Merge tag 'regmap-fix-v5.11-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux/fpc-iii.git] / fs / btrfs / file.c
blob0e41459b8de66781490fcf7192cd1e84e298a582
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include "ctree.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "btrfs_inode.h"
23 #include "print-tree.h"
24 #include "tree-log.h"
25 #include "locking.h"
26 #include "volumes.h"
27 #include "qgroup.h"
28 #include "compression.h"
29 #include "delalloc-space.h"
30 #include "reflink.h"
32 static struct kmem_cache *btrfs_inode_defrag_cachep;
34 * when auto defrag is enabled we
35 * queue up these defrag structs to remember which
36 * inodes need defragging passes
38 struct inode_defrag {
39 struct rb_node rb_node;
40 /* objectid */
41 u64 ino;
43 * transid where the defrag was added, we search for
44 * extents newer than this
46 u64 transid;
48 /* root objectid */
49 u64 root;
51 /* last offset we were able to defrag */
52 u64 last_offset;
54 /* if we've wrapped around back to zero once already */
55 int cycled;
58 static int __compare_inode_defrag(struct inode_defrag *defrag1,
59 struct inode_defrag *defrag2)
61 if (defrag1->root > defrag2->root)
62 return 1;
63 else if (defrag1->root < defrag2->root)
64 return -1;
65 else if (defrag1->ino > defrag2->ino)
66 return 1;
67 else if (defrag1->ino < defrag2->ino)
68 return -1;
69 else
70 return 0;
73 /* pop a record for an inode into the defrag tree. The lock
74 * must be held already
76 * If you're inserting a record for an older transid than an
77 * existing record, the transid already in the tree is lowered
79 * If an existing record is found the defrag item you
80 * pass in is freed
82 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
83 struct inode_defrag *defrag)
85 struct btrfs_fs_info *fs_info = inode->root->fs_info;
86 struct inode_defrag *entry;
87 struct rb_node **p;
88 struct rb_node *parent = NULL;
89 int ret;
91 p = &fs_info->defrag_inodes.rb_node;
92 while (*p) {
93 parent = *p;
94 entry = rb_entry(parent, struct inode_defrag, rb_node);
96 ret = __compare_inode_defrag(defrag, entry);
97 if (ret < 0)
98 p = &parent->rb_left;
99 else if (ret > 0)
100 p = &parent->rb_right;
101 else {
102 /* if we're reinserting an entry for
103 * an old defrag run, make sure to
104 * lower the transid of our existing record
106 if (defrag->transid < entry->transid)
107 entry->transid = defrag->transid;
108 if (defrag->last_offset > entry->last_offset)
109 entry->last_offset = defrag->last_offset;
110 return -EEXIST;
113 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
114 rb_link_node(&defrag->rb_node, parent, p);
115 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
116 return 0;
119 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
121 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
122 return 0;
124 if (btrfs_fs_closing(fs_info))
125 return 0;
127 return 1;
131 * insert a defrag record for this inode if auto defrag is
132 * enabled
134 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
135 struct btrfs_inode *inode)
137 struct btrfs_root *root = inode->root;
138 struct btrfs_fs_info *fs_info = root->fs_info;
139 struct inode_defrag *defrag;
140 u64 transid;
141 int ret;
143 if (!__need_auto_defrag(fs_info))
144 return 0;
146 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
147 return 0;
149 if (trans)
150 transid = trans->transid;
151 else
152 transid = inode->root->last_trans;
154 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
155 if (!defrag)
156 return -ENOMEM;
158 defrag->ino = btrfs_ino(inode);
159 defrag->transid = transid;
160 defrag->root = root->root_key.objectid;
162 spin_lock(&fs_info->defrag_inodes_lock);
163 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
165 * If we set IN_DEFRAG flag and evict the inode from memory,
166 * and then re-read this inode, this new inode doesn't have
167 * IN_DEFRAG flag. At the case, we may find the existed defrag.
169 ret = __btrfs_add_inode_defrag(inode, defrag);
170 if (ret)
171 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
172 } else {
173 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
175 spin_unlock(&fs_info->defrag_inodes_lock);
176 return 0;
180 * Requeue the defrag object. If there is a defrag object that points to
181 * the same inode in the tree, we will merge them together (by
182 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
184 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
185 struct inode_defrag *defrag)
187 struct btrfs_fs_info *fs_info = inode->root->fs_info;
188 int ret;
190 if (!__need_auto_defrag(fs_info))
191 goto out;
194 * Here we don't check the IN_DEFRAG flag, because we need merge
195 * them together.
197 spin_lock(&fs_info->defrag_inodes_lock);
198 ret = __btrfs_add_inode_defrag(inode, defrag);
199 spin_unlock(&fs_info->defrag_inodes_lock);
200 if (ret)
201 goto out;
202 return;
203 out:
204 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
208 * pick the defragable inode that we want, if it doesn't exist, we will get
209 * the next one.
211 static struct inode_defrag *
212 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
214 struct inode_defrag *entry = NULL;
215 struct inode_defrag tmp;
216 struct rb_node *p;
217 struct rb_node *parent = NULL;
218 int ret;
220 tmp.ino = ino;
221 tmp.root = root;
223 spin_lock(&fs_info->defrag_inodes_lock);
224 p = fs_info->defrag_inodes.rb_node;
225 while (p) {
226 parent = p;
227 entry = rb_entry(parent, struct inode_defrag, rb_node);
229 ret = __compare_inode_defrag(&tmp, entry);
230 if (ret < 0)
231 p = parent->rb_left;
232 else if (ret > 0)
233 p = parent->rb_right;
234 else
235 goto out;
238 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
239 parent = rb_next(parent);
240 if (parent)
241 entry = rb_entry(parent, struct inode_defrag, rb_node);
242 else
243 entry = NULL;
245 out:
246 if (entry)
247 rb_erase(parent, &fs_info->defrag_inodes);
248 spin_unlock(&fs_info->defrag_inodes_lock);
249 return entry;
252 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
254 struct inode_defrag *defrag;
255 struct rb_node *node;
257 spin_lock(&fs_info->defrag_inodes_lock);
258 node = rb_first(&fs_info->defrag_inodes);
259 while (node) {
260 rb_erase(node, &fs_info->defrag_inodes);
261 defrag = rb_entry(node, struct inode_defrag, rb_node);
262 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
264 cond_resched_lock(&fs_info->defrag_inodes_lock);
266 node = rb_first(&fs_info->defrag_inodes);
268 spin_unlock(&fs_info->defrag_inodes_lock);
271 #define BTRFS_DEFRAG_BATCH 1024
273 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
274 struct inode_defrag *defrag)
276 struct btrfs_root *inode_root;
277 struct inode *inode;
278 struct btrfs_ioctl_defrag_range_args range;
279 int num_defrag;
280 int ret;
282 /* get the inode */
283 inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
284 if (IS_ERR(inode_root)) {
285 ret = PTR_ERR(inode_root);
286 goto cleanup;
289 inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
290 btrfs_put_root(inode_root);
291 if (IS_ERR(inode)) {
292 ret = PTR_ERR(inode);
293 goto cleanup;
296 /* do a chunk of defrag */
297 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
298 memset(&range, 0, sizeof(range));
299 range.len = (u64)-1;
300 range.start = defrag->last_offset;
302 sb_start_write(fs_info->sb);
303 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
304 BTRFS_DEFRAG_BATCH);
305 sb_end_write(fs_info->sb);
307 * if we filled the whole defrag batch, there
308 * must be more work to do. Queue this defrag
309 * again
311 if (num_defrag == BTRFS_DEFRAG_BATCH) {
312 defrag->last_offset = range.start;
313 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
314 } else if (defrag->last_offset && !defrag->cycled) {
316 * we didn't fill our defrag batch, but
317 * we didn't start at zero. Make sure we loop
318 * around to the start of the file.
320 defrag->last_offset = 0;
321 defrag->cycled = 1;
322 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
323 } else {
324 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
327 iput(inode);
328 return 0;
329 cleanup:
330 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
331 return ret;
335 * run through the list of inodes in the FS that need
336 * defragging
338 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
340 struct inode_defrag *defrag;
341 u64 first_ino = 0;
342 u64 root_objectid = 0;
344 atomic_inc(&fs_info->defrag_running);
345 while (1) {
346 /* Pause the auto defragger. */
347 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
348 &fs_info->fs_state))
349 break;
351 if (!__need_auto_defrag(fs_info))
352 break;
354 /* find an inode to defrag */
355 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
356 first_ino);
357 if (!defrag) {
358 if (root_objectid || first_ino) {
359 root_objectid = 0;
360 first_ino = 0;
361 continue;
362 } else {
363 break;
367 first_ino = defrag->ino + 1;
368 root_objectid = defrag->root;
370 __btrfs_run_defrag_inode(fs_info, defrag);
372 atomic_dec(&fs_info->defrag_running);
375 * during unmount, we use the transaction_wait queue to
376 * wait for the defragger to stop
378 wake_up(&fs_info->transaction_wait);
379 return 0;
382 /* simple helper to fault in pages and copy. This should go away
383 * and be replaced with calls into generic code.
385 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
386 struct page **prepared_pages,
387 struct iov_iter *i)
389 size_t copied = 0;
390 size_t total_copied = 0;
391 int pg = 0;
392 int offset = offset_in_page(pos);
394 while (write_bytes > 0) {
395 size_t count = min_t(size_t,
396 PAGE_SIZE - offset, write_bytes);
397 struct page *page = prepared_pages[pg];
399 * Copy data from userspace to the current page
401 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
403 /* Flush processor's dcache for this page */
404 flush_dcache_page(page);
407 * if we get a partial write, we can end up with
408 * partially up to date pages. These add
409 * a lot of complexity, so make sure they don't
410 * happen by forcing this copy to be retried.
412 * The rest of the btrfs_file_write code will fall
413 * back to page at a time copies after we return 0.
415 if (!PageUptodate(page) && copied < count)
416 copied = 0;
418 iov_iter_advance(i, copied);
419 write_bytes -= copied;
420 total_copied += copied;
422 /* Return to btrfs_file_write_iter to fault page */
423 if (unlikely(copied == 0))
424 break;
426 if (copied < PAGE_SIZE - offset) {
427 offset += copied;
428 } else {
429 pg++;
430 offset = 0;
433 return total_copied;
437 * unlocks pages after btrfs_file_write is done with them
439 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
441 size_t i;
442 for (i = 0; i < num_pages; i++) {
443 /* page checked is some magic around finding pages that
444 * have been modified without going through btrfs_set_page_dirty
445 * clear it here. There should be no need to mark the pages
446 * accessed as prepare_pages should have marked them accessed
447 * in prepare_pages via find_or_create_page()
449 ClearPageChecked(pages[i]);
450 unlock_page(pages[i]);
451 put_page(pages[i]);
456 * after copy_from_user, pages need to be dirtied and we need to make
457 * sure holes are created between the current EOF and the start of
458 * any next extents (if required).
460 * this also makes the decision about creating an inline extent vs
461 * doing real data extents, marking pages dirty and delalloc as required.
463 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
464 size_t num_pages, loff_t pos, size_t write_bytes,
465 struct extent_state **cached, bool noreserve)
467 struct btrfs_fs_info *fs_info = inode->root->fs_info;
468 int err = 0;
469 int i;
470 u64 num_bytes;
471 u64 start_pos;
472 u64 end_of_last_block;
473 u64 end_pos = pos + write_bytes;
474 loff_t isize = i_size_read(&inode->vfs_inode);
475 unsigned int extra_bits = 0;
477 if (write_bytes == 0)
478 return 0;
480 if (noreserve)
481 extra_bits |= EXTENT_NORESERVE;
483 start_pos = round_down(pos, fs_info->sectorsize);
484 num_bytes = round_up(write_bytes + pos - start_pos,
485 fs_info->sectorsize);
487 end_of_last_block = start_pos + num_bytes - 1;
490 * The pages may have already been dirty, clear out old accounting so
491 * we can set things up properly
493 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
494 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
495 0, 0, cached);
497 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
498 extra_bits, cached);
499 if (err)
500 return err;
502 for (i = 0; i < num_pages; i++) {
503 struct page *p = pages[i];
504 SetPageUptodate(p);
505 ClearPageChecked(p);
506 set_page_dirty(p);
510 * we've only changed i_size in ram, and we haven't updated
511 * the disk i_size. There is no need to log the inode
512 * at this time.
514 if (end_pos > isize)
515 i_size_write(&inode->vfs_inode, end_pos);
516 return 0;
520 * this drops all the extents in the cache that intersect the range
521 * [start, end]. Existing extents are split as required.
523 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
524 int skip_pinned)
526 struct extent_map *em;
527 struct extent_map *split = NULL;
528 struct extent_map *split2 = NULL;
529 struct extent_map_tree *em_tree = &inode->extent_tree;
530 u64 len = end - start + 1;
531 u64 gen;
532 int ret;
533 int testend = 1;
534 unsigned long flags;
535 int compressed = 0;
536 bool modified;
538 WARN_ON(end < start);
539 if (end == (u64)-1) {
540 len = (u64)-1;
541 testend = 0;
543 while (1) {
544 int no_splits = 0;
546 modified = false;
547 if (!split)
548 split = alloc_extent_map();
549 if (!split2)
550 split2 = alloc_extent_map();
551 if (!split || !split2)
552 no_splits = 1;
554 write_lock(&em_tree->lock);
555 em = lookup_extent_mapping(em_tree, start, len);
556 if (!em) {
557 write_unlock(&em_tree->lock);
558 break;
560 flags = em->flags;
561 gen = em->generation;
562 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
563 if (testend && em->start + em->len >= start + len) {
564 free_extent_map(em);
565 write_unlock(&em_tree->lock);
566 break;
568 start = em->start + em->len;
569 if (testend)
570 len = start + len - (em->start + em->len);
571 free_extent_map(em);
572 write_unlock(&em_tree->lock);
573 continue;
575 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
576 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
577 clear_bit(EXTENT_FLAG_LOGGING, &flags);
578 modified = !list_empty(&em->list);
579 if (no_splits)
580 goto next;
582 if (em->start < start) {
583 split->start = em->start;
584 split->len = start - em->start;
586 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
587 split->orig_start = em->orig_start;
588 split->block_start = em->block_start;
590 if (compressed)
591 split->block_len = em->block_len;
592 else
593 split->block_len = split->len;
594 split->orig_block_len = max(split->block_len,
595 em->orig_block_len);
596 split->ram_bytes = em->ram_bytes;
597 } else {
598 split->orig_start = split->start;
599 split->block_len = 0;
600 split->block_start = em->block_start;
601 split->orig_block_len = 0;
602 split->ram_bytes = split->len;
605 split->generation = gen;
606 split->flags = flags;
607 split->compress_type = em->compress_type;
608 replace_extent_mapping(em_tree, em, split, modified);
609 free_extent_map(split);
610 split = split2;
611 split2 = NULL;
613 if (testend && em->start + em->len > start + len) {
614 u64 diff = start + len - em->start;
616 split->start = start + len;
617 split->len = em->start + em->len - (start + len);
618 split->flags = flags;
619 split->compress_type = em->compress_type;
620 split->generation = gen;
622 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
623 split->orig_block_len = max(em->block_len,
624 em->orig_block_len);
626 split->ram_bytes = em->ram_bytes;
627 if (compressed) {
628 split->block_len = em->block_len;
629 split->block_start = em->block_start;
630 split->orig_start = em->orig_start;
631 } else {
632 split->block_len = split->len;
633 split->block_start = em->block_start
634 + diff;
635 split->orig_start = em->orig_start;
637 } else {
638 split->ram_bytes = split->len;
639 split->orig_start = split->start;
640 split->block_len = 0;
641 split->block_start = em->block_start;
642 split->orig_block_len = 0;
645 if (extent_map_in_tree(em)) {
646 replace_extent_mapping(em_tree, em, split,
647 modified);
648 } else {
649 ret = add_extent_mapping(em_tree, split,
650 modified);
651 ASSERT(ret == 0); /* Logic error */
653 free_extent_map(split);
654 split = NULL;
656 next:
657 if (extent_map_in_tree(em))
658 remove_extent_mapping(em_tree, em);
659 write_unlock(&em_tree->lock);
661 /* once for us */
662 free_extent_map(em);
663 /* once for the tree*/
664 free_extent_map(em);
666 if (split)
667 free_extent_map(split);
668 if (split2)
669 free_extent_map(split2);
673 * this is very complex, but the basic idea is to drop all extents
674 * in the range start - end. hint_block is filled in with a block number
675 * that would be a good hint to the block allocator for this file.
677 * If an extent intersects the range but is not entirely inside the range
678 * it is either truncated or split. Anything entirely inside the range
679 * is deleted from the tree.
681 * Note: the VFS' inode number of bytes is not updated, it's up to the caller
682 * to deal with that. We set the field 'bytes_found' of the arguments structure
683 * with the number of allocated bytes found in the target range, so that the
684 * caller can update the inode's number of bytes in an atomic way when
685 * replacing extents in a range to avoid races with stat(2).
687 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
688 struct btrfs_root *root, struct btrfs_inode *inode,
689 struct btrfs_drop_extents_args *args)
691 struct btrfs_fs_info *fs_info = root->fs_info;
692 struct extent_buffer *leaf;
693 struct btrfs_file_extent_item *fi;
694 struct btrfs_ref ref = { 0 };
695 struct btrfs_key key;
696 struct btrfs_key new_key;
697 u64 ino = btrfs_ino(inode);
698 u64 search_start = args->start;
699 u64 disk_bytenr = 0;
700 u64 num_bytes = 0;
701 u64 extent_offset = 0;
702 u64 extent_end = 0;
703 u64 last_end = args->start;
704 int del_nr = 0;
705 int del_slot = 0;
706 int extent_type;
707 int recow;
708 int ret;
709 int modify_tree = -1;
710 int update_refs;
711 int found = 0;
712 int leafs_visited = 0;
713 struct btrfs_path *path = args->path;
715 args->bytes_found = 0;
716 args->extent_inserted = false;
718 /* Must always have a path if ->replace_extent is true */
719 ASSERT(!(args->replace_extent && !args->path));
721 if (!path) {
722 path = btrfs_alloc_path();
723 if (!path) {
724 ret = -ENOMEM;
725 goto out;
729 if (args->drop_cache)
730 btrfs_drop_extent_cache(inode, args->start, args->end - 1, 0);
732 if (args->start >= inode->disk_i_size && !args->replace_extent)
733 modify_tree = 0;
735 update_refs = (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
736 root == fs_info->tree_root);
737 while (1) {
738 recow = 0;
739 ret = btrfs_lookup_file_extent(trans, root, path, ino,
740 search_start, modify_tree);
741 if (ret < 0)
742 break;
743 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
744 leaf = path->nodes[0];
745 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
746 if (key.objectid == ino &&
747 key.type == BTRFS_EXTENT_DATA_KEY)
748 path->slots[0]--;
750 ret = 0;
751 leafs_visited++;
752 next_slot:
753 leaf = path->nodes[0];
754 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
755 BUG_ON(del_nr > 0);
756 ret = btrfs_next_leaf(root, path);
757 if (ret < 0)
758 break;
759 if (ret > 0) {
760 ret = 0;
761 break;
763 leafs_visited++;
764 leaf = path->nodes[0];
765 recow = 1;
768 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
770 if (key.objectid > ino)
771 break;
772 if (WARN_ON_ONCE(key.objectid < ino) ||
773 key.type < BTRFS_EXTENT_DATA_KEY) {
774 ASSERT(del_nr == 0);
775 path->slots[0]++;
776 goto next_slot;
778 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
779 break;
781 fi = btrfs_item_ptr(leaf, path->slots[0],
782 struct btrfs_file_extent_item);
783 extent_type = btrfs_file_extent_type(leaf, fi);
785 if (extent_type == BTRFS_FILE_EXTENT_REG ||
786 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
787 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
788 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
789 extent_offset = btrfs_file_extent_offset(leaf, fi);
790 extent_end = key.offset +
791 btrfs_file_extent_num_bytes(leaf, fi);
792 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
793 extent_end = key.offset +
794 btrfs_file_extent_ram_bytes(leaf, fi);
795 } else {
796 /* can't happen */
797 BUG();
801 * Don't skip extent items representing 0 byte lengths. They
802 * used to be created (bug) if while punching holes we hit
803 * -ENOSPC condition. So if we find one here, just ensure we
804 * delete it, otherwise we would insert a new file extent item
805 * with the same key (offset) as that 0 bytes length file
806 * extent item in the call to setup_items_for_insert() later
807 * in this function.
809 if (extent_end == key.offset && extent_end >= search_start) {
810 last_end = extent_end;
811 goto delete_extent_item;
814 if (extent_end <= search_start) {
815 path->slots[0]++;
816 goto next_slot;
819 found = 1;
820 search_start = max(key.offset, args->start);
821 if (recow || !modify_tree) {
822 modify_tree = -1;
823 btrfs_release_path(path);
824 continue;
828 * | - range to drop - |
829 * | -------- extent -------- |
831 if (args->start > key.offset && args->end < extent_end) {
832 BUG_ON(del_nr > 0);
833 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
834 ret = -EOPNOTSUPP;
835 break;
838 memcpy(&new_key, &key, sizeof(new_key));
839 new_key.offset = args->start;
840 ret = btrfs_duplicate_item(trans, root, path,
841 &new_key);
842 if (ret == -EAGAIN) {
843 btrfs_release_path(path);
844 continue;
846 if (ret < 0)
847 break;
849 leaf = path->nodes[0];
850 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
851 struct btrfs_file_extent_item);
852 btrfs_set_file_extent_num_bytes(leaf, fi,
853 args->start - key.offset);
855 fi = btrfs_item_ptr(leaf, path->slots[0],
856 struct btrfs_file_extent_item);
858 extent_offset += args->start - key.offset;
859 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
860 btrfs_set_file_extent_num_bytes(leaf, fi,
861 extent_end - args->start);
862 btrfs_mark_buffer_dirty(leaf);
864 if (update_refs && disk_bytenr > 0) {
865 btrfs_init_generic_ref(&ref,
866 BTRFS_ADD_DELAYED_REF,
867 disk_bytenr, num_bytes, 0);
868 btrfs_init_data_ref(&ref,
869 root->root_key.objectid,
870 new_key.objectid,
871 args->start - extent_offset);
872 ret = btrfs_inc_extent_ref(trans, &ref);
873 BUG_ON(ret); /* -ENOMEM */
875 key.offset = args->start;
878 * From here on out we will have actually dropped something, so
879 * last_end can be updated.
881 last_end = extent_end;
884 * | ---- range to drop ----- |
885 * | -------- extent -------- |
887 if (args->start <= key.offset && args->end < extent_end) {
888 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
889 ret = -EOPNOTSUPP;
890 break;
893 memcpy(&new_key, &key, sizeof(new_key));
894 new_key.offset = args->end;
895 btrfs_set_item_key_safe(fs_info, path, &new_key);
897 extent_offset += args->end - key.offset;
898 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
899 btrfs_set_file_extent_num_bytes(leaf, fi,
900 extent_end - args->end);
901 btrfs_mark_buffer_dirty(leaf);
902 if (update_refs && disk_bytenr > 0)
903 args->bytes_found += args->end - key.offset;
904 break;
907 search_start = extent_end;
909 * | ---- range to drop ----- |
910 * | -------- extent -------- |
912 if (args->start > key.offset && args->end >= extent_end) {
913 BUG_ON(del_nr > 0);
914 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
915 ret = -EOPNOTSUPP;
916 break;
919 btrfs_set_file_extent_num_bytes(leaf, fi,
920 args->start - key.offset);
921 btrfs_mark_buffer_dirty(leaf);
922 if (update_refs && disk_bytenr > 0)
923 args->bytes_found += extent_end - args->start;
924 if (args->end == extent_end)
925 break;
927 path->slots[0]++;
928 goto next_slot;
932 * | ---- range to drop ----- |
933 * | ------ extent ------ |
935 if (args->start <= key.offset && args->end >= extent_end) {
936 delete_extent_item:
937 if (del_nr == 0) {
938 del_slot = path->slots[0];
939 del_nr = 1;
940 } else {
941 BUG_ON(del_slot + del_nr != path->slots[0]);
942 del_nr++;
945 if (update_refs &&
946 extent_type == BTRFS_FILE_EXTENT_INLINE) {
947 args->bytes_found += extent_end - key.offset;
948 extent_end = ALIGN(extent_end,
949 fs_info->sectorsize);
950 } else if (update_refs && disk_bytenr > 0) {
951 btrfs_init_generic_ref(&ref,
952 BTRFS_DROP_DELAYED_REF,
953 disk_bytenr, num_bytes, 0);
954 btrfs_init_data_ref(&ref,
955 root->root_key.objectid,
956 key.objectid,
957 key.offset - extent_offset);
958 ret = btrfs_free_extent(trans, &ref);
959 BUG_ON(ret); /* -ENOMEM */
960 args->bytes_found += extent_end - key.offset;
963 if (args->end == extent_end)
964 break;
966 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
967 path->slots[0]++;
968 goto next_slot;
971 ret = btrfs_del_items(trans, root, path, del_slot,
972 del_nr);
973 if (ret) {
974 btrfs_abort_transaction(trans, ret);
975 break;
978 del_nr = 0;
979 del_slot = 0;
981 btrfs_release_path(path);
982 continue;
985 BUG();
988 if (!ret && del_nr > 0) {
990 * Set path->slots[0] to first slot, so that after the delete
991 * if items are move off from our leaf to its immediate left or
992 * right neighbor leafs, we end up with a correct and adjusted
993 * path->slots[0] for our insertion (if args->replace_extent).
995 path->slots[0] = del_slot;
996 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
997 if (ret)
998 btrfs_abort_transaction(trans, ret);
1001 leaf = path->nodes[0];
1003 * If btrfs_del_items() was called, it might have deleted a leaf, in
1004 * which case it unlocked our path, so check path->locks[0] matches a
1005 * write lock.
1007 if (!ret && args->replace_extent && leafs_visited == 1 &&
1008 path->locks[0] == BTRFS_WRITE_LOCK &&
1009 btrfs_leaf_free_space(leaf) >=
1010 sizeof(struct btrfs_item) + args->extent_item_size) {
1012 key.objectid = ino;
1013 key.type = BTRFS_EXTENT_DATA_KEY;
1014 key.offset = args->start;
1015 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1016 struct btrfs_key slot_key;
1018 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1019 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1020 path->slots[0]++;
1022 setup_items_for_insert(root, path, &key,
1023 &args->extent_item_size, 1);
1024 args->extent_inserted = true;
1027 if (!args->path)
1028 btrfs_free_path(path);
1029 else if (!args->extent_inserted)
1030 btrfs_release_path(path);
1031 out:
1032 args->drop_end = found ? min(args->end, last_end) : args->end;
1034 return ret;
1037 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1038 u64 objectid, u64 bytenr, u64 orig_offset,
1039 u64 *start, u64 *end)
1041 struct btrfs_file_extent_item *fi;
1042 struct btrfs_key key;
1043 u64 extent_end;
1045 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1046 return 0;
1048 btrfs_item_key_to_cpu(leaf, &key, slot);
1049 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1050 return 0;
1052 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1053 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1054 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1055 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1056 btrfs_file_extent_compression(leaf, fi) ||
1057 btrfs_file_extent_encryption(leaf, fi) ||
1058 btrfs_file_extent_other_encoding(leaf, fi))
1059 return 0;
1061 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1062 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1063 return 0;
1065 *start = key.offset;
1066 *end = extent_end;
1067 return 1;
1071 * Mark extent in the range start - end as written.
1073 * This changes extent type from 'pre-allocated' to 'regular'. If only
1074 * part of extent is marked as written, the extent will be split into
1075 * two or three.
1077 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1078 struct btrfs_inode *inode, u64 start, u64 end)
1080 struct btrfs_fs_info *fs_info = trans->fs_info;
1081 struct btrfs_root *root = inode->root;
1082 struct extent_buffer *leaf;
1083 struct btrfs_path *path;
1084 struct btrfs_file_extent_item *fi;
1085 struct btrfs_ref ref = { 0 };
1086 struct btrfs_key key;
1087 struct btrfs_key new_key;
1088 u64 bytenr;
1089 u64 num_bytes;
1090 u64 extent_end;
1091 u64 orig_offset;
1092 u64 other_start;
1093 u64 other_end;
1094 u64 split;
1095 int del_nr = 0;
1096 int del_slot = 0;
1097 int recow;
1098 int ret;
1099 u64 ino = btrfs_ino(inode);
1101 path = btrfs_alloc_path();
1102 if (!path)
1103 return -ENOMEM;
1104 again:
1105 recow = 0;
1106 split = start;
1107 key.objectid = ino;
1108 key.type = BTRFS_EXTENT_DATA_KEY;
1109 key.offset = split;
1111 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1112 if (ret < 0)
1113 goto out;
1114 if (ret > 0 && path->slots[0] > 0)
1115 path->slots[0]--;
1117 leaf = path->nodes[0];
1118 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1119 if (key.objectid != ino ||
1120 key.type != BTRFS_EXTENT_DATA_KEY) {
1121 ret = -EINVAL;
1122 btrfs_abort_transaction(trans, ret);
1123 goto out;
1125 fi = btrfs_item_ptr(leaf, path->slots[0],
1126 struct btrfs_file_extent_item);
1127 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1128 ret = -EINVAL;
1129 btrfs_abort_transaction(trans, ret);
1130 goto out;
1132 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1133 if (key.offset > start || extent_end < end) {
1134 ret = -EINVAL;
1135 btrfs_abort_transaction(trans, ret);
1136 goto out;
1139 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1140 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1141 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1142 memcpy(&new_key, &key, sizeof(new_key));
1144 if (start == key.offset && end < extent_end) {
1145 other_start = 0;
1146 other_end = start;
1147 if (extent_mergeable(leaf, path->slots[0] - 1,
1148 ino, bytenr, orig_offset,
1149 &other_start, &other_end)) {
1150 new_key.offset = end;
1151 btrfs_set_item_key_safe(fs_info, path, &new_key);
1152 fi = btrfs_item_ptr(leaf, path->slots[0],
1153 struct btrfs_file_extent_item);
1154 btrfs_set_file_extent_generation(leaf, fi,
1155 trans->transid);
1156 btrfs_set_file_extent_num_bytes(leaf, fi,
1157 extent_end - end);
1158 btrfs_set_file_extent_offset(leaf, fi,
1159 end - orig_offset);
1160 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1161 struct btrfs_file_extent_item);
1162 btrfs_set_file_extent_generation(leaf, fi,
1163 trans->transid);
1164 btrfs_set_file_extent_num_bytes(leaf, fi,
1165 end - other_start);
1166 btrfs_mark_buffer_dirty(leaf);
1167 goto out;
1171 if (start > key.offset && end == extent_end) {
1172 other_start = end;
1173 other_end = 0;
1174 if (extent_mergeable(leaf, path->slots[0] + 1,
1175 ino, bytenr, orig_offset,
1176 &other_start, &other_end)) {
1177 fi = btrfs_item_ptr(leaf, path->slots[0],
1178 struct btrfs_file_extent_item);
1179 btrfs_set_file_extent_num_bytes(leaf, fi,
1180 start - key.offset);
1181 btrfs_set_file_extent_generation(leaf, fi,
1182 trans->transid);
1183 path->slots[0]++;
1184 new_key.offset = start;
1185 btrfs_set_item_key_safe(fs_info, path, &new_key);
1187 fi = btrfs_item_ptr(leaf, path->slots[0],
1188 struct btrfs_file_extent_item);
1189 btrfs_set_file_extent_generation(leaf, fi,
1190 trans->transid);
1191 btrfs_set_file_extent_num_bytes(leaf, fi,
1192 other_end - start);
1193 btrfs_set_file_extent_offset(leaf, fi,
1194 start - orig_offset);
1195 btrfs_mark_buffer_dirty(leaf);
1196 goto out;
1200 while (start > key.offset || end < extent_end) {
1201 if (key.offset == start)
1202 split = end;
1204 new_key.offset = split;
1205 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1206 if (ret == -EAGAIN) {
1207 btrfs_release_path(path);
1208 goto again;
1210 if (ret < 0) {
1211 btrfs_abort_transaction(trans, ret);
1212 goto out;
1215 leaf = path->nodes[0];
1216 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1217 struct btrfs_file_extent_item);
1218 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1219 btrfs_set_file_extent_num_bytes(leaf, fi,
1220 split - key.offset);
1222 fi = btrfs_item_ptr(leaf, path->slots[0],
1223 struct btrfs_file_extent_item);
1225 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1226 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1227 btrfs_set_file_extent_num_bytes(leaf, fi,
1228 extent_end - split);
1229 btrfs_mark_buffer_dirty(leaf);
1231 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1232 num_bytes, 0);
1233 btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1234 orig_offset);
1235 ret = btrfs_inc_extent_ref(trans, &ref);
1236 if (ret) {
1237 btrfs_abort_transaction(trans, ret);
1238 goto out;
1241 if (split == start) {
1242 key.offset = start;
1243 } else {
1244 if (start != key.offset) {
1245 ret = -EINVAL;
1246 btrfs_abort_transaction(trans, ret);
1247 goto out;
1249 path->slots[0]--;
1250 extent_end = end;
1252 recow = 1;
1255 other_start = end;
1256 other_end = 0;
1257 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1258 num_bytes, 0);
1259 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset);
1260 if (extent_mergeable(leaf, path->slots[0] + 1,
1261 ino, bytenr, orig_offset,
1262 &other_start, &other_end)) {
1263 if (recow) {
1264 btrfs_release_path(path);
1265 goto again;
1267 extent_end = other_end;
1268 del_slot = path->slots[0] + 1;
1269 del_nr++;
1270 ret = btrfs_free_extent(trans, &ref);
1271 if (ret) {
1272 btrfs_abort_transaction(trans, ret);
1273 goto out;
1276 other_start = 0;
1277 other_end = start;
1278 if (extent_mergeable(leaf, path->slots[0] - 1,
1279 ino, bytenr, orig_offset,
1280 &other_start, &other_end)) {
1281 if (recow) {
1282 btrfs_release_path(path);
1283 goto again;
1285 key.offset = other_start;
1286 del_slot = path->slots[0];
1287 del_nr++;
1288 ret = btrfs_free_extent(trans, &ref);
1289 if (ret) {
1290 btrfs_abort_transaction(trans, ret);
1291 goto out;
1294 if (del_nr == 0) {
1295 fi = btrfs_item_ptr(leaf, path->slots[0],
1296 struct btrfs_file_extent_item);
1297 btrfs_set_file_extent_type(leaf, fi,
1298 BTRFS_FILE_EXTENT_REG);
1299 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1300 btrfs_mark_buffer_dirty(leaf);
1301 } else {
1302 fi = btrfs_item_ptr(leaf, del_slot - 1,
1303 struct btrfs_file_extent_item);
1304 btrfs_set_file_extent_type(leaf, fi,
1305 BTRFS_FILE_EXTENT_REG);
1306 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1307 btrfs_set_file_extent_num_bytes(leaf, fi,
1308 extent_end - key.offset);
1309 btrfs_mark_buffer_dirty(leaf);
1311 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1312 if (ret < 0) {
1313 btrfs_abort_transaction(trans, ret);
1314 goto out;
1317 out:
1318 btrfs_free_path(path);
1319 return 0;
1323 * on error we return an unlocked page and the error value
1324 * on success we return a locked page and 0
1326 static int prepare_uptodate_page(struct inode *inode,
1327 struct page *page, u64 pos,
1328 bool force_uptodate)
1330 int ret = 0;
1332 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1333 !PageUptodate(page)) {
1334 ret = btrfs_readpage(NULL, page);
1335 if (ret)
1336 return ret;
1337 lock_page(page);
1338 if (!PageUptodate(page)) {
1339 unlock_page(page);
1340 return -EIO;
1342 if (page->mapping != inode->i_mapping) {
1343 unlock_page(page);
1344 return -EAGAIN;
1347 return 0;
1351 * this just gets pages into the page cache and locks them down.
1353 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1354 size_t num_pages, loff_t pos,
1355 size_t write_bytes, bool force_uptodate)
1357 int i;
1358 unsigned long index = pos >> PAGE_SHIFT;
1359 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1360 int err = 0;
1361 int faili;
1363 for (i = 0; i < num_pages; i++) {
1364 again:
1365 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1366 mask | __GFP_WRITE);
1367 if (!pages[i]) {
1368 faili = i - 1;
1369 err = -ENOMEM;
1370 goto fail;
1373 if (i == 0)
1374 err = prepare_uptodate_page(inode, pages[i], pos,
1375 force_uptodate);
1376 if (!err && i == num_pages - 1)
1377 err = prepare_uptodate_page(inode, pages[i],
1378 pos + write_bytes, false);
1379 if (err) {
1380 put_page(pages[i]);
1381 if (err == -EAGAIN) {
1382 err = 0;
1383 goto again;
1385 faili = i - 1;
1386 goto fail;
1388 wait_on_page_writeback(pages[i]);
1391 return 0;
1392 fail:
1393 while (faili >= 0) {
1394 unlock_page(pages[faili]);
1395 put_page(pages[faili]);
1396 faili--;
1398 return err;
1403 * This function locks the extent and properly waits for data=ordered extents
1404 * to finish before allowing the pages to be modified if need.
1406 * The return value:
1407 * 1 - the extent is locked
1408 * 0 - the extent is not locked, and everything is OK
1409 * -EAGAIN - need re-prepare the pages
1410 * the other < 0 number - Something wrong happens
1412 static noinline int
1413 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1414 size_t num_pages, loff_t pos,
1415 size_t write_bytes,
1416 u64 *lockstart, u64 *lockend,
1417 struct extent_state **cached_state)
1419 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1420 u64 start_pos;
1421 u64 last_pos;
1422 int i;
1423 int ret = 0;
1425 start_pos = round_down(pos, fs_info->sectorsize);
1426 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
1428 if (start_pos < inode->vfs_inode.i_size) {
1429 struct btrfs_ordered_extent *ordered;
1431 lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1432 cached_state);
1433 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1434 last_pos - start_pos + 1);
1435 if (ordered &&
1436 ordered->file_offset + ordered->num_bytes > start_pos &&
1437 ordered->file_offset <= last_pos) {
1438 unlock_extent_cached(&inode->io_tree, start_pos,
1439 last_pos, cached_state);
1440 for (i = 0; i < num_pages; i++) {
1441 unlock_page(pages[i]);
1442 put_page(pages[i]);
1444 btrfs_start_ordered_extent(ordered, 1);
1445 btrfs_put_ordered_extent(ordered);
1446 return -EAGAIN;
1448 if (ordered)
1449 btrfs_put_ordered_extent(ordered);
1451 *lockstart = start_pos;
1452 *lockend = last_pos;
1453 ret = 1;
1457 * It's possible the pages are dirty right now, but we don't want
1458 * to clean them yet because copy_from_user may catch a page fault
1459 * and we might have to fall back to one page at a time. If that
1460 * happens, we'll unlock these pages and we'd have a window where
1461 * reclaim could sneak in and drop the once-dirty page on the floor
1462 * without writing it.
1464 * We have the pages locked and the extent range locked, so there's
1465 * no way someone can start IO on any dirty pages in this range.
1467 * We'll call btrfs_dirty_pages() later on, and that will flip around
1468 * delalloc bits and dirty the pages as required.
1470 for (i = 0; i < num_pages; i++) {
1471 set_page_extent_mapped(pages[i]);
1472 WARN_ON(!PageLocked(pages[i]));
1475 return ret;
1478 static int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1479 size_t *write_bytes, bool nowait)
1481 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1482 struct btrfs_root *root = inode->root;
1483 u64 lockstart, lockend;
1484 u64 num_bytes;
1485 int ret;
1487 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1488 return 0;
1490 if (!nowait && !btrfs_drew_try_write_lock(&root->snapshot_lock))
1491 return -EAGAIN;
1493 lockstart = round_down(pos, fs_info->sectorsize);
1494 lockend = round_up(pos + *write_bytes,
1495 fs_info->sectorsize) - 1;
1496 num_bytes = lockend - lockstart + 1;
1498 if (nowait) {
1499 struct btrfs_ordered_extent *ordered;
1501 if (!try_lock_extent(&inode->io_tree, lockstart, lockend))
1502 return -EAGAIN;
1504 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1505 num_bytes);
1506 if (ordered) {
1507 btrfs_put_ordered_extent(ordered);
1508 ret = -EAGAIN;
1509 goto out_unlock;
1511 } else {
1512 btrfs_lock_and_flush_ordered_range(inode, lockstart,
1513 lockend, NULL);
1516 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1517 NULL, NULL, NULL, false);
1518 if (ret <= 0) {
1519 ret = 0;
1520 if (!nowait)
1521 btrfs_drew_write_unlock(&root->snapshot_lock);
1522 } else {
1523 *write_bytes = min_t(size_t, *write_bytes ,
1524 num_bytes - pos + lockstart);
1526 out_unlock:
1527 unlock_extent(&inode->io_tree, lockstart, lockend);
1529 return ret;
1532 static int check_nocow_nolock(struct btrfs_inode *inode, loff_t pos,
1533 size_t *write_bytes)
1535 return check_can_nocow(inode, pos, write_bytes, true);
1539 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1541 * @pos: File offset
1542 * @write_bytes: The length to write, will be updated to the nocow writeable
1543 * range
1545 * This function will flush ordered extents in the range to ensure proper
1546 * nocow checks.
1548 * Return:
1549 * >0 and update @write_bytes if we can do nocow write
1550 * 0 if we can't do nocow write
1551 * -EAGAIN if we can't get the needed lock or there are ordered extents
1552 * for * (nowait == true) case
1553 * <0 if other error happened
1555 * NOTE: Callers need to release the lock by btrfs_check_nocow_unlock().
1557 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1558 size_t *write_bytes)
1560 return check_can_nocow(inode, pos, write_bytes, false);
1563 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1565 btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1568 static void update_time_for_write(struct inode *inode)
1570 struct timespec64 now;
1572 if (IS_NOCMTIME(inode))
1573 return;
1575 now = current_time(inode);
1576 if (!timespec64_equal(&inode->i_mtime, &now))
1577 inode->i_mtime = now;
1579 if (!timespec64_equal(&inode->i_ctime, &now))
1580 inode->i_ctime = now;
1582 if (IS_I_VERSION(inode))
1583 inode_inc_iversion(inode);
1586 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from,
1587 size_t count)
1589 struct file *file = iocb->ki_filp;
1590 struct inode *inode = file_inode(file);
1591 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1592 loff_t pos = iocb->ki_pos;
1593 int ret;
1594 loff_t oldsize;
1595 loff_t start_pos;
1597 if (iocb->ki_flags & IOCB_NOWAIT) {
1598 size_t nocow_bytes = count;
1600 /* We will allocate space in case nodatacow is not set, so bail */
1601 if (check_nocow_nolock(BTRFS_I(inode), pos, &nocow_bytes) <= 0)
1602 return -EAGAIN;
1604 * There are holes in the range or parts of the range that must
1605 * be COWed (shared extents, RO block groups, etc), so just bail
1606 * out.
1608 if (nocow_bytes < count)
1609 return -EAGAIN;
1612 current->backing_dev_info = inode_to_bdi(inode);
1613 ret = file_remove_privs(file);
1614 if (ret)
1615 return ret;
1618 * We reserve space for updating the inode when we reserve space for the
1619 * extent we are going to write, so we will enospc out there. We don't
1620 * need to start yet another transaction to update the inode as we will
1621 * update the inode when we finish writing whatever data we write.
1623 update_time_for_write(inode);
1625 start_pos = round_down(pos, fs_info->sectorsize);
1626 oldsize = i_size_read(inode);
1627 if (start_pos > oldsize) {
1628 /* Expand hole size to cover write data, preventing empty gap */
1629 loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1631 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1632 if (ret) {
1633 current->backing_dev_info = NULL;
1634 return ret;
1638 return 0;
1641 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1642 struct iov_iter *i)
1644 struct file *file = iocb->ki_filp;
1645 loff_t pos;
1646 struct inode *inode = file_inode(file);
1647 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1648 struct page **pages = NULL;
1649 struct extent_changeset *data_reserved = NULL;
1650 u64 release_bytes = 0;
1651 u64 lockstart;
1652 u64 lockend;
1653 size_t num_written = 0;
1654 int nrptrs;
1655 ssize_t ret;
1656 bool only_release_metadata = false;
1657 bool force_page_uptodate = false;
1658 loff_t old_isize = i_size_read(inode);
1659 unsigned int ilock_flags = 0;
1661 if (iocb->ki_flags & IOCB_NOWAIT)
1662 ilock_flags |= BTRFS_ILOCK_TRY;
1664 ret = btrfs_inode_lock(inode, ilock_flags);
1665 if (ret < 0)
1666 return ret;
1668 ret = generic_write_checks(iocb, i);
1669 if (ret <= 0)
1670 goto out;
1672 ret = btrfs_write_check(iocb, i, ret);
1673 if (ret < 0)
1674 goto out;
1676 pos = iocb->ki_pos;
1677 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1678 PAGE_SIZE / (sizeof(struct page *)));
1679 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1680 nrptrs = max(nrptrs, 8);
1681 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1682 if (!pages) {
1683 ret = -ENOMEM;
1684 goto out;
1687 while (iov_iter_count(i) > 0) {
1688 struct extent_state *cached_state = NULL;
1689 size_t offset = offset_in_page(pos);
1690 size_t sector_offset;
1691 size_t write_bytes = min(iov_iter_count(i),
1692 nrptrs * (size_t)PAGE_SIZE -
1693 offset);
1694 size_t num_pages;
1695 size_t reserve_bytes;
1696 size_t dirty_pages;
1697 size_t copied;
1698 size_t dirty_sectors;
1699 size_t num_sectors;
1700 int extents_locked;
1703 * Fault pages before locking them in prepare_pages
1704 * to avoid recursive lock
1706 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1707 ret = -EFAULT;
1708 break;
1711 only_release_metadata = false;
1712 sector_offset = pos & (fs_info->sectorsize - 1);
1714 extent_changeset_release(data_reserved);
1715 ret = btrfs_check_data_free_space(BTRFS_I(inode),
1716 &data_reserved, pos,
1717 write_bytes);
1718 if (ret < 0) {
1720 * If we don't have to COW at the offset, reserve
1721 * metadata only. write_bytes may get smaller than
1722 * requested here.
1724 if (btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1725 &write_bytes) > 0)
1726 only_release_metadata = true;
1727 else
1728 break;
1731 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1732 WARN_ON(num_pages > nrptrs);
1733 reserve_bytes = round_up(write_bytes + sector_offset,
1734 fs_info->sectorsize);
1735 WARN_ON(reserve_bytes == 0);
1736 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1737 reserve_bytes);
1738 if (ret) {
1739 if (!only_release_metadata)
1740 btrfs_free_reserved_data_space(BTRFS_I(inode),
1741 data_reserved, pos,
1742 write_bytes);
1743 else
1744 btrfs_check_nocow_unlock(BTRFS_I(inode));
1745 break;
1748 release_bytes = reserve_bytes;
1749 again:
1751 * This is going to setup the pages array with the number of
1752 * pages we want, so we don't really need to worry about the
1753 * contents of pages from loop to loop
1755 ret = prepare_pages(inode, pages, num_pages,
1756 pos, write_bytes,
1757 force_page_uptodate);
1758 if (ret) {
1759 btrfs_delalloc_release_extents(BTRFS_I(inode),
1760 reserve_bytes);
1761 break;
1764 extents_locked = lock_and_cleanup_extent_if_need(
1765 BTRFS_I(inode), pages,
1766 num_pages, pos, write_bytes, &lockstart,
1767 &lockend, &cached_state);
1768 if (extents_locked < 0) {
1769 if (extents_locked == -EAGAIN)
1770 goto again;
1771 btrfs_delalloc_release_extents(BTRFS_I(inode),
1772 reserve_bytes);
1773 ret = extents_locked;
1774 break;
1777 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1779 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1780 dirty_sectors = round_up(copied + sector_offset,
1781 fs_info->sectorsize);
1782 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1785 * if we have trouble faulting in the pages, fall
1786 * back to one page at a time
1788 if (copied < write_bytes)
1789 nrptrs = 1;
1791 if (copied == 0) {
1792 force_page_uptodate = true;
1793 dirty_sectors = 0;
1794 dirty_pages = 0;
1795 } else {
1796 force_page_uptodate = false;
1797 dirty_pages = DIV_ROUND_UP(copied + offset,
1798 PAGE_SIZE);
1801 if (num_sectors > dirty_sectors) {
1802 /* release everything except the sectors we dirtied */
1803 release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
1804 if (only_release_metadata) {
1805 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1806 release_bytes, true);
1807 } else {
1808 u64 __pos;
1810 __pos = round_down(pos,
1811 fs_info->sectorsize) +
1812 (dirty_pages << PAGE_SHIFT);
1813 btrfs_delalloc_release_space(BTRFS_I(inode),
1814 data_reserved, __pos,
1815 release_bytes, true);
1819 release_bytes = round_up(copied + sector_offset,
1820 fs_info->sectorsize);
1822 ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1823 dirty_pages, pos, copied,
1824 &cached_state, only_release_metadata);
1827 * If we have not locked the extent range, because the range's
1828 * start offset is >= i_size, we might still have a non-NULL
1829 * cached extent state, acquired while marking the extent range
1830 * as delalloc through btrfs_dirty_pages(). Therefore free any
1831 * possible cached extent state to avoid a memory leak.
1833 if (extents_locked)
1834 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1835 lockstart, lockend, &cached_state);
1836 else
1837 free_extent_state(cached_state);
1839 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1840 if (ret) {
1841 btrfs_drop_pages(pages, num_pages);
1842 break;
1845 release_bytes = 0;
1846 if (only_release_metadata)
1847 btrfs_check_nocow_unlock(BTRFS_I(inode));
1849 btrfs_drop_pages(pages, num_pages);
1851 cond_resched();
1853 balance_dirty_pages_ratelimited(inode->i_mapping);
1855 pos += copied;
1856 num_written += copied;
1859 kfree(pages);
1861 if (release_bytes) {
1862 if (only_release_metadata) {
1863 btrfs_check_nocow_unlock(BTRFS_I(inode));
1864 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1865 release_bytes, true);
1866 } else {
1867 btrfs_delalloc_release_space(BTRFS_I(inode),
1868 data_reserved,
1869 round_down(pos, fs_info->sectorsize),
1870 release_bytes, true);
1874 extent_changeset_free(data_reserved);
1875 if (num_written > 0) {
1876 pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1877 iocb->ki_pos += num_written;
1879 out:
1880 btrfs_inode_unlock(inode, ilock_flags);
1881 return num_written ? num_written : ret;
1884 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1885 const struct iov_iter *iter, loff_t offset)
1887 const u32 blocksize_mask = fs_info->sectorsize - 1;
1889 if (offset & blocksize_mask)
1890 return -EINVAL;
1892 if (iov_iter_alignment(iter) & blocksize_mask)
1893 return -EINVAL;
1895 return 0;
1898 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1900 struct file *file = iocb->ki_filp;
1901 struct inode *inode = file_inode(file);
1902 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1903 loff_t pos;
1904 ssize_t written = 0;
1905 ssize_t written_buffered;
1906 loff_t endbyte;
1907 ssize_t err;
1908 unsigned int ilock_flags = 0;
1909 struct iomap_dio *dio = NULL;
1911 if (iocb->ki_flags & IOCB_NOWAIT)
1912 ilock_flags |= BTRFS_ILOCK_TRY;
1914 /* If the write DIO is within EOF, use a shared lock */
1915 if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode))
1916 ilock_flags |= BTRFS_ILOCK_SHARED;
1918 relock:
1919 err = btrfs_inode_lock(inode, ilock_flags);
1920 if (err < 0)
1921 return err;
1923 err = generic_write_checks(iocb, from);
1924 if (err <= 0) {
1925 btrfs_inode_unlock(inode, ilock_flags);
1926 return err;
1929 err = btrfs_write_check(iocb, from, err);
1930 if (err < 0) {
1931 btrfs_inode_unlock(inode, ilock_flags);
1932 goto out;
1935 pos = iocb->ki_pos;
1937 * Re-check since file size may have changed just before taking the
1938 * lock or pos may have changed because of O_APPEND in generic_write_check()
1940 if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
1941 pos + iov_iter_count(from) > i_size_read(inode)) {
1942 btrfs_inode_unlock(inode, ilock_flags);
1943 ilock_flags &= ~BTRFS_ILOCK_SHARED;
1944 goto relock;
1947 if (check_direct_IO(fs_info, from, pos)) {
1948 btrfs_inode_unlock(inode, ilock_flags);
1949 goto buffered;
1952 dio = __iomap_dio_rw(iocb, from, &btrfs_dio_iomap_ops,
1953 &btrfs_dio_ops, is_sync_kiocb(iocb));
1955 btrfs_inode_unlock(inode, ilock_flags);
1957 if (IS_ERR_OR_NULL(dio)) {
1958 err = PTR_ERR_OR_ZERO(dio);
1959 if (err < 0 && err != -ENOTBLK)
1960 goto out;
1961 } else {
1962 written = iomap_dio_complete(dio);
1965 if (written < 0 || !iov_iter_count(from)) {
1966 err = written;
1967 goto out;
1970 buffered:
1971 pos = iocb->ki_pos;
1972 written_buffered = btrfs_buffered_write(iocb, from);
1973 if (written_buffered < 0) {
1974 err = written_buffered;
1975 goto out;
1978 * Ensure all data is persisted. We want the next direct IO read to be
1979 * able to read what was just written.
1981 endbyte = pos + written_buffered - 1;
1982 err = btrfs_fdatawrite_range(inode, pos, endbyte);
1983 if (err)
1984 goto out;
1985 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1986 if (err)
1987 goto out;
1988 written += written_buffered;
1989 iocb->ki_pos = pos + written_buffered;
1990 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1991 endbyte >> PAGE_SHIFT);
1992 out:
1993 return written ? written : err;
1996 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1997 struct iov_iter *from)
1999 struct file *file = iocb->ki_filp;
2000 struct inode *inode = file_inode(file);
2001 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2002 struct btrfs_root *root = BTRFS_I(inode)->root;
2003 ssize_t num_written = 0;
2004 const bool sync = iocb->ki_flags & IOCB_DSYNC;
2007 * If the fs flips readonly due to some impossible error, although we
2008 * have opened a file as writable, we have to stop this write operation
2009 * to ensure consistency.
2011 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
2012 return -EROFS;
2014 if (!(iocb->ki_flags & IOCB_DIRECT) &&
2015 (iocb->ki_flags & IOCB_NOWAIT))
2016 return -EOPNOTSUPP;
2018 if (sync)
2019 atomic_inc(&BTRFS_I(inode)->sync_writers);
2021 if (iocb->ki_flags & IOCB_DIRECT)
2022 num_written = btrfs_direct_write(iocb, from);
2023 else
2024 num_written = btrfs_buffered_write(iocb, from);
2027 * We also have to set last_sub_trans to the current log transid,
2028 * otherwise subsequent syncs to a file that's been synced in this
2029 * transaction will appear to have already occurred.
2031 spin_lock(&BTRFS_I(inode)->lock);
2032 BTRFS_I(inode)->last_sub_trans = root->log_transid;
2033 spin_unlock(&BTRFS_I(inode)->lock);
2034 if (num_written > 0)
2035 num_written = generic_write_sync(iocb, num_written);
2037 if (sync)
2038 atomic_dec(&BTRFS_I(inode)->sync_writers);
2040 current->backing_dev_info = NULL;
2041 return num_written;
2044 int btrfs_release_file(struct inode *inode, struct file *filp)
2046 struct btrfs_file_private *private = filp->private_data;
2048 if (private && private->filldir_buf)
2049 kfree(private->filldir_buf);
2050 kfree(private);
2051 filp->private_data = NULL;
2054 * Set by setattr when we are about to truncate a file from a non-zero
2055 * size to a zero size. This tries to flush down new bytes that may
2056 * have been written if the application were using truncate to replace
2057 * a file in place.
2059 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
2060 &BTRFS_I(inode)->runtime_flags))
2061 filemap_flush(inode->i_mapping);
2062 return 0;
2065 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2067 int ret;
2068 struct blk_plug plug;
2071 * This is only called in fsync, which would do synchronous writes, so
2072 * a plug can merge adjacent IOs as much as possible. Esp. in case of
2073 * multiple disks using raid profile, a large IO can be split to
2074 * several segments of stripe length (currently 64K).
2076 blk_start_plug(&plug);
2077 atomic_inc(&BTRFS_I(inode)->sync_writers);
2078 ret = btrfs_fdatawrite_range(inode, start, end);
2079 atomic_dec(&BTRFS_I(inode)->sync_writers);
2080 blk_finish_plug(&plug);
2082 return ret;
2086 * fsync call for both files and directories. This logs the inode into
2087 * the tree log instead of forcing full commits whenever possible.
2089 * It needs to call filemap_fdatawait so that all ordered extent updates are
2090 * in the metadata btree are up to date for copying to the log.
2092 * It drops the inode mutex before doing the tree log commit. This is an
2093 * important optimization for directories because holding the mutex prevents
2094 * new operations on the dir while we write to disk.
2096 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2098 struct dentry *dentry = file_dentry(file);
2099 struct inode *inode = d_inode(dentry);
2100 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2101 struct btrfs_root *root = BTRFS_I(inode)->root;
2102 struct btrfs_trans_handle *trans;
2103 struct btrfs_log_ctx ctx;
2104 int ret = 0, err;
2105 u64 len;
2106 bool full_sync;
2108 trace_btrfs_sync_file(file, datasync);
2110 btrfs_init_log_ctx(&ctx, inode);
2113 * Always set the range to a full range, otherwise we can get into
2114 * several problems, from missing file extent items to represent holes
2115 * when not using the NO_HOLES feature, to log tree corruption due to
2116 * races between hole detection during logging and completion of ordered
2117 * extents outside the range, to missing checksums due to ordered extents
2118 * for which we flushed only a subset of their pages.
2120 start = 0;
2121 end = LLONG_MAX;
2122 len = (u64)LLONG_MAX + 1;
2125 * We write the dirty pages in the range and wait until they complete
2126 * out of the ->i_mutex. If so, we can flush the dirty pages by
2127 * multi-task, and make the performance up. See
2128 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2130 ret = start_ordered_ops(inode, start, end);
2131 if (ret)
2132 goto out;
2134 inode_lock(inode);
2136 atomic_inc(&root->log_batch);
2139 * Always check for the full sync flag while holding the inode's lock,
2140 * to avoid races with other tasks. The flag must be either set all the
2141 * time during logging or always off all the time while logging.
2143 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2144 &BTRFS_I(inode)->runtime_flags);
2147 * Before we acquired the inode's lock, someone may have dirtied more
2148 * pages in the target range. We need to make sure that writeback for
2149 * any such pages does not start while we are logging the inode, because
2150 * if it does, any of the following might happen when we are not doing a
2151 * full inode sync:
2153 * 1) We log an extent after its writeback finishes but before its
2154 * checksums are added to the csum tree, leading to -EIO errors
2155 * when attempting to read the extent after a log replay.
2157 * 2) We can end up logging an extent before its writeback finishes.
2158 * Therefore after the log replay we will have a file extent item
2159 * pointing to an unwritten extent (and no data checksums as well).
2161 * So trigger writeback for any eventual new dirty pages and then we
2162 * wait for all ordered extents to complete below.
2164 ret = start_ordered_ops(inode, start, end);
2165 if (ret) {
2166 inode_unlock(inode);
2167 goto out;
2171 * We have to do this here to avoid the priority inversion of waiting on
2172 * IO of a lower priority task while holding a transaction open.
2174 * For a full fsync we wait for the ordered extents to complete while
2175 * for a fast fsync we wait just for writeback to complete, and then
2176 * attach the ordered extents to the transaction so that a transaction
2177 * commit waits for their completion, to avoid data loss if we fsync,
2178 * the current transaction commits before the ordered extents complete
2179 * and a power failure happens right after that.
2181 if (full_sync) {
2182 ret = btrfs_wait_ordered_range(inode, start, len);
2183 } else {
2185 * Get our ordered extents as soon as possible to avoid doing
2186 * checksum lookups in the csum tree, and use instead the
2187 * checksums attached to the ordered extents.
2189 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
2190 &ctx.ordered_extents);
2191 ret = filemap_fdatawait_range(inode->i_mapping, start, end);
2194 if (ret)
2195 goto out_release_extents;
2197 atomic_inc(&root->log_batch);
2200 * If we are doing a fast fsync we can not bail out if the inode's
2201 * last_trans is <= then the last committed transaction, because we only
2202 * update the last_trans of the inode during ordered extent completion,
2203 * and for a fast fsync we don't wait for that, we only wait for the
2204 * writeback to complete.
2206 smp_mb();
2207 if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
2208 (BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed &&
2209 (full_sync || list_empty(&ctx.ordered_extents)))) {
2211 * We've had everything committed since the last time we were
2212 * modified so clear this flag in case it was set for whatever
2213 * reason, it's no longer relevant.
2215 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2216 &BTRFS_I(inode)->runtime_flags);
2218 * An ordered extent might have started before and completed
2219 * already with io errors, in which case the inode was not
2220 * updated and we end up here. So check the inode's mapping
2221 * for any errors that might have happened since we last
2222 * checked called fsync.
2224 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2225 goto out_release_extents;
2229 * We use start here because we will need to wait on the IO to complete
2230 * in btrfs_sync_log, which could require joining a transaction (for
2231 * example checking cross references in the nocow path). If we use join
2232 * here we could get into a situation where we're waiting on IO to
2233 * happen that is blocked on a transaction trying to commit. With start
2234 * we inc the extwriter counter, so we wait for all extwriters to exit
2235 * before we start blocking joiners. This comment is to keep somebody
2236 * from thinking they are super smart and changing this to
2237 * btrfs_join_transaction *cough*Josef*cough*.
2239 trans = btrfs_start_transaction(root, 0);
2240 if (IS_ERR(trans)) {
2241 ret = PTR_ERR(trans);
2242 goto out_release_extents;
2245 ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
2246 btrfs_release_log_ctx_extents(&ctx);
2247 if (ret < 0) {
2248 /* Fallthrough and commit/free transaction. */
2249 ret = 1;
2252 /* we've logged all the items and now have a consistent
2253 * version of the file in the log. It is possible that
2254 * someone will come in and modify the file, but that's
2255 * fine because the log is consistent on disk, and we
2256 * have references to all of the file's extents
2258 * It is possible that someone will come in and log the
2259 * file again, but that will end up using the synchronization
2260 * inside btrfs_sync_log to keep things safe.
2262 inode_unlock(inode);
2264 if (ret != BTRFS_NO_LOG_SYNC) {
2265 if (!ret) {
2266 ret = btrfs_sync_log(trans, root, &ctx);
2267 if (!ret) {
2268 ret = btrfs_end_transaction(trans);
2269 goto out;
2272 if (!full_sync) {
2273 ret = btrfs_wait_ordered_range(inode, start, len);
2274 if (ret) {
2275 btrfs_end_transaction(trans);
2276 goto out;
2279 ret = btrfs_commit_transaction(trans);
2280 } else {
2281 ret = btrfs_end_transaction(trans);
2283 out:
2284 ASSERT(list_empty(&ctx.list));
2285 err = file_check_and_advance_wb_err(file);
2286 if (!ret)
2287 ret = err;
2288 return ret > 0 ? -EIO : ret;
2290 out_release_extents:
2291 btrfs_release_log_ctx_extents(&ctx);
2292 inode_unlock(inode);
2293 goto out;
2296 static const struct vm_operations_struct btrfs_file_vm_ops = {
2297 .fault = filemap_fault,
2298 .map_pages = filemap_map_pages,
2299 .page_mkwrite = btrfs_page_mkwrite,
2302 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2304 struct address_space *mapping = filp->f_mapping;
2306 if (!mapping->a_ops->readpage)
2307 return -ENOEXEC;
2309 file_accessed(filp);
2310 vma->vm_ops = &btrfs_file_vm_ops;
2312 return 0;
2315 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2316 int slot, u64 start, u64 end)
2318 struct btrfs_file_extent_item *fi;
2319 struct btrfs_key key;
2321 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2322 return 0;
2324 btrfs_item_key_to_cpu(leaf, &key, slot);
2325 if (key.objectid != btrfs_ino(inode) ||
2326 key.type != BTRFS_EXTENT_DATA_KEY)
2327 return 0;
2329 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2331 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2332 return 0;
2334 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2335 return 0;
2337 if (key.offset == end)
2338 return 1;
2339 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2340 return 1;
2341 return 0;
2344 static int fill_holes(struct btrfs_trans_handle *trans,
2345 struct btrfs_inode *inode,
2346 struct btrfs_path *path, u64 offset, u64 end)
2348 struct btrfs_fs_info *fs_info = trans->fs_info;
2349 struct btrfs_root *root = inode->root;
2350 struct extent_buffer *leaf;
2351 struct btrfs_file_extent_item *fi;
2352 struct extent_map *hole_em;
2353 struct extent_map_tree *em_tree = &inode->extent_tree;
2354 struct btrfs_key key;
2355 int ret;
2357 if (btrfs_fs_incompat(fs_info, NO_HOLES))
2358 goto out;
2360 key.objectid = btrfs_ino(inode);
2361 key.type = BTRFS_EXTENT_DATA_KEY;
2362 key.offset = offset;
2364 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2365 if (ret <= 0) {
2367 * We should have dropped this offset, so if we find it then
2368 * something has gone horribly wrong.
2370 if (ret == 0)
2371 ret = -EINVAL;
2372 return ret;
2375 leaf = path->nodes[0];
2376 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2377 u64 num_bytes;
2379 path->slots[0]--;
2380 fi = btrfs_item_ptr(leaf, path->slots[0],
2381 struct btrfs_file_extent_item);
2382 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2383 end - offset;
2384 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2385 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2386 btrfs_set_file_extent_offset(leaf, fi, 0);
2387 btrfs_mark_buffer_dirty(leaf);
2388 goto out;
2391 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2392 u64 num_bytes;
2394 key.offset = offset;
2395 btrfs_set_item_key_safe(fs_info, path, &key);
2396 fi = btrfs_item_ptr(leaf, path->slots[0],
2397 struct btrfs_file_extent_item);
2398 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2399 offset;
2400 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2401 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2402 btrfs_set_file_extent_offset(leaf, fi, 0);
2403 btrfs_mark_buffer_dirty(leaf);
2404 goto out;
2406 btrfs_release_path(path);
2408 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2409 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2410 if (ret)
2411 return ret;
2413 out:
2414 btrfs_release_path(path);
2416 hole_em = alloc_extent_map();
2417 if (!hole_em) {
2418 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2419 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2420 } else {
2421 hole_em->start = offset;
2422 hole_em->len = end - offset;
2423 hole_em->ram_bytes = hole_em->len;
2424 hole_em->orig_start = offset;
2426 hole_em->block_start = EXTENT_MAP_HOLE;
2427 hole_em->block_len = 0;
2428 hole_em->orig_block_len = 0;
2429 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2430 hole_em->generation = trans->transid;
2432 do {
2433 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2434 write_lock(&em_tree->lock);
2435 ret = add_extent_mapping(em_tree, hole_em, 1);
2436 write_unlock(&em_tree->lock);
2437 } while (ret == -EEXIST);
2438 free_extent_map(hole_em);
2439 if (ret)
2440 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2441 &inode->runtime_flags);
2444 return 0;
2448 * Find a hole extent on given inode and change start/len to the end of hole
2449 * extent.(hole/vacuum extent whose em->start <= start &&
2450 * em->start + em->len > start)
2451 * When a hole extent is found, return 1 and modify start/len.
2453 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2455 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2456 struct extent_map *em;
2457 int ret = 0;
2459 em = btrfs_get_extent(inode, NULL, 0,
2460 round_down(*start, fs_info->sectorsize),
2461 round_up(*len, fs_info->sectorsize));
2462 if (IS_ERR(em))
2463 return PTR_ERR(em);
2465 /* Hole or vacuum extent(only exists in no-hole mode) */
2466 if (em->block_start == EXTENT_MAP_HOLE) {
2467 ret = 1;
2468 *len = em->start + em->len > *start + *len ?
2469 0 : *start + *len - em->start - em->len;
2470 *start = em->start + em->len;
2472 free_extent_map(em);
2473 return ret;
2476 static int btrfs_punch_hole_lock_range(struct inode *inode,
2477 const u64 lockstart,
2478 const u64 lockend,
2479 struct extent_state **cached_state)
2481 while (1) {
2482 struct btrfs_ordered_extent *ordered;
2483 int ret;
2485 truncate_pagecache_range(inode, lockstart, lockend);
2487 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2488 cached_state);
2489 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
2490 lockend);
2493 * We need to make sure we have no ordered extents in this range
2494 * and nobody raced in and read a page in this range, if we did
2495 * we need to try again.
2497 if ((!ordered ||
2498 (ordered->file_offset + ordered->num_bytes <= lockstart ||
2499 ordered->file_offset > lockend)) &&
2500 !filemap_range_has_page(inode->i_mapping,
2501 lockstart, lockend)) {
2502 if (ordered)
2503 btrfs_put_ordered_extent(ordered);
2504 break;
2506 if (ordered)
2507 btrfs_put_ordered_extent(ordered);
2508 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2509 lockend, cached_state);
2510 ret = btrfs_wait_ordered_range(inode, lockstart,
2511 lockend - lockstart + 1);
2512 if (ret)
2513 return ret;
2515 return 0;
2518 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2519 struct btrfs_inode *inode,
2520 struct btrfs_path *path,
2521 struct btrfs_replace_extent_info *extent_info,
2522 const u64 replace_len,
2523 const u64 bytes_to_drop)
2525 struct btrfs_fs_info *fs_info = trans->fs_info;
2526 struct btrfs_root *root = inode->root;
2527 struct btrfs_file_extent_item *extent;
2528 struct extent_buffer *leaf;
2529 struct btrfs_key key;
2530 int slot;
2531 struct btrfs_ref ref = { 0 };
2532 int ret;
2534 if (replace_len == 0)
2535 return 0;
2537 if (extent_info->disk_offset == 0 &&
2538 btrfs_fs_incompat(fs_info, NO_HOLES)) {
2539 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2540 return 0;
2543 key.objectid = btrfs_ino(inode);
2544 key.type = BTRFS_EXTENT_DATA_KEY;
2545 key.offset = extent_info->file_offset;
2546 ret = btrfs_insert_empty_item(trans, root, path, &key,
2547 sizeof(struct btrfs_file_extent_item));
2548 if (ret)
2549 return ret;
2550 leaf = path->nodes[0];
2551 slot = path->slots[0];
2552 write_extent_buffer(leaf, extent_info->extent_buf,
2553 btrfs_item_ptr_offset(leaf, slot),
2554 sizeof(struct btrfs_file_extent_item));
2555 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2556 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2557 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2558 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2559 if (extent_info->is_new_extent)
2560 btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2561 btrfs_mark_buffer_dirty(leaf);
2562 btrfs_release_path(path);
2564 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2565 replace_len);
2566 if (ret)
2567 return ret;
2569 /* If it's a hole, nothing more needs to be done. */
2570 if (extent_info->disk_offset == 0) {
2571 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2572 return 0;
2575 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2577 if (extent_info->is_new_extent && extent_info->insertions == 0) {
2578 key.objectid = extent_info->disk_offset;
2579 key.type = BTRFS_EXTENT_ITEM_KEY;
2580 key.offset = extent_info->disk_len;
2581 ret = btrfs_alloc_reserved_file_extent(trans, root,
2582 btrfs_ino(inode),
2583 extent_info->file_offset,
2584 extent_info->qgroup_reserved,
2585 &key);
2586 } else {
2587 u64 ref_offset;
2589 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2590 extent_info->disk_offset,
2591 extent_info->disk_len, 0);
2592 ref_offset = extent_info->file_offset - extent_info->data_offset;
2593 btrfs_init_data_ref(&ref, root->root_key.objectid,
2594 btrfs_ino(inode), ref_offset);
2595 ret = btrfs_inc_extent_ref(trans, &ref);
2598 extent_info->insertions++;
2600 return ret;
2604 * The respective range must have been previously locked, as well as the inode.
2605 * The end offset is inclusive (last byte of the range).
2606 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2607 * the file range with an extent.
2608 * When not punching a hole, we don't want to end up in a state where we dropped
2609 * extents without inserting a new one, so we must abort the transaction to avoid
2610 * a corruption.
2612 int btrfs_replace_file_extents(struct inode *inode, struct btrfs_path *path,
2613 const u64 start, const u64 end,
2614 struct btrfs_replace_extent_info *extent_info,
2615 struct btrfs_trans_handle **trans_out)
2617 struct btrfs_drop_extents_args drop_args = { 0 };
2618 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2619 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2620 u64 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2621 struct btrfs_root *root = BTRFS_I(inode)->root;
2622 struct btrfs_trans_handle *trans = NULL;
2623 struct btrfs_block_rsv *rsv;
2624 unsigned int rsv_count;
2625 u64 cur_offset;
2626 u64 len = end - start;
2627 int ret = 0;
2629 if (end <= start)
2630 return -EINVAL;
2632 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2633 if (!rsv) {
2634 ret = -ENOMEM;
2635 goto out;
2637 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2638 rsv->failfast = 1;
2641 * 1 - update the inode
2642 * 1 - removing the extents in the range
2643 * 1 - adding the hole extent if no_holes isn't set or if we are
2644 * replacing the range with a new extent
2646 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2647 rsv_count = 3;
2648 else
2649 rsv_count = 2;
2651 trans = btrfs_start_transaction(root, rsv_count);
2652 if (IS_ERR(trans)) {
2653 ret = PTR_ERR(trans);
2654 trans = NULL;
2655 goto out_free;
2658 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2659 min_size, false);
2660 BUG_ON(ret);
2661 trans->block_rsv = rsv;
2663 cur_offset = start;
2664 drop_args.path = path;
2665 drop_args.end = end + 1;
2666 drop_args.drop_cache = true;
2667 while (cur_offset < end) {
2668 drop_args.start = cur_offset;
2669 ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
2670 /* If we are punching a hole decrement the inode's byte count */
2671 if (!extent_info)
2672 btrfs_update_inode_bytes(BTRFS_I(inode), 0,
2673 drop_args.bytes_found);
2674 if (ret != -ENOSPC) {
2676 * When cloning we want to avoid transaction aborts when
2677 * nothing was done and we are attempting to clone parts
2678 * of inline extents, in such cases -EOPNOTSUPP is
2679 * returned by __btrfs_drop_extents() without having
2680 * changed anything in the file.
2682 if (extent_info && !extent_info->is_new_extent &&
2683 ret && ret != -EOPNOTSUPP)
2684 btrfs_abort_transaction(trans, ret);
2685 break;
2688 trans->block_rsv = &fs_info->trans_block_rsv;
2690 if (!extent_info && cur_offset < drop_args.drop_end &&
2691 cur_offset < ino_size) {
2692 ret = fill_holes(trans, BTRFS_I(inode), path,
2693 cur_offset, drop_args.drop_end);
2694 if (ret) {
2696 * If we failed then we didn't insert our hole
2697 * entries for the area we dropped, so now the
2698 * fs is corrupted, so we must abort the
2699 * transaction.
2701 btrfs_abort_transaction(trans, ret);
2702 break;
2704 } else if (!extent_info && cur_offset < drop_args.drop_end) {
2706 * We are past the i_size here, but since we didn't
2707 * insert holes we need to clear the mapped area so we
2708 * know to not set disk_i_size in this area until a new
2709 * file extent is inserted here.
2711 ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
2712 cur_offset,
2713 drop_args.drop_end - cur_offset);
2714 if (ret) {
2716 * We couldn't clear our area, so we could
2717 * presumably adjust up and corrupt the fs, so
2718 * we need to abort.
2720 btrfs_abort_transaction(trans, ret);
2721 break;
2725 if (extent_info &&
2726 drop_args.drop_end > extent_info->file_offset) {
2727 u64 replace_len = drop_args.drop_end -
2728 extent_info->file_offset;
2730 ret = btrfs_insert_replace_extent(trans, BTRFS_I(inode),
2731 path, extent_info, replace_len,
2732 drop_args.bytes_found);
2733 if (ret) {
2734 btrfs_abort_transaction(trans, ret);
2735 break;
2737 extent_info->data_len -= replace_len;
2738 extent_info->data_offset += replace_len;
2739 extent_info->file_offset += replace_len;
2742 cur_offset = drop_args.drop_end;
2744 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2745 if (ret)
2746 break;
2748 btrfs_end_transaction(trans);
2749 btrfs_btree_balance_dirty(fs_info);
2751 trans = btrfs_start_transaction(root, rsv_count);
2752 if (IS_ERR(trans)) {
2753 ret = PTR_ERR(trans);
2754 trans = NULL;
2755 break;
2758 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2759 rsv, min_size, false);
2760 BUG_ON(ret); /* shouldn't happen */
2761 trans->block_rsv = rsv;
2763 if (!extent_info) {
2764 ret = find_first_non_hole(BTRFS_I(inode), &cur_offset,
2765 &len);
2766 if (unlikely(ret < 0))
2767 break;
2768 if (ret && !len) {
2769 ret = 0;
2770 break;
2776 * If we were cloning, force the next fsync to be a full one since we
2777 * we replaced (or just dropped in the case of cloning holes when
2778 * NO_HOLES is enabled) extents and extent maps.
2779 * This is for the sake of simplicity, and cloning into files larger
2780 * than 16Mb would force the full fsync any way (when
2781 * try_release_extent_mapping() is invoked during page cache truncation.
2783 if (extent_info && !extent_info->is_new_extent)
2784 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2785 &BTRFS_I(inode)->runtime_flags);
2787 if (ret)
2788 goto out_trans;
2790 trans->block_rsv = &fs_info->trans_block_rsv;
2792 * If we are using the NO_HOLES feature we might have had already an
2793 * hole that overlaps a part of the region [lockstart, lockend] and
2794 * ends at (or beyond) lockend. Since we have no file extent items to
2795 * represent holes, drop_end can be less than lockend and so we must
2796 * make sure we have an extent map representing the existing hole (the
2797 * call to __btrfs_drop_extents() might have dropped the existing extent
2798 * map representing the existing hole), otherwise the fast fsync path
2799 * will not record the existence of the hole region
2800 * [existing_hole_start, lockend].
2802 if (drop_args.drop_end <= end)
2803 drop_args.drop_end = end + 1;
2805 * Don't insert file hole extent item if it's for a range beyond eof
2806 * (because it's useless) or if it represents a 0 bytes range (when
2807 * cur_offset == drop_end).
2809 if (!extent_info && cur_offset < ino_size &&
2810 cur_offset < drop_args.drop_end) {
2811 ret = fill_holes(trans, BTRFS_I(inode), path,
2812 cur_offset, drop_args.drop_end);
2813 if (ret) {
2814 /* Same comment as above. */
2815 btrfs_abort_transaction(trans, ret);
2816 goto out_trans;
2818 } else if (!extent_info && cur_offset < drop_args.drop_end) {
2819 /* See the comment in the loop above for the reasoning here. */
2820 ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
2821 cur_offset, drop_args.drop_end - cur_offset);
2822 if (ret) {
2823 btrfs_abort_transaction(trans, ret);
2824 goto out_trans;
2828 if (extent_info) {
2829 ret = btrfs_insert_replace_extent(trans, BTRFS_I(inode), path,
2830 extent_info, extent_info->data_len,
2831 drop_args.bytes_found);
2832 if (ret) {
2833 btrfs_abort_transaction(trans, ret);
2834 goto out_trans;
2838 out_trans:
2839 if (!trans)
2840 goto out_free;
2842 trans->block_rsv = &fs_info->trans_block_rsv;
2843 if (ret)
2844 btrfs_end_transaction(trans);
2845 else
2846 *trans_out = trans;
2847 out_free:
2848 btrfs_free_block_rsv(fs_info, rsv);
2849 out:
2850 return ret;
2853 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2855 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2856 struct btrfs_root *root = BTRFS_I(inode)->root;
2857 struct extent_state *cached_state = NULL;
2858 struct btrfs_path *path;
2859 struct btrfs_trans_handle *trans = NULL;
2860 u64 lockstart;
2861 u64 lockend;
2862 u64 tail_start;
2863 u64 tail_len;
2864 u64 orig_start = offset;
2865 int ret = 0;
2866 bool same_block;
2867 u64 ino_size;
2868 bool truncated_block = false;
2869 bool updated_inode = false;
2871 ret = btrfs_wait_ordered_range(inode, offset, len);
2872 if (ret)
2873 return ret;
2875 inode_lock(inode);
2876 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2877 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2878 if (ret < 0)
2879 goto out_only_mutex;
2880 if (ret && !len) {
2881 /* Already in a large hole */
2882 ret = 0;
2883 goto out_only_mutex;
2886 lockstart = round_up(offset, btrfs_inode_sectorsize(BTRFS_I(inode)));
2887 lockend = round_down(offset + len,
2888 btrfs_inode_sectorsize(BTRFS_I(inode))) - 1;
2889 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2890 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2892 * We needn't truncate any block which is beyond the end of the file
2893 * because we are sure there is no data there.
2896 * Only do this if we are in the same block and we aren't doing the
2897 * entire block.
2899 if (same_block && len < fs_info->sectorsize) {
2900 if (offset < ino_size) {
2901 truncated_block = true;
2902 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2904 } else {
2905 ret = 0;
2907 goto out_only_mutex;
2910 /* zero back part of the first block */
2911 if (offset < ino_size) {
2912 truncated_block = true;
2913 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2914 if (ret) {
2915 inode_unlock(inode);
2916 return ret;
2920 /* Check the aligned pages after the first unaligned page,
2921 * if offset != orig_start, which means the first unaligned page
2922 * including several following pages are already in holes,
2923 * the extra check can be skipped */
2924 if (offset == orig_start) {
2925 /* after truncate page, check hole again */
2926 len = offset + len - lockstart;
2927 offset = lockstart;
2928 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2929 if (ret < 0)
2930 goto out_only_mutex;
2931 if (ret && !len) {
2932 ret = 0;
2933 goto out_only_mutex;
2935 lockstart = offset;
2938 /* Check the tail unaligned part is in a hole */
2939 tail_start = lockend + 1;
2940 tail_len = offset + len - tail_start;
2941 if (tail_len) {
2942 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2943 if (unlikely(ret < 0))
2944 goto out_only_mutex;
2945 if (!ret) {
2946 /* zero the front end of the last page */
2947 if (tail_start + tail_len < ino_size) {
2948 truncated_block = true;
2949 ret = btrfs_truncate_block(BTRFS_I(inode),
2950 tail_start + tail_len,
2951 0, 1);
2952 if (ret)
2953 goto out_only_mutex;
2958 if (lockend < lockstart) {
2959 ret = 0;
2960 goto out_only_mutex;
2963 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2964 &cached_state);
2965 if (ret)
2966 goto out_only_mutex;
2968 path = btrfs_alloc_path();
2969 if (!path) {
2970 ret = -ENOMEM;
2971 goto out;
2974 ret = btrfs_replace_file_extents(inode, path, lockstart, lockend, NULL,
2975 &trans);
2976 btrfs_free_path(path);
2977 if (ret)
2978 goto out;
2980 ASSERT(trans != NULL);
2981 inode_inc_iversion(inode);
2982 inode->i_mtime = inode->i_ctime = current_time(inode);
2983 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2984 updated_inode = true;
2985 btrfs_end_transaction(trans);
2986 btrfs_btree_balance_dirty(fs_info);
2987 out:
2988 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2989 &cached_state);
2990 out_only_mutex:
2991 if (!updated_inode && truncated_block && !ret) {
2993 * If we only end up zeroing part of a page, we still need to
2994 * update the inode item, so that all the time fields are
2995 * updated as well as the necessary btrfs inode in memory fields
2996 * for detecting, at fsync time, if the inode isn't yet in the
2997 * log tree or it's there but not up to date.
2999 struct timespec64 now = current_time(inode);
3001 inode_inc_iversion(inode);
3002 inode->i_mtime = now;
3003 inode->i_ctime = now;
3004 trans = btrfs_start_transaction(root, 1);
3005 if (IS_ERR(trans)) {
3006 ret = PTR_ERR(trans);
3007 } else {
3008 int ret2;
3010 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3011 ret2 = btrfs_end_transaction(trans);
3012 if (!ret)
3013 ret = ret2;
3016 inode_unlock(inode);
3017 return ret;
3020 /* Helper structure to record which range is already reserved */
3021 struct falloc_range {
3022 struct list_head list;
3023 u64 start;
3024 u64 len;
3028 * Helper function to add falloc range
3030 * Caller should have locked the larger range of extent containing
3031 * [start, len)
3033 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
3035 struct falloc_range *prev = NULL;
3036 struct falloc_range *range = NULL;
3038 if (list_empty(head))
3039 goto insert;
3042 * As fallocate iterate by bytenr order, we only need to check
3043 * the last range.
3045 prev = list_entry(head->prev, struct falloc_range, list);
3046 if (prev->start + prev->len == start) {
3047 prev->len += len;
3048 return 0;
3050 insert:
3051 range = kmalloc(sizeof(*range), GFP_KERNEL);
3052 if (!range)
3053 return -ENOMEM;
3054 range->start = start;
3055 range->len = len;
3056 list_add_tail(&range->list, head);
3057 return 0;
3060 static int btrfs_fallocate_update_isize(struct inode *inode,
3061 const u64 end,
3062 const int mode)
3064 struct btrfs_trans_handle *trans;
3065 struct btrfs_root *root = BTRFS_I(inode)->root;
3066 int ret;
3067 int ret2;
3069 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
3070 return 0;
3072 trans = btrfs_start_transaction(root, 1);
3073 if (IS_ERR(trans))
3074 return PTR_ERR(trans);
3076 inode->i_ctime = current_time(inode);
3077 i_size_write(inode, end);
3078 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
3079 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3080 ret2 = btrfs_end_transaction(trans);
3082 return ret ? ret : ret2;
3085 enum {
3086 RANGE_BOUNDARY_WRITTEN_EXTENT,
3087 RANGE_BOUNDARY_PREALLOC_EXTENT,
3088 RANGE_BOUNDARY_HOLE,
3091 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
3092 u64 offset)
3094 const u64 sectorsize = btrfs_inode_sectorsize(inode);
3095 struct extent_map *em;
3096 int ret;
3098 offset = round_down(offset, sectorsize);
3099 em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
3100 if (IS_ERR(em))
3101 return PTR_ERR(em);
3103 if (em->block_start == EXTENT_MAP_HOLE)
3104 ret = RANGE_BOUNDARY_HOLE;
3105 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3106 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
3107 else
3108 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
3110 free_extent_map(em);
3111 return ret;
3114 static int btrfs_zero_range(struct inode *inode,
3115 loff_t offset,
3116 loff_t len,
3117 const int mode)
3119 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3120 struct extent_map *em;
3121 struct extent_changeset *data_reserved = NULL;
3122 int ret;
3123 u64 alloc_hint = 0;
3124 const u64 sectorsize = btrfs_inode_sectorsize(BTRFS_I(inode));
3125 u64 alloc_start = round_down(offset, sectorsize);
3126 u64 alloc_end = round_up(offset + len, sectorsize);
3127 u64 bytes_to_reserve = 0;
3128 bool space_reserved = false;
3130 inode_dio_wait(inode);
3132 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3133 alloc_end - alloc_start);
3134 if (IS_ERR(em)) {
3135 ret = PTR_ERR(em);
3136 goto out;
3140 * Avoid hole punching and extent allocation for some cases. More cases
3141 * could be considered, but these are unlikely common and we keep things
3142 * as simple as possible for now. Also, intentionally, if the target
3143 * range contains one or more prealloc extents together with regular
3144 * extents and holes, we drop all the existing extents and allocate a
3145 * new prealloc extent, so that we get a larger contiguous disk extent.
3147 if (em->start <= alloc_start &&
3148 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3149 const u64 em_end = em->start + em->len;
3151 if (em_end >= offset + len) {
3153 * The whole range is already a prealloc extent,
3154 * do nothing except updating the inode's i_size if
3155 * needed.
3157 free_extent_map(em);
3158 ret = btrfs_fallocate_update_isize(inode, offset + len,
3159 mode);
3160 goto out;
3163 * Part of the range is already a prealloc extent, so operate
3164 * only on the remaining part of the range.
3166 alloc_start = em_end;
3167 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3168 len = offset + len - alloc_start;
3169 offset = alloc_start;
3170 alloc_hint = em->block_start + em->len;
3172 free_extent_map(em);
3174 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3175 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
3176 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3177 sectorsize);
3178 if (IS_ERR(em)) {
3179 ret = PTR_ERR(em);
3180 goto out;
3183 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3184 free_extent_map(em);
3185 ret = btrfs_fallocate_update_isize(inode, offset + len,
3186 mode);
3187 goto out;
3189 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3190 free_extent_map(em);
3191 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
3193 if (!ret)
3194 ret = btrfs_fallocate_update_isize(inode,
3195 offset + len,
3196 mode);
3197 return ret;
3199 free_extent_map(em);
3200 alloc_start = round_down(offset, sectorsize);
3201 alloc_end = alloc_start + sectorsize;
3202 goto reserve_space;
3205 alloc_start = round_up(offset, sectorsize);
3206 alloc_end = round_down(offset + len, sectorsize);
3209 * For unaligned ranges, check the pages at the boundaries, they might
3210 * map to an extent, in which case we need to partially zero them, or
3211 * they might map to a hole, in which case we need our allocation range
3212 * to cover them.
3214 if (!IS_ALIGNED(offset, sectorsize)) {
3215 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3216 offset);
3217 if (ret < 0)
3218 goto out;
3219 if (ret == RANGE_BOUNDARY_HOLE) {
3220 alloc_start = round_down(offset, sectorsize);
3221 ret = 0;
3222 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3223 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
3224 if (ret)
3225 goto out;
3226 } else {
3227 ret = 0;
3231 if (!IS_ALIGNED(offset + len, sectorsize)) {
3232 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3233 offset + len);
3234 if (ret < 0)
3235 goto out;
3236 if (ret == RANGE_BOUNDARY_HOLE) {
3237 alloc_end = round_up(offset + len, sectorsize);
3238 ret = 0;
3239 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3240 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
3241 0, 1);
3242 if (ret)
3243 goto out;
3244 } else {
3245 ret = 0;
3249 reserve_space:
3250 if (alloc_start < alloc_end) {
3251 struct extent_state *cached_state = NULL;
3252 const u64 lockstart = alloc_start;
3253 const u64 lockend = alloc_end - 1;
3255 bytes_to_reserve = alloc_end - alloc_start;
3256 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3257 bytes_to_reserve);
3258 if (ret < 0)
3259 goto out;
3260 space_reserved = true;
3261 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3262 &cached_state);
3263 if (ret)
3264 goto out;
3265 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3266 alloc_start, bytes_to_reserve);
3267 if (ret)
3268 goto out;
3269 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3270 alloc_end - alloc_start,
3271 i_blocksize(inode),
3272 offset + len, &alloc_hint);
3273 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3274 lockend, &cached_state);
3275 /* btrfs_prealloc_file_range releases reserved space on error */
3276 if (ret) {
3277 space_reserved = false;
3278 goto out;
3281 ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3282 out:
3283 if (ret && space_reserved)
3284 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3285 alloc_start, bytes_to_reserve);
3286 extent_changeset_free(data_reserved);
3288 return ret;
3291 static long btrfs_fallocate(struct file *file, int mode,
3292 loff_t offset, loff_t len)
3294 struct inode *inode = file_inode(file);
3295 struct extent_state *cached_state = NULL;
3296 struct extent_changeset *data_reserved = NULL;
3297 struct falloc_range *range;
3298 struct falloc_range *tmp;
3299 struct list_head reserve_list;
3300 u64 cur_offset;
3301 u64 last_byte;
3302 u64 alloc_start;
3303 u64 alloc_end;
3304 u64 alloc_hint = 0;
3305 u64 locked_end;
3306 u64 actual_end = 0;
3307 struct extent_map *em;
3308 int blocksize = btrfs_inode_sectorsize(BTRFS_I(inode));
3309 int ret;
3311 /* Do not allow fallocate in ZONED mode */
3312 if (btrfs_is_zoned(btrfs_sb(inode->i_sb)))
3313 return -EOPNOTSUPP;
3315 alloc_start = round_down(offset, blocksize);
3316 alloc_end = round_up(offset + len, blocksize);
3317 cur_offset = alloc_start;
3319 /* Make sure we aren't being give some crap mode */
3320 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3321 FALLOC_FL_ZERO_RANGE))
3322 return -EOPNOTSUPP;
3324 if (mode & FALLOC_FL_PUNCH_HOLE)
3325 return btrfs_punch_hole(inode, offset, len);
3328 * Only trigger disk allocation, don't trigger qgroup reserve
3330 * For qgroup space, it will be checked later.
3332 if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3333 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3334 alloc_end - alloc_start);
3335 if (ret < 0)
3336 return ret;
3339 btrfs_inode_lock(inode, 0);
3341 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3342 ret = inode_newsize_ok(inode, offset + len);
3343 if (ret)
3344 goto out;
3348 * TODO: Move these two operations after we have checked
3349 * accurate reserved space, or fallocate can still fail but
3350 * with page truncated or size expanded.
3352 * But that's a minor problem and won't do much harm BTW.
3354 if (alloc_start > inode->i_size) {
3355 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3356 alloc_start);
3357 if (ret)
3358 goto out;
3359 } else if (offset + len > inode->i_size) {
3361 * If we are fallocating from the end of the file onward we
3362 * need to zero out the end of the block if i_size lands in the
3363 * middle of a block.
3365 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3366 if (ret)
3367 goto out;
3371 * wait for ordered IO before we have any locks. We'll loop again
3372 * below with the locks held.
3374 ret = btrfs_wait_ordered_range(inode, alloc_start,
3375 alloc_end - alloc_start);
3376 if (ret)
3377 goto out;
3379 if (mode & FALLOC_FL_ZERO_RANGE) {
3380 ret = btrfs_zero_range(inode, offset, len, mode);
3381 inode_unlock(inode);
3382 return ret;
3385 locked_end = alloc_end - 1;
3386 while (1) {
3387 struct btrfs_ordered_extent *ordered;
3389 /* the extent lock is ordered inside the running
3390 * transaction
3392 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3393 locked_end, &cached_state);
3394 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
3395 locked_end);
3397 if (ordered &&
3398 ordered->file_offset + ordered->num_bytes > alloc_start &&
3399 ordered->file_offset < alloc_end) {
3400 btrfs_put_ordered_extent(ordered);
3401 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3402 alloc_start, locked_end,
3403 &cached_state);
3405 * we can't wait on the range with the transaction
3406 * running or with the extent lock held
3408 ret = btrfs_wait_ordered_range(inode, alloc_start,
3409 alloc_end - alloc_start);
3410 if (ret)
3411 goto out;
3412 } else {
3413 if (ordered)
3414 btrfs_put_ordered_extent(ordered);
3415 break;
3419 /* First, check if we exceed the qgroup limit */
3420 INIT_LIST_HEAD(&reserve_list);
3421 while (cur_offset < alloc_end) {
3422 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3423 alloc_end - cur_offset);
3424 if (IS_ERR(em)) {
3425 ret = PTR_ERR(em);
3426 break;
3428 last_byte = min(extent_map_end(em), alloc_end);
3429 actual_end = min_t(u64, extent_map_end(em), offset + len);
3430 last_byte = ALIGN(last_byte, blocksize);
3431 if (em->block_start == EXTENT_MAP_HOLE ||
3432 (cur_offset >= inode->i_size &&
3433 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3434 ret = add_falloc_range(&reserve_list, cur_offset,
3435 last_byte - cur_offset);
3436 if (ret < 0) {
3437 free_extent_map(em);
3438 break;
3440 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3441 &data_reserved, cur_offset,
3442 last_byte - cur_offset);
3443 if (ret < 0) {
3444 cur_offset = last_byte;
3445 free_extent_map(em);
3446 break;
3448 } else {
3450 * Do not need to reserve unwritten extent for this
3451 * range, free reserved data space first, otherwise
3452 * it'll result in false ENOSPC error.
3454 btrfs_free_reserved_data_space(BTRFS_I(inode),
3455 data_reserved, cur_offset,
3456 last_byte - cur_offset);
3458 free_extent_map(em);
3459 cur_offset = last_byte;
3463 * If ret is still 0, means we're OK to fallocate.
3464 * Or just cleanup the list and exit.
3466 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3467 if (!ret)
3468 ret = btrfs_prealloc_file_range(inode, mode,
3469 range->start,
3470 range->len, i_blocksize(inode),
3471 offset + len, &alloc_hint);
3472 else
3473 btrfs_free_reserved_data_space(BTRFS_I(inode),
3474 data_reserved, range->start,
3475 range->len);
3476 list_del(&range->list);
3477 kfree(range);
3479 if (ret < 0)
3480 goto out_unlock;
3483 * We didn't need to allocate any more space, but we still extended the
3484 * size of the file so we need to update i_size and the inode item.
3486 ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3487 out_unlock:
3488 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3489 &cached_state);
3490 out:
3491 inode_unlock(inode);
3492 /* Let go of our reservation. */
3493 if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3494 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3495 cur_offset, alloc_end - cur_offset);
3496 extent_changeset_free(data_reserved);
3497 return ret;
3500 static loff_t find_desired_extent(struct inode *inode, loff_t offset,
3501 int whence)
3503 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3504 struct extent_map *em = NULL;
3505 struct extent_state *cached_state = NULL;
3506 loff_t i_size = inode->i_size;
3507 u64 lockstart;
3508 u64 lockend;
3509 u64 start;
3510 u64 len;
3511 int ret = 0;
3513 if (i_size == 0 || offset >= i_size)
3514 return -ENXIO;
3517 * offset can be negative, in this case we start finding DATA/HOLE from
3518 * the very start of the file.
3520 start = max_t(loff_t, 0, offset);
3522 lockstart = round_down(start, fs_info->sectorsize);
3523 lockend = round_up(i_size, fs_info->sectorsize);
3524 if (lockend <= lockstart)
3525 lockend = lockstart + fs_info->sectorsize;
3526 lockend--;
3527 len = lockend - lockstart + 1;
3529 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3530 &cached_state);
3532 while (start < i_size) {
3533 em = btrfs_get_extent_fiemap(BTRFS_I(inode), start, len);
3534 if (IS_ERR(em)) {
3535 ret = PTR_ERR(em);
3536 em = NULL;
3537 break;
3540 if (whence == SEEK_HOLE &&
3541 (em->block_start == EXTENT_MAP_HOLE ||
3542 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3543 break;
3544 else if (whence == SEEK_DATA &&
3545 (em->block_start != EXTENT_MAP_HOLE &&
3546 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3547 break;
3549 start = em->start + em->len;
3550 free_extent_map(em);
3551 em = NULL;
3552 cond_resched();
3554 free_extent_map(em);
3555 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3556 &cached_state);
3557 if (ret) {
3558 offset = ret;
3559 } else {
3560 if (whence == SEEK_DATA && start >= i_size)
3561 offset = -ENXIO;
3562 else
3563 offset = min_t(loff_t, start, i_size);
3566 return offset;
3569 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3571 struct inode *inode = file->f_mapping->host;
3573 switch (whence) {
3574 default:
3575 return generic_file_llseek(file, offset, whence);
3576 case SEEK_DATA:
3577 case SEEK_HOLE:
3578 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
3579 offset = find_desired_extent(inode, offset, whence);
3580 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3581 break;
3584 if (offset < 0)
3585 return offset;
3587 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3590 static int btrfs_file_open(struct inode *inode, struct file *filp)
3592 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
3593 return generic_file_open(inode, filp);
3596 static int check_direct_read(struct btrfs_fs_info *fs_info,
3597 const struct iov_iter *iter, loff_t offset)
3599 int ret;
3600 int i, seg;
3602 ret = check_direct_IO(fs_info, iter, offset);
3603 if (ret < 0)
3604 return ret;
3606 if (!iter_is_iovec(iter))
3607 return 0;
3609 for (seg = 0; seg < iter->nr_segs; seg++)
3610 for (i = seg + 1; i < iter->nr_segs; i++)
3611 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
3612 return -EINVAL;
3613 return 0;
3616 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
3618 struct inode *inode = file_inode(iocb->ki_filp);
3619 ssize_t ret;
3621 if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos))
3622 return 0;
3624 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
3625 ret = iomap_dio_rw(iocb, to, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
3626 is_sync_kiocb(iocb));
3627 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3628 return ret;
3631 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3633 ssize_t ret = 0;
3635 if (iocb->ki_flags & IOCB_DIRECT) {
3636 ret = btrfs_direct_read(iocb, to);
3637 if (ret < 0 || !iov_iter_count(to) ||
3638 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3639 return ret;
3642 return generic_file_buffered_read(iocb, to, ret);
3645 const struct file_operations btrfs_file_operations = {
3646 .llseek = btrfs_file_llseek,
3647 .read_iter = btrfs_file_read_iter,
3648 .splice_read = generic_file_splice_read,
3649 .write_iter = btrfs_file_write_iter,
3650 .splice_write = iter_file_splice_write,
3651 .mmap = btrfs_file_mmap,
3652 .open = btrfs_file_open,
3653 .release = btrfs_release_file,
3654 .fsync = btrfs_sync_file,
3655 .fallocate = btrfs_fallocate,
3656 .unlocked_ioctl = btrfs_ioctl,
3657 #ifdef CONFIG_COMPAT
3658 .compat_ioctl = btrfs_compat_ioctl,
3659 #endif
3660 .remap_file_range = btrfs_remap_file_range,
3663 void __cold btrfs_auto_defrag_exit(void)
3665 kmem_cache_destroy(btrfs_inode_defrag_cachep);
3668 int __init btrfs_auto_defrag_init(void)
3670 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3671 sizeof(struct inode_defrag), 0,
3672 SLAB_MEM_SPREAD,
3673 NULL);
3674 if (!btrfs_inode_defrag_cachep)
3675 return -ENOMEM;
3677 return 0;
3680 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3682 int ret;
3685 * So with compression we will find and lock a dirty page and clear the
3686 * first one as dirty, setup an async extent, and immediately return
3687 * with the entire range locked but with nobody actually marked with
3688 * writeback. So we can't just filemap_write_and_wait_range() and
3689 * expect it to work since it will just kick off a thread to do the
3690 * actual work. So we need to call filemap_fdatawrite_range _again_
3691 * since it will wait on the page lock, which won't be unlocked until
3692 * after the pages have been marked as writeback and so we're good to go
3693 * from there. We have to do this otherwise we'll miss the ordered
3694 * extents and that results in badness. Please Josef, do not think you
3695 * know better and pull this out at some point in the future, it is
3696 * right and you are wrong.
3698 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3699 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3700 &BTRFS_I(inode)->runtime_flags))
3701 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3703 return ret;