1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
9 #include <linux/file.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <linux/swap.h>
31 #include <linux/migrate.h>
32 #include <linux/sched/mm.h>
33 #include <linux/iomap.h>
34 #include <asm/unaligned.h>
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "print-tree.h"
41 #include "ordered-data.h"
45 #include "compression.h"
47 #include "free-space-cache.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52 #include "space-info.h"
54 struct btrfs_iget_args
{
56 struct btrfs_root
*root
;
59 struct btrfs_dio_data
{
63 struct extent_changeset
*data_reserved
;
66 static const struct inode_operations btrfs_dir_inode_operations
;
67 static const struct inode_operations btrfs_symlink_inode_operations
;
68 static const struct inode_operations btrfs_special_inode_operations
;
69 static const struct inode_operations btrfs_file_inode_operations
;
70 static const struct address_space_operations btrfs_aops
;
71 static const struct file_operations btrfs_dir_file_operations
;
73 static struct kmem_cache
*btrfs_inode_cachep
;
74 struct kmem_cache
*btrfs_trans_handle_cachep
;
75 struct kmem_cache
*btrfs_path_cachep
;
76 struct kmem_cache
*btrfs_free_space_cachep
;
77 struct kmem_cache
*btrfs_free_space_bitmap_cachep
;
79 static int btrfs_setsize(struct inode
*inode
, struct iattr
*attr
);
80 static int btrfs_truncate(struct inode
*inode
, bool skip_writeback
);
81 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent
*ordered_extent
);
82 static noinline
int cow_file_range(struct btrfs_inode
*inode
,
83 struct page
*locked_page
,
84 u64 start
, u64 end
, int *page_started
,
85 unsigned long *nr_written
, int unlock
);
86 static struct extent_map
*create_io_em(struct btrfs_inode
*inode
, u64 start
,
87 u64 len
, u64 orig_start
, u64 block_start
,
88 u64 block_len
, u64 orig_block_len
,
89 u64 ram_bytes
, int compress_type
,
92 static void __endio_write_update_ordered(struct btrfs_inode
*inode
,
93 const u64 offset
, const u64 bytes
,
97 * btrfs_inode_lock - lock inode i_rwsem based on arguments passed
99 * ilock_flags can have the following bit set:
101 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
102 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
105 int btrfs_inode_lock(struct inode
*inode
, unsigned int ilock_flags
)
107 if (ilock_flags
& BTRFS_ILOCK_SHARED
) {
108 if (ilock_flags
& BTRFS_ILOCK_TRY
) {
109 if (!inode_trylock_shared(inode
))
114 inode_lock_shared(inode
);
116 if (ilock_flags
& BTRFS_ILOCK_TRY
) {
117 if (!inode_trylock(inode
))
128 * btrfs_inode_unlock - unock inode i_rwsem
130 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
131 * to decide whether the lock acquired is shared or exclusive.
133 void btrfs_inode_unlock(struct inode
*inode
, unsigned int ilock_flags
)
135 if (ilock_flags
& BTRFS_ILOCK_SHARED
)
136 inode_unlock_shared(inode
);
142 * Cleanup all submitted ordered extents in specified range to handle errors
143 * from the btrfs_run_delalloc_range() callback.
145 * NOTE: caller must ensure that when an error happens, it can not call
146 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
147 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
148 * to be released, which we want to happen only when finishing the ordered
149 * extent (btrfs_finish_ordered_io()).
151 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode
*inode
,
152 struct page
*locked_page
,
153 u64 offset
, u64 bytes
)
155 unsigned long index
= offset
>> PAGE_SHIFT
;
156 unsigned long end_index
= (offset
+ bytes
- 1) >> PAGE_SHIFT
;
157 u64 page_start
= page_offset(locked_page
);
158 u64 page_end
= page_start
+ PAGE_SIZE
- 1;
162 while (index
<= end_index
) {
163 page
= find_get_page(inode
->vfs_inode
.i_mapping
, index
);
167 ClearPagePrivate2(page
);
172 * In case this page belongs to the delalloc range being instantiated
173 * then skip it, since the first page of a range is going to be
174 * properly cleaned up by the caller of run_delalloc_range
176 if (page_start
>= offset
&& page_end
<= (offset
+ bytes
- 1)) {
181 return __endio_write_update_ordered(inode
, offset
, bytes
, false);
184 static int btrfs_dirty_inode(struct inode
*inode
);
186 static int btrfs_init_inode_security(struct btrfs_trans_handle
*trans
,
187 struct inode
*inode
, struct inode
*dir
,
188 const struct qstr
*qstr
)
192 err
= btrfs_init_acl(trans
, inode
, dir
);
194 err
= btrfs_xattr_security_init(trans
, inode
, dir
, qstr
);
199 * this does all the hard work for inserting an inline extent into
200 * the btree. The caller should have done a btrfs_drop_extents so that
201 * no overlapping inline items exist in the btree
203 static int insert_inline_extent(struct btrfs_trans_handle
*trans
,
204 struct btrfs_path
*path
, bool extent_inserted
,
205 struct btrfs_root
*root
, struct inode
*inode
,
206 u64 start
, size_t size
, size_t compressed_size
,
208 struct page
**compressed_pages
)
210 struct extent_buffer
*leaf
;
211 struct page
*page
= NULL
;
214 struct btrfs_file_extent_item
*ei
;
216 size_t cur_size
= size
;
217 unsigned long offset
;
219 ASSERT((compressed_size
> 0 && compressed_pages
) ||
220 (compressed_size
== 0 && !compressed_pages
));
222 if (compressed_size
&& compressed_pages
)
223 cur_size
= compressed_size
;
225 if (!extent_inserted
) {
226 struct btrfs_key key
;
229 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
231 key
.type
= BTRFS_EXTENT_DATA_KEY
;
233 datasize
= btrfs_file_extent_calc_inline_size(cur_size
);
234 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
239 leaf
= path
->nodes
[0];
240 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
241 struct btrfs_file_extent_item
);
242 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
243 btrfs_set_file_extent_type(leaf
, ei
, BTRFS_FILE_EXTENT_INLINE
);
244 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
245 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
246 btrfs_set_file_extent_ram_bytes(leaf
, ei
, size
);
247 ptr
= btrfs_file_extent_inline_start(ei
);
249 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
252 while (compressed_size
> 0) {
253 cpage
= compressed_pages
[i
];
254 cur_size
= min_t(unsigned long, compressed_size
,
257 kaddr
= kmap_atomic(cpage
);
258 write_extent_buffer(leaf
, kaddr
, ptr
, cur_size
);
259 kunmap_atomic(kaddr
);
263 compressed_size
-= cur_size
;
265 btrfs_set_file_extent_compression(leaf
, ei
,
268 page
= find_get_page(inode
->i_mapping
,
269 start
>> PAGE_SHIFT
);
270 btrfs_set_file_extent_compression(leaf
, ei
, 0);
271 kaddr
= kmap_atomic(page
);
272 offset
= offset_in_page(start
);
273 write_extent_buffer(leaf
, kaddr
+ offset
, ptr
, size
);
274 kunmap_atomic(kaddr
);
277 btrfs_mark_buffer_dirty(leaf
);
278 btrfs_release_path(path
);
281 * We align size to sectorsize for inline extents just for simplicity
284 size
= ALIGN(size
, root
->fs_info
->sectorsize
);
285 ret
= btrfs_inode_set_file_extent_range(BTRFS_I(inode
), start
, size
);
290 * we're an inline extent, so nobody can
291 * extend the file past i_size without locking
292 * a page we already have locked.
294 * We must do any isize and inode updates
295 * before we unlock the pages. Otherwise we
296 * could end up racing with unlink.
298 BTRFS_I(inode
)->disk_i_size
= inode
->i_size
;
305 * conditionally insert an inline extent into the file. This
306 * does the checks required to make sure the data is small enough
307 * to fit as an inline extent.
309 static noinline
int cow_file_range_inline(struct btrfs_inode
*inode
, u64 start
,
310 u64 end
, size_t compressed_size
,
312 struct page
**compressed_pages
)
314 struct btrfs_drop_extents_args drop_args
= { 0 };
315 struct btrfs_root
*root
= inode
->root
;
316 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
317 struct btrfs_trans_handle
*trans
;
318 u64 isize
= i_size_read(&inode
->vfs_inode
);
319 u64 actual_end
= min(end
+ 1, isize
);
320 u64 inline_len
= actual_end
- start
;
321 u64 aligned_end
= ALIGN(end
, fs_info
->sectorsize
);
322 u64 data_len
= inline_len
;
324 struct btrfs_path
*path
;
327 data_len
= compressed_size
;
330 actual_end
> fs_info
->sectorsize
||
331 data_len
> BTRFS_MAX_INLINE_DATA_SIZE(fs_info
) ||
333 (actual_end
& (fs_info
->sectorsize
- 1)) == 0) ||
335 data_len
> fs_info
->max_inline
) {
339 path
= btrfs_alloc_path();
343 trans
= btrfs_join_transaction(root
);
345 btrfs_free_path(path
);
346 return PTR_ERR(trans
);
348 trans
->block_rsv
= &inode
->block_rsv
;
350 drop_args
.path
= path
;
351 drop_args
.start
= start
;
352 drop_args
.end
= aligned_end
;
353 drop_args
.drop_cache
= true;
354 drop_args
.replace_extent
= true;
356 if (compressed_size
&& compressed_pages
)
357 drop_args
.extent_item_size
= btrfs_file_extent_calc_inline_size(
360 drop_args
.extent_item_size
= btrfs_file_extent_calc_inline_size(
363 ret
= btrfs_drop_extents(trans
, root
, inode
, &drop_args
);
365 btrfs_abort_transaction(trans
, ret
);
369 if (isize
> actual_end
)
370 inline_len
= min_t(u64
, isize
, actual_end
);
371 ret
= insert_inline_extent(trans
, path
, drop_args
.extent_inserted
,
372 root
, &inode
->vfs_inode
, start
,
373 inline_len
, compressed_size
,
374 compress_type
, compressed_pages
);
375 if (ret
&& ret
!= -ENOSPC
) {
376 btrfs_abort_transaction(trans
, ret
);
378 } else if (ret
== -ENOSPC
) {
383 btrfs_update_inode_bytes(inode
, inline_len
, drop_args
.bytes_found
);
384 ret
= btrfs_update_inode(trans
, root
, inode
);
385 if (ret
&& ret
!= -ENOSPC
) {
386 btrfs_abort_transaction(trans
, ret
);
388 } else if (ret
== -ENOSPC
) {
393 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &inode
->runtime_flags
);
396 * Don't forget to free the reserved space, as for inlined extent
397 * it won't count as data extent, free them directly here.
398 * And at reserve time, it's always aligned to page size, so
399 * just free one page here.
401 btrfs_qgroup_free_data(inode
, NULL
, 0, PAGE_SIZE
);
402 btrfs_free_path(path
);
403 btrfs_end_transaction(trans
);
407 struct async_extent
{
412 unsigned long nr_pages
;
414 struct list_head list
;
419 struct page
*locked_page
;
422 unsigned int write_flags
;
423 struct list_head extents
;
424 struct cgroup_subsys_state
*blkcg_css
;
425 struct btrfs_work work
;
430 /* Number of chunks in flight; must be first in the structure */
432 struct async_chunk chunks
[];
435 static noinline
int add_async_extent(struct async_chunk
*cow
,
436 u64 start
, u64 ram_size
,
439 unsigned long nr_pages
,
442 struct async_extent
*async_extent
;
444 async_extent
= kmalloc(sizeof(*async_extent
), GFP_NOFS
);
445 BUG_ON(!async_extent
); /* -ENOMEM */
446 async_extent
->start
= start
;
447 async_extent
->ram_size
= ram_size
;
448 async_extent
->compressed_size
= compressed_size
;
449 async_extent
->pages
= pages
;
450 async_extent
->nr_pages
= nr_pages
;
451 async_extent
->compress_type
= compress_type
;
452 list_add_tail(&async_extent
->list
, &cow
->extents
);
457 * Check if the inode has flags compatible with compression
459 static inline bool inode_can_compress(struct btrfs_inode
*inode
)
461 if (inode
->flags
& BTRFS_INODE_NODATACOW
||
462 inode
->flags
& BTRFS_INODE_NODATASUM
)
468 * Check if the inode needs to be submitted to compression, based on mount
469 * options, defragmentation, properties or heuristics.
471 static inline int inode_need_compress(struct btrfs_inode
*inode
, u64 start
,
474 struct btrfs_fs_info
*fs_info
= inode
->root
->fs_info
;
476 if (!inode_can_compress(inode
)) {
477 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG
),
478 KERN_ERR
"BTRFS: unexpected compression for ino %llu\n",
483 if (btrfs_test_opt(fs_info
, FORCE_COMPRESS
))
486 if (inode
->defrag_compress
)
488 /* bad compression ratios */
489 if (inode
->flags
& BTRFS_INODE_NOCOMPRESS
)
491 if (btrfs_test_opt(fs_info
, COMPRESS
) ||
492 inode
->flags
& BTRFS_INODE_COMPRESS
||
493 inode
->prop_compress
)
494 return btrfs_compress_heuristic(&inode
->vfs_inode
, start
, end
);
498 static inline void inode_should_defrag(struct btrfs_inode
*inode
,
499 u64 start
, u64 end
, u64 num_bytes
, u64 small_write
)
501 /* If this is a small write inside eof, kick off a defrag */
502 if (num_bytes
< small_write
&&
503 (start
> 0 || end
+ 1 < inode
->disk_i_size
))
504 btrfs_add_inode_defrag(NULL
, inode
);
508 * we create compressed extents in two phases. The first
509 * phase compresses a range of pages that have already been
510 * locked (both pages and state bits are locked).
512 * This is done inside an ordered work queue, and the compression
513 * is spread across many cpus. The actual IO submission is step
514 * two, and the ordered work queue takes care of making sure that
515 * happens in the same order things were put onto the queue by
516 * writepages and friends.
518 * If this code finds it can't get good compression, it puts an
519 * entry onto the work queue to write the uncompressed bytes. This
520 * makes sure that both compressed inodes and uncompressed inodes
521 * are written in the same order that the flusher thread sent them
524 static noinline
int compress_file_range(struct async_chunk
*async_chunk
)
526 struct inode
*inode
= async_chunk
->inode
;
527 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
528 u64 blocksize
= fs_info
->sectorsize
;
529 u64 start
= async_chunk
->start
;
530 u64 end
= async_chunk
->end
;
534 struct page
**pages
= NULL
;
535 unsigned long nr_pages
;
536 unsigned long total_compressed
= 0;
537 unsigned long total_in
= 0;
540 int compress_type
= fs_info
->compress_type
;
541 int compressed_extents
= 0;
544 inode_should_defrag(BTRFS_I(inode
), start
, end
, end
- start
+ 1,
548 * We need to save i_size before now because it could change in between
549 * us evaluating the size and assigning it. This is because we lock and
550 * unlock the page in truncate and fallocate, and then modify the i_size
553 * The barriers are to emulate READ_ONCE, remove that once i_size_read
557 i_size
= i_size_read(inode
);
559 actual_end
= min_t(u64
, i_size
, end
+ 1);
562 nr_pages
= (end
>> PAGE_SHIFT
) - (start
>> PAGE_SHIFT
) + 1;
563 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED
% PAGE_SIZE
) != 0);
564 nr_pages
= min_t(unsigned long, nr_pages
,
565 BTRFS_MAX_COMPRESSED
/ PAGE_SIZE
);
568 * we don't want to send crud past the end of i_size through
569 * compression, that's just a waste of CPU time. So, if the
570 * end of the file is before the start of our current
571 * requested range of bytes, we bail out to the uncompressed
572 * cleanup code that can deal with all of this.
574 * It isn't really the fastest way to fix things, but this is a
575 * very uncommon corner.
577 if (actual_end
<= start
)
578 goto cleanup_and_bail_uncompressed
;
580 total_compressed
= actual_end
- start
;
583 * skip compression for a small file range(<=blocksize) that
584 * isn't an inline extent, since it doesn't save disk space at all.
586 if (total_compressed
<= blocksize
&&
587 (start
> 0 || end
+ 1 < BTRFS_I(inode
)->disk_i_size
))
588 goto cleanup_and_bail_uncompressed
;
590 total_compressed
= min_t(unsigned long, total_compressed
,
591 BTRFS_MAX_UNCOMPRESSED
);
596 * we do compression for mount -o compress and when the
597 * inode has not been flagged as nocompress. This flag can
598 * change at any time if we discover bad compression ratios.
600 if (inode_need_compress(BTRFS_I(inode
), start
, end
)) {
602 pages
= kcalloc(nr_pages
, sizeof(struct page
*), GFP_NOFS
);
604 /* just bail out to the uncompressed code */
609 if (BTRFS_I(inode
)->defrag_compress
)
610 compress_type
= BTRFS_I(inode
)->defrag_compress
;
611 else if (BTRFS_I(inode
)->prop_compress
)
612 compress_type
= BTRFS_I(inode
)->prop_compress
;
615 * we need to call clear_page_dirty_for_io on each
616 * page in the range. Otherwise applications with the file
617 * mmap'd can wander in and change the page contents while
618 * we are compressing them.
620 * If the compression fails for any reason, we set the pages
621 * dirty again later on.
623 * Note that the remaining part is redirtied, the start pointer
624 * has moved, the end is the original one.
627 extent_range_clear_dirty_for_io(inode
, start
, end
);
631 /* Compression level is applied here and only here */
632 ret
= btrfs_compress_pages(
633 compress_type
| (fs_info
->compress_level
<< 4),
634 inode
->i_mapping
, start
,
641 unsigned long offset
= offset_in_page(total_compressed
);
642 struct page
*page
= pages
[nr_pages
- 1];
645 /* zero the tail end of the last page, we might be
646 * sending it down to disk
649 kaddr
= kmap_atomic(page
);
650 memset(kaddr
+ offset
, 0,
652 kunmap_atomic(kaddr
);
659 /* lets try to make an inline extent */
660 if (ret
|| total_in
< actual_end
) {
661 /* we didn't compress the entire range, try
662 * to make an uncompressed inline extent.
664 ret
= cow_file_range_inline(BTRFS_I(inode
), start
, end
,
665 0, BTRFS_COMPRESS_NONE
,
668 /* try making a compressed inline extent */
669 ret
= cow_file_range_inline(BTRFS_I(inode
), start
, end
,
671 compress_type
, pages
);
674 unsigned long clear_flags
= EXTENT_DELALLOC
|
675 EXTENT_DELALLOC_NEW
| EXTENT_DEFRAG
|
676 EXTENT_DO_ACCOUNTING
;
677 unsigned long page_error_op
;
679 page_error_op
= ret
< 0 ? PAGE_SET_ERROR
: 0;
682 * inline extent creation worked or returned error,
683 * we don't need to create any more async work items.
684 * Unlock and free up our temp pages.
686 * We use DO_ACCOUNTING here because we need the
687 * delalloc_release_metadata to be done _after_ we drop
688 * our outstanding extent for clearing delalloc for this
691 extent_clear_unlock_delalloc(BTRFS_I(inode
), start
, end
,
701 * Ensure we only free the compressed pages if we have
702 * them allocated, as we can still reach here with
703 * inode_need_compress() == false.
706 for (i
= 0; i
< nr_pages
; i
++) {
707 WARN_ON(pages
[i
]->mapping
);
718 * we aren't doing an inline extent round the compressed size
719 * up to a block size boundary so the allocator does sane
722 total_compressed
= ALIGN(total_compressed
, blocksize
);
725 * one last check to make sure the compression is really a
726 * win, compare the page count read with the blocks on disk,
727 * compression must free at least one sector size
729 total_in
= ALIGN(total_in
, PAGE_SIZE
);
730 if (total_compressed
+ blocksize
<= total_in
) {
731 compressed_extents
++;
734 * The async work queues will take care of doing actual
735 * allocation on disk for these compressed pages, and
736 * will submit them to the elevator.
738 add_async_extent(async_chunk
, start
, total_in
,
739 total_compressed
, pages
, nr_pages
,
742 if (start
+ total_in
< end
) {
748 return compressed_extents
;
753 * the compression code ran but failed to make things smaller,
754 * free any pages it allocated and our page pointer array
756 for (i
= 0; i
< nr_pages
; i
++) {
757 WARN_ON(pages
[i
]->mapping
);
762 total_compressed
= 0;
765 /* flag the file so we don't compress in the future */
766 if (!btrfs_test_opt(fs_info
, FORCE_COMPRESS
) &&
767 !(BTRFS_I(inode
)->prop_compress
)) {
768 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
771 cleanup_and_bail_uncompressed
:
773 * No compression, but we still need to write the pages in the file
774 * we've been given so far. redirty the locked page if it corresponds
775 * to our extent and set things up for the async work queue to run
776 * cow_file_range to do the normal delalloc dance.
778 if (async_chunk
->locked_page
&&
779 (page_offset(async_chunk
->locked_page
) >= start
&&
780 page_offset(async_chunk
->locked_page
)) <= end
) {
781 __set_page_dirty_nobuffers(async_chunk
->locked_page
);
782 /* unlocked later on in the async handlers */
786 extent_range_redirty_for_io(inode
, start
, end
);
787 add_async_extent(async_chunk
, start
, end
- start
+ 1, 0, NULL
, 0,
788 BTRFS_COMPRESS_NONE
);
789 compressed_extents
++;
791 return compressed_extents
;
794 static void free_async_extent_pages(struct async_extent
*async_extent
)
798 if (!async_extent
->pages
)
801 for (i
= 0; i
< async_extent
->nr_pages
; i
++) {
802 WARN_ON(async_extent
->pages
[i
]->mapping
);
803 put_page(async_extent
->pages
[i
]);
805 kfree(async_extent
->pages
);
806 async_extent
->nr_pages
= 0;
807 async_extent
->pages
= NULL
;
811 * phase two of compressed writeback. This is the ordered portion
812 * of the code, which only gets called in the order the work was
813 * queued. We walk all the async extents created by compress_file_range
814 * and send them down to the disk.
816 static noinline
void submit_compressed_extents(struct async_chunk
*async_chunk
)
818 struct btrfs_inode
*inode
= BTRFS_I(async_chunk
->inode
);
819 struct btrfs_fs_info
*fs_info
= inode
->root
->fs_info
;
820 struct async_extent
*async_extent
;
822 struct btrfs_key ins
;
823 struct extent_map
*em
;
824 struct btrfs_root
*root
= inode
->root
;
825 struct extent_io_tree
*io_tree
= &inode
->io_tree
;
829 while (!list_empty(&async_chunk
->extents
)) {
830 async_extent
= list_entry(async_chunk
->extents
.next
,
831 struct async_extent
, list
);
832 list_del(&async_extent
->list
);
835 lock_extent(io_tree
, async_extent
->start
,
836 async_extent
->start
+ async_extent
->ram_size
- 1);
837 /* did the compression code fall back to uncompressed IO? */
838 if (!async_extent
->pages
) {
839 int page_started
= 0;
840 unsigned long nr_written
= 0;
842 /* allocate blocks */
843 ret
= cow_file_range(inode
, async_chunk
->locked_page
,
845 async_extent
->start
+
846 async_extent
->ram_size
- 1,
847 &page_started
, &nr_written
, 0);
852 * if page_started, cow_file_range inserted an
853 * inline extent and took care of all the unlocking
854 * and IO for us. Otherwise, we need to submit
855 * all those pages down to the drive.
857 if (!page_started
&& !ret
)
858 extent_write_locked_range(&inode
->vfs_inode
,
860 async_extent
->start
+
861 async_extent
->ram_size
- 1,
863 else if (ret
&& async_chunk
->locked_page
)
864 unlock_page(async_chunk
->locked_page
);
870 ret
= btrfs_reserve_extent(root
, async_extent
->ram_size
,
871 async_extent
->compressed_size
,
872 async_extent
->compressed_size
,
873 0, alloc_hint
, &ins
, 1, 1);
875 free_async_extent_pages(async_extent
);
877 if (ret
== -ENOSPC
) {
878 unlock_extent(io_tree
, async_extent
->start
,
879 async_extent
->start
+
880 async_extent
->ram_size
- 1);
883 * we need to redirty the pages if we decide to
884 * fallback to uncompressed IO, otherwise we
885 * will not submit these pages down to lower
888 extent_range_redirty_for_io(&inode
->vfs_inode
,
890 async_extent
->start
+
891 async_extent
->ram_size
- 1);
898 * here we're doing allocation and writeback of the
901 em
= create_io_em(inode
, async_extent
->start
,
902 async_extent
->ram_size
, /* len */
903 async_extent
->start
, /* orig_start */
904 ins
.objectid
, /* block_start */
905 ins
.offset
, /* block_len */
906 ins
.offset
, /* orig_block_len */
907 async_extent
->ram_size
, /* ram_bytes */
908 async_extent
->compress_type
,
909 BTRFS_ORDERED_COMPRESSED
);
911 /* ret value is not necessary due to void function */
912 goto out_free_reserve
;
915 ret
= btrfs_add_ordered_extent_compress(inode
,
918 async_extent
->ram_size
,
920 BTRFS_ORDERED_COMPRESSED
,
921 async_extent
->compress_type
);
923 btrfs_drop_extent_cache(inode
, async_extent
->start
,
924 async_extent
->start
+
925 async_extent
->ram_size
- 1, 0);
926 goto out_free_reserve
;
928 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
931 * clear dirty, set writeback and unlock the pages.
933 extent_clear_unlock_delalloc(inode
, async_extent
->start
,
934 async_extent
->start
+
935 async_extent
->ram_size
- 1,
936 NULL
, EXTENT_LOCKED
| EXTENT_DELALLOC
,
937 PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
939 if (btrfs_submit_compressed_write(inode
, async_extent
->start
,
940 async_extent
->ram_size
,
942 ins
.offset
, async_extent
->pages
,
943 async_extent
->nr_pages
,
944 async_chunk
->write_flags
,
945 async_chunk
->blkcg_css
)) {
946 struct page
*p
= async_extent
->pages
[0];
947 const u64 start
= async_extent
->start
;
948 const u64 end
= start
+ async_extent
->ram_size
- 1;
950 p
->mapping
= inode
->vfs_inode
.i_mapping
;
951 btrfs_writepage_endio_finish_ordered(p
, start
, end
, 0);
954 extent_clear_unlock_delalloc(inode
, start
, end
, NULL
, 0,
957 free_async_extent_pages(async_extent
);
959 alloc_hint
= ins
.objectid
+ ins
.offset
;
965 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
966 btrfs_free_reserved_extent(fs_info
, ins
.objectid
, ins
.offset
, 1);
968 extent_clear_unlock_delalloc(inode
, async_extent
->start
,
969 async_extent
->start
+
970 async_extent
->ram_size
- 1,
971 NULL
, EXTENT_LOCKED
| EXTENT_DELALLOC
|
972 EXTENT_DELALLOC_NEW
|
973 EXTENT_DEFRAG
| EXTENT_DO_ACCOUNTING
,
974 PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
975 PAGE_SET_WRITEBACK
| PAGE_END_WRITEBACK
|
977 free_async_extent_pages(async_extent
);
982 static u64
get_extent_allocation_hint(struct btrfs_inode
*inode
, u64 start
,
985 struct extent_map_tree
*em_tree
= &inode
->extent_tree
;
986 struct extent_map
*em
;
989 read_lock(&em_tree
->lock
);
990 em
= search_extent_mapping(em_tree
, start
, num_bytes
);
993 * if block start isn't an actual block number then find the
994 * first block in this inode and use that as a hint. If that
995 * block is also bogus then just don't worry about it.
997 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
999 em
= search_extent_mapping(em_tree
, 0, 0);
1000 if (em
&& em
->block_start
< EXTENT_MAP_LAST_BYTE
)
1001 alloc_hint
= em
->block_start
;
1003 free_extent_map(em
);
1005 alloc_hint
= em
->block_start
;
1006 free_extent_map(em
);
1009 read_unlock(&em_tree
->lock
);
1015 * when extent_io.c finds a delayed allocation range in the file,
1016 * the call backs end up in this code. The basic idea is to
1017 * allocate extents on disk for the range, and create ordered data structs
1018 * in ram to track those extents.
1020 * locked_page is the page that writepage had locked already. We use
1021 * it to make sure we don't do extra locks or unlocks.
1023 * *page_started is set to one if we unlock locked_page and do everything
1024 * required to start IO on it. It may be clean and already done with
1025 * IO when we return.
1027 static noinline
int cow_file_range(struct btrfs_inode
*inode
,
1028 struct page
*locked_page
,
1029 u64 start
, u64 end
, int *page_started
,
1030 unsigned long *nr_written
, int unlock
)
1032 struct btrfs_root
*root
= inode
->root
;
1033 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1036 unsigned long ram_size
;
1037 u64 cur_alloc_size
= 0;
1039 u64 blocksize
= fs_info
->sectorsize
;
1040 struct btrfs_key ins
;
1041 struct extent_map
*em
;
1042 unsigned clear_bits
;
1043 unsigned long page_ops
;
1044 bool extent_reserved
= false;
1047 if (btrfs_is_free_space_inode(inode
)) {
1053 num_bytes
= ALIGN(end
- start
+ 1, blocksize
);
1054 num_bytes
= max(blocksize
, num_bytes
);
1055 ASSERT(num_bytes
<= btrfs_super_total_bytes(fs_info
->super_copy
));
1057 inode_should_defrag(inode
, start
, end
, num_bytes
, SZ_64K
);
1060 /* lets try to make an inline extent */
1061 ret
= cow_file_range_inline(inode
, start
, end
, 0,
1062 BTRFS_COMPRESS_NONE
, NULL
);
1065 * We use DO_ACCOUNTING here because we need the
1066 * delalloc_release_metadata to be run _after_ we drop
1067 * our outstanding extent for clearing delalloc for this
1070 extent_clear_unlock_delalloc(inode
, start
, end
, NULL
,
1071 EXTENT_LOCKED
| EXTENT_DELALLOC
|
1072 EXTENT_DELALLOC_NEW
| EXTENT_DEFRAG
|
1073 EXTENT_DO_ACCOUNTING
, PAGE_UNLOCK
|
1074 PAGE_CLEAR_DIRTY
| PAGE_SET_WRITEBACK
|
1075 PAGE_END_WRITEBACK
);
1076 *nr_written
= *nr_written
+
1077 (end
- start
+ PAGE_SIZE
) / PAGE_SIZE
;
1080 } else if (ret
< 0) {
1085 alloc_hint
= get_extent_allocation_hint(inode
, start
, num_bytes
);
1086 btrfs_drop_extent_cache(inode
, start
, start
+ num_bytes
- 1, 0);
1089 * Relocation relies on the relocated extents to have exactly the same
1090 * size as the original extents. Normally writeback for relocation data
1091 * extents follows a NOCOW path because relocation preallocates the
1092 * extents. However, due to an operation such as scrub turning a block
1093 * group to RO mode, it may fallback to COW mode, so we must make sure
1094 * an extent allocated during COW has exactly the requested size and can
1095 * not be split into smaller extents, otherwise relocation breaks and
1096 * fails during the stage where it updates the bytenr of file extent
1099 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
1100 min_alloc_size
= num_bytes
;
1102 min_alloc_size
= fs_info
->sectorsize
;
1104 while (num_bytes
> 0) {
1105 cur_alloc_size
= num_bytes
;
1106 ret
= btrfs_reserve_extent(root
, cur_alloc_size
, cur_alloc_size
,
1107 min_alloc_size
, 0, alloc_hint
,
1111 cur_alloc_size
= ins
.offset
;
1112 extent_reserved
= true;
1114 ram_size
= ins
.offset
;
1115 em
= create_io_em(inode
, start
, ins
.offset
, /* len */
1116 start
, /* orig_start */
1117 ins
.objectid
, /* block_start */
1118 ins
.offset
, /* block_len */
1119 ins
.offset
, /* orig_block_len */
1120 ram_size
, /* ram_bytes */
1121 BTRFS_COMPRESS_NONE
, /* compress_type */
1122 BTRFS_ORDERED_REGULAR
/* type */);
1127 free_extent_map(em
);
1129 ret
= btrfs_add_ordered_extent(inode
, start
, ins
.objectid
,
1130 ram_size
, cur_alloc_size
, 0);
1132 goto out_drop_extent_cache
;
1134 if (root
->root_key
.objectid
==
1135 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
1136 ret
= btrfs_reloc_clone_csums(inode
, start
,
1139 * Only drop cache here, and process as normal.
1141 * We must not allow extent_clear_unlock_delalloc()
1142 * at out_unlock label to free meta of this ordered
1143 * extent, as its meta should be freed by
1144 * btrfs_finish_ordered_io().
1146 * So we must continue until @start is increased to
1147 * skip current ordered extent.
1150 btrfs_drop_extent_cache(inode
, start
,
1151 start
+ ram_size
- 1, 0);
1154 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
1156 /* we're not doing compressed IO, don't unlock the first
1157 * page (which the caller expects to stay locked), don't
1158 * clear any dirty bits and don't set any writeback bits
1160 * Do set the Private2 bit so we know this page was properly
1161 * setup for writepage
1163 page_ops
= unlock
? PAGE_UNLOCK
: 0;
1164 page_ops
|= PAGE_SET_PRIVATE2
;
1166 extent_clear_unlock_delalloc(inode
, start
, start
+ ram_size
- 1,
1168 EXTENT_LOCKED
| EXTENT_DELALLOC
,
1170 if (num_bytes
< cur_alloc_size
)
1173 num_bytes
-= cur_alloc_size
;
1174 alloc_hint
= ins
.objectid
+ ins
.offset
;
1175 start
+= cur_alloc_size
;
1176 extent_reserved
= false;
1179 * btrfs_reloc_clone_csums() error, since start is increased
1180 * extent_clear_unlock_delalloc() at out_unlock label won't
1181 * free metadata of current ordered extent, we're OK to exit.
1189 out_drop_extent_cache
:
1190 btrfs_drop_extent_cache(inode
, start
, start
+ ram_size
- 1, 0);
1192 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
1193 btrfs_free_reserved_extent(fs_info
, ins
.objectid
, ins
.offset
, 1);
1195 clear_bits
= EXTENT_LOCKED
| EXTENT_DELALLOC
| EXTENT_DELALLOC_NEW
|
1196 EXTENT_DEFRAG
| EXTENT_CLEAR_META_RESV
;
1197 page_ops
= PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
| PAGE_SET_WRITEBACK
|
1200 * If we reserved an extent for our delalloc range (or a subrange) and
1201 * failed to create the respective ordered extent, then it means that
1202 * when we reserved the extent we decremented the extent's size from
1203 * the data space_info's bytes_may_use counter and incremented the
1204 * space_info's bytes_reserved counter by the same amount. We must make
1205 * sure extent_clear_unlock_delalloc() does not try to decrement again
1206 * the data space_info's bytes_may_use counter, therefore we do not pass
1207 * it the flag EXTENT_CLEAR_DATA_RESV.
1209 if (extent_reserved
) {
1210 extent_clear_unlock_delalloc(inode
, start
,
1211 start
+ cur_alloc_size
- 1,
1215 start
+= cur_alloc_size
;
1219 extent_clear_unlock_delalloc(inode
, start
, end
, locked_page
,
1220 clear_bits
| EXTENT_CLEAR_DATA_RESV
,
1226 * work queue call back to started compression on a file and pages
1228 static noinline
void async_cow_start(struct btrfs_work
*work
)
1230 struct async_chunk
*async_chunk
;
1231 int compressed_extents
;
1233 async_chunk
= container_of(work
, struct async_chunk
, work
);
1235 compressed_extents
= compress_file_range(async_chunk
);
1236 if (compressed_extents
== 0) {
1237 btrfs_add_delayed_iput(async_chunk
->inode
);
1238 async_chunk
->inode
= NULL
;
1243 * work queue call back to submit previously compressed pages
1245 static noinline
void async_cow_submit(struct btrfs_work
*work
)
1247 struct async_chunk
*async_chunk
= container_of(work
, struct async_chunk
,
1249 struct btrfs_fs_info
*fs_info
= btrfs_work_owner(work
);
1250 unsigned long nr_pages
;
1252 nr_pages
= (async_chunk
->end
- async_chunk
->start
+ PAGE_SIZE
) >>
1255 /* atomic_sub_return implies a barrier */
1256 if (atomic_sub_return(nr_pages
, &fs_info
->async_delalloc_pages
) <
1258 cond_wake_up_nomb(&fs_info
->async_submit_wait
);
1261 * ->inode could be NULL if async_chunk_start has failed to compress,
1262 * in which case we don't have anything to submit, yet we need to
1263 * always adjust ->async_delalloc_pages as its paired with the init
1264 * happening in cow_file_range_async
1266 if (async_chunk
->inode
)
1267 submit_compressed_extents(async_chunk
);
1270 static noinline
void async_cow_free(struct btrfs_work
*work
)
1272 struct async_chunk
*async_chunk
;
1274 async_chunk
= container_of(work
, struct async_chunk
, work
);
1275 if (async_chunk
->inode
)
1276 btrfs_add_delayed_iput(async_chunk
->inode
);
1277 if (async_chunk
->blkcg_css
)
1278 css_put(async_chunk
->blkcg_css
);
1280 * Since the pointer to 'pending' is at the beginning of the array of
1281 * async_chunk's, freeing it ensures the whole array has been freed.
1283 if (atomic_dec_and_test(async_chunk
->pending
))
1284 kvfree(async_chunk
->pending
);
1287 static int cow_file_range_async(struct btrfs_inode
*inode
,
1288 struct writeback_control
*wbc
,
1289 struct page
*locked_page
,
1290 u64 start
, u64 end
, int *page_started
,
1291 unsigned long *nr_written
)
1293 struct btrfs_fs_info
*fs_info
= inode
->root
->fs_info
;
1294 struct cgroup_subsys_state
*blkcg_css
= wbc_blkcg_css(wbc
);
1295 struct async_cow
*ctx
;
1296 struct async_chunk
*async_chunk
;
1297 unsigned long nr_pages
;
1299 u64 num_chunks
= DIV_ROUND_UP(end
- start
, SZ_512K
);
1301 bool should_compress
;
1303 const unsigned int write_flags
= wbc_to_write_flags(wbc
);
1305 unlock_extent(&inode
->io_tree
, start
, end
);
1307 if (inode
->flags
& BTRFS_INODE_NOCOMPRESS
&&
1308 !btrfs_test_opt(fs_info
, FORCE_COMPRESS
)) {
1310 should_compress
= false;
1312 should_compress
= true;
1315 nofs_flag
= memalloc_nofs_save();
1316 ctx
= kvmalloc(struct_size(ctx
, chunks
, num_chunks
), GFP_KERNEL
);
1317 memalloc_nofs_restore(nofs_flag
);
1320 unsigned clear_bits
= EXTENT_LOCKED
| EXTENT_DELALLOC
|
1321 EXTENT_DELALLOC_NEW
| EXTENT_DEFRAG
|
1322 EXTENT_DO_ACCOUNTING
;
1323 unsigned long page_ops
= PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
1324 PAGE_SET_WRITEBACK
| PAGE_END_WRITEBACK
|
1327 extent_clear_unlock_delalloc(inode
, start
, end
, locked_page
,
1328 clear_bits
, page_ops
);
1332 async_chunk
= ctx
->chunks
;
1333 atomic_set(&ctx
->num_chunks
, num_chunks
);
1335 for (i
= 0; i
< num_chunks
; i
++) {
1336 if (should_compress
)
1337 cur_end
= min(end
, start
+ SZ_512K
- 1);
1342 * igrab is called higher up in the call chain, take only the
1343 * lightweight reference for the callback lifetime
1345 ihold(&inode
->vfs_inode
);
1346 async_chunk
[i
].pending
= &ctx
->num_chunks
;
1347 async_chunk
[i
].inode
= &inode
->vfs_inode
;
1348 async_chunk
[i
].start
= start
;
1349 async_chunk
[i
].end
= cur_end
;
1350 async_chunk
[i
].write_flags
= write_flags
;
1351 INIT_LIST_HEAD(&async_chunk
[i
].extents
);
1354 * The locked_page comes all the way from writepage and its
1355 * the original page we were actually given. As we spread
1356 * this large delalloc region across multiple async_chunk
1357 * structs, only the first struct needs a pointer to locked_page
1359 * This way we don't need racey decisions about who is supposed
1364 * Depending on the compressibility, the pages might or
1365 * might not go through async. We want all of them to
1366 * be accounted against wbc once. Let's do it here
1367 * before the paths diverge. wbc accounting is used
1368 * only for foreign writeback detection and doesn't
1369 * need full accuracy. Just account the whole thing
1370 * against the first page.
1372 wbc_account_cgroup_owner(wbc
, locked_page
,
1374 async_chunk
[i
].locked_page
= locked_page
;
1377 async_chunk
[i
].locked_page
= NULL
;
1380 if (blkcg_css
!= blkcg_root_css
) {
1382 async_chunk
[i
].blkcg_css
= blkcg_css
;
1384 async_chunk
[i
].blkcg_css
= NULL
;
1387 btrfs_init_work(&async_chunk
[i
].work
, async_cow_start
,
1388 async_cow_submit
, async_cow_free
);
1390 nr_pages
= DIV_ROUND_UP(cur_end
- start
, PAGE_SIZE
);
1391 atomic_add(nr_pages
, &fs_info
->async_delalloc_pages
);
1393 btrfs_queue_work(fs_info
->delalloc_workers
, &async_chunk
[i
].work
);
1395 *nr_written
+= nr_pages
;
1396 start
= cur_end
+ 1;
1402 static noinline
int csum_exist_in_range(struct btrfs_fs_info
*fs_info
,
1403 u64 bytenr
, u64 num_bytes
)
1406 struct btrfs_ordered_sum
*sums
;
1409 ret
= btrfs_lookup_csums_range(fs_info
->csum_root
, bytenr
,
1410 bytenr
+ num_bytes
- 1, &list
, 0);
1411 if (ret
== 0 && list_empty(&list
))
1414 while (!list_empty(&list
)) {
1415 sums
= list_entry(list
.next
, struct btrfs_ordered_sum
, list
);
1416 list_del(&sums
->list
);
1424 static int fallback_to_cow(struct btrfs_inode
*inode
, struct page
*locked_page
,
1425 const u64 start
, const u64 end
,
1426 int *page_started
, unsigned long *nr_written
)
1428 const bool is_space_ino
= btrfs_is_free_space_inode(inode
);
1429 const bool is_reloc_ino
= (inode
->root
->root_key
.objectid
==
1430 BTRFS_DATA_RELOC_TREE_OBJECTID
);
1431 const u64 range_bytes
= end
+ 1 - start
;
1432 struct extent_io_tree
*io_tree
= &inode
->io_tree
;
1433 u64 range_start
= start
;
1437 * If EXTENT_NORESERVE is set it means that when the buffered write was
1438 * made we had not enough available data space and therefore we did not
1439 * reserve data space for it, since we though we could do NOCOW for the
1440 * respective file range (either there is prealloc extent or the inode
1441 * has the NOCOW bit set).
1443 * However when we need to fallback to COW mode (because for example the
1444 * block group for the corresponding extent was turned to RO mode by a
1445 * scrub or relocation) we need to do the following:
1447 * 1) We increment the bytes_may_use counter of the data space info.
1448 * If COW succeeds, it allocates a new data extent and after doing
1449 * that it decrements the space info's bytes_may_use counter and
1450 * increments its bytes_reserved counter by the same amount (we do
1451 * this at btrfs_add_reserved_bytes()). So we need to increment the
1452 * bytes_may_use counter to compensate (when space is reserved at
1453 * buffered write time, the bytes_may_use counter is incremented);
1455 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1456 * that if the COW path fails for any reason, it decrements (through
1457 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1458 * data space info, which we incremented in the step above.
1460 * If we need to fallback to cow and the inode corresponds to a free
1461 * space cache inode or an inode of the data relocation tree, we must
1462 * also increment bytes_may_use of the data space_info for the same
1463 * reason. Space caches and relocated data extents always get a prealloc
1464 * extent for them, however scrub or balance may have set the block
1465 * group that contains that extent to RO mode and therefore force COW
1466 * when starting writeback.
1468 count
= count_range_bits(io_tree
, &range_start
, end
, range_bytes
,
1469 EXTENT_NORESERVE
, 0);
1470 if (count
> 0 || is_space_ino
|| is_reloc_ino
) {
1472 struct btrfs_fs_info
*fs_info
= inode
->root
->fs_info
;
1473 struct btrfs_space_info
*sinfo
= fs_info
->data_sinfo
;
1475 if (is_space_ino
|| is_reloc_ino
)
1476 bytes
= range_bytes
;
1478 spin_lock(&sinfo
->lock
);
1479 btrfs_space_info_update_bytes_may_use(fs_info
, sinfo
, bytes
);
1480 spin_unlock(&sinfo
->lock
);
1483 clear_extent_bit(io_tree
, start
, end
, EXTENT_NORESERVE
,
1487 return cow_file_range(inode
, locked_page
, start
, end
, page_started
,
1492 * when nowcow writeback call back. This checks for snapshots or COW copies
1493 * of the extents that exist in the file, and COWs the file as required.
1495 * If no cow copies or snapshots exist, we write directly to the existing
1498 static noinline
int run_delalloc_nocow(struct btrfs_inode
*inode
,
1499 struct page
*locked_page
,
1500 const u64 start
, const u64 end
,
1501 int *page_started
, int force
,
1502 unsigned long *nr_written
)
1504 struct btrfs_fs_info
*fs_info
= inode
->root
->fs_info
;
1505 struct btrfs_root
*root
= inode
->root
;
1506 struct btrfs_path
*path
;
1507 u64 cow_start
= (u64
)-1;
1508 u64 cur_offset
= start
;
1510 bool check_prev
= true;
1511 const bool freespace_inode
= btrfs_is_free_space_inode(inode
);
1512 u64 ino
= btrfs_ino(inode
);
1514 u64 disk_bytenr
= 0;
1516 path
= btrfs_alloc_path();
1518 extent_clear_unlock_delalloc(inode
, start
, end
, locked_page
,
1519 EXTENT_LOCKED
| EXTENT_DELALLOC
|
1520 EXTENT_DO_ACCOUNTING
|
1521 EXTENT_DEFRAG
, PAGE_UNLOCK
|
1523 PAGE_SET_WRITEBACK
|
1524 PAGE_END_WRITEBACK
);
1529 struct btrfs_key found_key
;
1530 struct btrfs_file_extent_item
*fi
;
1531 struct extent_buffer
*leaf
;
1541 ret
= btrfs_lookup_file_extent(NULL
, root
, path
, ino
,
1547 * If there is no extent for our range when doing the initial
1548 * search, then go back to the previous slot as it will be the
1549 * one containing the search offset
1551 if (ret
> 0 && path
->slots
[0] > 0 && check_prev
) {
1552 leaf
= path
->nodes
[0];
1553 btrfs_item_key_to_cpu(leaf
, &found_key
,
1554 path
->slots
[0] - 1);
1555 if (found_key
.objectid
== ino
&&
1556 found_key
.type
== BTRFS_EXTENT_DATA_KEY
)
1561 /* Go to next leaf if we have exhausted the current one */
1562 leaf
= path
->nodes
[0];
1563 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1564 ret
= btrfs_next_leaf(root
, path
);
1566 if (cow_start
!= (u64
)-1)
1567 cur_offset
= cow_start
;
1572 leaf
= path
->nodes
[0];
1575 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1577 /* Didn't find anything for our INO */
1578 if (found_key
.objectid
> ino
)
1581 * Keep searching until we find an EXTENT_ITEM or there are no
1582 * more extents for this inode
1584 if (WARN_ON_ONCE(found_key
.objectid
< ino
) ||
1585 found_key
.type
< BTRFS_EXTENT_DATA_KEY
) {
1590 /* Found key is not EXTENT_DATA_KEY or starts after req range */
1591 if (found_key
.type
> BTRFS_EXTENT_DATA_KEY
||
1592 found_key
.offset
> end
)
1596 * If the found extent starts after requested offset, then
1597 * adjust extent_end to be right before this extent begins
1599 if (found_key
.offset
> cur_offset
) {
1600 extent_end
= found_key
.offset
;
1606 * Found extent which begins before our range and potentially
1609 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1610 struct btrfs_file_extent_item
);
1611 extent_type
= btrfs_file_extent_type(leaf
, fi
);
1613 ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
1614 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
1615 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1616 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1617 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
1618 extent_end
= found_key
.offset
+
1619 btrfs_file_extent_num_bytes(leaf
, fi
);
1621 btrfs_file_extent_disk_num_bytes(leaf
, fi
);
1623 * If the extent we got ends before our current offset,
1624 * skip to the next extent.
1626 if (extent_end
<= cur_offset
) {
1631 if (disk_bytenr
== 0)
1633 /* Skip compressed/encrypted/encoded extents */
1634 if (btrfs_file_extent_compression(leaf
, fi
) ||
1635 btrfs_file_extent_encryption(leaf
, fi
) ||
1636 btrfs_file_extent_other_encoding(leaf
, fi
))
1639 * If extent is created before the last volume's snapshot
1640 * this implies the extent is shared, hence we can't do
1641 * nocow. This is the same check as in
1642 * btrfs_cross_ref_exist but without calling
1643 * btrfs_search_slot.
1645 if (!freespace_inode
&&
1646 btrfs_file_extent_generation(leaf
, fi
) <=
1647 btrfs_root_last_snapshot(&root
->root_item
))
1649 if (extent_type
== BTRFS_FILE_EXTENT_REG
&& !force
)
1653 * The following checks can be expensive, as they need to
1654 * take other locks and do btree or rbtree searches, so
1655 * release the path to avoid blocking other tasks for too
1658 btrfs_release_path(path
);
1660 /* If extent is RO, we must COW it */
1661 if (btrfs_extent_readonly(fs_info
, disk_bytenr
))
1663 ret
= btrfs_cross_ref_exist(root
, ino
,
1665 extent_offset
, disk_bytenr
, false);
1668 * ret could be -EIO if the above fails to read
1672 if (cow_start
!= (u64
)-1)
1673 cur_offset
= cow_start
;
1677 WARN_ON_ONCE(freespace_inode
);
1680 disk_bytenr
+= extent_offset
;
1681 disk_bytenr
+= cur_offset
- found_key
.offset
;
1682 num_bytes
= min(end
+ 1, extent_end
) - cur_offset
;
1684 * If there are pending snapshots for this root, we
1685 * fall into common COW way
1687 if (!freespace_inode
&& atomic_read(&root
->snapshot_force_cow
))
1690 * force cow if csum exists in the range.
1691 * this ensure that csum for a given extent are
1692 * either valid or do not exist.
1694 ret
= csum_exist_in_range(fs_info
, disk_bytenr
,
1698 * ret could be -EIO if the above fails to read
1702 if (cow_start
!= (u64
)-1)
1703 cur_offset
= cow_start
;
1706 WARN_ON_ONCE(freespace_inode
);
1709 if (!btrfs_inc_nocow_writers(fs_info
, disk_bytenr
))
1712 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1713 extent_end
= found_key
.offset
+ ram_bytes
;
1714 extent_end
= ALIGN(extent_end
, fs_info
->sectorsize
);
1715 /* Skip extents outside of our requested range */
1716 if (extent_end
<= start
) {
1721 /* If this triggers then we have a memory corruption */
1726 * If nocow is false then record the beginning of the range
1727 * that needs to be COWed
1730 if (cow_start
== (u64
)-1)
1731 cow_start
= cur_offset
;
1732 cur_offset
= extent_end
;
1733 if (cur_offset
> end
)
1735 if (!path
->nodes
[0])
1742 * COW range from cow_start to found_key.offset - 1. As the key
1743 * will contain the beginning of the first extent that can be
1744 * NOCOW, following one which needs to be COW'ed
1746 if (cow_start
!= (u64
)-1) {
1747 ret
= fallback_to_cow(inode
, locked_page
,
1748 cow_start
, found_key
.offset
- 1,
1749 page_started
, nr_written
);
1752 cow_start
= (u64
)-1;
1755 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1756 u64 orig_start
= found_key
.offset
- extent_offset
;
1757 struct extent_map
*em
;
1759 em
= create_io_em(inode
, cur_offset
, num_bytes
,
1761 disk_bytenr
, /* block_start */
1762 num_bytes
, /* block_len */
1763 disk_num_bytes
, /* orig_block_len */
1764 ram_bytes
, BTRFS_COMPRESS_NONE
,
1765 BTRFS_ORDERED_PREALLOC
);
1770 free_extent_map(em
);
1771 ret
= btrfs_add_ordered_extent(inode
, cur_offset
,
1772 disk_bytenr
, num_bytes
,
1774 BTRFS_ORDERED_PREALLOC
);
1776 btrfs_drop_extent_cache(inode
, cur_offset
,
1777 cur_offset
+ num_bytes
- 1,
1782 ret
= btrfs_add_ordered_extent(inode
, cur_offset
,
1783 disk_bytenr
, num_bytes
,
1785 BTRFS_ORDERED_NOCOW
);
1791 btrfs_dec_nocow_writers(fs_info
, disk_bytenr
);
1794 if (root
->root_key
.objectid
==
1795 BTRFS_DATA_RELOC_TREE_OBJECTID
)
1797 * Error handled later, as we must prevent
1798 * extent_clear_unlock_delalloc() in error handler
1799 * from freeing metadata of created ordered extent.
1801 ret
= btrfs_reloc_clone_csums(inode
, cur_offset
,
1804 extent_clear_unlock_delalloc(inode
, cur_offset
,
1805 cur_offset
+ num_bytes
- 1,
1806 locked_page
, EXTENT_LOCKED
|
1808 EXTENT_CLEAR_DATA_RESV
,
1809 PAGE_UNLOCK
| PAGE_SET_PRIVATE2
);
1811 cur_offset
= extent_end
;
1814 * btrfs_reloc_clone_csums() error, now we're OK to call error
1815 * handler, as metadata for created ordered extent will only
1816 * be freed by btrfs_finish_ordered_io().
1820 if (cur_offset
> end
)
1823 btrfs_release_path(path
);
1825 if (cur_offset
<= end
&& cow_start
== (u64
)-1)
1826 cow_start
= cur_offset
;
1828 if (cow_start
!= (u64
)-1) {
1830 ret
= fallback_to_cow(inode
, locked_page
, cow_start
, end
,
1831 page_started
, nr_written
);
1838 btrfs_dec_nocow_writers(fs_info
, disk_bytenr
);
1840 if (ret
&& cur_offset
< end
)
1841 extent_clear_unlock_delalloc(inode
, cur_offset
, end
,
1842 locked_page
, EXTENT_LOCKED
|
1843 EXTENT_DELALLOC
| EXTENT_DEFRAG
|
1844 EXTENT_DO_ACCOUNTING
, PAGE_UNLOCK
|
1846 PAGE_SET_WRITEBACK
|
1847 PAGE_END_WRITEBACK
);
1848 btrfs_free_path(path
);
1852 static inline int need_force_cow(struct btrfs_inode
*inode
, u64 start
, u64 end
)
1855 if (!(inode
->flags
& BTRFS_INODE_NODATACOW
) &&
1856 !(inode
->flags
& BTRFS_INODE_PREALLOC
))
1860 * @defrag_bytes is a hint value, no spinlock held here,
1861 * if is not zero, it means the file is defragging.
1862 * Force cow if given extent needs to be defragged.
1864 if (inode
->defrag_bytes
&&
1865 test_range_bit(&inode
->io_tree
, start
, end
, EXTENT_DEFRAG
, 0, NULL
))
1872 * Function to process delayed allocation (create CoW) for ranges which are
1873 * being touched for the first time.
1875 int btrfs_run_delalloc_range(struct btrfs_inode
*inode
, struct page
*locked_page
,
1876 u64 start
, u64 end
, int *page_started
, unsigned long *nr_written
,
1877 struct writeback_control
*wbc
)
1880 int force_cow
= need_force_cow(inode
, start
, end
);
1882 if (inode
->flags
& BTRFS_INODE_NODATACOW
&& !force_cow
) {
1883 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1884 page_started
, 1, nr_written
);
1885 } else if (inode
->flags
& BTRFS_INODE_PREALLOC
&& !force_cow
) {
1886 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1887 page_started
, 0, nr_written
);
1888 } else if (!inode_can_compress(inode
) ||
1889 !inode_need_compress(inode
, start
, end
)) {
1890 ret
= cow_file_range(inode
, locked_page
, start
, end
,
1891 page_started
, nr_written
, 1);
1893 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
, &inode
->runtime_flags
);
1894 ret
= cow_file_range_async(inode
, wbc
, locked_page
, start
, end
,
1895 page_started
, nr_written
);
1898 btrfs_cleanup_ordered_extents(inode
, locked_page
, start
,
1903 void btrfs_split_delalloc_extent(struct inode
*inode
,
1904 struct extent_state
*orig
, u64 split
)
1908 /* not delalloc, ignore it */
1909 if (!(orig
->state
& EXTENT_DELALLOC
))
1912 size
= orig
->end
- orig
->start
+ 1;
1913 if (size
> BTRFS_MAX_EXTENT_SIZE
) {
1918 * See the explanation in btrfs_merge_delalloc_extent, the same
1919 * applies here, just in reverse.
1921 new_size
= orig
->end
- split
+ 1;
1922 num_extents
= count_max_extents(new_size
);
1923 new_size
= split
- orig
->start
;
1924 num_extents
+= count_max_extents(new_size
);
1925 if (count_max_extents(size
) >= num_extents
)
1929 spin_lock(&BTRFS_I(inode
)->lock
);
1930 btrfs_mod_outstanding_extents(BTRFS_I(inode
), 1);
1931 spin_unlock(&BTRFS_I(inode
)->lock
);
1935 * Handle merged delayed allocation extents so we can keep track of new extents
1936 * that are just merged onto old extents, such as when we are doing sequential
1937 * writes, so we can properly account for the metadata space we'll need.
1939 void btrfs_merge_delalloc_extent(struct inode
*inode
, struct extent_state
*new,
1940 struct extent_state
*other
)
1942 u64 new_size
, old_size
;
1945 /* not delalloc, ignore it */
1946 if (!(other
->state
& EXTENT_DELALLOC
))
1949 if (new->start
> other
->start
)
1950 new_size
= new->end
- other
->start
+ 1;
1952 new_size
= other
->end
- new->start
+ 1;
1954 /* we're not bigger than the max, unreserve the space and go */
1955 if (new_size
<= BTRFS_MAX_EXTENT_SIZE
) {
1956 spin_lock(&BTRFS_I(inode
)->lock
);
1957 btrfs_mod_outstanding_extents(BTRFS_I(inode
), -1);
1958 spin_unlock(&BTRFS_I(inode
)->lock
);
1963 * We have to add up either side to figure out how many extents were
1964 * accounted for before we merged into one big extent. If the number of
1965 * extents we accounted for is <= the amount we need for the new range
1966 * then we can return, otherwise drop. Think of it like this
1970 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1971 * need 2 outstanding extents, on one side we have 1 and the other side
1972 * we have 1 so they are == and we can return. But in this case
1974 * [MAX_SIZE+4k][MAX_SIZE+4k]
1976 * Each range on their own accounts for 2 extents, but merged together
1977 * they are only 3 extents worth of accounting, so we need to drop in
1980 old_size
= other
->end
- other
->start
+ 1;
1981 num_extents
= count_max_extents(old_size
);
1982 old_size
= new->end
- new->start
+ 1;
1983 num_extents
+= count_max_extents(old_size
);
1984 if (count_max_extents(new_size
) >= num_extents
)
1987 spin_lock(&BTRFS_I(inode
)->lock
);
1988 btrfs_mod_outstanding_extents(BTRFS_I(inode
), -1);
1989 spin_unlock(&BTRFS_I(inode
)->lock
);
1992 static void btrfs_add_delalloc_inodes(struct btrfs_root
*root
,
1993 struct inode
*inode
)
1995 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1997 spin_lock(&root
->delalloc_lock
);
1998 if (list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1999 list_add_tail(&BTRFS_I(inode
)->delalloc_inodes
,
2000 &root
->delalloc_inodes
);
2001 set_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
2002 &BTRFS_I(inode
)->runtime_flags
);
2003 root
->nr_delalloc_inodes
++;
2004 if (root
->nr_delalloc_inodes
== 1) {
2005 spin_lock(&fs_info
->delalloc_root_lock
);
2006 BUG_ON(!list_empty(&root
->delalloc_root
));
2007 list_add_tail(&root
->delalloc_root
,
2008 &fs_info
->delalloc_roots
);
2009 spin_unlock(&fs_info
->delalloc_root_lock
);
2012 spin_unlock(&root
->delalloc_lock
);
2016 void __btrfs_del_delalloc_inode(struct btrfs_root
*root
,
2017 struct btrfs_inode
*inode
)
2019 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2021 if (!list_empty(&inode
->delalloc_inodes
)) {
2022 list_del_init(&inode
->delalloc_inodes
);
2023 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
2024 &inode
->runtime_flags
);
2025 root
->nr_delalloc_inodes
--;
2026 if (!root
->nr_delalloc_inodes
) {
2027 ASSERT(list_empty(&root
->delalloc_inodes
));
2028 spin_lock(&fs_info
->delalloc_root_lock
);
2029 BUG_ON(list_empty(&root
->delalloc_root
));
2030 list_del_init(&root
->delalloc_root
);
2031 spin_unlock(&fs_info
->delalloc_root_lock
);
2036 static void btrfs_del_delalloc_inode(struct btrfs_root
*root
,
2037 struct btrfs_inode
*inode
)
2039 spin_lock(&root
->delalloc_lock
);
2040 __btrfs_del_delalloc_inode(root
, inode
);
2041 spin_unlock(&root
->delalloc_lock
);
2045 * Properly track delayed allocation bytes in the inode and to maintain the
2046 * list of inodes that have pending delalloc work to be done.
2048 void btrfs_set_delalloc_extent(struct inode
*inode
, struct extent_state
*state
,
2051 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2053 if ((*bits
& EXTENT_DEFRAG
) && !(*bits
& EXTENT_DELALLOC
))
2056 * set_bit and clear bit hooks normally require _irqsave/restore
2057 * but in this case, we are only testing for the DELALLOC
2058 * bit, which is only set or cleared with irqs on
2060 if (!(state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
2061 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2062 u64 len
= state
->end
+ 1 - state
->start
;
2063 u32 num_extents
= count_max_extents(len
);
2064 bool do_list
= !btrfs_is_free_space_inode(BTRFS_I(inode
));
2066 spin_lock(&BTRFS_I(inode
)->lock
);
2067 btrfs_mod_outstanding_extents(BTRFS_I(inode
), num_extents
);
2068 spin_unlock(&BTRFS_I(inode
)->lock
);
2070 /* For sanity tests */
2071 if (btrfs_is_testing(fs_info
))
2074 percpu_counter_add_batch(&fs_info
->delalloc_bytes
, len
,
2075 fs_info
->delalloc_batch
);
2076 spin_lock(&BTRFS_I(inode
)->lock
);
2077 BTRFS_I(inode
)->delalloc_bytes
+= len
;
2078 if (*bits
& EXTENT_DEFRAG
)
2079 BTRFS_I(inode
)->defrag_bytes
+= len
;
2080 if (do_list
&& !test_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
2081 &BTRFS_I(inode
)->runtime_flags
))
2082 btrfs_add_delalloc_inodes(root
, inode
);
2083 spin_unlock(&BTRFS_I(inode
)->lock
);
2086 if (!(state
->state
& EXTENT_DELALLOC_NEW
) &&
2087 (*bits
& EXTENT_DELALLOC_NEW
)) {
2088 spin_lock(&BTRFS_I(inode
)->lock
);
2089 BTRFS_I(inode
)->new_delalloc_bytes
+= state
->end
+ 1 -
2091 spin_unlock(&BTRFS_I(inode
)->lock
);
2096 * Once a range is no longer delalloc this function ensures that proper
2097 * accounting happens.
2099 void btrfs_clear_delalloc_extent(struct inode
*vfs_inode
,
2100 struct extent_state
*state
, unsigned *bits
)
2102 struct btrfs_inode
*inode
= BTRFS_I(vfs_inode
);
2103 struct btrfs_fs_info
*fs_info
= btrfs_sb(vfs_inode
->i_sb
);
2104 u64 len
= state
->end
+ 1 - state
->start
;
2105 u32 num_extents
= count_max_extents(len
);
2107 if ((state
->state
& EXTENT_DEFRAG
) && (*bits
& EXTENT_DEFRAG
)) {
2108 spin_lock(&inode
->lock
);
2109 inode
->defrag_bytes
-= len
;
2110 spin_unlock(&inode
->lock
);
2114 * set_bit and clear bit hooks normally require _irqsave/restore
2115 * but in this case, we are only testing for the DELALLOC
2116 * bit, which is only set or cleared with irqs on
2118 if ((state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
2119 struct btrfs_root
*root
= inode
->root
;
2120 bool do_list
= !btrfs_is_free_space_inode(inode
);
2122 spin_lock(&inode
->lock
);
2123 btrfs_mod_outstanding_extents(inode
, -num_extents
);
2124 spin_unlock(&inode
->lock
);
2127 * We don't reserve metadata space for space cache inodes so we
2128 * don't need to call delalloc_release_metadata if there is an
2131 if (*bits
& EXTENT_CLEAR_META_RESV
&&
2132 root
!= fs_info
->tree_root
)
2133 btrfs_delalloc_release_metadata(inode
, len
, false);
2135 /* For sanity tests. */
2136 if (btrfs_is_testing(fs_info
))
2139 if (root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
&&
2140 do_list
&& !(state
->state
& EXTENT_NORESERVE
) &&
2141 (*bits
& EXTENT_CLEAR_DATA_RESV
))
2142 btrfs_free_reserved_data_space_noquota(fs_info
, len
);
2144 percpu_counter_add_batch(&fs_info
->delalloc_bytes
, -len
,
2145 fs_info
->delalloc_batch
);
2146 spin_lock(&inode
->lock
);
2147 inode
->delalloc_bytes
-= len
;
2148 if (do_list
&& inode
->delalloc_bytes
== 0 &&
2149 test_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
2150 &inode
->runtime_flags
))
2151 btrfs_del_delalloc_inode(root
, inode
);
2152 spin_unlock(&inode
->lock
);
2155 if ((state
->state
& EXTENT_DELALLOC_NEW
) &&
2156 (*bits
& EXTENT_DELALLOC_NEW
)) {
2157 spin_lock(&inode
->lock
);
2158 ASSERT(inode
->new_delalloc_bytes
>= len
);
2159 inode
->new_delalloc_bytes
-= len
;
2160 if (*bits
& EXTENT_ADD_INODE_BYTES
)
2161 inode_add_bytes(&inode
->vfs_inode
, len
);
2162 spin_unlock(&inode
->lock
);
2167 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
2168 * in a chunk's stripe. This function ensures that bios do not span a
2171 * @page - The page we are about to add to the bio
2172 * @size - size we want to add to the bio
2173 * @bio - bio we want to ensure is smaller than a stripe
2174 * @bio_flags - flags of the bio
2176 * return 1 if page cannot be added to the bio
2177 * return 0 if page can be added to the bio
2178 * return error otherwise
2180 int btrfs_bio_fits_in_stripe(struct page
*page
, size_t size
, struct bio
*bio
,
2181 unsigned long bio_flags
)
2183 struct inode
*inode
= page
->mapping
->host
;
2184 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2185 u64 logical
= bio
->bi_iter
.bi_sector
<< 9;
2189 struct btrfs_io_geometry geom
;
2191 if (bio_flags
& EXTENT_BIO_COMPRESSED
)
2194 length
= bio
->bi_iter
.bi_size
;
2195 map_length
= length
;
2196 ret
= btrfs_get_io_geometry(fs_info
, btrfs_op(bio
), logical
, map_length
,
2201 if (geom
.len
< length
+ size
)
2207 * in order to insert checksums into the metadata in large chunks,
2208 * we wait until bio submission time. All the pages in the bio are
2209 * checksummed and sums are attached onto the ordered extent record.
2211 * At IO completion time the cums attached on the ordered extent record
2212 * are inserted into the btree
2214 static blk_status_t
btrfs_submit_bio_start(struct inode
*inode
, struct bio
*bio
,
2215 u64 dio_file_offset
)
2217 return btrfs_csum_one_bio(BTRFS_I(inode
), bio
, 0, 0);
2221 * extent_io.c submission hook. This does the right thing for csum calculation
2222 * on write, or reading the csums from the tree before a read.
2224 * Rules about async/sync submit,
2225 * a) read: sync submit
2227 * b) write without checksum: sync submit
2229 * c) write with checksum:
2230 * c-1) if bio is issued by fsync: sync submit
2231 * (sync_writers != 0)
2233 * c-2) if root is reloc root: sync submit
2234 * (only in case of buffered IO)
2236 * c-3) otherwise: async submit
2238 blk_status_t
btrfs_submit_data_bio(struct inode
*inode
, struct bio
*bio
,
2239 int mirror_num
, unsigned long bio_flags
)
2242 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2243 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2244 enum btrfs_wq_endio_type metadata
= BTRFS_WQ_ENDIO_DATA
;
2245 blk_status_t ret
= 0;
2247 int async
= !atomic_read(&BTRFS_I(inode
)->sync_writers
);
2249 skip_sum
= (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
) ||
2250 !fs_info
->csum_root
;
2252 if (btrfs_is_free_space_inode(BTRFS_I(inode
)))
2253 metadata
= BTRFS_WQ_ENDIO_FREE_SPACE
;
2255 if (bio_op(bio
) != REQ_OP_WRITE
) {
2256 ret
= btrfs_bio_wq_end_io(fs_info
, bio
, metadata
);
2260 if (bio_flags
& EXTENT_BIO_COMPRESSED
) {
2261 ret
= btrfs_submit_compressed_read(inode
, bio
,
2267 * Lookup bio sums does extra checks around whether we
2268 * need to csum or not, which is why we ignore skip_sum
2271 ret
= btrfs_lookup_bio_sums(inode
, bio
, NULL
);
2276 } else if (async
&& !skip_sum
) {
2277 /* csum items have already been cloned */
2278 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
2280 /* we're doing a write, do the async checksumming */
2281 ret
= btrfs_wq_submit_bio(inode
, bio
, mirror_num
, bio_flags
,
2282 0, btrfs_submit_bio_start
);
2284 } else if (!skip_sum
) {
2285 ret
= btrfs_csum_one_bio(BTRFS_I(inode
), bio
, 0, 0);
2291 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
);
2295 bio
->bi_status
= ret
;
2302 * given a list of ordered sums record them in the inode. This happens
2303 * at IO completion time based on sums calculated at bio submission time.
2305 static int add_pending_csums(struct btrfs_trans_handle
*trans
,
2306 struct list_head
*list
)
2308 struct btrfs_ordered_sum
*sum
;
2311 list_for_each_entry(sum
, list
, list
) {
2312 trans
->adding_csums
= true;
2313 ret
= btrfs_csum_file_blocks(trans
, trans
->fs_info
->csum_root
, sum
);
2314 trans
->adding_csums
= false;
2321 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode
*inode
,
2324 struct extent_state
**cached_state
)
2326 u64 search_start
= start
;
2327 const u64 end
= start
+ len
- 1;
2329 while (search_start
< end
) {
2330 const u64 search_len
= end
- search_start
+ 1;
2331 struct extent_map
*em
;
2335 em
= btrfs_get_extent(inode
, NULL
, 0, search_start
, search_len
);
2339 if (em
->block_start
!= EXTENT_MAP_HOLE
)
2343 if (em
->start
< search_start
)
2344 em_len
-= search_start
- em
->start
;
2345 if (em_len
> search_len
)
2346 em_len
= search_len
;
2348 ret
= set_extent_bit(&inode
->io_tree
, search_start
,
2349 search_start
+ em_len
- 1,
2350 EXTENT_DELALLOC_NEW
, 0, NULL
, cached_state
,
2353 search_start
= extent_map_end(em
);
2354 free_extent_map(em
);
2361 int btrfs_set_extent_delalloc(struct btrfs_inode
*inode
, u64 start
, u64 end
,
2362 unsigned int extra_bits
,
2363 struct extent_state
**cached_state
)
2365 WARN_ON(PAGE_ALIGNED(end
));
2367 if (start
>= i_size_read(&inode
->vfs_inode
) &&
2368 !(inode
->flags
& BTRFS_INODE_PREALLOC
)) {
2370 * There can't be any extents following eof in this case so just
2371 * set the delalloc new bit for the range directly.
2373 extra_bits
|= EXTENT_DELALLOC_NEW
;
2377 ret
= btrfs_find_new_delalloc_bytes(inode
, start
,
2384 return set_extent_delalloc(&inode
->io_tree
, start
, end
, extra_bits
,
2388 /* see btrfs_writepage_start_hook for details on why this is required */
2389 struct btrfs_writepage_fixup
{
2391 struct inode
*inode
;
2392 struct btrfs_work work
;
2395 static void btrfs_writepage_fixup_worker(struct btrfs_work
*work
)
2397 struct btrfs_writepage_fixup
*fixup
;
2398 struct btrfs_ordered_extent
*ordered
;
2399 struct extent_state
*cached_state
= NULL
;
2400 struct extent_changeset
*data_reserved
= NULL
;
2402 struct btrfs_inode
*inode
;
2406 bool free_delalloc_space
= true;
2408 fixup
= container_of(work
, struct btrfs_writepage_fixup
, work
);
2410 inode
= BTRFS_I(fixup
->inode
);
2411 page_start
= page_offset(page
);
2412 page_end
= page_offset(page
) + PAGE_SIZE
- 1;
2415 * This is similar to page_mkwrite, we need to reserve the space before
2416 * we take the page lock.
2418 ret
= btrfs_delalloc_reserve_space(inode
, &data_reserved
, page_start
,
2424 * Before we queued this fixup, we took a reference on the page.
2425 * page->mapping may go NULL, but it shouldn't be moved to a different
2428 if (!page
->mapping
|| !PageDirty(page
) || !PageChecked(page
)) {
2430 * Unfortunately this is a little tricky, either
2432 * 1) We got here and our page had already been dealt with and
2433 * we reserved our space, thus ret == 0, so we need to just
2434 * drop our space reservation and bail. This can happen the
2435 * first time we come into the fixup worker, or could happen
2436 * while waiting for the ordered extent.
2437 * 2) Our page was already dealt with, but we happened to get an
2438 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2439 * this case we obviously don't have anything to release, but
2440 * because the page was already dealt with we don't want to
2441 * mark the page with an error, so make sure we're resetting
2442 * ret to 0. This is why we have this check _before_ the ret
2443 * check, because we do not want to have a surprise ENOSPC
2444 * when the page was already properly dealt with.
2447 btrfs_delalloc_release_extents(inode
, PAGE_SIZE
);
2448 btrfs_delalloc_release_space(inode
, data_reserved
,
2449 page_start
, PAGE_SIZE
,
2457 * We can't mess with the page state unless it is locked, so now that
2458 * it is locked bail if we failed to make our space reservation.
2463 lock_extent_bits(&inode
->io_tree
, page_start
, page_end
, &cached_state
);
2465 /* already ordered? We're done */
2466 if (PagePrivate2(page
))
2469 ordered
= btrfs_lookup_ordered_range(inode
, page_start
, PAGE_SIZE
);
2471 unlock_extent_cached(&inode
->io_tree
, page_start
, page_end
,
2474 btrfs_start_ordered_extent(ordered
, 1);
2475 btrfs_put_ordered_extent(ordered
);
2479 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
, 0,
2485 * Everything went as planned, we're now the owner of a dirty page with
2486 * delayed allocation bits set and space reserved for our COW
2489 * The page was dirty when we started, nothing should have cleaned it.
2491 BUG_ON(!PageDirty(page
));
2492 free_delalloc_space
= false;
2494 btrfs_delalloc_release_extents(inode
, PAGE_SIZE
);
2495 if (free_delalloc_space
)
2496 btrfs_delalloc_release_space(inode
, data_reserved
, page_start
,
2498 unlock_extent_cached(&inode
->io_tree
, page_start
, page_end
,
2503 * We hit ENOSPC or other errors. Update the mapping and page
2504 * to reflect the errors and clean the page.
2506 mapping_set_error(page
->mapping
, ret
);
2507 end_extent_writepage(page
, ret
, page_start
, page_end
);
2508 clear_page_dirty_for_io(page
);
2511 ClearPageChecked(page
);
2515 extent_changeset_free(data_reserved
);
2517 * As a precaution, do a delayed iput in case it would be the last iput
2518 * that could need flushing space. Recursing back to fixup worker would
2521 btrfs_add_delayed_iput(&inode
->vfs_inode
);
2525 * There are a few paths in the higher layers of the kernel that directly
2526 * set the page dirty bit without asking the filesystem if it is a
2527 * good idea. This causes problems because we want to make sure COW
2528 * properly happens and the data=ordered rules are followed.
2530 * In our case any range that doesn't have the ORDERED bit set
2531 * hasn't been properly setup for IO. We kick off an async process
2532 * to fix it up. The async helper will wait for ordered extents, set
2533 * the delalloc bit and make it safe to write the page.
2535 int btrfs_writepage_cow_fixup(struct page
*page
, u64 start
, u64 end
)
2537 struct inode
*inode
= page
->mapping
->host
;
2538 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2539 struct btrfs_writepage_fixup
*fixup
;
2541 /* this page is properly in the ordered list */
2542 if (TestClearPagePrivate2(page
))
2546 * PageChecked is set below when we create a fixup worker for this page,
2547 * don't try to create another one if we're already PageChecked()
2549 * The extent_io writepage code will redirty the page if we send back
2552 if (PageChecked(page
))
2555 fixup
= kzalloc(sizeof(*fixup
), GFP_NOFS
);
2560 * We are already holding a reference to this inode from
2561 * write_cache_pages. We need to hold it because the space reservation
2562 * takes place outside of the page lock, and we can't trust
2563 * page->mapping outside of the page lock.
2566 SetPageChecked(page
);
2568 btrfs_init_work(&fixup
->work
, btrfs_writepage_fixup_worker
, NULL
, NULL
);
2570 fixup
->inode
= inode
;
2571 btrfs_queue_work(fs_info
->fixup_workers
, &fixup
->work
);
2576 static int insert_reserved_file_extent(struct btrfs_trans_handle
*trans
,
2577 struct btrfs_inode
*inode
, u64 file_pos
,
2578 struct btrfs_file_extent_item
*stack_fi
,
2579 const bool update_inode_bytes
,
2580 u64 qgroup_reserved
)
2582 struct btrfs_root
*root
= inode
->root
;
2583 const u64 sectorsize
= root
->fs_info
->sectorsize
;
2584 struct btrfs_path
*path
;
2585 struct extent_buffer
*leaf
;
2586 struct btrfs_key ins
;
2587 u64 disk_num_bytes
= btrfs_stack_file_extent_disk_num_bytes(stack_fi
);
2588 u64 disk_bytenr
= btrfs_stack_file_extent_disk_bytenr(stack_fi
);
2589 u64 num_bytes
= btrfs_stack_file_extent_num_bytes(stack_fi
);
2590 u64 ram_bytes
= btrfs_stack_file_extent_ram_bytes(stack_fi
);
2591 struct btrfs_drop_extents_args drop_args
= { 0 };
2594 path
= btrfs_alloc_path();
2599 * we may be replacing one extent in the tree with another.
2600 * The new extent is pinned in the extent map, and we don't want
2601 * to drop it from the cache until it is completely in the btree.
2603 * So, tell btrfs_drop_extents to leave this extent in the cache.
2604 * the caller is expected to unpin it and allow it to be merged
2607 drop_args
.path
= path
;
2608 drop_args
.start
= file_pos
;
2609 drop_args
.end
= file_pos
+ num_bytes
;
2610 drop_args
.replace_extent
= true;
2611 drop_args
.extent_item_size
= sizeof(*stack_fi
);
2612 ret
= btrfs_drop_extents(trans
, root
, inode
, &drop_args
);
2616 if (!drop_args
.extent_inserted
) {
2617 ins
.objectid
= btrfs_ino(inode
);
2618 ins
.offset
= file_pos
;
2619 ins
.type
= BTRFS_EXTENT_DATA_KEY
;
2621 ret
= btrfs_insert_empty_item(trans
, root
, path
, &ins
,
2626 leaf
= path
->nodes
[0];
2627 btrfs_set_stack_file_extent_generation(stack_fi
, trans
->transid
);
2628 write_extent_buffer(leaf
, stack_fi
,
2629 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
2630 sizeof(struct btrfs_file_extent_item
));
2632 btrfs_mark_buffer_dirty(leaf
);
2633 btrfs_release_path(path
);
2636 * If we dropped an inline extent here, we know the range where it is
2637 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2638 * number of bytes only for that range contaning the inline extent.
2639 * The remaining of the range will be processed when clearning the
2640 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2642 if (file_pos
== 0 && !IS_ALIGNED(drop_args
.bytes_found
, sectorsize
)) {
2643 u64 inline_size
= round_down(drop_args
.bytes_found
, sectorsize
);
2645 inline_size
= drop_args
.bytes_found
- inline_size
;
2646 btrfs_update_inode_bytes(inode
, sectorsize
, inline_size
);
2647 drop_args
.bytes_found
-= inline_size
;
2648 num_bytes
-= sectorsize
;
2651 if (update_inode_bytes
)
2652 btrfs_update_inode_bytes(inode
, num_bytes
, drop_args
.bytes_found
);
2654 ins
.objectid
= disk_bytenr
;
2655 ins
.offset
= disk_num_bytes
;
2656 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2658 ret
= btrfs_inode_set_file_extent_range(inode
, file_pos
, ram_bytes
);
2662 ret
= btrfs_alloc_reserved_file_extent(trans
, root
, btrfs_ino(inode
),
2663 file_pos
, qgroup_reserved
, &ins
);
2665 btrfs_free_path(path
);
2670 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info
*fs_info
,
2673 struct btrfs_block_group
*cache
;
2675 cache
= btrfs_lookup_block_group(fs_info
, start
);
2678 spin_lock(&cache
->lock
);
2679 cache
->delalloc_bytes
-= len
;
2680 spin_unlock(&cache
->lock
);
2682 btrfs_put_block_group(cache
);
2685 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle
*trans
,
2686 struct btrfs_ordered_extent
*oe
)
2688 struct btrfs_file_extent_item stack_fi
;
2690 bool update_inode_bytes
;
2692 memset(&stack_fi
, 0, sizeof(stack_fi
));
2693 btrfs_set_stack_file_extent_type(&stack_fi
, BTRFS_FILE_EXTENT_REG
);
2694 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi
, oe
->disk_bytenr
);
2695 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi
,
2696 oe
->disk_num_bytes
);
2697 if (test_bit(BTRFS_ORDERED_TRUNCATED
, &oe
->flags
))
2698 logical_len
= oe
->truncated_len
;
2700 logical_len
= oe
->num_bytes
;
2701 btrfs_set_stack_file_extent_num_bytes(&stack_fi
, logical_len
);
2702 btrfs_set_stack_file_extent_ram_bytes(&stack_fi
, logical_len
);
2703 btrfs_set_stack_file_extent_compression(&stack_fi
, oe
->compress_type
);
2704 /* Encryption and other encoding is reserved and all 0 */
2707 * For delalloc, when completing an ordered extent we update the inode's
2708 * bytes when clearing the range in the inode's io tree, so pass false
2709 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
2710 * except if the ordered extent was truncated.
2712 update_inode_bytes
= test_bit(BTRFS_ORDERED_DIRECT
, &oe
->flags
) ||
2713 test_bit(BTRFS_ORDERED_TRUNCATED
, &oe
->flags
);
2715 return insert_reserved_file_extent(trans
, BTRFS_I(oe
->inode
),
2716 oe
->file_offset
, &stack_fi
,
2717 update_inode_bytes
, oe
->qgroup_rsv
);
2721 * As ordered data IO finishes, this gets called so we can finish
2722 * an ordered extent if the range of bytes in the file it covers are
2725 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent
*ordered_extent
)
2727 struct btrfs_inode
*inode
= BTRFS_I(ordered_extent
->inode
);
2728 struct btrfs_root
*root
= inode
->root
;
2729 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2730 struct btrfs_trans_handle
*trans
= NULL
;
2731 struct extent_io_tree
*io_tree
= &inode
->io_tree
;
2732 struct extent_state
*cached_state
= NULL
;
2734 int compress_type
= 0;
2736 u64 logical_len
= ordered_extent
->num_bytes
;
2737 bool freespace_inode
;
2738 bool truncated
= false;
2739 bool clear_reserved_extent
= true;
2740 unsigned int clear_bits
= EXTENT_DEFRAG
;
2742 start
= ordered_extent
->file_offset
;
2743 end
= start
+ ordered_extent
->num_bytes
- 1;
2745 if (!test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
) &&
2746 !test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
) &&
2747 !test_bit(BTRFS_ORDERED_DIRECT
, &ordered_extent
->flags
))
2748 clear_bits
|= EXTENT_DELALLOC_NEW
;
2750 freespace_inode
= btrfs_is_free_space_inode(inode
);
2752 if (test_bit(BTRFS_ORDERED_IOERR
, &ordered_extent
->flags
)) {
2757 btrfs_free_io_failure_record(inode
, start
, end
);
2759 if (test_bit(BTRFS_ORDERED_TRUNCATED
, &ordered_extent
->flags
)) {
2761 logical_len
= ordered_extent
->truncated_len
;
2762 /* Truncated the entire extent, don't bother adding */
2767 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
)) {
2768 BUG_ON(!list_empty(&ordered_extent
->list
)); /* Logic error */
2770 btrfs_inode_safe_disk_i_size_write(inode
, 0);
2771 if (freespace_inode
)
2772 trans
= btrfs_join_transaction_spacecache(root
);
2774 trans
= btrfs_join_transaction(root
);
2775 if (IS_ERR(trans
)) {
2776 ret
= PTR_ERR(trans
);
2780 trans
->block_rsv
= &inode
->block_rsv
;
2781 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
2782 if (ret
) /* -ENOMEM or corruption */
2783 btrfs_abort_transaction(trans
, ret
);
2787 clear_bits
|= EXTENT_LOCKED
;
2788 lock_extent_bits(io_tree
, start
, end
, &cached_state
);
2790 if (freespace_inode
)
2791 trans
= btrfs_join_transaction_spacecache(root
);
2793 trans
= btrfs_join_transaction(root
);
2794 if (IS_ERR(trans
)) {
2795 ret
= PTR_ERR(trans
);
2800 trans
->block_rsv
= &inode
->block_rsv
;
2802 if (test_bit(BTRFS_ORDERED_COMPRESSED
, &ordered_extent
->flags
))
2803 compress_type
= ordered_extent
->compress_type
;
2804 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
2805 BUG_ON(compress_type
);
2806 ret
= btrfs_mark_extent_written(trans
, inode
,
2807 ordered_extent
->file_offset
,
2808 ordered_extent
->file_offset
+
2811 BUG_ON(root
== fs_info
->tree_root
);
2812 ret
= insert_ordered_extent_file_extent(trans
, ordered_extent
);
2814 clear_reserved_extent
= false;
2815 btrfs_release_delalloc_bytes(fs_info
,
2816 ordered_extent
->disk_bytenr
,
2817 ordered_extent
->disk_num_bytes
);
2820 unpin_extent_cache(&inode
->extent_tree
, ordered_extent
->file_offset
,
2821 ordered_extent
->num_bytes
, trans
->transid
);
2823 btrfs_abort_transaction(trans
, ret
);
2827 ret
= add_pending_csums(trans
, &ordered_extent
->list
);
2829 btrfs_abort_transaction(trans
, ret
);
2834 * If this is a new delalloc range, clear its new delalloc flag to
2835 * update the inode's number of bytes. This needs to be done first
2836 * before updating the inode item.
2838 if ((clear_bits
& EXTENT_DELALLOC_NEW
) &&
2839 !test_bit(BTRFS_ORDERED_TRUNCATED
, &ordered_extent
->flags
))
2840 clear_extent_bit(&inode
->io_tree
, start
, end
,
2841 EXTENT_DELALLOC_NEW
| EXTENT_ADD_INODE_BYTES
,
2842 0, 0, &cached_state
);
2844 btrfs_inode_safe_disk_i_size_write(inode
, 0);
2845 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
2846 if (ret
) { /* -ENOMEM or corruption */
2847 btrfs_abort_transaction(trans
, ret
);
2852 clear_extent_bit(&inode
->io_tree
, start
, end
, clear_bits
,
2853 (clear_bits
& EXTENT_LOCKED
) ? 1 : 0, 0,
2857 btrfs_end_transaction(trans
);
2859 if (ret
|| truncated
) {
2860 u64 unwritten_start
= start
;
2863 unwritten_start
+= logical_len
;
2864 clear_extent_uptodate(io_tree
, unwritten_start
, end
, NULL
);
2866 /* Drop the cache for the part of the extent we didn't write. */
2867 btrfs_drop_extent_cache(inode
, unwritten_start
, end
, 0);
2870 * If the ordered extent had an IOERR or something else went
2871 * wrong we need to return the space for this ordered extent
2872 * back to the allocator. We only free the extent in the
2873 * truncated case if we didn't write out the extent at all.
2875 * If we made it past insert_reserved_file_extent before we
2876 * errored out then we don't need to do this as the accounting
2877 * has already been done.
2879 if ((ret
|| !logical_len
) &&
2880 clear_reserved_extent
&&
2881 !test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
) &&
2882 !test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
2884 * Discard the range before returning it back to the
2887 if (ret
&& btrfs_test_opt(fs_info
, DISCARD_SYNC
))
2888 btrfs_discard_extent(fs_info
,
2889 ordered_extent
->disk_bytenr
,
2890 ordered_extent
->disk_num_bytes
,
2892 btrfs_free_reserved_extent(fs_info
,
2893 ordered_extent
->disk_bytenr
,
2894 ordered_extent
->disk_num_bytes
, 1);
2899 * This needs to be done to make sure anybody waiting knows we are done
2900 * updating everything for this ordered extent.
2902 btrfs_remove_ordered_extent(inode
, ordered_extent
);
2905 btrfs_put_ordered_extent(ordered_extent
);
2906 /* once for the tree */
2907 btrfs_put_ordered_extent(ordered_extent
);
2912 static void finish_ordered_fn(struct btrfs_work
*work
)
2914 struct btrfs_ordered_extent
*ordered_extent
;
2915 ordered_extent
= container_of(work
, struct btrfs_ordered_extent
, work
);
2916 btrfs_finish_ordered_io(ordered_extent
);
2919 void btrfs_writepage_endio_finish_ordered(struct page
*page
, u64 start
,
2920 u64 end
, int uptodate
)
2922 struct btrfs_inode
*inode
= BTRFS_I(page
->mapping
->host
);
2923 struct btrfs_fs_info
*fs_info
= inode
->root
->fs_info
;
2924 struct btrfs_ordered_extent
*ordered_extent
= NULL
;
2925 struct btrfs_workqueue
*wq
;
2927 trace_btrfs_writepage_end_io_hook(page
, start
, end
, uptodate
);
2929 ClearPagePrivate2(page
);
2930 if (!btrfs_dec_test_ordered_pending(inode
, &ordered_extent
, start
,
2931 end
- start
+ 1, uptodate
))
2934 if (btrfs_is_free_space_inode(inode
))
2935 wq
= fs_info
->endio_freespace_worker
;
2937 wq
= fs_info
->endio_write_workers
;
2939 btrfs_init_work(&ordered_extent
->work
, finish_ordered_fn
, NULL
, NULL
);
2940 btrfs_queue_work(wq
, &ordered_extent
->work
);
2944 * check_data_csum - verify checksum of one sector of uncompressed data
2946 * @io_bio: btrfs_io_bio which contains the csum
2947 * @bio_offset: offset to the beginning of the bio (in bytes)
2948 * @page: page where is the data to be verified
2949 * @pgoff: offset inside the page
2951 * The length of such check is always one sector size.
2953 static int check_data_csum(struct inode
*inode
, struct btrfs_io_bio
*io_bio
,
2954 u32 bio_offset
, struct page
*page
, u32 pgoff
)
2956 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2957 SHASH_DESC_ON_STACK(shash
, fs_info
->csum_shash
);
2959 u32 len
= fs_info
->sectorsize
;
2960 const u32 csum_size
= fs_info
->csum_size
;
2961 unsigned int offset_sectors
;
2963 u8 csum
[BTRFS_CSUM_SIZE
];
2965 ASSERT(pgoff
+ len
<= PAGE_SIZE
);
2967 offset_sectors
= bio_offset
>> fs_info
->sectorsize_bits
;
2968 csum_expected
= ((u8
*)io_bio
->csum
) + offset_sectors
* csum_size
;
2970 kaddr
= kmap_atomic(page
);
2971 shash
->tfm
= fs_info
->csum_shash
;
2973 crypto_shash_digest(shash
, kaddr
+ pgoff
, len
, csum
);
2975 if (memcmp(csum
, csum_expected
, csum_size
))
2978 kunmap_atomic(kaddr
);
2981 btrfs_print_data_csum_error(BTRFS_I(inode
), page_offset(page
) + pgoff
,
2982 csum
, csum_expected
, io_bio
->mirror_num
);
2984 btrfs_dev_stat_inc_and_print(io_bio
->device
,
2985 BTRFS_DEV_STAT_CORRUPTION_ERRS
);
2986 memset(kaddr
+ pgoff
, 1, len
);
2987 flush_dcache_page(page
);
2988 kunmap_atomic(kaddr
);
2993 * When reads are done, we need to check csums to verify the data is correct.
2994 * if there's a match, we allow the bio to finish. If not, the code in
2995 * extent_io.c will try to find good copies for us.
2997 * @bio_offset: offset to the beginning of the bio (in bytes)
2998 * @start: file offset of the range start
2999 * @end: file offset of the range end (inclusive)
3000 * @mirror: mirror number
3002 int btrfs_verify_data_csum(struct btrfs_io_bio
*io_bio
, u32 bio_offset
,
3003 struct page
*page
, u64 start
, u64 end
, int mirror
)
3005 struct inode
*inode
= page
->mapping
->host
;
3006 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3007 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3008 const u32 sectorsize
= root
->fs_info
->sectorsize
;
3011 if (PageChecked(page
)) {
3012 ClearPageChecked(page
);
3016 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
3019 if (!root
->fs_info
->csum_root
)
3022 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
&&
3023 test_range_bit(io_tree
, start
, end
, EXTENT_NODATASUM
, 1, NULL
)) {
3024 clear_extent_bits(io_tree
, start
, end
, EXTENT_NODATASUM
);
3028 ASSERT(page_offset(page
) <= start
&&
3029 end
<= page_offset(page
) + PAGE_SIZE
- 1);
3030 for (pg_off
= offset_in_page(start
);
3031 pg_off
< offset_in_page(end
);
3032 pg_off
+= sectorsize
, bio_offset
+= sectorsize
) {
3035 ret
= check_data_csum(inode
, io_bio
, bio_offset
, page
, pg_off
);
3043 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3045 * @inode: The inode we want to perform iput on
3047 * This function uses the generic vfs_inode::i_count to track whether we should
3048 * just decrement it (in case it's > 1) or if this is the last iput then link
3049 * the inode to the delayed iput machinery. Delayed iputs are processed at
3050 * transaction commit time/superblock commit/cleaner kthread.
3052 void btrfs_add_delayed_iput(struct inode
*inode
)
3054 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3055 struct btrfs_inode
*binode
= BTRFS_I(inode
);
3057 if (atomic_add_unless(&inode
->i_count
, -1, 1))
3060 atomic_inc(&fs_info
->nr_delayed_iputs
);
3061 spin_lock(&fs_info
->delayed_iput_lock
);
3062 ASSERT(list_empty(&binode
->delayed_iput
));
3063 list_add_tail(&binode
->delayed_iput
, &fs_info
->delayed_iputs
);
3064 spin_unlock(&fs_info
->delayed_iput_lock
);
3065 if (!test_bit(BTRFS_FS_CLEANER_RUNNING
, &fs_info
->flags
))
3066 wake_up_process(fs_info
->cleaner_kthread
);
3069 static void run_delayed_iput_locked(struct btrfs_fs_info
*fs_info
,
3070 struct btrfs_inode
*inode
)
3072 list_del_init(&inode
->delayed_iput
);
3073 spin_unlock(&fs_info
->delayed_iput_lock
);
3074 iput(&inode
->vfs_inode
);
3075 if (atomic_dec_and_test(&fs_info
->nr_delayed_iputs
))
3076 wake_up(&fs_info
->delayed_iputs_wait
);
3077 spin_lock(&fs_info
->delayed_iput_lock
);
3080 static void btrfs_run_delayed_iput(struct btrfs_fs_info
*fs_info
,
3081 struct btrfs_inode
*inode
)
3083 if (!list_empty(&inode
->delayed_iput
)) {
3084 spin_lock(&fs_info
->delayed_iput_lock
);
3085 if (!list_empty(&inode
->delayed_iput
))
3086 run_delayed_iput_locked(fs_info
, inode
);
3087 spin_unlock(&fs_info
->delayed_iput_lock
);
3091 void btrfs_run_delayed_iputs(struct btrfs_fs_info
*fs_info
)
3094 spin_lock(&fs_info
->delayed_iput_lock
);
3095 while (!list_empty(&fs_info
->delayed_iputs
)) {
3096 struct btrfs_inode
*inode
;
3098 inode
= list_first_entry(&fs_info
->delayed_iputs
,
3099 struct btrfs_inode
, delayed_iput
);
3100 run_delayed_iput_locked(fs_info
, inode
);
3102 spin_unlock(&fs_info
->delayed_iput_lock
);
3106 * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running
3107 * @fs_info - the fs_info for this fs
3108 * @return - EINTR if we were killed, 0 if nothing's pending
3110 * This will wait on any delayed iputs that are currently running with KILLABLE
3111 * set. Once they are all done running we will return, unless we are killed in
3112 * which case we return EINTR. This helps in user operations like fallocate etc
3113 * that might get blocked on the iputs.
3115 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info
*fs_info
)
3117 int ret
= wait_event_killable(fs_info
->delayed_iputs_wait
,
3118 atomic_read(&fs_info
->nr_delayed_iputs
) == 0);
3125 * This creates an orphan entry for the given inode in case something goes wrong
3126 * in the middle of an unlink.
3128 int btrfs_orphan_add(struct btrfs_trans_handle
*trans
,
3129 struct btrfs_inode
*inode
)
3133 ret
= btrfs_insert_orphan_item(trans
, inode
->root
, btrfs_ino(inode
));
3134 if (ret
&& ret
!= -EEXIST
) {
3135 btrfs_abort_transaction(trans
, ret
);
3143 * We have done the delete so we can go ahead and remove the orphan item for
3144 * this particular inode.
3146 static int btrfs_orphan_del(struct btrfs_trans_handle
*trans
,
3147 struct btrfs_inode
*inode
)
3149 return btrfs_del_orphan_item(trans
, inode
->root
, btrfs_ino(inode
));
3153 * this cleans up any orphans that may be left on the list from the last use
3156 int btrfs_orphan_cleanup(struct btrfs_root
*root
)
3158 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3159 struct btrfs_path
*path
;
3160 struct extent_buffer
*leaf
;
3161 struct btrfs_key key
, found_key
;
3162 struct btrfs_trans_handle
*trans
;
3163 struct inode
*inode
;
3164 u64 last_objectid
= 0;
3165 int ret
= 0, nr_unlink
= 0;
3167 if (cmpxchg(&root
->orphan_cleanup_state
, 0, ORPHAN_CLEANUP_STARTED
))
3170 path
= btrfs_alloc_path();
3175 path
->reada
= READA_BACK
;
3177 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
3178 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
3179 key
.offset
= (u64
)-1;
3182 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3187 * if ret == 0 means we found what we were searching for, which
3188 * is weird, but possible, so only screw with path if we didn't
3189 * find the key and see if we have stuff that matches
3193 if (path
->slots
[0] == 0)
3198 /* pull out the item */
3199 leaf
= path
->nodes
[0];
3200 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3202 /* make sure the item matches what we want */
3203 if (found_key
.objectid
!= BTRFS_ORPHAN_OBJECTID
)
3205 if (found_key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
3208 /* release the path since we're done with it */
3209 btrfs_release_path(path
);
3212 * this is where we are basically btrfs_lookup, without the
3213 * crossing root thing. we store the inode number in the
3214 * offset of the orphan item.
3217 if (found_key
.offset
== last_objectid
) {
3219 "Error removing orphan entry, stopping orphan cleanup");
3224 last_objectid
= found_key
.offset
;
3226 found_key
.objectid
= found_key
.offset
;
3227 found_key
.type
= BTRFS_INODE_ITEM_KEY
;
3228 found_key
.offset
= 0;
3229 inode
= btrfs_iget(fs_info
->sb
, last_objectid
, root
);
3230 ret
= PTR_ERR_OR_ZERO(inode
);
3231 if (ret
&& ret
!= -ENOENT
)
3234 if (ret
== -ENOENT
&& root
== fs_info
->tree_root
) {
3235 struct btrfs_root
*dead_root
;
3236 int is_dead_root
= 0;
3239 * this is an orphan in the tree root. Currently these
3240 * could come from 2 sources:
3241 * a) a snapshot deletion in progress
3242 * b) a free space cache inode
3243 * We need to distinguish those two, as the snapshot
3244 * orphan must not get deleted.
3245 * find_dead_roots already ran before us, so if this
3246 * is a snapshot deletion, we should find the root
3247 * in the fs_roots radix tree.
3250 spin_lock(&fs_info
->fs_roots_radix_lock
);
3251 dead_root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
3252 (unsigned long)found_key
.objectid
);
3253 if (dead_root
&& btrfs_root_refs(&dead_root
->root_item
) == 0)
3255 spin_unlock(&fs_info
->fs_roots_radix_lock
);
3258 /* prevent this orphan from being found again */
3259 key
.offset
= found_key
.objectid
- 1;
3266 * If we have an inode with links, there are a couple of
3267 * possibilities. Old kernels (before v3.12) used to create an
3268 * orphan item for truncate indicating that there were possibly
3269 * extent items past i_size that needed to be deleted. In v3.12,
3270 * truncate was changed to update i_size in sync with the extent
3271 * items, but the (useless) orphan item was still created. Since
3272 * v4.18, we don't create the orphan item for truncate at all.
3274 * So, this item could mean that we need to do a truncate, but
3275 * only if this filesystem was last used on a pre-v3.12 kernel
3276 * and was not cleanly unmounted. The odds of that are quite
3277 * slim, and it's a pain to do the truncate now, so just delete
3280 * It's also possible that this orphan item was supposed to be
3281 * deleted but wasn't. The inode number may have been reused,
3282 * but either way, we can delete the orphan item.
3284 if (ret
== -ENOENT
|| inode
->i_nlink
) {
3287 trans
= btrfs_start_transaction(root
, 1);
3288 if (IS_ERR(trans
)) {
3289 ret
= PTR_ERR(trans
);
3292 btrfs_debug(fs_info
, "auto deleting %Lu",
3293 found_key
.objectid
);
3294 ret
= btrfs_del_orphan_item(trans
, root
,
3295 found_key
.objectid
);
3296 btrfs_end_transaction(trans
);
3304 /* this will do delete_inode and everything for us */
3307 /* release the path since we're done with it */
3308 btrfs_release_path(path
);
3310 root
->orphan_cleanup_state
= ORPHAN_CLEANUP_DONE
;
3312 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &root
->state
)) {
3313 trans
= btrfs_join_transaction(root
);
3315 btrfs_end_transaction(trans
);
3319 btrfs_debug(fs_info
, "unlinked %d orphans", nr_unlink
);
3323 btrfs_err(fs_info
, "could not do orphan cleanup %d", ret
);
3324 btrfs_free_path(path
);
3329 * very simple check to peek ahead in the leaf looking for xattrs. If we
3330 * don't find any xattrs, we know there can't be any acls.
3332 * slot is the slot the inode is in, objectid is the objectid of the inode
3334 static noinline
int acls_after_inode_item(struct extent_buffer
*leaf
,
3335 int slot
, u64 objectid
,
3336 int *first_xattr_slot
)
3338 u32 nritems
= btrfs_header_nritems(leaf
);
3339 struct btrfs_key found_key
;
3340 static u64 xattr_access
= 0;
3341 static u64 xattr_default
= 0;
3344 if (!xattr_access
) {
3345 xattr_access
= btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS
,
3346 strlen(XATTR_NAME_POSIX_ACL_ACCESS
));
3347 xattr_default
= btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT
,
3348 strlen(XATTR_NAME_POSIX_ACL_DEFAULT
));
3352 *first_xattr_slot
= -1;
3353 while (slot
< nritems
) {
3354 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3356 /* we found a different objectid, there must not be acls */
3357 if (found_key
.objectid
!= objectid
)
3360 /* we found an xattr, assume we've got an acl */
3361 if (found_key
.type
== BTRFS_XATTR_ITEM_KEY
) {
3362 if (*first_xattr_slot
== -1)
3363 *first_xattr_slot
= slot
;
3364 if (found_key
.offset
== xattr_access
||
3365 found_key
.offset
== xattr_default
)
3370 * we found a key greater than an xattr key, there can't
3371 * be any acls later on
3373 if (found_key
.type
> BTRFS_XATTR_ITEM_KEY
)
3380 * it goes inode, inode backrefs, xattrs, extents,
3381 * so if there are a ton of hard links to an inode there can
3382 * be a lot of backrefs. Don't waste time searching too hard,
3383 * this is just an optimization
3388 /* we hit the end of the leaf before we found an xattr or
3389 * something larger than an xattr. We have to assume the inode
3392 if (*first_xattr_slot
== -1)
3393 *first_xattr_slot
= slot
;
3398 * read an inode from the btree into the in-memory inode
3400 static int btrfs_read_locked_inode(struct inode
*inode
,
3401 struct btrfs_path
*in_path
)
3403 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3404 struct btrfs_path
*path
= in_path
;
3405 struct extent_buffer
*leaf
;
3406 struct btrfs_inode_item
*inode_item
;
3407 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3408 struct btrfs_key location
;
3413 bool filled
= false;
3414 int first_xattr_slot
;
3416 ret
= btrfs_fill_inode(inode
, &rdev
);
3421 path
= btrfs_alloc_path();
3426 memcpy(&location
, &BTRFS_I(inode
)->location
, sizeof(location
));
3428 ret
= btrfs_lookup_inode(NULL
, root
, path
, &location
, 0);
3430 if (path
!= in_path
)
3431 btrfs_free_path(path
);
3435 leaf
= path
->nodes
[0];
3440 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
3441 struct btrfs_inode_item
);
3442 inode
->i_mode
= btrfs_inode_mode(leaf
, inode_item
);
3443 set_nlink(inode
, btrfs_inode_nlink(leaf
, inode_item
));
3444 i_uid_write(inode
, btrfs_inode_uid(leaf
, inode_item
));
3445 i_gid_write(inode
, btrfs_inode_gid(leaf
, inode_item
));
3446 btrfs_i_size_write(BTRFS_I(inode
), btrfs_inode_size(leaf
, inode_item
));
3447 btrfs_inode_set_file_extent_range(BTRFS_I(inode
), 0,
3448 round_up(i_size_read(inode
), fs_info
->sectorsize
));
3450 inode
->i_atime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->atime
);
3451 inode
->i_atime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->atime
);
3453 inode
->i_mtime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->mtime
);
3454 inode
->i_mtime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->mtime
);
3456 inode
->i_ctime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->ctime
);
3457 inode
->i_ctime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->ctime
);
3459 BTRFS_I(inode
)->i_otime
.tv_sec
=
3460 btrfs_timespec_sec(leaf
, &inode_item
->otime
);
3461 BTRFS_I(inode
)->i_otime
.tv_nsec
=
3462 btrfs_timespec_nsec(leaf
, &inode_item
->otime
);
3464 inode_set_bytes(inode
, btrfs_inode_nbytes(leaf
, inode_item
));
3465 BTRFS_I(inode
)->generation
= btrfs_inode_generation(leaf
, inode_item
);
3466 BTRFS_I(inode
)->last_trans
= btrfs_inode_transid(leaf
, inode_item
);
3468 inode_set_iversion_queried(inode
,
3469 btrfs_inode_sequence(leaf
, inode_item
));
3470 inode
->i_generation
= BTRFS_I(inode
)->generation
;
3472 rdev
= btrfs_inode_rdev(leaf
, inode_item
);
3474 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
3475 BTRFS_I(inode
)->flags
= btrfs_inode_flags(leaf
, inode_item
);
3479 * If we were modified in the current generation and evicted from memory
3480 * and then re-read we need to do a full sync since we don't have any
3481 * idea about which extents were modified before we were evicted from
3484 * This is required for both inode re-read from disk and delayed inode
3485 * in delayed_nodes_tree.
3487 if (BTRFS_I(inode
)->last_trans
== fs_info
->generation
)
3488 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
3489 &BTRFS_I(inode
)->runtime_flags
);
3492 * We don't persist the id of the transaction where an unlink operation
3493 * against the inode was last made. So here we assume the inode might
3494 * have been evicted, and therefore the exact value of last_unlink_trans
3495 * lost, and set it to last_trans to avoid metadata inconsistencies
3496 * between the inode and its parent if the inode is fsync'ed and the log
3497 * replayed. For example, in the scenario:
3500 * ln mydir/foo mydir/bar
3503 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3504 * xfs_io -c fsync mydir/foo
3506 * mount fs, triggers fsync log replay
3508 * We must make sure that when we fsync our inode foo we also log its
3509 * parent inode, otherwise after log replay the parent still has the
3510 * dentry with the "bar" name but our inode foo has a link count of 1
3511 * and doesn't have an inode ref with the name "bar" anymore.
3513 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3514 * but it guarantees correctness at the expense of occasional full
3515 * transaction commits on fsync if our inode is a directory, or if our
3516 * inode is not a directory, logging its parent unnecessarily.
3518 BTRFS_I(inode
)->last_unlink_trans
= BTRFS_I(inode
)->last_trans
;
3521 * Same logic as for last_unlink_trans. We don't persist the generation
3522 * of the last transaction where this inode was used for a reflink
3523 * operation, so after eviction and reloading the inode we must be
3524 * pessimistic and assume the last transaction that modified the inode.
3526 BTRFS_I(inode
)->last_reflink_trans
= BTRFS_I(inode
)->last_trans
;
3529 if (inode
->i_nlink
!= 1 ||
3530 path
->slots
[0] >= btrfs_header_nritems(leaf
))
3533 btrfs_item_key_to_cpu(leaf
, &location
, path
->slots
[0]);
3534 if (location
.objectid
!= btrfs_ino(BTRFS_I(inode
)))
3537 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
3538 if (location
.type
== BTRFS_INODE_REF_KEY
) {
3539 struct btrfs_inode_ref
*ref
;
3541 ref
= (struct btrfs_inode_ref
*)ptr
;
3542 BTRFS_I(inode
)->dir_index
= btrfs_inode_ref_index(leaf
, ref
);
3543 } else if (location
.type
== BTRFS_INODE_EXTREF_KEY
) {
3544 struct btrfs_inode_extref
*extref
;
3546 extref
= (struct btrfs_inode_extref
*)ptr
;
3547 BTRFS_I(inode
)->dir_index
= btrfs_inode_extref_index(leaf
,
3552 * try to precache a NULL acl entry for files that don't have
3553 * any xattrs or acls
3555 maybe_acls
= acls_after_inode_item(leaf
, path
->slots
[0],
3556 btrfs_ino(BTRFS_I(inode
)), &first_xattr_slot
);
3557 if (first_xattr_slot
!= -1) {
3558 path
->slots
[0] = first_xattr_slot
;
3559 ret
= btrfs_load_inode_props(inode
, path
);
3562 "error loading props for ino %llu (root %llu): %d",
3563 btrfs_ino(BTRFS_I(inode
)),
3564 root
->root_key
.objectid
, ret
);
3566 if (path
!= in_path
)
3567 btrfs_free_path(path
);
3570 cache_no_acl(inode
);
3572 switch (inode
->i_mode
& S_IFMT
) {
3574 inode
->i_mapping
->a_ops
= &btrfs_aops
;
3575 inode
->i_fop
= &btrfs_file_operations
;
3576 inode
->i_op
= &btrfs_file_inode_operations
;
3579 inode
->i_fop
= &btrfs_dir_file_operations
;
3580 inode
->i_op
= &btrfs_dir_inode_operations
;
3583 inode
->i_op
= &btrfs_symlink_inode_operations
;
3584 inode_nohighmem(inode
);
3585 inode
->i_mapping
->a_ops
= &btrfs_aops
;
3588 inode
->i_op
= &btrfs_special_inode_operations
;
3589 init_special_inode(inode
, inode
->i_mode
, rdev
);
3593 btrfs_sync_inode_flags_to_i_flags(inode
);
3598 * given a leaf and an inode, copy the inode fields into the leaf
3600 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
3601 struct extent_buffer
*leaf
,
3602 struct btrfs_inode_item
*item
,
3603 struct inode
*inode
)
3605 struct btrfs_map_token token
;
3607 btrfs_init_map_token(&token
, leaf
);
3609 btrfs_set_token_inode_uid(&token
, item
, i_uid_read(inode
));
3610 btrfs_set_token_inode_gid(&token
, item
, i_gid_read(inode
));
3611 btrfs_set_token_inode_size(&token
, item
, BTRFS_I(inode
)->disk_i_size
);
3612 btrfs_set_token_inode_mode(&token
, item
, inode
->i_mode
);
3613 btrfs_set_token_inode_nlink(&token
, item
, inode
->i_nlink
);
3615 btrfs_set_token_timespec_sec(&token
, &item
->atime
,
3616 inode
->i_atime
.tv_sec
);
3617 btrfs_set_token_timespec_nsec(&token
, &item
->atime
,
3618 inode
->i_atime
.tv_nsec
);
3620 btrfs_set_token_timespec_sec(&token
, &item
->mtime
,
3621 inode
->i_mtime
.tv_sec
);
3622 btrfs_set_token_timespec_nsec(&token
, &item
->mtime
,
3623 inode
->i_mtime
.tv_nsec
);
3625 btrfs_set_token_timespec_sec(&token
, &item
->ctime
,
3626 inode
->i_ctime
.tv_sec
);
3627 btrfs_set_token_timespec_nsec(&token
, &item
->ctime
,
3628 inode
->i_ctime
.tv_nsec
);
3630 btrfs_set_token_timespec_sec(&token
, &item
->otime
,
3631 BTRFS_I(inode
)->i_otime
.tv_sec
);
3632 btrfs_set_token_timespec_nsec(&token
, &item
->otime
,
3633 BTRFS_I(inode
)->i_otime
.tv_nsec
);
3635 btrfs_set_token_inode_nbytes(&token
, item
, inode_get_bytes(inode
));
3636 btrfs_set_token_inode_generation(&token
, item
,
3637 BTRFS_I(inode
)->generation
);
3638 btrfs_set_token_inode_sequence(&token
, item
, inode_peek_iversion(inode
));
3639 btrfs_set_token_inode_transid(&token
, item
, trans
->transid
);
3640 btrfs_set_token_inode_rdev(&token
, item
, inode
->i_rdev
);
3641 btrfs_set_token_inode_flags(&token
, item
, BTRFS_I(inode
)->flags
);
3642 btrfs_set_token_inode_block_group(&token
, item
, 0);
3646 * copy everything in the in-memory inode into the btree.
3648 static noinline
int btrfs_update_inode_item(struct btrfs_trans_handle
*trans
,
3649 struct btrfs_root
*root
,
3650 struct btrfs_inode
*inode
)
3652 struct btrfs_inode_item
*inode_item
;
3653 struct btrfs_path
*path
;
3654 struct extent_buffer
*leaf
;
3657 path
= btrfs_alloc_path();
3661 ret
= btrfs_lookup_inode(trans
, root
, path
, &inode
->location
, 1);
3668 leaf
= path
->nodes
[0];
3669 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
3670 struct btrfs_inode_item
);
3672 fill_inode_item(trans
, leaf
, inode_item
, &inode
->vfs_inode
);
3673 btrfs_mark_buffer_dirty(leaf
);
3674 btrfs_set_inode_last_trans(trans
, inode
);
3677 btrfs_free_path(path
);
3682 * copy everything in the in-memory inode into the btree.
3684 noinline
int btrfs_update_inode(struct btrfs_trans_handle
*trans
,
3685 struct btrfs_root
*root
,
3686 struct btrfs_inode
*inode
)
3688 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3692 * If the inode is a free space inode, we can deadlock during commit
3693 * if we put it into the delayed code.
3695 * The data relocation inode should also be directly updated
3698 if (!btrfs_is_free_space_inode(inode
)
3699 && root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
3700 && !test_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
)) {
3701 btrfs_update_root_times(trans
, root
);
3703 ret
= btrfs_delayed_update_inode(trans
, root
, inode
);
3705 btrfs_set_inode_last_trans(trans
, inode
);
3709 return btrfs_update_inode_item(trans
, root
, inode
);
3712 int btrfs_update_inode_fallback(struct btrfs_trans_handle
*trans
,
3713 struct btrfs_root
*root
, struct btrfs_inode
*inode
)
3717 ret
= btrfs_update_inode(trans
, root
, inode
);
3719 return btrfs_update_inode_item(trans
, root
, inode
);
3724 * unlink helper that gets used here in inode.c and in the tree logging
3725 * recovery code. It remove a link in a directory with a given name, and
3726 * also drops the back refs in the inode to the directory
3728 static int __btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
3729 struct btrfs_root
*root
,
3730 struct btrfs_inode
*dir
,
3731 struct btrfs_inode
*inode
,
3732 const char *name
, int name_len
)
3734 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3735 struct btrfs_path
*path
;
3737 struct btrfs_dir_item
*di
;
3739 u64 ino
= btrfs_ino(inode
);
3740 u64 dir_ino
= btrfs_ino(dir
);
3742 path
= btrfs_alloc_path();
3748 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
3749 name
, name_len
, -1);
3750 if (IS_ERR_OR_NULL(di
)) {
3751 ret
= di
? PTR_ERR(di
) : -ENOENT
;
3754 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
3757 btrfs_release_path(path
);
3760 * If we don't have dir index, we have to get it by looking up
3761 * the inode ref, since we get the inode ref, remove it directly,
3762 * it is unnecessary to do delayed deletion.
3764 * But if we have dir index, needn't search inode ref to get it.
3765 * Since the inode ref is close to the inode item, it is better
3766 * that we delay to delete it, and just do this deletion when
3767 * we update the inode item.
3769 if (inode
->dir_index
) {
3770 ret
= btrfs_delayed_delete_inode_ref(inode
);
3772 index
= inode
->dir_index
;
3777 ret
= btrfs_del_inode_ref(trans
, root
, name
, name_len
, ino
,
3781 "failed to delete reference to %.*s, inode %llu parent %llu",
3782 name_len
, name
, ino
, dir_ino
);
3783 btrfs_abort_transaction(trans
, ret
);
3787 ret
= btrfs_delete_delayed_dir_index(trans
, dir
, index
);
3789 btrfs_abort_transaction(trans
, ret
);
3793 ret
= btrfs_del_inode_ref_in_log(trans
, root
, name
, name_len
, inode
,
3795 if (ret
!= 0 && ret
!= -ENOENT
) {
3796 btrfs_abort_transaction(trans
, ret
);
3800 ret
= btrfs_del_dir_entries_in_log(trans
, root
, name
, name_len
, dir
,
3805 btrfs_abort_transaction(trans
, ret
);
3808 * If we have a pending delayed iput we could end up with the final iput
3809 * being run in btrfs-cleaner context. If we have enough of these built
3810 * up we can end up burning a lot of time in btrfs-cleaner without any
3811 * way to throttle the unlinks. Since we're currently holding a ref on
3812 * the inode we can run the delayed iput here without any issues as the
3813 * final iput won't be done until after we drop the ref we're currently
3816 btrfs_run_delayed_iput(fs_info
, inode
);
3818 btrfs_free_path(path
);
3822 btrfs_i_size_write(dir
, dir
->vfs_inode
.i_size
- name_len
* 2);
3823 inode_inc_iversion(&inode
->vfs_inode
);
3824 inode_inc_iversion(&dir
->vfs_inode
);
3825 inode
->vfs_inode
.i_ctime
= dir
->vfs_inode
.i_mtime
=
3826 dir
->vfs_inode
.i_ctime
= current_time(&inode
->vfs_inode
);
3827 ret
= btrfs_update_inode(trans
, root
, dir
);
3832 int btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
3833 struct btrfs_root
*root
,
3834 struct btrfs_inode
*dir
, struct btrfs_inode
*inode
,
3835 const char *name
, int name_len
)
3838 ret
= __btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
3840 drop_nlink(&inode
->vfs_inode
);
3841 ret
= btrfs_update_inode(trans
, root
, inode
);
3847 * helper to start transaction for unlink and rmdir.
3849 * unlink and rmdir are special in btrfs, they do not always free space, so
3850 * if we cannot make our reservations the normal way try and see if there is
3851 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3852 * allow the unlink to occur.
3854 static struct btrfs_trans_handle
*__unlink_start_trans(struct inode
*dir
)
3856 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3859 * 1 for the possible orphan item
3860 * 1 for the dir item
3861 * 1 for the dir index
3862 * 1 for the inode ref
3865 return btrfs_start_transaction_fallback_global_rsv(root
, 5);
3868 static int btrfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
3870 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3871 struct btrfs_trans_handle
*trans
;
3872 struct inode
*inode
= d_inode(dentry
);
3875 trans
= __unlink_start_trans(dir
);
3877 return PTR_ERR(trans
);
3879 btrfs_record_unlink_dir(trans
, BTRFS_I(dir
), BTRFS_I(d_inode(dentry
)),
3882 ret
= btrfs_unlink_inode(trans
, root
, BTRFS_I(dir
),
3883 BTRFS_I(d_inode(dentry
)), dentry
->d_name
.name
,
3884 dentry
->d_name
.len
);
3888 if (inode
->i_nlink
== 0) {
3889 ret
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
3895 btrfs_end_transaction(trans
);
3896 btrfs_btree_balance_dirty(root
->fs_info
);
3900 static int btrfs_unlink_subvol(struct btrfs_trans_handle
*trans
,
3901 struct inode
*dir
, struct dentry
*dentry
)
3903 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3904 struct btrfs_inode
*inode
= BTRFS_I(d_inode(dentry
));
3905 struct btrfs_path
*path
;
3906 struct extent_buffer
*leaf
;
3907 struct btrfs_dir_item
*di
;
3908 struct btrfs_key key
;
3909 const char *name
= dentry
->d_name
.name
;
3910 int name_len
= dentry
->d_name
.len
;
3914 u64 dir_ino
= btrfs_ino(BTRFS_I(dir
));
3916 if (btrfs_ino(inode
) == BTRFS_FIRST_FREE_OBJECTID
) {
3917 objectid
= inode
->root
->root_key
.objectid
;
3918 } else if (btrfs_ino(inode
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
) {
3919 objectid
= inode
->location
.objectid
;
3925 path
= btrfs_alloc_path();
3929 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
3930 name
, name_len
, -1);
3931 if (IS_ERR_OR_NULL(di
)) {
3932 ret
= di
? PTR_ERR(di
) : -ENOENT
;
3936 leaf
= path
->nodes
[0];
3937 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
3938 WARN_ON(key
.type
!= BTRFS_ROOT_ITEM_KEY
|| key
.objectid
!= objectid
);
3939 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
3941 btrfs_abort_transaction(trans
, ret
);
3944 btrfs_release_path(path
);
3947 * This is a placeholder inode for a subvolume we didn't have a
3948 * reference to at the time of the snapshot creation. In the meantime
3949 * we could have renamed the real subvol link into our snapshot, so
3950 * depending on btrfs_del_root_ref to return -ENOENT here is incorret.
3951 * Instead simply lookup the dir_index_item for this entry so we can
3952 * remove it. Otherwise we know we have a ref to the root and we can
3953 * call btrfs_del_root_ref, and it _shouldn't_ fail.
3955 if (btrfs_ino(inode
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
) {
3956 di
= btrfs_search_dir_index_item(root
, path
, dir_ino
,
3958 if (IS_ERR_OR_NULL(di
)) {
3963 btrfs_abort_transaction(trans
, ret
);
3967 leaf
= path
->nodes
[0];
3968 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
3970 btrfs_release_path(path
);
3972 ret
= btrfs_del_root_ref(trans
, objectid
,
3973 root
->root_key
.objectid
, dir_ino
,
3974 &index
, name
, name_len
);
3976 btrfs_abort_transaction(trans
, ret
);
3981 ret
= btrfs_delete_delayed_dir_index(trans
, BTRFS_I(dir
), index
);
3983 btrfs_abort_transaction(trans
, ret
);
3987 btrfs_i_size_write(BTRFS_I(dir
), dir
->i_size
- name_len
* 2);
3988 inode_inc_iversion(dir
);
3989 dir
->i_mtime
= dir
->i_ctime
= current_time(dir
);
3990 ret
= btrfs_update_inode_fallback(trans
, root
, BTRFS_I(dir
));
3992 btrfs_abort_transaction(trans
, ret
);
3994 btrfs_free_path(path
);
3999 * Helper to check if the subvolume references other subvolumes or if it's
4002 static noinline
int may_destroy_subvol(struct btrfs_root
*root
)
4004 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4005 struct btrfs_path
*path
;
4006 struct btrfs_dir_item
*di
;
4007 struct btrfs_key key
;
4011 path
= btrfs_alloc_path();
4015 /* Make sure this root isn't set as the default subvol */
4016 dir_id
= btrfs_super_root_dir(fs_info
->super_copy
);
4017 di
= btrfs_lookup_dir_item(NULL
, fs_info
->tree_root
, path
,
4018 dir_id
, "default", 7, 0);
4019 if (di
&& !IS_ERR(di
)) {
4020 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &key
);
4021 if (key
.objectid
== root
->root_key
.objectid
) {
4024 "deleting default subvolume %llu is not allowed",
4028 btrfs_release_path(path
);
4031 key
.objectid
= root
->root_key
.objectid
;
4032 key
.type
= BTRFS_ROOT_REF_KEY
;
4033 key
.offset
= (u64
)-1;
4035 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
4041 if (path
->slots
[0] > 0) {
4043 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
4044 if (key
.objectid
== root
->root_key
.objectid
&&
4045 key
.type
== BTRFS_ROOT_REF_KEY
)
4049 btrfs_free_path(path
);
4053 /* Delete all dentries for inodes belonging to the root */
4054 static void btrfs_prune_dentries(struct btrfs_root
*root
)
4056 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4057 struct rb_node
*node
;
4058 struct rb_node
*prev
;
4059 struct btrfs_inode
*entry
;
4060 struct inode
*inode
;
4063 if (!test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
4064 WARN_ON(btrfs_root_refs(&root
->root_item
) != 0);
4066 spin_lock(&root
->inode_lock
);
4068 node
= root
->inode_tree
.rb_node
;
4072 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
4074 if (objectid
< btrfs_ino(entry
))
4075 node
= node
->rb_left
;
4076 else if (objectid
> btrfs_ino(entry
))
4077 node
= node
->rb_right
;
4083 entry
= rb_entry(prev
, struct btrfs_inode
, rb_node
);
4084 if (objectid
<= btrfs_ino(entry
)) {
4088 prev
= rb_next(prev
);
4092 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
4093 objectid
= btrfs_ino(entry
) + 1;
4094 inode
= igrab(&entry
->vfs_inode
);
4096 spin_unlock(&root
->inode_lock
);
4097 if (atomic_read(&inode
->i_count
) > 1)
4098 d_prune_aliases(inode
);
4100 * btrfs_drop_inode will have it removed from the inode
4101 * cache when its usage count hits zero.
4105 spin_lock(&root
->inode_lock
);
4109 if (cond_resched_lock(&root
->inode_lock
))
4112 node
= rb_next(node
);
4114 spin_unlock(&root
->inode_lock
);
4117 int btrfs_delete_subvolume(struct inode
*dir
, struct dentry
*dentry
)
4119 struct btrfs_fs_info
*fs_info
= btrfs_sb(dentry
->d_sb
);
4120 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4121 struct inode
*inode
= d_inode(dentry
);
4122 struct btrfs_root
*dest
= BTRFS_I(inode
)->root
;
4123 struct btrfs_trans_handle
*trans
;
4124 struct btrfs_block_rsv block_rsv
;
4129 * Don't allow to delete a subvolume with send in progress. This is
4130 * inside the inode lock so the error handling that has to drop the bit
4131 * again is not run concurrently.
4133 spin_lock(&dest
->root_item_lock
);
4134 if (dest
->send_in_progress
) {
4135 spin_unlock(&dest
->root_item_lock
);
4137 "attempt to delete subvolume %llu during send",
4138 dest
->root_key
.objectid
);
4141 root_flags
= btrfs_root_flags(&dest
->root_item
);
4142 btrfs_set_root_flags(&dest
->root_item
,
4143 root_flags
| BTRFS_ROOT_SUBVOL_DEAD
);
4144 spin_unlock(&dest
->root_item_lock
);
4146 down_write(&fs_info
->subvol_sem
);
4148 ret
= may_destroy_subvol(dest
);
4152 btrfs_init_block_rsv(&block_rsv
, BTRFS_BLOCK_RSV_TEMP
);
4154 * One for dir inode,
4155 * two for dir entries,
4156 * two for root ref/backref.
4158 ret
= btrfs_subvolume_reserve_metadata(root
, &block_rsv
, 5, true);
4162 trans
= btrfs_start_transaction(root
, 0);
4163 if (IS_ERR(trans
)) {
4164 ret
= PTR_ERR(trans
);
4167 trans
->block_rsv
= &block_rsv
;
4168 trans
->bytes_reserved
= block_rsv
.size
;
4170 btrfs_record_snapshot_destroy(trans
, BTRFS_I(dir
));
4172 ret
= btrfs_unlink_subvol(trans
, dir
, dentry
);
4174 btrfs_abort_transaction(trans
, ret
);
4178 btrfs_record_root_in_trans(trans
, dest
);
4180 memset(&dest
->root_item
.drop_progress
, 0,
4181 sizeof(dest
->root_item
.drop_progress
));
4182 btrfs_set_root_drop_level(&dest
->root_item
, 0);
4183 btrfs_set_root_refs(&dest
->root_item
, 0);
4185 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &dest
->state
)) {
4186 ret
= btrfs_insert_orphan_item(trans
,
4188 dest
->root_key
.objectid
);
4190 btrfs_abort_transaction(trans
, ret
);
4195 ret
= btrfs_uuid_tree_remove(trans
, dest
->root_item
.uuid
,
4196 BTRFS_UUID_KEY_SUBVOL
,
4197 dest
->root_key
.objectid
);
4198 if (ret
&& ret
!= -ENOENT
) {
4199 btrfs_abort_transaction(trans
, ret
);
4202 if (!btrfs_is_empty_uuid(dest
->root_item
.received_uuid
)) {
4203 ret
= btrfs_uuid_tree_remove(trans
,
4204 dest
->root_item
.received_uuid
,
4205 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
4206 dest
->root_key
.objectid
);
4207 if (ret
&& ret
!= -ENOENT
) {
4208 btrfs_abort_transaction(trans
, ret
);
4213 free_anon_bdev(dest
->anon_dev
);
4216 trans
->block_rsv
= NULL
;
4217 trans
->bytes_reserved
= 0;
4218 ret
= btrfs_end_transaction(trans
);
4219 inode
->i_flags
|= S_DEAD
;
4221 btrfs_subvolume_release_metadata(root
, &block_rsv
);
4223 up_write(&fs_info
->subvol_sem
);
4225 spin_lock(&dest
->root_item_lock
);
4226 root_flags
= btrfs_root_flags(&dest
->root_item
);
4227 btrfs_set_root_flags(&dest
->root_item
,
4228 root_flags
& ~BTRFS_ROOT_SUBVOL_DEAD
);
4229 spin_unlock(&dest
->root_item_lock
);
4231 d_invalidate(dentry
);
4232 btrfs_prune_dentries(dest
);
4233 ASSERT(dest
->send_in_progress
== 0);
4239 static int btrfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
4241 struct inode
*inode
= d_inode(dentry
);
4243 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4244 struct btrfs_trans_handle
*trans
;
4245 u64 last_unlink_trans
;
4247 if (inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
4249 if (btrfs_ino(BTRFS_I(inode
)) == BTRFS_FIRST_FREE_OBJECTID
)
4250 return btrfs_delete_subvolume(dir
, dentry
);
4252 trans
= __unlink_start_trans(dir
);
4254 return PTR_ERR(trans
);
4256 if (unlikely(btrfs_ino(BTRFS_I(inode
)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
4257 err
= btrfs_unlink_subvol(trans
, dir
, dentry
);
4261 err
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
4265 last_unlink_trans
= BTRFS_I(inode
)->last_unlink_trans
;
4267 /* now the directory is empty */
4268 err
= btrfs_unlink_inode(trans
, root
, BTRFS_I(dir
),
4269 BTRFS_I(d_inode(dentry
)), dentry
->d_name
.name
,
4270 dentry
->d_name
.len
);
4272 btrfs_i_size_write(BTRFS_I(inode
), 0);
4274 * Propagate the last_unlink_trans value of the deleted dir to
4275 * its parent directory. This is to prevent an unrecoverable
4276 * log tree in the case we do something like this:
4278 * 2) create snapshot under dir foo
4279 * 3) delete the snapshot
4282 * 6) fsync foo or some file inside foo
4284 if (last_unlink_trans
>= trans
->transid
)
4285 BTRFS_I(dir
)->last_unlink_trans
= last_unlink_trans
;
4288 btrfs_end_transaction(trans
);
4289 btrfs_btree_balance_dirty(root
->fs_info
);
4295 * Return this if we need to call truncate_block for the last bit of the
4298 #define NEED_TRUNCATE_BLOCK 1
4301 * this can truncate away extent items, csum items and directory items.
4302 * It starts at a high offset and removes keys until it can't find
4303 * any higher than new_size
4305 * csum items that cross the new i_size are truncated to the new size
4308 * min_type is the minimum key type to truncate down to. If set to 0, this
4309 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4311 int btrfs_truncate_inode_items(struct btrfs_trans_handle
*trans
,
4312 struct btrfs_root
*root
,
4313 struct btrfs_inode
*inode
,
4314 u64 new_size
, u32 min_type
)
4316 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4317 struct btrfs_path
*path
;
4318 struct extent_buffer
*leaf
;
4319 struct btrfs_file_extent_item
*fi
;
4320 struct btrfs_key key
;
4321 struct btrfs_key found_key
;
4322 u64 extent_start
= 0;
4323 u64 extent_num_bytes
= 0;
4324 u64 extent_offset
= 0;
4326 u64 last_size
= new_size
;
4327 u32 found_type
= (u8
)-1;
4330 int pending_del_nr
= 0;
4331 int pending_del_slot
= 0;
4332 int extent_type
= -1;
4334 u64 ino
= btrfs_ino(inode
);
4335 u64 bytes_deleted
= 0;
4336 bool be_nice
= false;
4337 bool should_throttle
= false;
4338 const u64 lock_start
= ALIGN_DOWN(new_size
, fs_info
->sectorsize
);
4339 struct extent_state
*cached_state
= NULL
;
4341 BUG_ON(new_size
> 0 && min_type
!= BTRFS_EXTENT_DATA_KEY
);
4344 * For non-free space inodes and non-shareable roots, we want to back
4345 * off from time to time. This means all inodes in subvolume roots,
4346 * reloc roots, and data reloc roots.
4348 if (!btrfs_is_free_space_inode(inode
) &&
4349 test_bit(BTRFS_ROOT_SHAREABLE
, &root
->state
))
4352 path
= btrfs_alloc_path();
4355 path
->reada
= READA_BACK
;
4357 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
4358 lock_extent_bits(&inode
->io_tree
, lock_start
, (u64
)-1,
4362 * We want to drop from the next block forward in case this
4363 * new size is not block aligned since we will be keeping the
4364 * last block of the extent just the way it is.
4366 btrfs_drop_extent_cache(inode
, ALIGN(new_size
,
4367 fs_info
->sectorsize
),
4372 * This function is also used to drop the items in the log tree before
4373 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4374 * it is used to drop the logged items. So we shouldn't kill the delayed
4377 if (min_type
== 0 && root
== inode
->root
)
4378 btrfs_kill_delayed_inode_items(inode
);
4381 key
.offset
= (u64
)-1;
4386 * with a 16K leaf size and 128MB extents, you can actually queue
4387 * up a huge file in a single leaf. Most of the time that
4388 * bytes_deleted is > 0, it will be huge by the time we get here
4390 if (be_nice
&& bytes_deleted
> SZ_32M
&&
4391 btrfs_should_end_transaction(trans
)) {
4396 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
4402 /* there are no items in the tree for us to truncate, we're
4405 if (path
->slots
[0] == 0)
4411 u64 clear_start
= 0, clear_len
= 0;
4414 leaf
= path
->nodes
[0];
4415 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4416 found_type
= found_key
.type
;
4418 if (found_key
.objectid
!= ino
)
4421 if (found_type
< min_type
)
4424 item_end
= found_key
.offset
;
4425 if (found_type
== BTRFS_EXTENT_DATA_KEY
) {
4426 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4427 struct btrfs_file_extent_item
);
4428 extent_type
= btrfs_file_extent_type(leaf
, fi
);
4429 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
4431 btrfs_file_extent_num_bytes(leaf
, fi
);
4433 trace_btrfs_truncate_show_fi_regular(
4434 inode
, leaf
, fi
, found_key
.offset
);
4435 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
4436 item_end
+= btrfs_file_extent_ram_bytes(leaf
,
4439 trace_btrfs_truncate_show_fi_inline(
4440 inode
, leaf
, fi
, path
->slots
[0],
4445 if (found_type
> min_type
) {
4448 if (item_end
< new_size
)
4450 if (found_key
.offset
>= new_size
)
4456 /* FIXME, shrink the extent if the ref count is only 1 */
4457 if (found_type
!= BTRFS_EXTENT_DATA_KEY
)
4460 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
4463 clear_start
= found_key
.offset
;
4464 extent_start
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
4466 u64 orig_num_bytes
=
4467 btrfs_file_extent_num_bytes(leaf
, fi
);
4468 extent_num_bytes
= ALIGN(new_size
-
4470 fs_info
->sectorsize
);
4471 clear_start
= ALIGN(new_size
, fs_info
->sectorsize
);
4472 btrfs_set_file_extent_num_bytes(leaf
, fi
,
4474 num_dec
= (orig_num_bytes
-
4476 if (test_bit(BTRFS_ROOT_SHAREABLE
,
4479 inode_sub_bytes(&inode
->vfs_inode
,
4481 btrfs_mark_buffer_dirty(leaf
);
4484 btrfs_file_extent_disk_num_bytes(leaf
,
4486 extent_offset
= found_key
.offset
-
4487 btrfs_file_extent_offset(leaf
, fi
);
4489 /* FIXME blocksize != 4096 */
4490 num_dec
= btrfs_file_extent_num_bytes(leaf
, fi
);
4491 if (extent_start
!= 0) {
4493 if (test_bit(BTRFS_ROOT_SHAREABLE
,
4495 inode_sub_bytes(&inode
->vfs_inode
,
4499 clear_len
= num_dec
;
4500 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
4502 * we can't truncate inline items that have had
4506 btrfs_file_extent_encryption(leaf
, fi
) == 0 &&
4507 btrfs_file_extent_other_encoding(leaf
, fi
) == 0 &&
4508 btrfs_file_extent_compression(leaf
, fi
) == 0) {
4509 u32 size
= (u32
)(new_size
- found_key
.offset
);
4511 btrfs_set_file_extent_ram_bytes(leaf
, fi
, size
);
4512 size
= btrfs_file_extent_calc_inline_size(size
);
4513 btrfs_truncate_item(path
, size
, 1);
4514 } else if (!del_item
) {
4516 * We have to bail so the last_size is set to
4517 * just before this extent.
4519 ret
= NEED_TRUNCATE_BLOCK
;
4523 * Inline extents are special, we just treat
4524 * them as a full sector worth in the file
4525 * extent tree just for simplicity sake.
4527 clear_len
= fs_info
->sectorsize
;
4530 if (test_bit(BTRFS_ROOT_SHAREABLE
, &root
->state
))
4531 inode_sub_bytes(&inode
->vfs_inode
,
4532 item_end
+ 1 - new_size
);
4536 * We use btrfs_truncate_inode_items() to clean up log trees for
4537 * multiple fsyncs, and in this case we don't want to clear the
4538 * file extent range because it's just the log.
4540 if (root
== inode
->root
) {
4541 ret
= btrfs_inode_clear_file_extent_range(inode
,
4542 clear_start
, clear_len
);
4544 btrfs_abort_transaction(trans
, ret
);
4550 last_size
= found_key
.offset
;
4552 last_size
= new_size
;
4554 if (!pending_del_nr
) {
4555 /* no pending yet, add ourselves */
4556 pending_del_slot
= path
->slots
[0];
4558 } else if (pending_del_nr
&&
4559 path
->slots
[0] + 1 == pending_del_slot
) {
4560 /* hop on the pending chunk */
4562 pending_del_slot
= path
->slots
[0];
4569 should_throttle
= false;
4572 root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
4573 struct btrfs_ref ref
= { 0 };
4575 bytes_deleted
+= extent_num_bytes
;
4577 btrfs_init_generic_ref(&ref
, BTRFS_DROP_DELAYED_REF
,
4578 extent_start
, extent_num_bytes
, 0);
4579 ref
.real_root
= root
->root_key
.objectid
;
4580 btrfs_init_data_ref(&ref
, btrfs_header_owner(leaf
),
4581 ino
, extent_offset
);
4582 ret
= btrfs_free_extent(trans
, &ref
);
4584 btrfs_abort_transaction(trans
, ret
);
4588 if (btrfs_should_throttle_delayed_refs(trans
))
4589 should_throttle
= true;
4593 if (found_type
== BTRFS_INODE_ITEM_KEY
)
4596 if (path
->slots
[0] == 0 ||
4597 path
->slots
[0] != pending_del_slot
||
4599 if (pending_del_nr
) {
4600 ret
= btrfs_del_items(trans
, root
, path
,
4604 btrfs_abort_transaction(trans
, ret
);
4609 btrfs_release_path(path
);
4612 * We can generate a lot of delayed refs, so we need to
4613 * throttle every once and a while and make sure we're
4614 * adding enough space to keep up with the work we are
4615 * generating. Since we hold a transaction here we
4616 * can't flush, and we don't want to FLUSH_LIMIT because
4617 * we could have generated too many delayed refs to
4618 * actually allocate, so just bail if we're short and
4619 * let the normal reservation dance happen higher up.
4621 if (should_throttle
) {
4622 ret
= btrfs_delayed_refs_rsv_refill(fs_info
,
4623 BTRFS_RESERVE_NO_FLUSH
);
4635 if (ret
>= 0 && pending_del_nr
) {
4638 err
= btrfs_del_items(trans
, root
, path
, pending_del_slot
,
4641 btrfs_abort_transaction(trans
, err
);
4645 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
4646 ASSERT(last_size
>= new_size
);
4647 if (!ret
&& last_size
> new_size
)
4648 last_size
= new_size
;
4649 btrfs_inode_safe_disk_i_size_write(inode
, last_size
);
4650 unlock_extent_cached(&inode
->io_tree
, lock_start
, (u64
)-1,
4654 btrfs_free_path(path
);
4659 * btrfs_truncate_block - read, zero a chunk and write a block
4660 * @inode - inode that we're zeroing
4661 * @from - the offset to start zeroing
4662 * @len - the length to zero, 0 to zero the entire range respective to the
4664 * @front - zero up to the offset instead of from the offset on
4666 * This will find the block for the "from" offset and cow the block and zero the
4667 * part we want to zero. This is used with truncate and hole punching.
4669 int btrfs_truncate_block(struct btrfs_inode
*inode
, loff_t from
, loff_t len
,
4672 struct btrfs_fs_info
*fs_info
= inode
->root
->fs_info
;
4673 struct address_space
*mapping
= inode
->vfs_inode
.i_mapping
;
4674 struct extent_io_tree
*io_tree
= &inode
->io_tree
;
4675 struct btrfs_ordered_extent
*ordered
;
4676 struct extent_state
*cached_state
= NULL
;
4677 struct extent_changeset
*data_reserved
= NULL
;
4679 bool only_release_metadata
= false;
4680 u32 blocksize
= fs_info
->sectorsize
;
4681 pgoff_t index
= from
>> PAGE_SHIFT
;
4682 unsigned offset
= from
& (blocksize
- 1);
4684 gfp_t mask
= btrfs_alloc_write_mask(mapping
);
4685 size_t write_bytes
= blocksize
;
4690 if (IS_ALIGNED(offset
, blocksize
) &&
4691 (!len
|| IS_ALIGNED(len
, blocksize
)))
4694 block_start
= round_down(from
, blocksize
);
4695 block_end
= block_start
+ blocksize
- 1;
4697 ret
= btrfs_check_data_free_space(inode
, &data_reserved
, block_start
,
4700 if (btrfs_check_nocow_lock(inode
, block_start
, &write_bytes
) > 0) {
4701 /* For nocow case, no need to reserve data space */
4702 only_release_metadata
= true;
4707 ret
= btrfs_delalloc_reserve_metadata(inode
, blocksize
);
4709 if (!only_release_metadata
)
4710 btrfs_free_reserved_data_space(inode
, data_reserved
,
4711 block_start
, blocksize
);
4715 page
= find_or_create_page(mapping
, index
, mask
);
4717 btrfs_delalloc_release_space(inode
, data_reserved
, block_start
,
4719 btrfs_delalloc_release_extents(inode
, blocksize
);
4724 if (!PageUptodate(page
)) {
4725 ret
= btrfs_readpage(NULL
, page
);
4727 if (page
->mapping
!= mapping
) {
4732 if (!PageUptodate(page
)) {
4737 wait_on_page_writeback(page
);
4739 lock_extent_bits(io_tree
, block_start
, block_end
, &cached_state
);
4740 set_page_extent_mapped(page
);
4742 ordered
= btrfs_lookup_ordered_extent(inode
, block_start
);
4744 unlock_extent_cached(io_tree
, block_start
, block_end
,
4748 btrfs_start_ordered_extent(ordered
, 1);
4749 btrfs_put_ordered_extent(ordered
);
4753 clear_extent_bit(&inode
->io_tree
, block_start
, block_end
,
4754 EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
4755 0, 0, &cached_state
);
4757 ret
= btrfs_set_extent_delalloc(inode
, block_start
, block_end
, 0,
4760 unlock_extent_cached(io_tree
, block_start
, block_end
,
4765 if (offset
!= blocksize
) {
4767 len
= blocksize
- offset
;
4770 memset(kaddr
+ (block_start
- page_offset(page
)),
4773 memset(kaddr
+ (block_start
- page_offset(page
)) + offset
,
4775 flush_dcache_page(page
);
4778 ClearPageChecked(page
);
4779 set_page_dirty(page
);
4780 unlock_extent_cached(io_tree
, block_start
, block_end
, &cached_state
);
4782 if (only_release_metadata
)
4783 set_extent_bit(&inode
->io_tree
, block_start
, block_end
,
4784 EXTENT_NORESERVE
, 0, NULL
, NULL
, GFP_NOFS
, NULL
);
4788 if (only_release_metadata
)
4789 btrfs_delalloc_release_metadata(inode
, blocksize
, true);
4791 btrfs_delalloc_release_space(inode
, data_reserved
,
4792 block_start
, blocksize
, true);
4794 btrfs_delalloc_release_extents(inode
, blocksize
);
4798 if (only_release_metadata
)
4799 btrfs_check_nocow_unlock(inode
);
4800 extent_changeset_free(data_reserved
);
4804 static int maybe_insert_hole(struct btrfs_root
*root
, struct btrfs_inode
*inode
,
4805 u64 offset
, u64 len
)
4807 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4808 struct btrfs_trans_handle
*trans
;
4809 struct btrfs_drop_extents_args drop_args
= { 0 };
4813 * Still need to make sure the inode looks like it's been updated so
4814 * that any holes get logged if we fsync.
4816 if (btrfs_fs_incompat(fs_info
, NO_HOLES
)) {
4817 inode
->last_trans
= fs_info
->generation
;
4818 inode
->last_sub_trans
= root
->log_transid
;
4819 inode
->last_log_commit
= root
->last_log_commit
;
4824 * 1 - for the one we're dropping
4825 * 1 - for the one we're adding
4826 * 1 - for updating the inode.
4828 trans
= btrfs_start_transaction(root
, 3);
4830 return PTR_ERR(trans
);
4832 drop_args
.start
= offset
;
4833 drop_args
.end
= offset
+ len
;
4834 drop_args
.drop_cache
= true;
4836 ret
= btrfs_drop_extents(trans
, root
, inode
, &drop_args
);
4838 btrfs_abort_transaction(trans
, ret
);
4839 btrfs_end_transaction(trans
);
4843 ret
= btrfs_insert_file_extent(trans
, root
, btrfs_ino(inode
),
4844 offset
, 0, 0, len
, 0, len
, 0, 0, 0);
4846 btrfs_abort_transaction(trans
, ret
);
4848 btrfs_update_inode_bytes(inode
, 0, drop_args
.bytes_found
);
4849 btrfs_update_inode(trans
, root
, inode
);
4851 btrfs_end_transaction(trans
);
4856 * This function puts in dummy file extents for the area we're creating a hole
4857 * for. So if we are truncating this file to a larger size we need to insert
4858 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4859 * the range between oldsize and size
4861 int btrfs_cont_expand(struct btrfs_inode
*inode
, loff_t oldsize
, loff_t size
)
4863 struct btrfs_root
*root
= inode
->root
;
4864 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4865 struct extent_io_tree
*io_tree
= &inode
->io_tree
;
4866 struct extent_map
*em
= NULL
;
4867 struct extent_state
*cached_state
= NULL
;
4868 struct extent_map_tree
*em_tree
= &inode
->extent_tree
;
4869 u64 hole_start
= ALIGN(oldsize
, fs_info
->sectorsize
);
4870 u64 block_end
= ALIGN(size
, fs_info
->sectorsize
);
4877 * If our size started in the middle of a block we need to zero out the
4878 * rest of the block before we expand the i_size, otherwise we could
4879 * expose stale data.
4881 err
= btrfs_truncate_block(inode
, oldsize
, 0, 0);
4885 if (size
<= hole_start
)
4888 btrfs_lock_and_flush_ordered_range(inode
, hole_start
, block_end
- 1,
4890 cur_offset
= hole_start
;
4892 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
4893 block_end
- cur_offset
);
4899 last_byte
= min(extent_map_end(em
), block_end
);
4900 last_byte
= ALIGN(last_byte
, fs_info
->sectorsize
);
4901 hole_size
= last_byte
- cur_offset
;
4903 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)) {
4904 struct extent_map
*hole_em
;
4906 err
= maybe_insert_hole(root
, inode
, cur_offset
,
4911 err
= btrfs_inode_set_file_extent_range(inode
,
4912 cur_offset
, hole_size
);
4916 btrfs_drop_extent_cache(inode
, cur_offset
,
4917 cur_offset
+ hole_size
- 1, 0);
4918 hole_em
= alloc_extent_map();
4920 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4921 &inode
->runtime_flags
);
4924 hole_em
->start
= cur_offset
;
4925 hole_em
->len
= hole_size
;
4926 hole_em
->orig_start
= cur_offset
;
4928 hole_em
->block_start
= EXTENT_MAP_HOLE
;
4929 hole_em
->block_len
= 0;
4930 hole_em
->orig_block_len
= 0;
4931 hole_em
->ram_bytes
= hole_size
;
4932 hole_em
->compress_type
= BTRFS_COMPRESS_NONE
;
4933 hole_em
->generation
= fs_info
->generation
;
4936 write_lock(&em_tree
->lock
);
4937 err
= add_extent_mapping(em_tree
, hole_em
, 1);
4938 write_unlock(&em_tree
->lock
);
4941 btrfs_drop_extent_cache(inode
, cur_offset
,
4945 free_extent_map(hole_em
);
4947 err
= btrfs_inode_set_file_extent_range(inode
,
4948 cur_offset
, hole_size
);
4953 free_extent_map(em
);
4955 cur_offset
= last_byte
;
4956 if (cur_offset
>= block_end
)
4959 free_extent_map(em
);
4960 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1, &cached_state
);
4964 static int btrfs_setsize(struct inode
*inode
, struct iattr
*attr
)
4966 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4967 struct btrfs_trans_handle
*trans
;
4968 loff_t oldsize
= i_size_read(inode
);
4969 loff_t newsize
= attr
->ia_size
;
4970 int mask
= attr
->ia_valid
;
4974 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4975 * special case where we need to update the times despite not having
4976 * these flags set. For all other operations the VFS set these flags
4977 * explicitly if it wants a timestamp update.
4979 if (newsize
!= oldsize
) {
4980 inode_inc_iversion(inode
);
4981 if (!(mask
& (ATTR_CTIME
| ATTR_MTIME
)))
4982 inode
->i_ctime
= inode
->i_mtime
=
4983 current_time(inode
);
4986 if (newsize
> oldsize
) {
4988 * Don't do an expanding truncate while snapshotting is ongoing.
4989 * This is to ensure the snapshot captures a fully consistent
4990 * state of this file - if the snapshot captures this expanding
4991 * truncation, it must capture all writes that happened before
4994 btrfs_drew_write_lock(&root
->snapshot_lock
);
4995 ret
= btrfs_cont_expand(BTRFS_I(inode
), oldsize
, newsize
);
4997 btrfs_drew_write_unlock(&root
->snapshot_lock
);
5001 trans
= btrfs_start_transaction(root
, 1);
5002 if (IS_ERR(trans
)) {
5003 btrfs_drew_write_unlock(&root
->snapshot_lock
);
5004 return PTR_ERR(trans
);
5007 i_size_write(inode
, newsize
);
5008 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode
), 0);
5009 pagecache_isize_extended(inode
, oldsize
, newsize
);
5010 ret
= btrfs_update_inode(trans
, root
, BTRFS_I(inode
));
5011 btrfs_drew_write_unlock(&root
->snapshot_lock
);
5012 btrfs_end_transaction(trans
);
5016 * We're truncating a file that used to have good data down to
5017 * zero. Make sure any new writes to the file get on disk
5021 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE
,
5022 &BTRFS_I(inode
)->runtime_flags
);
5024 truncate_setsize(inode
, newsize
);
5026 inode_dio_wait(inode
);
5028 ret
= btrfs_truncate(inode
, newsize
== oldsize
);
5029 if (ret
&& inode
->i_nlink
) {
5033 * Truncate failed, so fix up the in-memory size. We
5034 * adjusted disk_i_size down as we removed extents, so
5035 * wait for disk_i_size to be stable and then update the
5036 * in-memory size to match.
5038 err
= btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
5041 i_size_write(inode
, BTRFS_I(inode
)->disk_i_size
);
5048 static int btrfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
5050 struct inode
*inode
= d_inode(dentry
);
5051 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5054 if (btrfs_root_readonly(root
))
5057 err
= setattr_prepare(dentry
, attr
);
5061 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
5062 err
= btrfs_setsize(inode
, attr
);
5067 if (attr
->ia_valid
) {
5068 setattr_copy(inode
, attr
);
5069 inode_inc_iversion(inode
);
5070 err
= btrfs_dirty_inode(inode
);
5072 if (!err
&& attr
->ia_valid
& ATTR_MODE
)
5073 err
= posix_acl_chmod(inode
, inode
->i_mode
);
5080 * While truncating the inode pages during eviction, we get the VFS calling
5081 * btrfs_invalidatepage() against each page of the inode. This is slow because
5082 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5083 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5084 * extent_state structures over and over, wasting lots of time.
5086 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5087 * those expensive operations on a per page basis and do only the ordered io
5088 * finishing, while we release here the extent_map and extent_state structures,
5089 * without the excessive merging and splitting.
5091 static void evict_inode_truncate_pages(struct inode
*inode
)
5093 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
5094 struct extent_map_tree
*map_tree
= &BTRFS_I(inode
)->extent_tree
;
5095 struct rb_node
*node
;
5097 ASSERT(inode
->i_state
& I_FREEING
);
5098 truncate_inode_pages_final(&inode
->i_data
);
5100 write_lock(&map_tree
->lock
);
5101 while (!RB_EMPTY_ROOT(&map_tree
->map
.rb_root
)) {
5102 struct extent_map
*em
;
5104 node
= rb_first_cached(&map_tree
->map
);
5105 em
= rb_entry(node
, struct extent_map
, rb_node
);
5106 clear_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
5107 clear_bit(EXTENT_FLAG_LOGGING
, &em
->flags
);
5108 remove_extent_mapping(map_tree
, em
);
5109 free_extent_map(em
);
5110 if (need_resched()) {
5111 write_unlock(&map_tree
->lock
);
5113 write_lock(&map_tree
->lock
);
5116 write_unlock(&map_tree
->lock
);
5119 * Keep looping until we have no more ranges in the io tree.
5120 * We can have ongoing bios started by readahead that have
5121 * their endio callback (extent_io.c:end_bio_extent_readpage)
5122 * still in progress (unlocked the pages in the bio but did not yet
5123 * unlocked the ranges in the io tree). Therefore this means some
5124 * ranges can still be locked and eviction started because before
5125 * submitting those bios, which are executed by a separate task (work
5126 * queue kthread), inode references (inode->i_count) were not taken
5127 * (which would be dropped in the end io callback of each bio).
5128 * Therefore here we effectively end up waiting for those bios and
5129 * anyone else holding locked ranges without having bumped the inode's
5130 * reference count - if we don't do it, when they access the inode's
5131 * io_tree to unlock a range it may be too late, leading to an
5132 * use-after-free issue.
5134 spin_lock(&io_tree
->lock
);
5135 while (!RB_EMPTY_ROOT(&io_tree
->state
)) {
5136 struct extent_state
*state
;
5137 struct extent_state
*cached_state
= NULL
;
5140 unsigned state_flags
;
5142 node
= rb_first(&io_tree
->state
);
5143 state
= rb_entry(node
, struct extent_state
, rb_node
);
5144 start
= state
->start
;
5146 state_flags
= state
->state
;
5147 spin_unlock(&io_tree
->lock
);
5149 lock_extent_bits(io_tree
, start
, end
, &cached_state
);
5152 * If still has DELALLOC flag, the extent didn't reach disk,
5153 * and its reserved space won't be freed by delayed_ref.
5154 * So we need to free its reserved space here.
5155 * (Refer to comment in btrfs_invalidatepage, case 2)
5157 * Note, end is the bytenr of last byte, so we need + 1 here.
5159 if (state_flags
& EXTENT_DELALLOC
)
5160 btrfs_qgroup_free_data(BTRFS_I(inode
), NULL
, start
,
5163 clear_extent_bit(io_tree
, start
, end
,
5164 EXTENT_LOCKED
| EXTENT_DELALLOC
|
5165 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
, 1, 1,
5169 spin_lock(&io_tree
->lock
);
5171 spin_unlock(&io_tree
->lock
);
5174 static struct btrfs_trans_handle
*evict_refill_and_join(struct btrfs_root
*root
,
5175 struct btrfs_block_rsv
*rsv
)
5177 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5178 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
5179 struct btrfs_trans_handle
*trans
;
5180 u64 delayed_refs_extra
= btrfs_calc_insert_metadata_size(fs_info
, 1);
5184 * Eviction should be taking place at some place safe because of our
5185 * delayed iputs. However the normal flushing code will run delayed
5186 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5188 * We reserve the delayed_refs_extra here again because we can't use
5189 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5190 * above. We reserve our extra bit here because we generate a ton of
5191 * delayed refs activity by truncating.
5193 * If we cannot make our reservation we'll attempt to steal from the
5194 * global reserve, because we really want to be able to free up space.
5196 ret
= btrfs_block_rsv_refill(root
, rsv
, rsv
->size
+ delayed_refs_extra
,
5197 BTRFS_RESERVE_FLUSH_EVICT
);
5200 * Try to steal from the global reserve if there is space for
5203 if (btrfs_check_space_for_delayed_refs(fs_info
) ||
5204 btrfs_block_rsv_migrate(global_rsv
, rsv
, rsv
->size
, 0)) {
5206 "could not allocate space for delete; will truncate on mount");
5207 return ERR_PTR(-ENOSPC
);
5209 delayed_refs_extra
= 0;
5212 trans
= btrfs_join_transaction(root
);
5216 if (delayed_refs_extra
) {
5217 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
5218 trans
->bytes_reserved
= delayed_refs_extra
;
5219 btrfs_block_rsv_migrate(rsv
, trans
->block_rsv
,
5220 delayed_refs_extra
, 1);
5225 void btrfs_evict_inode(struct inode
*inode
)
5227 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5228 struct btrfs_trans_handle
*trans
;
5229 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5230 struct btrfs_block_rsv
*rsv
;
5233 trace_btrfs_inode_evict(inode
);
5240 evict_inode_truncate_pages(inode
);
5242 if (inode
->i_nlink
&&
5243 ((btrfs_root_refs(&root
->root_item
) != 0 &&
5244 root
->root_key
.objectid
!= BTRFS_ROOT_TREE_OBJECTID
) ||
5245 btrfs_is_free_space_inode(BTRFS_I(inode
))))
5248 if (is_bad_inode(inode
))
5251 btrfs_free_io_failure_record(BTRFS_I(inode
), 0, (u64
)-1);
5253 if (test_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
))
5256 if (inode
->i_nlink
> 0) {
5257 BUG_ON(btrfs_root_refs(&root
->root_item
) != 0 &&
5258 root
->root_key
.objectid
!= BTRFS_ROOT_TREE_OBJECTID
);
5262 ret
= btrfs_commit_inode_delayed_inode(BTRFS_I(inode
));
5266 rsv
= btrfs_alloc_block_rsv(fs_info
, BTRFS_BLOCK_RSV_TEMP
);
5269 rsv
->size
= btrfs_calc_metadata_size(fs_info
, 1);
5272 btrfs_i_size_write(BTRFS_I(inode
), 0);
5275 trans
= evict_refill_and_join(root
, rsv
);
5279 trans
->block_rsv
= rsv
;
5281 ret
= btrfs_truncate_inode_items(trans
, root
, BTRFS_I(inode
),
5283 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
5284 btrfs_end_transaction(trans
);
5285 btrfs_btree_balance_dirty(fs_info
);
5286 if (ret
&& ret
!= -ENOSPC
&& ret
!= -EAGAIN
)
5293 * Errors here aren't a big deal, it just means we leave orphan items in
5294 * the tree. They will be cleaned up on the next mount. If the inode
5295 * number gets reused, cleanup deletes the orphan item without doing
5296 * anything, and unlink reuses the existing orphan item.
5298 * If it turns out that we are dropping too many of these, we might want
5299 * to add a mechanism for retrying these after a commit.
5301 trans
= evict_refill_and_join(root
, rsv
);
5302 if (!IS_ERR(trans
)) {
5303 trans
->block_rsv
= rsv
;
5304 btrfs_orphan_del(trans
, BTRFS_I(inode
));
5305 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
5306 btrfs_end_transaction(trans
);
5310 btrfs_free_block_rsv(fs_info
, rsv
);
5313 * If we didn't successfully delete, the orphan item will still be in
5314 * the tree and we'll retry on the next mount. Again, we might also want
5315 * to retry these periodically in the future.
5317 btrfs_remove_delayed_node(BTRFS_I(inode
));
5322 * Return the key found in the dir entry in the location pointer, fill @type
5323 * with BTRFS_FT_*, and return 0.
5325 * If no dir entries were found, returns -ENOENT.
5326 * If found a corrupted location in dir entry, returns -EUCLEAN.
5328 static int btrfs_inode_by_name(struct inode
*dir
, struct dentry
*dentry
,
5329 struct btrfs_key
*location
, u8
*type
)
5331 const char *name
= dentry
->d_name
.name
;
5332 int namelen
= dentry
->d_name
.len
;
5333 struct btrfs_dir_item
*di
;
5334 struct btrfs_path
*path
;
5335 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5338 path
= btrfs_alloc_path();
5342 di
= btrfs_lookup_dir_item(NULL
, root
, path
, btrfs_ino(BTRFS_I(dir
)),
5344 if (IS_ERR_OR_NULL(di
)) {
5345 ret
= di
? PTR_ERR(di
) : -ENOENT
;
5349 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, location
);
5350 if (location
->type
!= BTRFS_INODE_ITEM_KEY
&&
5351 location
->type
!= BTRFS_ROOT_ITEM_KEY
) {
5353 btrfs_warn(root
->fs_info
,
5354 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5355 __func__
, name
, btrfs_ino(BTRFS_I(dir
)),
5356 location
->objectid
, location
->type
, location
->offset
);
5359 *type
= btrfs_dir_type(path
->nodes
[0], di
);
5361 btrfs_free_path(path
);
5366 * when we hit a tree root in a directory, the btrfs part of the inode
5367 * needs to be changed to reflect the root directory of the tree root. This
5368 * is kind of like crossing a mount point.
5370 static int fixup_tree_root_location(struct btrfs_fs_info
*fs_info
,
5372 struct dentry
*dentry
,
5373 struct btrfs_key
*location
,
5374 struct btrfs_root
**sub_root
)
5376 struct btrfs_path
*path
;
5377 struct btrfs_root
*new_root
;
5378 struct btrfs_root_ref
*ref
;
5379 struct extent_buffer
*leaf
;
5380 struct btrfs_key key
;
5384 path
= btrfs_alloc_path();
5391 key
.objectid
= BTRFS_I(dir
)->root
->root_key
.objectid
;
5392 key
.type
= BTRFS_ROOT_REF_KEY
;
5393 key
.offset
= location
->objectid
;
5395 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
5402 leaf
= path
->nodes
[0];
5403 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
5404 if (btrfs_root_ref_dirid(leaf
, ref
) != btrfs_ino(BTRFS_I(dir
)) ||
5405 btrfs_root_ref_name_len(leaf
, ref
) != dentry
->d_name
.len
)
5408 ret
= memcmp_extent_buffer(leaf
, dentry
->d_name
.name
,
5409 (unsigned long)(ref
+ 1),
5410 dentry
->d_name
.len
);
5414 btrfs_release_path(path
);
5416 new_root
= btrfs_get_fs_root(fs_info
, location
->objectid
, true);
5417 if (IS_ERR(new_root
)) {
5418 err
= PTR_ERR(new_root
);
5422 *sub_root
= new_root
;
5423 location
->objectid
= btrfs_root_dirid(&new_root
->root_item
);
5424 location
->type
= BTRFS_INODE_ITEM_KEY
;
5425 location
->offset
= 0;
5428 btrfs_free_path(path
);
5432 static void inode_tree_add(struct inode
*inode
)
5434 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5435 struct btrfs_inode
*entry
;
5437 struct rb_node
*parent
;
5438 struct rb_node
*new = &BTRFS_I(inode
)->rb_node
;
5439 u64 ino
= btrfs_ino(BTRFS_I(inode
));
5441 if (inode_unhashed(inode
))
5444 spin_lock(&root
->inode_lock
);
5445 p
= &root
->inode_tree
.rb_node
;
5448 entry
= rb_entry(parent
, struct btrfs_inode
, rb_node
);
5450 if (ino
< btrfs_ino(entry
))
5451 p
= &parent
->rb_left
;
5452 else if (ino
> btrfs_ino(entry
))
5453 p
= &parent
->rb_right
;
5455 WARN_ON(!(entry
->vfs_inode
.i_state
&
5456 (I_WILL_FREE
| I_FREEING
)));
5457 rb_replace_node(parent
, new, &root
->inode_tree
);
5458 RB_CLEAR_NODE(parent
);
5459 spin_unlock(&root
->inode_lock
);
5463 rb_link_node(new, parent
, p
);
5464 rb_insert_color(new, &root
->inode_tree
);
5465 spin_unlock(&root
->inode_lock
);
5468 static void inode_tree_del(struct btrfs_inode
*inode
)
5470 struct btrfs_root
*root
= inode
->root
;
5473 spin_lock(&root
->inode_lock
);
5474 if (!RB_EMPTY_NODE(&inode
->rb_node
)) {
5475 rb_erase(&inode
->rb_node
, &root
->inode_tree
);
5476 RB_CLEAR_NODE(&inode
->rb_node
);
5477 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
5479 spin_unlock(&root
->inode_lock
);
5481 if (empty
&& btrfs_root_refs(&root
->root_item
) == 0) {
5482 spin_lock(&root
->inode_lock
);
5483 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
5484 spin_unlock(&root
->inode_lock
);
5486 btrfs_add_dead_root(root
);
5491 static int btrfs_init_locked_inode(struct inode
*inode
, void *p
)
5493 struct btrfs_iget_args
*args
= p
;
5495 inode
->i_ino
= args
->ino
;
5496 BTRFS_I(inode
)->location
.objectid
= args
->ino
;
5497 BTRFS_I(inode
)->location
.type
= BTRFS_INODE_ITEM_KEY
;
5498 BTRFS_I(inode
)->location
.offset
= 0;
5499 BTRFS_I(inode
)->root
= btrfs_grab_root(args
->root
);
5500 BUG_ON(args
->root
&& !BTRFS_I(inode
)->root
);
5504 static int btrfs_find_actor(struct inode
*inode
, void *opaque
)
5506 struct btrfs_iget_args
*args
= opaque
;
5508 return args
->ino
== BTRFS_I(inode
)->location
.objectid
&&
5509 args
->root
== BTRFS_I(inode
)->root
;
5512 static struct inode
*btrfs_iget_locked(struct super_block
*s
, u64 ino
,
5513 struct btrfs_root
*root
)
5515 struct inode
*inode
;
5516 struct btrfs_iget_args args
;
5517 unsigned long hashval
= btrfs_inode_hash(ino
, root
);
5522 inode
= iget5_locked(s
, hashval
, btrfs_find_actor
,
5523 btrfs_init_locked_inode
,
5529 * Get an inode object given its inode number and corresponding root.
5530 * Path can be preallocated to prevent recursing back to iget through
5531 * allocator. NULL is also valid but may require an additional allocation
5534 struct inode
*btrfs_iget_path(struct super_block
*s
, u64 ino
,
5535 struct btrfs_root
*root
, struct btrfs_path
*path
)
5537 struct inode
*inode
;
5539 inode
= btrfs_iget_locked(s
, ino
, root
);
5541 return ERR_PTR(-ENOMEM
);
5543 if (inode
->i_state
& I_NEW
) {
5546 ret
= btrfs_read_locked_inode(inode
, path
);
5548 inode_tree_add(inode
);
5549 unlock_new_inode(inode
);
5553 * ret > 0 can come from btrfs_search_slot called by
5554 * btrfs_read_locked_inode, this means the inode item
5559 inode
= ERR_PTR(ret
);
5566 struct inode
*btrfs_iget(struct super_block
*s
, u64 ino
, struct btrfs_root
*root
)
5568 return btrfs_iget_path(s
, ino
, root
, NULL
);
5571 static struct inode
*new_simple_dir(struct super_block
*s
,
5572 struct btrfs_key
*key
,
5573 struct btrfs_root
*root
)
5575 struct inode
*inode
= new_inode(s
);
5578 return ERR_PTR(-ENOMEM
);
5580 BTRFS_I(inode
)->root
= btrfs_grab_root(root
);
5581 memcpy(&BTRFS_I(inode
)->location
, key
, sizeof(*key
));
5582 set_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
);
5584 inode
->i_ino
= BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
;
5586 * We only need lookup, the rest is read-only and there's no inode
5587 * associated with the dentry
5589 inode
->i_op
= &simple_dir_inode_operations
;
5590 inode
->i_opflags
&= ~IOP_XATTR
;
5591 inode
->i_fop
= &simple_dir_operations
;
5592 inode
->i_mode
= S_IFDIR
| S_IRUGO
| S_IWUSR
| S_IXUGO
;
5593 inode
->i_mtime
= current_time(inode
);
5594 inode
->i_atime
= inode
->i_mtime
;
5595 inode
->i_ctime
= inode
->i_mtime
;
5596 BTRFS_I(inode
)->i_otime
= inode
->i_mtime
;
5601 static inline u8
btrfs_inode_type(struct inode
*inode
)
5604 * Compile-time asserts that generic FT_* types still match
5607 BUILD_BUG_ON(BTRFS_FT_UNKNOWN
!= FT_UNKNOWN
);
5608 BUILD_BUG_ON(BTRFS_FT_REG_FILE
!= FT_REG_FILE
);
5609 BUILD_BUG_ON(BTRFS_FT_DIR
!= FT_DIR
);
5610 BUILD_BUG_ON(BTRFS_FT_CHRDEV
!= FT_CHRDEV
);
5611 BUILD_BUG_ON(BTRFS_FT_BLKDEV
!= FT_BLKDEV
);
5612 BUILD_BUG_ON(BTRFS_FT_FIFO
!= FT_FIFO
);
5613 BUILD_BUG_ON(BTRFS_FT_SOCK
!= FT_SOCK
);
5614 BUILD_BUG_ON(BTRFS_FT_SYMLINK
!= FT_SYMLINK
);
5616 return fs_umode_to_ftype(inode
->i_mode
);
5619 struct inode
*btrfs_lookup_dentry(struct inode
*dir
, struct dentry
*dentry
)
5621 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
5622 struct inode
*inode
;
5623 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5624 struct btrfs_root
*sub_root
= root
;
5625 struct btrfs_key location
;
5629 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
5630 return ERR_PTR(-ENAMETOOLONG
);
5632 ret
= btrfs_inode_by_name(dir
, dentry
, &location
, &di_type
);
5634 return ERR_PTR(ret
);
5636 if (location
.type
== BTRFS_INODE_ITEM_KEY
) {
5637 inode
= btrfs_iget(dir
->i_sb
, location
.objectid
, root
);
5641 /* Do extra check against inode mode with di_type */
5642 if (btrfs_inode_type(inode
) != di_type
) {
5644 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5645 inode
->i_mode
, btrfs_inode_type(inode
),
5648 return ERR_PTR(-EUCLEAN
);
5653 ret
= fixup_tree_root_location(fs_info
, dir
, dentry
,
5654 &location
, &sub_root
);
5657 inode
= ERR_PTR(ret
);
5659 inode
= new_simple_dir(dir
->i_sb
, &location
, sub_root
);
5661 inode
= btrfs_iget(dir
->i_sb
, location
.objectid
, sub_root
);
5663 if (root
!= sub_root
)
5664 btrfs_put_root(sub_root
);
5666 if (!IS_ERR(inode
) && root
!= sub_root
) {
5667 down_read(&fs_info
->cleanup_work_sem
);
5668 if (!sb_rdonly(inode
->i_sb
))
5669 ret
= btrfs_orphan_cleanup(sub_root
);
5670 up_read(&fs_info
->cleanup_work_sem
);
5673 inode
= ERR_PTR(ret
);
5680 static int btrfs_dentry_delete(const struct dentry
*dentry
)
5682 struct btrfs_root
*root
;
5683 struct inode
*inode
= d_inode(dentry
);
5685 if (!inode
&& !IS_ROOT(dentry
))
5686 inode
= d_inode(dentry
->d_parent
);
5689 root
= BTRFS_I(inode
)->root
;
5690 if (btrfs_root_refs(&root
->root_item
) == 0)
5693 if (btrfs_ino(BTRFS_I(inode
)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
5699 static struct dentry
*btrfs_lookup(struct inode
*dir
, struct dentry
*dentry
,
5702 struct inode
*inode
= btrfs_lookup_dentry(dir
, dentry
);
5704 if (inode
== ERR_PTR(-ENOENT
))
5706 return d_splice_alias(inode
, dentry
);
5710 * All this infrastructure exists because dir_emit can fault, and we are holding
5711 * the tree lock when doing readdir. For now just allocate a buffer and copy
5712 * our information into that, and then dir_emit from the buffer. This is
5713 * similar to what NFS does, only we don't keep the buffer around in pagecache
5714 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5715 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5718 static int btrfs_opendir(struct inode
*inode
, struct file
*file
)
5720 struct btrfs_file_private
*private;
5722 private = kzalloc(sizeof(struct btrfs_file_private
), GFP_KERNEL
);
5725 private->filldir_buf
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
5726 if (!private->filldir_buf
) {
5730 file
->private_data
= private;
5741 static int btrfs_filldir(void *addr
, int entries
, struct dir_context
*ctx
)
5744 struct dir_entry
*entry
= addr
;
5745 char *name
= (char *)(entry
+ 1);
5747 ctx
->pos
= get_unaligned(&entry
->offset
);
5748 if (!dir_emit(ctx
, name
, get_unaligned(&entry
->name_len
),
5749 get_unaligned(&entry
->ino
),
5750 get_unaligned(&entry
->type
)))
5752 addr
+= sizeof(struct dir_entry
) +
5753 get_unaligned(&entry
->name_len
);
5759 static int btrfs_real_readdir(struct file
*file
, struct dir_context
*ctx
)
5761 struct inode
*inode
= file_inode(file
);
5762 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5763 struct btrfs_file_private
*private = file
->private_data
;
5764 struct btrfs_dir_item
*di
;
5765 struct btrfs_key key
;
5766 struct btrfs_key found_key
;
5767 struct btrfs_path
*path
;
5769 struct list_head ins_list
;
5770 struct list_head del_list
;
5772 struct extent_buffer
*leaf
;
5779 struct btrfs_key location
;
5781 if (!dir_emit_dots(file
, ctx
))
5784 path
= btrfs_alloc_path();
5788 addr
= private->filldir_buf
;
5789 path
->reada
= READA_FORWARD
;
5791 INIT_LIST_HEAD(&ins_list
);
5792 INIT_LIST_HEAD(&del_list
);
5793 put
= btrfs_readdir_get_delayed_items(inode
, &ins_list
, &del_list
);
5796 key
.type
= BTRFS_DIR_INDEX_KEY
;
5797 key
.offset
= ctx
->pos
;
5798 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
5800 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5805 struct dir_entry
*entry
;
5807 leaf
= path
->nodes
[0];
5808 slot
= path
->slots
[0];
5809 if (slot
>= btrfs_header_nritems(leaf
)) {
5810 ret
= btrfs_next_leaf(root
, path
);
5818 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
5820 if (found_key
.objectid
!= key
.objectid
)
5822 if (found_key
.type
!= BTRFS_DIR_INDEX_KEY
)
5824 if (found_key
.offset
< ctx
->pos
)
5826 if (btrfs_should_delete_dir_index(&del_list
, found_key
.offset
))
5828 di
= btrfs_item_ptr(leaf
, slot
, struct btrfs_dir_item
);
5829 name_len
= btrfs_dir_name_len(leaf
, di
);
5830 if ((total_len
+ sizeof(struct dir_entry
) + name_len
) >=
5832 btrfs_release_path(path
);
5833 ret
= btrfs_filldir(private->filldir_buf
, entries
, ctx
);
5836 addr
= private->filldir_buf
;
5843 put_unaligned(name_len
, &entry
->name_len
);
5844 name_ptr
= (char *)(entry
+ 1);
5845 read_extent_buffer(leaf
, name_ptr
, (unsigned long)(di
+ 1),
5847 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf
, di
)),
5849 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
5850 put_unaligned(location
.objectid
, &entry
->ino
);
5851 put_unaligned(found_key
.offset
, &entry
->offset
);
5853 addr
+= sizeof(struct dir_entry
) + name_len
;
5854 total_len
+= sizeof(struct dir_entry
) + name_len
;
5858 btrfs_release_path(path
);
5860 ret
= btrfs_filldir(private->filldir_buf
, entries
, ctx
);
5864 ret
= btrfs_readdir_delayed_dir_index(ctx
, &ins_list
);
5869 * Stop new entries from being returned after we return the last
5872 * New directory entries are assigned a strictly increasing
5873 * offset. This means that new entries created during readdir
5874 * are *guaranteed* to be seen in the future by that readdir.
5875 * This has broken buggy programs which operate on names as
5876 * they're returned by readdir. Until we re-use freed offsets
5877 * we have this hack to stop new entries from being returned
5878 * under the assumption that they'll never reach this huge
5881 * This is being careful not to overflow 32bit loff_t unless the
5882 * last entry requires it because doing so has broken 32bit apps
5885 if (ctx
->pos
>= INT_MAX
)
5886 ctx
->pos
= LLONG_MAX
;
5893 btrfs_readdir_put_delayed_items(inode
, &ins_list
, &del_list
);
5894 btrfs_free_path(path
);
5899 * This is somewhat expensive, updating the tree every time the
5900 * inode changes. But, it is most likely to find the inode in cache.
5901 * FIXME, needs more benchmarking...there are no reasons other than performance
5902 * to keep or drop this code.
5904 static int btrfs_dirty_inode(struct inode
*inode
)
5906 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5907 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5908 struct btrfs_trans_handle
*trans
;
5911 if (test_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
))
5914 trans
= btrfs_join_transaction(root
);
5916 return PTR_ERR(trans
);
5918 ret
= btrfs_update_inode(trans
, root
, BTRFS_I(inode
));
5919 if (ret
&& ret
== -ENOSPC
) {
5920 /* whoops, lets try again with the full transaction */
5921 btrfs_end_transaction(trans
);
5922 trans
= btrfs_start_transaction(root
, 1);
5924 return PTR_ERR(trans
);
5926 ret
= btrfs_update_inode(trans
, root
, BTRFS_I(inode
));
5928 btrfs_end_transaction(trans
);
5929 if (BTRFS_I(inode
)->delayed_node
)
5930 btrfs_balance_delayed_items(fs_info
);
5936 * This is a copy of file_update_time. We need this so we can return error on
5937 * ENOSPC for updating the inode in the case of file write and mmap writes.
5939 static int btrfs_update_time(struct inode
*inode
, struct timespec64
*now
,
5942 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5943 bool dirty
= flags
& ~S_VERSION
;
5945 if (btrfs_root_readonly(root
))
5948 if (flags
& S_VERSION
)
5949 dirty
|= inode_maybe_inc_iversion(inode
, dirty
);
5950 if (flags
& S_CTIME
)
5951 inode
->i_ctime
= *now
;
5952 if (flags
& S_MTIME
)
5953 inode
->i_mtime
= *now
;
5954 if (flags
& S_ATIME
)
5955 inode
->i_atime
= *now
;
5956 return dirty
? btrfs_dirty_inode(inode
) : 0;
5960 * find the highest existing sequence number in a directory
5961 * and then set the in-memory index_cnt variable to reflect
5962 * free sequence numbers
5964 static int btrfs_set_inode_index_count(struct btrfs_inode
*inode
)
5966 struct btrfs_root
*root
= inode
->root
;
5967 struct btrfs_key key
, found_key
;
5968 struct btrfs_path
*path
;
5969 struct extent_buffer
*leaf
;
5972 key
.objectid
= btrfs_ino(inode
);
5973 key
.type
= BTRFS_DIR_INDEX_KEY
;
5974 key
.offset
= (u64
)-1;
5976 path
= btrfs_alloc_path();
5980 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5983 /* FIXME: we should be able to handle this */
5989 * MAGIC NUMBER EXPLANATION:
5990 * since we search a directory based on f_pos we have to start at 2
5991 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5992 * else has to start at 2
5994 if (path
->slots
[0] == 0) {
5995 inode
->index_cnt
= 2;
6001 leaf
= path
->nodes
[0];
6002 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6004 if (found_key
.objectid
!= btrfs_ino(inode
) ||
6005 found_key
.type
!= BTRFS_DIR_INDEX_KEY
) {
6006 inode
->index_cnt
= 2;
6010 inode
->index_cnt
= found_key
.offset
+ 1;
6012 btrfs_free_path(path
);
6017 * helper to find a free sequence number in a given directory. This current
6018 * code is very simple, later versions will do smarter things in the btree
6020 int btrfs_set_inode_index(struct btrfs_inode
*dir
, u64
*index
)
6024 if (dir
->index_cnt
== (u64
)-1) {
6025 ret
= btrfs_inode_delayed_dir_index_count(dir
);
6027 ret
= btrfs_set_inode_index_count(dir
);
6033 *index
= dir
->index_cnt
;
6039 static int btrfs_insert_inode_locked(struct inode
*inode
)
6041 struct btrfs_iget_args args
;
6043 args
.ino
= BTRFS_I(inode
)->location
.objectid
;
6044 args
.root
= BTRFS_I(inode
)->root
;
6046 return insert_inode_locked4(inode
,
6047 btrfs_inode_hash(inode
->i_ino
, BTRFS_I(inode
)->root
),
6048 btrfs_find_actor
, &args
);
6052 * Inherit flags from the parent inode.
6054 * Currently only the compression flags and the cow flags are inherited.
6056 static void btrfs_inherit_iflags(struct inode
*inode
, struct inode
*dir
)
6063 flags
= BTRFS_I(dir
)->flags
;
6065 if (flags
& BTRFS_INODE_NOCOMPRESS
) {
6066 BTRFS_I(inode
)->flags
&= ~BTRFS_INODE_COMPRESS
;
6067 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
6068 } else if (flags
& BTRFS_INODE_COMPRESS
) {
6069 BTRFS_I(inode
)->flags
&= ~BTRFS_INODE_NOCOMPRESS
;
6070 BTRFS_I(inode
)->flags
|= BTRFS_INODE_COMPRESS
;
6073 if (flags
& BTRFS_INODE_NODATACOW
) {
6074 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
;
6075 if (S_ISREG(inode
->i_mode
))
6076 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
6079 btrfs_sync_inode_flags_to_i_flags(inode
);
6082 static struct inode
*btrfs_new_inode(struct btrfs_trans_handle
*trans
,
6083 struct btrfs_root
*root
,
6085 const char *name
, int name_len
,
6086 u64 ref_objectid
, u64 objectid
,
6087 umode_t mode
, u64
*index
)
6089 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
6090 struct inode
*inode
;
6091 struct btrfs_inode_item
*inode_item
;
6092 struct btrfs_key
*location
;
6093 struct btrfs_path
*path
;
6094 struct btrfs_inode_ref
*ref
;
6095 struct btrfs_key key
[2];
6097 int nitems
= name
? 2 : 1;
6099 unsigned int nofs_flag
;
6102 path
= btrfs_alloc_path();
6104 return ERR_PTR(-ENOMEM
);
6106 nofs_flag
= memalloc_nofs_save();
6107 inode
= new_inode(fs_info
->sb
);
6108 memalloc_nofs_restore(nofs_flag
);
6110 btrfs_free_path(path
);
6111 return ERR_PTR(-ENOMEM
);
6115 * O_TMPFILE, set link count to 0, so that after this point,
6116 * we fill in an inode item with the correct link count.
6119 set_nlink(inode
, 0);
6122 * we have to initialize this early, so we can reclaim the inode
6123 * number if we fail afterwards in this function.
6125 inode
->i_ino
= objectid
;
6128 trace_btrfs_inode_request(dir
);
6130 ret
= btrfs_set_inode_index(BTRFS_I(dir
), index
);
6132 btrfs_free_path(path
);
6134 return ERR_PTR(ret
);
6140 * index_cnt is ignored for everything but a dir,
6141 * btrfs_set_inode_index_count has an explanation for the magic
6144 BTRFS_I(inode
)->index_cnt
= 2;
6145 BTRFS_I(inode
)->dir_index
= *index
;
6146 BTRFS_I(inode
)->root
= btrfs_grab_root(root
);
6147 BTRFS_I(inode
)->generation
= trans
->transid
;
6148 inode
->i_generation
= BTRFS_I(inode
)->generation
;
6151 * We could have gotten an inode number from somebody who was fsynced
6152 * and then removed in this same transaction, so let's just set full
6153 * sync since it will be a full sync anyway and this will blow away the
6154 * old info in the log.
6156 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
6158 key
[0].objectid
= objectid
;
6159 key
[0].type
= BTRFS_INODE_ITEM_KEY
;
6162 sizes
[0] = sizeof(struct btrfs_inode_item
);
6166 * Start new inodes with an inode_ref. This is slightly more
6167 * efficient for small numbers of hard links since they will
6168 * be packed into one item. Extended refs will kick in if we
6169 * add more hard links than can fit in the ref item.
6171 key
[1].objectid
= objectid
;
6172 key
[1].type
= BTRFS_INODE_REF_KEY
;
6173 key
[1].offset
= ref_objectid
;
6175 sizes
[1] = name_len
+ sizeof(*ref
);
6178 location
= &BTRFS_I(inode
)->location
;
6179 location
->objectid
= objectid
;
6180 location
->offset
= 0;
6181 location
->type
= BTRFS_INODE_ITEM_KEY
;
6183 ret
= btrfs_insert_inode_locked(inode
);
6189 ret
= btrfs_insert_empty_items(trans
, root
, path
, key
, sizes
, nitems
);
6193 inode_init_owner(inode
, dir
, mode
);
6194 inode_set_bytes(inode
, 0);
6196 inode
->i_mtime
= current_time(inode
);
6197 inode
->i_atime
= inode
->i_mtime
;
6198 inode
->i_ctime
= inode
->i_mtime
;
6199 BTRFS_I(inode
)->i_otime
= inode
->i_mtime
;
6201 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
6202 struct btrfs_inode_item
);
6203 memzero_extent_buffer(path
->nodes
[0], (unsigned long)inode_item
,
6204 sizeof(*inode_item
));
6205 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
);
6208 ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0] + 1,
6209 struct btrfs_inode_ref
);
6210 btrfs_set_inode_ref_name_len(path
->nodes
[0], ref
, name_len
);
6211 btrfs_set_inode_ref_index(path
->nodes
[0], ref
, *index
);
6212 ptr
= (unsigned long)(ref
+ 1);
6213 write_extent_buffer(path
->nodes
[0], name
, ptr
, name_len
);
6216 btrfs_mark_buffer_dirty(path
->nodes
[0]);
6217 btrfs_free_path(path
);
6219 btrfs_inherit_iflags(inode
, dir
);
6221 if (S_ISREG(mode
)) {
6222 if (btrfs_test_opt(fs_info
, NODATASUM
))
6223 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
6224 if (btrfs_test_opt(fs_info
, NODATACOW
))
6225 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
|
6226 BTRFS_INODE_NODATASUM
;
6229 inode_tree_add(inode
);
6231 trace_btrfs_inode_new(inode
);
6232 btrfs_set_inode_last_trans(trans
, BTRFS_I(inode
));
6234 btrfs_update_root_times(trans
, root
);
6236 ret
= btrfs_inode_inherit_props(trans
, inode
, dir
);
6239 "error inheriting props for ino %llu (root %llu): %d",
6240 btrfs_ino(BTRFS_I(inode
)), root
->root_key
.objectid
, ret
);
6245 discard_new_inode(inode
);
6248 BTRFS_I(dir
)->index_cnt
--;
6249 btrfs_free_path(path
);
6250 return ERR_PTR(ret
);
6254 * utility function to add 'inode' into 'parent_inode' with
6255 * a give name and a given sequence number.
6256 * if 'add_backref' is true, also insert a backref from the
6257 * inode to the parent directory.
6259 int btrfs_add_link(struct btrfs_trans_handle
*trans
,
6260 struct btrfs_inode
*parent_inode
, struct btrfs_inode
*inode
,
6261 const char *name
, int name_len
, int add_backref
, u64 index
)
6264 struct btrfs_key key
;
6265 struct btrfs_root
*root
= parent_inode
->root
;
6266 u64 ino
= btrfs_ino(inode
);
6267 u64 parent_ino
= btrfs_ino(parent_inode
);
6269 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6270 memcpy(&key
, &inode
->root
->root_key
, sizeof(key
));
6273 key
.type
= BTRFS_INODE_ITEM_KEY
;
6277 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6278 ret
= btrfs_add_root_ref(trans
, key
.objectid
,
6279 root
->root_key
.objectid
, parent_ino
,
6280 index
, name
, name_len
);
6281 } else if (add_backref
) {
6282 ret
= btrfs_insert_inode_ref(trans
, root
, name
, name_len
, ino
,
6286 /* Nothing to clean up yet */
6290 ret
= btrfs_insert_dir_item(trans
, name
, name_len
, parent_inode
, &key
,
6291 btrfs_inode_type(&inode
->vfs_inode
), index
);
6292 if (ret
== -EEXIST
|| ret
== -EOVERFLOW
)
6295 btrfs_abort_transaction(trans
, ret
);
6299 btrfs_i_size_write(parent_inode
, parent_inode
->vfs_inode
.i_size
+
6301 inode_inc_iversion(&parent_inode
->vfs_inode
);
6303 * If we are replaying a log tree, we do not want to update the mtime
6304 * and ctime of the parent directory with the current time, since the
6305 * log replay procedure is responsible for setting them to their correct
6306 * values (the ones it had when the fsync was done).
6308 if (!test_bit(BTRFS_FS_LOG_RECOVERING
, &root
->fs_info
->flags
)) {
6309 struct timespec64 now
= current_time(&parent_inode
->vfs_inode
);
6311 parent_inode
->vfs_inode
.i_mtime
= now
;
6312 parent_inode
->vfs_inode
.i_ctime
= now
;
6314 ret
= btrfs_update_inode(trans
, root
, parent_inode
);
6316 btrfs_abort_transaction(trans
, ret
);
6320 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6323 err
= btrfs_del_root_ref(trans
, key
.objectid
,
6324 root
->root_key
.objectid
, parent_ino
,
6325 &local_index
, name
, name_len
);
6327 btrfs_abort_transaction(trans
, err
);
6328 } else if (add_backref
) {
6332 err
= btrfs_del_inode_ref(trans
, root
, name
, name_len
,
6333 ino
, parent_ino
, &local_index
);
6335 btrfs_abort_transaction(trans
, err
);
6338 /* Return the original error code */
6342 static int btrfs_add_nondir(struct btrfs_trans_handle
*trans
,
6343 struct btrfs_inode
*dir
, struct dentry
*dentry
,
6344 struct btrfs_inode
*inode
, int backref
, u64 index
)
6346 int err
= btrfs_add_link(trans
, dir
, inode
,
6347 dentry
->d_name
.name
, dentry
->d_name
.len
,
6354 static int btrfs_mknod(struct inode
*dir
, struct dentry
*dentry
,
6355 umode_t mode
, dev_t rdev
)
6357 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
6358 struct btrfs_trans_handle
*trans
;
6359 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6360 struct inode
*inode
= NULL
;
6366 * 2 for inode item and ref
6368 * 1 for xattr if selinux is on
6370 trans
= btrfs_start_transaction(root
, 5);
6372 return PTR_ERR(trans
);
6374 err
= btrfs_find_free_objectid(root
, &objectid
);
6378 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6379 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)), objectid
,
6381 if (IS_ERR(inode
)) {
6382 err
= PTR_ERR(inode
);
6388 * If the active LSM wants to access the inode during
6389 * d_instantiate it needs these. Smack checks to see
6390 * if the filesystem supports xattrs by looking at the
6393 inode
->i_op
= &btrfs_special_inode_operations
;
6394 init_special_inode(inode
, inode
->i_mode
, rdev
);
6396 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6400 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
, BTRFS_I(inode
),
6405 btrfs_update_inode(trans
, root
, BTRFS_I(inode
));
6406 d_instantiate_new(dentry
, inode
);
6409 btrfs_end_transaction(trans
);
6410 btrfs_btree_balance_dirty(fs_info
);
6412 inode_dec_link_count(inode
);
6413 discard_new_inode(inode
);
6418 static int btrfs_create(struct inode
*dir
, struct dentry
*dentry
,
6419 umode_t mode
, bool excl
)
6421 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
6422 struct btrfs_trans_handle
*trans
;
6423 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6424 struct inode
*inode
= NULL
;
6430 * 2 for inode item and ref
6432 * 1 for xattr if selinux is on
6434 trans
= btrfs_start_transaction(root
, 5);
6436 return PTR_ERR(trans
);
6438 err
= btrfs_find_free_objectid(root
, &objectid
);
6442 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6443 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)), objectid
,
6445 if (IS_ERR(inode
)) {
6446 err
= PTR_ERR(inode
);
6451 * If the active LSM wants to access the inode during
6452 * d_instantiate it needs these. Smack checks to see
6453 * if the filesystem supports xattrs by looking at the
6456 inode
->i_fop
= &btrfs_file_operations
;
6457 inode
->i_op
= &btrfs_file_inode_operations
;
6458 inode
->i_mapping
->a_ops
= &btrfs_aops
;
6460 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6464 err
= btrfs_update_inode(trans
, root
, BTRFS_I(inode
));
6468 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
, BTRFS_I(inode
),
6473 d_instantiate_new(dentry
, inode
);
6476 btrfs_end_transaction(trans
);
6478 inode_dec_link_count(inode
);
6479 discard_new_inode(inode
);
6481 btrfs_btree_balance_dirty(fs_info
);
6485 static int btrfs_link(struct dentry
*old_dentry
, struct inode
*dir
,
6486 struct dentry
*dentry
)
6488 struct btrfs_trans_handle
*trans
= NULL
;
6489 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6490 struct inode
*inode
= d_inode(old_dentry
);
6491 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
6496 /* do not allow sys_link's with other subvols of the same device */
6497 if (root
->root_key
.objectid
!= BTRFS_I(inode
)->root
->root_key
.objectid
)
6500 if (inode
->i_nlink
>= BTRFS_LINK_MAX
)
6503 err
= btrfs_set_inode_index(BTRFS_I(dir
), &index
);
6508 * 2 items for inode and inode ref
6509 * 2 items for dir items
6510 * 1 item for parent inode
6511 * 1 item for orphan item deletion if O_TMPFILE
6513 trans
= btrfs_start_transaction(root
, inode
->i_nlink
? 5 : 6);
6514 if (IS_ERR(trans
)) {
6515 err
= PTR_ERR(trans
);
6520 /* There are several dir indexes for this inode, clear the cache. */
6521 BTRFS_I(inode
)->dir_index
= 0ULL;
6523 inode_inc_iversion(inode
);
6524 inode
->i_ctime
= current_time(inode
);
6526 set_bit(BTRFS_INODE_COPY_EVERYTHING
, &BTRFS_I(inode
)->runtime_flags
);
6528 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
, BTRFS_I(inode
),
6534 struct dentry
*parent
= dentry
->d_parent
;
6536 err
= btrfs_update_inode(trans
, root
, BTRFS_I(inode
));
6539 if (inode
->i_nlink
== 1) {
6541 * If new hard link count is 1, it's a file created
6542 * with open(2) O_TMPFILE flag.
6544 err
= btrfs_orphan_del(trans
, BTRFS_I(inode
));
6548 d_instantiate(dentry
, inode
);
6549 btrfs_log_new_name(trans
, BTRFS_I(inode
), NULL
, parent
);
6554 btrfs_end_transaction(trans
);
6556 inode_dec_link_count(inode
);
6559 btrfs_btree_balance_dirty(fs_info
);
6563 static int btrfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
6565 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
6566 struct inode
*inode
= NULL
;
6567 struct btrfs_trans_handle
*trans
;
6568 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6574 * 2 items for inode and ref
6575 * 2 items for dir items
6576 * 1 for xattr if selinux is on
6578 trans
= btrfs_start_transaction(root
, 5);
6580 return PTR_ERR(trans
);
6582 err
= btrfs_find_free_objectid(root
, &objectid
);
6586 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6587 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)), objectid
,
6588 S_IFDIR
| mode
, &index
);
6589 if (IS_ERR(inode
)) {
6590 err
= PTR_ERR(inode
);
6595 /* these must be set before we unlock the inode */
6596 inode
->i_op
= &btrfs_dir_inode_operations
;
6597 inode
->i_fop
= &btrfs_dir_file_operations
;
6599 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6603 btrfs_i_size_write(BTRFS_I(inode
), 0);
6604 err
= btrfs_update_inode(trans
, root
, BTRFS_I(inode
));
6608 err
= btrfs_add_link(trans
, BTRFS_I(dir
), BTRFS_I(inode
),
6609 dentry
->d_name
.name
,
6610 dentry
->d_name
.len
, 0, index
);
6614 d_instantiate_new(dentry
, inode
);
6617 btrfs_end_transaction(trans
);
6619 inode_dec_link_count(inode
);
6620 discard_new_inode(inode
);
6622 btrfs_btree_balance_dirty(fs_info
);
6626 static noinline
int uncompress_inline(struct btrfs_path
*path
,
6628 size_t pg_offset
, u64 extent_offset
,
6629 struct btrfs_file_extent_item
*item
)
6632 struct extent_buffer
*leaf
= path
->nodes
[0];
6635 unsigned long inline_size
;
6639 WARN_ON(pg_offset
!= 0);
6640 compress_type
= btrfs_file_extent_compression(leaf
, item
);
6641 max_size
= btrfs_file_extent_ram_bytes(leaf
, item
);
6642 inline_size
= btrfs_file_extent_inline_item_len(leaf
,
6643 btrfs_item_nr(path
->slots
[0]));
6644 tmp
= kmalloc(inline_size
, GFP_NOFS
);
6647 ptr
= btrfs_file_extent_inline_start(item
);
6649 read_extent_buffer(leaf
, tmp
, ptr
, inline_size
);
6651 max_size
= min_t(unsigned long, PAGE_SIZE
, max_size
);
6652 ret
= btrfs_decompress(compress_type
, tmp
, page
,
6653 extent_offset
, inline_size
, max_size
);
6656 * decompression code contains a memset to fill in any space between the end
6657 * of the uncompressed data and the end of max_size in case the decompressed
6658 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6659 * the end of an inline extent and the beginning of the next block, so we
6660 * cover that region here.
6663 if (max_size
+ pg_offset
< PAGE_SIZE
) {
6664 char *map
= kmap(page
);
6665 memset(map
+ pg_offset
+ max_size
, 0, PAGE_SIZE
- max_size
- pg_offset
);
6673 * btrfs_get_extent - Lookup the first extent overlapping a range in a file.
6674 * @inode: file to search in
6675 * @page: page to read extent data into if the extent is inline
6676 * @pg_offset: offset into @page to copy to
6677 * @start: file offset
6678 * @len: length of range starting at @start
6680 * This returns the first &struct extent_map which overlaps with the given
6681 * range, reading it from the B-tree and caching it if necessary. Note that
6682 * there may be more extents which overlap the given range after the returned
6685 * If @page is not NULL and the extent is inline, this also reads the extent
6686 * data directly into the page and marks the extent up to date in the io_tree.
6688 * Return: ERR_PTR on error, non-NULL extent_map on success.
6690 struct extent_map
*btrfs_get_extent(struct btrfs_inode
*inode
,
6691 struct page
*page
, size_t pg_offset
,
6694 struct btrfs_fs_info
*fs_info
= inode
->root
->fs_info
;
6696 u64 extent_start
= 0;
6698 u64 objectid
= btrfs_ino(inode
);
6699 int extent_type
= -1;
6700 struct btrfs_path
*path
= NULL
;
6701 struct btrfs_root
*root
= inode
->root
;
6702 struct btrfs_file_extent_item
*item
;
6703 struct extent_buffer
*leaf
;
6704 struct btrfs_key found_key
;
6705 struct extent_map
*em
= NULL
;
6706 struct extent_map_tree
*em_tree
= &inode
->extent_tree
;
6707 struct extent_io_tree
*io_tree
= &inode
->io_tree
;
6709 read_lock(&em_tree
->lock
);
6710 em
= lookup_extent_mapping(em_tree
, start
, len
);
6711 read_unlock(&em_tree
->lock
);
6714 if (em
->start
> start
|| em
->start
+ em
->len
<= start
)
6715 free_extent_map(em
);
6716 else if (em
->block_start
== EXTENT_MAP_INLINE
&& page
)
6717 free_extent_map(em
);
6721 em
= alloc_extent_map();
6726 em
->start
= EXTENT_MAP_HOLE
;
6727 em
->orig_start
= EXTENT_MAP_HOLE
;
6729 em
->block_len
= (u64
)-1;
6731 path
= btrfs_alloc_path();
6737 /* Chances are we'll be called again, so go ahead and do readahead */
6738 path
->reada
= READA_FORWARD
;
6741 * The same explanation in load_free_space_cache applies here as well,
6742 * we only read when we're loading the free space cache, and at that
6743 * point the commit_root has everything we need.
6745 if (btrfs_is_free_space_inode(inode
)) {
6746 path
->search_commit_root
= 1;
6747 path
->skip_locking
= 1;
6750 ret
= btrfs_lookup_file_extent(NULL
, root
, path
, objectid
, start
, 0);
6753 } else if (ret
> 0) {
6754 if (path
->slots
[0] == 0)
6760 leaf
= path
->nodes
[0];
6761 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
6762 struct btrfs_file_extent_item
);
6763 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6764 if (found_key
.objectid
!= objectid
||
6765 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
6767 * If we backup past the first extent we want to move forward
6768 * and see if there is an extent in front of us, otherwise we'll
6769 * say there is a hole for our whole search range which can
6776 extent_type
= btrfs_file_extent_type(leaf
, item
);
6777 extent_start
= found_key
.offset
;
6778 extent_end
= btrfs_file_extent_end(path
);
6779 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
6780 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
6781 /* Only regular file could have regular/prealloc extent */
6782 if (!S_ISREG(inode
->vfs_inode
.i_mode
)) {
6785 "regular/prealloc extent found for non-regular inode %llu",
6789 trace_btrfs_get_extent_show_fi_regular(inode
, leaf
, item
,
6791 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
6792 trace_btrfs_get_extent_show_fi_inline(inode
, leaf
, item
,
6797 if (start
>= extent_end
) {
6799 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
6800 ret
= btrfs_next_leaf(root
, path
);
6806 leaf
= path
->nodes
[0];
6808 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6809 if (found_key
.objectid
!= objectid
||
6810 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
6812 if (start
+ len
<= found_key
.offset
)
6814 if (start
> found_key
.offset
)
6817 /* New extent overlaps with existing one */
6819 em
->orig_start
= start
;
6820 em
->len
= found_key
.offset
- start
;
6821 em
->block_start
= EXTENT_MAP_HOLE
;
6825 btrfs_extent_item_to_extent_map(inode
, path
, item
, !page
, em
);
6827 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
6828 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
6830 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
6834 size_t extent_offset
;
6840 size
= btrfs_file_extent_ram_bytes(leaf
, item
);
6841 extent_offset
= page_offset(page
) + pg_offset
- extent_start
;
6842 copy_size
= min_t(u64
, PAGE_SIZE
- pg_offset
,
6843 size
- extent_offset
);
6844 em
->start
= extent_start
+ extent_offset
;
6845 em
->len
= ALIGN(copy_size
, fs_info
->sectorsize
);
6846 em
->orig_block_len
= em
->len
;
6847 em
->orig_start
= em
->start
;
6848 ptr
= btrfs_file_extent_inline_start(item
) + extent_offset
;
6850 if (!PageUptodate(page
)) {
6851 if (btrfs_file_extent_compression(leaf
, item
) !=
6852 BTRFS_COMPRESS_NONE
) {
6853 ret
= uncompress_inline(path
, page
, pg_offset
,
6854 extent_offset
, item
);
6859 read_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
6861 if (pg_offset
+ copy_size
< PAGE_SIZE
) {
6862 memset(map
+ pg_offset
+ copy_size
, 0,
6863 PAGE_SIZE
- pg_offset
-
6868 flush_dcache_page(page
);
6870 set_extent_uptodate(io_tree
, em
->start
,
6871 extent_map_end(em
) - 1, NULL
, GFP_NOFS
);
6876 em
->orig_start
= start
;
6878 em
->block_start
= EXTENT_MAP_HOLE
;
6881 btrfs_release_path(path
);
6882 if (em
->start
> start
|| extent_map_end(em
) <= start
) {
6884 "bad extent! em: [%llu %llu] passed [%llu %llu]",
6885 em
->start
, em
->len
, start
, len
);
6890 write_lock(&em_tree
->lock
);
6891 ret
= btrfs_add_extent_mapping(fs_info
, em_tree
, &em
, start
, len
);
6892 write_unlock(&em_tree
->lock
);
6894 btrfs_free_path(path
);
6896 trace_btrfs_get_extent(root
, inode
, em
);
6899 free_extent_map(em
);
6900 return ERR_PTR(ret
);
6905 struct extent_map
*btrfs_get_extent_fiemap(struct btrfs_inode
*inode
,
6908 struct extent_map
*em
;
6909 struct extent_map
*hole_em
= NULL
;
6910 u64 delalloc_start
= start
;
6916 em
= btrfs_get_extent(inode
, NULL
, 0, start
, len
);
6920 * If our em maps to:
6922 * - a pre-alloc extent,
6923 * there might actually be delalloc bytes behind it.
6925 if (em
->block_start
!= EXTENT_MAP_HOLE
&&
6926 !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
6931 /* check to see if we've wrapped (len == -1 or similar) */
6940 /* ok, we didn't find anything, lets look for delalloc */
6941 delalloc_len
= count_range_bits(&inode
->io_tree
, &delalloc_start
,
6942 end
, len
, EXTENT_DELALLOC
, 1);
6943 delalloc_end
= delalloc_start
+ delalloc_len
;
6944 if (delalloc_end
< delalloc_start
)
6945 delalloc_end
= (u64
)-1;
6948 * We didn't find anything useful, return the original results from
6951 if (delalloc_start
> end
|| delalloc_end
<= start
) {
6958 * Adjust the delalloc_start to make sure it doesn't go backwards from
6959 * the start they passed in
6961 delalloc_start
= max(start
, delalloc_start
);
6962 delalloc_len
= delalloc_end
- delalloc_start
;
6964 if (delalloc_len
> 0) {
6967 const u64 hole_end
= extent_map_end(hole_em
);
6969 em
= alloc_extent_map();
6977 * When btrfs_get_extent can't find anything it returns one
6980 * Make sure what it found really fits our range, and adjust to
6981 * make sure it is based on the start from the caller
6983 if (hole_end
<= start
|| hole_em
->start
> end
) {
6984 free_extent_map(hole_em
);
6987 hole_start
= max(hole_em
->start
, start
);
6988 hole_len
= hole_end
- hole_start
;
6991 if (hole_em
&& delalloc_start
> hole_start
) {
6993 * Our hole starts before our delalloc, so we have to
6994 * return just the parts of the hole that go until the
6997 em
->len
= min(hole_len
, delalloc_start
- hole_start
);
6998 em
->start
= hole_start
;
6999 em
->orig_start
= hole_start
;
7001 * Don't adjust block start at all, it is fixed at
7004 em
->block_start
= hole_em
->block_start
;
7005 em
->block_len
= hole_len
;
7006 if (test_bit(EXTENT_FLAG_PREALLOC
, &hole_em
->flags
))
7007 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
7010 * Hole is out of passed range or it starts after
7013 em
->start
= delalloc_start
;
7014 em
->len
= delalloc_len
;
7015 em
->orig_start
= delalloc_start
;
7016 em
->block_start
= EXTENT_MAP_DELALLOC
;
7017 em
->block_len
= delalloc_len
;
7024 free_extent_map(hole_em
);
7026 free_extent_map(em
);
7027 return ERR_PTR(err
);
7032 static struct extent_map
*btrfs_create_dio_extent(struct btrfs_inode
*inode
,
7035 const u64 orig_start
,
7036 const u64 block_start
,
7037 const u64 block_len
,
7038 const u64 orig_block_len
,
7039 const u64 ram_bytes
,
7042 struct extent_map
*em
= NULL
;
7045 if (type
!= BTRFS_ORDERED_NOCOW
) {
7046 em
= create_io_em(inode
, start
, len
, orig_start
, block_start
,
7047 block_len
, orig_block_len
, ram_bytes
,
7048 BTRFS_COMPRESS_NONE
, /* compress_type */
7053 ret
= btrfs_add_ordered_extent_dio(inode
, start
, block_start
, len
,
7057 free_extent_map(em
);
7058 btrfs_drop_extent_cache(inode
, start
, start
+ len
- 1, 0);
7067 static struct extent_map
*btrfs_new_extent_direct(struct btrfs_inode
*inode
,
7070 struct btrfs_root
*root
= inode
->root
;
7071 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
7072 struct extent_map
*em
;
7073 struct btrfs_key ins
;
7077 alloc_hint
= get_extent_allocation_hint(inode
, start
, len
);
7078 ret
= btrfs_reserve_extent(root
, len
, len
, fs_info
->sectorsize
,
7079 0, alloc_hint
, &ins
, 1, 1);
7081 return ERR_PTR(ret
);
7083 em
= btrfs_create_dio_extent(inode
, start
, ins
.offset
, start
,
7084 ins
.objectid
, ins
.offset
, ins
.offset
,
7085 ins
.offset
, BTRFS_ORDERED_REGULAR
);
7086 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
7088 btrfs_free_reserved_extent(fs_info
, ins
.objectid
, ins
.offset
,
7095 * Check if we can do nocow write into the range [@offset, @offset + @len)
7097 * @offset: File offset
7098 * @len: The length to write, will be updated to the nocow writeable
7100 * @orig_start: (optional) Return the original file offset of the file extent
7101 * @orig_len: (optional) Return the original on-disk length of the file extent
7102 * @ram_bytes: (optional) Return the ram_bytes of the file extent
7103 * @strict: if true, omit optimizations that might force us into unnecessary
7104 * cow. e.g., don't trust generation number.
7106 * This function will flush ordered extents in the range to ensure proper
7107 * nocow checks for (nowait == false) case.
7110 * >0 and update @len if we can do nocow write
7111 * 0 if we can't do nocow write
7112 * <0 if error happened
7114 * NOTE: This only checks the file extents, caller is responsible to wait for
7115 * any ordered extents.
7117 noinline
int can_nocow_extent(struct inode
*inode
, u64 offset
, u64
*len
,
7118 u64
*orig_start
, u64
*orig_block_len
,
7119 u64
*ram_bytes
, bool strict
)
7121 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7122 struct btrfs_path
*path
;
7124 struct extent_buffer
*leaf
;
7125 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7126 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
7127 struct btrfs_file_extent_item
*fi
;
7128 struct btrfs_key key
;
7135 bool nocow
= (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
);
7137 path
= btrfs_alloc_path();
7141 ret
= btrfs_lookup_file_extent(NULL
, root
, path
,
7142 btrfs_ino(BTRFS_I(inode
)), offset
, 0);
7146 slot
= path
->slots
[0];
7149 /* can't find the item, must cow */
7156 leaf
= path
->nodes
[0];
7157 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
7158 if (key
.objectid
!= btrfs_ino(BTRFS_I(inode
)) ||
7159 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
7160 /* not our file or wrong item type, must cow */
7164 if (key
.offset
> offset
) {
7165 /* Wrong offset, must cow */
7169 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
7170 found_type
= btrfs_file_extent_type(leaf
, fi
);
7171 if (found_type
!= BTRFS_FILE_EXTENT_REG
&&
7172 found_type
!= BTRFS_FILE_EXTENT_PREALLOC
) {
7173 /* not a regular extent, must cow */
7177 if (!nocow
&& found_type
== BTRFS_FILE_EXTENT_REG
)
7180 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
7181 if (extent_end
<= offset
)
7184 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
7185 if (disk_bytenr
== 0)
7188 if (btrfs_file_extent_compression(leaf
, fi
) ||
7189 btrfs_file_extent_encryption(leaf
, fi
) ||
7190 btrfs_file_extent_other_encoding(leaf
, fi
))
7194 * Do the same check as in btrfs_cross_ref_exist but without the
7195 * unnecessary search.
7198 (btrfs_file_extent_generation(leaf
, fi
) <=
7199 btrfs_root_last_snapshot(&root
->root_item
)))
7202 backref_offset
= btrfs_file_extent_offset(leaf
, fi
);
7205 *orig_start
= key
.offset
- backref_offset
;
7206 *orig_block_len
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
7207 *ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
7210 if (btrfs_extent_readonly(fs_info
, disk_bytenr
))
7213 num_bytes
= min(offset
+ *len
, extent_end
) - offset
;
7214 if (!nocow
&& found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
7217 range_end
= round_up(offset
+ num_bytes
,
7218 root
->fs_info
->sectorsize
) - 1;
7219 ret
= test_range_bit(io_tree
, offset
, range_end
,
7220 EXTENT_DELALLOC
, 0, NULL
);
7227 btrfs_release_path(path
);
7230 * look for other files referencing this extent, if we
7231 * find any we must cow
7234 ret
= btrfs_cross_ref_exist(root
, btrfs_ino(BTRFS_I(inode
)),
7235 key
.offset
- backref_offset
, disk_bytenr
,
7243 * adjust disk_bytenr and num_bytes to cover just the bytes
7244 * in this extent we are about to write. If there
7245 * are any csums in that range we have to cow in order
7246 * to keep the csums correct
7248 disk_bytenr
+= backref_offset
;
7249 disk_bytenr
+= offset
- key
.offset
;
7250 if (csum_exist_in_range(fs_info
, disk_bytenr
, num_bytes
))
7253 * all of the above have passed, it is safe to overwrite this extent
7259 btrfs_free_path(path
);
7263 static int lock_extent_direct(struct inode
*inode
, u64 lockstart
, u64 lockend
,
7264 struct extent_state
**cached_state
, bool writing
)
7266 struct btrfs_ordered_extent
*ordered
;
7270 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7273 * We're concerned with the entire range that we're going to be
7274 * doing DIO to, so we need to make sure there's no ordered
7275 * extents in this range.
7277 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), lockstart
,
7278 lockend
- lockstart
+ 1);
7281 * We need to make sure there are no buffered pages in this
7282 * range either, we could have raced between the invalidate in
7283 * generic_file_direct_write and locking the extent. The
7284 * invalidate needs to happen so that reads after a write do not
7288 (!writing
|| !filemap_range_has_page(inode
->i_mapping
,
7289 lockstart
, lockend
)))
7292 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7297 * If we are doing a DIO read and the ordered extent we
7298 * found is for a buffered write, we can not wait for it
7299 * to complete and retry, because if we do so we can
7300 * deadlock with concurrent buffered writes on page
7301 * locks. This happens only if our DIO read covers more
7302 * than one extent map, if at this point has already
7303 * created an ordered extent for a previous extent map
7304 * and locked its range in the inode's io tree, and a
7305 * concurrent write against that previous extent map's
7306 * range and this range started (we unlock the ranges
7307 * in the io tree only when the bios complete and
7308 * buffered writes always lock pages before attempting
7309 * to lock range in the io tree).
7312 test_bit(BTRFS_ORDERED_DIRECT
, &ordered
->flags
))
7313 btrfs_start_ordered_extent(ordered
, 1);
7316 btrfs_put_ordered_extent(ordered
);
7319 * We could trigger writeback for this range (and wait
7320 * for it to complete) and then invalidate the pages for
7321 * this range (through invalidate_inode_pages2_range()),
7322 * but that can lead us to a deadlock with a concurrent
7323 * call to readahead (a buffered read or a defrag call
7324 * triggered a readahead) on a page lock due to an
7325 * ordered dio extent we created before but did not have
7326 * yet a corresponding bio submitted (whence it can not
7327 * complete), which makes readahead wait for that
7328 * ordered extent to complete while holding a lock on
7343 /* The callers of this must take lock_extent() */
7344 static struct extent_map
*create_io_em(struct btrfs_inode
*inode
, u64 start
,
7345 u64 len
, u64 orig_start
, u64 block_start
,
7346 u64 block_len
, u64 orig_block_len
,
7347 u64 ram_bytes
, int compress_type
,
7350 struct extent_map_tree
*em_tree
;
7351 struct extent_map
*em
;
7354 ASSERT(type
== BTRFS_ORDERED_PREALLOC
||
7355 type
== BTRFS_ORDERED_COMPRESSED
||
7356 type
== BTRFS_ORDERED_NOCOW
||
7357 type
== BTRFS_ORDERED_REGULAR
);
7359 em_tree
= &inode
->extent_tree
;
7360 em
= alloc_extent_map();
7362 return ERR_PTR(-ENOMEM
);
7365 em
->orig_start
= orig_start
;
7367 em
->block_len
= block_len
;
7368 em
->block_start
= block_start
;
7369 em
->orig_block_len
= orig_block_len
;
7370 em
->ram_bytes
= ram_bytes
;
7371 em
->generation
= -1;
7372 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
7373 if (type
== BTRFS_ORDERED_PREALLOC
) {
7374 set_bit(EXTENT_FLAG_FILLING
, &em
->flags
);
7375 } else if (type
== BTRFS_ORDERED_COMPRESSED
) {
7376 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
7377 em
->compress_type
= compress_type
;
7381 btrfs_drop_extent_cache(inode
, em
->start
,
7382 em
->start
+ em
->len
- 1, 0);
7383 write_lock(&em_tree
->lock
);
7384 ret
= add_extent_mapping(em_tree
, em
, 1);
7385 write_unlock(&em_tree
->lock
);
7387 * The caller has taken lock_extent(), who could race with us
7390 } while (ret
== -EEXIST
);
7393 free_extent_map(em
);
7394 return ERR_PTR(ret
);
7397 /* em got 2 refs now, callers needs to do free_extent_map once. */
7402 static int btrfs_get_blocks_direct_write(struct extent_map
**map
,
7403 struct inode
*inode
,
7404 struct btrfs_dio_data
*dio_data
,
7407 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7408 struct extent_map
*em
= *map
;
7412 * We don't allocate a new extent in the following cases
7414 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7416 * 2) The extent is marked as PREALLOC. We're good to go here and can
7417 * just use the extent.
7420 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) ||
7421 ((BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
7422 em
->block_start
!= EXTENT_MAP_HOLE
)) {
7424 u64 block_start
, orig_start
, orig_block_len
, ram_bytes
;
7426 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7427 type
= BTRFS_ORDERED_PREALLOC
;
7429 type
= BTRFS_ORDERED_NOCOW
;
7430 len
= min(len
, em
->len
- (start
- em
->start
));
7431 block_start
= em
->block_start
+ (start
- em
->start
);
7433 if (can_nocow_extent(inode
, start
, &len
, &orig_start
,
7434 &orig_block_len
, &ram_bytes
, false) == 1 &&
7435 btrfs_inc_nocow_writers(fs_info
, block_start
)) {
7436 struct extent_map
*em2
;
7438 em2
= btrfs_create_dio_extent(BTRFS_I(inode
), start
, len
,
7439 orig_start
, block_start
,
7440 len
, orig_block_len
,
7442 btrfs_dec_nocow_writers(fs_info
, block_start
);
7443 if (type
== BTRFS_ORDERED_PREALLOC
) {
7444 free_extent_map(em
);
7448 if (em2
&& IS_ERR(em2
)) {
7453 * For inode marked NODATACOW or extent marked PREALLOC,
7454 * use the existing or preallocated extent, so does not
7455 * need to adjust btrfs_space_info's bytes_may_use.
7457 btrfs_free_reserved_data_space_noquota(fs_info
, len
);
7462 /* this will cow the extent */
7463 free_extent_map(em
);
7464 *map
= em
= btrfs_new_extent_direct(BTRFS_I(inode
), start
, len
);
7470 len
= min(len
, em
->len
- (start
- em
->start
));
7474 * Need to update the i_size under the extent lock so buffered
7475 * readers will get the updated i_size when we unlock.
7477 if (start
+ len
> i_size_read(inode
))
7478 i_size_write(inode
, start
+ len
);
7480 dio_data
->reserve
-= len
;
7485 static int btrfs_dio_iomap_begin(struct inode
*inode
, loff_t start
,
7486 loff_t length
, unsigned int flags
, struct iomap
*iomap
,
7487 struct iomap
*srcmap
)
7489 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7490 struct extent_map
*em
;
7491 struct extent_state
*cached_state
= NULL
;
7492 struct btrfs_dio_data
*dio_data
= NULL
;
7493 u64 lockstart
, lockend
;
7494 const bool write
= !!(flags
& IOMAP_WRITE
);
7497 bool unlock_extents
= false;
7500 len
= min_t(u64
, len
, fs_info
->sectorsize
);
7503 lockend
= start
+ len
- 1;
7506 * The generic stuff only does filemap_write_and_wait_range, which
7507 * isn't enough if we've written compressed pages to this area, so we
7508 * need to flush the dirty pages again to make absolutely sure that any
7509 * outstanding dirty pages are on disk.
7511 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
7512 &BTRFS_I(inode
)->runtime_flags
)) {
7513 ret
= filemap_fdatawrite_range(inode
->i_mapping
, start
,
7514 start
+ length
- 1);
7519 dio_data
= kzalloc(sizeof(*dio_data
), GFP_NOFS
);
7523 dio_data
->length
= length
;
7525 dio_data
->reserve
= round_up(length
, fs_info
->sectorsize
);
7526 ret
= btrfs_delalloc_reserve_space(BTRFS_I(inode
),
7527 &dio_data
->data_reserved
,
7528 start
, dio_data
->reserve
);
7530 extent_changeset_free(dio_data
->data_reserved
);
7535 iomap
->private = dio_data
;
7539 * If this errors out it's because we couldn't invalidate pagecache for
7540 * this range and we need to fallback to buffered.
7542 if (lock_extent_direct(inode
, lockstart
, lockend
, &cached_state
, write
)) {
7547 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0, start
, len
);
7554 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7555 * io. INLINE is special, and we could probably kludge it in here, but
7556 * it's still buffered so for safety lets just fall back to the generic
7559 * For COMPRESSED we _have_ to read the entire extent in so we can
7560 * decompress it, so there will be buffering required no matter what we
7561 * do, so go ahead and fallback to buffered.
7563 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7564 * to buffered IO. Don't blame me, this is the price we pay for using
7567 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
) ||
7568 em
->block_start
== EXTENT_MAP_INLINE
) {
7569 free_extent_map(em
);
7574 len
= min(len
, em
->len
- (start
- em
->start
));
7576 ret
= btrfs_get_blocks_direct_write(&em
, inode
, dio_data
,
7580 unlock_extents
= true;
7581 /* Recalc len in case the new em is smaller than requested */
7582 len
= min(len
, em
->len
- (start
- em
->start
));
7585 * We need to unlock only the end area that we aren't using.
7586 * The rest is going to be unlocked by the endio routine.
7588 lockstart
= start
+ len
;
7589 if (lockstart
< lockend
)
7590 unlock_extents
= true;
7594 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
7595 lockstart
, lockend
, &cached_state
);
7597 free_extent_state(cached_state
);
7600 * Translate extent map information to iomap.
7601 * We trim the extents (and move the addr) even though iomap code does
7602 * that, since we have locked only the parts we are performing I/O in.
7604 if ((em
->block_start
== EXTENT_MAP_HOLE
) ||
7605 (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) && !write
)) {
7606 iomap
->addr
= IOMAP_NULL_ADDR
;
7607 iomap
->type
= IOMAP_HOLE
;
7609 iomap
->addr
= em
->block_start
+ (start
- em
->start
);
7610 iomap
->type
= IOMAP_MAPPED
;
7612 iomap
->offset
= start
;
7613 iomap
->bdev
= fs_info
->fs_devices
->latest_bdev
;
7614 iomap
->length
= len
;
7616 free_extent_map(em
);
7621 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7625 btrfs_delalloc_release_space(BTRFS_I(inode
),
7626 dio_data
->data_reserved
, start
,
7627 dio_data
->reserve
, true);
7628 btrfs_delalloc_release_extents(BTRFS_I(inode
), dio_data
->reserve
);
7629 extent_changeset_free(dio_data
->data_reserved
);
7635 static int btrfs_dio_iomap_end(struct inode
*inode
, loff_t pos
, loff_t length
,
7636 ssize_t written
, unsigned int flags
, struct iomap
*iomap
)
7639 struct btrfs_dio_data
*dio_data
= iomap
->private;
7640 size_t submitted
= dio_data
->submitted
;
7641 const bool write
= !!(flags
& IOMAP_WRITE
);
7643 if (!write
&& (iomap
->type
== IOMAP_HOLE
)) {
7644 /* If reading from a hole, unlock and return */
7645 unlock_extent(&BTRFS_I(inode
)->io_tree
, pos
, pos
+ length
- 1);
7649 if (submitted
< length
) {
7651 length
-= submitted
;
7653 __endio_write_update_ordered(BTRFS_I(inode
), pos
,
7656 unlock_extent(&BTRFS_I(inode
)->io_tree
, pos
,
7662 if (dio_data
->reserve
)
7663 btrfs_delalloc_release_space(BTRFS_I(inode
),
7664 dio_data
->data_reserved
, pos
,
7665 dio_data
->reserve
, true);
7666 btrfs_delalloc_release_extents(BTRFS_I(inode
), dio_data
->length
);
7667 extent_changeset_free(dio_data
->data_reserved
);
7671 iomap
->private = NULL
;
7676 static void btrfs_dio_private_put(struct btrfs_dio_private
*dip
)
7679 * This implies a barrier so that stores to dio_bio->bi_status before
7680 * this and loads of dio_bio->bi_status after this are fully ordered.
7682 if (!refcount_dec_and_test(&dip
->refs
))
7685 if (bio_op(dip
->dio_bio
) == REQ_OP_WRITE
) {
7686 __endio_write_update_ordered(BTRFS_I(dip
->inode
),
7687 dip
->logical_offset
,
7689 !dip
->dio_bio
->bi_status
);
7691 unlock_extent(&BTRFS_I(dip
->inode
)->io_tree
,
7692 dip
->logical_offset
,
7693 dip
->logical_offset
+ dip
->bytes
- 1);
7696 bio_endio(dip
->dio_bio
);
7700 static blk_status_t
submit_dio_repair_bio(struct inode
*inode
, struct bio
*bio
,
7702 unsigned long bio_flags
)
7704 struct btrfs_dio_private
*dip
= bio
->bi_private
;
7705 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7708 BUG_ON(bio_op(bio
) == REQ_OP_WRITE
);
7710 ret
= btrfs_bio_wq_end_io(fs_info
, bio
, BTRFS_WQ_ENDIO_DATA
);
7714 refcount_inc(&dip
->refs
);
7715 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
);
7717 refcount_dec(&dip
->refs
);
7721 static blk_status_t
btrfs_check_read_dio_bio(struct inode
*inode
,
7722 struct btrfs_io_bio
*io_bio
,
7723 const bool uptodate
)
7725 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
7726 const u32 sectorsize
= fs_info
->sectorsize
;
7727 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
7728 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
7729 const bool csum
= !(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
);
7730 struct bio_vec bvec
;
7731 struct bvec_iter iter
;
7732 u64 start
= io_bio
->logical
;
7734 blk_status_t err
= BLK_STS_OK
;
7736 __bio_for_each_segment(bvec
, &io_bio
->bio
, iter
, io_bio
->iter
) {
7737 unsigned int i
, nr_sectors
, pgoff
;
7739 nr_sectors
= BTRFS_BYTES_TO_BLKS(fs_info
, bvec
.bv_len
);
7740 pgoff
= bvec
.bv_offset
;
7741 for (i
= 0; i
< nr_sectors
; i
++) {
7742 ASSERT(pgoff
< PAGE_SIZE
);
7744 (!csum
|| !check_data_csum(inode
, io_bio
,
7745 bio_offset
, bvec
.bv_page
, pgoff
))) {
7746 clean_io_failure(fs_info
, failure_tree
, io_tree
,
7747 start
, bvec
.bv_page
,
7748 btrfs_ino(BTRFS_I(inode
)),
7751 blk_status_t status
;
7753 ASSERT((start
- io_bio
->logical
) < UINT_MAX
);
7754 status
= btrfs_submit_read_repair(inode
,
7756 start
- io_bio
->logical
,
7757 bvec
.bv_page
, pgoff
,
7759 start
+ sectorsize
- 1,
7761 submit_dio_repair_bio
);
7765 start
+= sectorsize
;
7766 ASSERT(bio_offset
+ sectorsize
> bio_offset
);
7767 bio_offset
+= sectorsize
;
7768 pgoff
+= sectorsize
;
7774 static void __endio_write_update_ordered(struct btrfs_inode
*inode
,
7775 const u64 offset
, const u64 bytes
,
7776 const bool uptodate
)
7778 struct btrfs_fs_info
*fs_info
= inode
->root
->fs_info
;
7779 struct btrfs_ordered_extent
*ordered
= NULL
;
7780 struct btrfs_workqueue
*wq
;
7781 u64 ordered_offset
= offset
;
7782 u64 ordered_bytes
= bytes
;
7785 if (btrfs_is_free_space_inode(inode
))
7786 wq
= fs_info
->endio_freespace_worker
;
7788 wq
= fs_info
->endio_write_workers
;
7790 while (ordered_offset
< offset
+ bytes
) {
7791 last_offset
= ordered_offset
;
7792 if (btrfs_dec_test_first_ordered_pending(inode
, &ordered
,
7796 btrfs_init_work(&ordered
->work
, finish_ordered_fn
, NULL
,
7798 btrfs_queue_work(wq
, &ordered
->work
);
7801 * If btrfs_dec_test_ordered_pending does not find any ordered
7802 * extent in the range, we can exit.
7804 if (ordered_offset
== last_offset
)
7807 * Our bio might span multiple ordered extents. In this case
7808 * we keep going until we have accounted the whole dio.
7810 if (ordered_offset
< offset
+ bytes
) {
7811 ordered_bytes
= offset
+ bytes
- ordered_offset
;
7817 static blk_status_t
btrfs_submit_bio_start_direct_io(struct inode
*inode
,
7819 u64 dio_file_offset
)
7821 return btrfs_csum_one_bio(BTRFS_I(inode
), bio
, dio_file_offset
, 1);
7824 static void btrfs_end_dio_bio(struct bio
*bio
)
7826 struct btrfs_dio_private
*dip
= bio
->bi_private
;
7827 blk_status_t err
= bio
->bi_status
;
7830 btrfs_warn(BTRFS_I(dip
->inode
)->root
->fs_info
,
7831 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
7832 btrfs_ino(BTRFS_I(dip
->inode
)), bio_op(bio
),
7833 bio
->bi_opf
, bio
->bi_iter
.bi_sector
,
7834 bio
->bi_iter
.bi_size
, err
);
7836 if (bio_op(bio
) == REQ_OP_READ
) {
7837 err
= btrfs_check_read_dio_bio(dip
->inode
, btrfs_io_bio(bio
),
7842 dip
->dio_bio
->bi_status
= err
;
7845 btrfs_dio_private_put(dip
);
7848 static inline blk_status_t
btrfs_submit_dio_bio(struct bio
*bio
,
7849 struct inode
*inode
, u64 file_offset
, int async_submit
)
7851 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7852 struct btrfs_dio_private
*dip
= bio
->bi_private
;
7853 bool write
= bio_op(bio
) == REQ_OP_WRITE
;
7856 /* Check btrfs_submit_bio_hook() for rules about async submit. */
7858 async_submit
= !atomic_read(&BTRFS_I(inode
)->sync_writers
);
7861 ret
= btrfs_bio_wq_end_io(fs_info
, bio
, BTRFS_WQ_ENDIO_DATA
);
7866 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
7869 if (write
&& async_submit
) {
7870 ret
= btrfs_wq_submit_bio(inode
, bio
, 0, 0, file_offset
,
7871 btrfs_submit_bio_start_direct_io
);
7875 * If we aren't doing async submit, calculate the csum of the
7878 ret
= btrfs_csum_one_bio(BTRFS_I(inode
), bio
, file_offset
, 1);
7884 csum_offset
= file_offset
- dip
->logical_offset
;
7885 csum_offset
>>= fs_info
->sectorsize_bits
;
7886 csum_offset
*= fs_info
->csum_size
;
7887 btrfs_io_bio(bio
)->csum
= dip
->csums
+ csum_offset
;
7890 ret
= btrfs_map_bio(fs_info
, bio
, 0);
7896 * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked
7897 * or ordered extents whether or not we submit any bios.
7899 static struct btrfs_dio_private
*btrfs_create_dio_private(struct bio
*dio_bio
,
7900 struct inode
*inode
,
7903 const bool write
= (bio_op(dio_bio
) == REQ_OP_WRITE
);
7904 const bool csum
= !(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
);
7906 struct btrfs_dio_private
*dip
;
7908 dip_size
= sizeof(*dip
);
7909 if (!write
&& csum
) {
7910 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7913 nblocks
= dio_bio
->bi_iter
.bi_size
>> fs_info
->sectorsize_bits
;
7914 dip_size
+= fs_info
->csum_size
* nblocks
;
7917 dip
= kzalloc(dip_size
, GFP_NOFS
);
7922 dip
->logical_offset
= file_offset
;
7923 dip
->bytes
= dio_bio
->bi_iter
.bi_size
;
7924 dip
->disk_bytenr
= dio_bio
->bi_iter
.bi_sector
<< 9;
7925 dip
->dio_bio
= dio_bio
;
7926 refcount_set(&dip
->refs
, 1);
7930 static blk_qc_t
btrfs_submit_direct(struct inode
*inode
, struct iomap
*iomap
,
7931 struct bio
*dio_bio
, loff_t file_offset
)
7933 const bool write
= (bio_op(dio_bio
) == REQ_OP_WRITE
);
7934 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7935 const bool raid56
= (btrfs_data_alloc_profile(fs_info
) &
7936 BTRFS_BLOCK_GROUP_RAID56_MASK
);
7937 struct btrfs_dio_private
*dip
;
7940 int async_submit
= 0;
7942 int clone_offset
= 0;
7945 blk_status_t status
;
7946 struct btrfs_io_geometry geom
;
7947 struct btrfs_dio_data
*dio_data
= iomap
->private;
7949 dip
= btrfs_create_dio_private(dio_bio
, inode
, file_offset
);
7952 unlock_extent(&BTRFS_I(inode
)->io_tree
, file_offset
,
7953 file_offset
+ dio_bio
->bi_iter
.bi_size
- 1);
7955 dio_bio
->bi_status
= BLK_STS_RESOURCE
;
7957 return BLK_QC_T_NONE
;
7962 * Load the csums up front to reduce csum tree searches and
7963 * contention when submitting bios.
7965 * If we have csums disabled this will do nothing.
7967 status
= btrfs_lookup_bio_sums(inode
, dio_bio
, dip
->csums
);
7968 if (status
!= BLK_STS_OK
)
7972 start_sector
= dio_bio
->bi_iter
.bi_sector
;
7973 submit_len
= dio_bio
->bi_iter
.bi_size
;
7976 ret
= btrfs_get_io_geometry(fs_info
, btrfs_op(dio_bio
),
7977 start_sector
<< 9, submit_len
,
7980 status
= errno_to_blk_status(ret
);
7983 ASSERT(geom
.len
<= INT_MAX
);
7985 clone_len
= min_t(int, submit_len
, geom
.len
);
7988 * This will never fail as it's passing GPF_NOFS and
7989 * the allocation is backed by btrfs_bioset.
7991 bio
= btrfs_bio_clone_partial(dio_bio
, clone_offset
, clone_len
);
7992 bio
->bi_private
= dip
;
7993 bio
->bi_end_io
= btrfs_end_dio_bio
;
7994 btrfs_io_bio(bio
)->logical
= file_offset
;
7996 ASSERT(submit_len
>= clone_len
);
7997 submit_len
-= clone_len
;
8000 * Increase the count before we submit the bio so we know
8001 * the end IO handler won't happen before we increase the
8002 * count. Otherwise, the dip might get freed before we're
8003 * done setting it up.
8005 * We transfer the initial reference to the last bio, so we
8006 * don't need to increment the reference count for the last one.
8008 if (submit_len
> 0) {
8009 refcount_inc(&dip
->refs
);
8011 * If we are submitting more than one bio, submit them
8012 * all asynchronously. The exception is RAID 5 or 6, as
8013 * asynchronous checksums make it difficult to collect
8014 * full stripe writes.
8020 status
= btrfs_submit_dio_bio(bio
, inode
, file_offset
,
8025 refcount_dec(&dip
->refs
);
8029 dio_data
->submitted
+= clone_len
;
8030 clone_offset
+= clone_len
;
8031 start_sector
+= clone_len
>> 9;
8032 file_offset
+= clone_len
;
8033 } while (submit_len
> 0);
8034 return BLK_QC_T_NONE
;
8037 dip
->dio_bio
->bi_status
= status
;
8038 btrfs_dio_private_put(dip
);
8039 return BLK_QC_T_NONE
;
8042 const struct iomap_ops btrfs_dio_iomap_ops
= {
8043 .iomap_begin
= btrfs_dio_iomap_begin
,
8044 .iomap_end
= btrfs_dio_iomap_end
,
8047 const struct iomap_dio_ops btrfs_dio_ops
= {
8048 .submit_io
= btrfs_submit_direct
,
8051 static int btrfs_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
8056 ret
= fiemap_prep(inode
, fieinfo
, start
, &len
, 0);
8060 return extent_fiemap(BTRFS_I(inode
), fieinfo
, start
, len
);
8063 int btrfs_readpage(struct file
*file
, struct page
*page
)
8065 struct btrfs_inode
*inode
= BTRFS_I(page
->mapping
->host
);
8066 u64 start
= page_offset(page
);
8067 u64 end
= start
+ PAGE_SIZE
- 1;
8068 unsigned long bio_flags
= 0;
8069 struct bio
*bio
= NULL
;
8072 btrfs_lock_and_flush_ordered_range(inode
, start
, end
, NULL
);
8074 ret
= btrfs_do_readpage(page
, NULL
, &bio
, &bio_flags
, 0, NULL
);
8076 ret
= submit_one_bio(bio
, 0, bio_flags
);
8080 static int btrfs_writepage(struct page
*page
, struct writeback_control
*wbc
)
8082 struct inode
*inode
= page
->mapping
->host
;
8085 if (current
->flags
& PF_MEMALLOC
) {
8086 redirty_page_for_writepage(wbc
, page
);
8092 * If we are under memory pressure we will call this directly from the
8093 * VM, we need to make sure we have the inode referenced for the ordered
8094 * extent. If not just return like we didn't do anything.
8096 if (!igrab(inode
)) {
8097 redirty_page_for_writepage(wbc
, page
);
8098 return AOP_WRITEPAGE_ACTIVATE
;
8100 ret
= extent_write_full_page(page
, wbc
);
8101 btrfs_add_delayed_iput(inode
);
8105 static int btrfs_writepages(struct address_space
*mapping
,
8106 struct writeback_control
*wbc
)
8108 return extent_writepages(mapping
, wbc
);
8111 static void btrfs_readahead(struct readahead_control
*rac
)
8113 extent_readahead(rac
);
8116 static int __btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
8118 int ret
= try_release_extent_mapping(page
, gfp_flags
);
8120 detach_page_private(page
);
8124 static int btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
8126 if (PageWriteback(page
) || PageDirty(page
))
8128 return __btrfs_releasepage(page
, gfp_flags
);
8131 #ifdef CONFIG_MIGRATION
8132 static int btrfs_migratepage(struct address_space
*mapping
,
8133 struct page
*newpage
, struct page
*page
,
8134 enum migrate_mode mode
)
8138 ret
= migrate_page_move_mapping(mapping
, newpage
, page
, 0);
8139 if (ret
!= MIGRATEPAGE_SUCCESS
)
8142 if (page_has_private(page
))
8143 attach_page_private(newpage
, detach_page_private(page
));
8145 if (PagePrivate2(page
)) {
8146 ClearPagePrivate2(page
);
8147 SetPagePrivate2(newpage
);
8150 if (mode
!= MIGRATE_SYNC_NO_COPY
)
8151 migrate_page_copy(newpage
, page
);
8153 migrate_page_states(newpage
, page
);
8154 return MIGRATEPAGE_SUCCESS
;
8158 static void btrfs_invalidatepage(struct page
*page
, unsigned int offset
,
8159 unsigned int length
)
8161 struct btrfs_inode
*inode
= BTRFS_I(page
->mapping
->host
);
8162 struct extent_io_tree
*tree
= &inode
->io_tree
;
8163 struct btrfs_ordered_extent
*ordered
;
8164 struct extent_state
*cached_state
= NULL
;
8165 u64 page_start
= page_offset(page
);
8166 u64 page_end
= page_start
+ PAGE_SIZE
- 1;
8169 int inode_evicting
= inode
->vfs_inode
.i_state
& I_FREEING
;
8170 bool found_ordered
= false;
8171 bool completed_ordered
= false;
8174 * we have the page locked, so new writeback can't start,
8175 * and the dirty bit won't be cleared while we are here.
8177 * Wait for IO on this page so that we can safely clear
8178 * the PagePrivate2 bit and do ordered accounting
8180 wait_on_page_writeback(page
);
8183 btrfs_releasepage(page
, GFP_NOFS
);
8187 if (!inode_evicting
)
8188 lock_extent_bits(tree
, page_start
, page_end
, &cached_state
);
8191 ordered
= btrfs_lookup_ordered_range(inode
, start
, page_end
- start
+ 1);
8193 found_ordered
= true;
8195 ordered
->file_offset
+ ordered
->num_bytes
- 1);
8197 * IO on this page will never be started, so we need to account
8198 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8199 * here, must leave that up for the ordered extent completion.
8201 if (!inode_evicting
)
8202 clear_extent_bit(tree
, start
, end
,
8204 EXTENT_LOCKED
| EXTENT_DO_ACCOUNTING
|
8205 EXTENT_DEFRAG
, 1, 0, &cached_state
);
8207 * whoever cleared the private bit is responsible
8208 * for the finish_ordered_io
8210 if (TestClearPagePrivate2(page
)) {
8211 struct btrfs_ordered_inode_tree
*tree
;
8214 tree
= &inode
->ordered_tree
;
8216 spin_lock_irq(&tree
->lock
);
8217 set_bit(BTRFS_ORDERED_TRUNCATED
, &ordered
->flags
);
8218 new_len
= start
- ordered
->file_offset
;
8219 if (new_len
< ordered
->truncated_len
)
8220 ordered
->truncated_len
= new_len
;
8221 spin_unlock_irq(&tree
->lock
);
8223 if (btrfs_dec_test_ordered_pending(inode
, &ordered
,
8225 end
- start
+ 1, 1)) {
8226 btrfs_finish_ordered_io(ordered
);
8227 completed_ordered
= true;
8230 btrfs_put_ordered_extent(ordered
);
8231 if (!inode_evicting
) {
8232 cached_state
= NULL
;
8233 lock_extent_bits(tree
, start
, end
,
8238 if (start
< page_end
)
8243 * Qgroup reserved space handler
8244 * Page here will be either
8245 * 1) Already written to disk or ordered extent already submitted
8246 * Then its QGROUP_RESERVED bit in io_tree is already cleaned.
8247 * Qgroup will be handled by its qgroup_record then.
8248 * btrfs_qgroup_free_data() call will do nothing here.
8250 * 2) Not written to disk yet
8251 * Then btrfs_qgroup_free_data() call will clear the QGROUP_RESERVED
8252 * bit of its io_tree, and free the qgroup reserved data space.
8253 * Since the IO will never happen for this page.
8255 btrfs_qgroup_free_data(inode
, NULL
, page_start
, PAGE_SIZE
);
8256 if (!inode_evicting
) {
8260 * If there's an ordered extent for this range and we have not
8261 * finished it ourselves, we must leave EXTENT_DELALLOC_NEW set
8262 * in the range for the ordered extent completion. We must also
8263 * not delete the range, otherwise we would lose that bit (and
8264 * any other bits set in the range). Make sure EXTENT_UPTODATE
8265 * is cleared if we don't delete, otherwise it can lead to
8266 * corruptions if the i_size is extented later.
8268 if (found_ordered
&& !completed_ordered
)
8270 clear_extent_bit(tree
, page_start
, page_end
, EXTENT_LOCKED
|
8271 EXTENT_DELALLOC
| EXTENT_UPTODATE
|
8272 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
, 1,
8273 delete, &cached_state
);
8275 __btrfs_releasepage(page
, GFP_NOFS
);
8278 ClearPageChecked(page
);
8279 detach_page_private(page
);
8283 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8284 * called from a page fault handler when a page is first dirtied. Hence we must
8285 * be careful to check for EOF conditions here. We set the page up correctly
8286 * for a written page which means we get ENOSPC checking when writing into
8287 * holes and correct delalloc and unwritten extent mapping on filesystems that
8288 * support these features.
8290 * We are not allowed to take the i_mutex here so we have to play games to
8291 * protect against truncate races as the page could now be beyond EOF. Because
8292 * truncate_setsize() writes the inode size before removing pages, once we have
8293 * the page lock we can determine safely if the page is beyond EOF. If it is not
8294 * beyond EOF, then the page is guaranteed safe against truncation until we
8297 vm_fault_t
btrfs_page_mkwrite(struct vm_fault
*vmf
)
8299 struct page
*page
= vmf
->page
;
8300 struct inode
*inode
= file_inode(vmf
->vma
->vm_file
);
8301 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8302 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
8303 struct btrfs_ordered_extent
*ordered
;
8304 struct extent_state
*cached_state
= NULL
;
8305 struct extent_changeset
*data_reserved
= NULL
;
8307 unsigned long zero_start
;
8317 reserved_space
= PAGE_SIZE
;
8319 sb_start_pagefault(inode
->i_sb
);
8320 page_start
= page_offset(page
);
8321 page_end
= page_start
+ PAGE_SIZE
- 1;
8325 * Reserving delalloc space after obtaining the page lock can lead to
8326 * deadlock. For example, if a dirty page is locked by this function
8327 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8328 * dirty page write out, then the btrfs_writepage() function could
8329 * end up waiting indefinitely to get a lock on the page currently
8330 * being processed by btrfs_page_mkwrite() function.
8332 ret2
= btrfs_delalloc_reserve_space(BTRFS_I(inode
), &data_reserved
,
8333 page_start
, reserved_space
);
8335 ret2
= file_update_time(vmf
->vma
->vm_file
);
8339 ret
= vmf_error(ret2
);
8345 ret
= VM_FAULT_NOPAGE
; /* make the VM retry the fault */
8348 size
= i_size_read(inode
);
8350 if ((page
->mapping
!= inode
->i_mapping
) ||
8351 (page_start
>= size
)) {
8352 /* page got truncated out from underneath us */
8355 wait_on_page_writeback(page
);
8357 lock_extent_bits(io_tree
, page_start
, page_end
, &cached_state
);
8358 set_page_extent_mapped(page
);
8361 * we can't set the delalloc bits if there are pending ordered
8362 * extents. Drop our locks and wait for them to finish
8364 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), page_start
,
8367 unlock_extent_cached(io_tree
, page_start
, page_end
,
8370 btrfs_start_ordered_extent(ordered
, 1);
8371 btrfs_put_ordered_extent(ordered
);
8375 if (page
->index
== ((size
- 1) >> PAGE_SHIFT
)) {
8376 reserved_space
= round_up(size
- page_start
,
8377 fs_info
->sectorsize
);
8378 if (reserved_space
< PAGE_SIZE
) {
8379 end
= page_start
+ reserved_space
- 1;
8380 btrfs_delalloc_release_space(BTRFS_I(inode
),
8381 data_reserved
, page_start
,
8382 PAGE_SIZE
- reserved_space
, true);
8387 * page_mkwrite gets called when the page is firstly dirtied after it's
8388 * faulted in, but write(2) could also dirty a page and set delalloc
8389 * bits, thus in this case for space account reason, we still need to
8390 * clear any delalloc bits within this page range since we have to
8391 * reserve data&meta space before lock_page() (see above comments).
8393 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, end
,
8394 EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
|
8395 EXTENT_DEFRAG
, 0, 0, &cached_state
);
8397 ret2
= btrfs_set_extent_delalloc(BTRFS_I(inode
), page_start
, end
, 0,
8400 unlock_extent_cached(io_tree
, page_start
, page_end
,
8402 ret
= VM_FAULT_SIGBUS
;
8406 /* page is wholly or partially inside EOF */
8407 if (page_start
+ PAGE_SIZE
> size
)
8408 zero_start
= offset_in_page(size
);
8410 zero_start
= PAGE_SIZE
;
8412 if (zero_start
!= PAGE_SIZE
) {
8414 memset(kaddr
+ zero_start
, 0, PAGE_SIZE
- zero_start
);
8415 flush_dcache_page(page
);
8418 ClearPageChecked(page
);
8419 set_page_dirty(page
);
8420 SetPageUptodate(page
);
8422 BTRFS_I(inode
)->last_trans
= fs_info
->generation
;
8423 BTRFS_I(inode
)->last_sub_trans
= BTRFS_I(inode
)->root
->log_transid
;
8424 BTRFS_I(inode
)->last_log_commit
= BTRFS_I(inode
)->root
->last_log_commit
;
8426 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
);
8428 btrfs_delalloc_release_extents(BTRFS_I(inode
), PAGE_SIZE
);
8429 sb_end_pagefault(inode
->i_sb
);
8430 extent_changeset_free(data_reserved
);
8431 return VM_FAULT_LOCKED
;
8436 btrfs_delalloc_release_extents(BTRFS_I(inode
), PAGE_SIZE
);
8437 btrfs_delalloc_release_space(BTRFS_I(inode
), data_reserved
, page_start
,
8438 reserved_space
, (ret
!= 0));
8440 sb_end_pagefault(inode
->i_sb
);
8441 extent_changeset_free(data_reserved
);
8445 static int btrfs_truncate(struct inode
*inode
, bool skip_writeback
)
8447 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8448 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
8449 struct btrfs_block_rsv
*rsv
;
8451 struct btrfs_trans_handle
*trans
;
8452 u64 mask
= fs_info
->sectorsize
- 1;
8453 u64 min_size
= btrfs_calc_metadata_size(fs_info
, 1);
8455 if (!skip_writeback
) {
8456 ret
= btrfs_wait_ordered_range(inode
, inode
->i_size
& (~mask
),
8463 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8464 * things going on here:
8466 * 1) We need to reserve space to update our inode.
8468 * 2) We need to have something to cache all the space that is going to
8469 * be free'd up by the truncate operation, but also have some slack
8470 * space reserved in case it uses space during the truncate (thank you
8471 * very much snapshotting).
8473 * And we need these to be separate. The fact is we can use a lot of
8474 * space doing the truncate, and we have no earthly idea how much space
8475 * we will use, so we need the truncate reservation to be separate so it
8476 * doesn't end up using space reserved for updating the inode. We also
8477 * need to be able to stop the transaction and start a new one, which
8478 * means we need to be able to update the inode several times, and we
8479 * have no idea of knowing how many times that will be, so we can't just
8480 * reserve 1 item for the entirety of the operation, so that has to be
8481 * done separately as well.
8483 * So that leaves us with
8485 * 1) rsv - for the truncate reservation, which we will steal from the
8486 * transaction reservation.
8487 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8488 * updating the inode.
8490 rsv
= btrfs_alloc_block_rsv(fs_info
, BTRFS_BLOCK_RSV_TEMP
);
8493 rsv
->size
= min_size
;
8497 * 1 for the truncate slack space
8498 * 1 for updating the inode.
8500 trans
= btrfs_start_transaction(root
, 2);
8501 if (IS_ERR(trans
)) {
8502 ret
= PTR_ERR(trans
);
8506 /* Migrate the slack space for the truncate to our reserve */
8507 ret
= btrfs_block_rsv_migrate(&fs_info
->trans_block_rsv
, rsv
,
8512 * So if we truncate and then write and fsync we normally would just
8513 * write the extents that changed, which is a problem if we need to
8514 * first truncate that entire inode. So set this flag so we write out
8515 * all of the extents in the inode to the sync log so we're completely
8518 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
8519 trans
->block_rsv
= rsv
;
8522 ret
= btrfs_truncate_inode_items(trans
, root
, BTRFS_I(inode
),
8524 BTRFS_EXTENT_DATA_KEY
);
8525 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
8526 if (ret
!= -ENOSPC
&& ret
!= -EAGAIN
)
8529 ret
= btrfs_update_inode(trans
, root
, BTRFS_I(inode
));
8533 btrfs_end_transaction(trans
);
8534 btrfs_btree_balance_dirty(fs_info
);
8536 trans
= btrfs_start_transaction(root
, 2);
8537 if (IS_ERR(trans
)) {
8538 ret
= PTR_ERR(trans
);
8543 btrfs_block_rsv_release(fs_info
, rsv
, -1, NULL
);
8544 ret
= btrfs_block_rsv_migrate(&fs_info
->trans_block_rsv
,
8545 rsv
, min_size
, false);
8546 BUG_ON(ret
); /* shouldn't happen */
8547 trans
->block_rsv
= rsv
;
8551 * We can't call btrfs_truncate_block inside a trans handle as we could
8552 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
8553 * we've truncated everything except the last little bit, and can do
8554 * btrfs_truncate_block and then update the disk_i_size.
8556 if (ret
== NEED_TRUNCATE_BLOCK
) {
8557 btrfs_end_transaction(trans
);
8558 btrfs_btree_balance_dirty(fs_info
);
8560 ret
= btrfs_truncate_block(BTRFS_I(inode
), inode
->i_size
, 0, 0);
8563 trans
= btrfs_start_transaction(root
, 1);
8564 if (IS_ERR(trans
)) {
8565 ret
= PTR_ERR(trans
);
8568 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode
), 0);
8574 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
8575 ret2
= btrfs_update_inode(trans
, root
, BTRFS_I(inode
));
8579 ret2
= btrfs_end_transaction(trans
);
8582 btrfs_btree_balance_dirty(fs_info
);
8585 btrfs_free_block_rsv(fs_info
, rsv
);
8591 * create a new subvolume directory/inode (helper for the ioctl).
8593 int btrfs_create_subvol_root(struct btrfs_trans_handle
*trans
,
8594 struct btrfs_root
*new_root
,
8595 struct btrfs_root
*parent_root
,
8598 struct inode
*inode
;
8602 inode
= btrfs_new_inode(trans
, new_root
, NULL
, "..", 2,
8603 new_dirid
, new_dirid
,
8604 S_IFDIR
| (~current_umask() & S_IRWXUGO
),
8607 return PTR_ERR(inode
);
8608 inode
->i_op
= &btrfs_dir_inode_operations
;
8609 inode
->i_fop
= &btrfs_dir_file_operations
;
8611 set_nlink(inode
, 1);
8612 btrfs_i_size_write(BTRFS_I(inode
), 0);
8613 unlock_new_inode(inode
);
8615 err
= btrfs_subvol_inherit_props(trans
, new_root
, parent_root
);
8617 btrfs_err(new_root
->fs_info
,
8618 "error inheriting subvolume %llu properties: %d",
8619 new_root
->root_key
.objectid
, err
);
8621 err
= btrfs_update_inode(trans
, new_root
, BTRFS_I(inode
));
8627 struct inode
*btrfs_alloc_inode(struct super_block
*sb
)
8629 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
8630 struct btrfs_inode
*ei
;
8631 struct inode
*inode
;
8633 ei
= kmem_cache_alloc(btrfs_inode_cachep
, GFP_KERNEL
);
8640 ei
->last_sub_trans
= 0;
8641 ei
->logged_trans
= 0;
8642 ei
->delalloc_bytes
= 0;
8643 ei
->new_delalloc_bytes
= 0;
8644 ei
->defrag_bytes
= 0;
8645 ei
->disk_i_size
= 0;
8648 ei
->index_cnt
= (u64
)-1;
8650 ei
->last_unlink_trans
= 0;
8651 ei
->last_reflink_trans
= 0;
8652 ei
->last_log_commit
= 0;
8654 spin_lock_init(&ei
->lock
);
8655 ei
->outstanding_extents
= 0;
8656 if (sb
->s_magic
!= BTRFS_TEST_MAGIC
)
8657 btrfs_init_metadata_block_rsv(fs_info
, &ei
->block_rsv
,
8658 BTRFS_BLOCK_RSV_DELALLOC
);
8659 ei
->runtime_flags
= 0;
8660 ei
->prop_compress
= BTRFS_COMPRESS_NONE
;
8661 ei
->defrag_compress
= BTRFS_COMPRESS_NONE
;
8663 ei
->delayed_node
= NULL
;
8665 ei
->i_otime
.tv_sec
= 0;
8666 ei
->i_otime
.tv_nsec
= 0;
8668 inode
= &ei
->vfs_inode
;
8669 extent_map_tree_init(&ei
->extent_tree
);
8670 extent_io_tree_init(fs_info
, &ei
->io_tree
, IO_TREE_INODE_IO
, inode
);
8671 extent_io_tree_init(fs_info
, &ei
->io_failure_tree
,
8672 IO_TREE_INODE_IO_FAILURE
, inode
);
8673 extent_io_tree_init(fs_info
, &ei
->file_extent_tree
,
8674 IO_TREE_INODE_FILE_EXTENT
, inode
);
8675 ei
->io_tree
.track_uptodate
= true;
8676 ei
->io_failure_tree
.track_uptodate
= true;
8677 atomic_set(&ei
->sync_writers
, 0);
8678 mutex_init(&ei
->log_mutex
);
8679 btrfs_ordered_inode_tree_init(&ei
->ordered_tree
);
8680 INIT_LIST_HEAD(&ei
->delalloc_inodes
);
8681 INIT_LIST_HEAD(&ei
->delayed_iput
);
8682 RB_CLEAR_NODE(&ei
->rb_node
);
8687 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8688 void btrfs_test_destroy_inode(struct inode
*inode
)
8690 btrfs_drop_extent_cache(BTRFS_I(inode
), 0, (u64
)-1, 0);
8691 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
8695 void btrfs_free_inode(struct inode
*inode
)
8697 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
8700 void btrfs_destroy_inode(struct inode
*vfs_inode
)
8702 struct btrfs_ordered_extent
*ordered
;
8703 struct btrfs_inode
*inode
= BTRFS_I(vfs_inode
);
8704 struct btrfs_root
*root
= inode
->root
;
8706 WARN_ON(!hlist_empty(&vfs_inode
->i_dentry
));
8707 WARN_ON(vfs_inode
->i_data
.nrpages
);
8708 WARN_ON(inode
->block_rsv
.reserved
);
8709 WARN_ON(inode
->block_rsv
.size
);
8710 WARN_ON(inode
->outstanding_extents
);
8711 WARN_ON(inode
->delalloc_bytes
);
8712 WARN_ON(inode
->new_delalloc_bytes
);
8713 WARN_ON(inode
->csum_bytes
);
8714 WARN_ON(inode
->defrag_bytes
);
8717 * This can happen where we create an inode, but somebody else also
8718 * created the same inode and we need to destroy the one we already
8725 ordered
= btrfs_lookup_first_ordered_extent(inode
, (u64
)-1);
8729 btrfs_err(root
->fs_info
,
8730 "found ordered extent %llu %llu on inode cleanup",
8731 ordered
->file_offset
, ordered
->num_bytes
);
8732 btrfs_remove_ordered_extent(inode
, ordered
);
8733 btrfs_put_ordered_extent(ordered
);
8734 btrfs_put_ordered_extent(ordered
);
8737 btrfs_qgroup_check_reserved_leak(inode
);
8738 inode_tree_del(inode
);
8739 btrfs_drop_extent_cache(inode
, 0, (u64
)-1, 0);
8740 btrfs_inode_clear_file_extent_range(inode
, 0, (u64
)-1);
8741 btrfs_put_root(inode
->root
);
8744 int btrfs_drop_inode(struct inode
*inode
)
8746 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
8751 /* the snap/subvol tree is on deleting */
8752 if (btrfs_root_refs(&root
->root_item
) == 0)
8755 return generic_drop_inode(inode
);
8758 static void init_once(void *foo
)
8760 struct btrfs_inode
*ei
= (struct btrfs_inode
*) foo
;
8762 inode_init_once(&ei
->vfs_inode
);
8765 void __cold
btrfs_destroy_cachep(void)
8768 * Make sure all delayed rcu free inodes are flushed before we
8772 kmem_cache_destroy(btrfs_inode_cachep
);
8773 kmem_cache_destroy(btrfs_trans_handle_cachep
);
8774 kmem_cache_destroy(btrfs_path_cachep
);
8775 kmem_cache_destroy(btrfs_free_space_cachep
);
8776 kmem_cache_destroy(btrfs_free_space_bitmap_cachep
);
8779 int __init
btrfs_init_cachep(void)
8781 btrfs_inode_cachep
= kmem_cache_create("btrfs_inode",
8782 sizeof(struct btrfs_inode
), 0,
8783 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
| SLAB_ACCOUNT
,
8785 if (!btrfs_inode_cachep
)
8788 btrfs_trans_handle_cachep
= kmem_cache_create("btrfs_trans_handle",
8789 sizeof(struct btrfs_trans_handle
), 0,
8790 SLAB_TEMPORARY
| SLAB_MEM_SPREAD
, NULL
);
8791 if (!btrfs_trans_handle_cachep
)
8794 btrfs_path_cachep
= kmem_cache_create("btrfs_path",
8795 sizeof(struct btrfs_path
), 0,
8796 SLAB_MEM_SPREAD
, NULL
);
8797 if (!btrfs_path_cachep
)
8800 btrfs_free_space_cachep
= kmem_cache_create("btrfs_free_space",
8801 sizeof(struct btrfs_free_space
), 0,
8802 SLAB_MEM_SPREAD
, NULL
);
8803 if (!btrfs_free_space_cachep
)
8806 btrfs_free_space_bitmap_cachep
= kmem_cache_create("btrfs_free_space_bitmap",
8807 PAGE_SIZE
, PAGE_SIZE
,
8808 SLAB_RED_ZONE
, NULL
);
8809 if (!btrfs_free_space_bitmap_cachep
)
8814 btrfs_destroy_cachep();
8818 static int btrfs_getattr(const struct path
*path
, struct kstat
*stat
,
8819 u32 request_mask
, unsigned int flags
)
8823 struct inode
*inode
= d_inode(path
->dentry
);
8824 u32 blocksize
= inode
->i_sb
->s_blocksize
;
8825 u32 bi_flags
= BTRFS_I(inode
)->flags
;
8827 stat
->result_mask
|= STATX_BTIME
;
8828 stat
->btime
.tv_sec
= BTRFS_I(inode
)->i_otime
.tv_sec
;
8829 stat
->btime
.tv_nsec
= BTRFS_I(inode
)->i_otime
.tv_nsec
;
8830 if (bi_flags
& BTRFS_INODE_APPEND
)
8831 stat
->attributes
|= STATX_ATTR_APPEND
;
8832 if (bi_flags
& BTRFS_INODE_COMPRESS
)
8833 stat
->attributes
|= STATX_ATTR_COMPRESSED
;
8834 if (bi_flags
& BTRFS_INODE_IMMUTABLE
)
8835 stat
->attributes
|= STATX_ATTR_IMMUTABLE
;
8836 if (bi_flags
& BTRFS_INODE_NODUMP
)
8837 stat
->attributes
|= STATX_ATTR_NODUMP
;
8839 stat
->attributes_mask
|= (STATX_ATTR_APPEND
|
8840 STATX_ATTR_COMPRESSED
|
8841 STATX_ATTR_IMMUTABLE
|
8844 generic_fillattr(inode
, stat
);
8845 stat
->dev
= BTRFS_I(inode
)->root
->anon_dev
;
8847 spin_lock(&BTRFS_I(inode
)->lock
);
8848 delalloc_bytes
= BTRFS_I(inode
)->new_delalloc_bytes
;
8849 inode_bytes
= inode_get_bytes(inode
);
8850 spin_unlock(&BTRFS_I(inode
)->lock
);
8851 stat
->blocks
= (ALIGN(inode_bytes
, blocksize
) +
8852 ALIGN(delalloc_bytes
, blocksize
)) >> 9;
8856 static int btrfs_rename_exchange(struct inode
*old_dir
,
8857 struct dentry
*old_dentry
,
8858 struct inode
*new_dir
,
8859 struct dentry
*new_dentry
)
8861 struct btrfs_fs_info
*fs_info
= btrfs_sb(old_dir
->i_sb
);
8862 struct btrfs_trans_handle
*trans
;
8863 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
8864 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
8865 struct inode
*new_inode
= new_dentry
->d_inode
;
8866 struct inode
*old_inode
= old_dentry
->d_inode
;
8867 struct timespec64 ctime
= current_time(old_inode
);
8868 u64 old_ino
= btrfs_ino(BTRFS_I(old_inode
));
8869 u64 new_ino
= btrfs_ino(BTRFS_I(new_inode
));
8874 bool root_log_pinned
= false;
8875 bool dest_log_pinned
= false;
8877 /* we only allow rename subvolume link between subvolumes */
8878 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
8881 /* close the race window with snapshot create/destroy ioctl */
8882 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
||
8883 new_ino
== BTRFS_FIRST_FREE_OBJECTID
)
8884 down_read(&fs_info
->subvol_sem
);
8887 * We want to reserve the absolute worst case amount of items. So if
8888 * both inodes are subvols and we need to unlink them then that would
8889 * require 4 item modifications, but if they are both normal inodes it
8890 * would require 5 item modifications, so we'll assume their normal
8891 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
8892 * should cover the worst case number of items we'll modify.
8894 trans
= btrfs_start_transaction(root
, 12);
8895 if (IS_ERR(trans
)) {
8896 ret
= PTR_ERR(trans
);
8901 btrfs_record_root_in_trans(trans
, dest
);
8904 * We need to find a free sequence number both in the source and
8905 * in the destination directory for the exchange.
8907 ret
= btrfs_set_inode_index(BTRFS_I(new_dir
), &old_idx
);
8910 ret
= btrfs_set_inode_index(BTRFS_I(old_dir
), &new_idx
);
8914 BTRFS_I(old_inode
)->dir_index
= 0ULL;
8915 BTRFS_I(new_inode
)->dir_index
= 0ULL;
8917 /* Reference for the source. */
8918 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
8919 /* force full log commit if subvolume involved. */
8920 btrfs_set_log_full_commit(trans
);
8922 btrfs_pin_log_trans(root
);
8923 root_log_pinned
= true;
8924 ret
= btrfs_insert_inode_ref(trans
, dest
,
8925 new_dentry
->d_name
.name
,
8926 new_dentry
->d_name
.len
,
8928 btrfs_ino(BTRFS_I(new_dir
)),
8934 /* And now for the dest. */
8935 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
8936 /* force full log commit if subvolume involved. */
8937 btrfs_set_log_full_commit(trans
);
8939 btrfs_pin_log_trans(dest
);
8940 dest_log_pinned
= true;
8941 ret
= btrfs_insert_inode_ref(trans
, root
,
8942 old_dentry
->d_name
.name
,
8943 old_dentry
->d_name
.len
,
8945 btrfs_ino(BTRFS_I(old_dir
)),
8951 /* Update inode version and ctime/mtime. */
8952 inode_inc_iversion(old_dir
);
8953 inode_inc_iversion(new_dir
);
8954 inode_inc_iversion(old_inode
);
8955 inode_inc_iversion(new_inode
);
8956 old_dir
->i_ctime
= old_dir
->i_mtime
= ctime
;
8957 new_dir
->i_ctime
= new_dir
->i_mtime
= ctime
;
8958 old_inode
->i_ctime
= ctime
;
8959 new_inode
->i_ctime
= ctime
;
8961 if (old_dentry
->d_parent
!= new_dentry
->d_parent
) {
8962 btrfs_record_unlink_dir(trans
, BTRFS_I(old_dir
),
8963 BTRFS_I(old_inode
), 1);
8964 btrfs_record_unlink_dir(trans
, BTRFS_I(new_dir
),
8965 BTRFS_I(new_inode
), 1);
8968 /* src is a subvolume */
8969 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
8970 ret
= btrfs_unlink_subvol(trans
, old_dir
, old_dentry
);
8971 } else { /* src is an inode */
8972 ret
= __btrfs_unlink_inode(trans
, root
, BTRFS_I(old_dir
),
8973 BTRFS_I(old_dentry
->d_inode
),
8974 old_dentry
->d_name
.name
,
8975 old_dentry
->d_name
.len
);
8977 ret
= btrfs_update_inode(trans
, root
, BTRFS_I(old_inode
));
8980 btrfs_abort_transaction(trans
, ret
);
8984 /* dest is a subvolume */
8985 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
8986 ret
= btrfs_unlink_subvol(trans
, new_dir
, new_dentry
);
8987 } else { /* dest is an inode */
8988 ret
= __btrfs_unlink_inode(trans
, dest
, BTRFS_I(new_dir
),
8989 BTRFS_I(new_dentry
->d_inode
),
8990 new_dentry
->d_name
.name
,
8991 new_dentry
->d_name
.len
);
8993 ret
= btrfs_update_inode(trans
, dest
, BTRFS_I(new_inode
));
8996 btrfs_abort_transaction(trans
, ret
);
9000 ret
= btrfs_add_link(trans
, BTRFS_I(new_dir
), BTRFS_I(old_inode
),
9001 new_dentry
->d_name
.name
,
9002 new_dentry
->d_name
.len
, 0, old_idx
);
9004 btrfs_abort_transaction(trans
, ret
);
9008 ret
= btrfs_add_link(trans
, BTRFS_I(old_dir
), BTRFS_I(new_inode
),
9009 old_dentry
->d_name
.name
,
9010 old_dentry
->d_name
.len
, 0, new_idx
);
9012 btrfs_abort_transaction(trans
, ret
);
9016 if (old_inode
->i_nlink
== 1)
9017 BTRFS_I(old_inode
)->dir_index
= old_idx
;
9018 if (new_inode
->i_nlink
== 1)
9019 BTRFS_I(new_inode
)->dir_index
= new_idx
;
9021 if (root_log_pinned
) {
9022 btrfs_log_new_name(trans
, BTRFS_I(old_inode
), BTRFS_I(old_dir
),
9023 new_dentry
->d_parent
);
9024 btrfs_end_log_trans(root
);
9025 root_log_pinned
= false;
9027 if (dest_log_pinned
) {
9028 btrfs_log_new_name(trans
, BTRFS_I(new_inode
), BTRFS_I(new_dir
),
9029 old_dentry
->d_parent
);
9030 btrfs_end_log_trans(dest
);
9031 dest_log_pinned
= false;
9035 * If we have pinned a log and an error happened, we unpin tasks
9036 * trying to sync the log and force them to fallback to a transaction
9037 * commit if the log currently contains any of the inodes involved in
9038 * this rename operation (to ensure we do not persist a log with an
9039 * inconsistent state for any of these inodes or leading to any
9040 * inconsistencies when replayed). If the transaction was aborted, the
9041 * abortion reason is propagated to userspace when attempting to commit
9042 * the transaction. If the log does not contain any of these inodes, we
9043 * allow the tasks to sync it.
9045 if (ret
&& (root_log_pinned
|| dest_log_pinned
)) {
9046 if (btrfs_inode_in_log(BTRFS_I(old_dir
), fs_info
->generation
) ||
9047 btrfs_inode_in_log(BTRFS_I(new_dir
), fs_info
->generation
) ||
9048 btrfs_inode_in_log(BTRFS_I(old_inode
), fs_info
->generation
) ||
9050 btrfs_inode_in_log(BTRFS_I(new_inode
), fs_info
->generation
)))
9051 btrfs_set_log_full_commit(trans
);
9053 if (root_log_pinned
) {
9054 btrfs_end_log_trans(root
);
9055 root_log_pinned
= false;
9057 if (dest_log_pinned
) {
9058 btrfs_end_log_trans(dest
);
9059 dest_log_pinned
= false;
9062 ret2
= btrfs_end_transaction(trans
);
9063 ret
= ret
? ret
: ret2
;
9065 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
||
9066 old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9067 up_read(&fs_info
->subvol_sem
);
9072 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle
*trans
,
9073 struct btrfs_root
*root
,
9075 struct dentry
*dentry
)
9078 struct inode
*inode
;
9082 ret
= btrfs_find_free_objectid(root
, &objectid
);
9086 inode
= btrfs_new_inode(trans
, root
, dir
,
9087 dentry
->d_name
.name
,
9089 btrfs_ino(BTRFS_I(dir
)),
9091 S_IFCHR
| WHITEOUT_MODE
,
9094 if (IS_ERR(inode
)) {
9095 ret
= PTR_ERR(inode
);
9099 inode
->i_op
= &btrfs_special_inode_operations
;
9100 init_special_inode(inode
, inode
->i_mode
,
9103 ret
= btrfs_init_inode_security(trans
, inode
, dir
,
9108 ret
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
,
9109 BTRFS_I(inode
), 0, index
);
9113 ret
= btrfs_update_inode(trans
, root
, BTRFS_I(inode
));
9115 unlock_new_inode(inode
);
9117 inode_dec_link_count(inode
);
9123 static int btrfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
9124 struct inode
*new_dir
, struct dentry
*new_dentry
,
9127 struct btrfs_fs_info
*fs_info
= btrfs_sb(old_dir
->i_sb
);
9128 struct btrfs_trans_handle
*trans
;
9129 unsigned int trans_num_items
;
9130 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
9131 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
9132 struct inode
*new_inode
= d_inode(new_dentry
);
9133 struct inode
*old_inode
= d_inode(old_dentry
);
9137 u64 old_ino
= btrfs_ino(BTRFS_I(old_inode
));
9138 bool log_pinned
= false;
9140 if (btrfs_ino(BTRFS_I(new_dir
)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
9143 /* we only allow rename subvolume link between subvolumes */
9144 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
9147 if (old_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
||
9148 (new_inode
&& btrfs_ino(BTRFS_I(new_inode
)) == BTRFS_FIRST_FREE_OBJECTID
))
9151 if (S_ISDIR(old_inode
->i_mode
) && new_inode
&&
9152 new_inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
9156 /* check for collisions, even if the name isn't there */
9157 ret
= btrfs_check_dir_item_collision(dest
, new_dir
->i_ino
,
9158 new_dentry
->d_name
.name
,
9159 new_dentry
->d_name
.len
);
9162 if (ret
== -EEXIST
) {
9164 * eexist without a new_inode */
9165 if (WARN_ON(!new_inode
)) {
9169 /* maybe -EOVERFLOW */
9176 * we're using rename to replace one file with another. Start IO on it
9177 * now so we don't add too much work to the end of the transaction
9179 if (new_inode
&& S_ISREG(old_inode
->i_mode
) && new_inode
->i_size
)
9180 filemap_flush(old_inode
->i_mapping
);
9182 /* close the racy window with snapshot create/destroy ioctl */
9183 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9184 down_read(&fs_info
->subvol_sem
);
9186 * We want to reserve the absolute worst case amount of items. So if
9187 * both inodes are subvols and we need to unlink them then that would
9188 * require 4 item modifications, but if they are both normal inodes it
9189 * would require 5 item modifications, so we'll assume they are normal
9190 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9191 * should cover the worst case number of items we'll modify.
9192 * If our rename has the whiteout flag, we need more 5 units for the
9193 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9194 * when selinux is enabled).
9196 trans_num_items
= 11;
9197 if (flags
& RENAME_WHITEOUT
)
9198 trans_num_items
+= 5;
9199 trans
= btrfs_start_transaction(root
, trans_num_items
);
9200 if (IS_ERR(trans
)) {
9201 ret
= PTR_ERR(trans
);
9206 btrfs_record_root_in_trans(trans
, dest
);
9208 ret
= btrfs_set_inode_index(BTRFS_I(new_dir
), &index
);
9212 BTRFS_I(old_inode
)->dir_index
= 0ULL;
9213 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
9214 /* force full log commit if subvolume involved. */
9215 btrfs_set_log_full_commit(trans
);
9217 btrfs_pin_log_trans(root
);
9219 ret
= btrfs_insert_inode_ref(trans
, dest
,
9220 new_dentry
->d_name
.name
,
9221 new_dentry
->d_name
.len
,
9223 btrfs_ino(BTRFS_I(new_dir
)), index
);
9228 inode_inc_iversion(old_dir
);
9229 inode_inc_iversion(new_dir
);
9230 inode_inc_iversion(old_inode
);
9231 old_dir
->i_ctime
= old_dir
->i_mtime
=
9232 new_dir
->i_ctime
= new_dir
->i_mtime
=
9233 old_inode
->i_ctime
= current_time(old_dir
);
9235 if (old_dentry
->d_parent
!= new_dentry
->d_parent
)
9236 btrfs_record_unlink_dir(trans
, BTRFS_I(old_dir
),
9237 BTRFS_I(old_inode
), 1);
9239 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
9240 ret
= btrfs_unlink_subvol(trans
, old_dir
, old_dentry
);
9242 ret
= __btrfs_unlink_inode(trans
, root
, BTRFS_I(old_dir
),
9243 BTRFS_I(d_inode(old_dentry
)),
9244 old_dentry
->d_name
.name
,
9245 old_dentry
->d_name
.len
);
9247 ret
= btrfs_update_inode(trans
, root
, BTRFS_I(old_inode
));
9250 btrfs_abort_transaction(trans
, ret
);
9255 inode_inc_iversion(new_inode
);
9256 new_inode
->i_ctime
= current_time(new_inode
);
9257 if (unlikely(btrfs_ino(BTRFS_I(new_inode
)) ==
9258 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
9259 ret
= btrfs_unlink_subvol(trans
, new_dir
, new_dentry
);
9260 BUG_ON(new_inode
->i_nlink
== 0);
9262 ret
= btrfs_unlink_inode(trans
, dest
, BTRFS_I(new_dir
),
9263 BTRFS_I(d_inode(new_dentry
)),
9264 new_dentry
->d_name
.name
,
9265 new_dentry
->d_name
.len
);
9267 if (!ret
&& new_inode
->i_nlink
== 0)
9268 ret
= btrfs_orphan_add(trans
,
9269 BTRFS_I(d_inode(new_dentry
)));
9271 btrfs_abort_transaction(trans
, ret
);
9276 ret
= btrfs_add_link(trans
, BTRFS_I(new_dir
), BTRFS_I(old_inode
),
9277 new_dentry
->d_name
.name
,
9278 new_dentry
->d_name
.len
, 0, index
);
9280 btrfs_abort_transaction(trans
, ret
);
9284 if (old_inode
->i_nlink
== 1)
9285 BTRFS_I(old_inode
)->dir_index
= index
;
9288 btrfs_log_new_name(trans
, BTRFS_I(old_inode
), BTRFS_I(old_dir
),
9289 new_dentry
->d_parent
);
9290 btrfs_end_log_trans(root
);
9294 if (flags
& RENAME_WHITEOUT
) {
9295 ret
= btrfs_whiteout_for_rename(trans
, root
, old_dir
,
9299 btrfs_abort_transaction(trans
, ret
);
9305 * If we have pinned the log and an error happened, we unpin tasks
9306 * trying to sync the log and force them to fallback to a transaction
9307 * commit if the log currently contains any of the inodes involved in
9308 * this rename operation (to ensure we do not persist a log with an
9309 * inconsistent state for any of these inodes or leading to any
9310 * inconsistencies when replayed). If the transaction was aborted, the
9311 * abortion reason is propagated to userspace when attempting to commit
9312 * the transaction. If the log does not contain any of these inodes, we
9313 * allow the tasks to sync it.
9315 if (ret
&& log_pinned
) {
9316 if (btrfs_inode_in_log(BTRFS_I(old_dir
), fs_info
->generation
) ||
9317 btrfs_inode_in_log(BTRFS_I(new_dir
), fs_info
->generation
) ||
9318 btrfs_inode_in_log(BTRFS_I(old_inode
), fs_info
->generation
) ||
9320 btrfs_inode_in_log(BTRFS_I(new_inode
), fs_info
->generation
)))
9321 btrfs_set_log_full_commit(trans
);
9323 btrfs_end_log_trans(root
);
9326 ret2
= btrfs_end_transaction(trans
);
9327 ret
= ret
? ret
: ret2
;
9329 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9330 up_read(&fs_info
->subvol_sem
);
9335 static int btrfs_rename2(struct inode
*old_dir
, struct dentry
*old_dentry
,
9336 struct inode
*new_dir
, struct dentry
*new_dentry
,
9339 if (flags
& ~(RENAME_NOREPLACE
| RENAME_EXCHANGE
| RENAME_WHITEOUT
))
9342 if (flags
& RENAME_EXCHANGE
)
9343 return btrfs_rename_exchange(old_dir
, old_dentry
, new_dir
,
9346 return btrfs_rename(old_dir
, old_dentry
, new_dir
, new_dentry
, flags
);
9349 struct btrfs_delalloc_work
{
9350 struct inode
*inode
;
9351 struct completion completion
;
9352 struct list_head list
;
9353 struct btrfs_work work
;
9356 static void btrfs_run_delalloc_work(struct btrfs_work
*work
)
9358 struct btrfs_delalloc_work
*delalloc_work
;
9359 struct inode
*inode
;
9361 delalloc_work
= container_of(work
, struct btrfs_delalloc_work
,
9363 inode
= delalloc_work
->inode
;
9364 filemap_flush(inode
->i_mapping
);
9365 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
9366 &BTRFS_I(inode
)->runtime_flags
))
9367 filemap_flush(inode
->i_mapping
);
9370 complete(&delalloc_work
->completion
);
9373 static struct btrfs_delalloc_work
*btrfs_alloc_delalloc_work(struct inode
*inode
)
9375 struct btrfs_delalloc_work
*work
;
9377 work
= kmalloc(sizeof(*work
), GFP_NOFS
);
9381 init_completion(&work
->completion
);
9382 INIT_LIST_HEAD(&work
->list
);
9383 work
->inode
= inode
;
9384 btrfs_init_work(&work
->work
, btrfs_run_delalloc_work
, NULL
, NULL
);
9390 * some fairly slow code that needs optimization. This walks the list
9391 * of all the inodes with pending delalloc and forces them to disk.
9393 static int start_delalloc_inodes(struct btrfs_root
*root
, u64
*nr
, bool snapshot
,
9394 bool in_reclaim_context
)
9396 struct btrfs_inode
*binode
;
9397 struct inode
*inode
;
9398 struct btrfs_delalloc_work
*work
, *next
;
9399 struct list_head works
;
9400 struct list_head splice
;
9403 INIT_LIST_HEAD(&works
);
9404 INIT_LIST_HEAD(&splice
);
9406 mutex_lock(&root
->delalloc_mutex
);
9407 spin_lock(&root
->delalloc_lock
);
9408 list_splice_init(&root
->delalloc_inodes
, &splice
);
9409 while (!list_empty(&splice
)) {
9410 binode
= list_entry(splice
.next
, struct btrfs_inode
,
9413 list_move_tail(&binode
->delalloc_inodes
,
9414 &root
->delalloc_inodes
);
9416 if (in_reclaim_context
&&
9417 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH
, &binode
->runtime_flags
))
9420 inode
= igrab(&binode
->vfs_inode
);
9422 cond_resched_lock(&root
->delalloc_lock
);
9425 spin_unlock(&root
->delalloc_lock
);
9428 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH
,
9429 &binode
->runtime_flags
);
9430 work
= btrfs_alloc_delalloc_work(inode
);
9436 list_add_tail(&work
->list
, &works
);
9437 btrfs_queue_work(root
->fs_info
->flush_workers
,
9439 if (*nr
!= U64_MAX
) {
9445 spin_lock(&root
->delalloc_lock
);
9447 spin_unlock(&root
->delalloc_lock
);
9450 list_for_each_entry_safe(work
, next
, &works
, list
) {
9451 list_del_init(&work
->list
);
9452 wait_for_completion(&work
->completion
);
9456 if (!list_empty(&splice
)) {
9457 spin_lock(&root
->delalloc_lock
);
9458 list_splice_tail(&splice
, &root
->delalloc_inodes
);
9459 spin_unlock(&root
->delalloc_lock
);
9461 mutex_unlock(&root
->delalloc_mutex
);
9465 int btrfs_start_delalloc_snapshot(struct btrfs_root
*root
)
9467 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
9470 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
9473 return start_delalloc_inodes(root
, &nr
, true, false);
9476 int btrfs_start_delalloc_roots(struct btrfs_fs_info
*fs_info
, u64 nr
,
9477 bool in_reclaim_context
)
9479 struct btrfs_root
*root
;
9480 struct list_head splice
;
9483 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
9486 INIT_LIST_HEAD(&splice
);
9488 mutex_lock(&fs_info
->delalloc_root_mutex
);
9489 spin_lock(&fs_info
->delalloc_root_lock
);
9490 list_splice_init(&fs_info
->delalloc_roots
, &splice
);
9491 while (!list_empty(&splice
) && nr
) {
9492 root
= list_first_entry(&splice
, struct btrfs_root
,
9494 root
= btrfs_grab_root(root
);
9496 list_move_tail(&root
->delalloc_root
,
9497 &fs_info
->delalloc_roots
);
9498 spin_unlock(&fs_info
->delalloc_root_lock
);
9500 ret
= start_delalloc_inodes(root
, &nr
, false, in_reclaim_context
);
9501 btrfs_put_root(root
);
9504 spin_lock(&fs_info
->delalloc_root_lock
);
9506 spin_unlock(&fs_info
->delalloc_root_lock
);
9510 if (!list_empty(&splice
)) {
9511 spin_lock(&fs_info
->delalloc_root_lock
);
9512 list_splice_tail(&splice
, &fs_info
->delalloc_roots
);
9513 spin_unlock(&fs_info
->delalloc_root_lock
);
9515 mutex_unlock(&fs_info
->delalloc_root_mutex
);
9519 static int btrfs_symlink(struct inode
*dir
, struct dentry
*dentry
,
9520 const char *symname
)
9522 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
9523 struct btrfs_trans_handle
*trans
;
9524 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
9525 struct btrfs_path
*path
;
9526 struct btrfs_key key
;
9527 struct inode
*inode
= NULL
;
9534 struct btrfs_file_extent_item
*ei
;
9535 struct extent_buffer
*leaf
;
9537 name_len
= strlen(symname
);
9538 if (name_len
> BTRFS_MAX_INLINE_DATA_SIZE(fs_info
))
9539 return -ENAMETOOLONG
;
9542 * 2 items for inode item and ref
9543 * 2 items for dir items
9544 * 1 item for updating parent inode item
9545 * 1 item for the inline extent item
9546 * 1 item for xattr if selinux is on
9548 trans
= btrfs_start_transaction(root
, 7);
9550 return PTR_ERR(trans
);
9552 err
= btrfs_find_free_objectid(root
, &objectid
);
9556 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
9557 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)),
9558 objectid
, S_IFLNK
|S_IRWXUGO
, &index
);
9559 if (IS_ERR(inode
)) {
9560 err
= PTR_ERR(inode
);
9566 * If the active LSM wants to access the inode during
9567 * d_instantiate it needs these. Smack checks to see
9568 * if the filesystem supports xattrs by looking at the
9571 inode
->i_fop
= &btrfs_file_operations
;
9572 inode
->i_op
= &btrfs_file_inode_operations
;
9573 inode
->i_mapping
->a_ops
= &btrfs_aops
;
9575 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
9579 path
= btrfs_alloc_path();
9584 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
9586 key
.type
= BTRFS_EXTENT_DATA_KEY
;
9587 datasize
= btrfs_file_extent_calc_inline_size(name_len
);
9588 err
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
9591 btrfs_free_path(path
);
9594 leaf
= path
->nodes
[0];
9595 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
9596 struct btrfs_file_extent_item
);
9597 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
9598 btrfs_set_file_extent_type(leaf
, ei
,
9599 BTRFS_FILE_EXTENT_INLINE
);
9600 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
9601 btrfs_set_file_extent_compression(leaf
, ei
, 0);
9602 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
9603 btrfs_set_file_extent_ram_bytes(leaf
, ei
, name_len
);
9605 ptr
= btrfs_file_extent_inline_start(ei
);
9606 write_extent_buffer(leaf
, symname
, ptr
, name_len
);
9607 btrfs_mark_buffer_dirty(leaf
);
9608 btrfs_free_path(path
);
9610 inode
->i_op
= &btrfs_symlink_inode_operations
;
9611 inode_nohighmem(inode
);
9612 inode_set_bytes(inode
, name_len
);
9613 btrfs_i_size_write(BTRFS_I(inode
), name_len
);
9614 err
= btrfs_update_inode(trans
, root
, BTRFS_I(inode
));
9616 * Last step, add directory indexes for our symlink inode. This is the
9617 * last step to avoid extra cleanup of these indexes if an error happens
9621 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
,
9622 BTRFS_I(inode
), 0, index
);
9626 d_instantiate_new(dentry
, inode
);
9629 btrfs_end_transaction(trans
);
9631 inode_dec_link_count(inode
);
9632 discard_new_inode(inode
);
9634 btrfs_btree_balance_dirty(fs_info
);
9638 static struct btrfs_trans_handle
*insert_prealloc_file_extent(
9639 struct btrfs_trans_handle
*trans_in
,
9640 struct btrfs_inode
*inode
,
9641 struct btrfs_key
*ins
,
9644 struct btrfs_file_extent_item stack_fi
;
9645 struct btrfs_replace_extent_info extent_info
;
9646 struct btrfs_trans_handle
*trans
= trans_in
;
9647 struct btrfs_path
*path
;
9648 u64 start
= ins
->objectid
;
9649 u64 len
= ins
->offset
;
9652 memset(&stack_fi
, 0, sizeof(stack_fi
));
9654 btrfs_set_stack_file_extent_type(&stack_fi
, BTRFS_FILE_EXTENT_PREALLOC
);
9655 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi
, start
);
9656 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi
, len
);
9657 btrfs_set_stack_file_extent_num_bytes(&stack_fi
, len
);
9658 btrfs_set_stack_file_extent_ram_bytes(&stack_fi
, len
);
9659 btrfs_set_stack_file_extent_compression(&stack_fi
, BTRFS_COMPRESS_NONE
);
9660 /* Encryption and other encoding is reserved and all 0 */
9662 ret
= btrfs_qgroup_release_data(inode
, file_offset
, len
);
9664 return ERR_PTR(ret
);
9667 ret
= insert_reserved_file_extent(trans
, inode
,
9668 file_offset
, &stack_fi
,
9671 return ERR_PTR(ret
);
9675 extent_info
.disk_offset
= start
;
9676 extent_info
.disk_len
= len
;
9677 extent_info
.data_offset
= 0;
9678 extent_info
.data_len
= len
;
9679 extent_info
.file_offset
= file_offset
;
9680 extent_info
.extent_buf
= (char *)&stack_fi
;
9681 extent_info
.is_new_extent
= true;
9682 extent_info
.qgroup_reserved
= ret
;
9683 extent_info
.insertions
= 0;
9685 path
= btrfs_alloc_path();
9687 return ERR_PTR(-ENOMEM
);
9689 ret
= btrfs_replace_file_extents(&inode
->vfs_inode
, path
, file_offset
,
9690 file_offset
+ len
- 1, &extent_info
,
9692 btrfs_free_path(path
);
9694 return ERR_PTR(ret
);
9699 static int __btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
9700 u64 start
, u64 num_bytes
, u64 min_size
,
9701 loff_t actual_len
, u64
*alloc_hint
,
9702 struct btrfs_trans_handle
*trans
)
9704 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
9705 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
9706 struct extent_map
*em
;
9707 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
9708 struct btrfs_key ins
;
9709 u64 cur_offset
= start
;
9710 u64 clear_offset
= start
;
9713 u64 last_alloc
= (u64
)-1;
9715 bool own_trans
= true;
9716 u64 end
= start
+ num_bytes
- 1;
9720 while (num_bytes
> 0) {
9721 cur_bytes
= min_t(u64
, num_bytes
, SZ_256M
);
9722 cur_bytes
= max(cur_bytes
, min_size
);
9724 * If we are severely fragmented we could end up with really
9725 * small allocations, so if the allocator is returning small
9726 * chunks lets make its job easier by only searching for those
9729 cur_bytes
= min(cur_bytes
, last_alloc
);
9730 ret
= btrfs_reserve_extent(root
, cur_bytes
, cur_bytes
,
9731 min_size
, 0, *alloc_hint
, &ins
, 1, 0);
9736 * We've reserved this space, and thus converted it from
9737 * ->bytes_may_use to ->bytes_reserved. Any error that happens
9738 * from here on out we will only need to clear our reservation
9739 * for the remaining unreserved area, so advance our
9740 * clear_offset by our extent size.
9742 clear_offset
+= ins
.offset
;
9744 last_alloc
= ins
.offset
;
9745 trans
= insert_prealloc_file_extent(trans
, BTRFS_I(inode
),
9748 * Now that we inserted the prealloc extent we can finally
9749 * decrement the number of reservations in the block group.
9750 * If we did it before, we could race with relocation and have
9751 * relocation miss the reserved extent, making it fail later.
9753 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
9754 if (IS_ERR(trans
)) {
9755 ret
= PTR_ERR(trans
);
9756 btrfs_free_reserved_extent(fs_info
, ins
.objectid
,
9761 btrfs_drop_extent_cache(BTRFS_I(inode
), cur_offset
,
9762 cur_offset
+ ins
.offset
-1, 0);
9764 em
= alloc_extent_map();
9766 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
9767 &BTRFS_I(inode
)->runtime_flags
);
9771 em
->start
= cur_offset
;
9772 em
->orig_start
= cur_offset
;
9773 em
->len
= ins
.offset
;
9774 em
->block_start
= ins
.objectid
;
9775 em
->block_len
= ins
.offset
;
9776 em
->orig_block_len
= ins
.offset
;
9777 em
->ram_bytes
= ins
.offset
;
9778 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
9779 em
->generation
= trans
->transid
;
9782 write_lock(&em_tree
->lock
);
9783 ret
= add_extent_mapping(em_tree
, em
, 1);
9784 write_unlock(&em_tree
->lock
);
9787 btrfs_drop_extent_cache(BTRFS_I(inode
), cur_offset
,
9788 cur_offset
+ ins
.offset
- 1,
9791 free_extent_map(em
);
9793 num_bytes
-= ins
.offset
;
9794 cur_offset
+= ins
.offset
;
9795 *alloc_hint
= ins
.objectid
+ ins
.offset
;
9797 inode_inc_iversion(inode
);
9798 inode
->i_ctime
= current_time(inode
);
9799 BTRFS_I(inode
)->flags
|= BTRFS_INODE_PREALLOC
;
9800 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
9801 (actual_len
> inode
->i_size
) &&
9802 (cur_offset
> inode
->i_size
)) {
9803 if (cur_offset
> actual_len
)
9804 i_size
= actual_len
;
9806 i_size
= cur_offset
;
9807 i_size_write(inode
, i_size
);
9808 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode
), 0);
9811 ret
= btrfs_update_inode(trans
, root
, BTRFS_I(inode
));
9814 btrfs_abort_transaction(trans
, ret
);
9816 btrfs_end_transaction(trans
);
9821 btrfs_end_transaction(trans
);
9825 if (clear_offset
< end
)
9826 btrfs_free_reserved_data_space(BTRFS_I(inode
), NULL
, clear_offset
,
9827 end
- clear_offset
+ 1);
9831 int btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
9832 u64 start
, u64 num_bytes
, u64 min_size
,
9833 loff_t actual_len
, u64
*alloc_hint
)
9835 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
9836 min_size
, actual_len
, alloc_hint
,
9840 int btrfs_prealloc_file_range_trans(struct inode
*inode
,
9841 struct btrfs_trans_handle
*trans
, int mode
,
9842 u64 start
, u64 num_bytes
, u64 min_size
,
9843 loff_t actual_len
, u64
*alloc_hint
)
9845 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
9846 min_size
, actual_len
, alloc_hint
, trans
);
9849 static int btrfs_set_page_dirty(struct page
*page
)
9851 return __set_page_dirty_nobuffers(page
);
9854 static int btrfs_permission(struct inode
*inode
, int mask
)
9856 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
9857 umode_t mode
= inode
->i_mode
;
9859 if (mask
& MAY_WRITE
&&
9860 (S_ISREG(mode
) || S_ISDIR(mode
) || S_ISLNK(mode
))) {
9861 if (btrfs_root_readonly(root
))
9863 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_READONLY
)
9866 return generic_permission(inode
, mask
);
9869 static int btrfs_tmpfile(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
9871 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
9872 struct btrfs_trans_handle
*trans
;
9873 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
9874 struct inode
*inode
= NULL
;
9880 * 5 units required for adding orphan entry
9882 trans
= btrfs_start_transaction(root
, 5);
9884 return PTR_ERR(trans
);
9886 ret
= btrfs_find_free_objectid(root
, &objectid
);
9890 inode
= btrfs_new_inode(trans
, root
, dir
, NULL
, 0,
9891 btrfs_ino(BTRFS_I(dir
)), objectid
, mode
, &index
);
9892 if (IS_ERR(inode
)) {
9893 ret
= PTR_ERR(inode
);
9898 inode
->i_fop
= &btrfs_file_operations
;
9899 inode
->i_op
= &btrfs_file_inode_operations
;
9901 inode
->i_mapping
->a_ops
= &btrfs_aops
;
9903 ret
= btrfs_init_inode_security(trans
, inode
, dir
, NULL
);
9907 ret
= btrfs_update_inode(trans
, root
, BTRFS_I(inode
));
9910 ret
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
9915 * We set number of links to 0 in btrfs_new_inode(), and here we set
9916 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9919 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9921 set_nlink(inode
, 1);
9922 d_tmpfile(dentry
, inode
);
9923 unlock_new_inode(inode
);
9924 mark_inode_dirty(inode
);
9926 btrfs_end_transaction(trans
);
9928 discard_new_inode(inode
);
9929 btrfs_btree_balance_dirty(fs_info
);
9933 void btrfs_set_range_writeback(struct extent_io_tree
*tree
, u64 start
, u64 end
)
9935 struct inode
*inode
= tree
->private_data
;
9936 unsigned long index
= start
>> PAGE_SHIFT
;
9937 unsigned long end_index
= end
>> PAGE_SHIFT
;
9940 while (index
<= end_index
) {
9941 page
= find_get_page(inode
->i_mapping
, index
);
9942 ASSERT(page
); /* Pages should be in the extent_io_tree */
9943 set_page_writeback(page
);
9951 * Add an entry indicating a block group or device which is pinned by a
9952 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
9953 * negative errno on failure.
9955 static int btrfs_add_swapfile_pin(struct inode
*inode
, void *ptr
,
9956 bool is_block_group
)
9958 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
9959 struct btrfs_swapfile_pin
*sp
, *entry
;
9961 struct rb_node
*parent
= NULL
;
9963 sp
= kmalloc(sizeof(*sp
), GFP_NOFS
);
9968 sp
->is_block_group
= is_block_group
;
9970 spin_lock(&fs_info
->swapfile_pins_lock
);
9971 p
= &fs_info
->swapfile_pins
.rb_node
;
9974 entry
= rb_entry(parent
, struct btrfs_swapfile_pin
, node
);
9975 if (sp
->ptr
< entry
->ptr
||
9976 (sp
->ptr
== entry
->ptr
&& sp
->inode
< entry
->inode
)) {
9978 } else if (sp
->ptr
> entry
->ptr
||
9979 (sp
->ptr
== entry
->ptr
&& sp
->inode
> entry
->inode
)) {
9980 p
= &(*p
)->rb_right
;
9982 spin_unlock(&fs_info
->swapfile_pins_lock
);
9987 rb_link_node(&sp
->node
, parent
, p
);
9988 rb_insert_color(&sp
->node
, &fs_info
->swapfile_pins
);
9989 spin_unlock(&fs_info
->swapfile_pins_lock
);
9993 /* Free all of the entries pinned by this swapfile. */
9994 static void btrfs_free_swapfile_pins(struct inode
*inode
)
9996 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
9997 struct btrfs_swapfile_pin
*sp
;
9998 struct rb_node
*node
, *next
;
10000 spin_lock(&fs_info
->swapfile_pins_lock
);
10001 node
= rb_first(&fs_info
->swapfile_pins
);
10003 next
= rb_next(node
);
10004 sp
= rb_entry(node
, struct btrfs_swapfile_pin
, node
);
10005 if (sp
->inode
== inode
) {
10006 rb_erase(&sp
->node
, &fs_info
->swapfile_pins
);
10007 if (sp
->is_block_group
)
10008 btrfs_put_block_group(sp
->ptr
);
10013 spin_unlock(&fs_info
->swapfile_pins_lock
);
10016 struct btrfs_swap_info
{
10022 unsigned long nr_pages
;
10026 static int btrfs_add_swap_extent(struct swap_info_struct
*sis
,
10027 struct btrfs_swap_info
*bsi
)
10029 unsigned long nr_pages
;
10030 u64 first_ppage
, first_ppage_reported
, next_ppage
;
10033 first_ppage
= ALIGN(bsi
->block_start
, PAGE_SIZE
) >> PAGE_SHIFT
;
10034 next_ppage
= ALIGN_DOWN(bsi
->block_start
+ bsi
->block_len
,
10035 PAGE_SIZE
) >> PAGE_SHIFT
;
10037 if (first_ppage
>= next_ppage
)
10039 nr_pages
= next_ppage
- first_ppage
;
10041 first_ppage_reported
= first_ppage
;
10042 if (bsi
->start
== 0)
10043 first_ppage_reported
++;
10044 if (bsi
->lowest_ppage
> first_ppage_reported
)
10045 bsi
->lowest_ppage
= first_ppage_reported
;
10046 if (bsi
->highest_ppage
< (next_ppage
- 1))
10047 bsi
->highest_ppage
= next_ppage
- 1;
10049 ret
= add_swap_extent(sis
, bsi
->nr_pages
, nr_pages
, first_ppage
);
10052 bsi
->nr_extents
+= ret
;
10053 bsi
->nr_pages
+= nr_pages
;
10057 static void btrfs_swap_deactivate(struct file
*file
)
10059 struct inode
*inode
= file_inode(file
);
10061 btrfs_free_swapfile_pins(inode
);
10062 atomic_dec(&BTRFS_I(inode
)->root
->nr_swapfiles
);
10065 static int btrfs_swap_activate(struct swap_info_struct
*sis
, struct file
*file
,
10068 struct inode
*inode
= file_inode(file
);
10069 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
10070 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
10071 struct extent_state
*cached_state
= NULL
;
10072 struct extent_map
*em
= NULL
;
10073 struct btrfs_device
*device
= NULL
;
10074 struct btrfs_swap_info bsi
= {
10075 .lowest_ppage
= (sector_t
)-1ULL,
10082 * If the swap file was just created, make sure delalloc is done. If the
10083 * file changes again after this, the user is doing something stupid and
10084 * we don't really care.
10086 ret
= btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
10091 * The inode is locked, so these flags won't change after we check them.
10093 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
) {
10094 btrfs_warn(fs_info
, "swapfile must not be compressed");
10097 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
)) {
10098 btrfs_warn(fs_info
, "swapfile must not be copy-on-write");
10101 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)) {
10102 btrfs_warn(fs_info
, "swapfile must not be checksummed");
10107 * Balance or device remove/replace/resize can move stuff around from
10108 * under us. The exclop protection makes sure they aren't running/won't
10109 * run concurrently while we are mapping the swap extents, and
10110 * fs_info->swapfile_pins prevents them from running while the swap
10111 * file is active and moving the extents. Note that this also prevents
10112 * a concurrent device add which isn't actually necessary, but it's not
10113 * really worth the trouble to allow it.
10115 if (!btrfs_exclop_start(fs_info
, BTRFS_EXCLOP_SWAP_ACTIVATE
)) {
10116 btrfs_warn(fs_info
,
10117 "cannot activate swapfile while exclusive operation is running");
10121 * Snapshots can create extents which require COW even if NODATACOW is
10122 * set. We use this counter to prevent snapshots. We must increment it
10123 * before walking the extents because we don't want a concurrent
10124 * snapshot to run after we've already checked the extents.
10126 atomic_inc(&BTRFS_I(inode
)->root
->nr_swapfiles
);
10128 isize
= ALIGN_DOWN(inode
->i_size
, fs_info
->sectorsize
);
10130 lock_extent_bits(io_tree
, 0, isize
- 1, &cached_state
);
10132 while (start
< isize
) {
10133 u64 logical_block_start
, physical_block_start
;
10134 struct btrfs_block_group
*bg
;
10135 u64 len
= isize
- start
;
10137 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0, start
, len
);
10143 if (em
->block_start
== EXTENT_MAP_HOLE
) {
10144 btrfs_warn(fs_info
, "swapfile must not have holes");
10148 if (em
->block_start
== EXTENT_MAP_INLINE
) {
10150 * It's unlikely we'll ever actually find ourselves
10151 * here, as a file small enough to fit inline won't be
10152 * big enough to store more than the swap header, but in
10153 * case something changes in the future, let's catch it
10154 * here rather than later.
10156 btrfs_warn(fs_info
, "swapfile must not be inline");
10160 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
10161 btrfs_warn(fs_info
, "swapfile must not be compressed");
10166 logical_block_start
= em
->block_start
+ (start
- em
->start
);
10167 len
= min(len
, em
->len
- (start
- em
->start
));
10168 free_extent_map(em
);
10171 ret
= can_nocow_extent(inode
, start
, &len
, NULL
, NULL
, NULL
, true);
10177 btrfs_warn(fs_info
,
10178 "swapfile must not be copy-on-write");
10183 em
= btrfs_get_chunk_map(fs_info
, logical_block_start
, len
);
10189 if (em
->map_lookup
->type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) {
10190 btrfs_warn(fs_info
,
10191 "swapfile must have single data profile");
10196 if (device
== NULL
) {
10197 device
= em
->map_lookup
->stripes
[0].dev
;
10198 ret
= btrfs_add_swapfile_pin(inode
, device
, false);
10203 } else if (device
!= em
->map_lookup
->stripes
[0].dev
) {
10204 btrfs_warn(fs_info
, "swapfile must be on one device");
10209 physical_block_start
= (em
->map_lookup
->stripes
[0].physical
+
10210 (logical_block_start
- em
->start
));
10211 len
= min(len
, em
->len
- (logical_block_start
- em
->start
));
10212 free_extent_map(em
);
10215 bg
= btrfs_lookup_block_group(fs_info
, logical_block_start
);
10217 btrfs_warn(fs_info
,
10218 "could not find block group containing swapfile");
10223 ret
= btrfs_add_swapfile_pin(inode
, bg
, true);
10225 btrfs_put_block_group(bg
);
10232 if (bsi
.block_len
&&
10233 bsi
.block_start
+ bsi
.block_len
== physical_block_start
) {
10234 bsi
.block_len
+= len
;
10236 if (bsi
.block_len
) {
10237 ret
= btrfs_add_swap_extent(sis
, &bsi
);
10242 bsi
.block_start
= physical_block_start
;
10243 bsi
.block_len
= len
;
10250 ret
= btrfs_add_swap_extent(sis
, &bsi
);
10253 if (!IS_ERR_OR_NULL(em
))
10254 free_extent_map(em
);
10256 unlock_extent_cached(io_tree
, 0, isize
- 1, &cached_state
);
10259 btrfs_swap_deactivate(file
);
10261 btrfs_exclop_finish(fs_info
);
10267 sis
->bdev
= device
->bdev
;
10268 *span
= bsi
.highest_ppage
- bsi
.lowest_ppage
+ 1;
10269 sis
->max
= bsi
.nr_pages
;
10270 sis
->pages
= bsi
.nr_pages
- 1;
10271 sis
->highest_bit
= bsi
.nr_pages
- 1;
10272 return bsi
.nr_extents
;
10275 static void btrfs_swap_deactivate(struct file
*file
)
10279 static int btrfs_swap_activate(struct swap_info_struct
*sis
, struct file
*file
,
10282 return -EOPNOTSUPP
;
10287 * Update the number of bytes used in the VFS' inode. When we replace extents in
10288 * a range (clone, dedupe, fallocate's zero range), we must update the number of
10289 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10290 * always get a correct value.
10292 void btrfs_update_inode_bytes(struct btrfs_inode
*inode
,
10293 const u64 add_bytes
,
10294 const u64 del_bytes
)
10296 if (add_bytes
== del_bytes
)
10299 spin_lock(&inode
->lock
);
10301 inode_sub_bytes(&inode
->vfs_inode
, del_bytes
);
10303 inode_add_bytes(&inode
->vfs_inode
, add_bytes
);
10304 spin_unlock(&inode
->lock
);
10307 static const struct inode_operations btrfs_dir_inode_operations
= {
10308 .getattr
= btrfs_getattr
,
10309 .lookup
= btrfs_lookup
,
10310 .create
= btrfs_create
,
10311 .unlink
= btrfs_unlink
,
10312 .link
= btrfs_link
,
10313 .mkdir
= btrfs_mkdir
,
10314 .rmdir
= btrfs_rmdir
,
10315 .rename
= btrfs_rename2
,
10316 .symlink
= btrfs_symlink
,
10317 .setattr
= btrfs_setattr
,
10318 .mknod
= btrfs_mknod
,
10319 .listxattr
= btrfs_listxattr
,
10320 .permission
= btrfs_permission
,
10321 .get_acl
= btrfs_get_acl
,
10322 .set_acl
= btrfs_set_acl
,
10323 .update_time
= btrfs_update_time
,
10324 .tmpfile
= btrfs_tmpfile
,
10327 static const struct file_operations btrfs_dir_file_operations
= {
10328 .llseek
= generic_file_llseek
,
10329 .read
= generic_read_dir
,
10330 .iterate_shared
= btrfs_real_readdir
,
10331 .open
= btrfs_opendir
,
10332 .unlocked_ioctl
= btrfs_ioctl
,
10333 #ifdef CONFIG_COMPAT
10334 .compat_ioctl
= btrfs_compat_ioctl
,
10336 .release
= btrfs_release_file
,
10337 .fsync
= btrfs_sync_file
,
10341 * btrfs doesn't support the bmap operation because swapfiles
10342 * use bmap to make a mapping of extents in the file. They assume
10343 * these extents won't change over the life of the file and they
10344 * use the bmap result to do IO directly to the drive.
10346 * the btrfs bmap call would return logical addresses that aren't
10347 * suitable for IO and they also will change frequently as COW
10348 * operations happen. So, swapfile + btrfs == corruption.
10350 * For now we're avoiding this by dropping bmap.
10352 static const struct address_space_operations btrfs_aops
= {
10353 .readpage
= btrfs_readpage
,
10354 .writepage
= btrfs_writepage
,
10355 .writepages
= btrfs_writepages
,
10356 .readahead
= btrfs_readahead
,
10357 .direct_IO
= noop_direct_IO
,
10358 .invalidatepage
= btrfs_invalidatepage
,
10359 .releasepage
= btrfs_releasepage
,
10360 #ifdef CONFIG_MIGRATION
10361 .migratepage
= btrfs_migratepage
,
10363 .set_page_dirty
= btrfs_set_page_dirty
,
10364 .error_remove_page
= generic_error_remove_page
,
10365 .swap_activate
= btrfs_swap_activate
,
10366 .swap_deactivate
= btrfs_swap_deactivate
,
10369 static const struct inode_operations btrfs_file_inode_operations
= {
10370 .getattr
= btrfs_getattr
,
10371 .setattr
= btrfs_setattr
,
10372 .listxattr
= btrfs_listxattr
,
10373 .permission
= btrfs_permission
,
10374 .fiemap
= btrfs_fiemap
,
10375 .get_acl
= btrfs_get_acl
,
10376 .set_acl
= btrfs_set_acl
,
10377 .update_time
= btrfs_update_time
,
10379 static const struct inode_operations btrfs_special_inode_operations
= {
10380 .getattr
= btrfs_getattr
,
10381 .setattr
= btrfs_setattr
,
10382 .permission
= btrfs_permission
,
10383 .listxattr
= btrfs_listxattr
,
10384 .get_acl
= btrfs_get_acl
,
10385 .set_acl
= btrfs_set_acl
,
10386 .update_time
= btrfs_update_time
,
10388 static const struct inode_operations btrfs_symlink_inode_operations
= {
10389 .get_link
= page_get_link
,
10390 .getattr
= btrfs_getattr
,
10391 .setattr
= btrfs_setattr
,
10392 .permission
= btrfs_permission
,
10393 .listxattr
= btrfs_listxattr
,
10394 .update_time
= btrfs_update_time
,
10397 const struct dentry_operations btrfs_dentry_operations
= {
10398 .d_delete
= btrfs_dentry_delete
,