrfs_free_csum_hash(fs_info
);
1476 btrfs_free_stripe_hash_table(fs_info
);
1477 btrfs_free_ref_cache(fs_info
);
1478 kfree(fs_info
->balance_ctl
);
1479 kfree(fs_info
->delayed_root
);
1480 btrfs_put_root(fs_info
->extent_root
);
1481 btrfs_put_root(fs_info
->tree_root
);
1482 btrfs_put_root(fs_info
->chunk_root
);
1483 btrfs_put_root(fs_info
->dev_root
);
1484 btrfs_put_root(fs_info
->csum_root
);
1485 btrfs_put_root(fs_info
->quota_root
);
1486 btrfs_put_root(fs_info
->uuid_root
);
1487 btrfs_put_root(fs_info
->free_space_root
);
1488 btrfs_put_root(fs_info
->fs_root
);
1489 btrfs_put_root(fs_info
->data_reloc_root
);
1490 btrfs_check_leaked_roots(fs_info
);
1491 btrfs_extent_buffer_leak_debug_check(fs_info
);
1492 kfree(fs_info
->super_copy
);
1493 kfree(fs_info
->super_for_commit
);
1499 * Get an in-memory reference of a root structure.
1501 * For essential trees like root/extent tree, we grab it from fs_info directly.
1502 * For subvolume trees, we check the cached filesystem roots first. If not
1503 * found, then read it from disk and add it to cached fs roots.
1505 * Caller should release the root by calling btrfs_put_root() after the usage.
1507 * NOTE: Reloc and log trees can't be read by this function as they share the
1508 * same root objectid.
1510 * @objectid: root id
1511 * @anon_dev: preallocated anonymous block device number for new roots,
1512 * pass 0 for new allocation.
1513 * @check_ref: whether to check root item references, If true, return -ENOENT
1516 static struct btrfs_root
*btrfs_get_root_ref(struct btrfs_fs_info
*fs_info
,
1517 u64 objectid
, dev_t anon_dev
,
1520 struct btrfs_root
*root
;
1521 struct btrfs_path
*path
;
1522 struct btrfs_key key
;
1525 root
= btrfs_get_global_root(fs_info
, objectid
);
1529 root
= btrfs_lookup_fs_root(fs_info
, objectid
);
1531 /* Shouldn't get preallocated anon_dev for cached roots */
1533 if (check_ref
&& btrfs_root_refs(&root
->root_item
) == 0) {
1534 btrfs_put_root(root
);
1535 return ERR_PTR(-ENOENT
);
1540 key
.objectid
= objectid
;
1541 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1542 key
.offset
= (u64
)-1;
1543 root
= btrfs_read_tree_root(fs_info
->tree_root
, &key
);
1547 if (check_ref
&& btrfs_root_refs(&root
->root_item
) == 0) {
1552 ret
= btrfs_init_fs_root(root
, anon_dev
);
1556 path
= btrfs_alloc_path();
1561 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
1562 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1563 key
.offset
= objectid
;
1565 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
1566 btrfs_free_path(path
);
1570 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &root
->state
);
1572 ret
= btrfs_insert_fs_root(fs_info
, root
);
1574 btrfs_put_root(root
);
1581 btrfs_put_root(root
);
1582 return ERR_PTR(ret
);
1586 * Get in-memory reference of a root structure
1588 * @objectid: tree objectid
1589 * @check_ref: if set, verify that the tree exists and the item has at least
1592 struct btrfs_root
*btrfs_get_fs_root(struct btrfs_fs_info
*fs_info
,
1593 u64 objectid
, bool check_ref
)
1595 return btrfs_get_root_ref(fs_info
, objectid
, 0, check_ref
);
1599 * Get in-memory reference of a root structure, created as new, optionally pass
1600 * the anonymous block device id
1602 * @objectid: tree objectid
1603 * @anon_dev: if zero, allocate a new anonymous block device or use the
1606 struct btrfs_root
*btrfs_get_new_fs_root(struct btrfs_fs_info
*fs_info
,
1607 u64 objectid
, dev_t anon_dev
)
1609 return btrfs_get_root_ref(fs_info
, objectid
, anon_dev
, true);
1613 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1614 * @fs_info: the fs_info
1615 * @objectid: the objectid we need to lookup
1617 * This is exclusively used for backref walking, and exists specifically because
1618 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1619 * creation time, which means we may have to read the tree_root in order to look
1620 * up a fs root that is not in memory. If the root is not in memory we will
1621 * read the tree root commit root and look up the fs root from there. This is a
1622 * temporary root, it will not be inserted into the radix tree as it doesn't
1623 * have the most uptodate information, it'll simply be discarded once the
1624 * backref code is finished using the root.
1626 struct btrfs_root
*btrfs_get_fs_root_commit_root(struct btrfs_fs_info
*fs_info
,
1627 struct btrfs_path
*path
,
1630 struct btrfs_root
*root
;
1631 struct btrfs_key key
;
1633 ASSERT(path
->search_commit_root
&& path
->skip_locking
);
1636 * This can return -ENOENT if we ask for a root that doesn't exist, but
1637 * since this is called via the backref walking code we won't be looking
1638 * up a root that doesn't exist, unless there's corruption. So if root
1639 * != NULL just return it.
1641 root
= btrfs_get_global_root(fs_info
, objectid
);
1645 root
= btrfs_lookup_fs_root(fs_info
, objectid
);
1649 key
.objectid
= objectid
;
1650 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1651 key
.offset
= (u64
)-1;
1652 root
= read_tree_root_path(fs_info
->tree_root
, path
, &key
);
1653 btrfs_release_path(path
);
1659 * called by the kthread helper functions to finally call the bio end_io
1660 * functions. This is where read checksum verification actually happens
1662 static void end_workqueue_fn(struct btrfs_work
*work
)
1665 struct btrfs_end_io_wq
*end_io_wq
;
1667 end_io_wq
= container_of(work
, struct btrfs_end_io_wq
, work
);
1668 bio
= end_io_wq
->bio
;
1670 bio
->bi_status
= end_io_wq
->status
;
1671 bio
->bi_private
= end_io_wq
->private;
1672 bio
->bi_end_io
= end_io_wq
->end_io
;
1674 kmem_cache_free(btrfs_end_io_wq_cache
, end_io_wq
);
1677 static int cleaner_kthread(void *arg
)
1679 struct btrfs_root
*root
= arg
;
1680 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1686 set_bit(BTRFS_FS_CLEANER_RUNNING
, &fs_info
->flags
);
1688 /* Make the cleaner go to sleep early. */
1689 if (btrfs_need_cleaner_sleep(fs_info
))
1693 * Do not do anything if we might cause open_ctree() to block
1694 * before we have finished mounting the filesystem.
1696 if (!test_bit(BTRFS_FS_OPEN
, &fs_info
->flags
))
1699 if (!mutex_trylock(&fs_info
->cleaner_mutex
))
1703 * Avoid the problem that we change the status of the fs
1704 * during the above check and trylock.
1706 if (btrfs_need_cleaner_sleep(fs_info
)) {
1707 mutex_unlock(&fs_info
->cleaner_mutex
);
1711 btrfs_run_delayed_iputs(fs_info
);
1713 again
= btrfs_clean_one_deleted_snapshot(root
);
1714 mutex_unlock(&fs_info
->cleaner_mutex
);
1717 * The defragger has dealt with the R/O remount and umount,
1718 * needn't do anything special here.
1720 btrfs_run_defrag_inodes(fs_info
);
1723 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1724 * with relocation (btrfs_relocate_chunk) and relocation
1725 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1726 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1727 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1728 * unused block groups.
1730 btrfs_delete_unused_bgs(fs_info
);
1732 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING
, &fs_info
->flags
);
1733 if (kthread_should_park())
1735 if (kthread_should_stop())
1738 set_current_state(TASK_INTERRUPTIBLE
);
1740 __set_current_state(TASK_RUNNING
);
1745 static int transaction_kthread(void *arg
)
1747 struct btrfs_root
*root
= arg
;
1748 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1749 struct btrfs_trans_handle
*trans
;
1750 struct btrfs_transaction
*cur
;
1753 unsigned long delay
;
1757 cannot_commit
= false;
1758 delay
= msecs_to_jiffies(fs_info
->commit_interval
* 1000);
1759 mutex_lock(&fs_info
->transaction_kthread_mutex
);
1761 spin_lock(&fs_info
->trans_lock
);
1762 cur
= fs_info
->running_transaction
;
1764 spin_unlock(&fs_info
->trans_lock
);
1768 delta
= ktime_get_seconds() - cur
->start_time
;
1769 if (cur
->state
< TRANS_STATE_COMMIT_START
&&
1770 delta
< fs_info
->commit_interval
) {
1771 spin_unlock(&fs_info
->trans_lock
);
1772 delay
-= msecs_to_jiffies((delta
- 1) * 1000);
1774 msecs_to_jiffies(fs_info
->commit_interval
* 1000));
1777 transid
= cur
->transid
;
1778 spin_unlock(&fs_info
->trans_lock
);
1780 /* If the file system is aborted, this will always fail. */
1781 trans
= btrfs_attach_transaction(root
);
1782 if (IS_ERR(trans
)) {
1783 if (PTR_ERR(trans
) != -ENOENT
)
1784 cannot_commit
= true;
1787 if (transid
== trans
->transid
) {
1788 btrfs_commit_transaction(trans
);
1790 btrfs_end_transaction(trans
);
1793 wake_up_process(fs_info
->cleaner_kthread
);
1794 mutex_unlock(&fs_info
->transaction_kthread_mutex
);
1796 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR
,
1797 &fs_info
->fs_state
)))
1798 btrfs_cleanup_transaction(fs_info
);
1799 if (!kthread_should_stop() &&
1800 (!btrfs_transaction_blocked(fs_info
) ||
1802 schedule_timeout_interruptible(delay
);
1803 } while (!kthread_should_stop());
1808 * This will find the highest generation in the array of root backups. The
1809 * index of the highest array is returned, or -EINVAL if we can't find
1812 * We check to make sure the array is valid by comparing the
1813 * generation of the latest root in the array with the generation
1814 * in the super block. If they don't match we pitch it.
1816 static int find_newest_super_backup(struct btrfs_fs_info
*info
)
1818 const u64 newest_gen
= btrfs_super_generation(info
->super_copy
);
1820 struct btrfs_root_backup
*root_backup
;
1823 for (i
= 0; i
< BTRFS_NUM_BACKUP_ROOTS
; i
++) {
1824 root_backup
= info
->super_copy
->super_roots
+ i
;
1825 cur
= btrfs_backup_tree_root_gen(root_backup
);
1826 if (cur
== newest_gen
)
1834 * copy all the root pointers into the super backup array.
1835 * this will bump the backup pointer by one when it is
1838 static void backup_super_roots(struct btrfs_fs_info
*info
)
1840 const int next_backup
= info
->backup_root_index
;
1841 struct btrfs_root_backup
*root_backup
;
1843 root_backup
= info
->super_for_commit
->super_roots
+ next_backup
;
1846 * make sure all of our padding and empty slots get zero filled
1847 * regardless of which ones we use today
1849 memset(root_backup
, 0, sizeof(*root_backup
));
1851 info
->backup_root_index
= (next_backup
+ 1) % BTRFS_NUM_BACKUP_ROOTS
;
1853 btrfs_set_backup_tree_root(root_backup
, info
->tree_root
->node
->start
);
1854 btrfs_set_backup_tree_root_gen(root_backup
,
1855 btrfs_header_generation(info
->tree_root
->node
));
1857 btrfs_set_backup_tree_root_level(root_backup
,
1858 btrfs_header_level(info
->tree_root
->node
));
1860 btrfs_set_backup_chunk_root(root_backup
, info
->chunk_root
->node
->start
);
1861 btrfs_set_backup_chunk_root_gen(root_backup
,
1862 btrfs_header_generation(info
->chunk_root
->node
));
1863 btrfs_set_backup_chunk_root_level(root_backup
,
1864 btrfs_header_level(info
->chunk_root
->node
));
1866 btrfs_set_backup_extent_root(root_backup
, info
->extent_root
->node
->start
);
1867 btrfs_set_backup_extent_root_gen(root_backup
,
1868 btrfs_header_generation(info
->extent_root
->node
));
1869 btrfs_set_backup_extent_root_level(root_backup
,
1870 btrfs_header_level(info
->extent_root
->node
));
1873 * we might commit during log recovery, which happens before we set
1874 * the fs_root. Make sure it is valid before we fill it in.
1876 if (info
->fs_root
&& info
->fs_root
->node
) {
1877 btrfs_set_backup_fs_root(root_backup
,
1878 info
->fs_root
->node
->start
);
1879 btrfs_set_backup_fs_root_gen(root_backup
,
1880 btrfs_header_generation(info
->fs_root
->node
));
1881 btrfs_set_backup_fs_root_level(root_backup
,
1882 btrfs_header_level(info
->fs_root
->node
));
1885 btrfs_set_backup_dev_root(root_backup
, info
->dev_root
->node
->start
);
1886 btrfs_set_backup_dev_root_gen(root_backup
,
1887 btrfs_header_generation(info
->dev_root
->node
));
1888 btrfs_set_backup_dev_root_level(root_backup
,
1889 btrfs_header_level(info
->dev_root
->node
));
1891 btrfs_set_backup_csum_root(root_backup
, info
->csum_root
->node
->start
);
1892 btrfs_set_backup_csum_root_gen(root_backup
,
1893 btrfs_header_generation(info
->csum_root
->node
));
1894 btrfs_set_backup_csum_root_level(root_backup
,
1895 btrfs_header_level(info
->csum_root
->node
));
1897 btrfs_set_backup_total_bytes(root_backup
,
1898 btrfs_super_total_bytes(info
->super_copy
));
1899 btrfs_set_backup_bytes_used(root_backup
,
1900 btrfs_super_bytes_used(info
->super_copy
));
1901 btrfs_set_backup_num_devices(root_backup
,
1902 btrfs_super_num_devices(info
->super_copy
));
1905 * if we don't copy this out to the super_copy, it won't get remembered
1906 * for the next commit
1908 memcpy(&info
->super_copy
->super_roots
,
1909 &info
->super_for_commit
->super_roots
,
1910 sizeof(*root_backup
) * BTRFS_NUM_BACKUP_ROOTS
);
1914 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1915 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1917 * fs_info - filesystem whose backup roots need to be read
1918 * priority - priority of backup root required
1920 * Returns backup root index on success and -EINVAL otherwise.
1922 static int read_backup_root(struct btrfs_fs_info
*fs_info
, u8 priority
)
1924 int backup_index
= find_newest_super_backup(fs_info
);
1925 struct btrfs_super_block
*super
= fs_info
->super_copy
;
1926 struct btrfs_root_backup
*root_backup
;
1928 if (priority
< BTRFS_NUM_BACKUP_ROOTS
&& backup_index
>= 0) {
1930 return backup_index
;
1932 backup_index
= backup_index
+ BTRFS_NUM_BACKUP_ROOTS
- priority
;
1933 backup_index
%= BTRFS_NUM_BACKUP_ROOTS
;
1938 root_backup
= super
->super_roots
+ backup_index
;
1940 btrfs_set_super_generation(super
,
1941 btrfs_backup_tree_root_gen(root_backup
));
1942 btrfs_set_super_root(super
, btrfs_backup_tree_root(root_backup
));
1943 btrfs_set_super_root_level(super
,
1944 btrfs_backup_tree_root_level(root_backup
));
1945 btrfs_set_super_bytes_used(super
, btrfs_backup_bytes_used(root_backup
));
1948 * Fixme: the total bytes and num_devices need to match or we should
1951 btrfs_set_super_total_bytes(super
, btrfs_backup_total_bytes(root_backup
));
1952 btrfs_set_super_num_devices(super
, btrfs_backup_num_devices(root_backup
));
1954 return backup_index
;
1957 /* helper to cleanup workers */
1958 static void btrfs_stop_all_workers(struct btrfs_fs_info
*fs_info
)
1960 btrfs_destroy_workqueue(fs_info
->fixup_workers
);
1961 btrfs_destroy_workqueue(fs_info
->delalloc_workers
);
1962 btrfs_destroy_workqueue(fs_info
->workers
);
1963 btrfs_destroy_workqueue(fs_info
->endio_workers
);
1964 btrfs_destroy_workqueue(fs_info
->endio_raid56_workers
);
1965 btrfs_destroy_workqueue(fs_info
->rmw_workers
);
1966 btrfs_destroy_workqueue(fs_info
->endio_write_workers
);
1967 btrfs_destroy_workqueue(fs_info
->endio_freespace_worker
);
1968 btrfs_destroy_workqueue(fs_info
->delayed_workers
);
1969 btrfs_destroy_workqueue(fs_info
->caching_workers
);
1970 btrfs_destroy_workqueue(fs_info
->readahead_workers
);
1971 btrfs_destroy_workqueue(fs_info
->flush_workers
);
1972 btrfs_destroy_workqueue(fs_info
->qgroup_rescan_workers
);
1973 if (fs_info
->discard_ctl
.discard_workers
)
1974 destroy_workqueue(fs_info
->discard_ctl
.discard_workers
);
1976 * Now that all other work queues are destroyed, we can safely destroy
1977 * the queues used for metadata I/O, since tasks from those other work
1978 * queues can do metadata I/O operations.
1980 btrfs_destroy_workqueue(fs_info
->endio_meta_workers
);
1981 btrfs_destroy_workqueue(fs_info
->endio_meta_write_workers
);
1984 static void free_root_extent_buffers(struct btrfs_root
*root
)
1987 free_extent_buffer(root
->node
);
1988 free_extent_buffer(root
->commit_root
);
1990 root
->commit_root
= NULL
;
1994 /* helper to cleanup tree roots */
1995 static void free_root_pointers(struct btrfs_fs_info
*info
, bool free_chunk_root
)
1997 free_root_extent_buffers(info
->tree_root
);
1999 free_root_extent_buffers(info
->dev_root
);
2000 free_root_extent_buffers(info
->extent_root
);
2001 free_root_extent_buffers(info
->csum_root
);
2002 free_root_extent_buffers(info
->quota_root
);
2003 free_root_extent_buffers(info
->uuid_root
);
2004 free_root_extent_buffers(info
->fs_root
);
2005 free_root_extent_buffers(info
->data_reloc_root
);
2006 if (free_chunk_root
)
2007 free_root_extent_buffers(info
->chunk_root
);
2008 free_root_extent_buffers(info
->free_space_root
);
2011 void btrfs_put_root(struct btrfs_root
*root
)
2016 if (refcount_dec_and_test(&root
->refs
)) {
2017 WARN_ON(!RB_EMPTY_ROOT(&root
->inode_tree
));
2018 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE
, &root
->state
));
2020 free_anon_bdev(root
->anon_dev
);
2021 btrfs_drew_lock_destroy(&root
->snapshot_lock
);
2022 free_root_extent_buffers(root
);
2023 #ifdef CONFIG_BTRFS_DEBUG
2024 spin_lock(&root
->fs_info
->fs_roots_radix_lock
);
2025 list_del_init(&root
->leak_list
);
2026 spin_unlock(&root
->fs_info
->fs_roots_radix_lock
);
2032 void btrfs_free_fs_roots(struct btrfs_fs_info
*fs_info
)
2035 struct btrfs_root
*gang
[8];
2038 while (!list_empty(&fs_info
->dead_roots
)) {
2039 gang
[0] = list_entry(fs_info
->dead_roots
.next
,
2040 struct btrfs_root
, root_list
);
2041 list_del(&gang
[0]->root_list
);
2043 if (test_bit(BTRFS_ROOT_IN_RADIX
, &gang
[0]->state
))
2044 btrfs_drop_and_free_fs_root(fs_info
, gang
[0]);
2045 btrfs_put_root(gang
[0]);
2049 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2054 for (i
= 0; i
< ret
; i
++)
2055 btrfs_drop_and_free_fs_root(fs_info
, gang
[i
]);
2059 static void btrfs_init_scrub(struct btrfs_fs_info
*fs_info
)
2061 mutex_init(&fs_info
->scrub_lock
);
2062 atomic_set(&fs_info
->scrubs_running
, 0);
2063 atomic_set(&fs_info
->scrub_pause_req
, 0);
2064 atomic_set(&fs_info
->scrubs_paused
, 0);
2065 atomic_set(&fs_info
->scrub_cancel_req
, 0);
2066 init_waitqueue_head(&fs_info
->scrub_pause_wait
);
2067 refcount_set(&fs_info
->scrub_workers_refcnt
, 0);
2070 static void btrfs_init_balance(struct btrfs_fs_info
*fs_info
)
2072 spin_lock_init(&fs_info
->balance_lock
);
2073 mutex_init(&fs_info
->balance_mutex
);
2074 atomic_set(&fs_info
->balance_pause_req
, 0);
2075 atomic_set(&fs_info
->balance_cancel_req
, 0);
2076 fs_info
->balance_ctl
= NULL
;
2077 init_waitqueue_head(&fs_info
->balance_wait_q
);
2080 static void btrfs_init_btree_inode(struct btrfs_fs_info
*fs_info
)
2082 struct inode
*inode
= fs_info
->btree_inode
;
2084 inode
->i_ino
= BTRFS_BTREE_INODE_OBJECTID
;
2085 set_nlink(inode
, 1);
2087 * we set the i_size on the btree inode to the max possible int.
2088 * the real end of the address space is determined by all of
2089 * the devices in the system
2091 inode
->i_size
= OFFSET_MAX
;
2092 inode
->i_mapping
->a_ops
= &btree_aops
;
2094 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
2095 extent_io_tree_init(fs_info
, &BTRFS_I(inode
)->io_tree
,
2096 IO_TREE_BTREE_INODE_IO
, inode
);
2097 BTRFS_I(inode
)->io_tree
.track_uptodate
= false;
2098 extent_map_tree_init(&BTRFS_I(inode
)->extent_tree
);
2100 BTRFS_I(inode
)->root
= btrfs_grab_root(fs_info
->tree_root
);
2101 memset(&BTRFS_I(inode
)->location
, 0, sizeof(struct btrfs_key
));
2102 set_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
);
2103 btrfs_insert_inode_hash(inode
);
2106 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info
*fs_info
)
2108 mutex_init(&fs_info
->dev_replace
.lock_finishing_cancel_unmount
);
2109 init_rwsem(&fs_info
->dev_replace
.rwsem
);
2110 init_waitqueue_head(&fs_info
->dev_replace
.replace_wait
);
2113 static void btrfs_init_qgroup(struct btrfs_fs_info
*fs_info
)
2115 spin_lock_init(&fs_info
->qgroup_lock
);
2116 mutex_init(&fs_info
->qgroup_ioctl_lock
);
2117 fs_info
->qgroup_tree
= RB_ROOT
;
2118 INIT_LIST_HEAD(&fs_info
->dirty_qgroups
);
2119 fs_info
->qgroup_seq
= 1;
2120 fs_info
->qgroup_ulist
= NULL
;
2121 fs_info
->qgroup_rescan_running
= false;
2122 mutex_init(&fs_info
->qgroup_rescan_lock
);
2125 static int btrfs_init_workqueues(struct btrfs_fs_info
*fs_info
,
2126 struct btrfs_fs_devices
*fs_devices
)
2128 u32 max_active
= fs_info
->thread_pool_size
;
2129 unsigned int flags
= WQ_MEM_RECLAIM
| WQ_FREEZABLE
| WQ_UNBOUND
;
2132 btrfs_alloc_workqueue(fs_info
, "worker",
2133 flags
| WQ_HIGHPRI
, max_active
, 16);
2135 fs_info
->delalloc_workers
=
2136 btrfs_alloc_workqueue(fs_info
, "delalloc",
2137 flags
, max_active
, 2);
2139 fs_info
->flush_workers
=
2140 btrfs_alloc_workqueue(fs_info
, "flush_delalloc",
2141 flags
, max_active
, 0);
2143 fs_info
->caching_workers
=
2144 btrfs_alloc_workqueue(fs_info
, "cache", flags
, max_active
, 0);
2146 fs_info
->fixup_workers
=
2147 btrfs_alloc_workqueue(fs_info
, "fixup", flags
, 1, 0);
2150 * endios are largely parallel and should have a very
2153 fs_info
->endio_workers
=
2154 btrfs_alloc_workqueue(fs_info
, "endio", flags
, max_active
, 4);
2155 fs_info
->endio_meta_workers
=
2156 btrfs_alloc_workqueue(fs_info
, "endio-meta", flags
,
2158 fs_info
->endio_meta_write_workers
=
2159 btrfs_alloc_workqueue(fs_info
, "endio-meta-write", flags
,
2161 fs_info
->endio_raid56_workers
=
2162 btrfs_alloc_workqueue(fs_info
, "endio-raid56", flags
,
2164 fs_info
->rmw_workers
=
2165 btrfs_alloc_workqueue(fs_info
, "rmw", flags
, max_active
, 2);
2166 fs_info
->endio_write_workers
=
2167 btrfs_alloc_workqueue(fs_info
, "endio-write", flags
,
2169 fs_info
->endio_freespace_worker
=
2170 btrfs_alloc_workqueue(fs_info
, "freespace-write", flags
,
2172 fs_info
->delayed_workers
=
2173 btrfs_alloc_workqueue(fs_info
, "delayed-meta", flags
,
2175 fs_info
->readahead_workers
=
2176 btrfs_alloc_workqueue(fs_info
, "readahead", flags
,
2178 fs_info
->qgroup_rescan_workers
=
2179 btrfs_alloc_workqueue(fs_info
, "qgroup-rescan", flags
, 1, 0);
2180 fs_info
->discard_ctl
.discard_workers
=
2181 alloc_workqueue("btrfs_discard", WQ_UNBOUND
| WQ_FREEZABLE
, 1);
2183 if (!(fs_info
->workers
&& fs_info
->delalloc_workers
&&
2184 fs_info
->flush_workers
&&
2185 fs_info
->endio_workers
&& fs_info
->endio_meta_workers
&&
2186 fs_info
->endio_meta_write_workers
&&
2187 fs_info
->endio_write_workers
&& fs_info
->endio_raid56_workers
&&
2188 fs_info
->endio_freespace_worker
&& fs_info
->rmw_workers
&&
2189 fs_info
->caching_workers
&& fs_info
->readahead_workers
&&
2190 fs_info
->fixup_workers
&& fs_info
->delayed_workers
&&
2191 fs_info
->qgroup_rescan_workers
&&
2192 fs_info
->discard_ctl
.discard_workers
)) {
2199 static int btrfs_init_csum_hash(struct btrfs_fs_info
*fs_info
, u16 csum_type
)
2201 struct crypto_shash
*csum_shash
;
2202 const char *csum_driver
= btrfs_super_csum_driver(csum_type
);
2204 csum_shash
= crypto_alloc_shash(csum_driver
, 0, 0);
2206 if (IS_ERR(csum_shash
)) {
2207 btrfs_err(fs_info
, "error allocating %s hash for checksum",
2209 return PTR_ERR(csum_shash
);
2212 fs_info
->csum_shash
= csum_shash
;
2217 static int btrfs_replay_log(struct btrfs_fs_info
*fs_info
,
2218 struct btrfs_fs_devices
*fs_devices
)
2221 struct btrfs_root
*log_tree_root
;
2222 struct btrfs_super_block
*disk_super
= fs_info
->super_copy
;
2223 u64 bytenr
= btrfs_super_log_root(disk_super
);
2224 int level
= btrfs_super_log_root_level(disk_super
);
2226 if (fs_devices
->rw_devices
== 0) {
2227 btrfs_warn(fs_info
, "log replay required on RO media");
2231 log_tree_root
= btrfs_alloc_root(fs_info
, BTRFS_TREE_LOG_OBJECTID
,
2236 log_tree_root
->node
= read_tree_block(fs_info
, bytenr
,
2237 BTRFS_TREE_LOG_OBJECTID
,
2238 fs_info
->generation
+ 1, level
,
2240 if (IS_ERR(log_tree_root
->node
)) {
2241 btrfs_warn(fs_info
, "failed to read log tree");
2242 ret
= PTR_ERR(log_tree_root
->node
);
2243 log_tree_root
->node
= NULL
;
2244 btrfs_put_root(log_tree_root
);
2246 } else if (!extent_buffer_uptodate(log_tree_root
->node
)) {
2247 btrfs_err(fs_info
, "failed to read log tree");
2248 btrfs_put_root(log_tree_root
);
2251 /* returns with log_tree_root freed on success */
2252 ret
= btrfs_recover_log_trees(log_tree_root
);
2254 btrfs_handle_fs_error(fs_info
, ret
,
2255 "Failed to recover log tree");
2256 btrfs_put_root(log_tree_root
);
2260 if (sb_rdonly(fs_info
->sb
)) {
2261 ret
= btrfs_commit_super(fs_info
);
2269 static int btrfs_read_roots(struct btrfs_fs_info
*fs_info
)
2271 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
2272 struct btrfs_root
*root
;
2273 struct btrfs_key location
;
2276 BUG_ON(!fs_info
->tree_root
);
2278 location
.objectid
= BTRFS_EXTENT_TREE_OBJECTID
;
2279 location
.type
= BTRFS_ROOT_ITEM_KEY
;
2280 location
.offset
= 0;
2282 root
= btrfs_read_tree_root(tree_root
, &location
);
2284 if (!btrfs_test_opt(fs_info
, IGNOREBADROOTS
)) {
2285 ret
= PTR_ERR(root
);
2289 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2290 fs_info
->extent_root
= root
;
2293 location
.objectid
= BTRFS_DEV_TREE_OBJECTID
;
2294 root
= btrfs_read_tree_root(tree_root
, &location
);
2296 if (!btrfs_test_opt(fs_info
, IGNOREBADROOTS
)) {
2297 ret
= PTR_ERR(root
);
2301 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2302 fs_info
->dev_root
= root
;
2303 btrfs_init_devices_late(fs_info
);
2306 /* If IGNOREDATACSUMS is set don't bother reading the csum root. */
2307 if (!btrfs_test_opt(fs_info
, IGNOREDATACSUMS
)) {
2308 location
.objectid
= BTRFS_CSUM_TREE_OBJECTID
;
2309 root
= btrfs_read_tree_root(tree_root
, &location
);
2311 if (!btrfs_test_opt(fs_info
, IGNOREBADROOTS
)) {
2312 ret
= PTR_ERR(root
);
2316 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2317 fs_info
->csum_root
= root
;
2322 * This tree can share blocks with some other fs tree during relocation
2323 * and we need a proper setup by btrfs_get_fs_root
2325 root
= btrfs_get_fs_root(tree_root
->fs_info
,
2326 BTRFS_DATA_RELOC_TREE_OBJECTID
, true);
2328 if (!btrfs_test_opt(fs_info
, IGNOREBADROOTS
)) {
2329 ret
= PTR_ERR(root
);
2333 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2334 fs_info
->data_reloc_root
= root
;
2337 location
.objectid
= BTRFS_QUOTA_TREE_OBJECTID
;
2338 root
= btrfs_read_tree_root(tree_root
, &location
);
2339 if (!IS_ERR(root
)) {
2340 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2341 set_bit(BTRFS_FS_QUOTA_ENABLED
, &fs_info
->flags
);
2342 fs_info
->quota_root
= root
;
2345 location
.objectid
= BTRFS_UUID_TREE_OBJECTID
;
2346 root
= btrfs_read_tree_root(tree_root
, &location
);
2348 if (!btrfs_test_opt(fs_info
, IGNOREBADROOTS
)) {
2349 ret
= PTR_ERR(root
);
2354 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2355 fs_info
->uuid_root
= root
;
2358 if (btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
)) {
2359 location
.objectid
= BTRFS_FREE_SPACE_TREE_OBJECTID
;
2360 root
= btrfs_read_tree_root(tree_root
, &location
);
2362 if (!btrfs_test_opt(fs_info
, IGNOREBADROOTS
)) {
2363 ret
= PTR_ERR(root
);
2367 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2368 fs_info
->free_space_root
= root
;
2374 btrfs_warn(fs_info
, "failed to read root (objectid=%llu): %d",
2375 location
.objectid
, ret
);
2380 * Real super block validation
2381 * NOTE: super csum type and incompat features will not be checked here.
2383 * @sb: super block to check
2384 * @mirror_num: the super block number to check its bytenr:
2385 * 0 the primary (1st) sb
2386 * 1, 2 2nd and 3rd backup copy
2387 * -1 skip bytenr check
2389 static int validate_super(struct btrfs_fs_info
*fs_info
,
2390 struct btrfs_super_block
*sb
, int mirror_num
)
2392 u64 nodesize
= btrfs_super_nodesize(sb
);
2393 u64 sectorsize
= btrfs_super_sectorsize(sb
);
2396 if (btrfs_super_magic(sb
) != BTRFS_MAGIC
) {
2397 btrfs_err(fs_info
, "no valid FS found");
2400 if (btrfs_super_flags(sb
) & ~BTRFS_SUPER_FLAG_SUPP
) {
2401 btrfs_err(fs_info
, "unrecognized or unsupported super flag: %llu",
2402 btrfs_super_flags(sb
) & ~BTRFS_SUPER_FLAG_SUPP
);
2405 if (btrfs_super_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
2406 btrfs_err(fs_info
, "tree_root level too big: %d >= %d",
2407 btrfs_super_root_level(sb
), BTRFS_MAX_LEVEL
);
2410 if (btrfs_super_chunk_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
2411 btrfs_err(fs_info
, "chunk_root level too big: %d >= %d",
2412 btrfs_super_chunk_root_level(sb
), BTRFS_MAX_LEVEL
);
2415 if (btrfs_super_log_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
2416 btrfs_err(fs_info
, "log_root level too big: %d >= %d",
2417 btrfs_super_log_root_level(sb
), BTRFS_MAX_LEVEL
);
2422 * Check sectorsize and nodesize first, other check will need it.
2423 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2425 if (!is_power_of_2(sectorsize
) || sectorsize
< 4096 ||
2426 sectorsize
> BTRFS_MAX_METADATA_BLOCKSIZE
) {
2427 btrfs_err(fs_info
, "invalid sectorsize %llu", sectorsize
);
2430 /* Only PAGE SIZE is supported yet */
2431 if (sectorsize
!= PAGE_SIZE
) {
2433 "sectorsize %llu not supported yet, only support %lu",
2434 sectorsize
, PAGE_SIZE
);
2437 if (!is_power_of_2(nodesize
) || nodesize
< sectorsize
||
2438 nodesize
> BTRFS_MAX_METADATA_BLOCKSIZE
) {
2439 btrfs_err(fs_info
, "invalid nodesize %llu", nodesize
);
2442 if (nodesize
!= le32_to_cpu(sb
->__unused_leafsize
)) {
2443 btrfs_err(fs_info
, "invalid leafsize %u, should be %llu",
2444 le32_to_cpu(sb
->__unused_leafsize
), nodesize
);
2448 /* Root alignment check */
2449 if (!IS_ALIGNED(btrfs_super_root(sb
), sectorsize
)) {
2450 btrfs_warn(fs_info
, "tree_root block unaligned: %llu",
2451 btrfs_super_root(sb
));
2454 if (!IS_ALIGNED(btrfs_super_chunk_root(sb
), sectorsize
)) {
2455 btrfs_warn(fs_info
, "chunk_root block unaligned: %llu",
2456 btrfs_super_chunk_root(sb
));
2459 if (!IS_ALIGNED(btrfs_super_log_root(sb
), sectorsize
)) {
2460 btrfs_warn(fs_info
, "log_root block unaligned: %llu",
2461 btrfs_super_log_root(sb
));
2465 if (memcmp(fs_info
->fs_devices
->metadata_uuid
, sb
->dev_item
.fsid
,
2466 BTRFS_FSID_SIZE
) != 0) {
2468 "dev_item UUID does not match metadata fsid: %pU != %pU",
2469 fs_info
->fs_devices
->metadata_uuid
, sb
->dev_item
.fsid
);
2474 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2477 if (btrfs_super_bytes_used(sb
) < 6 * btrfs_super_nodesize(sb
)) {
2478 btrfs_err(fs_info
, "bytes_used is too small %llu",
2479 btrfs_super_bytes_used(sb
));
2482 if (!is_power_of_2(btrfs_super_stripesize(sb
))) {
2483 btrfs_err(fs_info
, "invalid stripesize %u",
2484 btrfs_super_stripesize(sb
));
2487 if (btrfs_super_num_devices(sb
) > (1UL << 31))
2488 btrfs_warn(fs_info
, "suspicious number of devices: %llu",
2489 btrfs_super_num_devices(sb
));
2490 if (btrfs_super_num_devices(sb
) == 0) {
2491 btrfs_err(fs_info
, "number of devices is 0");
2495 if (mirror_num
>= 0 &&
2496 btrfs_super_bytenr(sb
) != btrfs_sb_offset(mirror_num
)) {
2497 btrfs_err(fs_info
, "super offset mismatch %llu != %u",
2498 btrfs_super_bytenr(sb
), BTRFS_SUPER_INFO_OFFSET
);
2503 * Obvious sys_chunk_array corruptions, it must hold at least one key
2506 if (btrfs_super_sys_array_size(sb
) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
) {
2507 btrfs_err(fs_info
, "system chunk array too big %u > %u",
2508 btrfs_super_sys_array_size(sb
),
2509 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
);
2512 if (btrfs_super_sys_array_size(sb
) < sizeof(struct btrfs_disk_key
)
2513 + sizeof(struct btrfs_chunk
)) {
2514 btrfs_err(fs_info
, "system chunk array too small %u < %zu",
2515 btrfs_super_sys_array_size(sb
),
2516 sizeof(struct btrfs_disk_key
)
2517 + sizeof(struct btrfs_chunk
));
2522 * The generation is a global counter, we'll trust it more than the others
2523 * but it's still possible that it's the one that's wrong.
2525 if (btrfs_super_generation(sb
) < btrfs_super_chunk_root_generation(sb
))
2527 "suspicious: generation < chunk_root_generation: %llu < %llu",
2528 btrfs_super_generation(sb
),
2529 btrfs_super_chunk_root_generation(sb
));
2530 if (btrfs_super_generation(sb
) < btrfs_super_cache_generation(sb
)
2531 && btrfs_super_cache_generation(sb
) != (u64
)-1)
2533 "suspicious: generation < cache_generation: %llu < %llu",
2534 btrfs_super_generation(sb
),
2535 btrfs_super_cache_generation(sb
));
2541 * Validation of super block at mount time.
2542 * Some checks already done early at mount time, like csum type and incompat
2543 * flags will be skipped.
2545 static int btrfs_validate_mount_super(struct btrfs_fs_info
*fs_info
)
2547 return validate_super(fs_info
, fs_info
->super_copy
, 0);
2551 * Validation of super block at write time.
2552 * Some checks like bytenr check will be skipped as their values will be
2554 * Extra checks like csum type and incompat flags will be done here.
2556 static int btrfs_validate_write_super(struct btrfs_fs_info
*fs_info
,
2557 struct btrfs_super_block
*sb
)
2561 ret
= validate_super(fs_info
, sb
, -1);
2564 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb
))) {
2566 btrfs_err(fs_info
, "invalid csum type, has %u want %u",
2567 btrfs_super_csum_type(sb
), BTRFS_CSUM_TYPE_CRC32
);
2570 if (btrfs_super_incompat_flags(sb
) & ~BTRFS_FEATURE_INCOMPAT_SUPP
) {
2573 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2574 btrfs_super_incompat_flags(sb
),
2575 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP
);
2581 "super block corruption detected before writing it to disk");
2585 static int __cold
init_tree_roots(struct btrfs_fs_info
*fs_info
)
2587 int backup_index
= find_newest_super_backup(fs_info
);
2588 struct btrfs_super_block
*sb
= fs_info
->super_copy
;
2589 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
2590 bool handle_error
= false;
2594 for (i
= 0; i
< BTRFS_NUM_BACKUP_ROOTS
; i
++) {
2599 if (!IS_ERR(tree_root
->node
))
2600 free_extent_buffer(tree_root
->node
);
2601 tree_root
->node
= NULL
;
2603 if (!btrfs_test_opt(fs_info
, USEBACKUPROOT
))
2606 free_root_pointers(fs_info
, 0);
2609 * Don't use the log in recovery mode, it won't be
2612 btrfs_set_super_log_root(sb
, 0);
2614 /* We can't trust the free space cache either */
2615 btrfs_set_opt(fs_info
->mount_opt
, CLEAR_CACHE
);
2617 ret
= read_backup_root(fs_info
, i
);
2622 generation
= btrfs_super_generation(sb
);
2623 level
= btrfs_super_root_level(sb
);
2624 tree_root
->node
= read_tree_block(fs_info
, btrfs_super_root(sb
),
2625 BTRFS_ROOT_TREE_OBJECTID
,
2626 generation
, level
, NULL
);
2627 if (IS_ERR(tree_root
->node
)) {
2628 handle_error
= true;
2629 ret
= PTR_ERR(tree_root
->node
);
2630 tree_root
->node
= NULL
;
2631 btrfs_warn(fs_info
, "couldn't read tree root");
2634 } else if (!extent_buffer_uptodate(tree_root
->node
)) {
2635 handle_error
= true;
2637 btrfs_warn(fs_info
, "error while reading tree root");
2641 btrfs_set_root_node(&tree_root
->root_item
, tree_root
->node
);
2642 tree_root
->commit_root
= btrfs_root_node(tree_root
);
2643 btrfs_set_root_refs(&tree_root
->root_item
, 1);
2646 * No need to hold btrfs_root::objectid_mutex since the fs
2647 * hasn't been fully initialised and we are the only user
2649 ret
= btrfs_find_highest_objectid(tree_root
,
2650 &tree_root
->highest_objectid
);
2652 handle_error
= true;
2656 ASSERT(tree_root
->highest_objectid
<= BTRFS_LAST_FREE_OBJECTID
);
2658 ret
= btrfs_read_roots(fs_info
);
2660 handle_error
= true;
2664 /* All successful */
2665 fs_info
->generation
= generation
;
2666 fs_info
->last_trans_committed
= generation
;
2668 /* Always begin writing backup roots after the one being used */
2669 if (backup_index
< 0) {
2670 fs_info
->backup_root_index
= 0;
2672 fs_info
->backup_root_index
= backup_index
+ 1;
2673 fs_info
->backup_root_index
%= BTRFS_NUM_BACKUP_ROOTS
;
2681 void btrfs_init_fs_info(struct btrfs_fs_info
*fs_info
)
2683 INIT_RADIX_TREE(&fs_info
->fs_roots_radix
, GFP_ATOMIC
);
2684 INIT_RADIX_TREE(&fs_info
->buffer_radix
, GFP_ATOMIC
);
2685 INIT_LIST_HEAD(&fs_info
->trans_list
);
2686 INIT_LIST_HEAD(&fs_info
->dead_roots
);
2687 INIT_LIST_HEAD(&fs_info
->delayed_iputs
);
2688 INIT_LIST_HEAD(&fs_info
->delalloc_roots
);
2689 INIT_LIST_HEAD(&fs_info
->caching_block_groups
);
2690 spin_lock_init(&fs_info
->delalloc_root_lock
);
2691 spin_lock_init(&fs_info
->trans_lock
);
2692 spin_lock_init(&fs_info
->fs_roots_radix_lock
);
2693 spin_lock_init(&fs_info
->delayed_iput_lock
);
2694 spin_lock_init(&fs_info
->defrag_inodes_lock
);
2695 spin_lock_init(&fs_info
->super_lock
);
2696 spin_lock_init(&fs_info
->buffer_lock
);
2697 spin_lock_init(&fs_info
->unused_bgs_lock
);
2698 rwlock_init(&fs_info
->tree_mod_log_lock
);
2699 mutex_init(&fs_info
->unused_bg_unpin_mutex
);
2700 mutex_init(&fs_info
->delete_unused_bgs_mutex
);
2701 mutex_init(&fs_info
->reloc_mutex
);
2702 mutex_init(&fs_info
->delalloc_root_mutex
);
2703 seqlock_init(&fs_info
->profiles_lock
);
2705 INIT_LIST_HEAD(&fs_info
->dirty_cowonly_roots
);
2706 INIT_LIST_HEAD(&fs_info
->space_info
);
2707 INIT_LIST_HEAD(&fs_info
->tree_mod_seq_list
);
2708 INIT_LIST_HEAD(&fs_info
->unused_bgs
);
2709 #ifdef CONFIG_BTRFS_DEBUG
2710 INIT_LIST_HEAD(&fs_info
->allocated_roots
);
2711 INIT_LIST_HEAD(&fs_info
->allocated_ebs
);
2712 spin_lock_init(&fs_info
->eb_leak_lock
);
2714 extent_map_tree_init(&fs_info
->mapping_tree
);
2715 btrfs_init_block_rsv(&fs_info
->global_block_rsv
,
2716 BTRFS_BLOCK_RSV_GLOBAL
);
2717 btrfs_init_block_rsv(&fs_info
->trans_block_rsv
, BTRFS_BLOCK_RSV_TRANS
);
2718 btrfs_init_block_rsv(&fs_info
->chunk_block_rsv
, BTRFS_BLOCK_RSV_CHUNK
);
2719 btrfs_init_block_rsv(&fs_info
->empty_block_rsv
, BTRFS_BLOCK_RSV_EMPTY
);
2720 btrfs_init_block_rsv(&fs_info
->delayed_block_rsv
,
2721 BTRFS_BLOCK_RSV_DELOPS
);
2722 btrfs_init_block_rsv(&fs_info
->delayed_refs_rsv
,
2723 BTRFS_BLOCK_RSV_DELREFS
);
2725 atomic_set(&fs_info
->async_delalloc_pages
, 0);
2726 atomic_set(&fs_info
->defrag_running
, 0);
2727 atomic_set(&fs_info
->reada_works_cnt
, 0);
2728 atomic_set(&fs_info
->nr_delayed_iputs
, 0);
2729 atomic64_set(&fs_info
->tree_mod_seq
, 0);
2730 fs_info
->max_inline
= BTRFS_DEFAULT_MAX_INLINE
;
2731 fs_info
->metadata_ratio
= 0;
2732 fs_info
->defrag_inodes
= RB_ROOT
;
2733 atomic64_set(&fs_info
->free_chunk_space
, 0);
2734 fs_info
->tree_mod_log
= RB_ROOT
;
2735 fs_info
->commit_interval
= BTRFS_DEFAULT_COMMIT_INTERVAL
;
2736 fs_info
->avg_delayed_ref_runtime
= NSEC_PER_SEC
>> 6; /* div by 64 */
2737 /* readahead state */
2738 INIT_RADIX_TREE(&fs_info
->reada_tree
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
2739 spin_lock_init(&fs_info
->reada_lock
);
2740 btrfs_init_ref_verify(fs_info
);
2742 fs_info
->thread_pool_size
= min_t(unsigned long,
2743 num_online_cpus() + 2, 8);
2745 INIT_LIST_HEAD(&fs_info
->ordered_roots
);
2746 spin_lock_init(&fs_info
->ordered_root_lock
);
2748 btrfs_init_scrub(fs_info
);
2749 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2750 fs_info
->check_integrity_print_mask
= 0;
2752 btrfs_init_balance(fs_info
);
2753 btrfs_init_async_reclaim_work(fs_info
);
2755 spin_lock_init(&fs_info
->block_group_cache_lock
);
2756 fs_info
->block_group_cache_tree
= RB_ROOT
;
2757 fs_info
->first_logical_byte
= (u64
)-1;
2759 extent_io_tree_init(fs_info
, &fs_info
->excluded_extents
,
2760 IO_TREE_FS_EXCLUDED_EXTENTS
, NULL
);
2761 set_bit(BTRFS_FS_BARRIER
, &fs_info
->flags
);
2763 mutex_init(&fs_info
->ordered_operations_mutex
);
2764 mutex_init(&fs_info
->tree_log_mutex
);
2765 mutex_init(&fs_info
->chunk_mutex
);
2766 mutex_init(&fs_info
->transaction_kthread_mutex
);
2767 mutex_init(&fs_info
->cleaner_mutex
);
2768 mutex_init(&fs_info
->ro_block_group_mutex
);
2769 init_rwsem(&fs_info
->commit_root_sem
);
2770 init_rwsem(&fs_info
->cleanup_work_sem
);
2771 init_rwsem(&fs_info
->subvol_sem
);
2772 sema_init(&fs_info
->uuid_tree_rescan_sem
, 1);
2774 btrfs_init_dev_replace_locks(fs_info
);
2775 btrfs_init_qgroup(fs_info
);
2776 btrfs_discard_init(fs_info
);
2778 btrfs_init_free_cluster(&fs_info
->meta_alloc_cluster
);
2779 btrfs_init_free_cluster(&fs_info
->data_alloc_cluster
);
2781 init_waitqueue_head(&fs_info
->transaction_throttle
);
2782 init_waitqueue_head(&fs_info
->transaction_wait
);
2783 init_waitqueue_head(&fs_info
->transaction_blocked_wait
);
2784 init_waitqueue_head(&fs_info
->async_submit_wait
);
2785 init_waitqueue_head(&fs_info
->delayed_iputs_wait
);
2787 /* Usable values until the real ones are cached from the superblock */
2788 fs_info
->nodesize
= 4096;
2789 fs_info
->sectorsize
= 4096;
2790 fs_info
->sectorsize_bits
= ilog2(4096);
2791 fs_info
->stripesize
= 4096;
2793 spin_lock_init(&fs_info
->swapfile_pins_lock
);
2794 fs_info
->swapfile_pins
= RB_ROOT
;
2796 fs_info
->send_in_progress
= 0;
2799 static int init_mount_fs_info(struct btrfs_fs_info
*fs_info
, struct super_block
*sb
)
2804 sb
->s_blocksize
= BTRFS_BDEV_BLOCKSIZE
;
2805 sb
->s_blocksize_bits
= blksize_bits(BTRFS_BDEV_BLOCKSIZE
);
2807 ret
= percpu_counter_init(&fs_info
->dio_bytes
, 0, GFP_KERNEL
);
2811 ret
= percpu_counter_init(&fs_info
->dirty_metadata_bytes
, 0, GFP_KERNEL
);
2815 fs_info
->dirty_metadata_batch
= PAGE_SIZE
*
2816 (1 + ilog2(nr_cpu_ids
));
2818 ret
= percpu_counter_init(&fs_info
->delalloc_bytes
, 0, GFP_KERNEL
);
2822 ret
= percpu_counter_init(&fs_info
->dev_replace
.bio_counter
, 0,
2827 fs_info
->delayed_root
= kmalloc(sizeof(struct btrfs_delayed_root
),
2829 if (!fs_info
->delayed_root
)
2831 btrfs_init_delayed_root(fs_info
->delayed_root
);
2834 set_bit(BTRFS_FS_STATE_RO
, &fs_info
->fs_state
);
2836 return btrfs_alloc_stripe_hash_table(fs_info
);
2839 static int btrfs_uuid_rescan_kthread(void *data
)
2841 struct btrfs_fs_info
*fs_info
= (struct btrfs_fs_info
*)data
;
2845 * 1st step is to iterate through the existing UUID tree and
2846 * to delete all entries that contain outdated data.
2847 * 2nd step is to add all missing entries to the UUID tree.
2849 ret
= btrfs_uuid_tree_iterate(fs_info
);
2852 btrfs_warn(fs_info
, "iterating uuid_tree failed %d",
2854 up(&fs_info
->uuid_tree_rescan_sem
);
2857 return btrfs_uuid_scan_kthread(data
);
2860 static int btrfs_check_uuid_tree(struct btrfs_fs_info
*fs_info
)
2862 struct task_struct
*task
;
2864 down(&fs_info
->uuid_tree_rescan_sem
);
2865 task
= kthread_run(btrfs_uuid_rescan_kthread
, fs_info
, "btrfs-uuid");
2867 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2868 btrfs_warn(fs_info
, "failed to start uuid_rescan task");
2869 up(&fs_info
->uuid_tree_rescan_sem
);
2870 return PTR_ERR(task
);
2877 * Some options only have meaning at mount time and shouldn't persist across
2878 * remounts, or be displayed. Clear these at the end of mount and remount
2881 void btrfs_clear_oneshot_options(struct btrfs_fs_info
*fs_info
)
2883 btrfs_clear_opt(fs_info
->mount_opt
, USEBACKUPROOT
);
2884 btrfs_clear_opt(fs_info
->mount_opt
, CLEAR_CACHE
);
2888 * Mounting logic specific to read-write file systems. Shared by open_ctree
2889 * and btrfs_remount when remounting from read-only to read-write.
2891 int btrfs_start_pre_rw_mount(struct btrfs_fs_info
*fs_info
)
2894 const bool cache_opt
= btrfs_test_opt(fs_info
, SPACE_CACHE
);
2895 bool clear_free_space_tree
= false;
2897 if (btrfs_test_opt(fs_info
, CLEAR_CACHE
) &&
2898 btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
)) {
2899 clear_free_space_tree
= true;
2900 } else if (btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
) &&
2901 !btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE_VALID
)) {
2902 btrfs_warn(fs_info
, "free space tree is invalid");
2903 clear_free_space_tree
= true;
2906 if (clear_free_space_tree
) {
2907 btrfs_info(fs_info
, "clearing free space tree");
2908 ret
= btrfs_clear_free_space_tree(fs_info
);
2911 "failed to clear free space tree: %d", ret
);
2916 ret
= btrfs_cleanup_fs_roots(fs_info
);
2920 down_read(&fs_info
->cleanup_work_sem
);
2921 if ((ret
= btrfs_orphan_cleanup(fs_info
->fs_root
)) ||
2922 (ret
= btrfs_orphan_cleanup(fs_info
->tree_root
))) {
2923 up_read(&fs_info
->cleanup_work_sem
);
2926 up_read(&fs_info
->cleanup_work_sem
);
2928 mutex_lock(&fs_info
->cleaner_mutex
);
2929 ret
= btrfs_recover_relocation(fs_info
->tree_root
);
2930 mutex_unlock(&fs_info
->cleaner_mutex
);
2932 btrfs_warn(fs_info
, "failed to recover relocation: %d", ret
);
2936 if (btrfs_test_opt(fs_info
, FREE_SPACE_TREE
) &&
2937 !btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
)) {
2938 btrfs_info(fs_info
, "creating free space tree");
2939 ret
= btrfs_create_free_space_tree(fs_info
);
2942 "failed to create free space tree: %d", ret
);
2947 if (cache_opt
!= btrfs_free_space_cache_v1_active(fs_info
)) {
2948 ret
= btrfs_set_free_space_cache_v1_active(fs_info
, cache_opt
);
2953 ret
= btrfs_resume_balance_async(fs_info
);
2957 ret
= btrfs_resume_dev_replace_async(fs_info
);
2959 btrfs_warn(fs_info
, "failed to resume dev_replace");
2963 btrfs_qgroup_rescan_resume(fs_info
);
2965 if (!fs_info
->uuid_root
) {
2966 btrfs_info(fs_info
, "creating UUID tree");
2967 ret
= btrfs_create_uuid_tree(fs_info
);
2970 "failed to create the UUID tree %d", ret
);
2975 ret
= btrfs_find_orphan_roots(fs_info
);
2980 int __cold
open_ctree(struct super_block
*sb
, struct btrfs_fs_devices
*fs_devices
,
2989 struct btrfs_super_block
*disk_super
;
2990 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
2991 struct btrfs_root
*tree_root
;
2992 struct btrfs_root
*chunk_root
;
2997 ret
= init_mount_fs_info(fs_info
, sb
);
3003 /* These need to be init'ed before we start creating inodes and such. */
3004 tree_root
= btrfs_alloc_root(fs_info
, BTRFS_ROOT_TREE_OBJECTID
,
3006 fs_info
->tree_root
= tree_root
;
3007 chunk_root
= btrfs_alloc_root(fs_info
, BTRFS_CHUNK_TREE_OBJECTID
,
3009 fs_info
->chunk_root
= chunk_root
;
3010 if (!tree_root
|| !chunk_root
) {
3015 fs_info
->btree_inode
= new_inode(sb
);
3016 if (!fs_info
->btree_inode
) {
3020 mapping_set_gfp_mask(fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
3021 btrfs_init_btree_inode(fs_info
);
3023 invalidate_bdev(fs_devices
->latest_bdev
);
3026 * Read super block and check the signature bytes only
3028 disk_super
= btrfs_read_dev_super(fs_devices
->latest_bdev
);
3029 if (IS_ERR(disk_super
)) {
3030 err
= PTR_ERR(disk_super
);
3035 * Verify the type first, if that or the checksum value are
3036 * corrupted, we'll find out
3038 csum_type
= btrfs_super_csum_type(disk_super
);
3039 if (!btrfs_supported_super_csum(csum_type
)) {
3040 btrfs_err(fs_info
, "unsupported checksum algorithm: %u",
3043 btrfs_release_disk_super(disk_super
);
3047 ret
= btrfs_init_csum_hash(fs_info
, csum_type
);
3050 btrfs_release_disk_super(disk_super
);
3055 * We want to check superblock checksum, the type is stored inside.
3056 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3058 if (btrfs_check_super_csum(fs_info
, (u8
*)disk_super
)) {
3059 btrfs_err(fs_info
, "superblock checksum mismatch");
3061 btrfs_release_disk_super(disk_super
);
3066 * super_copy is zeroed at allocation time and we never touch the
3067 * following bytes up to INFO_SIZE, the checksum is calculated from
3068 * the whole block of INFO_SIZE
3070 memcpy(fs_info
->super_copy
, disk_super
, sizeof(*fs_info
->super_copy
));
3071 btrfs_release_disk_super(disk_super
);
3073 disk_super
= fs_info
->super_copy
;
3075 ASSERT(!memcmp(fs_info
->fs_devices
->fsid
, fs_info
->super_copy
->fsid
,
3078 if (btrfs_fs_incompat(fs_info
, METADATA_UUID
)) {
3079 ASSERT(!memcmp(fs_info
->fs_devices
->metadata_uuid
,
3080 fs_info
->super_copy
->metadata_uuid
,
3084 features
= btrfs_super_flags(disk_super
);
3085 if (features
& BTRFS_SUPER_FLAG_CHANGING_FSID_V2
) {
3086 features
&= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2
;
3087 btrfs_set_super_flags(disk_super
, features
);
3089 "found metadata UUID change in progress flag, clearing");
3092 memcpy(fs_info
->super_for_commit
, fs_info
->super_copy
,
3093 sizeof(*fs_info
->super_for_commit
));
3095 ret
= btrfs_validate_mount_super(fs_info
);
3097 btrfs_err(fs_info
, "superblock contains fatal errors");
3102 if (!btrfs_super_root(disk_super
))
3105 /* check FS state, whether FS is broken. */
3106 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_ERROR
)
3107 set_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
);
3110 * In the long term, we'll store the compression type in the super
3111 * block, and it'll be used for per file compression control.
3113 fs_info
->compress_type
= BTRFS_COMPRESS_ZLIB
;
3115 ret
= btrfs_parse_options(fs_info
, options
, sb
->s_flags
);
3121 features
= btrfs_super_incompat_flags(disk_super
) &
3122 ~BTRFS_FEATURE_INCOMPAT_SUPP
;
3125 "cannot mount because of unsupported optional features (%llx)",
3131 features
= btrfs_super_incompat_flags(disk_super
);
3132 features
|= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF
;
3133 if (fs_info
->compress_type
== BTRFS_COMPRESS_LZO
)
3134 features
|= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO
;
3135 else if (fs_info
->compress_type
== BTRFS_COMPRESS_ZSTD
)
3136 features
|= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD
;
3138 if (features
& BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA
)
3139 btrfs_info(fs_info
, "has skinny extents");
3141 fs_info
->zoned
= (features
& BTRFS_FEATURE_INCOMPAT_ZONED
);
3144 * flag our filesystem as having big metadata blocks if
3145 * they are bigger than the page size
3147 if (btrfs_super_nodesize(disk_super
) > PAGE_SIZE
) {
3148 if (!(features
& BTRFS_FEATURE_INCOMPAT_BIG_METADATA
))
3150 "flagging fs with big metadata feature");
3151 features
|= BTRFS_FEATURE_INCOMPAT_BIG_METADATA
;
3154 nodesize
= btrfs_super_nodesize(disk_super
);
3155 sectorsize
= btrfs_super_sectorsize(disk_super
);
3156 stripesize
= sectorsize
;
3157 fs_info
->dirty_metadata_batch
= nodesize
* (1 + ilog2(nr_cpu_ids
));
3158 fs_info
->delalloc_batch
= sectorsize
* 512 * (1 + ilog2(nr_cpu_ids
));
3160 /* Cache block sizes */
3161 fs_info
->nodesize
= nodesize
;
3162 fs_info
->sectorsize
= sectorsize
;
3163 fs_info
->sectorsize_bits
= ilog2(sectorsize
);
3164 fs_info
->csum_size
= btrfs_super_csum_size(disk_super
);
3165 fs_info
->csums_per_leaf
= BTRFS_MAX_ITEM_SIZE(fs_info
) / fs_info
->csum_size
;
3166 fs_info
->stripesize
= stripesize
;
3169 * mixed block groups end up with duplicate but slightly offset
3170 * extent buffers for the same range. It leads to corruptions
3172 if ((features
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
) &&
3173 (sectorsize
!= nodesize
)) {
3175 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3176 nodesize
, sectorsize
);
3181 * Needn't use the lock because there is no other task which will
3184 btrfs_set_super_incompat_flags(disk_super
, features
);
3186 features
= btrfs_super_compat_ro_flags(disk_super
) &
3187 ~BTRFS_FEATURE_COMPAT_RO_SUPP
;
3188 if (!sb_rdonly(sb
) && features
) {
3190 "cannot mount read-write because of unsupported optional features (%llx)",
3196 ret
= btrfs_init_workqueues(fs_info
, fs_devices
);
3199 goto fail_sb_buffer
;
3202 sb
->s_bdi
->ra_pages
*= btrfs_super_num_devices(disk_super
);
3203 sb
->s_bdi
->ra_pages
= max(sb
->s_bdi
->ra_pages
, SZ_4M
/ PAGE_SIZE
);
3205 sb
->s_blocksize
= sectorsize
;
3206 sb
->s_blocksize_bits
= blksize_bits(sectorsize
);
3207 memcpy(&sb
->s_uuid
, fs_info
->fs_devices
->fsid
, BTRFS_FSID_SIZE
);
3209 mutex_lock(&fs_info
->chunk_mutex
);
3210 ret
= btrfs_read_sys_array(fs_info
);
3211 mutex_unlock(&fs_info
->chunk_mutex
);
3213 btrfs_err(fs_info
, "failed to read the system array: %d", ret
);
3214 goto fail_sb_buffer
;
3217 generation
= btrfs_super_chunk_root_generation(disk_super
);
3218 level
= btrfs_super_chunk_root_level(disk_super
);
3220 chunk_root
->node
= read_tree_block(fs_info
,
3221 btrfs_super_chunk_root(disk_super
),
3222 BTRFS_CHUNK_TREE_OBJECTID
,
3223 generation
, level
, NULL
);
3224 if (IS_ERR(chunk_root
->node
) ||
3225 !extent_buffer_uptodate(chunk_root
->node
)) {
3226 btrfs_err(fs_info
, "failed to read chunk root");
3227 if (!IS_ERR(chunk_root
->node
))
3228 free_extent_buffer(chunk_root
->node
);
3229 chunk_root
->node
= NULL
;
3230 goto fail_tree_roots
;
3232 btrfs_set_root_node(&chunk_root
->root_item
, chunk_root
->node
);
3233 chunk_root
->commit_root
= btrfs_root_node(chunk_root
);
3235 read_extent_buffer(chunk_root
->node
, fs_info
->chunk_tree_uuid
,
3236 offsetof(struct btrfs_header
, chunk_tree_uuid
),
3239 ret
= btrfs_read_chunk_tree(fs_info
);
3241 btrfs_err(fs_info
, "failed to read chunk tree: %d", ret
);
3242 goto fail_tree_roots
;
3246 * At this point we know all the devices that make this filesystem,
3247 * including the seed devices but we don't know yet if the replace
3248 * target is required. So free devices that are not part of this
3249 * filesystem but skip the replace traget device which is checked
3250 * below in btrfs_init_dev_replace().
3252 btrfs_free_extra_devids(fs_devices
);
3253 if (!fs_devices
->latest_bdev
) {
3254 btrfs_err(fs_info
, "failed to read devices");
3255 goto fail_tree_roots
;
3258 ret
= init_tree_roots(fs_info
);
3260 goto fail_tree_roots
;
3263 * If we have a uuid root and we're not being told to rescan we need to
3264 * check the generation here so we can set the
3265 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3266 * transaction during a balance or the log replay without updating the
3267 * uuid generation, and then if we crash we would rescan the uuid tree,
3268 * even though it was perfectly fine.
3270 if (fs_info
->uuid_root
&& !btrfs_test_opt(fs_info
, RESCAN_UUID_TREE
) &&
3271 fs_info
->generation
== btrfs_super_uuid_tree_generation(disk_super
))
3272 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN
, &fs_info
->flags
);
3274 ret
= btrfs_verify_dev_extents(fs_info
);
3277 "failed to verify dev extents against chunks: %d",
3279 goto fail_block_groups
;
3281 ret
= btrfs_recover_balance(fs_info
);
3283 btrfs_err(fs_info
, "failed to recover balance: %d", ret
);
3284 goto fail_block_groups
;
3287 ret
= btrfs_init_dev_stats(fs_info
);
3289 btrfs_err(fs_info
, "failed to init dev_stats: %d", ret
);
3290 goto fail_block_groups
;
3293 ret
= btrfs_init_dev_replace(fs_info
);
3295 btrfs_err(fs_info
, "failed to init dev_replace: %d", ret
);
3296 goto fail_block_groups
;
3299 ret
= btrfs_check_zoned_mode(fs_info
);
3301 btrfs_err(fs_info
, "failed to initialize zoned mode: %d",
3303 goto fail_block_groups
;
3306 ret
= btrfs_sysfs_add_fsid(fs_devices
);
3308 btrfs_err(fs_info
, "failed to init sysfs fsid interface: %d",
3310 goto fail_block_groups
;
3313 ret
= btrfs_sysfs_add_mounted(fs_info
);
3315 btrfs_err(fs_info
, "failed to init sysfs interface: %d", ret
);
3316 goto fail_fsdev_sysfs
;
3319 ret
= btrfs_init_space_info(fs_info
);
3321 btrfs_err(fs_info
, "failed to initialize space info: %d", ret
);
3325 ret
= btrfs_read_block_groups(fs_info
);
3327 btrfs_err(fs_info
, "failed to read block groups: %d", ret
);
3331 if (!sb_rdonly(sb
) && !btrfs_check_rw_degradable(fs_info
, NULL
)) {
3333 "writable mount is not allowed due to too many missing devices");
3337 fs_info
->cleaner_kthread
= kthread_run(cleaner_kthread
, tree_root
,
3339 if (IS_ERR(fs_info
->cleaner_kthread
))
3342 fs_info
->transaction_kthread
= kthread_run(transaction_kthread
,
3344 "btrfs-transaction");
3345 if (IS_ERR(fs_info
->transaction_kthread
))
3348 if (!btrfs_test_opt(fs_info
, NOSSD
) &&
3349 !fs_info
->fs_devices
->rotating
) {
3350 btrfs_set_and_info(fs_info
, SSD
, "enabling ssd optimizations");
3354 * Mount does not set all options immediately, we can do it now and do
3355 * not have to wait for transaction commit
3357 btrfs_apply_pending_changes(fs_info
);
3359 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3360 if (btrfs_test_opt(fs_info
, CHECK_INTEGRITY
)) {
3361 ret
= btrfsic_mount(fs_info
, fs_devices
,
3362 btrfs_test_opt(fs_info
,
3363 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA
) ?
3365 fs_info
->check_integrity_print_mask
);
3368 "failed to initialize integrity check module: %d",
3372 ret
= btrfs_read_qgroup_config(fs_info
);
3374 goto fail_trans_kthread
;
3376 if (btrfs_build_ref_tree(fs_info
))
3377 btrfs_err(fs_info
, "couldn't build ref tree");
3379 /* do not make disk changes in broken FS or nologreplay is given */
3380 if (btrfs_super_log_root(disk_super
) != 0 &&
3381 !btrfs_test_opt(fs_info
, NOLOGREPLAY
)) {
3382 btrfs_info(fs_info
, "start tree-log replay");
3383 ret
= btrfs_replay_log(fs_info
, fs_devices
);
3390 fs_info
->fs_root
= btrfs_get_fs_root(fs_info
, BTRFS_FS_TREE_OBJECTID
, true);
3391 if (IS_ERR(fs_info
->fs_root
)) {
3392 err
= PTR_ERR(fs_info
->fs_root
);
3393 btrfs_warn(fs_info
, "failed to read fs tree: %d", err
);
3394 fs_info
->fs_root
= NULL
;
3401 ret
= btrfs_start_pre_rw_mount(fs_info
);
3403 close_ctree(fs_info
);
3406 btrfs_discard_resume(fs_info
);
3408 if (fs_info
->uuid_root
&&
3409 (btrfs_test_opt(fs_info
, RESCAN_UUID_TREE
) ||
3410 fs_info
->generation
!= btrfs_super_uuid_tree_generation(disk_super
))) {
3411 btrfs_info(fs_info
, "checking UUID tree");
3412 ret
= btrfs_check_uuid_tree(fs_info
);
3415 "failed to check the UUID tree: %d", ret
);
3416 close_ctree(fs_info
);
3421 set_bit(BTRFS_FS_OPEN
, &fs_info
->flags
);
3424 btrfs_clear_oneshot_options(fs_info
);
3428 btrfs_free_qgroup_config(fs_info
);
3430 kthread_stop(fs_info
->transaction_kthread
);
3431 btrfs_cleanup_transaction(fs_info
);
3432 btrfs_free_fs_roots(fs_info
);
3434 kthread_stop(fs_info
->cleaner_kthread
);
3437 * make sure we're done with the btree inode before we stop our
3440 filemap_write_and_wait(fs_info
->btree_inode
->i_mapping
);
3443 btrfs_sysfs_remove_mounted(fs_info
);
3446 btrfs_sysfs_remove_fsid(fs_info
->fs_devices
);
3449 btrfs_put_block_group_cache(fs_info
);
3452 if (fs_info
->data_reloc_root
)
3453 btrfs_drop_and_free_fs_root(fs_info
, fs_info
->data_reloc_root
);
3454 free_root_pointers(fs_info
, true);
3455 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
3458 btrfs_stop_all_workers(fs_info
);
3459 btrfs_free_block_groups(fs_info
);
3461 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
3463 iput(fs_info
->btree_inode
);
3465 btrfs_close_devices(fs_info
->fs_devices
);
3468 ALLOW_ERROR_INJECTION(open_ctree
, ERRNO
);
3470 static void btrfs_end_super_write(struct bio
*bio
)
3472 struct btrfs_device
*device
= bio
->bi_private
;
3473 struct bio_vec
*bvec
;
3474 struct bvec_iter_all iter_all
;
3477 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
3478 page
= bvec
->bv_page
;
3480 if (bio
->bi_status
) {
3481 btrfs_warn_rl_in_rcu(device
->fs_info
,
3482 "lost page write due to IO error on %s (%d)",
3483 rcu_str_deref(device
->name
),
3484 blk_status_to_errno(bio
->bi_status
));
3485 ClearPageUptodate(page
);
3487 btrfs_dev_stat_inc_and_print(device
,
3488 BTRFS_DEV_STAT_WRITE_ERRS
);
3490 SetPageUptodate(page
);
3500 struct btrfs_super_block
*btrfs_read_dev_one_super(struct block_device
*bdev
,
3503 struct btrfs_super_block
*super
;
3505 u64 bytenr
, bytenr_orig
;
3506 struct address_space
*mapping
= bdev
->bd_inode
->i_mapping
;
3509 bytenr_orig
= btrfs_sb_offset(copy_num
);
3510 ret
= btrfs_sb_log_location_bdev(bdev
, copy_num
, READ
, &bytenr
);
3512 return ERR_PTR(-EINVAL
);
3514 return ERR_PTR(ret
);
3516 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>= i_size_read(bdev
->bd_inode
))
3517 return ERR_PTR(-EINVAL
);
3519 page
= read_cache_page_gfp(mapping
, bytenr
>> PAGE_SHIFT
, GFP_NOFS
);
3521 return ERR_CAST(page
);
3523 super
= page_address(page
);
3524 if (btrfs_super_magic(super
) != BTRFS_MAGIC
) {
3525 btrfs_release_disk_super(super
);
3526 return ERR_PTR(-ENODATA
);
3529 if (btrfs_super_bytenr(super
) != bytenr_orig
) {
3530 btrfs_release_disk_super(super
);
3531 return ERR_PTR(-EINVAL
);
3538 struct btrfs_super_block
*btrfs_read_dev_super(struct block_device
*bdev
)
3540 struct btrfs_super_block
*super
, *latest
= NULL
;
3544 /* we would like to check all the supers, but that would make
3545 * a btrfs mount succeed after a mkfs from a different FS.
3546 * So, we need to add a special mount option to scan for
3547 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3549 for (i
= 0; i
< 1; i
++) {
3550 super
= btrfs_read_dev_one_super(bdev
, i
);
3554 if (!latest
|| btrfs_super_generation(super
) > transid
) {
3556 btrfs_release_disk_super(super
);
3559 transid
= btrfs_super_generation(super
);
3567 * Write superblock @sb to the @device. Do not wait for completion, all the
3568 * pages we use for writing are locked.
3570 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3571 * the expected device size at commit time. Note that max_mirrors must be
3572 * same for write and wait phases.
3574 * Return number of errors when page is not found or submission fails.
3576 static int write_dev_supers(struct btrfs_device
*device
,
3577 struct btrfs_super_block
*sb
, int max_mirrors
)
3579 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
3580 struct address_space
*mapping
= device
->bdev
->bd_inode
->i_mapping
;
3581 SHASH_DESC_ON_STACK(shash
, fs_info
->csum_shash
);
3585 u64 bytenr
, bytenr_orig
;
3587 if (max_mirrors
== 0)
3588 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
3590 shash
->tfm
= fs_info
->csum_shash
;
3592 for (i
= 0; i
< max_mirrors
; i
++) {
3595 struct btrfs_super_block
*disk_super
;
3597 bytenr_orig
= btrfs_sb_offset(i
);
3598 ret
= btrfs_sb_log_location(device
, i
, WRITE
, &bytenr
);
3599 if (ret
== -ENOENT
) {
3601 } else if (ret
< 0) {
3602 btrfs_err(device
->fs_info
,
3603 "couldn't get super block location for mirror %d",
3608 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
3609 device
->commit_total_bytes
)
3612 btrfs_set_super_bytenr(sb
, bytenr_orig
);
3614 crypto_shash_digest(shash
, (const char *)sb
+ BTRFS_CSUM_SIZE
,
3615 BTRFS_SUPER_INFO_SIZE
- BTRFS_CSUM_SIZE
,
3618 page
= find_or_create_page(mapping
, bytenr
>> PAGE_SHIFT
,
3621 btrfs_err(device
->fs_info
,
3622 "couldn't get super block page for bytenr %llu",
3628 /* Bump the refcount for wait_dev_supers() */
3631 disk_super
= page_address(page
);
3632 memcpy(disk_super
, sb
, BTRFS_SUPER_INFO_SIZE
);
3635 * Directly use bios here instead of relying on the page cache
3636 * to do I/O, so we don't lose the ability to do integrity
3639 bio
= bio_alloc(GFP_NOFS
, 1);
3640 bio_set_dev(bio
, device
->bdev
);
3641 bio
->bi_iter
.bi_sector
= bytenr
>> SECTOR_SHIFT
;
3642 bio
->bi_private
= device
;
3643 bio
->bi_end_io
= btrfs_end_super_write
;
3644 __bio_add_page(bio
, page
, BTRFS_SUPER_INFO_SIZE
,
3645 offset_in_page(bytenr
));
3648 * We FUA only the first super block. The others we allow to
3649 * go down lazy and there's a short window where the on-disk
3650 * copies might still contain the older version.
3652 bio
->bi_opf
= REQ_OP_WRITE
| REQ_SYNC
| REQ_META
| REQ_PRIO
;
3653 if (i
== 0 && !btrfs_test_opt(device
->fs_info
, NOBARRIER
))
3654 bio
->bi_opf
|= REQ_FUA
;
3656 btrfsic_submit_bio(bio
);
3657 btrfs_advance_sb_log(device
, i
);
3659 return errors
< i
? 0 : -1;
3663 * Wait for write completion of superblocks done by write_dev_supers,
3664 * @max_mirrors same for write and wait phases.
3666 * Return number of errors when page is not found or not marked up to
3669 static int wait_dev_supers(struct btrfs_device
*device
, int max_mirrors
)
3673 bool primary_failed
= false;
3677 if (max_mirrors
== 0)
3678 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
3680 for (i
= 0; i
< max_mirrors
; i
++) {
3683 ret
= btrfs_sb_log_location(device
, i
, READ
, &bytenr
);
3684 if (ret
== -ENOENT
) {
3686 } else if (ret
< 0) {
3689 primary_failed
= true;
3692 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
3693 device
->commit_total_bytes
)
3696 page
= find_get_page(device
->bdev
->bd_inode
->i_mapping
,
3697 bytenr
>> PAGE_SHIFT
);
3701 primary_failed
= true;
3704 /* Page is submitted locked and unlocked once the IO completes */
3705 wait_on_page_locked(page
);
3706 if (PageError(page
)) {
3709 primary_failed
= true;
3712 /* Drop our reference */
3715 /* Drop the reference from the writing run */
3719 /* log error, force error return */
3720 if (primary_failed
) {
3721 btrfs_err(device
->fs_info
, "error writing primary super block to device %llu",
3726 return errors
< i
? 0 : -1;
3730 * endio for the write_dev_flush, this will wake anyone waiting
3731 * for the barrier when it is done
3733 static void btrfs_end_empty_barrier(struct bio
*bio
)
3735 complete(bio
->bi_private
);
3739 * Submit a flush request to the device if it supports it. Error handling is
3740 * done in the waiting counterpart.
3742 static void write_dev_flush(struct btrfs_device
*device
)
3744 struct request_queue
*q
= bdev_get_queue(device
->bdev
);
3745 struct bio
*bio
= device
->flush_bio
;
3747 if (!test_bit(QUEUE_FLAG_WC
, &q
->queue_flags
))
3751 bio
->bi_end_io
= btrfs_end_empty_barrier
;
3752 bio_set_dev(bio
, device
->bdev
);
3753 bio
->bi_opf
= REQ_OP_WRITE
| REQ_SYNC
| REQ_PREFLUSH
;
3754 init_completion(&device
->flush_wait
);
3755 bio
->bi_private
= &device
->flush_wait
;
3757 btrfsic_submit_bio(bio
);
3758 set_bit(BTRFS_DEV_STATE_FLUSH_SENT
, &device
->dev_state
);
3762 * If the flush bio has been submitted by write_dev_flush, wait for it.
3764 static blk_status_t
wait_dev_flush(struct btrfs_device
*device
)
3766 struct bio
*bio
= device
->flush_bio
;
3768 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT
, &device
->dev_state
))
3771 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT
, &device
->dev_state
);
3772 wait_for_completion_io(&device
->flush_wait
);
3774 return bio
->bi_status
;
3777 static int check_barrier_error(struct btrfs_fs_info
*fs_info
)
3779 if (!btrfs_check_rw_degradable(fs_info
, NULL
))
3785 * send an empty flush down to each device in parallel,
3786 * then wait for them
3788 static int barrier_all_devices(struct btrfs_fs_info
*info
)
3790 struct list_head
*head
;
3791 struct btrfs_device
*dev
;
3792 int errors_wait
= 0;
3795 lockdep_assert_held(&info
->fs_devices
->device_list_mutex
);
3796 /* send down all the barriers */
3797 head
= &info
->fs_devices
->devices
;
3798 list_for_each_entry(dev
, head
, dev_list
) {
3799 if (test_bit(BTRFS_DEV_STATE_MISSING
, &dev
->dev_state
))
3803 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &dev
->dev_state
) ||
3804 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
))
3807 write_dev_flush(dev
);
3808 dev
->last_flush_error
= BLK_STS_OK
;
3811 /* wait for all the barriers */
3812 list_for_each_entry(dev
, head
, dev_list
) {
3813 if (test_bit(BTRFS_DEV_STATE_MISSING
, &dev
->dev_state
))
3819 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &dev
->dev_state
) ||
3820 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
))
3823 ret
= wait_dev_flush(dev
);
3825 dev
->last_flush_error
= ret
;
3826 btrfs_dev_stat_inc_and_print(dev
,
3827 BTRFS_DEV_STAT_FLUSH_ERRS
);
3834 * At some point we need the status of all disks
3835 * to arrive at the volume status. So error checking
3836 * is being pushed to a separate loop.
3838 return check_barrier_error(info
);
3843 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags
)
3846 int min_tolerated
= INT_MAX
;
3848 if ((flags
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) == 0 ||
3849 (flags
& BTRFS_AVAIL_ALLOC_BIT_SINGLE
))
3850 min_tolerated
= min_t(int, min_tolerated
,
3851 btrfs_raid_array
[BTRFS_RAID_SINGLE
].
3852 tolerated_failures
);
3854 for (raid_type
= 0; raid_type
< BTRFS_NR_RAID_TYPES
; raid_type
++) {
3855 if (raid_type
== BTRFS_RAID_SINGLE
)
3857 if (!(flags
& btrfs_raid_array
[raid_type
].bg_flag
))
3859 min_tolerated
= min_t(int, min_tolerated
,
3860 btrfs_raid_array
[raid_type
].
3861 tolerated_failures
);
3864 if (min_tolerated
== INT_MAX
) {
3865 pr_warn("BTRFS: unknown raid flag: %llu", flags
);
3869 return min_tolerated
;
3872 int write_all_supers(struct btrfs_fs_info
*fs_info
, int max_mirrors
)
3874 struct list_head
*head
;
3875 struct btrfs_device
*dev
;
3876 struct btrfs_super_block
*sb
;
3877 struct btrfs_dev_item
*dev_item
;
3881 int total_errors
= 0;
3884 do_barriers
= !btrfs_test_opt(fs_info
, NOBARRIER
);
3887 * max_mirrors == 0 indicates we're from commit_transaction,
3888 * not from fsync where the tree roots in fs_info have not
3889 * been consistent on disk.
3891 if (max_mirrors
== 0)
3892 backup_super_roots(fs_info
);
3894 sb
= fs_info
->super_for_commit
;
3895 dev_item
= &sb
->dev_item
;
3897 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
3898 head
= &fs_info
->fs_devices
->devices
;
3899 max_errors
= btrfs_super_num_devices(fs_info
->super_copy
) - 1;
3902 ret
= barrier_all_devices(fs_info
);
3905 &fs_info
->fs_devices
->device_list_mutex
);
3906 btrfs_handle_fs_error(fs_info
, ret
,
3907 "errors while submitting device barriers.");
3912 list_for_each_entry(dev
, head
, dev_list
) {
3917 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &dev
->dev_state
) ||
3918 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
))
3921 btrfs_set_stack_device_generation(dev_item
, 0);
3922 btrfs_set_stack_device_type(dev_item
, dev
->type
);
3923 btrfs_set_stack_device_id(dev_item
, dev
->devid
);
3924 btrfs_set_stack_device_total_bytes(dev_item
,
3925 dev
->commit_total_bytes
);
3926 btrfs_set_stack_device_bytes_used(dev_item
,
3927 dev
->commit_bytes_used
);
3928 btrfs_set_stack_device_io_align(dev_item
, dev
->io_align
);
3929 btrfs_set_stack_device_io_width(dev_item
, dev
->io_width
);
3930 btrfs_set_stack_device_sector_size(dev_item
, dev
->sector_size
);
3931 memcpy(dev_item
->uuid
, dev
->uuid
, BTRFS_UUID_SIZE
);
3932 memcpy(dev_item
->fsid
, dev
->fs_devices
->metadata_uuid
,
3935 flags
= btrfs_super_flags(sb
);
3936 btrfs_set_super_flags(sb
, flags
| BTRFS_HEADER_FLAG_WRITTEN
);
3938 ret
= btrfs_validate_write_super(fs_info
, sb
);
3940 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3941 btrfs_handle_fs_error(fs_info
, -EUCLEAN
,
3942 "unexpected superblock corruption detected");
3946 ret
= write_dev_supers(dev
, sb
, max_mirrors
);
3950 if (total_errors
> max_errors
) {
3951 btrfs_err(fs_info
, "%d errors while writing supers",
3953 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3955 /* FUA is masked off if unsupported and can't be the reason */
3956 btrfs_handle_fs_error(fs_info
, -EIO
,
3957 "%d errors while writing supers",
3963 list_for_each_entry(dev
, head
, dev_list
) {
3966 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &dev
->dev_state
) ||
3967 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
))
3970 ret
= wait_dev_supers(dev
, max_mirrors
);
3974 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3975 if (total_errors
> max_errors
) {
3976 btrfs_handle_fs_error(fs_info
, -EIO
,
3977 "%d errors while writing supers",
3984 /* Drop a fs root from the radix tree and free it. */
3985 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info
*fs_info
,
3986 struct btrfs_root
*root
)
3988 bool drop_ref
= false;
3990 spin_lock(&fs_info
->fs_roots_radix_lock
);
3991 radix_tree_delete(&fs_info
->fs_roots_radix
,
3992 (unsigned long)root
->root_key
.objectid
);
3993 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX
, &root
->state
))
3995 spin_unlock(&fs_info
->fs_roots_radix_lock
);
3997 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
3998 ASSERT(root
->log_root
== NULL
);
3999 if (root
->reloc_root
) {
4000 btrfs_put_root(root
->reloc_root
);
4001 root
->reloc_root
= NULL
;
4006 btrfs_put_root(root
);
4009 int btrfs_cleanup_fs_roots(struct btrfs_fs_info
*fs_info
)
4011 u64 root_objectid
= 0;
4012 struct btrfs_root
*gang
[8];
4015 unsigned int ret
= 0;
4018 spin_lock(&fs_info
->fs_roots_radix_lock
);
4019 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
4020 (void **)gang
, root_objectid
,
4023 spin_unlock(&fs_info
->fs_roots_radix_lock
);
4026 root_objectid
= gang
[ret
- 1]->root_key
.objectid
+ 1;
4028 for (i
= 0; i
< ret
; i
++) {
4029 /* Avoid to grab roots in dead_roots */
4030 if (btrfs_root_refs(&gang
[i
]->root_item
) == 0) {
4034 /* grab all the search result for later use */
4035 gang
[i
] = btrfs_grab_root(gang
[i
]);
4037 spin_unlock(&fs_info
->fs_roots_radix_lock
);
4039 for (i
= 0; i
< ret
; i
++) {
4042 root_objectid
= gang
[i
]->root_key
.objectid
;
4043 err
= btrfs_orphan_cleanup(gang
[i
]);
4046 btrfs_put_root(gang
[i
]);
4051 /* release the uncleaned roots due to error */
4052 for (; i
< ret
; i
++) {
4054 btrfs_put_root(gang
[i
]);
4059 int btrfs_commit_super(struct btrfs_fs_info
*fs_info
)
4061 struct btrfs_root
*root
= fs_info
->tree_root
;
4062 struct btrfs_trans_handle
*trans
;
4064 mutex_lock(&fs_info
->cleaner_mutex
);
4065 btrfs_run_delayed_iputs(fs_info
);
4066 mutex_unlock(&fs_info
->cleaner_mutex
);
4067 wake_up_process(fs_info
->cleaner_kthread
);
4069 /* wait until ongoing cleanup work done */
4070 down_write(&fs_info
->cleanup_work_sem
);
4071 up_write(&fs_info
->cleanup_work_sem
);
4073 trans
= btrfs_join_transaction(root
);
4075 return PTR_ERR(trans
);
4076 return btrfs_commit_transaction(trans
);
4079 void __cold
close_ctree(struct btrfs_fs_info
*fs_info
)
4083 set_bit(BTRFS_FS_CLOSING_START
, &fs_info
->flags
);
4085 * We don't want the cleaner to start new transactions, add more delayed
4086 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4087 * because that frees the task_struct, and the transaction kthread might
4088 * still try to wake up the cleaner.
4090 kthread_park(fs_info
->cleaner_kthread
);
4092 /* wait for the qgroup rescan worker to stop */
4093 btrfs_qgroup_wait_for_completion(fs_info
, false);
4095 /* wait for the uuid_scan task to finish */
4096 down(&fs_info
->uuid_tree_rescan_sem
);
4097 /* avoid complains from lockdep et al., set sem back to initial state */
4098 up(&fs_info
->uuid_tree_rescan_sem
);
4100 /* pause restriper - we want to resume on mount */
4101 btrfs_pause_balance(fs_info
);
4103 btrfs_dev_replace_suspend_for_unmount(fs_info
);
4105 btrfs_scrub_cancel(fs_info
);
4107 /* wait for any defraggers to finish */
4108 wait_event(fs_info
->transaction_wait
,
4109 (atomic_read(&fs_info
->defrag_running
) == 0));
4111 /* clear out the rbtree of defraggable inodes */
4112 btrfs_cleanup_defrag_inodes(fs_info
);
4114 cancel_work_sync(&fs_info
->async_reclaim_work
);
4115 cancel_work_sync(&fs_info
->async_data_reclaim_work
);
4117 /* Cancel or finish ongoing discard work */
4118 btrfs_discard_cleanup(fs_info
);
4120 if (!sb_rdonly(fs_info
->sb
)) {
4122 * The cleaner kthread is stopped, so do one final pass over
4123 * unused block groups.
4125 btrfs_delete_unused_bgs(fs_info
);
4128 * There might be existing delayed inode workers still running
4129 * and holding an empty delayed inode item. We must wait for
4130 * them to complete first because they can create a transaction.
4131 * This happens when someone calls btrfs_balance_delayed_items()
4132 * and then a transaction commit runs the same delayed nodes
4133 * before any delayed worker has done something with the nodes.
4134 * We must wait for any worker here and not at transaction
4135 * commit time since that could cause a deadlock.
4136 * This is a very rare case.
4138 btrfs_flush_workqueue(fs_info
->delayed_workers
);
4140 ret
= btrfs_commit_super(fs_info
);
4142 btrfs_err(fs_info
, "commit super ret %d", ret
);
4145 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
) ||
4146 test_bit(BTRFS_FS_STATE_TRANS_ABORTED
, &fs_info
->fs_state
))
4147 btrfs_error_commit_super(fs_info
);
4149 kthread_stop(fs_info
->transaction_kthread
);
4150 kthread_stop(fs_info
->cleaner_kthread
);
4152 ASSERT(list_empty(&fs_info
->delayed_iputs
));
4153 set_bit(BTRFS_FS_CLOSING_DONE
, &fs_info
->flags
);
4155 if (btrfs_check_quota_leak(fs_info
)) {
4156 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG
));
4157 btrfs_err(fs_info
, "qgroup reserved space leaked");
4160 btrfs_free_qgroup_config(fs_info
);
4161 ASSERT(list_empty(&fs_info
->delalloc_roots
));
4163 if (percpu_counter_sum(&fs_info
->delalloc_bytes
)) {
4164 btrfs_info(fs_info
, "at unmount delalloc count %lld",
4165 percpu_counter_sum(&fs_info
->delalloc_bytes
));
4168 if (percpu_counter_sum(&fs_info
->dio_bytes
))
4169 btrfs_info(fs_info
, "at unmount dio bytes count %lld",
4170 percpu_counter_sum(&fs_info
->dio_bytes
));
4172 btrfs_sysfs_remove_mounted(fs_info
);
4173 btrfs_sysfs_remove_fsid(fs_info
->fs_devices
);
4175 btrfs_put_block_group_cache(fs_info
);
4178 * we must make sure there is not any read request to
4179 * submit after we stopping all workers.
4181 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
4182 btrfs_stop_all_workers(fs_info
);
4184 /* We shouldn't have any transaction open at this point */
4185 ASSERT(list_empty(&fs_info
->trans_list
));
4187 clear_bit(BTRFS_FS_OPEN
, &fs_info
->flags
);
4188 free_root_pointers(fs_info
, true);
4189 btrfs_free_fs_roots(fs_info
);
4192 * We must free the block groups after dropping the fs_roots as we could
4193 * have had an IO error and have left over tree log blocks that aren't
4194 * cleaned up until the fs roots are freed. This makes the block group
4195 * accounting appear to be wrong because there's pending reserved bytes,
4196 * so make sure we do the block group cleanup afterwards.
4198 btrfs_free_block_groups(fs_info
);
4200 iput(fs_info
->btree_inode
);
4202 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4203 if (btrfs_test_opt(fs_info
, CHECK_INTEGRITY
))
4204 btrfsic_unmount(fs_info
->fs_devices
);
4207 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
4208 btrfs_close_devices(fs_info
->fs_devices
);
4211 int btrfs_buffer_uptodate(struct extent_buffer
*buf
, u64 parent_transid
,
4215 struct inode
*btree_inode
= buf
->pages
[0]->mapping
->host
;
4217 ret
= extent_buffer_uptodate(buf
);
4221 ret
= verify_parent_transid(&BTRFS_I(btree_inode
)->io_tree
, buf
,
4222 parent_transid
, atomic
);
4228 void btrfs_mark_buffer_dirty(struct extent_buffer
*buf
)
4230 struct btrfs_fs_info
*fs_info
= buf
->fs_info
;
4231 u64 transid
= btrfs_header_generation(buf
);
4234 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4236 * This is a fast path so only do this check if we have sanity tests
4237 * enabled. Normal people shouldn't be using unmapped buffers as dirty
4238 * outside of the sanity tests.
4240 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED
, &buf
->bflags
)))
4243 btrfs_assert_tree_locked(buf
);
4244 if (transid
!= fs_info
->generation
)
4245 WARN(1, KERN_CRIT
"btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4246 buf
->start
, transid
, fs_info
->generation
);
4247 was_dirty
= set_extent_buffer_dirty(buf
);
4249 percpu_counter_add_batch(&fs_info
->dirty_metadata_bytes
,
4251 fs_info
->dirty_metadata_batch
);
4252 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4254 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4255 * but item data not updated.
4256 * So here we should only check item pointers, not item data.
4258 if (btrfs_header_level(buf
) == 0 &&
4259 btrfs_check_leaf_relaxed(buf
)) {
4260 btrfs_print_leaf(buf
);
4266 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info
*fs_info
,
4270 * looks as though older kernels can get into trouble with
4271 * this code, they end up stuck in balance_dirty_pages forever
4275 if (current
->flags
& PF_MEMALLOC
)
4279 btrfs_balance_delayed_items(fs_info
);
4281 ret
= __percpu_counter_compare(&fs_info
->dirty_metadata_bytes
,
4282 BTRFS_DIRTY_METADATA_THRESH
,
4283 fs_info
->dirty_metadata_batch
);
4285 balance_dirty_pages_ratelimited(fs_info
->btree_inode
->i_mapping
);
4289 void btrfs_btree_balance_dirty(struct btrfs_fs_info
*fs_info
)
4291 __btrfs_btree_balance_dirty(fs_info
, 1);
4294 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info
*fs_info
)
4296 __btrfs_btree_balance_dirty(fs_info
, 0);
4299 int btrfs_read_buffer(struct extent_buffer
*buf
, u64 parent_transid
, int level
,
4300 struct btrfs_key
*first_key
)
4302 return btree_read_extent_buffer_pages(buf
, parent_transid
,
4306 static void btrfs_error_commit_super(struct btrfs_fs_info
*fs_info
)
4308 /* cleanup FS via transaction */
4309 btrfs_cleanup_transaction(fs_info
);
4311 mutex_lock(&fs_info
->cleaner_mutex
);
4312 btrfs_run_delayed_iputs(fs_info
);
4313 mutex_unlock(&fs_info
->cleaner_mutex
);
4315 down_write(&fs_info
->cleanup_work_sem
);
4316 up_write(&fs_info
->cleanup_work_sem
);
4319 static void btrfs_drop_all_logs(struct btrfs_fs_info
*fs_info
)
4321 struct btrfs_root
*gang
[8];
4322 u64 root_objectid
= 0;
4325 spin_lock(&fs_info
->fs_roots_radix_lock
);
4326 while ((ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
4327 (void **)gang
, root_objectid
,
4328 ARRAY_SIZE(gang
))) != 0) {
4331 for (i
= 0; i
< ret
; i
++)
4332 gang
[i
] = btrfs_grab_root(gang
[i
]);
4333 spin_unlock(&fs_info
->fs_roots_radix_lock
);
4335 for (i
= 0; i
< ret
; i
++) {
4338 root_objectid
= gang
[i
]->root_key
.objectid
;
4339 btrfs_free_log(NULL
, gang
[i
]);
4340 btrfs_put_root(gang
[i
]);
4343 spin_lock(&fs_info
->fs_roots_radix_lock
);
4345 spin_unlock(&fs_info
->fs_roots_radix_lock
);
4346 btrfs_free_log_root_tree(NULL
, fs_info
);
4349 static void btrfs_destroy_ordered_extents(struct btrfs_root
*root
)
4351 struct btrfs_ordered_extent
*ordered
;
4353 spin_lock(&root
->ordered_extent_lock
);
4355 * This will just short circuit the ordered completion stuff which will
4356 * make sure the ordered extent gets properly cleaned up.
4358 list_for_each_entry(ordered
, &root
->ordered_extents
,
4360 set_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
);
4361 spin_unlock(&root
->ordered_extent_lock
);
4364 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info
*fs_info
)
4366 struct btrfs_root
*root
;
4367 struct list_head splice
;
4369 INIT_LIST_HEAD(&splice
);
4371 spin_lock(&fs_info
->ordered_root_lock
);
4372 list_splice_init(&fs_info
->ordered_roots
, &splice
);
4373 while (!list_empty(&splice
)) {
4374 root
= list_first_entry(&splice
, struct btrfs_root
,
4376 list_move_tail(&root
->ordered_root
,
4377 &fs_info
->ordered_roots
);
4379 spin_unlock(&fs_info
->ordered_root_lock
);
4380 btrfs_destroy_ordered_extents(root
);
4383 spin_lock(&fs_info
->ordered_root_lock
);
4385 spin_unlock(&fs_info
->ordered_root_lock
);
4388 * We need this here because if we've been flipped read-only we won't
4389 * get sync() from the umount, so we need to make sure any ordered
4390 * extents that haven't had their dirty pages IO start writeout yet
4391 * actually get run and error out properly.
4393 btrfs_wait_ordered_roots(fs_info
, U64_MAX
, 0, (u64
)-1);
4396 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
4397 struct btrfs_fs_info
*fs_info
)
4399 struct rb_node
*node
;
4400 struct btrfs_delayed_ref_root
*delayed_refs
;
4401 struct btrfs_delayed_ref_node
*ref
;
4404 delayed_refs
= &trans
->delayed_refs
;
4406 spin_lock(&delayed_refs
->lock
);
4407 if (atomic_read(&delayed_refs
->num_entries
) == 0) {
4408 spin_unlock(&delayed_refs
->lock
);
4409 btrfs_debug(fs_info
, "delayed_refs has NO entry");
4413 while ((node
= rb_first_cached(&delayed_refs
->href_root
)) != NULL
) {
4414 struct btrfs_delayed_ref_head
*head
;
4416 bool pin_bytes
= false;
4418 head
= rb_entry(node
, struct btrfs_delayed_ref_head
,
4420 if (btrfs_delayed_ref_lock(delayed_refs
, head
))
4423 spin_lock(&head
->lock
);
4424 while ((n
= rb_first_cached(&head
->ref_tree
)) != NULL
) {
4425 ref
= rb_entry(n
, struct btrfs_delayed_ref_node
,
4428 rb_erase_cached(&ref
->ref_node
, &head
->ref_tree
);
4429 RB_CLEAR_NODE(&ref
->ref_node
);
4430 if (!list_empty(&ref
->add_list
))
4431 list_del(&ref
->add_list
);
4432 atomic_dec(&delayed_refs
->num_entries
);
4433 btrfs_put_delayed_ref(ref
);
4435 if (head
->must_insert_reserved
)
4437 btrfs_free_delayed_extent_op(head
->extent_op
);
4438 btrfs_delete_ref_head(delayed_refs
, head
);
4439 spin_unlock(&head
->lock
);
4440 spin_unlock(&delayed_refs
->lock
);
4441 mutex_unlock(&head
->mutex
);
4444 struct btrfs_block_group
*cache
;
4446 cache
= btrfs_lookup_block_group(fs_info
, head
->bytenr
);
4449 spin_lock(&cache
->space_info
->lock
);
4450 spin_lock(&cache
->lock
);
4451 cache
->pinned
+= head
->num_bytes
;
4452 btrfs_space_info_update_bytes_pinned(fs_info
,
4453 cache
->space_info
, head
->num_bytes
);
4454 cache
->reserved
-= head
->num_bytes
;
4455 cache
->space_info
->bytes_reserved
-= head
->num_bytes
;
4456 spin_unlock(&cache
->lock
);
4457 spin_unlock(&cache
->space_info
->lock
);
4458 percpu_counter_add_batch(
4459 &cache
->space_info
->total_bytes_pinned
,
4460 head
->num_bytes
, BTRFS_TOTAL_BYTES_PINNED_BATCH
);
4462 btrfs_put_block_group(cache
);
4464 btrfs_error_unpin_extent_range(fs_info
, head
->bytenr
,
4465 head
->bytenr
+ head
->num_bytes
- 1);
4467 btrfs_cleanup_ref_head_accounting(fs_info
, delayed_refs
, head
);
4468 btrfs_put_delayed_ref_head(head
);
4470 spin_lock(&delayed_refs
->lock
);
4472 btrfs_qgroup_destroy_extent_records(trans
);
4474 spin_unlock(&delayed_refs
->lock
);
4479 static void btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
)
4481 struct btrfs_inode
*btrfs_inode
;
4482 struct list_head splice
;
4484 INIT_LIST_HEAD(&splice
);
4486 spin_lock(&root
->delalloc_lock
);
4487 list_splice_init(&root
->delalloc_inodes
, &splice
);
4489 while (!list_empty(&splice
)) {
4490 struct inode
*inode
= NULL
;
4491 btrfs_inode
= list_first_entry(&splice
, struct btrfs_inode
,
4493 __btrfs_del_delalloc_inode(root
, btrfs_inode
);
4494 spin_unlock(&root
->delalloc_lock
);
4497 * Make sure we get a live inode and that it'll not disappear
4500 inode
= igrab(&btrfs_inode
->vfs_inode
);
4502 invalidate_inode_pages2(inode
->i_mapping
);
4505 spin_lock(&root
->delalloc_lock
);
4507 spin_unlock(&root
->delalloc_lock
);
4510 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info
*fs_info
)
4512 struct btrfs_root
*root
;
4513 struct list_head splice
;
4515 INIT_LIST_HEAD(&splice
);
4517 spin_lock(&fs_info
->delalloc_root_lock
);
4518 list_splice_init(&fs_info
->delalloc_roots
, &splice
);
4519 while (!list_empty(&splice
)) {
4520 root
= list_first_entry(&splice
, struct btrfs_root
,
4522 root
= btrfs_grab_root(root
);
4524 spin_unlock(&fs_info
->delalloc_root_lock
);
4526 btrfs_destroy_delalloc_inodes(root
);
4527 btrfs_put_root(root
);
4529 spin_lock(&fs_info
->delalloc_root_lock
);
4531 spin_unlock(&fs_info
->delalloc_root_lock
);
4534 static int btrfs_destroy_marked_extents(struct btrfs_fs_info
*fs_info
,
4535 struct extent_io_tree
*dirty_pages
,
4539 struct extent_buffer
*eb
;
4544 ret
= find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
4549 clear_extent_bits(dirty_pages
, start
, end
, mark
);
4550 while (start
<= end
) {
4551 eb
= find_extent_buffer(fs_info
, start
);
4552 start
+= fs_info
->nodesize
;
4555 wait_on_extent_buffer_writeback(eb
);
4557 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
,
4559 clear_extent_buffer_dirty(eb
);
4560 free_extent_buffer_stale(eb
);
4567 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info
*fs_info
,
4568 struct extent_io_tree
*unpin
)
4575 struct extent_state
*cached_state
= NULL
;
4578 * The btrfs_finish_extent_commit() may get the same range as
4579 * ours between find_first_extent_bit and clear_extent_dirty.
4580 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4581 * the same extent range.
4583 mutex_lock(&fs_info
->unused_bg_unpin_mutex
);
4584 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
4585 EXTENT_DIRTY
, &cached_state
);
4587 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
4591 clear_extent_dirty(unpin
, start
, end
, &cached_state
);
4592 free_extent_state(cached_state
);
4593 btrfs_error_unpin_extent_range(fs_info
, start
, end
);
4594 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
4601 static void btrfs_cleanup_bg_io(struct btrfs_block_group
*cache
)
4603 struct inode
*inode
;
4605 inode
= cache
->io_ctl
.inode
;
4607 invalidate_inode_pages2(inode
->i_mapping
);
4608 BTRFS_I(inode
)->generation
= 0;
4609 cache
->io_ctl
.inode
= NULL
;
4612 ASSERT(cache
->io_ctl
.pages
== NULL
);
4613 btrfs_put_block_group(cache
);
4616 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction
*cur_trans
,
4617 struct btrfs_fs_info
*fs_info
)
4619 struct btrfs_block_group
*cache
;
4621 spin_lock(&cur_trans
->dirty_bgs_lock
);
4622 while (!list_empty(&cur_trans
->dirty_bgs
)) {
4623 cache
= list_first_entry(&cur_trans
->dirty_bgs
,
4624 struct btrfs_block_group
,
4627 if (!list_empty(&cache
->io_list
)) {
4628 spin_unlock(&cur_trans
->dirty_bgs_lock
);
4629 list_del_init(&cache
->io_list
);
4630 btrfs_cleanup_bg_io(cache
);
4631 spin_lock(&cur_trans
->dirty_bgs_lock
);
4634 list_del_init(&cache
->dirty_list
);
4635 spin_lock(&cache
->lock
);
4636 cache
->disk_cache_state
= BTRFS_DC_ERROR
;
4637 spin_unlock(&cache
->lock
);
4639 spin_unlock(&cur_trans
->dirty_bgs_lock
);
4640 btrfs_put_block_group(cache
);
4641 btrfs_delayed_refs_rsv_release(fs_info
, 1);
4642 spin_lock(&cur_trans
->dirty_bgs_lock
);
4644 spin_unlock(&cur_trans
->dirty_bgs_lock
);
4647 * Refer to the definition of io_bgs member for details why it's safe
4648 * to use it without any locking
4650 while (!list_empty(&cur_trans
->io_bgs
)) {
4651 cache
= list_first_entry(&cur_trans
->io_bgs
,
4652 struct btrfs_block_group
,
4655 list_del_init(&cache
->io_list
);
4656 spin_lock(&cache
->lock
);
4657 cache
->disk_cache_state
= BTRFS_DC_ERROR
;
4658 spin_unlock(&cache
->lock
);
4659 btrfs_cleanup_bg_io(cache
);
4663 void btrfs_cleanup_one_transaction(struct btrfs_transaction
*cur_trans
,
4664 struct btrfs_fs_info
*fs_info
)
4666 struct btrfs_device
*dev
, *tmp
;
4668 btrfs_cleanup_dirty_bgs(cur_trans
, fs_info
);
4669 ASSERT(list_empty(&cur_trans
->dirty_bgs
));
4670 ASSERT(list_empty(&cur_trans
->io_bgs
));
4672 list_for_each_entry_safe(dev
, tmp
, &cur_trans
->dev_update_list
,
4674 list_del_init(&dev
->post_commit_list
);
4677 btrfs_destroy_delayed_refs(cur_trans
, fs_info
);
4679 cur_trans
->state
= TRANS_STATE_COMMIT_START
;
4680 wake_up(&fs_info
->transaction_blocked_wait
);
4682 cur_trans
->state
= TRANS_STATE_UNBLOCKED
;
4683 wake_up(&fs_info
->transaction_wait
);
4685 btrfs_destroy_delayed_inodes(fs_info
);
4687 btrfs_destroy_marked_extents(fs_info
, &cur_trans
->dirty_pages
,
4689 btrfs_destroy_pinned_extent(fs_info
, &cur_trans
->pinned_extents
);
4691 cur_trans
->state
=TRANS_STATE_COMPLETED
;
4692 wake_up(&cur_trans
->commit_wait
);
4695 static int btrfs_cleanup_transaction(struct btrfs_fs_info
*fs_info
)
4697 struct btrfs_transaction
*t
;
4699 mutex_lock(&fs_info
->transaction_kthread_mutex
);
4701 spin_lock(&fs_info
->trans_lock
);
4702 while (!list_empty(&fs_info
->trans_list
)) {
4703 t
= list_first_entry(&fs_info
->trans_list
,
4704 struct btrfs_transaction
, list
);
4705 if (t
->state
>= TRANS_STATE_COMMIT_START
) {
4706 refcount_inc(&t
->use_count
);
4707 spin_unlock(&fs_info
->trans_lock
);
4708 btrfs_wait_for_commit(fs_info
, t
->transid
);
4709 btrfs_put_transaction(t
);
4710 spin_lock(&fs_info
->trans_lock
);
4713 if (t
== fs_info
->running_transaction
) {
4714 t
->state
= TRANS_STATE_COMMIT_DOING
;
4715 spin_unlock(&fs_info
->trans_lock
);
4717 * We wait for 0 num_writers since we don't hold a trans
4718 * handle open currently for this transaction.
4720 wait_event(t
->writer_wait
,
4721 atomic_read(&t
->num_writers
) == 0);
4723 spin_unlock(&fs_info
->trans_lock
);
4725 btrfs_cleanup_one_transaction(t
, fs_info
);
4727 spin_lock(&fs_info
->trans_lock
);
4728 if (t
== fs_info
->running_transaction
)
4729 fs_info
->running_transaction
= NULL
;
4730 list_del_init(&t
->list
);
4731 spin_unlock(&fs_info
->trans_lock
);
4733 btrfs_put_transaction(t
);
4734 trace_btrfs_transaction_commit(fs_info
->tree_root
);
4735 spin_lock(&fs_info
->trans_lock
);
4737 spin_unlock(&fs_info
->trans_lock
);
4738 btrfs_destroy_all_ordered_extents(fs_info
);
4739 btrfs_destroy_delayed_inodes(fs_info
);
4740 btrfs_assert_delayed_root_empty(fs_info
);
4741 btrfs_destroy_all_delalloc_inodes(fs_info
);
4742 btrfs_drop_all_logs(fs_info
);
4743 mutex_unlock(&fs_info
->transaction_kthread_mutex
);
4748 int btrfs_find_highest_objectid(struct btrfs_root
*root
, u64
*objectid
)
4750 struct btrfs_path
*path
;
4752 struct extent_buffer
*l
;
4753 struct btrfs_key search_key
;
4754 struct btrfs_key found_key
;
4757 path
= btrfs_alloc_path();
4761 search_key
.objectid
= BTRFS_LAST_FREE_OBJECTID
;
4762 search_key
.type
= -1;
4763 search_key
.offset
= (u64
)-1;
4764 ret
= btrfs_search_slot(NULL
, root
, &search_key
, path
, 0, 0);
4767 BUG_ON(ret
== 0); /* Corruption */
4768 if (path
->slots
[0] > 0) {
4769 slot
= path
->slots
[0] - 1;
4771 btrfs_item_key_to_cpu(l
, &found_key
, slot
);
4772 *objectid
= max_t(u64
, found_key
.objectid
,
4773 BTRFS_FIRST_FREE_OBJECTID
- 1);
4775 *objectid
= BTRFS_FIRST_FREE_OBJECTID
- 1;
4779 btrfs_free_path(path
);
4783 int btrfs_find_free_objectid(struct btrfs_root
*root
, u64
*objectid
)
4786 mutex_lock(&root
->objectid_mutex
);
4788 if (unlikely(root
->highest_objectid
>= BTRFS_LAST_FREE_OBJECTID
)) {
4789 btrfs_warn(root
->fs_info
,
4790 "the objectid of root %llu reaches its highest value",
4791 root
->root_key
.objectid
);
4796 *objectid
= ++root
->highest_objectid
;
4799 mutex_unlock(&root
->objectid_mutex
);