1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
22 #include "print-tree.h"
26 #include "free-space-cache.h"
27 #include "free-space-tree.h"
30 #include "ref-verify.h"
31 #include "space-info.h"
32 #include "block-rsv.h"
33 #include "delalloc-space.h"
34 #include "block-group.h"
36 #include "rcu-string.h"
38 #undef SCRAMBLE_DELAYED_REFS
41 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
42 struct btrfs_delayed_ref_node
*node
, u64 parent
,
43 u64 root_objectid
, u64 owner_objectid
,
44 u64 owner_offset
, int refs_to_drop
,
45 struct btrfs_delayed_extent_op
*extra_op
);
46 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
47 struct extent_buffer
*leaf
,
48 struct btrfs_extent_item
*ei
);
49 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
50 u64 parent
, u64 root_objectid
,
51 u64 flags
, u64 owner
, u64 offset
,
52 struct btrfs_key
*ins
, int ref_mod
);
53 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
54 struct btrfs_delayed_ref_node
*node
,
55 struct btrfs_delayed_extent_op
*extent_op
);
56 static int find_next_key(struct btrfs_path
*path
, int level
,
57 struct btrfs_key
*key
);
59 static int block_group_bits(struct btrfs_block_group
*cache
, u64 bits
)
61 return (cache
->flags
& bits
) == bits
;
64 int btrfs_add_excluded_extent(struct btrfs_fs_info
*fs_info
,
65 u64 start
, u64 num_bytes
)
67 u64 end
= start
+ num_bytes
- 1;
68 set_extent_bits(&fs_info
->excluded_extents
, start
, end
,
73 void btrfs_free_excluded_extents(struct btrfs_block_group
*cache
)
75 struct btrfs_fs_info
*fs_info
= cache
->fs_info
;
79 end
= start
+ cache
->length
- 1;
81 clear_extent_bits(&fs_info
->excluded_extents
, start
, end
,
85 static u64
generic_ref_to_space_flags(struct btrfs_ref
*ref
)
87 if (ref
->type
== BTRFS_REF_METADATA
) {
88 if (ref
->tree_ref
.root
== BTRFS_CHUNK_TREE_OBJECTID
)
89 return BTRFS_BLOCK_GROUP_SYSTEM
;
91 return BTRFS_BLOCK_GROUP_METADATA
;
93 return BTRFS_BLOCK_GROUP_DATA
;
96 static void add_pinned_bytes(struct btrfs_fs_info
*fs_info
,
97 struct btrfs_ref
*ref
)
99 struct btrfs_space_info
*space_info
;
100 u64 flags
= generic_ref_to_space_flags(ref
);
102 space_info
= btrfs_find_space_info(fs_info
, flags
);
104 percpu_counter_add_batch(&space_info
->total_bytes_pinned
, ref
->len
,
105 BTRFS_TOTAL_BYTES_PINNED_BATCH
);
108 static void sub_pinned_bytes(struct btrfs_fs_info
*fs_info
,
109 struct btrfs_ref
*ref
)
111 struct btrfs_space_info
*space_info
;
112 u64 flags
= generic_ref_to_space_flags(ref
);
114 space_info
= btrfs_find_space_info(fs_info
, flags
);
116 percpu_counter_add_batch(&space_info
->total_bytes_pinned
, -ref
->len
,
117 BTRFS_TOTAL_BYTES_PINNED_BATCH
);
120 /* simple helper to search for an existing data extent at a given offset */
121 int btrfs_lookup_data_extent(struct btrfs_fs_info
*fs_info
, u64 start
, u64 len
)
124 struct btrfs_key key
;
125 struct btrfs_path
*path
;
127 path
= btrfs_alloc_path();
131 key
.objectid
= start
;
133 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
134 ret
= btrfs_search_slot(NULL
, fs_info
->extent_root
, &key
, path
, 0, 0);
135 btrfs_free_path(path
);
140 * helper function to lookup reference count and flags of a tree block.
142 * the head node for delayed ref is used to store the sum of all the
143 * reference count modifications queued up in the rbtree. the head
144 * node may also store the extent flags to set. This way you can check
145 * to see what the reference count and extent flags would be if all of
146 * the delayed refs are not processed.
148 int btrfs_lookup_extent_info(struct btrfs_trans_handle
*trans
,
149 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
150 u64 offset
, int metadata
, u64
*refs
, u64
*flags
)
152 struct btrfs_delayed_ref_head
*head
;
153 struct btrfs_delayed_ref_root
*delayed_refs
;
154 struct btrfs_path
*path
;
155 struct btrfs_extent_item
*ei
;
156 struct extent_buffer
*leaf
;
157 struct btrfs_key key
;
164 * If we don't have skinny metadata, don't bother doing anything
167 if (metadata
&& !btrfs_fs_incompat(fs_info
, SKINNY_METADATA
)) {
168 offset
= fs_info
->nodesize
;
172 path
= btrfs_alloc_path();
177 path
->skip_locking
= 1;
178 path
->search_commit_root
= 1;
182 key
.objectid
= bytenr
;
185 key
.type
= BTRFS_METADATA_ITEM_KEY
;
187 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
189 ret
= btrfs_search_slot(trans
, fs_info
->extent_root
, &key
, path
, 0, 0);
193 if (ret
> 0 && metadata
&& key
.type
== BTRFS_METADATA_ITEM_KEY
) {
194 if (path
->slots
[0]) {
196 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
198 if (key
.objectid
== bytenr
&&
199 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
200 key
.offset
== fs_info
->nodesize
)
206 leaf
= path
->nodes
[0];
207 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
208 if (item_size
>= sizeof(*ei
)) {
209 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
210 struct btrfs_extent_item
);
211 num_refs
= btrfs_extent_refs(leaf
, ei
);
212 extent_flags
= btrfs_extent_flags(leaf
, ei
);
215 btrfs_print_v0_err(fs_info
);
217 btrfs_abort_transaction(trans
, ret
);
219 btrfs_handle_fs_error(fs_info
, ret
, NULL
);
224 BUG_ON(num_refs
== 0);
234 delayed_refs
= &trans
->transaction
->delayed_refs
;
235 spin_lock(&delayed_refs
->lock
);
236 head
= btrfs_find_delayed_ref_head(delayed_refs
, bytenr
);
238 if (!mutex_trylock(&head
->mutex
)) {
239 refcount_inc(&head
->refs
);
240 spin_unlock(&delayed_refs
->lock
);
242 btrfs_release_path(path
);
245 * Mutex was contended, block until it's released and try
248 mutex_lock(&head
->mutex
);
249 mutex_unlock(&head
->mutex
);
250 btrfs_put_delayed_ref_head(head
);
253 spin_lock(&head
->lock
);
254 if (head
->extent_op
&& head
->extent_op
->update_flags
)
255 extent_flags
|= head
->extent_op
->flags_to_set
;
257 BUG_ON(num_refs
== 0);
259 num_refs
+= head
->ref_mod
;
260 spin_unlock(&head
->lock
);
261 mutex_unlock(&head
->mutex
);
263 spin_unlock(&delayed_refs
->lock
);
265 WARN_ON(num_refs
== 0);
269 *flags
= extent_flags
;
271 btrfs_free_path(path
);
276 * Back reference rules. Back refs have three main goals:
278 * 1) differentiate between all holders of references to an extent so that
279 * when a reference is dropped we can make sure it was a valid reference
280 * before freeing the extent.
282 * 2) Provide enough information to quickly find the holders of an extent
283 * if we notice a given block is corrupted or bad.
285 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
286 * maintenance. This is actually the same as #2, but with a slightly
287 * different use case.
289 * There are two kinds of back refs. The implicit back refs is optimized
290 * for pointers in non-shared tree blocks. For a given pointer in a block,
291 * back refs of this kind provide information about the block's owner tree
292 * and the pointer's key. These information allow us to find the block by
293 * b-tree searching. The full back refs is for pointers in tree blocks not
294 * referenced by their owner trees. The location of tree block is recorded
295 * in the back refs. Actually the full back refs is generic, and can be
296 * used in all cases the implicit back refs is used. The major shortcoming
297 * of the full back refs is its overhead. Every time a tree block gets
298 * COWed, we have to update back refs entry for all pointers in it.
300 * For a newly allocated tree block, we use implicit back refs for
301 * pointers in it. This means most tree related operations only involve
302 * implicit back refs. For a tree block created in old transaction, the
303 * only way to drop a reference to it is COW it. So we can detect the
304 * event that tree block loses its owner tree's reference and do the
305 * back refs conversion.
307 * When a tree block is COWed through a tree, there are four cases:
309 * The reference count of the block is one and the tree is the block's
310 * owner tree. Nothing to do in this case.
312 * The reference count of the block is one and the tree is not the
313 * block's owner tree. In this case, full back refs is used for pointers
314 * in the block. Remove these full back refs, add implicit back refs for
315 * every pointers in the new block.
317 * The reference count of the block is greater than one and the tree is
318 * the block's owner tree. In this case, implicit back refs is used for
319 * pointers in the block. Add full back refs for every pointers in the
320 * block, increase lower level extents' reference counts. The original
321 * implicit back refs are entailed to the new block.
323 * The reference count of the block is greater than one and the tree is
324 * not the block's owner tree. Add implicit back refs for every pointer in
325 * the new block, increase lower level extents' reference count.
327 * Back Reference Key composing:
329 * The key objectid corresponds to the first byte in the extent,
330 * The key type is used to differentiate between types of back refs.
331 * There are different meanings of the key offset for different types
334 * File extents can be referenced by:
336 * - multiple snapshots, subvolumes, or different generations in one subvol
337 * - different files inside a single subvolume
338 * - different offsets inside a file (bookend extents in file.c)
340 * The extent ref structure for the implicit back refs has fields for:
342 * - Objectid of the subvolume root
343 * - objectid of the file holding the reference
344 * - original offset in the file
345 * - how many bookend extents
347 * The key offset for the implicit back refs is hash of the first
350 * The extent ref structure for the full back refs has field for:
352 * - number of pointers in the tree leaf
354 * The key offset for the implicit back refs is the first byte of
357 * When a file extent is allocated, The implicit back refs is used.
358 * the fields are filled in:
360 * (root_key.objectid, inode objectid, offset in file, 1)
362 * When a file extent is removed file truncation, we find the
363 * corresponding implicit back refs and check the following fields:
365 * (btrfs_header_owner(leaf), inode objectid, offset in file)
367 * Btree extents can be referenced by:
369 * - Different subvolumes
371 * Both the implicit back refs and the full back refs for tree blocks
372 * only consist of key. The key offset for the implicit back refs is
373 * objectid of block's owner tree. The key offset for the full back refs
374 * is the first byte of parent block.
376 * When implicit back refs is used, information about the lowest key and
377 * level of the tree block are required. These information are stored in
378 * tree block info structure.
382 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
383 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
384 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
386 int btrfs_get_extent_inline_ref_type(const struct extent_buffer
*eb
,
387 struct btrfs_extent_inline_ref
*iref
,
388 enum btrfs_inline_ref_type is_data
)
390 int type
= btrfs_extent_inline_ref_type(eb
, iref
);
391 u64 offset
= btrfs_extent_inline_ref_offset(eb
, iref
);
393 if (type
== BTRFS_TREE_BLOCK_REF_KEY
||
394 type
== BTRFS_SHARED_BLOCK_REF_KEY
||
395 type
== BTRFS_SHARED_DATA_REF_KEY
||
396 type
== BTRFS_EXTENT_DATA_REF_KEY
) {
397 if (is_data
== BTRFS_REF_TYPE_BLOCK
) {
398 if (type
== BTRFS_TREE_BLOCK_REF_KEY
)
400 if (type
== BTRFS_SHARED_BLOCK_REF_KEY
) {
403 * Every shared one has parent tree block,
404 * which must be aligned to sector size.
407 IS_ALIGNED(offset
, eb
->fs_info
->sectorsize
))
410 } else if (is_data
== BTRFS_REF_TYPE_DATA
) {
411 if (type
== BTRFS_EXTENT_DATA_REF_KEY
)
413 if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
416 * Every shared one has parent tree block,
417 * which must be aligned to sector size.
420 IS_ALIGNED(offset
, eb
->fs_info
->sectorsize
))
424 ASSERT(is_data
== BTRFS_REF_TYPE_ANY
);
429 btrfs_print_leaf((struct extent_buffer
*)eb
);
430 btrfs_err(eb
->fs_info
,
431 "eb %llu iref 0x%lx invalid extent inline ref type %d",
432 eb
->start
, (unsigned long)iref
, type
);
435 return BTRFS_REF_TYPE_INVALID
;
438 u64
hash_extent_data_ref(u64 root_objectid
, u64 owner
, u64 offset
)
440 u32 high_crc
= ~(u32
)0;
441 u32 low_crc
= ~(u32
)0;
444 lenum
= cpu_to_le64(root_objectid
);
445 high_crc
= btrfs_crc32c(high_crc
, &lenum
, sizeof(lenum
));
446 lenum
= cpu_to_le64(owner
);
447 low_crc
= btrfs_crc32c(low_crc
, &lenum
, sizeof(lenum
));
448 lenum
= cpu_to_le64(offset
);
449 low_crc
= btrfs_crc32c(low_crc
, &lenum
, sizeof(lenum
));
451 return ((u64
)high_crc
<< 31) ^ (u64
)low_crc
;
454 static u64
hash_extent_data_ref_item(struct extent_buffer
*leaf
,
455 struct btrfs_extent_data_ref
*ref
)
457 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf
, ref
),
458 btrfs_extent_data_ref_objectid(leaf
, ref
),
459 btrfs_extent_data_ref_offset(leaf
, ref
));
462 static int match_extent_data_ref(struct extent_buffer
*leaf
,
463 struct btrfs_extent_data_ref
*ref
,
464 u64 root_objectid
, u64 owner
, u64 offset
)
466 if (btrfs_extent_data_ref_root(leaf
, ref
) != root_objectid
||
467 btrfs_extent_data_ref_objectid(leaf
, ref
) != owner
||
468 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
473 static noinline
int lookup_extent_data_ref(struct btrfs_trans_handle
*trans
,
474 struct btrfs_path
*path
,
475 u64 bytenr
, u64 parent
,
477 u64 owner
, u64 offset
)
479 struct btrfs_root
*root
= trans
->fs_info
->extent_root
;
480 struct btrfs_key key
;
481 struct btrfs_extent_data_ref
*ref
;
482 struct extent_buffer
*leaf
;
488 key
.objectid
= bytenr
;
490 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
493 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
494 key
.offset
= hash_extent_data_ref(root_objectid
,
499 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
511 leaf
= path
->nodes
[0];
512 nritems
= btrfs_header_nritems(leaf
);
514 if (path
->slots
[0] >= nritems
) {
515 ret
= btrfs_next_leaf(root
, path
);
521 leaf
= path
->nodes
[0];
522 nritems
= btrfs_header_nritems(leaf
);
526 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
527 if (key
.objectid
!= bytenr
||
528 key
.type
!= BTRFS_EXTENT_DATA_REF_KEY
)
531 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
532 struct btrfs_extent_data_ref
);
534 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
537 btrfs_release_path(path
);
549 static noinline
int insert_extent_data_ref(struct btrfs_trans_handle
*trans
,
550 struct btrfs_path
*path
,
551 u64 bytenr
, u64 parent
,
552 u64 root_objectid
, u64 owner
,
553 u64 offset
, int refs_to_add
)
555 struct btrfs_root
*root
= trans
->fs_info
->extent_root
;
556 struct btrfs_key key
;
557 struct extent_buffer
*leaf
;
562 key
.objectid
= bytenr
;
564 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
566 size
= sizeof(struct btrfs_shared_data_ref
);
568 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
569 key
.offset
= hash_extent_data_ref(root_objectid
,
571 size
= sizeof(struct btrfs_extent_data_ref
);
574 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, size
);
575 if (ret
&& ret
!= -EEXIST
)
578 leaf
= path
->nodes
[0];
580 struct btrfs_shared_data_ref
*ref
;
581 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
582 struct btrfs_shared_data_ref
);
584 btrfs_set_shared_data_ref_count(leaf
, ref
, refs_to_add
);
586 num_refs
= btrfs_shared_data_ref_count(leaf
, ref
);
587 num_refs
+= refs_to_add
;
588 btrfs_set_shared_data_ref_count(leaf
, ref
, num_refs
);
591 struct btrfs_extent_data_ref
*ref
;
592 while (ret
== -EEXIST
) {
593 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
594 struct btrfs_extent_data_ref
);
595 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
598 btrfs_release_path(path
);
600 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
602 if (ret
&& ret
!= -EEXIST
)
605 leaf
= path
->nodes
[0];
607 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
608 struct btrfs_extent_data_ref
);
610 btrfs_set_extent_data_ref_root(leaf
, ref
,
612 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
613 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
614 btrfs_set_extent_data_ref_count(leaf
, ref
, refs_to_add
);
616 num_refs
= btrfs_extent_data_ref_count(leaf
, ref
);
617 num_refs
+= refs_to_add
;
618 btrfs_set_extent_data_ref_count(leaf
, ref
, num_refs
);
621 btrfs_mark_buffer_dirty(leaf
);
624 btrfs_release_path(path
);
628 static noinline
int remove_extent_data_ref(struct btrfs_trans_handle
*trans
,
629 struct btrfs_path
*path
,
630 int refs_to_drop
, int *last_ref
)
632 struct btrfs_key key
;
633 struct btrfs_extent_data_ref
*ref1
= NULL
;
634 struct btrfs_shared_data_ref
*ref2
= NULL
;
635 struct extent_buffer
*leaf
;
639 leaf
= path
->nodes
[0];
640 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
642 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
643 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
644 struct btrfs_extent_data_ref
);
645 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
646 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
647 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
648 struct btrfs_shared_data_ref
);
649 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
650 } else if (unlikely(key
.type
== BTRFS_EXTENT_REF_V0_KEY
)) {
651 btrfs_print_v0_err(trans
->fs_info
);
652 btrfs_abort_transaction(trans
, -EINVAL
);
658 BUG_ON(num_refs
< refs_to_drop
);
659 num_refs
-= refs_to_drop
;
662 ret
= btrfs_del_item(trans
, trans
->fs_info
->extent_root
, path
);
665 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
)
666 btrfs_set_extent_data_ref_count(leaf
, ref1
, num_refs
);
667 else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
)
668 btrfs_set_shared_data_ref_count(leaf
, ref2
, num_refs
);
669 btrfs_mark_buffer_dirty(leaf
);
674 static noinline u32
extent_data_ref_count(struct btrfs_path
*path
,
675 struct btrfs_extent_inline_ref
*iref
)
677 struct btrfs_key key
;
678 struct extent_buffer
*leaf
;
679 struct btrfs_extent_data_ref
*ref1
;
680 struct btrfs_shared_data_ref
*ref2
;
684 leaf
= path
->nodes
[0];
685 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
687 BUG_ON(key
.type
== BTRFS_EXTENT_REF_V0_KEY
);
690 * If type is invalid, we should have bailed out earlier than
693 type
= btrfs_get_extent_inline_ref_type(leaf
, iref
, BTRFS_REF_TYPE_DATA
);
694 ASSERT(type
!= BTRFS_REF_TYPE_INVALID
);
695 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
696 ref1
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
697 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
699 ref2
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
700 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
702 } else if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
703 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
704 struct btrfs_extent_data_ref
);
705 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
706 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
707 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
708 struct btrfs_shared_data_ref
);
709 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
716 static noinline
int lookup_tree_block_ref(struct btrfs_trans_handle
*trans
,
717 struct btrfs_path
*path
,
718 u64 bytenr
, u64 parent
,
721 struct btrfs_root
*root
= trans
->fs_info
->extent_root
;
722 struct btrfs_key key
;
725 key
.objectid
= bytenr
;
727 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
730 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
731 key
.offset
= root_objectid
;
734 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
740 static noinline
int insert_tree_block_ref(struct btrfs_trans_handle
*trans
,
741 struct btrfs_path
*path
,
742 u64 bytenr
, u64 parent
,
745 struct btrfs_key key
;
748 key
.objectid
= bytenr
;
750 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
753 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
754 key
.offset
= root_objectid
;
757 ret
= btrfs_insert_empty_item(trans
, trans
->fs_info
->extent_root
,
759 btrfs_release_path(path
);
763 static inline int extent_ref_type(u64 parent
, u64 owner
)
766 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
768 type
= BTRFS_SHARED_BLOCK_REF_KEY
;
770 type
= BTRFS_TREE_BLOCK_REF_KEY
;
773 type
= BTRFS_SHARED_DATA_REF_KEY
;
775 type
= BTRFS_EXTENT_DATA_REF_KEY
;
780 static int find_next_key(struct btrfs_path
*path
, int level
,
781 struct btrfs_key
*key
)
784 for (; level
< BTRFS_MAX_LEVEL
; level
++) {
785 if (!path
->nodes
[level
])
787 if (path
->slots
[level
] + 1 >=
788 btrfs_header_nritems(path
->nodes
[level
]))
791 btrfs_item_key_to_cpu(path
->nodes
[level
], key
,
792 path
->slots
[level
] + 1);
794 btrfs_node_key_to_cpu(path
->nodes
[level
], key
,
795 path
->slots
[level
] + 1);
802 * look for inline back ref. if back ref is found, *ref_ret is set
803 * to the address of inline back ref, and 0 is returned.
805 * if back ref isn't found, *ref_ret is set to the address where it
806 * should be inserted, and -ENOENT is returned.
808 * if insert is true and there are too many inline back refs, the path
809 * points to the extent item, and -EAGAIN is returned.
811 * NOTE: inline back refs are ordered in the same way that back ref
812 * items in the tree are ordered.
814 static noinline_for_stack
815 int lookup_inline_extent_backref(struct btrfs_trans_handle
*trans
,
816 struct btrfs_path
*path
,
817 struct btrfs_extent_inline_ref
**ref_ret
,
818 u64 bytenr
, u64 num_bytes
,
819 u64 parent
, u64 root_objectid
,
820 u64 owner
, u64 offset
, int insert
)
822 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
823 struct btrfs_root
*root
= fs_info
->extent_root
;
824 struct btrfs_key key
;
825 struct extent_buffer
*leaf
;
826 struct btrfs_extent_item
*ei
;
827 struct btrfs_extent_inline_ref
*iref
;
837 bool skinny_metadata
= btrfs_fs_incompat(fs_info
, SKINNY_METADATA
);
840 key
.objectid
= bytenr
;
841 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
842 key
.offset
= num_bytes
;
844 want
= extent_ref_type(parent
, owner
);
846 extra_size
= btrfs_extent_inline_ref_size(want
);
847 path
->search_for_extension
= 1;
848 path
->keep_locks
= 1;
853 * Owner is our level, so we can just add one to get the level for the
854 * block we are interested in.
856 if (skinny_metadata
&& owner
< BTRFS_FIRST_FREE_OBJECTID
) {
857 key
.type
= BTRFS_METADATA_ITEM_KEY
;
862 ret
= btrfs_search_slot(trans
, root
, &key
, path
, extra_size
, 1);
869 * We may be a newly converted file system which still has the old fat
870 * extent entries for metadata, so try and see if we have one of those.
872 if (ret
> 0 && skinny_metadata
) {
873 skinny_metadata
= false;
874 if (path
->slots
[0]) {
876 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
878 if (key
.objectid
== bytenr
&&
879 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
880 key
.offset
== num_bytes
)
884 key
.objectid
= bytenr
;
885 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
886 key
.offset
= num_bytes
;
887 btrfs_release_path(path
);
892 if (ret
&& !insert
) {
895 } else if (WARN_ON(ret
)) {
900 leaf
= path
->nodes
[0];
901 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
902 if (unlikely(item_size
< sizeof(*ei
))) {
904 btrfs_print_v0_err(fs_info
);
905 btrfs_abort_transaction(trans
, err
);
909 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
910 flags
= btrfs_extent_flags(leaf
, ei
);
912 ptr
= (unsigned long)(ei
+ 1);
913 end
= (unsigned long)ei
+ item_size
;
915 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
&& !skinny_metadata
) {
916 ptr
+= sizeof(struct btrfs_tree_block_info
);
920 if (owner
>= BTRFS_FIRST_FREE_OBJECTID
)
921 needed
= BTRFS_REF_TYPE_DATA
;
923 needed
= BTRFS_REF_TYPE_BLOCK
;
931 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
932 type
= btrfs_get_extent_inline_ref_type(leaf
, iref
, needed
);
933 if (type
== BTRFS_REF_TYPE_INVALID
) {
941 ptr
+= btrfs_extent_inline_ref_size(type
);
945 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
946 struct btrfs_extent_data_ref
*dref
;
947 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
948 if (match_extent_data_ref(leaf
, dref
, root_objectid
,
953 if (hash_extent_data_ref_item(leaf
, dref
) <
954 hash_extent_data_ref(root_objectid
, owner
, offset
))
958 ref_offset
= btrfs_extent_inline_ref_offset(leaf
, iref
);
960 if (parent
== ref_offset
) {
964 if (ref_offset
< parent
)
967 if (root_objectid
== ref_offset
) {
971 if (ref_offset
< root_objectid
)
975 ptr
+= btrfs_extent_inline_ref_size(type
);
977 if (err
== -ENOENT
&& insert
) {
978 if (item_size
+ extra_size
>=
979 BTRFS_MAX_EXTENT_ITEM_SIZE(root
)) {
984 * To add new inline back ref, we have to make sure
985 * there is no corresponding back ref item.
986 * For simplicity, we just do not add new inline back
987 * ref if there is any kind of item for this block
989 if (find_next_key(path
, 0, &key
) == 0 &&
990 key
.objectid
== bytenr
&&
991 key
.type
< BTRFS_BLOCK_GROUP_ITEM_KEY
) {
996 *ref_ret
= (struct btrfs_extent_inline_ref
*)ptr
;
999 path
->keep_locks
= 0;
1000 path
->search_for_extension
= 0;
1001 btrfs_unlock_up_safe(path
, 1);
1007 * helper to add new inline back ref
1009 static noinline_for_stack
1010 void setup_inline_extent_backref(struct btrfs_fs_info
*fs_info
,
1011 struct btrfs_path
*path
,
1012 struct btrfs_extent_inline_ref
*iref
,
1013 u64 parent
, u64 root_objectid
,
1014 u64 owner
, u64 offset
, int refs_to_add
,
1015 struct btrfs_delayed_extent_op
*extent_op
)
1017 struct extent_buffer
*leaf
;
1018 struct btrfs_extent_item
*ei
;
1021 unsigned long item_offset
;
1026 leaf
= path
->nodes
[0];
1027 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1028 item_offset
= (unsigned long)iref
- (unsigned long)ei
;
1030 type
= extent_ref_type(parent
, owner
);
1031 size
= btrfs_extent_inline_ref_size(type
);
1033 btrfs_extend_item(path
, size
);
1035 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1036 refs
= btrfs_extent_refs(leaf
, ei
);
1037 refs
+= refs_to_add
;
1038 btrfs_set_extent_refs(leaf
, ei
, refs
);
1040 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1042 ptr
= (unsigned long)ei
+ item_offset
;
1043 end
= (unsigned long)ei
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
1044 if (ptr
< end
- size
)
1045 memmove_extent_buffer(leaf
, ptr
+ size
, ptr
,
1048 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1049 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
1050 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1051 struct btrfs_extent_data_ref
*dref
;
1052 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1053 btrfs_set_extent_data_ref_root(leaf
, dref
, root_objectid
);
1054 btrfs_set_extent_data_ref_objectid(leaf
, dref
, owner
);
1055 btrfs_set_extent_data_ref_offset(leaf
, dref
, offset
);
1056 btrfs_set_extent_data_ref_count(leaf
, dref
, refs_to_add
);
1057 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1058 struct btrfs_shared_data_ref
*sref
;
1059 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1060 btrfs_set_shared_data_ref_count(leaf
, sref
, refs_to_add
);
1061 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1062 } else if (type
== BTRFS_SHARED_BLOCK_REF_KEY
) {
1063 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1065 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
1067 btrfs_mark_buffer_dirty(leaf
);
1070 static int lookup_extent_backref(struct btrfs_trans_handle
*trans
,
1071 struct btrfs_path
*path
,
1072 struct btrfs_extent_inline_ref
**ref_ret
,
1073 u64 bytenr
, u64 num_bytes
, u64 parent
,
1074 u64 root_objectid
, u64 owner
, u64 offset
)
1078 ret
= lookup_inline_extent_backref(trans
, path
, ref_ret
, bytenr
,
1079 num_bytes
, parent
, root_objectid
,
1084 btrfs_release_path(path
);
1087 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1088 ret
= lookup_tree_block_ref(trans
, path
, bytenr
, parent
,
1091 ret
= lookup_extent_data_ref(trans
, path
, bytenr
, parent
,
1092 root_objectid
, owner
, offset
);
1098 * helper to update/remove inline back ref
1100 static noinline_for_stack
1101 void update_inline_extent_backref(struct btrfs_path
*path
,
1102 struct btrfs_extent_inline_ref
*iref
,
1104 struct btrfs_delayed_extent_op
*extent_op
,
1107 struct extent_buffer
*leaf
= path
->nodes
[0];
1108 struct btrfs_extent_item
*ei
;
1109 struct btrfs_extent_data_ref
*dref
= NULL
;
1110 struct btrfs_shared_data_ref
*sref
= NULL
;
1118 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1119 refs
= btrfs_extent_refs(leaf
, ei
);
1120 WARN_ON(refs_to_mod
< 0 && refs
+ refs_to_mod
<= 0);
1121 refs
+= refs_to_mod
;
1122 btrfs_set_extent_refs(leaf
, ei
, refs
);
1124 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1127 * If type is invalid, we should have bailed out after
1128 * lookup_inline_extent_backref().
1130 type
= btrfs_get_extent_inline_ref_type(leaf
, iref
, BTRFS_REF_TYPE_ANY
);
1131 ASSERT(type
!= BTRFS_REF_TYPE_INVALID
);
1133 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1134 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1135 refs
= btrfs_extent_data_ref_count(leaf
, dref
);
1136 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1137 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1138 refs
= btrfs_shared_data_ref_count(leaf
, sref
);
1141 BUG_ON(refs_to_mod
!= -1);
1144 BUG_ON(refs_to_mod
< 0 && refs
< -refs_to_mod
);
1145 refs
+= refs_to_mod
;
1148 if (type
== BTRFS_EXTENT_DATA_REF_KEY
)
1149 btrfs_set_extent_data_ref_count(leaf
, dref
, refs
);
1151 btrfs_set_shared_data_ref_count(leaf
, sref
, refs
);
1154 size
= btrfs_extent_inline_ref_size(type
);
1155 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1156 ptr
= (unsigned long)iref
;
1157 end
= (unsigned long)ei
+ item_size
;
1158 if (ptr
+ size
< end
)
1159 memmove_extent_buffer(leaf
, ptr
, ptr
+ size
,
1162 btrfs_truncate_item(path
, item_size
, 1);
1164 btrfs_mark_buffer_dirty(leaf
);
1167 static noinline_for_stack
1168 int insert_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1169 struct btrfs_path
*path
,
1170 u64 bytenr
, u64 num_bytes
, u64 parent
,
1171 u64 root_objectid
, u64 owner
,
1172 u64 offset
, int refs_to_add
,
1173 struct btrfs_delayed_extent_op
*extent_op
)
1175 struct btrfs_extent_inline_ref
*iref
;
1178 ret
= lookup_inline_extent_backref(trans
, path
, &iref
, bytenr
,
1179 num_bytes
, parent
, root_objectid
,
1183 * We're adding refs to a tree block we already own, this
1184 * should not happen at all.
1186 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1187 btrfs_crit(trans
->fs_info
,
1188 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu",
1189 bytenr
, num_bytes
, root_objectid
);
1190 if (IS_ENABLED(CONFIG_BTRFS_DEBUG
)) {
1192 btrfs_crit(trans
->fs_info
,
1193 "path->slots[0]=%d path->nodes[0]:", path
->slots
[0]);
1194 btrfs_print_leaf(path
->nodes
[0]);
1198 update_inline_extent_backref(path
, iref
, refs_to_add
,
1200 } else if (ret
== -ENOENT
) {
1201 setup_inline_extent_backref(trans
->fs_info
, path
, iref
, parent
,
1202 root_objectid
, owner
, offset
,
1203 refs_to_add
, extent_op
);
1209 static int remove_extent_backref(struct btrfs_trans_handle
*trans
,
1210 struct btrfs_path
*path
,
1211 struct btrfs_extent_inline_ref
*iref
,
1212 int refs_to_drop
, int is_data
, int *last_ref
)
1216 BUG_ON(!is_data
&& refs_to_drop
!= 1);
1218 update_inline_extent_backref(path
, iref
, -refs_to_drop
, NULL
,
1220 } else if (is_data
) {
1221 ret
= remove_extent_data_ref(trans
, path
, refs_to_drop
,
1225 ret
= btrfs_del_item(trans
, trans
->fs_info
->extent_root
, path
);
1230 static int btrfs_issue_discard(struct block_device
*bdev
, u64 start
, u64 len
,
1231 u64
*discarded_bytes
)
1234 u64 bytes_left
, end
;
1235 u64 aligned_start
= ALIGN(start
, 1 << 9);
1237 if (WARN_ON(start
!= aligned_start
)) {
1238 len
-= aligned_start
- start
;
1239 len
= round_down(len
, 1 << 9);
1240 start
= aligned_start
;
1243 *discarded_bytes
= 0;
1251 /* Skip any superblocks on this device. */
1252 for (j
= 0; j
< BTRFS_SUPER_MIRROR_MAX
; j
++) {
1253 u64 sb_start
= btrfs_sb_offset(j
);
1254 u64 sb_end
= sb_start
+ BTRFS_SUPER_INFO_SIZE
;
1255 u64 size
= sb_start
- start
;
1257 if (!in_range(sb_start
, start
, bytes_left
) &&
1258 !in_range(sb_end
, start
, bytes_left
) &&
1259 !in_range(start
, sb_start
, BTRFS_SUPER_INFO_SIZE
))
1263 * Superblock spans beginning of range. Adjust start and
1266 if (sb_start
<= start
) {
1267 start
+= sb_end
- start
;
1272 bytes_left
= end
- start
;
1277 ret
= blkdev_issue_discard(bdev
, start
>> 9, size
>> 9,
1280 *discarded_bytes
+= size
;
1281 else if (ret
!= -EOPNOTSUPP
)
1290 bytes_left
= end
- start
;
1294 ret
= blkdev_issue_discard(bdev
, start
>> 9, bytes_left
>> 9,
1297 *discarded_bytes
+= bytes_left
;
1302 int btrfs_discard_extent(struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1303 u64 num_bytes
, u64
*actual_bytes
)
1306 u64 discarded_bytes
= 0;
1307 u64 end
= bytenr
+ num_bytes
;
1309 struct btrfs_bio
*bbio
= NULL
;
1313 * Avoid races with device replace and make sure our bbio has devices
1314 * associated to its stripes that don't go away while we are discarding.
1316 btrfs_bio_counter_inc_blocked(fs_info
);
1318 struct btrfs_bio_stripe
*stripe
;
1321 num_bytes
= end
- cur
;
1322 /* Tell the block device(s) that the sectors can be discarded */
1323 ret
= btrfs_map_block(fs_info
, BTRFS_MAP_DISCARD
, cur
,
1324 &num_bytes
, &bbio
, 0);
1326 * Error can be -ENOMEM, -ENOENT (no such chunk mapping) or
1327 * -EOPNOTSUPP. For any such error, @num_bytes is not updated,
1328 * thus we can't continue anyway.
1333 stripe
= bbio
->stripes
;
1334 for (i
= 0; i
< bbio
->num_stripes
; i
++, stripe
++) {
1336 struct request_queue
*req_q
;
1338 if (!stripe
->dev
->bdev
) {
1339 ASSERT(btrfs_test_opt(fs_info
, DEGRADED
));
1342 req_q
= bdev_get_queue(stripe
->dev
->bdev
);
1343 if (!blk_queue_discard(req_q
))
1346 ret
= btrfs_issue_discard(stripe
->dev
->bdev
,
1351 discarded_bytes
+= bytes
;
1352 } else if (ret
!= -EOPNOTSUPP
) {
1354 * Logic errors or -ENOMEM, or -EIO, but
1355 * unlikely to happen.
1357 * And since there are two loops, explicitly
1358 * go to out to avoid confusion.
1360 btrfs_put_bbio(bbio
);
1365 * Just in case we get back EOPNOTSUPP for some reason,
1366 * just ignore the return value so we don't screw up
1367 * people calling discard_extent.
1371 btrfs_put_bbio(bbio
);
1375 btrfs_bio_counter_dec(fs_info
);
1378 *actual_bytes
= discarded_bytes
;
1381 if (ret
== -EOPNOTSUPP
)
1386 /* Can return -ENOMEM */
1387 int btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
1388 struct btrfs_ref
*generic_ref
)
1390 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1391 int old_ref_mod
, new_ref_mod
;
1394 ASSERT(generic_ref
->type
!= BTRFS_REF_NOT_SET
&&
1395 generic_ref
->action
);
1396 BUG_ON(generic_ref
->type
== BTRFS_REF_METADATA
&&
1397 generic_ref
->tree_ref
.root
== BTRFS_TREE_LOG_OBJECTID
);
1399 if (generic_ref
->type
== BTRFS_REF_METADATA
)
1400 ret
= btrfs_add_delayed_tree_ref(trans
, generic_ref
,
1401 NULL
, &old_ref_mod
, &new_ref_mod
);
1403 ret
= btrfs_add_delayed_data_ref(trans
, generic_ref
, 0,
1404 &old_ref_mod
, &new_ref_mod
);
1406 btrfs_ref_tree_mod(fs_info
, generic_ref
);
1408 if (ret
== 0 && old_ref_mod
< 0 && new_ref_mod
>= 0)
1409 sub_pinned_bytes(fs_info
, generic_ref
);
1415 * __btrfs_inc_extent_ref - insert backreference for a given extent
1417 * The counterpart is in __btrfs_free_extent(), with examples and more details
1420 * @trans: Handle of transaction
1422 * @node: The delayed ref node used to get the bytenr/length for
1423 * extent whose references are incremented.
1425 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1426 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1427 * bytenr of the parent block. Since new extents are always
1428 * created with indirect references, this will only be the case
1429 * when relocating a shared extent. In that case, root_objectid
1430 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
1433 * @root_objectid: The id of the root where this modification has originated,
1434 * this can be either one of the well-known metadata trees or
1435 * the subvolume id which references this extent.
1437 * @owner: For data extents it is the inode number of the owning file.
1438 * For metadata extents this parameter holds the level in the
1439 * tree of the extent.
1441 * @offset: For metadata extents the offset is ignored and is currently
1442 * always passed as 0. For data extents it is the fileoffset
1443 * this extent belongs to.
1445 * @refs_to_add Number of references to add
1447 * @extent_op Pointer to a structure, holding information necessary when
1448 * updating a tree block's flags
1451 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
1452 struct btrfs_delayed_ref_node
*node
,
1453 u64 parent
, u64 root_objectid
,
1454 u64 owner
, u64 offset
, int refs_to_add
,
1455 struct btrfs_delayed_extent_op
*extent_op
)
1457 struct btrfs_path
*path
;
1458 struct extent_buffer
*leaf
;
1459 struct btrfs_extent_item
*item
;
1460 struct btrfs_key key
;
1461 u64 bytenr
= node
->bytenr
;
1462 u64 num_bytes
= node
->num_bytes
;
1466 path
= btrfs_alloc_path();
1470 /* this will setup the path even if it fails to insert the back ref */
1471 ret
= insert_inline_extent_backref(trans
, path
, bytenr
, num_bytes
,
1472 parent
, root_objectid
, owner
,
1473 offset
, refs_to_add
, extent_op
);
1474 if ((ret
< 0 && ret
!= -EAGAIN
) || !ret
)
1478 * Ok we had -EAGAIN which means we didn't have space to insert and
1479 * inline extent ref, so just update the reference count and add a
1482 leaf
= path
->nodes
[0];
1483 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1484 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1485 refs
= btrfs_extent_refs(leaf
, item
);
1486 btrfs_set_extent_refs(leaf
, item
, refs
+ refs_to_add
);
1488 __run_delayed_extent_op(extent_op
, leaf
, item
);
1490 btrfs_mark_buffer_dirty(leaf
);
1491 btrfs_release_path(path
);
1493 /* now insert the actual backref */
1494 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1495 BUG_ON(refs_to_add
!= 1);
1496 ret
= insert_tree_block_ref(trans
, path
, bytenr
, parent
,
1499 ret
= insert_extent_data_ref(trans
, path
, bytenr
, parent
,
1500 root_objectid
, owner
, offset
,
1504 btrfs_abort_transaction(trans
, ret
);
1506 btrfs_free_path(path
);
1510 static int run_delayed_data_ref(struct btrfs_trans_handle
*trans
,
1511 struct btrfs_delayed_ref_node
*node
,
1512 struct btrfs_delayed_extent_op
*extent_op
,
1513 int insert_reserved
)
1516 struct btrfs_delayed_data_ref
*ref
;
1517 struct btrfs_key ins
;
1522 ins
.objectid
= node
->bytenr
;
1523 ins
.offset
= node
->num_bytes
;
1524 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1526 ref
= btrfs_delayed_node_to_data_ref(node
);
1527 trace_run_delayed_data_ref(trans
->fs_info
, node
, ref
, node
->action
);
1529 if (node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
1530 parent
= ref
->parent
;
1531 ref_root
= ref
->root
;
1533 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
1535 flags
|= extent_op
->flags_to_set
;
1536 ret
= alloc_reserved_file_extent(trans
, parent
, ref_root
,
1537 flags
, ref
->objectid
,
1540 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
1541 ret
= __btrfs_inc_extent_ref(trans
, node
, parent
, ref_root
,
1542 ref
->objectid
, ref
->offset
,
1543 node
->ref_mod
, extent_op
);
1544 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
1545 ret
= __btrfs_free_extent(trans
, node
, parent
,
1546 ref_root
, ref
->objectid
,
1547 ref
->offset
, node
->ref_mod
,
1555 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
1556 struct extent_buffer
*leaf
,
1557 struct btrfs_extent_item
*ei
)
1559 u64 flags
= btrfs_extent_flags(leaf
, ei
);
1560 if (extent_op
->update_flags
) {
1561 flags
|= extent_op
->flags_to_set
;
1562 btrfs_set_extent_flags(leaf
, ei
, flags
);
1565 if (extent_op
->update_key
) {
1566 struct btrfs_tree_block_info
*bi
;
1567 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
));
1568 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
1569 btrfs_set_tree_block_key(leaf
, bi
, &extent_op
->key
);
1573 static int run_delayed_extent_op(struct btrfs_trans_handle
*trans
,
1574 struct btrfs_delayed_ref_head
*head
,
1575 struct btrfs_delayed_extent_op
*extent_op
)
1577 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1578 struct btrfs_key key
;
1579 struct btrfs_path
*path
;
1580 struct btrfs_extent_item
*ei
;
1581 struct extent_buffer
*leaf
;
1585 int metadata
= !extent_op
->is_data
;
1587 if (TRANS_ABORTED(trans
))
1590 if (metadata
&& !btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
1593 path
= btrfs_alloc_path();
1597 key
.objectid
= head
->bytenr
;
1600 key
.type
= BTRFS_METADATA_ITEM_KEY
;
1601 key
.offset
= extent_op
->level
;
1603 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1604 key
.offset
= head
->num_bytes
;
1608 ret
= btrfs_search_slot(trans
, fs_info
->extent_root
, &key
, path
, 0, 1);
1615 if (path
->slots
[0] > 0) {
1617 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
1619 if (key
.objectid
== head
->bytenr
&&
1620 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
1621 key
.offset
== head
->num_bytes
)
1625 btrfs_release_path(path
);
1628 key
.objectid
= head
->bytenr
;
1629 key
.offset
= head
->num_bytes
;
1630 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1639 leaf
= path
->nodes
[0];
1640 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1642 if (unlikely(item_size
< sizeof(*ei
))) {
1644 btrfs_print_v0_err(fs_info
);
1645 btrfs_abort_transaction(trans
, err
);
1649 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1650 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1652 btrfs_mark_buffer_dirty(leaf
);
1654 btrfs_free_path(path
);
1658 static int run_delayed_tree_ref(struct btrfs_trans_handle
*trans
,
1659 struct btrfs_delayed_ref_node
*node
,
1660 struct btrfs_delayed_extent_op
*extent_op
,
1661 int insert_reserved
)
1664 struct btrfs_delayed_tree_ref
*ref
;
1668 ref
= btrfs_delayed_node_to_tree_ref(node
);
1669 trace_run_delayed_tree_ref(trans
->fs_info
, node
, ref
, node
->action
);
1671 if (node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
1672 parent
= ref
->parent
;
1673 ref_root
= ref
->root
;
1675 if (node
->ref_mod
!= 1) {
1676 btrfs_err(trans
->fs_info
,
1677 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
1678 node
->bytenr
, node
->ref_mod
, node
->action
, ref_root
,
1682 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
1683 BUG_ON(!extent_op
|| !extent_op
->update_flags
);
1684 ret
= alloc_reserved_tree_block(trans
, node
, extent_op
);
1685 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
1686 ret
= __btrfs_inc_extent_ref(trans
, node
, parent
, ref_root
,
1687 ref
->level
, 0, 1, extent_op
);
1688 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
1689 ret
= __btrfs_free_extent(trans
, node
, parent
, ref_root
,
1690 ref
->level
, 0, 1, extent_op
);
1697 /* helper function to actually process a single delayed ref entry */
1698 static int run_one_delayed_ref(struct btrfs_trans_handle
*trans
,
1699 struct btrfs_delayed_ref_node
*node
,
1700 struct btrfs_delayed_extent_op
*extent_op
,
1701 int insert_reserved
)
1705 if (TRANS_ABORTED(trans
)) {
1706 if (insert_reserved
)
1707 btrfs_pin_extent(trans
, node
->bytenr
, node
->num_bytes
, 1);
1711 if (node
->type
== BTRFS_TREE_BLOCK_REF_KEY
||
1712 node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
1713 ret
= run_delayed_tree_ref(trans
, node
, extent_op
,
1715 else if (node
->type
== BTRFS_EXTENT_DATA_REF_KEY
||
1716 node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
1717 ret
= run_delayed_data_ref(trans
, node
, extent_op
,
1721 if (ret
&& insert_reserved
)
1722 btrfs_pin_extent(trans
, node
->bytenr
, node
->num_bytes
, 1);
1726 static inline struct btrfs_delayed_ref_node
*
1727 select_delayed_ref(struct btrfs_delayed_ref_head
*head
)
1729 struct btrfs_delayed_ref_node
*ref
;
1731 if (RB_EMPTY_ROOT(&head
->ref_tree
.rb_root
))
1735 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1736 * This is to prevent a ref count from going down to zero, which deletes
1737 * the extent item from the extent tree, when there still are references
1738 * to add, which would fail because they would not find the extent item.
1740 if (!list_empty(&head
->ref_add_list
))
1741 return list_first_entry(&head
->ref_add_list
,
1742 struct btrfs_delayed_ref_node
, add_list
);
1744 ref
= rb_entry(rb_first_cached(&head
->ref_tree
),
1745 struct btrfs_delayed_ref_node
, ref_node
);
1746 ASSERT(list_empty(&ref
->add_list
));
1750 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root
*delayed_refs
,
1751 struct btrfs_delayed_ref_head
*head
)
1753 spin_lock(&delayed_refs
->lock
);
1754 head
->processing
= 0;
1755 delayed_refs
->num_heads_ready
++;
1756 spin_unlock(&delayed_refs
->lock
);
1757 btrfs_delayed_ref_unlock(head
);
1760 static struct btrfs_delayed_extent_op
*cleanup_extent_op(
1761 struct btrfs_delayed_ref_head
*head
)
1763 struct btrfs_delayed_extent_op
*extent_op
= head
->extent_op
;
1768 if (head
->must_insert_reserved
) {
1769 head
->extent_op
= NULL
;
1770 btrfs_free_delayed_extent_op(extent_op
);
1776 static int run_and_cleanup_extent_op(struct btrfs_trans_handle
*trans
,
1777 struct btrfs_delayed_ref_head
*head
)
1779 struct btrfs_delayed_extent_op
*extent_op
;
1782 extent_op
= cleanup_extent_op(head
);
1785 head
->extent_op
= NULL
;
1786 spin_unlock(&head
->lock
);
1787 ret
= run_delayed_extent_op(trans
, head
, extent_op
);
1788 btrfs_free_delayed_extent_op(extent_op
);
1789 return ret
? ret
: 1;
1792 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info
*fs_info
,
1793 struct btrfs_delayed_ref_root
*delayed_refs
,
1794 struct btrfs_delayed_ref_head
*head
)
1796 int nr_items
= 1; /* Dropping this ref head update. */
1798 if (head
->total_ref_mod
< 0) {
1799 struct btrfs_space_info
*space_info
;
1803 flags
= BTRFS_BLOCK_GROUP_DATA
;
1804 else if (head
->is_system
)
1805 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
1807 flags
= BTRFS_BLOCK_GROUP_METADATA
;
1808 space_info
= btrfs_find_space_info(fs_info
, flags
);
1810 percpu_counter_add_batch(&space_info
->total_bytes_pinned
,
1812 BTRFS_TOTAL_BYTES_PINNED_BATCH
);
1815 * We had csum deletions accounted for in our delayed refs rsv,
1816 * we need to drop the csum leaves for this update from our
1819 if (head
->is_data
) {
1820 spin_lock(&delayed_refs
->lock
);
1821 delayed_refs
->pending_csums
-= head
->num_bytes
;
1822 spin_unlock(&delayed_refs
->lock
);
1823 nr_items
+= btrfs_csum_bytes_to_leaves(fs_info
,
1828 btrfs_delayed_refs_rsv_release(fs_info
, nr_items
);
1831 static int cleanup_ref_head(struct btrfs_trans_handle
*trans
,
1832 struct btrfs_delayed_ref_head
*head
)
1835 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1836 struct btrfs_delayed_ref_root
*delayed_refs
;
1839 delayed_refs
= &trans
->transaction
->delayed_refs
;
1841 ret
= run_and_cleanup_extent_op(trans
, head
);
1843 unselect_delayed_ref_head(delayed_refs
, head
);
1844 btrfs_debug(fs_info
, "run_delayed_extent_op returned %d", ret
);
1851 * Need to drop our head ref lock and re-acquire the delayed ref lock
1852 * and then re-check to make sure nobody got added.
1854 spin_unlock(&head
->lock
);
1855 spin_lock(&delayed_refs
->lock
);
1856 spin_lock(&head
->lock
);
1857 if (!RB_EMPTY_ROOT(&head
->ref_tree
.rb_root
) || head
->extent_op
) {
1858 spin_unlock(&head
->lock
);
1859 spin_unlock(&delayed_refs
->lock
);
1862 btrfs_delete_ref_head(delayed_refs
, head
);
1863 spin_unlock(&head
->lock
);
1864 spin_unlock(&delayed_refs
->lock
);
1866 if (head
->must_insert_reserved
) {
1867 btrfs_pin_extent(trans
, head
->bytenr
, head
->num_bytes
, 1);
1868 if (head
->is_data
) {
1869 ret
= btrfs_del_csums(trans
, fs_info
->csum_root
,
1870 head
->bytenr
, head
->num_bytes
);
1874 btrfs_cleanup_ref_head_accounting(fs_info
, delayed_refs
, head
);
1876 trace_run_delayed_ref_head(fs_info
, head
, 0);
1877 btrfs_delayed_ref_unlock(head
);
1878 btrfs_put_delayed_ref_head(head
);
1882 static struct btrfs_delayed_ref_head
*btrfs_obtain_ref_head(
1883 struct btrfs_trans_handle
*trans
)
1885 struct btrfs_delayed_ref_root
*delayed_refs
=
1886 &trans
->transaction
->delayed_refs
;
1887 struct btrfs_delayed_ref_head
*head
= NULL
;
1890 spin_lock(&delayed_refs
->lock
);
1891 head
= btrfs_select_ref_head(delayed_refs
);
1893 spin_unlock(&delayed_refs
->lock
);
1898 * Grab the lock that says we are going to process all the refs for
1901 ret
= btrfs_delayed_ref_lock(delayed_refs
, head
);
1902 spin_unlock(&delayed_refs
->lock
);
1905 * We may have dropped the spin lock to get the head mutex lock, and
1906 * that might have given someone else time to free the head. If that's
1907 * true, it has been removed from our list and we can move on.
1910 head
= ERR_PTR(-EAGAIN
);
1915 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle
*trans
,
1916 struct btrfs_delayed_ref_head
*locked_ref
,
1917 unsigned long *run_refs
)
1919 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1920 struct btrfs_delayed_ref_root
*delayed_refs
;
1921 struct btrfs_delayed_extent_op
*extent_op
;
1922 struct btrfs_delayed_ref_node
*ref
;
1923 int must_insert_reserved
= 0;
1926 delayed_refs
= &trans
->transaction
->delayed_refs
;
1928 lockdep_assert_held(&locked_ref
->mutex
);
1929 lockdep_assert_held(&locked_ref
->lock
);
1931 while ((ref
= select_delayed_ref(locked_ref
))) {
1933 btrfs_check_delayed_seq(fs_info
, ref
->seq
)) {
1934 spin_unlock(&locked_ref
->lock
);
1935 unselect_delayed_ref_head(delayed_refs
, locked_ref
);
1941 rb_erase_cached(&ref
->ref_node
, &locked_ref
->ref_tree
);
1942 RB_CLEAR_NODE(&ref
->ref_node
);
1943 if (!list_empty(&ref
->add_list
))
1944 list_del(&ref
->add_list
);
1946 * When we play the delayed ref, also correct the ref_mod on
1949 switch (ref
->action
) {
1950 case BTRFS_ADD_DELAYED_REF
:
1951 case BTRFS_ADD_DELAYED_EXTENT
:
1952 locked_ref
->ref_mod
-= ref
->ref_mod
;
1954 case BTRFS_DROP_DELAYED_REF
:
1955 locked_ref
->ref_mod
+= ref
->ref_mod
;
1960 atomic_dec(&delayed_refs
->num_entries
);
1963 * Record the must_insert_reserved flag before we drop the
1966 must_insert_reserved
= locked_ref
->must_insert_reserved
;
1967 locked_ref
->must_insert_reserved
= 0;
1969 extent_op
= locked_ref
->extent_op
;
1970 locked_ref
->extent_op
= NULL
;
1971 spin_unlock(&locked_ref
->lock
);
1973 ret
= run_one_delayed_ref(trans
, ref
, extent_op
,
1974 must_insert_reserved
);
1976 btrfs_free_delayed_extent_op(extent_op
);
1978 unselect_delayed_ref_head(delayed_refs
, locked_ref
);
1979 btrfs_put_delayed_ref(ref
);
1980 btrfs_debug(fs_info
, "run_one_delayed_ref returned %d",
1985 btrfs_put_delayed_ref(ref
);
1988 spin_lock(&locked_ref
->lock
);
1989 btrfs_merge_delayed_refs(trans
, delayed_refs
, locked_ref
);
1996 * Returns 0 on success or if called with an already aborted transaction.
1997 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
1999 static noinline
int __btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
2002 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
2003 struct btrfs_delayed_ref_root
*delayed_refs
;
2004 struct btrfs_delayed_ref_head
*locked_ref
= NULL
;
2005 ktime_t start
= ktime_get();
2007 unsigned long count
= 0;
2008 unsigned long actual_count
= 0;
2010 delayed_refs
= &trans
->transaction
->delayed_refs
;
2013 locked_ref
= btrfs_obtain_ref_head(trans
);
2014 if (IS_ERR_OR_NULL(locked_ref
)) {
2015 if (PTR_ERR(locked_ref
) == -EAGAIN
) {
2024 * We need to try and merge add/drops of the same ref since we
2025 * can run into issues with relocate dropping the implicit ref
2026 * and then it being added back again before the drop can
2027 * finish. If we merged anything we need to re-loop so we can
2029 * Or we can get node references of the same type that weren't
2030 * merged when created due to bumps in the tree mod seq, and
2031 * we need to merge them to prevent adding an inline extent
2032 * backref before dropping it (triggering a BUG_ON at
2033 * insert_inline_extent_backref()).
2035 spin_lock(&locked_ref
->lock
);
2036 btrfs_merge_delayed_refs(trans
, delayed_refs
, locked_ref
);
2038 ret
= btrfs_run_delayed_refs_for_head(trans
, locked_ref
,
2040 if (ret
< 0 && ret
!= -EAGAIN
) {
2042 * Error, btrfs_run_delayed_refs_for_head already
2043 * unlocked everything so just bail out
2048 * Success, perform the usual cleanup of a processed
2051 ret
= cleanup_ref_head(trans
, locked_ref
);
2053 /* We dropped our lock, we need to loop. */
2062 * Either success case or btrfs_run_delayed_refs_for_head
2063 * returned -EAGAIN, meaning we need to select another head
2068 } while ((nr
!= -1 && count
< nr
) || locked_ref
);
2071 * We don't want to include ref heads since we can have empty ref heads
2072 * and those will drastically skew our runtime down since we just do
2073 * accounting, no actual extent tree updates.
2075 if (actual_count
> 0) {
2076 u64 runtime
= ktime_to_ns(ktime_sub(ktime_get(), start
));
2080 * We weigh the current average higher than our current runtime
2081 * to avoid large swings in the average.
2083 spin_lock(&delayed_refs
->lock
);
2084 avg
= fs_info
->avg_delayed_ref_runtime
* 3 + runtime
;
2085 fs_info
->avg_delayed_ref_runtime
= avg
>> 2; /* div by 4 */
2086 spin_unlock(&delayed_refs
->lock
);
2091 #ifdef SCRAMBLE_DELAYED_REFS
2093 * Normally delayed refs get processed in ascending bytenr order. This
2094 * correlates in most cases to the order added. To expose dependencies on this
2095 * order, we start to process the tree in the middle instead of the beginning
2097 static u64
find_middle(struct rb_root
*root
)
2099 struct rb_node
*n
= root
->rb_node
;
2100 struct btrfs_delayed_ref_node
*entry
;
2103 u64 first
= 0, last
= 0;
2107 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2108 first
= entry
->bytenr
;
2112 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2113 last
= entry
->bytenr
;
2118 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2119 WARN_ON(!entry
->in_tree
);
2121 middle
= entry
->bytenr
;
2135 * this starts processing the delayed reference count updates and
2136 * extent insertions we have queued up so far. count can be
2137 * 0, which means to process everything in the tree at the start
2138 * of the run (but not newly added entries), or it can be some target
2139 * number you'd like to process.
2141 * Returns 0 on success or if called with an aborted transaction
2142 * Returns <0 on error and aborts the transaction
2144 int btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
2145 unsigned long count
)
2147 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
2148 struct rb_node
*node
;
2149 struct btrfs_delayed_ref_root
*delayed_refs
;
2150 struct btrfs_delayed_ref_head
*head
;
2152 int run_all
= count
== (unsigned long)-1;
2154 /* We'll clean this up in btrfs_cleanup_transaction */
2155 if (TRANS_ABORTED(trans
))
2158 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE
, &fs_info
->flags
))
2161 delayed_refs
= &trans
->transaction
->delayed_refs
;
2163 count
= atomic_read(&delayed_refs
->num_entries
) * 2;
2166 #ifdef SCRAMBLE_DELAYED_REFS
2167 delayed_refs
->run_delayed_start
= find_middle(&delayed_refs
->root
);
2169 ret
= __btrfs_run_delayed_refs(trans
, count
);
2171 btrfs_abort_transaction(trans
, ret
);
2176 btrfs_create_pending_block_groups(trans
);
2178 spin_lock(&delayed_refs
->lock
);
2179 node
= rb_first_cached(&delayed_refs
->href_root
);
2181 spin_unlock(&delayed_refs
->lock
);
2184 head
= rb_entry(node
, struct btrfs_delayed_ref_head
,
2186 refcount_inc(&head
->refs
);
2187 spin_unlock(&delayed_refs
->lock
);
2189 /* Mutex was contended, block until it's released and retry. */
2190 mutex_lock(&head
->mutex
);
2191 mutex_unlock(&head
->mutex
);
2193 btrfs_put_delayed_ref_head(head
);
2201 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle
*trans
,
2202 struct extent_buffer
*eb
, u64 flags
,
2203 int level
, int is_data
)
2205 struct btrfs_delayed_extent_op
*extent_op
;
2208 extent_op
= btrfs_alloc_delayed_extent_op();
2212 extent_op
->flags_to_set
= flags
;
2213 extent_op
->update_flags
= true;
2214 extent_op
->update_key
= false;
2215 extent_op
->is_data
= is_data
? true : false;
2216 extent_op
->level
= level
;
2218 ret
= btrfs_add_delayed_extent_op(trans
, eb
->start
, eb
->len
, extent_op
);
2220 btrfs_free_delayed_extent_op(extent_op
);
2224 static noinline
int check_delayed_ref(struct btrfs_root
*root
,
2225 struct btrfs_path
*path
,
2226 u64 objectid
, u64 offset
, u64 bytenr
)
2228 struct btrfs_delayed_ref_head
*head
;
2229 struct btrfs_delayed_ref_node
*ref
;
2230 struct btrfs_delayed_data_ref
*data_ref
;
2231 struct btrfs_delayed_ref_root
*delayed_refs
;
2232 struct btrfs_transaction
*cur_trans
;
2233 struct rb_node
*node
;
2236 spin_lock(&root
->fs_info
->trans_lock
);
2237 cur_trans
= root
->fs_info
->running_transaction
;
2239 refcount_inc(&cur_trans
->use_count
);
2240 spin_unlock(&root
->fs_info
->trans_lock
);
2244 delayed_refs
= &cur_trans
->delayed_refs
;
2245 spin_lock(&delayed_refs
->lock
);
2246 head
= btrfs_find_delayed_ref_head(delayed_refs
, bytenr
);
2248 spin_unlock(&delayed_refs
->lock
);
2249 btrfs_put_transaction(cur_trans
);
2253 if (!mutex_trylock(&head
->mutex
)) {
2254 refcount_inc(&head
->refs
);
2255 spin_unlock(&delayed_refs
->lock
);
2257 btrfs_release_path(path
);
2260 * Mutex was contended, block until it's released and let
2263 mutex_lock(&head
->mutex
);
2264 mutex_unlock(&head
->mutex
);
2265 btrfs_put_delayed_ref_head(head
);
2266 btrfs_put_transaction(cur_trans
);
2269 spin_unlock(&delayed_refs
->lock
);
2271 spin_lock(&head
->lock
);
2273 * XXX: We should replace this with a proper search function in the
2276 for (node
= rb_first_cached(&head
->ref_tree
); node
;
2277 node
= rb_next(node
)) {
2278 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, ref_node
);
2279 /* If it's a shared ref we know a cross reference exists */
2280 if (ref
->type
!= BTRFS_EXTENT_DATA_REF_KEY
) {
2285 data_ref
= btrfs_delayed_node_to_data_ref(ref
);
2288 * If our ref doesn't match the one we're currently looking at
2289 * then we have a cross reference.
2291 if (data_ref
->root
!= root
->root_key
.objectid
||
2292 data_ref
->objectid
!= objectid
||
2293 data_ref
->offset
!= offset
) {
2298 spin_unlock(&head
->lock
);
2299 mutex_unlock(&head
->mutex
);
2300 btrfs_put_transaction(cur_trans
);
2304 static noinline
int check_committed_ref(struct btrfs_root
*root
,
2305 struct btrfs_path
*path
,
2306 u64 objectid
, u64 offset
, u64 bytenr
,
2309 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2310 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
2311 struct extent_buffer
*leaf
;
2312 struct btrfs_extent_data_ref
*ref
;
2313 struct btrfs_extent_inline_ref
*iref
;
2314 struct btrfs_extent_item
*ei
;
2315 struct btrfs_key key
;
2320 key
.objectid
= bytenr
;
2321 key
.offset
= (u64
)-1;
2322 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2324 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
2327 BUG_ON(ret
== 0); /* Corruption */
2330 if (path
->slots
[0] == 0)
2334 leaf
= path
->nodes
[0];
2335 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2337 if (key
.objectid
!= bytenr
|| key
.type
!= BTRFS_EXTENT_ITEM_KEY
)
2341 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2342 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2344 /* If extent item has more than 1 inline ref then it's shared */
2345 if (item_size
!= sizeof(*ei
) +
2346 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY
))
2350 * If extent created before last snapshot => it's shared unless the
2351 * snapshot has been deleted. Use the heuristic if strict is false.
2354 (btrfs_extent_generation(leaf
, ei
) <=
2355 btrfs_root_last_snapshot(&root
->root_item
)))
2358 iref
= (struct btrfs_extent_inline_ref
*)(ei
+ 1);
2360 /* If this extent has SHARED_DATA_REF then it's shared */
2361 type
= btrfs_get_extent_inline_ref_type(leaf
, iref
, BTRFS_REF_TYPE_DATA
);
2362 if (type
!= BTRFS_EXTENT_DATA_REF_KEY
)
2365 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
2366 if (btrfs_extent_refs(leaf
, ei
) !=
2367 btrfs_extent_data_ref_count(leaf
, ref
) ||
2368 btrfs_extent_data_ref_root(leaf
, ref
) !=
2369 root
->root_key
.objectid
||
2370 btrfs_extent_data_ref_objectid(leaf
, ref
) != objectid
||
2371 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
2379 int btrfs_cross_ref_exist(struct btrfs_root
*root
, u64 objectid
, u64 offset
,
2380 u64 bytenr
, bool strict
)
2382 struct btrfs_path
*path
;
2385 path
= btrfs_alloc_path();
2390 ret
= check_committed_ref(root
, path
, objectid
,
2391 offset
, bytenr
, strict
);
2392 if (ret
&& ret
!= -ENOENT
)
2395 ret
= check_delayed_ref(root
, path
, objectid
, offset
, bytenr
);
2396 } while (ret
== -EAGAIN
);
2399 btrfs_free_path(path
);
2400 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
2405 static int __btrfs_mod_ref(struct btrfs_trans_handle
*trans
,
2406 struct btrfs_root
*root
,
2407 struct extent_buffer
*buf
,
2408 int full_backref
, int inc
)
2410 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2416 struct btrfs_key key
;
2417 struct btrfs_file_extent_item
*fi
;
2418 struct btrfs_ref generic_ref
= { 0 };
2419 bool for_reloc
= btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_RELOC
);
2425 if (btrfs_is_testing(fs_info
))
2428 ref_root
= btrfs_header_owner(buf
);
2429 nritems
= btrfs_header_nritems(buf
);
2430 level
= btrfs_header_level(buf
);
2432 if (!test_bit(BTRFS_ROOT_SHAREABLE
, &root
->state
) && level
== 0)
2436 parent
= buf
->start
;
2440 action
= BTRFS_ADD_DELAYED_REF
;
2442 action
= BTRFS_DROP_DELAYED_REF
;
2444 for (i
= 0; i
< nritems
; i
++) {
2446 btrfs_item_key_to_cpu(buf
, &key
, i
);
2447 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
2449 fi
= btrfs_item_ptr(buf
, i
,
2450 struct btrfs_file_extent_item
);
2451 if (btrfs_file_extent_type(buf
, fi
) ==
2452 BTRFS_FILE_EXTENT_INLINE
)
2454 bytenr
= btrfs_file_extent_disk_bytenr(buf
, fi
);
2458 num_bytes
= btrfs_file_extent_disk_num_bytes(buf
, fi
);
2459 key
.offset
-= btrfs_file_extent_offset(buf
, fi
);
2460 btrfs_init_generic_ref(&generic_ref
, action
, bytenr
,
2462 generic_ref
.real_root
= root
->root_key
.objectid
;
2463 btrfs_init_data_ref(&generic_ref
, ref_root
, key
.objectid
,
2465 generic_ref
.skip_qgroup
= for_reloc
;
2467 ret
= btrfs_inc_extent_ref(trans
, &generic_ref
);
2469 ret
= btrfs_free_extent(trans
, &generic_ref
);
2473 bytenr
= btrfs_node_blockptr(buf
, i
);
2474 num_bytes
= fs_info
->nodesize
;
2475 btrfs_init_generic_ref(&generic_ref
, action
, bytenr
,
2477 generic_ref
.real_root
= root
->root_key
.objectid
;
2478 btrfs_init_tree_ref(&generic_ref
, level
- 1, ref_root
);
2479 generic_ref
.skip_qgroup
= for_reloc
;
2481 ret
= btrfs_inc_extent_ref(trans
, &generic_ref
);
2483 ret
= btrfs_free_extent(trans
, &generic_ref
);
2493 int btrfs_inc_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2494 struct extent_buffer
*buf
, int full_backref
)
2496 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 1);
2499 int btrfs_dec_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2500 struct extent_buffer
*buf
, int full_backref
)
2502 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 0);
2505 int btrfs_extent_readonly(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
2507 struct btrfs_block_group
*block_group
;
2510 block_group
= btrfs_lookup_block_group(fs_info
, bytenr
);
2511 if (!block_group
|| block_group
->ro
)
2514 btrfs_put_block_group(block_group
);
2518 static u64
get_alloc_profile_by_root(struct btrfs_root
*root
, int data
)
2520 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2525 flags
= BTRFS_BLOCK_GROUP_DATA
;
2526 else if (root
== fs_info
->chunk_root
)
2527 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
2529 flags
= BTRFS_BLOCK_GROUP_METADATA
;
2531 ret
= btrfs_get_alloc_profile(fs_info
, flags
);
2535 static u64
first_logical_byte(struct btrfs_fs_info
*fs_info
, u64 search_start
)
2537 struct btrfs_block_group
*cache
;
2540 spin_lock(&fs_info
->block_group_cache_lock
);
2541 bytenr
= fs_info
->first_logical_byte
;
2542 spin_unlock(&fs_info
->block_group_cache_lock
);
2544 if (bytenr
< (u64
)-1)
2547 cache
= btrfs_lookup_first_block_group(fs_info
, search_start
);
2551 bytenr
= cache
->start
;
2552 btrfs_put_block_group(cache
);
2557 static int pin_down_extent(struct btrfs_trans_handle
*trans
,
2558 struct btrfs_block_group
*cache
,
2559 u64 bytenr
, u64 num_bytes
, int reserved
)
2561 struct btrfs_fs_info
*fs_info
= cache
->fs_info
;
2563 spin_lock(&cache
->space_info
->lock
);
2564 spin_lock(&cache
->lock
);
2565 cache
->pinned
+= num_bytes
;
2566 btrfs_space_info_update_bytes_pinned(fs_info
, cache
->space_info
,
2569 cache
->reserved
-= num_bytes
;
2570 cache
->space_info
->bytes_reserved
-= num_bytes
;
2572 spin_unlock(&cache
->lock
);
2573 spin_unlock(&cache
->space_info
->lock
);
2575 percpu_counter_add_batch(&cache
->space_info
->total_bytes_pinned
,
2576 num_bytes
, BTRFS_TOTAL_BYTES_PINNED_BATCH
);
2577 set_extent_dirty(&trans
->transaction
->pinned_extents
, bytenr
,
2578 bytenr
+ num_bytes
- 1, GFP_NOFS
| __GFP_NOFAIL
);
2582 int btrfs_pin_extent(struct btrfs_trans_handle
*trans
,
2583 u64 bytenr
, u64 num_bytes
, int reserved
)
2585 struct btrfs_block_group
*cache
;
2587 cache
= btrfs_lookup_block_group(trans
->fs_info
, bytenr
);
2588 BUG_ON(!cache
); /* Logic error */
2590 pin_down_extent(trans
, cache
, bytenr
, num_bytes
, reserved
);
2592 btrfs_put_block_group(cache
);
2597 * this function must be called within transaction
2599 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle
*trans
,
2600 u64 bytenr
, u64 num_bytes
)
2602 struct btrfs_block_group
*cache
;
2605 btrfs_add_excluded_extent(trans
->fs_info
, bytenr
, num_bytes
);
2607 cache
= btrfs_lookup_block_group(trans
->fs_info
, bytenr
);
2612 * pull in the free space cache (if any) so that our pin
2613 * removes the free space from the cache. We have load_only set
2614 * to one because the slow code to read in the free extents does check
2615 * the pinned extents.
2617 btrfs_cache_block_group(cache
, 1);
2619 pin_down_extent(trans
, cache
, bytenr
, num_bytes
, 0);
2621 /* remove us from the free space cache (if we're there at all) */
2622 ret
= btrfs_remove_free_space(cache
, bytenr
, num_bytes
);
2623 btrfs_put_block_group(cache
);
2627 static int __exclude_logged_extent(struct btrfs_fs_info
*fs_info
,
2628 u64 start
, u64 num_bytes
)
2631 struct btrfs_block_group
*block_group
;
2632 struct btrfs_caching_control
*caching_ctl
;
2634 block_group
= btrfs_lookup_block_group(fs_info
, start
);
2638 btrfs_cache_block_group(block_group
, 0);
2639 caching_ctl
= btrfs_get_caching_control(block_group
);
2643 BUG_ON(!btrfs_block_group_done(block_group
));
2644 ret
= btrfs_remove_free_space(block_group
, start
, num_bytes
);
2647 * We must wait for v1 caching to finish, otherwise we may not
2650 btrfs_wait_space_cache_v1_finished(block_group
, caching_ctl
);
2651 mutex_lock(&caching_ctl
->mutex
);
2653 if (start
>= caching_ctl
->progress
) {
2654 ret
= btrfs_add_excluded_extent(fs_info
, start
,
2656 } else if (start
+ num_bytes
<= caching_ctl
->progress
) {
2657 ret
= btrfs_remove_free_space(block_group
,
2660 num_bytes
= caching_ctl
->progress
- start
;
2661 ret
= btrfs_remove_free_space(block_group
,
2666 num_bytes
= (start
+ num_bytes
) -
2667 caching_ctl
->progress
;
2668 start
= caching_ctl
->progress
;
2669 ret
= btrfs_add_excluded_extent(fs_info
, start
,
2673 mutex_unlock(&caching_ctl
->mutex
);
2674 btrfs_put_caching_control(caching_ctl
);
2676 btrfs_put_block_group(block_group
);
2680 int btrfs_exclude_logged_extents(struct extent_buffer
*eb
)
2682 struct btrfs_fs_info
*fs_info
= eb
->fs_info
;
2683 struct btrfs_file_extent_item
*item
;
2684 struct btrfs_key key
;
2689 if (!btrfs_fs_incompat(fs_info
, MIXED_GROUPS
))
2692 for (i
= 0; i
< btrfs_header_nritems(eb
); i
++) {
2693 btrfs_item_key_to_cpu(eb
, &key
, i
);
2694 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
2696 item
= btrfs_item_ptr(eb
, i
, struct btrfs_file_extent_item
);
2697 found_type
= btrfs_file_extent_type(eb
, item
);
2698 if (found_type
== BTRFS_FILE_EXTENT_INLINE
)
2700 if (btrfs_file_extent_disk_bytenr(eb
, item
) == 0)
2702 key
.objectid
= btrfs_file_extent_disk_bytenr(eb
, item
);
2703 key
.offset
= btrfs_file_extent_disk_num_bytes(eb
, item
);
2704 ret
= __exclude_logged_extent(fs_info
, key
.objectid
, key
.offset
);
2713 btrfs_inc_block_group_reservations(struct btrfs_block_group
*bg
)
2715 atomic_inc(&bg
->reservations
);
2719 * Returns the free cluster for the given space info and sets empty_cluster to
2720 * what it should be based on the mount options.
2722 static struct btrfs_free_cluster
*
2723 fetch_cluster_info(struct btrfs_fs_info
*fs_info
,
2724 struct btrfs_space_info
*space_info
, u64
*empty_cluster
)
2726 struct btrfs_free_cluster
*ret
= NULL
;
2729 if (btrfs_mixed_space_info(space_info
))
2732 if (space_info
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
2733 ret
= &fs_info
->meta_alloc_cluster
;
2734 if (btrfs_test_opt(fs_info
, SSD
))
2735 *empty_cluster
= SZ_2M
;
2737 *empty_cluster
= SZ_64K
;
2738 } else if ((space_info
->flags
& BTRFS_BLOCK_GROUP_DATA
) &&
2739 btrfs_test_opt(fs_info
, SSD_SPREAD
)) {
2740 *empty_cluster
= SZ_2M
;
2741 ret
= &fs_info
->data_alloc_cluster
;
2747 static int unpin_extent_range(struct btrfs_fs_info
*fs_info
,
2749 const bool return_free_space
)
2751 struct btrfs_block_group
*cache
= NULL
;
2752 struct btrfs_space_info
*space_info
;
2753 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
2754 struct btrfs_free_cluster
*cluster
= NULL
;
2756 u64 total_unpinned
= 0;
2757 u64 empty_cluster
= 0;
2760 while (start
<= end
) {
2763 start
>= cache
->start
+ cache
->length
) {
2765 btrfs_put_block_group(cache
);
2767 cache
= btrfs_lookup_block_group(fs_info
, start
);
2768 BUG_ON(!cache
); /* Logic error */
2770 cluster
= fetch_cluster_info(fs_info
,
2773 empty_cluster
<<= 1;
2776 len
= cache
->start
+ cache
->length
- start
;
2777 len
= min(len
, end
+ 1 - start
);
2779 down_read(&fs_info
->commit_root_sem
);
2780 if (start
< cache
->last_byte_to_unpin
&& return_free_space
) {
2781 u64 add_len
= min(len
, cache
->last_byte_to_unpin
- start
);
2783 btrfs_add_free_space(cache
, start
, add_len
);
2785 up_read(&fs_info
->commit_root_sem
);
2788 total_unpinned
+= len
;
2789 space_info
= cache
->space_info
;
2792 * If this space cluster has been marked as fragmented and we've
2793 * unpinned enough in this block group to potentially allow a
2794 * cluster to be created inside of it go ahead and clear the
2797 if (cluster
&& cluster
->fragmented
&&
2798 total_unpinned
> empty_cluster
) {
2799 spin_lock(&cluster
->lock
);
2800 cluster
->fragmented
= 0;
2801 spin_unlock(&cluster
->lock
);
2804 spin_lock(&space_info
->lock
);
2805 spin_lock(&cache
->lock
);
2806 cache
->pinned
-= len
;
2807 btrfs_space_info_update_bytes_pinned(fs_info
, space_info
, -len
);
2808 space_info
->max_extent_size
= 0;
2809 percpu_counter_add_batch(&space_info
->total_bytes_pinned
,
2810 -len
, BTRFS_TOTAL_BYTES_PINNED_BATCH
);
2812 space_info
->bytes_readonly
+= len
;
2815 spin_unlock(&cache
->lock
);
2816 if (!readonly
&& return_free_space
&&
2817 global_rsv
->space_info
== space_info
) {
2820 spin_lock(&global_rsv
->lock
);
2821 if (!global_rsv
->full
) {
2822 to_add
= min(len
, global_rsv
->size
-
2823 global_rsv
->reserved
);
2824 global_rsv
->reserved
+= to_add
;
2825 btrfs_space_info_update_bytes_may_use(fs_info
,
2826 space_info
, to_add
);
2827 if (global_rsv
->reserved
>= global_rsv
->size
)
2828 global_rsv
->full
= 1;
2831 spin_unlock(&global_rsv
->lock
);
2833 /* Add to any tickets we may have */
2834 if (!readonly
&& return_free_space
&& len
)
2835 btrfs_try_granting_tickets(fs_info
, space_info
);
2836 spin_unlock(&space_info
->lock
);
2840 btrfs_put_block_group(cache
);
2844 int btrfs_finish_extent_commit(struct btrfs_trans_handle
*trans
)
2846 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
2847 struct btrfs_block_group
*block_group
, *tmp
;
2848 struct list_head
*deleted_bgs
;
2849 struct extent_io_tree
*unpin
;
2854 unpin
= &trans
->transaction
->pinned_extents
;
2856 while (!TRANS_ABORTED(trans
)) {
2857 struct extent_state
*cached_state
= NULL
;
2859 mutex_lock(&fs_info
->unused_bg_unpin_mutex
);
2860 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
2861 EXTENT_DIRTY
, &cached_state
);
2863 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
2866 if (test_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
))
2867 clear_extent_bits(&fs_info
->excluded_extents
, start
,
2868 end
, EXTENT_UPTODATE
);
2870 if (btrfs_test_opt(fs_info
, DISCARD_SYNC
))
2871 ret
= btrfs_discard_extent(fs_info
, start
,
2872 end
+ 1 - start
, NULL
);
2874 clear_extent_dirty(unpin
, start
, end
, &cached_state
);
2875 unpin_extent_range(fs_info
, start
, end
, true);
2876 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
2877 free_extent_state(cached_state
);
2881 if (btrfs_test_opt(fs_info
, DISCARD_ASYNC
)) {
2882 btrfs_discard_calc_delay(&fs_info
->discard_ctl
);
2883 btrfs_discard_schedule_work(&fs_info
->discard_ctl
, true);
2887 * Transaction is finished. We don't need the lock anymore. We
2888 * do need to clean up the block groups in case of a transaction
2891 deleted_bgs
= &trans
->transaction
->deleted_bgs
;
2892 list_for_each_entry_safe(block_group
, tmp
, deleted_bgs
, bg_list
) {
2896 if (!TRANS_ABORTED(trans
))
2897 ret
= btrfs_discard_extent(fs_info
,
2899 block_group
->length
,
2902 list_del_init(&block_group
->bg_list
);
2903 btrfs_unfreeze_block_group(block_group
);
2904 btrfs_put_block_group(block_group
);
2907 const char *errstr
= btrfs_decode_error(ret
);
2909 "discard failed while removing blockgroup: errno=%d %s",
2918 * Drop one or more refs of @node.
2920 * 1. Locate the extent refs.
2921 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
2922 * Locate it, then reduce the refs number or remove the ref line completely.
2924 * 2. Update the refs count in EXTENT/METADATA_ITEM
2926 * Inline backref case:
2928 * in extent tree we have:
2930 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2931 * refs 2 gen 6 flags DATA
2932 * extent data backref root FS_TREE objectid 258 offset 0 count 1
2933 * extent data backref root FS_TREE objectid 257 offset 0 count 1
2935 * This function gets called with:
2937 * node->bytenr = 13631488
2938 * node->num_bytes = 1048576
2939 * root_objectid = FS_TREE
2940 * owner_objectid = 257
2944 * Then we should get some like:
2946 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2947 * refs 1 gen 6 flags DATA
2948 * extent data backref root FS_TREE objectid 258 offset 0 count 1
2950 * Keyed backref case:
2952 * in extent tree we have:
2954 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2955 * refs 754 gen 6 flags DATA
2957 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
2958 * extent data backref root FS_TREE objectid 866 offset 0 count 1
2960 * This function get called with:
2962 * node->bytenr = 13631488
2963 * node->num_bytes = 1048576
2964 * root_objectid = FS_TREE
2965 * owner_objectid = 866
2969 * Then we should get some like:
2971 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2972 * refs 753 gen 6 flags DATA
2974 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
2976 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
2977 struct btrfs_delayed_ref_node
*node
, u64 parent
,
2978 u64 root_objectid
, u64 owner_objectid
,
2979 u64 owner_offset
, int refs_to_drop
,
2980 struct btrfs_delayed_extent_op
*extent_op
)
2982 struct btrfs_fs_info
*info
= trans
->fs_info
;
2983 struct btrfs_key key
;
2984 struct btrfs_path
*path
;
2985 struct btrfs_root
*extent_root
= info
->extent_root
;
2986 struct extent_buffer
*leaf
;
2987 struct btrfs_extent_item
*ei
;
2988 struct btrfs_extent_inline_ref
*iref
;
2991 int extent_slot
= 0;
2992 int found_extent
= 0;
2996 u64 bytenr
= node
->bytenr
;
2997 u64 num_bytes
= node
->num_bytes
;
2999 bool skinny_metadata
= btrfs_fs_incompat(info
, SKINNY_METADATA
);
3001 path
= btrfs_alloc_path();
3005 is_data
= owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
;
3007 if (!is_data
&& refs_to_drop
!= 1) {
3009 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
3010 node
->bytenr
, refs_to_drop
);
3012 btrfs_abort_transaction(trans
, ret
);
3017 skinny_metadata
= false;
3019 ret
= lookup_extent_backref(trans
, path
, &iref
, bytenr
, num_bytes
,
3020 parent
, root_objectid
, owner_objectid
,
3024 * Either the inline backref or the SHARED_DATA_REF/
3025 * SHARED_BLOCK_REF is found
3027 * Here is a quick path to locate EXTENT/METADATA_ITEM.
3028 * It's possible the EXTENT/METADATA_ITEM is near current slot.
3030 extent_slot
= path
->slots
[0];
3031 while (extent_slot
>= 0) {
3032 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
3034 if (key
.objectid
!= bytenr
)
3036 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
3037 key
.offset
== num_bytes
) {
3041 if (key
.type
== BTRFS_METADATA_ITEM_KEY
&&
3042 key
.offset
== owner_objectid
) {
3047 /* Quick path didn't find the EXTEMT/METADATA_ITEM */
3048 if (path
->slots
[0] - extent_slot
> 5)
3053 if (!found_extent
) {
3056 "invalid iref, no EXTENT/METADATA_ITEM found but has inline extent ref");
3057 btrfs_abort_transaction(trans
, -EUCLEAN
);
3060 /* Must be SHARED_* item, remove the backref first */
3061 ret
= remove_extent_backref(trans
, path
, NULL
,
3063 is_data
, &last_ref
);
3065 btrfs_abort_transaction(trans
, ret
);
3068 btrfs_release_path(path
);
3070 /* Slow path to locate EXTENT/METADATA_ITEM */
3071 key
.objectid
= bytenr
;
3072 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
3073 key
.offset
= num_bytes
;
3075 if (!is_data
&& skinny_metadata
) {
3076 key
.type
= BTRFS_METADATA_ITEM_KEY
;
3077 key
.offset
= owner_objectid
;
3080 ret
= btrfs_search_slot(trans
, extent_root
,
3082 if (ret
> 0 && skinny_metadata
&& path
->slots
[0]) {
3084 * Couldn't find our skinny metadata item,
3085 * see if we have ye olde extent item.
3088 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
3090 if (key
.objectid
== bytenr
&&
3091 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
3092 key
.offset
== num_bytes
)
3096 if (ret
> 0 && skinny_metadata
) {
3097 skinny_metadata
= false;
3098 key
.objectid
= bytenr
;
3099 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
3100 key
.offset
= num_bytes
;
3101 btrfs_release_path(path
);
3102 ret
= btrfs_search_slot(trans
, extent_root
,
3108 "umm, got %d back from search, was looking for %llu",
3111 btrfs_print_leaf(path
->nodes
[0]);
3114 btrfs_abort_transaction(trans
, ret
);
3117 extent_slot
= path
->slots
[0];
3119 } else if (WARN_ON(ret
== -ENOENT
)) {
3120 btrfs_print_leaf(path
->nodes
[0]);
3122 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
3123 bytenr
, parent
, root_objectid
, owner_objectid
,
3125 btrfs_abort_transaction(trans
, ret
);
3128 btrfs_abort_transaction(trans
, ret
);
3132 leaf
= path
->nodes
[0];
3133 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
3134 if (unlikely(item_size
< sizeof(*ei
))) {
3136 btrfs_print_v0_err(info
);
3137 btrfs_abort_transaction(trans
, ret
);
3140 ei
= btrfs_item_ptr(leaf
, extent_slot
,
3141 struct btrfs_extent_item
);
3142 if (owner_objectid
< BTRFS_FIRST_FREE_OBJECTID
&&
3143 key
.type
== BTRFS_EXTENT_ITEM_KEY
) {
3144 struct btrfs_tree_block_info
*bi
;
3145 if (item_size
< sizeof(*ei
) + sizeof(*bi
)) {
3147 "invalid extent item size for key (%llu, %u, %llu) owner %llu, has %u expect >= %zu",
3148 key
.objectid
, key
.type
, key
.offset
,
3149 owner_objectid
, item_size
,
3150 sizeof(*ei
) + sizeof(*bi
));
3151 btrfs_abort_transaction(trans
, -EUCLEAN
);
3154 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
3155 WARN_ON(owner_objectid
!= btrfs_tree_block_level(leaf
, bi
));
3158 refs
= btrfs_extent_refs(leaf
, ei
);
3159 if (refs
< refs_to_drop
) {
3161 "trying to drop %d refs but we only have %llu for bytenr %llu",
3162 refs_to_drop
, refs
, bytenr
);
3163 btrfs_abort_transaction(trans
, -EUCLEAN
);
3166 refs
-= refs_to_drop
;
3170 __run_delayed_extent_op(extent_op
, leaf
, ei
);
3172 * In the case of inline back ref, reference count will
3173 * be updated by remove_extent_backref
3176 if (!found_extent
) {
3178 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found");
3179 btrfs_abort_transaction(trans
, -EUCLEAN
);
3183 btrfs_set_extent_refs(leaf
, ei
, refs
);
3184 btrfs_mark_buffer_dirty(leaf
);
3187 ret
= remove_extent_backref(trans
, path
, iref
,
3188 refs_to_drop
, is_data
,
3191 btrfs_abort_transaction(trans
, ret
);
3196 /* In this branch refs == 1 */
3198 if (is_data
&& refs_to_drop
!=
3199 extent_data_ref_count(path
, iref
)) {
3201 "invalid refs_to_drop, current refs %u refs_to_drop %u",
3202 extent_data_ref_count(path
, iref
),
3204 btrfs_abort_transaction(trans
, -EUCLEAN
);
3208 if (path
->slots
[0] != extent_slot
) {
3210 "invalid iref, extent item key (%llu %u %llu) doesn't have wanted iref",
3211 key
.objectid
, key
.type
,
3213 btrfs_abort_transaction(trans
, -EUCLEAN
);
3218 * No inline ref, we must be at SHARED_* item,
3219 * And it's single ref, it must be:
3220 * | extent_slot ||extent_slot + 1|
3221 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3223 if (path
->slots
[0] != extent_slot
+ 1) {
3225 "invalid SHARED_* item, previous item is not EXTENT/METADATA_ITEM");
3226 btrfs_abort_transaction(trans
, -EUCLEAN
);
3229 path
->slots
[0] = extent_slot
;
3235 ret
= btrfs_del_items(trans
, extent_root
, path
, path
->slots
[0],
3238 btrfs_abort_transaction(trans
, ret
);
3241 btrfs_release_path(path
);
3244 ret
= btrfs_del_csums(trans
, info
->csum_root
, bytenr
,
3247 btrfs_abort_transaction(trans
, ret
);
3252 ret
= add_to_free_space_tree(trans
, bytenr
, num_bytes
);
3254 btrfs_abort_transaction(trans
, ret
);
3258 ret
= btrfs_update_block_group(trans
, bytenr
, num_bytes
, 0);
3260 btrfs_abort_transaction(trans
, ret
);
3264 btrfs_release_path(path
);
3267 btrfs_free_path(path
);
3271 * Leaf dump can take up a lot of log buffer, so we only do full leaf
3272 * dump for debug build.
3274 if (IS_ENABLED(CONFIG_BTRFS_DEBUG
)) {
3275 btrfs_crit(info
, "path->slots[0]=%d extent_slot=%d",
3276 path
->slots
[0], extent_slot
);
3277 btrfs_print_leaf(path
->nodes
[0]);
3280 btrfs_free_path(path
);
3285 * when we free an block, it is possible (and likely) that we free the last
3286 * delayed ref for that extent as well. This searches the delayed ref tree for
3287 * a given extent, and if there are no other delayed refs to be processed, it
3288 * removes it from the tree.
3290 static noinline
int check_ref_cleanup(struct btrfs_trans_handle
*trans
,
3293 struct btrfs_delayed_ref_head
*head
;
3294 struct btrfs_delayed_ref_root
*delayed_refs
;
3297 delayed_refs
= &trans
->transaction
->delayed_refs
;
3298 spin_lock(&delayed_refs
->lock
);
3299 head
= btrfs_find_delayed_ref_head(delayed_refs
, bytenr
);
3301 goto out_delayed_unlock
;
3303 spin_lock(&head
->lock
);
3304 if (!RB_EMPTY_ROOT(&head
->ref_tree
.rb_root
))
3307 if (cleanup_extent_op(head
) != NULL
)
3311 * waiting for the lock here would deadlock. If someone else has it
3312 * locked they are already in the process of dropping it anyway
3314 if (!mutex_trylock(&head
->mutex
))
3317 btrfs_delete_ref_head(delayed_refs
, head
);
3318 head
->processing
= 0;
3320 spin_unlock(&head
->lock
);
3321 spin_unlock(&delayed_refs
->lock
);
3323 BUG_ON(head
->extent_op
);
3324 if (head
->must_insert_reserved
)
3327 btrfs_cleanup_ref_head_accounting(trans
->fs_info
, delayed_refs
, head
);
3328 mutex_unlock(&head
->mutex
);
3329 btrfs_put_delayed_ref_head(head
);
3332 spin_unlock(&head
->lock
);
3335 spin_unlock(&delayed_refs
->lock
);
3339 void btrfs_free_tree_block(struct btrfs_trans_handle
*trans
,
3340 struct btrfs_root
*root
,
3341 struct extent_buffer
*buf
,
3342 u64 parent
, int last_ref
)
3344 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3345 struct btrfs_ref generic_ref
= { 0 };
3349 btrfs_init_generic_ref(&generic_ref
, BTRFS_DROP_DELAYED_REF
,
3350 buf
->start
, buf
->len
, parent
);
3351 btrfs_init_tree_ref(&generic_ref
, btrfs_header_level(buf
),
3352 root
->root_key
.objectid
);
3354 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
3355 int old_ref_mod
, new_ref_mod
;
3357 btrfs_ref_tree_mod(fs_info
, &generic_ref
);
3358 ret
= btrfs_add_delayed_tree_ref(trans
, &generic_ref
, NULL
,
3359 &old_ref_mod
, &new_ref_mod
);
3360 BUG_ON(ret
); /* -ENOMEM */
3361 pin
= old_ref_mod
>= 0 && new_ref_mod
< 0;
3364 if (last_ref
&& btrfs_header_generation(buf
) == trans
->transid
) {
3365 struct btrfs_block_group
*cache
;
3367 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
3368 ret
= check_ref_cleanup(trans
, buf
->start
);
3374 cache
= btrfs_lookup_block_group(fs_info
, buf
->start
);
3376 if (btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
)) {
3377 pin_down_extent(trans
, cache
, buf
->start
, buf
->len
, 1);
3378 btrfs_put_block_group(cache
);
3382 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
));
3384 btrfs_add_free_space(cache
, buf
->start
, buf
->len
);
3385 btrfs_free_reserved_bytes(cache
, buf
->len
, 0);
3386 btrfs_put_block_group(cache
);
3387 trace_btrfs_reserved_extent_free(fs_info
, buf
->start
, buf
->len
);
3391 add_pinned_bytes(fs_info
, &generic_ref
);
3395 * Deleting the buffer, clear the corrupt flag since it doesn't
3398 clear_bit(EXTENT_BUFFER_CORRUPT
, &buf
->bflags
);
3402 /* Can return -ENOMEM */
3403 int btrfs_free_extent(struct btrfs_trans_handle
*trans
, struct btrfs_ref
*ref
)
3405 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
3406 int old_ref_mod
, new_ref_mod
;
3409 if (btrfs_is_testing(fs_info
))
3413 * tree log blocks never actually go into the extent allocation
3414 * tree, just update pinning info and exit early.
3416 if ((ref
->type
== BTRFS_REF_METADATA
&&
3417 ref
->tree_ref
.root
== BTRFS_TREE_LOG_OBJECTID
) ||
3418 (ref
->type
== BTRFS_REF_DATA
&&
3419 ref
->data_ref
.ref_root
== BTRFS_TREE_LOG_OBJECTID
)) {
3420 /* unlocks the pinned mutex */
3421 btrfs_pin_extent(trans
, ref
->bytenr
, ref
->len
, 1);
3422 old_ref_mod
= new_ref_mod
= 0;
3424 } else if (ref
->type
== BTRFS_REF_METADATA
) {
3425 ret
= btrfs_add_delayed_tree_ref(trans
, ref
, NULL
,
3426 &old_ref_mod
, &new_ref_mod
);
3428 ret
= btrfs_add_delayed_data_ref(trans
, ref
, 0,
3429 &old_ref_mod
, &new_ref_mod
);
3432 if (!((ref
->type
== BTRFS_REF_METADATA
&&
3433 ref
->tree_ref
.root
== BTRFS_TREE_LOG_OBJECTID
) ||
3434 (ref
->type
== BTRFS_REF_DATA
&&
3435 ref
->data_ref
.ref_root
== BTRFS_TREE_LOG_OBJECTID
)))
3436 btrfs_ref_tree_mod(fs_info
, ref
);
3438 if (ret
== 0 && old_ref_mod
>= 0 && new_ref_mod
< 0)
3439 add_pinned_bytes(fs_info
, ref
);
3444 enum btrfs_loop_type
{
3445 LOOP_CACHING_NOWAIT
,
3452 btrfs_lock_block_group(struct btrfs_block_group
*cache
,
3456 down_read(&cache
->data_rwsem
);
3459 static inline void btrfs_grab_block_group(struct btrfs_block_group
*cache
,
3462 btrfs_get_block_group(cache
);
3464 down_read(&cache
->data_rwsem
);
3467 static struct btrfs_block_group
*btrfs_lock_cluster(
3468 struct btrfs_block_group
*block_group
,
3469 struct btrfs_free_cluster
*cluster
,
3471 __acquires(&cluster
->refill_lock
)
3473 struct btrfs_block_group
*used_bg
= NULL
;
3475 spin_lock(&cluster
->refill_lock
);
3477 used_bg
= cluster
->block_group
;
3481 if (used_bg
== block_group
)
3484 btrfs_get_block_group(used_bg
);
3489 if (down_read_trylock(&used_bg
->data_rwsem
))
3492 spin_unlock(&cluster
->refill_lock
);
3494 /* We should only have one-level nested. */
3495 down_read_nested(&used_bg
->data_rwsem
, SINGLE_DEPTH_NESTING
);
3497 spin_lock(&cluster
->refill_lock
);
3498 if (used_bg
== cluster
->block_group
)
3501 up_read(&used_bg
->data_rwsem
);
3502 btrfs_put_block_group(used_bg
);
3507 btrfs_release_block_group(struct btrfs_block_group
*cache
,
3511 up_read(&cache
->data_rwsem
);
3512 btrfs_put_block_group(cache
);
3515 enum btrfs_extent_allocation_policy
{
3516 BTRFS_EXTENT_ALLOC_CLUSTERED
,
3520 * Structure used internally for find_free_extent() function. Wraps needed
3523 struct find_free_extent_ctl
{
3524 /* Basic allocation info */
3530 /* Where to start the search inside the bg */
3533 /* For clustered allocation */
3535 struct btrfs_free_cluster
*last_ptr
;
3538 bool have_caching_bg
;
3539 bool orig_have_caching_bg
;
3541 /* RAID index, converted from flags */
3545 * Current loop number, check find_free_extent_update_loop() for details
3550 * Whether we're refilling a cluster, if true we need to re-search
3551 * current block group but don't try to refill the cluster again.
3553 bool retry_clustered
;
3556 * Whether we're updating free space cache, if true we need to re-search
3557 * current block group but don't try updating free space cache again.
3559 bool retry_unclustered
;
3561 /* If current block group is cached */
3564 /* Max contiguous hole found */
3565 u64 max_extent_size
;
3567 /* Total free space from free space cache, not always contiguous */
3568 u64 total_free_space
;
3573 /* Hint where to start looking for an empty space */
3576 /* Allocation policy */
3577 enum btrfs_extent_allocation_policy policy
;
3582 * Helper function for find_free_extent().
3584 * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3585 * Return -EAGAIN to inform caller that we need to re-search this block group
3586 * Return >0 to inform caller that we find nothing
3587 * Return 0 means we have found a location and set ffe_ctl->found_offset.
3589 static int find_free_extent_clustered(struct btrfs_block_group
*bg
,
3590 struct find_free_extent_ctl
*ffe_ctl
,
3591 struct btrfs_block_group
**cluster_bg_ret
)
3593 struct btrfs_block_group
*cluster_bg
;
3594 struct btrfs_free_cluster
*last_ptr
= ffe_ctl
->last_ptr
;
3595 u64 aligned_cluster
;
3599 cluster_bg
= btrfs_lock_cluster(bg
, last_ptr
, ffe_ctl
->delalloc
);
3601 goto refill_cluster
;
3602 if (cluster_bg
!= bg
&& (cluster_bg
->ro
||
3603 !block_group_bits(cluster_bg
, ffe_ctl
->flags
)))
3604 goto release_cluster
;
3606 offset
= btrfs_alloc_from_cluster(cluster_bg
, last_ptr
,
3607 ffe_ctl
->num_bytes
, cluster_bg
->start
,
3608 &ffe_ctl
->max_extent_size
);
3610 /* We have a block, we're done */
3611 spin_unlock(&last_ptr
->refill_lock
);
3612 trace_btrfs_reserve_extent_cluster(cluster_bg
,
3613 ffe_ctl
->search_start
, ffe_ctl
->num_bytes
);
3614 *cluster_bg_ret
= cluster_bg
;
3615 ffe_ctl
->found_offset
= offset
;
3618 WARN_ON(last_ptr
->block_group
!= cluster_bg
);
3622 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3623 * lets just skip it and let the allocator find whatever block it can
3624 * find. If we reach this point, we will have tried the cluster
3625 * allocator plenty of times and not have found anything, so we are
3626 * likely way too fragmented for the clustering stuff to find anything.
3628 * However, if the cluster is taken from the current block group,
3629 * release the cluster first, so that we stand a better chance of
3630 * succeeding in the unclustered allocation.
3632 if (ffe_ctl
->loop
>= LOOP_NO_EMPTY_SIZE
&& cluster_bg
!= bg
) {
3633 spin_unlock(&last_ptr
->refill_lock
);
3634 btrfs_release_block_group(cluster_bg
, ffe_ctl
->delalloc
);
3638 /* This cluster didn't work out, free it and start over */
3639 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
3641 if (cluster_bg
!= bg
)
3642 btrfs_release_block_group(cluster_bg
, ffe_ctl
->delalloc
);
3645 if (ffe_ctl
->loop
>= LOOP_NO_EMPTY_SIZE
) {
3646 spin_unlock(&last_ptr
->refill_lock
);
3650 aligned_cluster
= max_t(u64
,
3651 ffe_ctl
->empty_cluster
+ ffe_ctl
->empty_size
,
3652 bg
->full_stripe_len
);
3653 ret
= btrfs_find_space_cluster(bg
, last_ptr
, ffe_ctl
->search_start
,
3654 ffe_ctl
->num_bytes
, aligned_cluster
);
3656 /* Now pull our allocation out of this cluster */
3657 offset
= btrfs_alloc_from_cluster(bg
, last_ptr
,
3658 ffe_ctl
->num_bytes
, ffe_ctl
->search_start
,
3659 &ffe_ctl
->max_extent_size
);
3661 /* We found one, proceed */
3662 spin_unlock(&last_ptr
->refill_lock
);
3663 trace_btrfs_reserve_extent_cluster(bg
,
3664 ffe_ctl
->search_start
,
3665 ffe_ctl
->num_bytes
);
3666 ffe_ctl
->found_offset
= offset
;
3669 } else if (!ffe_ctl
->cached
&& ffe_ctl
->loop
> LOOP_CACHING_NOWAIT
&&
3670 !ffe_ctl
->retry_clustered
) {
3671 spin_unlock(&last_ptr
->refill_lock
);
3673 ffe_ctl
->retry_clustered
= true;
3674 btrfs_wait_block_group_cache_progress(bg
, ffe_ctl
->num_bytes
+
3675 ffe_ctl
->empty_cluster
+ ffe_ctl
->empty_size
);
3679 * At this point we either didn't find a cluster or we weren't able to
3680 * allocate a block from our cluster. Free the cluster we've been
3681 * trying to use, and go to the next block group.
3683 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
3684 spin_unlock(&last_ptr
->refill_lock
);
3689 * Return >0 to inform caller that we find nothing
3690 * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3691 * Return -EAGAIN to inform caller that we need to re-search this block group
3693 static int find_free_extent_unclustered(struct btrfs_block_group
*bg
,
3694 struct find_free_extent_ctl
*ffe_ctl
)
3696 struct btrfs_free_cluster
*last_ptr
= ffe_ctl
->last_ptr
;
3700 * We are doing an unclustered allocation, set the fragmented flag so
3701 * we don't bother trying to setup a cluster again until we get more
3704 if (unlikely(last_ptr
)) {
3705 spin_lock(&last_ptr
->lock
);
3706 last_ptr
->fragmented
= 1;
3707 spin_unlock(&last_ptr
->lock
);
3709 if (ffe_ctl
->cached
) {
3710 struct btrfs_free_space_ctl
*free_space_ctl
;
3712 free_space_ctl
= bg
->free_space_ctl
;
3713 spin_lock(&free_space_ctl
->tree_lock
);
3714 if (free_space_ctl
->free_space
<
3715 ffe_ctl
->num_bytes
+ ffe_ctl
->empty_cluster
+
3716 ffe_ctl
->empty_size
) {
3717 ffe_ctl
->total_free_space
= max_t(u64
,
3718 ffe_ctl
->total_free_space
,
3719 free_space_ctl
->free_space
);
3720 spin_unlock(&free_space_ctl
->tree_lock
);
3723 spin_unlock(&free_space_ctl
->tree_lock
);
3726 offset
= btrfs_find_space_for_alloc(bg
, ffe_ctl
->search_start
,
3727 ffe_ctl
->num_bytes
, ffe_ctl
->empty_size
,
3728 &ffe_ctl
->max_extent_size
);
3731 * If we didn't find a chunk, and we haven't failed on this block group
3732 * before, and this block group is in the middle of caching and we are
3733 * ok with waiting, then go ahead and wait for progress to be made, and
3734 * set @retry_unclustered to true.
3736 * If @retry_unclustered is true then we've already waited on this
3737 * block group once and should move on to the next block group.
3739 if (!offset
&& !ffe_ctl
->retry_unclustered
&& !ffe_ctl
->cached
&&
3740 ffe_ctl
->loop
> LOOP_CACHING_NOWAIT
) {
3741 btrfs_wait_block_group_cache_progress(bg
, ffe_ctl
->num_bytes
+
3742 ffe_ctl
->empty_size
);
3743 ffe_ctl
->retry_unclustered
= true;
3745 } else if (!offset
) {
3748 ffe_ctl
->found_offset
= offset
;
3752 static int do_allocation_clustered(struct btrfs_block_group
*block_group
,
3753 struct find_free_extent_ctl
*ffe_ctl
,
3754 struct btrfs_block_group
**bg_ret
)
3758 /* We want to try and use the cluster allocator, so lets look there */
3759 if (ffe_ctl
->last_ptr
&& ffe_ctl
->use_cluster
) {
3760 ret
= find_free_extent_clustered(block_group
, ffe_ctl
, bg_ret
);
3761 if (ret
>= 0 || ret
== -EAGAIN
)
3763 /* ret == -ENOENT case falls through */
3766 return find_free_extent_unclustered(block_group
, ffe_ctl
);
3769 static int do_allocation(struct btrfs_block_group
*block_group
,
3770 struct find_free_extent_ctl
*ffe_ctl
,
3771 struct btrfs_block_group
**bg_ret
)
3773 switch (ffe_ctl
->policy
) {
3774 case BTRFS_EXTENT_ALLOC_CLUSTERED
:
3775 return do_allocation_clustered(block_group
, ffe_ctl
, bg_ret
);
3781 static void release_block_group(struct btrfs_block_group
*block_group
,
3782 struct find_free_extent_ctl
*ffe_ctl
,
3785 switch (ffe_ctl
->policy
) {
3786 case BTRFS_EXTENT_ALLOC_CLUSTERED
:
3787 ffe_ctl
->retry_clustered
= false;
3788 ffe_ctl
->retry_unclustered
= false;
3794 BUG_ON(btrfs_bg_flags_to_raid_index(block_group
->flags
) !=
3796 btrfs_release_block_group(block_group
, delalloc
);
3799 static void found_extent_clustered(struct find_free_extent_ctl
*ffe_ctl
,
3800 struct btrfs_key
*ins
)
3802 struct btrfs_free_cluster
*last_ptr
= ffe_ctl
->last_ptr
;
3804 if (!ffe_ctl
->use_cluster
&& last_ptr
) {
3805 spin_lock(&last_ptr
->lock
);
3806 last_ptr
->window_start
= ins
->objectid
;
3807 spin_unlock(&last_ptr
->lock
);
3811 static void found_extent(struct find_free_extent_ctl
*ffe_ctl
,
3812 struct btrfs_key
*ins
)
3814 switch (ffe_ctl
->policy
) {
3815 case BTRFS_EXTENT_ALLOC_CLUSTERED
:
3816 found_extent_clustered(ffe_ctl
, ins
);
3823 static int chunk_allocation_failed(struct find_free_extent_ctl
*ffe_ctl
)
3825 switch (ffe_ctl
->policy
) {
3826 case BTRFS_EXTENT_ALLOC_CLUSTERED
:
3828 * If we can't allocate a new chunk we've already looped through
3829 * at least once, move on to the NO_EMPTY_SIZE case.
3831 ffe_ctl
->loop
= LOOP_NO_EMPTY_SIZE
;
3839 * Return >0 means caller needs to re-search for free extent
3840 * Return 0 means we have the needed free extent.
3841 * Return <0 means we failed to locate any free extent.
3843 static int find_free_extent_update_loop(struct btrfs_fs_info
*fs_info
,
3844 struct btrfs_key
*ins
,
3845 struct find_free_extent_ctl
*ffe_ctl
,
3848 struct btrfs_root
*root
= fs_info
->extent_root
;
3851 if ((ffe_ctl
->loop
== LOOP_CACHING_NOWAIT
) &&
3852 ffe_ctl
->have_caching_bg
&& !ffe_ctl
->orig_have_caching_bg
)
3853 ffe_ctl
->orig_have_caching_bg
= true;
3855 if (!ins
->objectid
&& ffe_ctl
->loop
>= LOOP_CACHING_WAIT
&&
3856 ffe_ctl
->have_caching_bg
)
3859 if (!ins
->objectid
&& ++(ffe_ctl
->index
) < BTRFS_NR_RAID_TYPES
)
3862 if (ins
->objectid
) {
3863 found_extent(ffe_ctl
, ins
);
3868 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
3869 * caching kthreads as we move along
3870 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
3871 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
3872 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
3875 if (ffe_ctl
->loop
< LOOP_NO_EMPTY_SIZE
) {
3877 if (ffe_ctl
->loop
== LOOP_CACHING_NOWAIT
) {
3879 * We want to skip the LOOP_CACHING_WAIT step if we
3880 * don't have any uncached bgs and we've already done a
3881 * full search through.
3883 if (ffe_ctl
->orig_have_caching_bg
|| !full_search
)
3884 ffe_ctl
->loop
= LOOP_CACHING_WAIT
;
3886 ffe_ctl
->loop
= LOOP_ALLOC_CHUNK
;
3891 if (ffe_ctl
->loop
== LOOP_ALLOC_CHUNK
) {
3892 struct btrfs_trans_handle
*trans
;
3895 trans
= current
->journal_info
;
3899 trans
= btrfs_join_transaction(root
);
3901 if (IS_ERR(trans
)) {
3902 ret
= PTR_ERR(trans
);
3906 ret
= btrfs_chunk_alloc(trans
, ffe_ctl
->flags
,
3909 /* Do not bail out on ENOSPC since we can do more. */
3911 ret
= chunk_allocation_failed(ffe_ctl
);
3913 btrfs_abort_transaction(trans
, ret
);
3917 btrfs_end_transaction(trans
);
3922 if (ffe_ctl
->loop
== LOOP_NO_EMPTY_SIZE
) {
3923 if (ffe_ctl
->policy
!= BTRFS_EXTENT_ALLOC_CLUSTERED
)
3927 * Don't loop again if we already have no empty_size and
3930 if (ffe_ctl
->empty_size
== 0 &&
3931 ffe_ctl
->empty_cluster
== 0)
3933 ffe_ctl
->empty_size
= 0;
3934 ffe_ctl
->empty_cluster
= 0;
3941 static int prepare_allocation_clustered(struct btrfs_fs_info
*fs_info
,
3942 struct find_free_extent_ctl
*ffe_ctl
,
3943 struct btrfs_space_info
*space_info
,
3944 struct btrfs_key
*ins
)
3947 * If our free space is heavily fragmented we may not be able to make
3948 * big contiguous allocations, so instead of doing the expensive search
3949 * for free space, simply return ENOSPC with our max_extent_size so we
3950 * can go ahead and search for a more manageable chunk.
3952 * If our max_extent_size is large enough for our allocation simply
3953 * disable clustering since we will likely not be able to find enough
3954 * space to create a cluster and induce latency trying.
3956 if (space_info
->max_extent_size
) {
3957 spin_lock(&space_info
->lock
);
3958 if (space_info
->max_extent_size
&&
3959 ffe_ctl
->num_bytes
> space_info
->max_extent_size
) {
3960 ins
->offset
= space_info
->max_extent_size
;
3961 spin_unlock(&space_info
->lock
);
3963 } else if (space_info
->max_extent_size
) {
3964 ffe_ctl
->use_cluster
= false;
3966 spin_unlock(&space_info
->lock
);
3969 ffe_ctl
->last_ptr
= fetch_cluster_info(fs_info
, space_info
,
3970 &ffe_ctl
->empty_cluster
);
3971 if (ffe_ctl
->last_ptr
) {
3972 struct btrfs_free_cluster
*last_ptr
= ffe_ctl
->last_ptr
;
3974 spin_lock(&last_ptr
->lock
);
3975 if (last_ptr
->block_group
)
3976 ffe_ctl
->hint_byte
= last_ptr
->window_start
;
3977 if (last_ptr
->fragmented
) {
3979 * We still set window_start so we can keep track of the
3980 * last place we found an allocation to try and save
3983 ffe_ctl
->hint_byte
= last_ptr
->window_start
;
3984 ffe_ctl
->use_cluster
= false;
3986 spin_unlock(&last_ptr
->lock
);
3992 static int prepare_allocation(struct btrfs_fs_info
*fs_info
,
3993 struct find_free_extent_ctl
*ffe_ctl
,
3994 struct btrfs_space_info
*space_info
,
3995 struct btrfs_key
*ins
)
3997 switch (ffe_ctl
->policy
) {
3998 case BTRFS_EXTENT_ALLOC_CLUSTERED
:
3999 return prepare_allocation_clustered(fs_info
, ffe_ctl
,
4007 * walks the btree of allocated extents and find a hole of a given size.
4008 * The key ins is changed to record the hole:
4009 * ins->objectid == start position
4010 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4011 * ins->offset == the size of the hole.
4012 * Any available blocks before search_start are skipped.
4014 * If there is no suitable free space, we will record the max size of
4015 * the free space extent currently.
4017 * The overall logic and call chain:
4019 * find_free_extent()
4020 * |- Iterate through all block groups
4021 * | |- Get a valid block group
4022 * | |- Try to do clustered allocation in that block group
4023 * | |- Try to do unclustered allocation in that block group
4024 * | |- Check if the result is valid
4025 * | | |- If valid, then exit
4026 * | |- Jump to next block group
4028 * |- Push harder to find free extents
4029 * |- If not found, re-iterate all block groups
4031 static noinline
int find_free_extent(struct btrfs_root
*root
,
4032 u64 ram_bytes
, u64 num_bytes
, u64 empty_size
,
4033 u64 hint_byte_orig
, struct btrfs_key
*ins
,
4034 u64 flags
, int delalloc
)
4036 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4038 int cache_block_group_error
= 0;
4039 struct btrfs_block_group
*block_group
= NULL
;
4040 struct find_free_extent_ctl ffe_ctl
= {0};
4041 struct btrfs_space_info
*space_info
;
4042 bool full_search
= false;
4044 WARN_ON(num_bytes
< fs_info
->sectorsize
);
4046 ffe_ctl
.num_bytes
= num_bytes
;
4047 ffe_ctl
.empty_size
= empty_size
;
4048 ffe_ctl
.flags
= flags
;
4049 ffe_ctl
.search_start
= 0;
4050 ffe_ctl
.delalloc
= delalloc
;
4051 ffe_ctl
.index
= btrfs_bg_flags_to_raid_index(flags
);
4052 ffe_ctl
.have_caching_bg
= false;
4053 ffe_ctl
.orig_have_caching_bg
= false;
4054 ffe_ctl
.found_offset
= 0;
4055 ffe_ctl
.hint_byte
= hint_byte_orig
;
4056 ffe_ctl
.policy
= BTRFS_EXTENT_ALLOC_CLUSTERED
;
4058 /* For clustered allocation */
4059 ffe_ctl
.retry_clustered
= false;
4060 ffe_ctl
.retry_unclustered
= false;
4061 ffe_ctl
.last_ptr
= NULL
;
4062 ffe_ctl
.use_cluster
= true;
4064 ins
->type
= BTRFS_EXTENT_ITEM_KEY
;
4068 trace_find_free_extent(root
, num_bytes
, empty_size
, flags
);
4070 space_info
= btrfs_find_space_info(fs_info
, flags
);
4072 btrfs_err(fs_info
, "No space info for %llu", flags
);
4076 ret
= prepare_allocation(fs_info
, &ffe_ctl
, space_info
, ins
);
4080 ffe_ctl
.search_start
= max(ffe_ctl
.search_start
,
4081 first_logical_byte(fs_info
, 0));
4082 ffe_ctl
.search_start
= max(ffe_ctl
.search_start
, ffe_ctl
.hint_byte
);
4083 if (ffe_ctl
.search_start
== ffe_ctl
.hint_byte
) {
4084 block_group
= btrfs_lookup_block_group(fs_info
,
4085 ffe_ctl
.search_start
);
4087 * we don't want to use the block group if it doesn't match our
4088 * allocation bits, or if its not cached.
4090 * However if we are re-searching with an ideal block group
4091 * picked out then we don't care that the block group is cached.
4093 if (block_group
&& block_group_bits(block_group
, flags
) &&
4094 block_group
->cached
!= BTRFS_CACHE_NO
) {
4095 down_read(&space_info
->groups_sem
);
4096 if (list_empty(&block_group
->list
) ||
4099 * someone is removing this block group,
4100 * we can't jump into the have_block_group
4101 * target because our list pointers are not
4104 btrfs_put_block_group(block_group
);
4105 up_read(&space_info
->groups_sem
);
4107 ffe_ctl
.index
= btrfs_bg_flags_to_raid_index(
4108 block_group
->flags
);
4109 btrfs_lock_block_group(block_group
, delalloc
);
4110 goto have_block_group
;
4112 } else if (block_group
) {
4113 btrfs_put_block_group(block_group
);
4117 ffe_ctl
.have_caching_bg
= false;
4118 if (ffe_ctl
.index
== btrfs_bg_flags_to_raid_index(flags
) ||
4121 down_read(&space_info
->groups_sem
);
4122 list_for_each_entry(block_group
,
4123 &space_info
->block_groups
[ffe_ctl
.index
], list
) {
4124 struct btrfs_block_group
*bg_ret
;
4126 /* If the block group is read-only, we can skip it entirely. */
4127 if (unlikely(block_group
->ro
))
4130 btrfs_grab_block_group(block_group
, delalloc
);
4131 ffe_ctl
.search_start
= block_group
->start
;
4134 * this can happen if we end up cycling through all the
4135 * raid types, but we want to make sure we only allocate
4136 * for the proper type.
4138 if (!block_group_bits(block_group
, flags
)) {
4139 u64 extra
= BTRFS_BLOCK_GROUP_DUP
|
4140 BTRFS_BLOCK_GROUP_RAID1_MASK
|
4141 BTRFS_BLOCK_GROUP_RAID56_MASK
|
4142 BTRFS_BLOCK_GROUP_RAID10
;
4145 * if they asked for extra copies and this block group
4146 * doesn't provide them, bail. This does allow us to
4147 * fill raid0 from raid1.
4149 if ((flags
& extra
) && !(block_group
->flags
& extra
))
4153 * This block group has different flags than we want.
4154 * It's possible that we have MIXED_GROUP flag but no
4155 * block group is mixed. Just skip such block group.
4157 btrfs_release_block_group(block_group
, delalloc
);
4162 ffe_ctl
.cached
= btrfs_block_group_done(block_group
);
4163 if (unlikely(!ffe_ctl
.cached
)) {
4164 ffe_ctl
.have_caching_bg
= true;
4165 ret
= btrfs_cache_block_group(block_group
, 0);
4168 * If we get ENOMEM here or something else we want to
4169 * try other block groups, because it may not be fatal.
4170 * However if we can't find anything else we need to
4171 * save our return here so that we return the actual
4172 * error that caused problems, not ENOSPC.
4175 if (!cache_block_group_error
)
4176 cache_block_group_error
= ret
;
4183 if (unlikely(block_group
->cached
== BTRFS_CACHE_ERROR
))
4187 ret
= do_allocation(block_group
, &ffe_ctl
, &bg_ret
);
4189 if (bg_ret
&& bg_ret
!= block_group
) {
4190 btrfs_release_block_group(block_group
, delalloc
);
4191 block_group
= bg_ret
;
4193 } else if (ret
== -EAGAIN
) {
4194 goto have_block_group
;
4195 } else if (ret
> 0) {
4200 ffe_ctl
.search_start
= round_up(ffe_ctl
.found_offset
,
4201 fs_info
->stripesize
);
4203 /* move on to the next group */
4204 if (ffe_ctl
.search_start
+ num_bytes
>
4205 block_group
->start
+ block_group
->length
) {
4206 btrfs_add_free_space(block_group
, ffe_ctl
.found_offset
,
4211 if (ffe_ctl
.found_offset
< ffe_ctl
.search_start
)
4212 btrfs_add_free_space(block_group
, ffe_ctl
.found_offset
,
4213 ffe_ctl
.search_start
- ffe_ctl
.found_offset
);
4215 ret
= btrfs_add_reserved_bytes(block_group
, ram_bytes
,
4216 num_bytes
, delalloc
);
4217 if (ret
== -EAGAIN
) {
4218 btrfs_add_free_space(block_group
, ffe_ctl
.found_offset
,
4222 btrfs_inc_block_group_reservations(block_group
);
4224 /* we are all good, lets return */
4225 ins
->objectid
= ffe_ctl
.search_start
;
4226 ins
->offset
= num_bytes
;
4228 trace_btrfs_reserve_extent(block_group
, ffe_ctl
.search_start
,
4230 btrfs_release_block_group(block_group
, delalloc
);
4233 release_block_group(block_group
, &ffe_ctl
, delalloc
);
4236 up_read(&space_info
->groups_sem
);
4238 ret
= find_free_extent_update_loop(fs_info
, ins
, &ffe_ctl
, full_search
);
4242 if (ret
== -ENOSPC
&& !cache_block_group_error
) {
4244 * Use ffe_ctl->total_free_space as fallback if we can't find
4245 * any contiguous hole.
4247 if (!ffe_ctl
.max_extent_size
)
4248 ffe_ctl
.max_extent_size
= ffe_ctl
.total_free_space
;
4249 spin_lock(&space_info
->lock
);
4250 space_info
->max_extent_size
= ffe_ctl
.max_extent_size
;
4251 spin_unlock(&space_info
->lock
);
4252 ins
->offset
= ffe_ctl
.max_extent_size
;
4253 } else if (ret
== -ENOSPC
) {
4254 ret
= cache_block_group_error
;
4260 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4261 * hole that is at least as big as @num_bytes.
4263 * @root - The root that will contain this extent
4265 * @ram_bytes - The amount of space in ram that @num_bytes take. This
4266 * is used for accounting purposes. This value differs
4267 * from @num_bytes only in the case of compressed extents.
4269 * @num_bytes - Number of bytes to allocate on-disk.
4271 * @min_alloc_size - Indicates the minimum amount of space that the
4272 * allocator should try to satisfy. In some cases
4273 * @num_bytes may be larger than what is required and if
4274 * the filesystem is fragmented then allocation fails.
4275 * However, the presence of @min_alloc_size gives a
4276 * chance to try and satisfy the smaller allocation.
4278 * @empty_size - A hint that you plan on doing more COW. This is the
4279 * size in bytes the allocator should try to find free
4280 * next to the block it returns. This is just a hint and
4281 * may be ignored by the allocator.
4283 * @hint_byte - Hint to the allocator to start searching above the byte
4284 * address passed. It might be ignored.
4286 * @ins - This key is modified to record the found hole. It will
4287 * have the following values:
4288 * ins->objectid == start position
4289 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4290 * ins->offset == the size of the hole.
4292 * @is_data - Boolean flag indicating whether an extent is
4293 * allocated for data (true) or metadata (false)
4295 * @delalloc - Boolean flag indicating whether this allocation is for
4296 * delalloc or not. If 'true' data_rwsem of block groups
4297 * is going to be acquired.
4300 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4301 * case -ENOSPC is returned then @ins->offset will contain the size of the
4302 * largest available hole the allocator managed to find.
4304 int btrfs_reserve_extent(struct btrfs_root
*root
, u64 ram_bytes
,
4305 u64 num_bytes
, u64 min_alloc_size
,
4306 u64 empty_size
, u64 hint_byte
,
4307 struct btrfs_key
*ins
, int is_data
, int delalloc
)
4309 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4310 bool final_tried
= num_bytes
== min_alloc_size
;
4314 flags
= get_alloc_profile_by_root(root
, is_data
);
4316 WARN_ON(num_bytes
< fs_info
->sectorsize
);
4317 ret
= find_free_extent(root
, ram_bytes
, num_bytes
, empty_size
,
4318 hint_byte
, ins
, flags
, delalloc
);
4319 if (!ret
&& !is_data
) {
4320 btrfs_dec_block_group_reservations(fs_info
, ins
->objectid
);
4321 } else if (ret
== -ENOSPC
) {
4322 if (!final_tried
&& ins
->offset
) {
4323 num_bytes
= min(num_bytes
>> 1, ins
->offset
);
4324 num_bytes
= round_down(num_bytes
,
4325 fs_info
->sectorsize
);
4326 num_bytes
= max(num_bytes
, min_alloc_size
);
4327 ram_bytes
= num_bytes
;
4328 if (num_bytes
== min_alloc_size
)
4331 } else if (btrfs_test_opt(fs_info
, ENOSPC_DEBUG
)) {
4332 struct btrfs_space_info
*sinfo
;
4334 sinfo
= btrfs_find_space_info(fs_info
, flags
);
4336 "allocation failed flags %llu, wanted %llu",
4339 btrfs_dump_space_info(fs_info
, sinfo
,
4347 int btrfs_free_reserved_extent(struct btrfs_fs_info
*fs_info
,
4348 u64 start
, u64 len
, int delalloc
)
4350 struct btrfs_block_group
*cache
;
4352 cache
= btrfs_lookup_block_group(fs_info
, start
);
4354 btrfs_err(fs_info
, "Unable to find block group for %llu",
4359 btrfs_add_free_space(cache
, start
, len
);
4360 btrfs_free_reserved_bytes(cache
, len
, delalloc
);
4361 trace_btrfs_reserved_extent_free(fs_info
, start
, len
);
4363 btrfs_put_block_group(cache
);
4367 int btrfs_pin_reserved_extent(struct btrfs_trans_handle
*trans
, u64 start
,
4370 struct btrfs_block_group
*cache
;
4373 cache
= btrfs_lookup_block_group(trans
->fs_info
, start
);
4375 btrfs_err(trans
->fs_info
, "unable to find block group for %llu",
4380 ret
= pin_down_extent(trans
, cache
, start
, len
, 1);
4381 btrfs_put_block_group(cache
);
4385 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
4386 u64 parent
, u64 root_objectid
,
4387 u64 flags
, u64 owner
, u64 offset
,
4388 struct btrfs_key
*ins
, int ref_mod
)
4390 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
4392 struct btrfs_extent_item
*extent_item
;
4393 struct btrfs_extent_inline_ref
*iref
;
4394 struct btrfs_path
*path
;
4395 struct extent_buffer
*leaf
;
4400 type
= BTRFS_SHARED_DATA_REF_KEY
;
4402 type
= BTRFS_EXTENT_DATA_REF_KEY
;
4404 size
= sizeof(*extent_item
) + btrfs_extent_inline_ref_size(type
);
4406 path
= btrfs_alloc_path();
4410 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
4413 btrfs_free_path(path
);
4417 leaf
= path
->nodes
[0];
4418 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
4419 struct btrfs_extent_item
);
4420 btrfs_set_extent_refs(leaf
, extent_item
, ref_mod
);
4421 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
4422 btrfs_set_extent_flags(leaf
, extent_item
,
4423 flags
| BTRFS_EXTENT_FLAG_DATA
);
4425 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
4426 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
4428 struct btrfs_shared_data_ref
*ref
;
4429 ref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
4430 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
4431 btrfs_set_shared_data_ref_count(leaf
, ref
, ref_mod
);
4433 struct btrfs_extent_data_ref
*ref
;
4434 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
4435 btrfs_set_extent_data_ref_root(leaf
, ref
, root_objectid
);
4436 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
4437 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
4438 btrfs_set_extent_data_ref_count(leaf
, ref
, ref_mod
);
4441 btrfs_mark_buffer_dirty(path
->nodes
[0]);
4442 btrfs_free_path(path
);
4444 ret
= remove_from_free_space_tree(trans
, ins
->objectid
, ins
->offset
);
4448 ret
= btrfs_update_block_group(trans
, ins
->objectid
, ins
->offset
, 1);
4449 if (ret
) { /* -ENOENT, logic error */
4450 btrfs_err(fs_info
, "update block group failed for %llu %llu",
4451 ins
->objectid
, ins
->offset
);
4454 trace_btrfs_reserved_extent_alloc(fs_info
, ins
->objectid
, ins
->offset
);
4458 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
4459 struct btrfs_delayed_ref_node
*node
,
4460 struct btrfs_delayed_extent_op
*extent_op
)
4462 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
4464 struct btrfs_extent_item
*extent_item
;
4465 struct btrfs_key extent_key
;
4466 struct btrfs_tree_block_info
*block_info
;
4467 struct btrfs_extent_inline_ref
*iref
;
4468 struct btrfs_path
*path
;
4469 struct extent_buffer
*leaf
;
4470 struct btrfs_delayed_tree_ref
*ref
;
4471 u32 size
= sizeof(*extent_item
) + sizeof(*iref
);
4473 u64 flags
= extent_op
->flags_to_set
;
4474 bool skinny_metadata
= btrfs_fs_incompat(fs_info
, SKINNY_METADATA
);
4476 ref
= btrfs_delayed_node_to_tree_ref(node
);
4478 extent_key
.objectid
= node
->bytenr
;
4479 if (skinny_metadata
) {
4480 extent_key
.offset
= ref
->level
;
4481 extent_key
.type
= BTRFS_METADATA_ITEM_KEY
;
4482 num_bytes
= fs_info
->nodesize
;
4484 extent_key
.offset
= node
->num_bytes
;
4485 extent_key
.type
= BTRFS_EXTENT_ITEM_KEY
;
4486 size
+= sizeof(*block_info
);
4487 num_bytes
= node
->num_bytes
;
4490 path
= btrfs_alloc_path();
4494 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
4497 btrfs_free_path(path
);
4501 leaf
= path
->nodes
[0];
4502 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
4503 struct btrfs_extent_item
);
4504 btrfs_set_extent_refs(leaf
, extent_item
, 1);
4505 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
4506 btrfs_set_extent_flags(leaf
, extent_item
,
4507 flags
| BTRFS_EXTENT_FLAG_TREE_BLOCK
);
4509 if (skinny_metadata
) {
4510 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
4512 block_info
= (struct btrfs_tree_block_info
*)(extent_item
+ 1);
4513 btrfs_set_tree_block_key(leaf
, block_info
, &extent_op
->key
);
4514 btrfs_set_tree_block_level(leaf
, block_info
, ref
->level
);
4515 iref
= (struct btrfs_extent_inline_ref
*)(block_info
+ 1);
4518 if (node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
) {
4519 BUG_ON(!(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
4520 btrfs_set_extent_inline_ref_type(leaf
, iref
,
4521 BTRFS_SHARED_BLOCK_REF_KEY
);
4522 btrfs_set_extent_inline_ref_offset(leaf
, iref
, ref
->parent
);
4524 btrfs_set_extent_inline_ref_type(leaf
, iref
,
4525 BTRFS_TREE_BLOCK_REF_KEY
);
4526 btrfs_set_extent_inline_ref_offset(leaf
, iref
, ref
->root
);
4529 btrfs_mark_buffer_dirty(leaf
);
4530 btrfs_free_path(path
);
4532 ret
= remove_from_free_space_tree(trans
, extent_key
.objectid
,
4537 ret
= btrfs_update_block_group(trans
, extent_key
.objectid
,
4538 fs_info
->nodesize
, 1);
4539 if (ret
) { /* -ENOENT, logic error */
4540 btrfs_err(fs_info
, "update block group failed for %llu %llu",
4541 extent_key
.objectid
, extent_key
.offset
);
4545 trace_btrfs_reserved_extent_alloc(fs_info
, extent_key
.objectid
,
4550 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
4551 struct btrfs_root
*root
, u64 owner
,
4552 u64 offset
, u64 ram_bytes
,
4553 struct btrfs_key
*ins
)
4555 struct btrfs_ref generic_ref
= { 0 };
4558 BUG_ON(root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
);
4560 btrfs_init_generic_ref(&generic_ref
, BTRFS_ADD_DELAYED_EXTENT
,
4561 ins
->objectid
, ins
->offset
, 0);
4562 btrfs_init_data_ref(&generic_ref
, root
->root_key
.objectid
, owner
, offset
);
4563 btrfs_ref_tree_mod(root
->fs_info
, &generic_ref
);
4564 ret
= btrfs_add_delayed_data_ref(trans
, &generic_ref
,
4565 ram_bytes
, NULL
, NULL
);
4570 * this is used by the tree logging recovery code. It records that
4571 * an extent has been allocated and makes sure to clear the free
4572 * space cache bits as well
4574 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle
*trans
,
4575 u64 root_objectid
, u64 owner
, u64 offset
,
4576 struct btrfs_key
*ins
)
4578 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
4580 struct btrfs_block_group
*block_group
;
4581 struct btrfs_space_info
*space_info
;
4584 * Mixed block groups will exclude before processing the log so we only
4585 * need to do the exclude dance if this fs isn't mixed.
4587 if (!btrfs_fs_incompat(fs_info
, MIXED_GROUPS
)) {
4588 ret
= __exclude_logged_extent(fs_info
, ins
->objectid
,
4594 block_group
= btrfs_lookup_block_group(fs_info
, ins
->objectid
);
4598 space_info
= block_group
->space_info
;
4599 spin_lock(&space_info
->lock
);
4600 spin_lock(&block_group
->lock
);
4601 space_info
->bytes_reserved
+= ins
->offset
;
4602 block_group
->reserved
+= ins
->offset
;
4603 spin_unlock(&block_group
->lock
);
4604 spin_unlock(&space_info
->lock
);
4606 ret
= alloc_reserved_file_extent(trans
, 0, root_objectid
, 0, owner
,
4609 btrfs_pin_extent(trans
, ins
->objectid
, ins
->offset
, 1);
4610 btrfs_put_block_group(block_group
);
4614 static struct extent_buffer
*
4615 btrfs_init_new_buffer(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
4616 u64 bytenr
, int level
, u64 owner
,
4617 enum btrfs_lock_nesting nest
)
4619 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4620 struct extent_buffer
*buf
;
4622 buf
= btrfs_find_create_tree_block(fs_info
, bytenr
, owner
, level
);
4627 * Extra safety check in case the extent tree is corrupted and extent
4628 * allocator chooses to use a tree block which is already used and
4631 if (buf
->lock_owner
== current
->pid
) {
4632 btrfs_err_rl(fs_info
,
4633 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4634 buf
->start
, btrfs_header_owner(buf
), current
->pid
);
4635 free_extent_buffer(buf
);
4636 return ERR_PTR(-EUCLEAN
);
4640 * This needs to stay, because we could allocate a freed block from an
4641 * old tree into a new tree, so we need to make sure this new block is
4642 * set to the appropriate level and owner.
4644 btrfs_set_buffer_lockdep_class(owner
, buf
, level
);
4645 __btrfs_tree_lock(buf
, nest
);
4646 btrfs_clean_tree_block(buf
);
4647 clear_bit(EXTENT_BUFFER_STALE
, &buf
->bflags
);
4649 set_extent_buffer_uptodate(buf
);
4651 memzero_extent_buffer(buf
, 0, sizeof(struct btrfs_header
));
4652 btrfs_set_header_level(buf
, level
);
4653 btrfs_set_header_bytenr(buf
, buf
->start
);
4654 btrfs_set_header_generation(buf
, trans
->transid
);
4655 btrfs_set_header_backref_rev(buf
, BTRFS_MIXED_BACKREF_REV
);
4656 btrfs_set_header_owner(buf
, owner
);
4657 write_extent_buffer_fsid(buf
, fs_info
->fs_devices
->metadata_uuid
);
4658 write_extent_buffer_chunk_tree_uuid(buf
, fs_info
->chunk_tree_uuid
);
4659 if (root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
) {
4660 buf
->log_index
= root
->log_transid
% 2;
4662 * we allow two log transactions at a time, use different
4663 * EXTENT bit to differentiate dirty pages.
4665 if (buf
->log_index
== 0)
4666 set_extent_dirty(&root
->dirty_log_pages
, buf
->start
,
4667 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
4669 set_extent_new(&root
->dirty_log_pages
, buf
->start
,
4670 buf
->start
+ buf
->len
- 1);
4672 buf
->log_index
= -1;
4673 set_extent_dirty(&trans
->transaction
->dirty_pages
, buf
->start
,
4674 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
4676 trans
->dirty
= true;
4677 /* this returns a buffer locked for blocking */
4682 * finds a free extent and does all the dirty work required for allocation
4683 * returns the tree buffer or an ERR_PTR on error.
4685 struct extent_buffer
*btrfs_alloc_tree_block(struct btrfs_trans_handle
*trans
,
4686 struct btrfs_root
*root
,
4687 u64 parent
, u64 root_objectid
,
4688 const struct btrfs_disk_key
*key
,
4689 int level
, u64 hint
,
4691 enum btrfs_lock_nesting nest
)
4693 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4694 struct btrfs_key ins
;
4695 struct btrfs_block_rsv
*block_rsv
;
4696 struct extent_buffer
*buf
;
4697 struct btrfs_delayed_extent_op
*extent_op
;
4698 struct btrfs_ref generic_ref
= { 0 };
4701 u32 blocksize
= fs_info
->nodesize
;
4702 bool skinny_metadata
= btrfs_fs_incompat(fs_info
, SKINNY_METADATA
);
4704 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4705 if (btrfs_is_testing(fs_info
)) {
4706 buf
= btrfs_init_new_buffer(trans
, root
, root
->alloc_bytenr
,
4707 level
, root_objectid
, nest
);
4709 root
->alloc_bytenr
+= blocksize
;
4714 block_rsv
= btrfs_use_block_rsv(trans
, root
, blocksize
);
4715 if (IS_ERR(block_rsv
))
4716 return ERR_CAST(block_rsv
);
4718 ret
= btrfs_reserve_extent(root
, blocksize
, blocksize
, blocksize
,
4719 empty_size
, hint
, &ins
, 0, 0);
4723 buf
= btrfs_init_new_buffer(trans
, root
, ins
.objectid
, level
,
4724 root_objectid
, nest
);
4727 goto out_free_reserved
;
4730 if (root_objectid
== BTRFS_TREE_RELOC_OBJECTID
) {
4732 parent
= ins
.objectid
;
4733 flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
4737 if (root_objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
4738 extent_op
= btrfs_alloc_delayed_extent_op();
4744 memcpy(&extent_op
->key
, key
, sizeof(extent_op
->key
));
4746 memset(&extent_op
->key
, 0, sizeof(extent_op
->key
));
4747 extent_op
->flags_to_set
= flags
;
4748 extent_op
->update_key
= skinny_metadata
? false : true;
4749 extent_op
->update_flags
= true;
4750 extent_op
->is_data
= false;
4751 extent_op
->level
= level
;
4753 btrfs_init_generic_ref(&generic_ref
, BTRFS_ADD_DELAYED_EXTENT
,
4754 ins
.objectid
, ins
.offset
, parent
);
4755 generic_ref
.real_root
= root
->root_key
.objectid
;
4756 btrfs_init_tree_ref(&generic_ref
, level
, root_objectid
);
4757 btrfs_ref_tree_mod(fs_info
, &generic_ref
);
4758 ret
= btrfs_add_delayed_tree_ref(trans
, &generic_ref
,
4759 extent_op
, NULL
, NULL
);
4761 goto out_free_delayed
;
4766 btrfs_free_delayed_extent_op(extent_op
);
4768 free_extent_buffer(buf
);
4770 btrfs_free_reserved_extent(fs_info
, ins
.objectid
, ins
.offset
, 0);
4772 btrfs_unuse_block_rsv(fs_info
, block_rsv
, blocksize
);
4773 return ERR_PTR(ret
);
4776 struct walk_control
{
4777 u64 refs
[BTRFS_MAX_LEVEL
];
4778 u64 flags
[BTRFS_MAX_LEVEL
];
4779 struct btrfs_key update_progress
;
4780 struct btrfs_key drop_progress
;
4792 #define DROP_REFERENCE 1
4793 #define UPDATE_BACKREF 2
4795 static noinline
void reada_walk_down(struct btrfs_trans_handle
*trans
,
4796 struct btrfs_root
*root
,
4797 struct walk_control
*wc
,
4798 struct btrfs_path
*path
)
4800 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4806 struct btrfs_key key
;
4807 struct extent_buffer
*eb
;
4812 if (path
->slots
[wc
->level
] < wc
->reada_slot
) {
4813 wc
->reada_count
= wc
->reada_count
* 2 / 3;
4814 wc
->reada_count
= max(wc
->reada_count
, 2);
4816 wc
->reada_count
= wc
->reada_count
* 3 / 2;
4817 wc
->reada_count
= min_t(int, wc
->reada_count
,
4818 BTRFS_NODEPTRS_PER_BLOCK(fs_info
));
4821 eb
= path
->nodes
[wc
->level
];
4822 nritems
= btrfs_header_nritems(eb
);
4824 for (slot
= path
->slots
[wc
->level
]; slot
< nritems
; slot
++) {
4825 if (nread
>= wc
->reada_count
)
4829 bytenr
= btrfs_node_blockptr(eb
, slot
);
4830 generation
= btrfs_node_ptr_generation(eb
, slot
);
4832 if (slot
== path
->slots
[wc
->level
])
4835 if (wc
->stage
== UPDATE_BACKREF
&&
4836 generation
<= root
->root_key
.offset
)
4839 /* We don't lock the tree block, it's OK to be racy here */
4840 ret
= btrfs_lookup_extent_info(trans
, fs_info
, bytenr
,
4841 wc
->level
- 1, 1, &refs
,
4843 /* We don't care about errors in readahead. */
4848 if (wc
->stage
== DROP_REFERENCE
) {
4852 if (wc
->level
== 1 &&
4853 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
4855 if (!wc
->update_ref
||
4856 generation
<= root
->root_key
.offset
)
4858 btrfs_node_key_to_cpu(eb
, &key
, slot
);
4859 ret
= btrfs_comp_cpu_keys(&key
,
4860 &wc
->update_progress
);
4864 if (wc
->level
== 1 &&
4865 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
4869 btrfs_readahead_node_child(eb
, slot
);
4872 wc
->reada_slot
= slot
;
4876 * helper to process tree block while walking down the tree.
4878 * when wc->stage == UPDATE_BACKREF, this function updates
4879 * back refs for pointers in the block.
4881 * NOTE: return value 1 means we should stop walking down.
4883 static noinline
int walk_down_proc(struct btrfs_trans_handle
*trans
,
4884 struct btrfs_root
*root
,
4885 struct btrfs_path
*path
,
4886 struct walk_control
*wc
, int lookup_info
)
4888 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4889 int level
= wc
->level
;
4890 struct extent_buffer
*eb
= path
->nodes
[level
];
4891 u64 flag
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
4894 if (wc
->stage
== UPDATE_BACKREF
&&
4895 btrfs_header_owner(eb
) != root
->root_key
.objectid
)
4899 * when reference count of tree block is 1, it won't increase
4900 * again. once full backref flag is set, we never clear it.
4903 ((wc
->stage
== DROP_REFERENCE
&& wc
->refs
[level
] != 1) ||
4904 (wc
->stage
== UPDATE_BACKREF
&& !(wc
->flags
[level
] & flag
)))) {
4905 BUG_ON(!path
->locks
[level
]);
4906 ret
= btrfs_lookup_extent_info(trans
, fs_info
,
4907 eb
->start
, level
, 1,
4910 BUG_ON(ret
== -ENOMEM
);
4913 BUG_ON(wc
->refs
[level
] == 0);
4916 if (wc
->stage
== DROP_REFERENCE
) {
4917 if (wc
->refs
[level
] > 1)
4920 if (path
->locks
[level
] && !wc
->keep_locks
) {
4921 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
4922 path
->locks
[level
] = 0;
4927 /* wc->stage == UPDATE_BACKREF */
4928 if (!(wc
->flags
[level
] & flag
)) {
4929 BUG_ON(!path
->locks
[level
]);
4930 ret
= btrfs_inc_ref(trans
, root
, eb
, 1);
4931 BUG_ON(ret
); /* -ENOMEM */
4932 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
4933 BUG_ON(ret
); /* -ENOMEM */
4934 ret
= btrfs_set_disk_extent_flags(trans
, eb
, flag
,
4935 btrfs_header_level(eb
), 0);
4936 BUG_ON(ret
); /* -ENOMEM */
4937 wc
->flags
[level
] |= flag
;
4941 * the block is shared by multiple trees, so it's not good to
4942 * keep the tree lock
4944 if (path
->locks
[level
] && level
> 0) {
4945 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
4946 path
->locks
[level
] = 0;
4952 * This is used to verify a ref exists for this root to deal with a bug where we
4953 * would have a drop_progress key that hadn't been updated properly.
4955 static int check_ref_exists(struct btrfs_trans_handle
*trans
,
4956 struct btrfs_root
*root
, u64 bytenr
, u64 parent
,
4959 struct btrfs_path
*path
;
4960 struct btrfs_extent_inline_ref
*iref
;
4963 path
= btrfs_alloc_path();
4967 ret
= lookup_extent_backref(trans
, path
, &iref
, bytenr
,
4968 root
->fs_info
->nodesize
, parent
,
4969 root
->root_key
.objectid
, level
, 0);
4970 btrfs_free_path(path
);
4979 * helper to process tree block pointer.
4981 * when wc->stage == DROP_REFERENCE, this function checks
4982 * reference count of the block pointed to. if the block
4983 * is shared and we need update back refs for the subtree
4984 * rooted at the block, this function changes wc->stage to
4985 * UPDATE_BACKREF. if the block is shared and there is no
4986 * need to update back, this function drops the reference
4989 * NOTE: return value 1 means we should stop walking down.
4991 static noinline
int do_walk_down(struct btrfs_trans_handle
*trans
,
4992 struct btrfs_root
*root
,
4993 struct btrfs_path
*path
,
4994 struct walk_control
*wc
, int *lookup_info
)
4996 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5000 struct btrfs_key key
;
5001 struct btrfs_key first_key
;
5002 struct btrfs_ref ref
= { 0 };
5003 struct extent_buffer
*next
;
5004 int level
= wc
->level
;
5007 bool need_account
= false;
5009 generation
= btrfs_node_ptr_generation(path
->nodes
[level
],
5010 path
->slots
[level
]);
5012 * if the lower level block was created before the snapshot
5013 * was created, we know there is no need to update back refs
5016 if (wc
->stage
== UPDATE_BACKREF
&&
5017 generation
<= root
->root_key
.offset
) {
5022 bytenr
= btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]);
5023 btrfs_node_key_to_cpu(path
->nodes
[level
], &first_key
,
5024 path
->slots
[level
]);
5026 next
= find_extent_buffer(fs_info
, bytenr
);
5028 next
= btrfs_find_create_tree_block(fs_info
, bytenr
,
5029 root
->root_key
.objectid
, level
- 1);
5031 return PTR_ERR(next
);
5034 btrfs_tree_lock(next
);
5036 ret
= btrfs_lookup_extent_info(trans
, fs_info
, bytenr
, level
- 1, 1,
5037 &wc
->refs
[level
- 1],
5038 &wc
->flags
[level
- 1]);
5042 if (unlikely(wc
->refs
[level
- 1] == 0)) {
5043 btrfs_err(fs_info
, "Missing references.");
5049 if (wc
->stage
== DROP_REFERENCE
) {
5050 if (wc
->refs
[level
- 1] > 1) {
5051 need_account
= true;
5053 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
5056 if (!wc
->update_ref
||
5057 generation
<= root
->root_key
.offset
)
5060 btrfs_node_key_to_cpu(path
->nodes
[level
], &key
,
5061 path
->slots
[level
]);
5062 ret
= btrfs_comp_cpu_keys(&key
, &wc
->update_progress
);
5066 wc
->stage
= UPDATE_BACKREF
;
5067 wc
->shared_level
= level
- 1;
5071 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
5075 if (!btrfs_buffer_uptodate(next
, generation
, 0)) {
5076 btrfs_tree_unlock(next
);
5077 free_extent_buffer(next
);
5083 if (reada
&& level
== 1)
5084 reada_walk_down(trans
, root
, wc
, path
);
5085 next
= read_tree_block(fs_info
, bytenr
, root
->root_key
.objectid
,
5086 generation
, level
- 1, &first_key
);
5088 return PTR_ERR(next
);
5089 } else if (!extent_buffer_uptodate(next
)) {
5090 free_extent_buffer(next
);
5093 btrfs_tree_lock(next
);
5097 ASSERT(level
== btrfs_header_level(next
));
5098 if (level
!= btrfs_header_level(next
)) {
5099 btrfs_err(root
->fs_info
, "mismatched level");
5103 path
->nodes
[level
] = next
;
5104 path
->slots
[level
] = 0;
5105 path
->locks
[level
] = BTRFS_WRITE_LOCK
;
5111 wc
->refs
[level
- 1] = 0;
5112 wc
->flags
[level
- 1] = 0;
5113 if (wc
->stage
== DROP_REFERENCE
) {
5114 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
5115 parent
= path
->nodes
[level
]->start
;
5117 ASSERT(root
->root_key
.objectid
==
5118 btrfs_header_owner(path
->nodes
[level
]));
5119 if (root
->root_key
.objectid
!=
5120 btrfs_header_owner(path
->nodes
[level
])) {
5121 btrfs_err(root
->fs_info
,
5122 "mismatched block owner");
5130 * If we had a drop_progress we need to verify the refs are set
5131 * as expected. If we find our ref then we know that from here
5132 * on out everything should be correct, and we can clear the
5135 if (wc
->restarted
) {
5136 ret
= check_ref_exists(trans
, root
, bytenr
, parent
,
5147 * Reloc tree doesn't contribute to qgroup numbers, and we have
5148 * already accounted them at merge time (replace_path),
5149 * thus we could skip expensive subtree trace here.
5151 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
&&
5153 ret
= btrfs_qgroup_trace_subtree(trans
, next
,
5154 generation
, level
- 1);
5156 btrfs_err_rl(fs_info
,
5157 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
5163 * We need to update the next key in our walk control so we can
5164 * update the drop_progress key accordingly. We don't care if
5165 * find_next_key doesn't find a key because that means we're at
5166 * the end and are going to clean up now.
5168 wc
->drop_level
= level
;
5169 find_next_key(path
, level
, &wc
->drop_progress
);
5171 btrfs_init_generic_ref(&ref
, BTRFS_DROP_DELAYED_REF
, bytenr
,
5172 fs_info
->nodesize
, parent
);
5173 btrfs_init_tree_ref(&ref
, level
- 1, root
->root_key
.objectid
);
5174 ret
= btrfs_free_extent(trans
, &ref
);
5183 btrfs_tree_unlock(next
);
5184 free_extent_buffer(next
);
5190 * helper to process tree block while walking up the tree.
5192 * when wc->stage == DROP_REFERENCE, this function drops
5193 * reference count on the block.
5195 * when wc->stage == UPDATE_BACKREF, this function changes
5196 * wc->stage back to DROP_REFERENCE if we changed wc->stage
5197 * to UPDATE_BACKREF previously while processing the block.
5199 * NOTE: return value 1 means we should stop walking up.
5201 static noinline
int walk_up_proc(struct btrfs_trans_handle
*trans
,
5202 struct btrfs_root
*root
,
5203 struct btrfs_path
*path
,
5204 struct walk_control
*wc
)
5206 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5208 int level
= wc
->level
;
5209 struct extent_buffer
*eb
= path
->nodes
[level
];
5212 if (wc
->stage
== UPDATE_BACKREF
) {
5213 BUG_ON(wc
->shared_level
< level
);
5214 if (level
< wc
->shared_level
)
5217 ret
= find_next_key(path
, level
+ 1, &wc
->update_progress
);
5221 wc
->stage
= DROP_REFERENCE
;
5222 wc
->shared_level
= -1;
5223 path
->slots
[level
] = 0;
5226 * check reference count again if the block isn't locked.
5227 * we should start walking down the tree again if reference
5230 if (!path
->locks
[level
]) {
5232 btrfs_tree_lock(eb
);
5233 path
->locks
[level
] = BTRFS_WRITE_LOCK
;
5235 ret
= btrfs_lookup_extent_info(trans
, fs_info
,
5236 eb
->start
, level
, 1,
5240 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
5241 path
->locks
[level
] = 0;
5244 BUG_ON(wc
->refs
[level
] == 0);
5245 if (wc
->refs
[level
] == 1) {
5246 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
5247 path
->locks
[level
] = 0;
5253 /* wc->stage == DROP_REFERENCE */
5254 BUG_ON(wc
->refs
[level
] > 1 && !path
->locks
[level
]);
5256 if (wc
->refs
[level
] == 1) {
5258 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
5259 ret
= btrfs_dec_ref(trans
, root
, eb
, 1);
5261 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
5262 BUG_ON(ret
); /* -ENOMEM */
5263 if (is_fstree(root
->root_key
.objectid
)) {
5264 ret
= btrfs_qgroup_trace_leaf_items(trans
, eb
);
5266 btrfs_err_rl(fs_info
,
5267 "error %d accounting leaf items, quota is out of sync, rescan required",
5272 /* make block locked assertion in btrfs_clean_tree_block happy */
5273 if (!path
->locks
[level
] &&
5274 btrfs_header_generation(eb
) == trans
->transid
) {
5275 btrfs_tree_lock(eb
);
5276 path
->locks
[level
] = BTRFS_WRITE_LOCK
;
5278 btrfs_clean_tree_block(eb
);
5281 if (eb
== root
->node
) {
5282 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
5284 else if (root
->root_key
.objectid
!= btrfs_header_owner(eb
))
5285 goto owner_mismatch
;
5287 if (wc
->flags
[level
+ 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
5288 parent
= path
->nodes
[level
+ 1]->start
;
5289 else if (root
->root_key
.objectid
!=
5290 btrfs_header_owner(path
->nodes
[level
+ 1]))
5291 goto owner_mismatch
;
5294 btrfs_free_tree_block(trans
, root
, eb
, parent
, wc
->refs
[level
] == 1);
5296 wc
->refs
[level
] = 0;
5297 wc
->flags
[level
] = 0;
5301 btrfs_err_rl(fs_info
, "unexpected tree owner, have %llu expect %llu",
5302 btrfs_header_owner(eb
), root
->root_key
.objectid
);
5306 static noinline
int walk_down_tree(struct btrfs_trans_handle
*trans
,
5307 struct btrfs_root
*root
,
5308 struct btrfs_path
*path
,
5309 struct walk_control
*wc
)
5311 int level
= wc
->level
;
5312 int lookup_info
= 1;
5315 while (level
>= 0) {
5316 ret
= walk_down_proc(trans
, root
, path
, wc
, lookup_info
);
5323 if (path
->slots
[level
] >=
5324 btrfs_header_nritems(path
->nodes
[level
]))
5327 ret
= do_walk_down(trans
, root
, path
, wc
, &lookup_info
);
5329 path
->slots
[level
]++;
5338 static noinline
int walk_up_tree(struct btrfs_trans_handle
*trans
,
5339 struct btrfs_root
*root
,
5340 struct btrfs_path
*path
,
5341 struct walk_control
*wc
, int max_level
)
5343 int level
= wc
->level
;
5346 path
->slots
[level
] = btrfs_header_nritems(path
->nodes
[level
]);
5347 while (level
< max_level
&& path
->nodes
[level
]) {
5349 if (path
->slots
[level
] + 1 <
5350 btrfs_header_nritems(path
->nodes
[level
])) {
5351 path
->slots
[level
]++;
5354 ret
= walk_up_proc(trans
, root
, path
, wc
);
5360 if (path
->locks
[level
]) {
5361 btrfs_tree_unlock_rw(path
->nodes
[level
],
5362 path
->locks
[level
]);
5363 path
->locks
[level
] = 0;
5365 free_extent_buffer(path
->nodes
[level
]);
5366 path
->nodes
[level
] = NULL
;
5374 * drop a subvolume tree.
5376 * this function traverses the tree freeing any blocks that only
5377 * referenced by the tree.
5379 * when a shared tree block is found. this function decreases its
5380 * reference count by one. if update_ref is true, this function
5381 * also make sure backrefs for the shared block and all lower level
5382 * blocks are properly updated.
5384 * If called with for_reloc == 0, may exit early with -EAGAIN
5386 int btrfs_drop_snapshot(struct btrfs_root
*root
, int update_ref
, int for_reloc
)
5388 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5389 struct btrfs_path
*path
;
5390 struct btrfs_trans_handle
*trans
;
5391 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
5392 struct btrfs_root_item
*root_item
= &root
->root_item
;
5393 struct walk_control
*wc
;
5394 struct btrfs_key key
;
5398 bool root_dropped
= false;
5400 btrfs_debug(fs_info
, "Drop subvolume %llu", root
->root_key
.objectid
);
5402 path
= btrfs_alloc_path();
5408 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
5410 btrfs_free_path(path
);
5416 * Use join to avoid potential EINTR from transaction start. See
5417 * wait_reserve_ticket and the whole reservation callchain.
5420 trans
= btrfs_join_transaction(tree_root
);
5422 trans
= btrfs_start_transaction(tree_root
, 0);
5423 if (IS_ERR(trans
)) {
5424 err
= PTR_ERR(trans
);
5428 err
= btrfs_run_delayed_items(trans
);
5433 * This will help us catch people modifying the fs tree while we're
5434 * dropping it. It is unsafe to mess with the fs tree while it's being
5435 * dropped as we unlock the root node and parent nodes as we walk down
5436 * the tree, assuming nothing will change. If something does change
5437 * then we'll have stale information and drop references to blocks we've
5440 set_bit(BTRFS_ROOT_DELETING
, &root
->state
);
5441 if (btrfs_disk_key_objectid(&root_item
->drop_progress
) == 0) {
5442 level
= btrfs_header_level(root
->node
);
5443 path
->nodes
[level
] = btrfs_lock_root_node(root
);
5444 path
->slots
[level
] = 0;
5445 path
->locks
[level
] = BTRFS_WRITE_LOCK
;
5446 memset(&wc
->update_progress
, 0,
5447 sizeof(wc
->update_progress
));
5449 btrfs_disk_key_to_cpu(&key
, &root_item
->drop_progress
);
5450 memcpy(&wc
->update_progress
, &key
,
5451 sizeof(wc
->update_progress
));
5453 level
= btrfs_root_drop_level(root_item
);
5455 path
->lowest_level
= level
;
5456 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5457 path
->lowest_level
= 0;
5465 * unlock our path, this is safe because only this
5466 * function is allowed to delete this snapshot
5468 btrfs_unlock_up_safe(path
, 0);
5470 level
= btrfs_header_level(root
->node
);
5472 btrfs_tree_lock(path
->nodes
[level
]);
5473 path
->locks
[level
] = BTRFS_WRITE_LOCK
;
5475 ret
= btrfs_lookup_extent_info(trans
, fs_info
,
5476 path
->nodes
[level
]->start
,
5477 level
, 1, &wc
->refs
[level
],
5483 BUG_ON(wc
->refs
[level
] == 0);
5485 if (level
== btrfs_root_drop_level(root_item
))
5488 btrfs_tree_unlock(path
->nodes
[level
]);
5489 path
->locks
[level
] = 0;
5490 WARN_ON(wc
->refs
[level
] != 1);
5495 wc
->restarted
= test_bit(BTRFS_ROOT_DEAD_TREE
, &root
->state
);
5497 wc
->shared_level
= -1;
5498 wc
->stage
= DROP_REFERENCE
;
5499 wc
->update_ref
= update_ref
;
5501 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(fs_info
);
5505 ret
= walk_down_tree(trans
, root
, path
, wc
);
5511 ret
= walk_up_tree(trans
, root
, path
, wc
, BTRFS_MAX_LEVEL
);
5518 BUG_ON(wc
->stage
!= DROP_REFERENCE
);
5522 if (wc
->stage
== DROP_REFERENCE
) {
5523 wc
->drop_level
= wc
->level
;
5524 btrfs_node_key_to_cpu(path
->nodes
[wc
->drop_level
],
5526 path
->slots
[wc
->drop_level
]);
5528 btrfs_cpu_key_to_disk(&root_item
->drop_progress
,
5529 &wc
->drop_progress
);
5530 btrfs_set_root_drop_level(root_item
, wc
->drop_level
);
5532 BUG_ON(wc
->level
== 0);
5533 if (btrfs_should_end_transaction(trans
) ||
5534 (!for_reloc
&& btrfs_need_cleaner_sleep(fs_info
))) {
5535 ret
= btrfs_update_root(trans
, tree_root
,
5539 btrfs_abort_transaction(trans
, ret
);
5544 btrfs_end_transaction_throttle(trans
);
5545 if (!for_reloc
&& btrfs_need_cleaner_sleep(fs_info
)) {
5546 btrfs_debug(fs_info
,
5547 "drop snapshot early exit");
5552 trans
= btrfs_start_transaction(tree_root
, 0);
5553 if (IS_ERR(trans
)) {
5554 err
= PTR_ERR(trans
);
5559 btrfs_release_path(path
);
5563 ret
= btrfs_del_root(trans
, &root
->root_key
);
5565 btrfs_abort_transaction(trans
, ret
);
5570 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
) {
5571 ret
= btrfs_find_root(tree_root
, &root
->root_key
, path
,
5574 btrfs_abort_transaction(trans
, ret
);
5577 } else if (ret
> 0) {
5578 /* if we fail to delete the orphan item this time
5579 * around, it'll get picked up the next time.
5581 * The most common failure here is just -ENOENT.
5583 btrfs_del_orphan_item(trans
, tree_root
,
5584 root
->root_key
.objectid
);
5589 * This subvolume is going to be completely dropped, and won't be
5590 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
5591 * commit transaction time. So free it here manually.
5593 btrfs_qgroup_convert_reserved_meta(root
, INT_MAX
);
5594 btrfs_qgroup_free_meta_all_pertrans(root
);
5596 if (test_bit(BTRFS_ROOT_IN_RADIX
, &root
->state
))
5597 btrfs_add_dropped_root(trans
, root
);
5599 btrfs_put_root(root
);
5600 root_dropped
= true;
5602 btrfs_end_transaction_throttle(trans
);
5605 btrfs_free_path(path
);
5608 * So if we need to stop dropping the snapshot for whatever reason we
5609 * need to make sure to add it back to the dead root list so that we
5610 * keep trying to do the work later. This also cleans up roots if we
5611 * don't have it in the radix (like when we recover after a power fail
5612 * or unmount) so we don't leak memory.
5614 if (!for_reloc
&& !root_dropped
)
5615 btrfs_add_dead_root(root
);
5620 * drop subtree rooted at tree block 'node'.
5622 * NOTE: this function will unlock and release tree block 'node'
5623 * only used by relocation code
5625 int btrfs_drop_subtree(struct btrfs_trans_handle
*trans
,
5626 struct btrfs_root
*root
,
5627 struct extent_buffer
*node
,
5628 struct extent_buffer
*parent
)
5630 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5631 struct btrfs_path
*path
;
5632 struct walk_control
*wc
;
5638 BUG_ON(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
);
5640 path
= btrfs_alloc_path();
5644 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
5646 btrfs_free_path(path
);
5650 btrfs_assert_tree_locked(parent
);
5651 parent_level
= btrfs_header_level(parent
);
5652 atomic_inc(&parent
->refs
);
5653 path
->nodes
[parent_level
] = parent
;
5654 path
->slots
[parent_level
] = btrfs_header_nritems(parent
);
5656 btrfs_assert_tree_locked(node
);
5657 level
= btrfs_header_level(node
);
5658 path
->nodes
[level
] = node
;
5659 path
->slots
[level
] = 0;
5660 path
->locks
[level
] = BTRFS_WRITE_LOCK
;
5662 wc
->refs
[parent_level
] = 1;
5663 wc
->flags
[parent_level
] = BTRFS_BLOCK_FLAG_FULL_BACKREF
;
5665 wc
->shared_level
= -1;
5666 wc
->stage
= DROP_REFERENCE
;
5669 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(fs_info
);
5672 wret
= walk_down_tree(trans
, root
, path
, wc
);
5678 wret
= walk_up_tree(trans
, root
, path
, wc
, parent_level
);
5686 btrfs_free_path(path
);
5691 * helper to account the unused space of all the readonly block group in the
5692 * space_info. takes mirrors into account.
5694 u64
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info
*sinfo
)
5696 struct btrfs_block_group
*block_group
;
5700 /* It's df, we don't care if it's racy */
5701 if (list_empty(&sinfo
->ro_bgs
))
5704 spin_lock(&sinfo
->lock
);
5705 list_for_each_entry(block_group
, &sinfo
->ro_bgs
, ro_list
) {
5706 spin_lock(&block_group
->lock
);
5708 if (!block_group
->ro
) {
5709 spin_unlock(&block_group
->lock
);
5713 factor
= btrfs_bg_type_to_factor(block_group
->flags
);
5714 free_bytes
+= (block_group
->length
-
5715 block_group
->used
) * factor
;
5717 spin_unlock(&block_group
->lock
);
5719 spin_unlock(&sinfo
->lock
);
5724 int btrfs_error_unpin_extent_range(struct btrfs_fs_info
*fs_info
,
5727 return unpin_extent_range(fs_info
, start
, end
, false);
5731 * It used to be that old block groups would be left around forever.
5732 * Iterating over them would be enough to trim unused space. Since we
5733 * now automatically remove them, we also need to iterate over unallocated
5736 * We don't want a transaction for this since the discard may take a
5737 * substantial amount of time. We don't require that a transaction be
5738 * running, but we do need to take a running transaction into account
5739 * to ensure that we're not discarding chunks that were released or
5740 * allocated in the current transaction.
5742 * Holding the chunks lock will prevent other threads from allocating
5743 * or releasing chunks, but it won't prevent a running transaction
5744 * from committing and releasing the memory that the pending chunks
5745 * list head uses. For that, we need to take a reference to the
5746 * transaction and hold the commit root sem. We only need to hold
5747 * it while performing the free space search since we have already
5748 * held back allocations.
5750 static int btrfs_trim_free_extents(struct btrfs_device
*device
, u64
*trimmed
)
5752 u64 start
= SZ_1M
, len
= 0, end
= 0;
5757 /* Discard not supported = nothing to do. */
5758 if (!blk_queue_discard(bdev_get_queue(device
->bdev
)))
5761 /* Not writable = nothing to do. */
5762 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
))
5765 /* No free space = nothing to do. */
5766 if (device
->total_bytes
<= device
->bytes_used
)
5772 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
5775 ret
= mutex_lock_interruptible(&fs_info
->chunk_mutex
);
5779 find_first_clear_extent_bit(&device
->alloc_state
, start
,
5781 CHUNK_TRIMMED
| CHUNK_ALLOCATED
);
5783 /* Check if there are any CHUNK_* bits left */
5784 if (start
> device
->total_bytes
) {
5785 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG
));
5786 btrfs_warn_in_rcu(fs_info
,
5787 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
5788 start
, end
- start
+ 1,
5789 rcu_str_deref(device
->name
),
5790 device
->total_bytes
);
5791 mutex_unlock(&fs_info
->chunk_mutex
);
5796 /* Ensure we skip the reserved area in the first 1M */
5797 start
= max_t(u64
, start
, SZ_1M
);
5800 * If find_first_clear_extent_bit find a range that spans the
5801 * end of the device it will set end to -1, in this case it's up
5802 * to the caller to trim the value to the size of the device.
5804 end
= min(end
, device
->total_bytes
- 1);
5806 len
= end
- start
+ 1;
5808 /* We didn't find any extents */
5810 mutex_unlock(&fs_info
->chunk_mutex
);
5815 ret
= btrfs_issue_discard(device
->bdev
, start
, len
,
5818 set_extent_bits(&device
->alloc_state
, start
,
5821 mutex_unlock(&fs_info
->chunk_mutex
);
5829 if (fatal_signal_pending(current
)) {
5841 * Trim the whole filesystem by:
5842 * 1) trimming the free space in each block group
5843 * 2) trimming the unallocated space on each device
5845 * This will also continue trimming even if a block group or device encounters
5846 * an error. The return value will be the last error, or 0 if nothing bad
5849 int btrfs_trim_fs(struct btrfs_fs_info
*fs_info
, struct fstrim_range
*range
)
5851 struct btrfs_block_group
*cache
= NULL
;
5852 struct btrfs_device
*device
;
5853 struct list_head
*devices
;
5855 u64 range_end
= U64_MAX
;
5866 * Check range overflow if range->len is set.
5867 * The default range->len is U64_MAX.
5869 if (range
->len
!= U64_MAX
&&
5870 check_add_overflow(range
->start
, range
->len
, &range_end
))
5873 cache
= btrfs_lookup_first_block_group(fs_info
, range
->start
);
5874 for (; cache
; cache
= btrfs_next_block_group(cache
)) {
5875 if (cache
->start
>= range_end
) {
5876 btrfs_put_block_group(cache
);
5880 start
= max(range
->start
, cache
->start
);
5881 end
= min(range_end
, cache
->start
+ cache
->length
);
5883 if (end
- start
>= range
->minlen
) {
5884 if (!btrfs_block_group_done(cache
)) {
5885 ret
= btrfs_cache_block_group(cache
, 0);
5891 ret
= btrfs_wait_block_group_cache_done(cache
);
5898 ret
= btrfs_trim_block_group(cache
,
5904 trimmed
+= group_trimmed
;
5915 "failed to trim %llu block group(s), last error %d",
5917 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
5918 devices
= &fs_info
->fs_devices
->devices
;
5919 list_for_each_entry(device
, devices
, dev_list
) {
5920 ret
= btrfs_trim_free_extents(device
, &group_trimmed
);
5927 trimmed
+= group_trimmed
;
5929 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
5933 "failed to trim %llu device(s), last error %d",
5934 dev_failed
, dev_ret
);
5935 range
->len
= trimmed
;