Merge tag 'regmap-fix-v5.11-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux/fpc-iii.git] / fs / btrfs / ioctl.c
blobdde49a791f3e236e7ad7279589d4fb94da1917f2
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "export.h"
32 #include "transaction.h"
33 #include "btrfs_inode.h"
34 #include "print-tree.h"
35 #include "volumes.h"
36 #include "locking.h"
37 #include "backref.h"
38 #include "rcu-string.h"
39 #include "send.h"
40 #include "dev-replace.h"
41 #include "props.h"
42 #include "sysfs.h"
43 #include "qgroup.h"
44 #include "tree-log.h"
45 #include "compression.h"
46 #include "space-info.h"
47 #include "delalloc-space.h"
48 #include "block-group.h"
50 #ifdef CONFIG_64BIT
51 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
52 * structures are incorrect, as the timespec structure from userspace
53 * is 4 bytes too small. We define these alternatives here to teach
54 * the kernel about the 32-bit struct packing.
56 struct btrfs_ioctl_timespec_32 {
57 __u64 sec;
58 __u32 nsec;
59 } __attribute__ ((__packed__));
61 struct btrfs_ioctl_received_subvol_args_32 {
62 char uuid[BTRFS_UUID_SIZE]; /* in */
63 __u64 stransid; /* in */
64 __u64 rtransid; /* out */
65 struct btrfs_ioctl_timespec_32 stime; /* in */
66 struct btrfs_ioctl_timespec_32 rtime; /* out */
67 __u64 flags; /* in */
68 __u64 reserved[16]; /* in */
69 } __attribute__ ((__packed__));
71 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
72 struct btrfs_ioctl_received_subvol_args_32)
73 #endif
75 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
76 struct btrfs_ioctl_send_args_32 {
77 __s64 send_fd; /* in */
78 __u64 clone_sources_count; /* in */
79 compat_uptr_t clone_sources; /* in */
80 __u64 parent_root; /* in */
81 __u64 flags; /* in */
82 __u64 reserved[4]; /* in */
83 } __attribute__ ((__packed__));
85 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
86 struct btrfs_ioctl_send_args_32)
87 #endif
89 /* Mask out flags that are inappropriate for the given type of inode. */
90 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
91 unsigned int flags)
93 if (S_ISDIR(inode->i_mode))
94 return flags;
95 else if (S_ISREG(inode->i_mode))
96 return flags & ~FS_DIRSYNC_FL;
97 else
98 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
102 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
103 * ioctl.
105 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags)
107 unsigned int iflags = 0;
109 if (flags & BTRFS_INODE_SYNC)
110 iflags |= FS_SYNC_FL;
111 if (flags & BTRFS_INODE_IMMUTABLE)
112 iflags |= FS_IMMUTABLE_FL;
113 if (flags & BTRFS_INODE_APPEND)
114 iflags |= FS_APPEND_FL;
115 if (flags & BTRFS_INODE_NODUMP)
116 iflags |= FS_NODUMP_FL;
117 if (flags & BTRFS_INODE_NOATIME)
118 iflags |= FS_NOATIME_FL;
119 if (flags & BTRFS_INODE_DIRSYNC)
120 iflags |= FS_DIRSYNC_FL;
121 if (flags & BTRFS_INODE_NODATACOW)
122 iflags |= FS_NOCOW_FL;
124 if (flags & BTRFS_INODE_NOCOMPRESS)
125 iflags |= FS_NOCOMP_FL;
126 else if (flags & BTRFS_INODE_COMPRESS)
127 iflags |= FS_COMPR_FL;
129 return iflags;
133 * Update inode->i_flags based on the btrfs internal flags.
135 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
137 struct btrfs_inode *binode = BTRFS_I(inode);
138 unsigned int new_fl = 0;
140 if (binode->flags & BTRFS_INODE_SYNC)
141 new_fl |= S_SYNC;
142 if (binode->flags & BTRFS_INODE_IMMUTABLE)
143 new_fl |= S_IMMUTABLE;
144 if (binode->flags & BTRFS_INODE_APPEND)
145 new_fl |= S_APPEND;
146 if (binode->flags & BTRFS_INODE_NOATIME)
147 new_fl |= S_NOATIME;
148 if (binode->flags & BTRFS_INODE_DIRSYNC)
149 new_fl |= S_DIRSYNC;
151 set_mask_bits(&inode->i_flags,
152 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
153 new_fl);
156 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
158 struct btrfs_inode *binode = BTRFS_I(file_inode(file));
159 unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags);
161 if (copy_to_user(arg, &flags, sizeof(flags)))
162 return -EFAULT;
163 return 0;
167 * Check if @flags are a supported and valid set of FS_*_FL flags and that
168 * the old and new flags are not conflicting
170 static int check_fsflags(unsigned int old_flags, unsigned int flags)
172 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
173 FS_NOATIME_FL | FS_NODUMP_FL | \
174 FS_SYNC_FL | FS_DIRSYNC_FL | \
175 FS_NOCOMP_FL | FS_COMPR_FL |
176 FS_NOCOW_FL))
177 return -EOPNOTSUPP;
179 /* COMPR and NOCOMP on new/old are valid */
180 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
181 return -EINVAL;
183 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
184 return -EINVAL;
186 /* NOCOW and compression options are mutually exclusive */
187 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
188 return -EINVAL;
189 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
190 return -EINVAL;
192 return 0;
195 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
196 unsigned int flags)
198 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
199 return -EPERM;
201 return 0;
204 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
206 struct inode *inode = file_inode(file);
207 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
208 struct btrfs_inode *binode = BTRFS_I(inode);
209 struct btrfs_root *root = binode->root;
210 struct btrfs_trans_handle *trans;
211 unsigned int fsflags, old_fsflags;
212 int ret;
213 const char *comp = NULL;
214 u32 binode_flags;
216 if (!inode_owner_or_capable(inode))
217 return -EPERM;
219 if (btrfs_root_readonly(root))
220 return -EROFS;
222 if (copy_from_user(&fsflags, arg, sizeof(fsflags)))
223 return -EFAULT;
225 ret = mnt_want_write_file(file);
226 if (ret)
227 return ret;
229 inode_lock(inode);
230 fsflags = btrfs_mask_fsflags_for_type(inode, fsflags);
231 old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags);
233 ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags);
234 if (ret)
235 goto out_unlock;
237 ret = check_fsflags(old_fsflags, fsflags);
238 if (ret)
239 goto out_unlock;
241 ret = check_fsflags_compatible(fs_info, fsflags);
242 if (ret)
243 goto out_unlock;
245 binode_flags = binode->flags;
246 if (fsflags & FS_SYNC_FL)
247 binode_flags |= BTRFS_INODE_SYNC;
248 else
249 binode_flags &= ~BTRFS_INODE_SYNC;
250 if (fsflags & FS_IMMUTABLE_FL)
251 binode_flags |= BTRFS_INODE_IMMUTABLE;
252 else
253 binode_flags &= ~BTRFS_INODE_IMMUTABLE;
254 if (fsflags & FS_APPEND_FL)
255 binode_flags |= BTRFS_INODE_APPEND;
256 else
257 binode_flags &= ~BTRFS_INODE_APPEND;
258 if (fsflags & FS_NODUMP_FL)
259 binode_flags |= BTRFS_INODE_NODUMP;
260 else
261 binode_flags &= ~BTRFS_INODE_NODUMP;
262 if (fsflags & FS_NOATIME_FL)
263 binode_flags |= BTRFS_INODE_NOATIME;
264 else
265 binode_flags &= ~BTRFS_INODE_NOATIME;
266 if (fsflags & FS_DIRSYNC_FL)
267 binode_flags |= BTRFS_INODE_DIRSYNC;
268 else
269 binode_flags &= ~BTRFS_INODE_DIRSYNC;
270 if (fsflags & FS_NOCOW_FL) {
271 if (S_ISREG(inode->i_mode)) {
273 * It's safe to turn csums off here, no extents exist.
274 * Otherwise we want the flag to reflect the real COW
275 * status of the file and will not set it.
277 if (inode->i_size == 0)
278 binode_flags |= BTRFS_INODE_NODATACOW |
279 BTRFS_INODE_NODATASUM;
280 } else {
281 binode_flags |= BTRFS_INODE_NODATACOW;
283 } else {
285 * Revert back under same assumptions as above
287 if (S_ISREG(inode->i_mode)) {
288 if (inode->i_size == 0)
289 binode_flags &= ~(BTRFS_INODE_NODATACOW |
290 BTRFS_INODE_NODATASUM);
291 } else {
292 binode_flags &= ~BTRFS_INODE_NODATACOW;
297 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
298 * flag may be changed automatically if compression code won't make
299 * things smaller.
301 if (fsflags & FS_NOCOMP_FL) {
302 binode_flags &= ~BTRFS_INODE_COMPRESS;
303 binode_flags |= BTRFS_INODE_NOCOMPRESS;
304 } else if (fsflags & FS_COMPR_FL) {
306 if (IS_SWAPFILE(inode)) {
307 ret = -ETXTBSY;
308 goto out_unlock;
311 binode_flags |= BTRFS_INODE_COMPRESS;
312 binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
314 comp = btrfs_compress_type2str(fs_info->compress_type);
315 if (!comp || comp[0] == 0)
316 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
317 } else {
318 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
322 * 1 for inode item
323 * 2 for properties
325 trans = btrfs_start_transaction(root, 3);
326 if (IS_ERR(trans)) {
327 ret = PTR_ERR(trans);
328 goto out_unlock;
331 if (comp) {
332 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
333 strlen(comp), 0);
334 if (ret) {
335 btrfs_abort_transaction(trans, ret);
336 goto out_end_trans;
338 } else {
339 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
340 0, 0);
341 if (ret && ret != -ENODATA) {
342 btrfs_abort_transaction(trans, ret);
343 goto out_end_trans;
347 binode->flags = binode_flags;
348 btrfs_sync_inode_flags_to_i_flags(inode);
349 inode_inc_iversion(inode);
350 inode->i_ctime = current_time(inode);
351 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
353 out_end_trans:
354 btrfs_end_transaction(trans);
355 out_unlock:
356 inode_unlock(inode);
357 mnt_drop_write_file(file);
358 return ret;
362 * Translate btrfs internal inode flags to xflags as expected by the
363 * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are
364 * silently dropped.
366 static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags)
368 unsigned int xflags = 0;
370 if (flags & BTRFS_INODE_APPEND)
371 xflags |= FS_XFLAG_APPEND;
372 if (flags & BTRFS_INODE_IMMUTABLE)
373 xflags |= FS_XFLAG_IMMUTABLE;
374 if (flags & BTRFS_INODE_NOATIME)
375 xflags |= FS_XFLAG_NOATIME;
376 if (flags & BTRFS_INODE_NODUMP)
377 xflags |= FS_XFLAG_NODUMP;
378 if (flags & BTRFS_INODE_SYNC)
379 xflags |= FS_XFLAG_SYNC;
381 return xflags;
384 /* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */
385 static int check_xflags(unsigned int flags)
387 if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME |
388 FS_XFLAG_NODUMP | FS_XFLAG_SYNC))
389 return -EOPNOTSUPP;
390 return 0;
393 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
394 enum btrfs_exclusive_operation type)
396 return !cmpxchg(&fs_info->exclusive_operation, BTRFS_EXCLOP_NONE, type);
399 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
401 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
402 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
406 * Set the xflags from the internal inode flags. The remaining items of fsxattr
407 * are zeroed.
409 static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg)
411 struct btrfs_inode *binode = BTRFS_I(file_inode(file));
412 struct fsxattr fa;
414 simple_fill_fsxattr(&fa, btrfs_inode_flags_to_xflags(binode->flags));
415 if (copy_to_user(arg, &fa, sizeof(fa)))
416 return -EFAULT;
418 return 0;
421 static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg)
423 struct inode *inode = file_inode(file);
424 struct btrfs_inode *binode = BTRFS_I(inode);
425 struct btrfs_root *root = binode->root;
426 struct btrfs_trans_handle *trans;
427 struct fsxattr fa, old_fa;
428 unsigned old_flags;
429 unsigned old_i_flags;
430 int ret = 0;
432 if (!inode_owner_or_capable(inode))
433 return -EPERM;
435 if (btrfs_root_readonly(root))
436 return -EROFS;
438 if (copy_from_user(&fa, arg, sizeof(fa)))
439 return -EFAULT;
441 ret = check_xflags(fa.fsx_xflags);
442 if (ret)
443 return ret;
445 if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0)
446 return -EOPNOTSUPP;
448 ret = mnt_want_write_file(file);
449 if (ret)
450 return ret;
452 inode_lock(inode);
454 old_flags = binode->flags;
455 old_i_flags = inode->i_flags;
457 simple_fill_fsxattr(&old_fa,
458 btrfs_inode_flags_to_xflags(binode->flags));
459 ret = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa);
460 if (ret)
461 goto out_unlock;
463 if (fa.fsx_xflags & FS_XFLAG_SYNC)
464 binode->flags |= BTRFS_INODE_SYNC;
465 else
466 binode->flags &= ~BTRFS_INODE_SYNC;
467 if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE)
468 binode->flags |= BTRFS_INODE_IMMUTABLE;
469 else
470 binode->flags &= ~BTRFS_INODE_IMMUTABLE;
471 if (fa.fsx_xflags & FS_XFLAG_APPEND)
472 binode->flags |= BTRFS_INODE_APPEND;
473 else
474 binode->flags &= ~BTRFS_INODE_APPEND;
475 if (fa.fsx_xflags & FS_XFLAG_NODUMP)
476 binode->flags |= BTRFS_INODE_NODUMP;
477 else
478 binode->flags &= ~BTRFS_INODE_NODUMP;
479 if (fa.fsx_xflags & FS_XFLAG_NOATIME)
480 binode->flags |= BTRFS_INODE_NOATIME;
481 else
482 binode->flags &= ~BTRFS_INODE_NOATIME;
484 /* 1 item for the inode */
485 trans = btrfs_start_transaction(root, 1);
486 if (IS_ERR(trans)) {
487 ret = PTR_ERR(trans);
488 goto out_unlock;
491 btrfs_sync_inode_flags_to_i_flags(inode);
492 inode_inc_iversion(inode);
493 inode->i_ctime = current_time(inode);
494 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
496 btrfs_end_transaction(trans);
498 out_unlock:
499 if (ret) {
500 binode->flags = old_flags;
501 inode->i_flags = old_i_flags;
504 inode_unlock(inode);
505 mnt_drop_write_file(file);
507 return ret;
510 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
512 struct inode *inode = file_inode(file);
514 return put_user(inode->i_generation, arg);
517 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
518 void __user *arg)
520 struct btrfs_device *device;
521 struct request_queue *q;
522 struct fstrim_range range;
523 u64 minlen = ULLONG_MAX;
524 u64 num_devices = 0;
525 int ret;
527 if (!capable(CAP_SYS_ADMIN))
528 return -EPERM;
531 * If the fs is mounted with nologreplay, which requires it to be
532 * mounted in RO mode as well, we can not allow discard on free space
533 * inside block groups, because log trees refer to extents that are not
534 * pinned in a block group's free space cache (pinning the extents is
535 * precisely the first phase of replaying a log tree).
537 if (btrfs_test_opt(fs_info, NOLOGREPLAY))
538 return -EROFS;
540 rcu_read_lock();
541 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
542 dev_list) {
543 if (!device->bdev)
544 continue;
545 q = bdev_get_queue(device->bdev);
546 if (blk_queue_discard(q)) {
547 num_devices++;
548 minlen = min_t(u64, q->limits.discard_granularity,
549 minlen);
552 rcu_read_unlock();
554 if (!num_devices)
555 return -EOPNOTSUPP;
556 if (copy_from_user(&range, arg, sizeof(range)))
557 return -EFAULT;
560 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of
561 * block group is in the logical address space, which can be any
562 * sectorsize aligned bytenr in the range [0, U64_MAX].
564 if (range.len < fs_info->sb->s_blocksize)
565 return -EINVAL;
567 range.minlen = max(range.minlen, minlen);
568 ret = btrfs_trim_fs(fs_info, &range);
569 if (ret < 0)
570 return ret;
572 if (copy_to_user(arg, &range, sizeof(range)))
573 return -EFAULT;
575 return 0;
578 int __pure btrfs_is_empty_uuid(u8 *uuid)
580 int i;
582 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
583 if (uuid[i])
584 return 0;
586 return 1;
589 static noinline int create_subvol(struct inode *dir,
590 struct dentry *dentry,
591 const char *name, int namelen,
592 struct btrfs_qgroup_inherit *inherit)
594 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
595 struct btrfs_trans_handle *trans;
596 struct btrfs_key key;
597 struct btrfs_root_item *root_item;
598 struct btrfs_inode_item *inode_item;
599 struct extent_buffer *leaf;
600 struct btrfs_root *root = BTRFS_I(dir)->root;
601 struct btrfs_root *new_root;
602 struct btrfs_block_rsv block_rsv;
603 struct timespec64 cur_time = current_time(dir);
604 struct inode *inode;
605 int ret;
606 int err;
607 dev_t anon_dev = 0;
608 u64 objectid;
609 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
610 u64 index = 0;
612 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
613 if (!root_item)
614 return -ENOMEM;
616 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
617 if (ret)
618 goto fail_free;
620 ret = get_anon_bdev(&anon_dev);
621 if (ret < 0)
622 goto fail_free;
625 * Don't create subvolume whose level is not zero. Or qgroup will be
626 * screwed up since it assumes subvolume qgroup's level to be 0.
628 if (btrfs_qgroup_level(objectid)) {
629 ret = -ENOSPC;
630 goto fail_free;
633 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
635 * The same as the snapshot creation, please see the comment
636 * of create_snapshot().
638 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
639 if (ret)
640 goto fail_free;
642 trans = btrfs_start_transaction(root, 0);
643 if (IS_ERR(trans)) {
644 ret = PTR_ERR(trans);
645 btrfs_subvolume_release_metadata(root, &block_rsv);
646 goto fail_free;
648 trans->block_rsv = &block_rsv;
649 trans->bytes_reserved = block_rsv.size;
651 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
652 if (ret)
653 goto fail;
655 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
656 BTRFS_NESTING_NORMAL);
657 if (IS_ERR(leaf)) {
658 ret = PTR_ERR(leaf);
659 goto fail;
662 btrfs_mark_buffer_dirty(leaf);
664 inode_item = &root_item->inode;
665 btrfs_set_stack_inode_generation(inode_item, 1);
666 btrfs_set_stack_inode_size(inode_item, 3);
667 btrfs_set_stack_inode_nlink(inode_item, 1);
668 btrfs_set_stack_inode_nbytes(inode_item,
669 fs_info->nodesize);
670 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
672 btrfs_set_root_flags(root_item, 0);
673 btrfs_set_root_limit(root_item, 0);
674 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
676 btrfs_set_root_bytenr(root_item, leaf->start);
677 btrfs_set_root_generation(root_item, trans->transid);
678 btrfs_set_root_level(root_item, 0);
679 btrfs_set_root_refs(root_item, 1);
680 btrfs_set_root_used(root_item, leaf->len);
681 btrfs_set_root_last_snapshot(root_item, 0);
683 btrfs_set_root_generation_v2(root_item,
684 btrfs_root_generation(root_item));
685 generate_random_guid(root_item->uuid);
686 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
687 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
688 root_item->ctime = root_item->otime;
689 btrfs_set_root_ctransid(root_item, trans->transid);
690 btrfs_set_root_otransid(root_item, trans->transid);
692 btrfs_tree_unlock(leaf);
693 free_extent_buffer(leaf);
694 leaf = NULL;
696 btrfs_set_root_dirid(root_item, new_dirid);
698 key.objectid = objectid;
699 key.offset = 0;
700 key.type = BTRFS_ROOT_ITEM_KEY;
701 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
702 root_item);
703 if (ret)
704 goto fail;
706 key.offset = (u64)-1;
707 new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
708 if (IS_ERR(new_root)) {
709 free_anon_bdev(anon_dev);
710 ret = PTR_ERR(new_root);
711 btrfs_abort_transaction(trans, ret);
712 goto fail;
714 /* Freeing will be done in btrfs_put_root() of new_root */
715 anon_dev = 0;
717 btrfs_record_root_in_trans(trans, new_root);
719 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
720 btrfs_put_root(new_root);
721 if (ret) {
722 /* We potentially lose an unused inode item here */
723 btrfs_abort_transaction(trans, ret);
724 goto fail;
727 mutex_lock(&new_root->objectid_mutex);
728 new_root->highest_objectid = new_dirid;
729 mutex_unlock(&new_root->objectid_mutex);
732 * insert the directory item
734 ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
735 if (ret) {
736 btrfs_abort_transaction(trans, ret);
737 goto fail;
740 ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key,
741 BTRFS_FT_DIR, index);
742 if (ret) {
743 btrfs_abort_transaction(trans, ret);
744 goto fail;
747 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
748 ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
749 if (ret) {
750 btrfs_abort_transaction(trans, ret);
751 goto fail;
754 ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
755 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
756 if (ret) {
757 btrfs_abort_transaction(trans, ret);
758 goto fail;
761 ret = btrfs_uuid_tree_add(trans, root_item->uuid,
762 BTRFS_UUID_KEY_SUBVOL, objectid);
763 if (ret)
764 btrfs_abort_transaction(trans, ret);
766 fail:
767 kfree(root_item);
768 trans->block_rsv = NULL;
769 trans->bytes_reserved = 0;
770 btrfs_subvolume_release_metadata(root, &block_rsv);
772 err = btrfs_commit_transaction(trans);
773 if (err && !ret)
774 ret = err;
776 if (!ret) {
777 inode = btrfs_lookup_dentry(dir, dentry);
778 if (IS_ERR(inode))
779 return PTR_ERR(inode);
780 d_instantiate(dentry, inode);
782 return ret;
784 fail_free:
785 if (anon_dev)
786 free_anon_bdev(anon_dev);
787 kfree(root_item);
788 return ret;
791 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
792 struct dentry *dentry, bool readonly,
793 struct btrfs_qgroup_inherit *inherit)
795 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
796 struct inode *inode;
797 struct btrfs_pending_snapshot *pending_snapshot;
798 struct btrfs_trans_handle *trans;
799 int ret;
801 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
802 return -EINVAL;
804 if (atomic_read(&root->nr_swapfiles)) {
805 btrfs_warn(fs_info,
806 "cannot snapshot subvolume with active swapfile");
807 return -ETXTBSY;
810 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
811 if (!pending_snapshot)
812 return -ENOMEM;
814 ret = get_anon_bdev(&pending_snapshot->anon_dev);
815 if (ret < 0)
816 goto free_pending;
817 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
818 GFP_KERNEL);
819 pending_snapshot->path = btrfs_alloc_path();
820 if (!pending_snapshot->root_item || !pending_snapshot->path) {
821 ret = -ENOMEM;
822 goto free_pending;
825 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
826 BTRFS_BLOCK_RSV_TEMP);
828 * 1 - parent dir inode
829 * 2 - dir entries
830 * 1 - root item
831 * 2 - root ref/backref
832 * 1 - root of snapshot
833 * 1 - UUID item
835 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
836 &pending_snapshot->block_rsv, 8,
837 false);
838 if (ret)
839 goto free_pending;
841 pending_snapshot->dentry = dentry;
842 pending_snapshot->root = root;
843 pending_snapshot->readonly = readonly;
844 pending_snapshot->dir = dir;
845 pending_snapshot->inherit = inherit;
847 trans = btrfs_start_transaction(root, 0);
848 if (IS_ERR(trans)) {
849 ret = PTR_ERR(trans);
850 goto fail;
853 spin_lock(&fs_info->trans_lock);
854 list_add(&pending_snapshot->list,
855 &trans->transaction->pending_snapshots);
856 spin_unlock(&fs_info->trans_lock);
858 ret = btrfs_commit_transaction(trans);
859 if (ret)
860 goto fail;
862 ret = pending_snapshot->error;
863 if (ret)
864 goto fail;
866 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
867 if (ret)
868 goto fail;
870 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
871 if (IS_ERR(inode)) {
872 ret = PTR_ERR(inode);
873 goto fail;
876 d_instantiate(dentry, inode);
877 ret = 0;
878 pending_snapshot->anon_dev = 0;
879 fail:
880 /* Prevent double freeing of anon_dev */
881 if (ret && pending_snapshot->snap)
882 pending_snapshot->snap->anon_dev = 0;
883 btrfs_put_root(pending_snapshot->snap);
884 btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
885 free_pending:
886 if (pending_snapshot->anon_dev)
887 free_anon_bdev(pending_snapshot->anon_dev);
888 kfree(pending_snapshot->root_item);
889 btrfs_free_path(pending_snapshot->path);
890 kfree(pending_snapshot);
892 return ret;
895 /* copy of may_delete in fs/namei.c()
896 * Check whether we can remove a link victim from directory dir, check
897 * whether the type of victim is right.
898 * 1. We can't do it if dir is read-only (done in permission())
899 * 2. We should have write and exec permissions on dir
900 * 3. We can't remove anything from append-only dir
901 * 4. We can't do anything with immutable dir (done in permission())
902 * 5. If the sticky bit on dir is set we should either
903 * a. be owner of dir, or
904 * b. be owner of victim, or
905 * c. have CAP_FOWNER capability
906 * 6. If the victim is append-only or immutable we can't do anything with
907 * links pointing to it.
908 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
909 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
910 * 9. We can't remove a root or mountpoint.
911 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
912 * nfs_async_unlink().
915 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
917 int error;
919 if (d_really_is_negative(victim))
920 return -ENOENT;
922 BUG_ON(d_inode(victim->d_parent) != dir);
923 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
925 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
926 if (error)
927 return error;
928 if (IS_APPEND(dir))
929 return -EPERM;
930 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
931 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
932 return -EPERM;
933 if (isdir) {
934 if (!d_is_dir(victim))
935 return -ENOTDIR;
936 if (IS_ROOT(victim))
937 return -EBUSY;
938 } else if (d_is_dir(victim))
939 return -EISDIR;
940 if (IS_DEADDIR(dir))
941 return -ENOENT;
942 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
943 return -EBUSY;
944 return 0;
947 /* copy of may_create in fs/namei.c() */
948 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
950 if (d_really_is_positive(child))
951 return -EEXIST;
952 if (IS_DEADDIR(dir))
953 return -ENOENT;
954 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
958 * Create a new subvolume below @parent. This is largely modeled after
959 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
960 * inside this filesystem so it's quite a bit simpler.
962 static noinline int btrfs_mksubvol(const struct path *parent,
963 const char *name, int namelen,
964 struct btrfs_root *snap_src,
965 bool readonly,
966 struct btrfs_qgroup_inherit *inherit)
968 struct inode *dir = d_inode(parent->dentry);
969 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
970 struct dentry *dentry;
971 int error;
973 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
974 if (error == -EINTR)
975 return error;
977 dentry = lookup_one_len(name, parent->dentry, namelen);
978 error = PTR_ERR(dentry);
979 if (IS_ERR(dentry))
980 goto out_unlock;
982 error = btrfs_may_create(dir, dentry);
983 if (error)
984 goto out_dput;
987 * even if this name doesn't exist, we may get hash collisions.
988 * check for them now when we can safely fail
990 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
991 dir->i_ino, name,
992 namelen);
993 if (error)
994 goto out_dput;
996 down_read(&fs_info->subvol_sem);
998 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
999 goto out_up_read;
1001 if (snap_src)
1002 error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
1003 else
1004 error = create_subvol(dir, dentry, name, namelen, inherit);
1006 if (!error)
1007 fsnotify_mkdir(dir, dentry);
1008 out_up_read:
1009 up_read(&fs_info->subvol_sem);
1010 out_dput:
1011 dput(dentry);
1012 out_unlock:
1013 inode_unlock(dir);
1014 return error;
1017 static noinline int btrfs_mksnapshot(const struct path *parent,
1018 const char *name, int namelen,
1019 struct btrfs_root *root,
1020 bool readonly,
1021 struct btrfs_qgroup_inherit *inherit)
1023 int ret;
1024 bool snapshot_force_cow = false;
1027 * Force new buffered writes to reserve space even when NOCOW is
1028 * possible. This is to avoid later writeback (running dealloc) to
1029 * fallback to COW mode and unexpectedly fail with ENOSPC.
1031 btrfs_drew_read_lock(&root->snapshot_lock);
1033 ret = btrfs_start_delalloc_snapshot(root);
1034 if (ret)
1035 goto out;
1038 * All previous writes have started writeback in NOCOW mode, so now
1039 * we force future writes to fallback to COW mode during snapshot
1040 * creation.
1042 atomic_inc(&root->snapshot_force_cow);
1043 snapshot_force_cow = true;
1045 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
1047 ret = btrfs_mksubvol(parent, name, namelen,
1048 root, readonly, inherit);
1049 out:
1050 if (snapshot_force_cow)
1051 atomic_dec(&root->snapshot_force_cow);
1052 btrfs_drew_read_unlock(&root->snapshot_lock);
1053 return ret;
1057 * When we're defragging a range, we don't want to kick it off again
1058 * if it is really just waiting for delalloc to send it down.
1059 * If we find a nice big extent or delalloc range for the bytes in the
1060 * file you want to defrag, we return 0 to let you know to skip this
1061 * part of the file
1063 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
1065 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1066 struct extent_map *em = NULL;
1067 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1068 u64 end;
1070 read_lock(&em_tree->lock);
1071 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
1072 read_unlock(&em_tree->lock);
1074 if (em) {
1075 end = extent_map_end(em);
1076 free_extent_map(em);
1077 if (end - offset > thresh)
1078 return 0;
1080 /* if we already have a nice delalloc here, just stop */
1081 thresh /= 2;
1082 end = count_range_bits(io_tree, &offset, offset + thresh,
1083 thresh, EXTENT_DELALLOC, 1);
1084 if (end >= thresh)
1085 return 0;
1086 return 1;
1090 * helper function to walk through a file and find extents
1091 * newer than a specific transid, and smaller than thresh.
1093 * This is used by the defragging code to find new and small
1094 * extents
1096 static int find_new_extents(struct btrfs_root *root,
1097 struct inode *inode, u64 newer_than,
1098 u64 *off, u32 thresh)
1100 struct btrfs_path *path;
1101 struct btrfs_key min_key;
1102 struct extent_buffer *leaf;
1103 struct btrfs_file_extent_item *extent;
1104 int type;
1105 int ret;
1106 u64 ino = btrfs_ino(BTRFS_I(inode));
1108 path = btrfs_alloc_path();
1109 if (!path)
1110 return -ENOMEM;
1112 min_key.objectid = ino;
1113 min_key.type = BTRFS_EXTENT_DATA_KEY;
1114 min_key.offset = *off;
1116 while (1) {
1117 ret = btrfs_search_forward(root, &min_key, path, newer_than);
1118 if (ret != 0)
1119 goto none;
1120 process_slot:
1121 if (min_key.objectid != ino)
1122 goto none;
1123 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
1124 goto none;
1126 leaf = path->nodes[0];
1127 extent = btrfs_item_ptr(leaf, path->slots[0],
1128 struct btrfs_file_extent_item);
1130 type = btrfs_file_extent_type(leaf, extent);
1131 if (type == BTRFS_FILE_EXTENT_REG &&
1132 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
1133 check_defrag_in_cache(inode, min_key.offset, thresh)) {
1134 *off = min_key.offset;
1135 btrfs_free_path(path);
1136 return 0;
1139 path->slots[0]++;
1140 if (path->slots[0] < btrfs_header_nritems(leaf)) {
1141 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
1142 goto process_slot;
1145 if (min_key.offset == (u64)-1)
1146 goto none;
1148 min_key.offset++;
1149 btrfs_release_path(path);
1151 none:
1152 btrfs_free_path(path);
1153 return -ENOENT;
1156 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
1158 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1159 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1160 struct extent_map *em;
1161 u64 len = PAGE_SIZE;
1164 * hopefully we have this extent in the tree already, try without
1165 * the full extent lock
1167 read_lock(&em_tree->lock);
1168 em = lookup_extent_mapping(em_tree, start, len);
1169 read_unlock(&em_tree->lock);
1171 if (!em) {
1172 struct extent_state *cached = NULL;
1173 u64 end = start + len - 1;
1175 /* get the big lock and read metadata off disk */
1176 lock_extent_bits(io_tree, start, end, &cached);
1177 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
1178 unlock_extent_cached(io_tree, start, end, &cached);
1180 if (IS_ERR(em))
1181 return NULL;
1184 return em;
1187 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1189 struct extent_map *next;
1190 bool ret = true;
1192 /* this is the last extent */
1193 if (em->start + em->len >= i_size_read(inode))
1194 return false;
1196 next = defrag_lookup_extent(inode, em->start + em->len);
1197 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1198 ret = false;
1199 else if ((em->block_start + em->block_len == next->block_start) &&
1200 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1201 ret = false;
1203 free_extent_map(next);
1204 return ret;
1207 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1208 u64 *last_len, u64 *skip, u64 *defrag_end,
1209 int compress)
1211 struct extent_map *em;
1212 int ret = 1;
1213 bool next_mergeable = true;
1214 bool prev_mergeable = true;
1217 * make sure that once we start defragging an extent, we keep on
1218 * defragging it
1220 if (start < *defrag_end)
1221 return 1;
1223 *skip = 0;
1225 em = defrag_lookup_extent(inode, start);
1226 if (!em)
1227 return 0;
1229 /* this will cover holes, and inline extents */
1230 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1231 ret = 0;
1232 goto out;
1235 if (!*defrag_end)
1236 prev_mergeable = false;
1238 next_mergeable = defrag_check_next_extent(inode, em);
1240 * we hit a real extent, if it is big or the next extent is not a
1241 * real extent, don't bother defragging it
1243 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1244 (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1245 ret = 0;
1246 out:
1248 * last_len ends up being a counter of how many bytes we've defragged.
1249 * every time we choose not to defrag an extent, we reset *last_len
1250 * so that the next tiny extent will force a defrag.
1252 * The end result of this is that tiny extents before a single big
1253 * extent will force at least part of that big extent to be defragged.
1255 if (ret) {
1256 *defrag_end = extent_map_end(em);
1257 } else {
1258 *last_len = 0;
1259 *skip = extent_map_end(em);
1260 *defrag_end = 0;
1263 free_extent_map(em);
1264 return ret;
1268 * it doesn't do much good to defrag one or two pages
1269 * at a time. This pulls in a nice chunk of pages
1270 * to COW and defrag.
1272 * It also makes sure the delalloc code has enough
1273 * dirty data to avoid making new small extents as part
1274 * of the defrag
1276 * It's a good idea to start RA on this range
1277 * before calling this.
1279 static int cluster_pages_for_defrag(struct inode *inode,
1280 struct page **pages,
1281 unsigned long start_index,
1282 unsigned long num_pages)
1284 unsigned long file_end;
1285 u64 isize = i_size_read(inode);
1286 u64 page_start;
1287 u64 page_end;
1288 u64 page_cnt;
1289 u64 start = (u64)start_index << PAGE_SHIFT;
1290 u64 search_start;
1291 int ret;
1292 int i;
1293 int i_done;
1294 struct btrfs_ordered_extent *ordered;
1295 struct extent_state *cached_state = NULL;
1296 struct extent_io_tree *tree;
1297 struct extent_changeset *data_reserved = NULL;
1298 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1300 file_end = (isize - 1) >> PAGE_SHIFT;
1301 if (!isize || start_index > file_end)
1302 return 0;
1304 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1306 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
1307 start, page_cnt << PAGE_SHIFT);
1308 if (ret)
1309 return ret;
1310 i_done = 0;
1311 tree = &BTRFS_I(inode)->io_tree;
1313 /* step one, lock all the pages */
1314 for (i = 0; i < page_cnt; i++) {
1315 struct page *page;
1316 again:
1317 page = find_or_create_page(inode->i_mapping,
1318 start_index + i, mask);
1319 if (!page)
1320 break;
1322 page_start = page_offset(page);
1323 page_end = page_start + PAGE_SIZE - 1;
1324 while (1) {
1325 lock_extent_bits(tree, page_start, page_end,
1326 &cached_state);
1327 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode),
1328 page_start);
1329 unlock_extent_cached(tree, page_start, page_end,
1330 &cached_state);
1331 if (!ordered)
1332 break;
1334 unlock_page(page);
1335 btrfs_start_ordered_extent(ordered, 1);
1336 btrfs_put_ordered_extent(ordered);
1337 lock_page(page);
1339 * we unlocked the page above, so we need check if
1340 * it was released or not.
1342 if (page->mapping != inode->i_mapping) {
1343 unlock_page(page);
1344 put_page(page);
1345 goto again;
1349 if (!PageUptodate(page)) {
1350 btrfs_readpage(NULL, page);
1351 lock_page(page);
1352 if (!PageUptodate(page)) {
1353 unlock_page(page);
1354 put_page(page);
1355 ret = -EIO;
1356 break;
1360 if (page->mapping != inode->i_mapping) {
1361 unlock_page(page);
1362 put_page(page);
1363 goto again;
1366 pages[i] = page;
1367 i_done++;
1369 if (!i_done || ret)
1370 goto out;
1372 if (!(inode->i_sb->s_flags & SB_ACTIVE))
1373 goto out;
1376 * so now we have a nice long stream of locked
1377 * and up to date pages, lets wait on them
1379 for (i = 0; i < i_done; i++)
1380 wait_on_page_writeback(pages[i]);
1382 page_start = page_offset(pages[0]);
1383 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1385 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1386 page_start, page_end - 1, &cached_state);
1389 * When defragmenting we skip ranges that have holes or inline extents,
1390 * (check should_defrag_range()), to avoid unnecessary IO and wasting
1391 * space. At btrfs_defrag_file(), we check if a range should be defragged
1392 * before locking the inode and then, if it should, we trigger a sync
1393 * page cache readahead - we lock the inode only after that to avoid
1394 * blocking for too long other tasks that possibly want to operate on
1395 * other file ranges. But before we were able to get the inode lock,
1396 * some other task may have punched a hole in the range, or we may have
1397 * now an inline extent, in which case we should not defrag. So check
1398 * for that here, where we have the inode and the range locked, and bail
1399 * out if that happened.
1401 search_start = page_start;
1402 while (search_start < page_end) {
1403 struct extent_map *em;
1405 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, search_start,
1406 page_end - search_start);
1407 if (IS_ERR(em)) {
1408 ret = PTR_ERR(em);
1409 goto out_unlock_range;
1411 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1412 free_extent_map(em);
1413 /* Ok, 0 means we did not defrag anything */
1414 ret = 0;
1415 goto out_unlock_range;
1417 search_start = extent_map_end(em);
1418 free_extent_map(em);
1421 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1422 page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1423 EXTENT_DEFRAG, 0, 0, &cached_state);
1425 if (i_done != page_cnt) {
1426 spin_lock(&BTRFS_I(inode)->lock);
1427 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1428 spin_unlock(&BTRFS_I(inode)->lock);
1429 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
1430 start, (page_cnt - i_done) << PAGE_SHIFT, true);
1434 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1435 &cached_state);
1437 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1438 page_start, page_end - 1, &cached_state);
1440 for (i = 0; i < i_done; i++) {
1441 clear_page_dirty_for_io(pages[i]);
1442 ClearPageChecked(pages[i]);
1443 set_page_extent_mapped(pages[i]);
1444 set_page_dirty(pages[i]);
1445 unlock_page(pages[i]);
1446 put_page(pages[i]);
1448 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1449 extent_changeset_free(data_reserved);
1450 return i_done;
1452 out_unlock_range:
1453 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1454 page_start, page_end - 1, &cached_state);
1455 out:
1456 for (i = 0; i < i_done; i++) {
1457 unlock_page(pages[i]);
1458 put_page(pages[i]);
1460 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
1461 start, page_cnt << PAGE_SHIFT, true);
1462 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1463 extent_changeset_free(data_reserved);
1464 return ret;
1468 int btrfs_defrag_file(struct inode *inode, struct file *file,
1469 struct btrfs_ioctl_defrag_range_args *range,
1470 u64 newer_than, unsigned long max_to_defrag)
1472 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1473 struct btrfs_root *root = BTRFS_I(inode)->root;
1474 struct file_ra_state *ra = NULL;
1475 unsigned long last_index;
1476 u64 isize = i_size_read(inode);
1477 u64 last_len = 0;
1478 u64 skip = 0;
1479 u64 defrag_end = 0;
1480 u64 newer_off = range->start;
1481 unsigned long i;
1482 unsigned long ra_index = 0;
1483 int ret;
1484 int defrag_count = 0;
1485 int compress_type = BTRFS_COMPRESS_ZLIB;
1486 u32 extent_thresh = range->extent_thresh;
1487 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1488 unsigned long cluster = max_cluster;
1489 u64 new_align = ~((u64)SZ_128K - 1);
1490 struct page **pages = NULL;
1491 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1493 if (isize == 0)
1494 return 0;
1496 if (range->start >= isize)
1497 return -EINVAL;
1499 if (do_compress) {
1500 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1501 return -EINVAL;
1502 if (range->compress_type)
1503 compress_type = range->compress_type;
1506 if (extent_thresh == 0)
1507 extent_thresh = SZ_256K;
1510 * If we were not given a file, allocate a readahead context. As
1511 * readahead is just an optimization, defrag will work without it so
1512 * we don't error out.
1514 if (!file) {
1515 ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1516 if (ra)
1517 file_ra_state_init(ra, inode->i_mapping);
1518 } else {
1519 ra = &file->f_ra;
1522 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1523 if (!pages) {
1524 ret = -ENOMEM;
1525 goto out_ra;
1528 /* find the last page to defrag */
1529 if (range->start + range->len > range->start) {
1530 last_index = min_t(u64, isize - 1,
1531 range->start + range->len - 1) >> PAGE_SHIFT;
1532 } else {
1533 last_index = (isize - 1) >> PAGE_SHIFT;
1536 if (newer_than) {
1537 ret = find_new_extents(root, inode, newer_than,
1538 &newer_off, SZ_64K);
1539 if (!ret) {
1540 range->start = newer_off;
1542 * we always align our defrag to help keep
1543 * the extents in the file evenly spaced
1545 i = (newer_off & new_align) >> PAGE_SHIFT;
1546 } else
1547 goto out_ra;
1548 } else {
1549 i = range->start >> PAGE_SHIFT;
1551 if (!max_to_defrag)
1552 max_to_defrag = last_index - i + 1;
1555 * make writeback starts from i, so the defrag range can be
1556 * written sequentially.
1558 if (i < inode->i_mapping->writeback_index)
1559 inode->i_mapping->writeback_index = i;
1561 while (i <= last_index && defrag_count < max_to_defrag &&
1562 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1564 * make sure we stop running if someone unmounts
1565 * the FS
1567 if (!(inode->i_sb->s_flags & SB_ACTIVE))
1568 break;
1570 if (btrfs_defrag_cancelled(fs_info)) {
1571 btrfs_debug(fs_info, "defrag_file cancelled");
1572 ret = -EAGAIN;
1573 break;
1576 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1577 extent_thresh, &last_len, &skip,
1578 &defrag_end, do_compress)){
1579 unsigned long next;
1581 * the should_defrag function tells us how much to skip
1582 * bump our counter by the suggested amount
1584 next = DIV_ROUND_UP(skip, PAGE_SIZE);
1585 i = max(i + 1, next);
1586 continue;
1589 if (!newer_than) {
1590 cluster = (PAGE_ALIGN(defrag_end) >>
1591 PAGE_SHIFT) - i;
1592 cluster = min(cluster, max_cluster);
1593 } else {
1594 cluster = max_cluster;
1597 if (i + cluster > ra_index) {
1598 ra_index = max(i, ra_index);
1599 if (ra)
1600 page_cache_sync_readahead(inode->i_mapping, ra,
1601 file, ra_index, cluster);
1602 ra_index += cluster;
1605 inode_lock(inode);
1606 if (IS_SWAPFILE(inode)) {
1607 ret = -ETXTBSY;
1608 } else {
1609 if (do_compress)
1610 BTRFS_I(inode)->defrag_compress = compress_type;
1611 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1613 if (ret < 0) {
1614 inode_unlock(inode);
1615 goto out_ra;
1618 defrag_count += ret;
1619 balance_dirty_pages_ratelimited(inode->i_mapping);
1620 inode_unlock(inode);
1622 if (newer_than) {
1623 if (newer_off == (u64)-1)
1624 break;
1626 if (ret > 0)
1627 i += ret;
1629 newer_off = max(newer_off + 1,
1630 (u64)i << PAGE_SHIFT);
1632 ret = find_new_extents(root, inode, newer_than,
1633 &newer_off, SZ_64K);
1634 if (!ret) {
1635 range->start = newer_off;
1636 i = (newer_off & new_align) >> PAGE_SHIFT;
1637 } else {
1638 break;
1640 } else {
1641 if (ret > 0) {
1642 i += ret;
1643 last_len += ret << PAGE_SHIFT;
1644 } else {
1645 i++;
1646 last_len = 0;
1651 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1652 filemap_flush(inode->i_mapping);
1653 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1654 &BTRFS_I(inode)->runtime_flags))
1655 filemap_flush(inode->i_mapping);
1658 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1659 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1660 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1661 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1664 ret = defrag_count;
1666 out_ra:
1667 if (do_compress) {
1668 inode_lock(inode);
1669 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1670 inode_unlock(inode);
1672 if (!file)
1673 kfree(ra);
1674 kfree(pages);
1675 return ret;
1678 static noinline int btrfs_ioctl_resize(struct file *file,
1679 void __user *arg)
1681 struct inode *inode = file_inode(file);
1682 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1683 u64 new_size;
1684 u64 old_size;
1685 u64 devid = 1;
1686 struct btrfs_root *root = BTRFS_I(inode)->root;
1687 struct btrfs_ioctl_vol_args *vol_args;
1688 struct btrfs_trans_handle *trans;
1689 struct btrfs_device *device = NULL;
1690 char *sizestr;
1691 char *retptr;
1692 char *devstr = NULL;
1693 int ret = 0;
1694 int mod = 0;
1696 if (!capable(CAP_SYS_ADMIN))
1697 return -EPERM;
1699 ret = mnt_want_write_file(file);
1700 if (ret)
1701 return ret;
1703 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_RESIZE)) {
1704 mnt_drop_write_file(file);
1705 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1708 vol_args = memdup_user(arg, sizeof(*vol_args));
1709 if (IS_ERR(vol_args)) {
1710 ret = PTR_ERR(vol_args);
1711 goto out;
1714 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1716 sizestr = vol_args->name;
1717 devstr = strchr(sizestr, ':');
1718 if (devstr) {
1719 sizestr = devstr + 1;
1720 *devstr = '\0';
1721 devstr = vol_args->name;
1722 ret = kstrtoull(devstr, 10, &devid);
1723 if (ret)
1724 goto out_free;
1725 if (!devid) {
1726 ret = -EINVAL;
1727 goto out_free;
1729 btrfs_info(fs_info, "resizing devid %llu", devid);
1732 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
1733 if (!device) {
1734 btrfs_info(fs_info, "resizer unable to find device %llu",
1735 devid);
1736 ret = -ENODEV;
1737 goto out_free;
1740 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1741 btrfs_info(fs_info,
1742 "resizer unable to apply on readonly device %llu",
1743 devid);
1744 ret = -EPERM;
1745 goto out_free;
1748 if (!strcmp(sizestr, "max"))
1749 new_size = device->bdev->bd_inode->i_size;
1750 else {
1751 if (sizestr[0] == '-') {
1752 mod = -1;
1753 sizestr++;
1754 } else if (sizestr[0] == '+') {
1755 mod = 1;
1756 sizestr++;
1758 new_size = memparse(sizestr, &retptr);
1759 if (*retptr != '\0' || new_size == 0) {
1760 ret = -EINVAL;
1761 goto out_free;
1765 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1766 ret = -EPERM;
1767 goto out_free;
1770 old_size = btrfs_device_get_total_bytes(device);
1772 if (mod < 0) {
1773 if (new_size > old_size) {
1774 ret = -EINVAL;
1775 goto out_free;
1777 new_size = old_size - new_size;
1778 } else if (mod > 0) {
1779 if (new_size > ULLONG_MAX - old_size) {
1780 ret = -ERANGE;
1781 goto out_free;
1783 new_size = old_size + new_size;
1786 if (new_size < SZ_256M) {
1787 ret = -EINVAL;
1788 goto out_free;
1790 if (new_size > device->bdev->bd_inode->i_size) {
1791 ret = -EFBIG;
1792 goto out_free;
1795 new_size = round_down(new_size, fs_info->sectorsize);
1797 if (new_size > old_size) {
1798 trans = btrfs_start_transaction(root, 0);
1799 if (IS_ERR(trans)) {
1800 ret = PTR_ERR(trans);
1801 goto out_free;
1803 ret = btrfs_grow_device(trans, device, new_size);
1804 btrfs_commit_transaction(trans);
1805 } else if (new_size < old_size) {
1806 ret = btrfs_shrink_device(device, new_size);
1807 } /* equal, nothing need to do */
1809 if (ret == 0 && new_size != old_size)
1810 btrfs_info_in_rcu(fs_info,
1811 "resize device %s (devid %llu) from %llu to %llu",
1812 rcu_str_deref(device->name), device->devid,
1813 old_size, new_size);
1814 out_free:
1815 kfree(vol_args);
1816 out:
1817 btrfs_exclop_finish(fs_info);
1818 mnt_drop_write_file(file);
1819 return ret;
1822 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1823 const char *name, unsigned long fd, int subvol,
1824 bool readonly,
1825 struct btrfs_qgroup_inherit *inherit)
1827 int namelen;
1828 int ret = 0;
1830 if (!S_ISDIR(file_inode(file)->i_mode))
1831 return -ENOTDIR;
1833 ret = mnt_want_write_file(file);
1834 if (ret)
1835 goto out;
1837 namelen = strlen(name);
1838 if (strchr(name, '/')) {
1839 ret = -EINVAL;
1840 goto out_drop_write;
1843 if (name[0] == '.' &&
1844 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1845 ret = -EEXIST;
1846 goto out_drop_write;
1849 if (subvol) {
1850 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1851 NULL, readonly, inherit);
1852 } else {
1853 struct fd src = fdget(fd);
1854 struct inode *src_inode;
1855 if (!src.file) {
1856 ret = -EINVAL;
1857 goto out_drop_write;
1860 src_inode = file_inode(src.file);
1861 if (src_inode->i_sb != file_inode(file)->i_sb) {
1862 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1863 "Snapshot src from another FS");
1864 ret = -EXDEV;
1865 } else if (!inode_owner_or_capable(src_inode)) {
1867 * Subvolume creation is not restricted, but snapshots
1868 * are limited to own subvolumes only
1870 ret = -EPERM;
1871 } else {
1872 ret = btrfs_mksnapshot(&file->f_path, name, namelen,
1873 BTRFS_I(src_inode)->root,
1874 readonly, inherit);
1876 fdput(src);
1878 out_drop_write:
1879 mnt_drop_write_file(file);
1880 out:
1881 return ret;
1884 static noinline int btrfs_ioctl_snap_create(struct file *file,
1885 void __user *arg, int subvol)
1887 struct btrfs_ioctl_vol_args *vol_args;
1888 int ret;
1890 if (!S_ISDIR(file_inode(file)->i_mode))
1891 return -ENOTDIR;
1893 vol_args = memdup_user(arg, sizeof(*vol_args));
1894 if (IS_ERR(vol_args))
1895 return PTR_ERR(vol_args);
1896 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1898 ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd,
1899 subvol, false, NULL);
1901 kfree(vol_args);
1902 return ret;
1905 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1906 void __user *arg, int subvol)
1908 struct btrfs_ioctl_vol_args_v2 *vol_args;
1909 int ret;
1910 bool readonly = false;
1911 struct btrfs_qgroup_inherit *inherit = NULL;
1913 if (!S_ISDIR(file_inode(file)->i_mode))
1914 return -ENOTDIR;
1916 vol_args = memdup_user(arg, sizeof(*vol_args));
1917 if (IS_ERR(vol_args))
1918 return PTR_ERR(vol_args);
1919 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1921 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1922 ret = -EOPNOTSUPP;
1923 goto free_args;
1926 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1927 readonly = true;
1928 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1929 if (vol_args->size > PAGE_SIZE) {
1930 ret = -EINVAL;
1931 goto free_args;
1933 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1934 if (IS_ERR(inherit)) {
1935 ret = PTR_ERR(inherit);
1936 goto free_args;
1940 ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd,
1941 subvol, readonly, inherit);
1942 if (ret)
1943 goto free_inherit;
1944 free_inherit:
1945 kfree(inherit);
1946 free_args:
1947 kfree(vol_args);
1948 return ret;
1951 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1952 void __user *arg)
1954 struct inode *inode = file_inode(file);
1955 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1956 struct btrfs_root *root = BTRFS_I(inode)->root;
1957 int ret = 0;
1958 u64 flags = 0;
1960 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1961 return -EINVAL;
1963 down_read(&fs_info->subvol_sem);
1964 if (btrfs_root_readonly(root))
1965 flags |= BTRFS_SUBVOL_RDONLY;
1966 up_read(&fs_info->subvol_sem);
1968 if (copy_to_user(arg, &flags, sizeof(flags)))
1969 ret = -EFAULT;
1971 return ret;
1974 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1975 void __user *arg)
1977 struct inode *inode = file_inode(file);
1978 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1979 struct btrfs_root *root = BTRFS_I(inode)->root;
1980 struct btrfs_trans_handle *trans;
1981 u64 root_flags;
1982 u64 flags;
1983 int ret = 0;
1985 if (!inode_owner_or_capable(inode))
1986 return -EPERM;
1988 ret = mnt_want_write_file(file);
1989 if (ret)
1990 goto out;
1992 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1993 ret = -EINVAL;
1994 goto out_drop_write;
1997 if (copy_from_user(&flags, arg, sizeof(flags))) {
1998 ret = -EFAULT;
1999 goto out_drop_write;
2002 if (flags & ~BTRFS_SUBVOL_RDONLY) {
2003 ret = -EOPNOTSUPP;
2004 goto out_drop_write;
2007 down_write(&fs_info->subvol_sem);
2009 /* nothing to do */
2010 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
2011 goto out_drop_sem;
2013 root_flags = btrfs_root_flags(&root->root_item);
2014 if (flags & BTRFS_SUBVOL_RDONLY) {
2015 btrfs_set_root_flags(&root->root_item,
2016 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
2017 } else {
2019 * Block RO -> RW transition if this subvolume is involved in
2020 * send
2022 spin_lock(&root->root_item_lock);
2023 if (root->send_in_progress == 0) {
2024 btrfs_set_root_flags(&root->root_item,
2025 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
2026 spin_unlock(&root->root_item_lock);
2027 } else {
2028 spin_unlock(&root->root_item_lock);
2029 btrfs_warn(fs_info,
2030 "Attempt to set subvolume %llu read-write during send",
2031 root->root_key.objectid);
2032 ret = -EPERM;
2033 goto out_drop_sem;
2037 trans = btrfs_start_transaction(root, 1);
2038 if (IS_ERR(trans)) {
2039 ret = PTR_ERR(trans);
2040 goto out_reset;
2043 ret = btrfs_update_root(trans, fs_info->tree_root,
2044 &root->root_key, &root->root_item);
2045 if (ret < 0) {
2046 btrfs_end_transaction(trans);
2047 goto out_reset;
2050 ret = btrfs_commit_transaction(trans);
2052 out_reset:
2053 if (ret)
2054 btrfs_set_root_flags(&root->root_item, root_flags);
2055 out_drop_sem:
2056 up_write(&fs_info->subvol_sem);
2057 out_drop_write:
2058 mnt_drop_write_file(file);
2059 out:
2060 return ret;
2063 static noinline int key_in_sk(struct btrfs_key *key,
2064 struct btrfs_ioctl_search_key *sk)
2066 struct btrfs_key test;
2067 int ret;
2069 test.objectid = sk->min_objectid;
2070 test.type = sk->min_type;
2071 test.offset = sk->min_offset;
2073 ret = btrfs_comp_cpu_keys(key, &test);
2074 if (ret < 0)
2075 return 0;
2077 test.objectid = sk->max_objectid;
2078 test.type = sk->max_type;
2079 test.offset = sk->max_offset;
2081 ret = btrfs_comp_cpu_keys(key, &test);
2082 if (ret > 0)
2083 return 0;
2084 return 1;
2087 static noinline int copy_to_sk(struct btrfs_path *path,
2088 struct btrfs_key *key,
2089 struct btrfs_ioctl_search_key *sk,
2090 size_t *buf_size,
2091 char __user *ubuf,
2092 unsigned long *sk_offset,
2093 int *num_found)
2095 u64 found_transid;
2096 struct extent_buffer *leaf;
2097 struct btrfs_ioctl_search_header sh;
2098 struct btrfs_key test;
2099 unsigned long item_off;
2100 unsigned long item_len;
2101 int nritems;
2102 int i;
2103 int slot;
2104 int ret = 0;
2106 leaf = path->nodes[0];
2107 slot = path->slots[0];
2108 nritems = btrfs_header_nritems(leaf);
2110 if (btrfs_header_generation(leaf) > sk->max_transid) {
2111 i = nritems;
2112 goto advance_key;
2114 found_transid = btrfs_header_generation(leaf);
2116 for (i = slot; i < nritems; i++) {
2117 item_off = btrfs_item_ptr_offset(leaf, i);
2118 item_len = btrfs_item_size_nr(leaf, i);
2120 btrfs_item_key_to_cpu(leaf, key, i);
2121 if (!key_in_sk(key, sk))
2122 continue;
2124 if (sizeof(sh) + item_len > *buf_size) {
2125 if (*num_found) {
2126 ret = 1;
2127 goto out;
2131 * return one empty item back for v1, which does not
2132 * handle -EOVERFLOW
2135 *buf_size = sizeof(sh) + item_len;
2136 item_len = 0;
2137 ret = -EOVERFLOW;
2140 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2141 ret = 1;
2142 goto out;
2145 sh.objectid = key->objectid;
2146 sh.offset = key->offset;
2147 sh.type = key->type;
2148 sh.len = item_len;
2149 sh.transid = found_transid;
2152 * Copy search result header. If we fault then loop again so we
2153 * can fault in the pages and -EFAULT there if there's a
2154 * problem. Otherwise we'll fault and then copy the buffer in
2155 * properly this next time through
2157 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
2158 ret = 0;
2159 goto out;
2162 *sk_offset += sizeof(sh);
2164 if (item_len) {
2165 char __user *up = ubuf + *sk_offset;
2167 * Copy the item, same behavior as above, but reset the
2168 * * sk_offset so we copy the full thing again.
2170 if (read_extent_buffer_to_user_nofault(leaf, up,
2171 item_off, item_len)) {
2172 ret = 0;
2173 *sk_offset -= sizeof(sh);
2174 goto out;
2177 *sk_offset += item_len;
2179 (*num_found)++;
2181 if (ret) /* -EOVERFLOW from above */
2182 goto out;
2184 if (*num_found >= sk->nr_items) {
2185 ret = 1;
2186 goto out;
2189 advance_key:
2190 ret = 0;
2191 test.objectid = sk->max_objectid;
2192 test.type = sk->max_type;
2193 test.offset = sk->max_offset;
2194 if (btrfs_comp_cpu_keys(key, &test) >= 0)
2195 ret = 1;
2196 else if (key->offset < (u64)-1)
2197 key->offset++;
2198 else if (key->type < (u8)-1) {
2199 key->offset = 0;
2200 key->type++;
2201 } else if (key->objectid < (u64)-1) {
2202 key->offset = 0;
2203 key->type = 0;
2204 key->objectid++;
2205 } else
2206 ret = 1;
2207 out:
2209 * 0: all items from this leaf copied, continue with next
2210 * 1: * more items can be copied, but unused buffer is too small
2211 * * all items were found
2212 * Either way, it will stops the loop which iterates to the next
2213 * leaf
2214 * -EOVERFLOW: item was to large for buffer
2215 * -EFAULT: could not copy extent buffer back to userspace
2217 return ret;
2220 static noinline int search_ioctl(struct inode *inode,
2221 struct btrfs_ioctl_search_key *sk,
2222 size_t *buf_size,
2223 char __user *ubuf)
2225 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2226 struct btrfs_root *root;
2227 struct btrfs_key key;
2228 struct btrfs_path *path;
2229 int ret;
2230 int num_found = 0;
2231 unsigned long sk_offset = 0;
2233 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2234 *buf_size = sizeof(struct btrfs_ioctl_search_header);
2235 return -EOVERFLOW;
2238 path = btrfs_alloc_path();
2239 if (!path)
2240 return -ENOMEM;
2242 if (sk->tree_id == 0) {
2243 /* search the root of the inode that was passed */
2244 root = btrfs_grab_root(BTRFS_I(inode)->root);
2245 } else {
2246 root = btrfs_get_fs_root(info, sk->tree_id, true);
2247 if (IS_ERR(root)) {
2248 btrfs_free_path(path);
2249 return PTR_ERR(root);
2253 key.objectid = sk->min_objectid;
2254 key.type = sk->min_type;
2255 key.offset = sk->min_offset;
2257 while (1) {
2258 ret = fault_in_pages_writeable(ubuf + sk_offset,
2259 *buf_size - sk_offset);
2260 if (ret)
2261 break;
2263 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2264 if (ret != 0) {
2265 if (ret > 0)
2266 ret = 0;
2267 goto err;
2269 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2270 &sk_offset, &num_found);
2271 btrfs_release_path(path);
2272 if (ret)
2273 break;
2276 if (ret > 0)
2277 ret = 0;
2278 err:
2279 sk->nr_items = num_found;
2280 btrfs_put_root(root);
2281 btrfs_free_path(path);
2282 return ret;
2285 static noinline int btrfs_ioctl_tree_search(struct file *file,
2286 void __user *argp)
2288 struct btrfs_ioctl_search_args __user *uargs;
2289 struct btrfs_ioctl_search_key sk;
2290 struct inode *inode;
2291 int ret;
2292 size_t buf_size;
2294 if (!capable(CAP_SYS_ADMIN))
2295 return -EPERM;
2297 uargs = (struct btrfs_ioctl_search_args __user *)argp;
2299 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2300 return -EFAULT;
2302 buf_size = sizeof(uargs->buf);
2304 inode = file_inode(file);
2305 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2308 * In the origin implementation an overflow is handled by returning a
2309 * search header with a len of zero, so reset ret.
2311 if (ret == -EOVERFLOW)
2312 ret = 0;
2314 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2315 ret = -EFAULT;
2316 return ret;
2319 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2320 void __user *argp)
2322 struct btrfs_ioctl_search_args_v2 __user *uarg;
2323 struct btrfs_ioctl_search_args_v2 args;
2324 struct inode *inode;
2325 int ret;
2326 size_t buf_size;
2327 const size_t buf_limit = SZ_16M;
2329 if (!capable(CAP_SYS_ADMIN))
2330 return -EPERM;
2332 /* copy search header and buffer size */
2333 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2334 if (copy_from_user(&args, uarg, sizeof(args)))
2335 return -EFAULT;
2337 buf_size = args.buf_size;
2339 /* limit result size to 16MB */
2340 if (buf_size > buf_limit)
2341 buf_size = buf_limit;
2343 inode = file_inode(file);
2344 ret = search_ioctl(inode, &args.key, &buf_size,
2345 (char __user *)(&uarg->buf[0]));
2346 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2347 ret = -EFAULT;
2348 else if (ret == -EOVERFLOW &&
2349 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2350 ret = -EFAULT;
2352 return ret;
2356 * Search INODE_REFs to identify path name of 'dirid' directory
2357 * in a 'tree_id' tree. and sets path name to 'name'.
2359 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2360 u64 tree_id, u64 dirid, char *name)
2362 struct btrfs_root *root;
2363 struct btrfs_key key;
2364 char *ptr;
2365 int ret = -1;
2366 int slot;
2367 int len;
2368 int total_len = 0;
2369 struct btrfs_inode_ref *iref;
2370 struct extent_buffer *l;
2371 struct btrfs_path *path;
2373 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2374 name[0]='\0';
2375 return 0;
2378 path = btrfs_alloc_path();
2379 if (!path)
2380 return -ENOMEM;
2382 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2384 root = btrfs_get_fs_root(info, tree_id, true);
2385 if (IS_ERR(root)) {
2386 ret = PTR_ERR(root);
2387 root = NULL;
2388 goto out;
2391 key.objectid = dirid;
2392 key.type = BTRFS_INODE_REF_KEY;
2393 key.offset = (u64)-1;
2395 while (1) {
2396 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2397 if (ret < 0)
2398 goto out;
2399 else if (ret > 0) {
2400 ret = btrfs_previous_item(root, path, dirid,
2401 BTRFS_INODE_REF_KEY);
2402 if (ret < 0)
2403 goto out;
2404 else if (ret > 0) {
2405 ret = -ENOENT;
2406 goto out;
2410 l = path->nodes[0];
2411 slot = path->slots[0];
2412 btrfs_item_key_to_cpu(l, &key, slot);
2414 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2415 len = btrfs_inode_ref_name_len(l, iref);
2416 ptr -= len + 1;
2417 total_len += len + 1;
2418 if (ptr < name) {
2419 ret = -ENAMETOOLONG;
2420 goto out;
2423 *(ptr + len) = '/';
2424 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2426 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2427 break;
2429 btrfs_release_path(path);
2430 key.objectid = key.offset;
2431 key.offset = (u64)-1;
2432 dirid = key.objectid;
2434 memmove(name, ptr, total_len);
2435 name[total_len] = '\0';
2436 ret = 0;
2437 out:
2438 btrfs_put_root(root);
2439 btrfs_free_path(path);
2440 return ret;
2443 static int btrfs_search_path_in_tree_user(struct inode *inode,
2444 struct btrfs_ioctl_ino_lookup_user_args *args)
2446 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2447 struct super_block *sb = inode->i_sb;
2448 struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2449 u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2450 u64 dirid = args->dirid;
2451 unsigned long item_off;
2452 unsigned long item_len;
2453 struct btrfs_inode_ref *iref;
2454 struct btrfs_root_ref *rref;
2455 struct btrfs_root *root = NULL;
2456 struct btrfs_path *path;
2457 struct btrfs_key key, key2;
2458 struct extent_buffer *leaf;
2459 struct inode *temp_inode;
2460 char *ptr;
2461 int slot;
2462 int len;
2463 int total_len = 0;
2464 int ret;
2466 path = btrfs_alloc_path();
2467 if (!path)
2468 return -ENOMEM;
2471 * If the bottom subvolume does not exist directly under upper_limit,
2472 * construct the path in from the bottom up.
2474 if (dirid != upper_limit.objectid) {
2475 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2477 root = btrfs_get_fs_root(fs_info, treeid, true);
2478 if (IS_ERR(root)) {
2479 ret = PTR_ERR(root);
2480 goto out;
2483 key.objectid = dirid;
2484 key.type = BTRFS_INODE_REF_KEY;
2485 key.offset = (u64)-1;
2486 while (1) {
2487 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2488 if (ret < 0) {
2489 goto out_put;
2490 } else if (ret > 0) {
2491 ret = btrfs_previous_item(root, path, dirid,
2492 BTRFS_INODE_REF_KEY);
2493 if (ret < 0) {
2494 goto out_put;
2495 } else if (ret > 0) {
2496 ret = -ENOENT;
2497 goto out_put;
2501 leaf = path->nodes[0];
2502 slot = path->slots[0];
2503 btrfs_item_key_to_cpu(leaf, &key, slot);
2505 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2506 len = btrfs_inode_ref_name_len(leaf, iref);
2507 ptr -= len + 1;
2508 total_len += len + 1;
2509 if (ptr < args->path) {
2510 ret = -ENAMETOOLONG;
2511 goto out_put;
2514 *(ptr + len) = '/';
2515 read_extent_buffer(leaf, ptr,
2516 (unsigned long)(iref + 1), len);
2518 /* Check the read+exec permission of this directory */
2519 ret = btrfs_previous_item(root, path, dirid,
2520 BTRFS_INODE_ITEM_KEY);
2521 if (ret < 0) {
2522 goto out_put;
2523 } else if (ret > 0) {
2524 ret = -ENOENT;
2525 goto out_put;
2528 leaf = path->nodes[0];
2529 slot = path->slots[0];
2530 btrfs_item_key_to_cpu(leaf, &key2, slot);
2531 if (key2.objectid != dirid) {
2532 ret = -ENOENT;
2533 goto out_put;
2536 temp_inode = btrfs_iget(sb, key2.objectid, root);
2537 if (IS_ERR(temp_inode)) {
2538 ret = PTR_ERR(temp_inode);
2539 goto out_put;
2541 ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC);
2542 iput(temp_inode);
2543 if (ret) {
2544 ret = -EACCES;
2545 goto out_put;
2548 if (key.offset == upper_limit.objectid)
2549 break;
2550 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2551 ret = -EACCES;
2552 goto out_put;
2555 btrfs_release_path(path);
2556 key.objectid = key.offset;
2557 key.offset = (u64)-1;
2558 dirid = key.objectid;
2561 memmove(args->path, ptr, total_len);
2562 args->path[total_len] = '\0';
2563 btrfs_put_root(root);
2564 root = NULL;
2565 btrfs_release_path(path);
2568 /* Get the bottom subvolume's name from ROOT_REF */
2569 key.objectid = treeid;
2570 key.type = BTRFS_ROOT_REF_KEY;
2571 key.offset = args->treeid;
2572 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2573 if (ret < 0) {
2574 goto out;
2575 } else if (ret > 0) {
2576 ret = -ENOENT;
2577 goto out;
2580 leaf = path->nodes[0];
2581 slot = path->slots[0];
2582 btrfs_item_key_to_cpu(leaf, &key, slot);
2584 item_off = btrfs_item_ptr_offset(leaf, slot);
2585 item_len = btrfs_item_size_nr(leaf, slot);
2586 /* Check if dirid in ROOT_REF corresponds to passed dirid */
2587 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2588 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2589 ret = -EINVAL;
2590 goto out;
2593 /* Copy subvolume's name */
2594 item_off += sizeof(struct btrfs_root_ref);
2595 item_len -= sizeof(struct btrfs_root_ref);
2596 read_extent_buffer(leaf, args->name, item_off, item_len);
2597 args->name[item_len] = 0;
2599 out_put:
2600 btrfs_put_root(root);
2601 out:
2602 btrfs_free_path(path);
2603 return ret;
2606 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2607 void __user *argp)
2609 struct btrfs_ioctl_ino_lookup_args *args;
2610 struct inode *inode;
2611 int ret = 0;
2613 args = memdup_user(argp, sizeof(*args));
2614 if (IS_ERR(args))
2615 return PTR_ERR(args);
2617 inode = file_inode(file);
2620 * Unprivileged query to obtain the containing subvolume root id. The
2621 * path is reset so it's consistent with btrfs_search_path_in_tree.
2623 if (args->treeid == 0)
2624 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2626 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2627 args->name[0] = 0;
2628 goto out;
2631 if (!capable(CAP_SYS_ADMIN)) {
2632 ret = -EPERM;
2633 goto out;
2636 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2637 args->treeid, args->objectid,
2638 args->name);
2640 out:
2641 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2642 ret = -EFAULT;
2644 kfree(args);
2645 return ret;
2649 * Version of ino_lookup ioctl (unprivileged)
2651 * The main differences from ino_lookup ioctl are:
2653 * 1. Read + Exec permission will be checked using inode_permission() during
2654 * path construction. -EACCES will be returned in case of failure.
2655 * 2. Path construction will be stopped at the inode number which corresponds
2656 * to the fd with which this ioctl is called. If constructed path does not
2657 * exist under fd's inode, -EACCES will be returned.
2658 * 3. The name of bottom subvolume is also searched and filled.
2660 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2662 struct btrfs_ioctl_ino_lookup_user_args *args;
2663 struct inode *inode;
2664 int ret;
2666 args = memdup_user(argp, sizeof(*args));
2667 if (IS_ERR(args))
2668 return PTR_ERR(args);
2670 inode = file_inode(file);
2672 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2673 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2675 * The subvolume does not exist under fd with which this is
2676 * called
2678 kfree(args);
2679 return -EACCES;
2682 ret = btrfs_search_path_in_tree_user(inode, args);
2684 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2685 ret = -EFAULT;
2687 kfree(args);
2688 return ret;
2691 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2692 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp)
2694 struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2695 struct btrfs_fs_info *fs_info;
2696 struct btrfs_root *root;
2697 struct btrfs_path *path;
2698 struct btrfs_key key;
2699 struct btrfs_root_item *root_item;
2700 struct btrfs_root_ref *rref;
2701 struct extent_buffer *leaf;
2702 unsigned long item_off;
2703 unsigned long item_len;
2704 struct inode *inode;
2705 int slot;
2706 int ret = 0;
2708 path = btrfs_alloc_path();
2709 if (!path)
2710 return -ENOMEM;
2712 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2713 if (!subvol_info) {
2714 btrfs_free_path(path);
2715 return -ENOMEM;
2718 inode = file_inode(file);
2719 fs_info = BTRFS_I(inode)->root->fs_info;
2721 /* Get root_item of inode's subvolume */
2722 key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2723 root = btrfs_get_fs_root(fs_info, key.objectid, true);
2724 if (IS_ERR(root)) {
2725 ret = PTR_ERR(root);
2726 goto out_free;
2728 root_item = &root->root_item;
2730 subvol_info->treeid = key.objectid;
2732 subvol_info->generation = btrfs_root_generation(root_item);
2733 subvol_info->flags = btrfs_root_flags(root_item);
2735 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2736 memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2737 BTRFS_UUID_SIZE);
2738 memcpy(subvol_info->received_uuid, root_item->received_uuid,
2739 BTRFS_UUID_SIZE);
2741 subvol_info->ctransid = btrfs_root_ctransid(root_item);
2742 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2743 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2745 subvol_info->otransid = btrfs_root_otransid(root_item);
2746 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2747 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2749 subvol_info->stransid = btrfs_root_stransid(root_item);
2750 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2751 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2753 subvol_info->rtransid = btrfs_root_rtransid(root_item);
2754 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2755 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2757 if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2758 /* Search root tree for ROOT_BACKREF of this subvolume */
2759 key.type = BTRFS_ROOT_BACKREF_KEY;
2760 key.offset = 0;
2761 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2762 if (ret < 0) {
2763 goto out;
2764 } else if (path->slots[0] >=
2765 btrfs_header_nritems(path->nodes[0])) {
2766 ret = btrfs_next_leaf(fs_info->tree_root, path);
2767 if (ret < 0) {
2768 goto out;
2769 } else if (ret > 0) {
2770 ret = -EUCLEAN;
2771 goto out;
2775 leaf = path->nodes[0];
2776 slot = path->slots[0];
2777 btrfs_item_key_to_cpu(leaf, &key, slot);
2778 if (key.objectid == subvol_info->treeid &&
2779 key.type == BTRFS_ROOT_BACKREF_KEY) {
2780 subvol_info->parent_id = key.offset;
2782 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2783 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2785 item_off = btrfs_item_ptr_offset(leaf, slot)
2786 + sizeof(struct btrfs_root_ref);
2787 item_len = btrfs_item_size_nr(leaf, slot)
2788 - sizeof(struct btrfs_root_ref);
2789 read_extent_buffer(leaf, subvol_info->name,
2790 item_off, item_len);
2791 } else {
2792 ret = -ENOENT;
2793 goto out;
2797 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2798 ret = -EFAULT;
2800 out:
2801 btrfs_put_root(root);
2802 out_free:
2803 btrfs_free_path(path);
2804 kfree(subvol_info);
2805 return ret;
2809 * Return ROOT_REF information of the subvolume containing this inode
2810 * except the subvolume name.
2812 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp)
2814 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2815 struct btrfs_root_ref *rref;
2816 struct btrfs_root *root;
2817 struct btrfs_path *path;
2818 struct btrfs_key key;
2819 struct extent_buffer *leaf;
2820 struct inode *inode;
2821 u64 objectid;
2822 int slot;
2823 int ret;
2824 u8 found;
2826 path = btrfs_alloc_path();
2827 if (!path)
2828 return -ENOMEM;
2830 rootrefs = memdup_user(argp, sizeof(*rootrefs));
2831 if (IS_ERR(rootrefs)) {
2832 btrfs_free_path(path);
2833 return PTR_ERR(rootrefs);
2836 inode = file_inode(file);
2837 root = BTRFS_I(inode)->root->fs_info->tree_root;
2838 objectid = BTRFS_I(inode)->root->root_key.objectid;
2840 key.objectid = objectid;
2841 key.type = BTRFS_ROOT_REF_KEY;
2842 key.offset = rootrefs->min_treeid;
2843 found = 0;
2845 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2846 if (ret < 0) {
2847 goto out;
2848 } else if (path->slots[0] >=
2849 btrfs_header_nritems(path->nodes[0])) {
2850 ret = btrfs_next_leaf(root, path);
2851 if (ret < 0) {
2852 goto out;
2853 } else if (ret > 0) {
2854 ret = -EUCLEAN;
2855 goto out;
2858 while (1) {
2859 leaf = path->nodes[0];
2860 slot = path->slots[0];
2862 btrfs_item_key_to_cpu(leaf, &key, slot);
2863 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2864 ret = 0;
2865 goto out;
2868 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2869 ret = -EOVERFLOW;
2870 goto out;
2873 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2874 rootrefs->rootref[found].treeid = key.offset;
2875 rootrefs->rootref[found].dirid =
2876 btrfs_root_ref_dirid(leaf, rref);
2877 found++;
2879 ret = btrfs_next_item(root, path);
2880 if (ret < 0) {
2881 goto out;
2882 } else if (ret > 0) {
2883 ret = -EUCLEAN;
2884 goto out;
2888 out:
2889 if (!ret || ret == -EOVERFLOW) {
2890 rootrefs->num_items = found;
2891 /* update min_treeid for next search */
2892 if (found)
2893 rootrefs->min_treeid =
2894 rootrefs->rootref[found - 1].treeid + 1;
2895 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2896 ret = -EFAULT;
2899 kfree(rootrefs);
2900 btrfs_free_path(path);
2902 return ret;
2905 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2906 void __user *arg,
2907 bool destroy_v2)
2909 struct dentry *parent = file->f_path.dentry;
2910 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2911 struct dentry *dentry;
2912 struct inode *dir = d_inode(parent);
2913 struct inode *inode;
2914 struct btrfs_root *root = BTRFS_I(dir)->root;
2915 struct btrfs_root *dest = NULL;
2916 struct btrfs_ioctl_vol_args *vol_args = NULL;
2917 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2918 char *subvol_name, *subvol_name_ptr = NULL;
2919 int subvol_namelen;
2920 int err = 0;
2921 bool destroy_parent = false;
2923 if (destroy_v2) {
2924 vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2925 if (IS_ERR(vol_args2))
2926 return PTR_ERR(vol_args2);
2928 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2929 err = -EOPNOTSUPP;
2930 goto out;
2934 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2935 * name, same as v1 currently does.
2937 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2938 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
2939 subvol_name = vol_args2->name;
2941 err = mnt_want_write_file(file);
2942 if (err)
2943 goto out;
2944 } else {
2945 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2946 err = -EINVAL;
2947 goto out;
2950 err = mnt_want_write_file(file);
2951 if (err)
2952 goto out;
2954 dentry = btrfs_get_dentry(fs_info->sb,
2955 BTRFS_FIRST_FREE_OBJECTID,
2956 vol_args2->subvolid, 0, 0);
2957 if (IS_ERR(dentry)) {
2958 err = PTR_ERR(dentry);
2959 goto out_drop_write;
2963 * Change the default parent since the subvolume being
2964 * deleted can be outside of the current mount point.
2966 parent = btrfs_get_parent(dentry);
2969 * At this point dentry->d_name can point to '/' if the
2970 * subvolume we want to destroy is outsite of the
2971 * current mount point, so we need to release the
2972 * current dentry and execute the lookup to return a new
2973 * one with ->d_name pointing to the
2974 * <mount point>/subvol_name.
2976 dput(dentry);
2977 if (IS_ERR(parent)) {
2978 err = PTR_ERR(parent);
2979 goto out_drop_write;
2981 dir = d_inode(parent);
2984 * If v2 was used with SPEC_BY_ID, a new parent was
2985 * allocated since the subvolume can be outside of the
2986 * current mount point. Later on we need to release this
2987 * new parent dentry.
2989 destroy_parent = true;
2991 subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2992 fs_info, vol_args2->subvolid);
2993 if (IS_ERR(subvol_name_ptr)) {
2994 err = PTR_ERR(subvol_name_ptr);
2995 goto free_parent;
2997 /* subvol_name_ptr is already NULL termined */
2998 subvol_name = (char *)kbasename(subvol_name_ptr);
3000 } else {
3001 vol_args = memdup_user(arg, sizeof(*vol_args));
3002 if (IS_ERR(vol_args))
3003 return PTR_ERR(vol_args);
3005 vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
3006 subvol_name = vol_args->name;
3008 err = mnt_want_write_file(file);
3009 if (err)
3010 goto out;
3013 subvol_namelen = strlen(subvol_name);
3015 if (strchr(subvol_name, '/') ||
3016 strncmp(subvol_name, "..", subvol_namelen) == 0) {
3017 err = -EINVAL;
3018 goto free_subvol_name;
3021 if (!S_ISDIR(dir->i_mode)) {
3022 err = -ENOTDIR;
3023 goto free_subvol_name;
3026 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
3027 if (err == -EINTR)
3028 goto free_subvol_name;
3029 dentry = lookup_one_len(subvol_name, parent, subvol_namelen);
3030 if (IS_ERR(dentry)) {
3031 err = PTR_ERR(dentry);
3032 goto out_unlock_dir;
3035 if (d_really_is_negative(dentry)) {
3036 err = -ENOENT;
3037 goto out_dput;
3040 inode = d_inode(dentry);
3041 dest = BTRFS_I(inode)->root;
3042 if (!capable(CAP_SYS_ADMIN)) {
3044 * Regular user. Only allow this with a special mount
3045 * option, when the user has write+exec access to the
3046 * subvol root, and when rmdir(2) would have been
3047 * allowed.
3049 * Note that this is _not_ check that the subvol is
3050 * empty or doesn't contain data that we wouldn't
3051 * otherwise be able to delete.
3053 * Users who want to delete empty subvols should try
3054 * rmdir(2).
3056 err = -EPERM;
3057 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
3058 goto out_dput;
3061 * Do not allow deletion if the parent dir is the same
3062 * as the dir to be deleted. That means the ioctl
3063 * must be called on the dentry referencing the root
3064 * of the subvol, not a random directory contained
3065 * within it.
3067 err = -EINVAL;
3068 if (root == dest)
3069 goto out_dput;
3071 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
3072 if (err)
3073 goto out_dput;
3076 /* check if subvolume may be deleted by a user */
3077 err = btrfs_may_delete(dir, dentry, 1);
3078 if (err)
3079 goto out_dput;
3081 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3082 err = -EINVAL;
3083 goto out_dput;
3086 inode_lock(inode);
3087 err = btrfs_delete_subvolume(dir, dentry);
3088 inode_unlock(inode);
3089 if (!err) {
3090 fsnotify_rmdir(dir, dentry);
3091 d_delete(dentry);
3094 out_dput:
3095 dput(dentry);
3096 out_unlock_dir:
3097 inode_unlock(dir);
3098 free_subvol_name:
3099 kfree(subvol_name_ptr);
3100 free_parent:
3101 if (destroy_parent)
3102 dput(parent);
3103 out_drop_write:
3104 mnt_drop_write_file(file);
3105 out:
3106 kfree(vol_args2);
3107 kfree(vol_args);
3108 return err;
3111 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
3113 struct inode *inode = file_inode(file);
3114 struct btrfs_root *root = BTRFS_I(inode)->root;
3115 struct btrfs_ioctl_defrag_range_args *range;
3116 int ret;
3118 ret = mnt_want_write_file(file);
3119 if (ret)
3120 return ret;
3122 if (btrfs_root_readonly(root)) {
3123 ret = -EROFS;
3124 goto out;
3127 switch (inode->i_mode & S_IFMT) {
3128 case S_IFDIR:
3129 if (!capable(CAP_SYS_ADMIN)) {
3130 ret = -EPERM;
3131 goto out;
3133 ret = btrfs_defrag_root(root);
3134 break;
3135 case S_IFREG:
3137 * Note that this does not check the file descriptor for write
3138 * access. This prevents defragmenting executables that are
3139 * running and allows defrag on files open in read-only mode.
3141 if (!capable(CAP_SYS_ADMIN) &&
3142 inode_permission(inode, MAY_WRITE)) {
3143 ret = -EPERM;
3144 goto out;
3147 range = kzalloc(sizeof(*range), GFP_KERNEL);
3148 if (!range) {
3149 ret = -ENOMEM;
3150 goto out;
3153 if (argp) {
3154 if (copy_from_user(range, argp,
3155 sizeof(*range))) {
3156 ret = -EFAULT;
3157 kfree(range);
3158 goto out;
3160 /* compression requires us to start the IO */
3161 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
3162 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
3163 range->extent_thresh = (u32)-1;
3165 } else {
3166 /* the rest are all set to zero by kzalloc */
3167 range->len = (u64)-1;
3169 ret = btrfs_defrag_file(file_inode(file), file,
3170 range, BTRFS_OLDEST_GENERATION, 0);
3171 if (ret > 0)
3172 ret = 0;
3173 kfree(range);
3174 break;
3175 default:
3176 ret = -EINVAL;
3178 out:
3179 mnt_drop_write_file(file);
3180 return ret;
3183 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3185 struct btrfs_ioctl_vol_args *vol_args;
3186 int ret;
3188 if (!capable(CAP_SYS_ADMIN))
3189 return -EPERM;
3191 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD))
3192 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3194 vol_args = memdup_user(arg, sizeof(*vol_args));
3195 if (IS_ERR(vol_args)) {
3196 ret = PTR_ERR(vol_args);
3197 goto out;
3200 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3201 ret = btrfs_init_new_device(fs_info, vol_args->name);
3203 if (!ret)
3204 btrfs_info(fs_info, "disk added %s", vol_args->name);
3206 kfree(vol_args);
3207 out:
3208 btrfs_exclop_finish(fs_info);
3209 return ret;
3212 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3214 struct inode *inode = file_inode(file);
3215 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3216 struct btrfs_ioctl_vol_args_v2 *vol_args;
3217 int ret;
3219 if (!capable(CAP_SYS_ADMIN))
3220 return -EPERM;
3222 ret = mnt_want_write_file(file);
3223 if (ret)
3224 return ret;
3226 vol_args = memdup_user(arg, sizeof(*vol_args));
3227 if (IS_ERR(vol_args)) {
3228 ret = PTR_ERR(vol_args);
3229 goto err_drop;
3232 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
3233 ret = -EOPNOTSUPP;
3234 goto out;
3237 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REMOVE)) {
3238 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3239 goto out;
3242 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
3243 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
3244 } else {
3245 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3246 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3248 btrfs_exclop_finish(fs_info);
3250 if (!ret) {
3251 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3252 btrfs_info(fs_info, "device deleted: id %llu",
3253 vol_args->devid);
3254 else
3255 btrfs_info(fs_info, "device deleted: %s",
3256 vol_args->name);
3258 out:
3259 kfree(vol_args);
3260 err_drop:
3261 mnt_drop_write_file(file);
3262 return ret;
3265 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3267 struct inode *inode = file_inode(file);
3268 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3269 struct btrfs_ioctl_vol_args *vol_args;
3270 int ret;
3272 if (!capable(CAP_SYS_ADMIN))
3273 return -EPERM;
3275 ret = mnt_want_write_file(file);
3276 if (ret)
3277 return ret;
3279 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REMOVE)) {
3280 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3281 goto out_drop_write;
3284 vol_args = memdup_user(arg, sizeof(*vol_args));
3285 if (IS_ERR(vol_args)) {
3286 ret = PTR_ERR(vol_args);
3287 goto out;
3290 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3291 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3293 if (!ret)
3294 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3295 kfree(vol_args);
3296 out:
3297 btrfs_exclop_finish(fs_info);
3298 out_drop_write:
3299 mnt_drop_write_file(file);
3301 return ret;
3304 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3305 void __user *arg)
3307 struct btrfs_ioctl_fs_info_args *fi_args;
3308 struct btrfs_device *device;
3309 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3310 u64 flags_in;
3311 int ret = 0;
3313 fi_args = memdup_user(arg, sizeof(*fi_args));
3314 if (IS_ERR(fi_args))
3315 return PTR_ERR(fi_args);
3317 flags_in = fi_args->flags;
3318 memset(fi_args, 0, sizeof(*fi_args));
3320 rcu_read_lock();
3321 fi_args->num_devices = fs_devices->num_devices;
3323 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3324 if (device->devid > fi_args->max_id)
3325 fi_args->max_id = device->devid;
3327 rcu_read_unlock();
3329 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
3330 fi_args->nodesize = fs_info->nodesize;
3331 fi_args->sectorsize = fs_info->sectorsize;
3332 fi_args->clone_alignment = fs_info->sectorsize;
3334 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
3335 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
3336 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
3337 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
3340 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
3341 fi_args->generation = fs_info->generation;
3342 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
3345 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
3346 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
3347 sizeof(fi_args->metadata_uuid));
3348 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
3351 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3352 ret = -EFAULT;
3354 kfree(fi_args);
3355 return ret;
3358 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3359 void __user *arg)
3361 struct btrfs_ioctl_dev_info_args *di_args;
3362 struct btrfs_device *dev;
3363 int ret = 0;
3364 char *s_uuid = NULL;
3366 di_args = memdup_user(arg, sizeof(*di_args));
3367 if (IS_ERR(di_args))
3368 return PTR_ERR(di_args);
3370 if (!btrfs_is_empty_uuid(di_args->uuid))
3371 s_uuid = di_args->uuid;
3373 rcu_read_lock();
3374 dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid,
3375 NULL);
3377 if (!dev) {
3378 ret = -ENODEV;
3379 goto out;
3382 di_args->devid = dev->devid;
3383 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3384 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3385 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3386 if (dev->name) {
3387 strncpy(di_args->path, rcu_str_deref(dev->name),
3388 sizeof(di_args->path) - 1);
3389 di_args->path[sizeof(di_args->path) - 1] = 0;
3390 } else {
3391 di_args->path[0] = '\0';
3394 out:
3395 rcu_read_unlock();
3396 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3397 ret = -EFAULT;
3399 kfree(di_args);
3400 return ret;
3403 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3405 struct inode *inode = file_inode(file);
3406 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3407 struct btrfs_root *root = BTRFS_I(inode)->root;
3408 struct btrfs_root *new_root;
3409 struct btrfs_dir_item *di;
3410 struct btrfs_trans_handle *trans;
3411 struct btrfs_path *path = NULL;
3412 struct btrfs_disk_key disk_key;
3413 u64 objectid = 0;
3414 u64 dir_id;
3415 int ret;
3417 if (!capable(CAP_SYS_ADMIN))
3418 return -EPERM;
3420 ret = mnt_want_write_file(file);
3421 if (ret)
3422 return ret;
3424 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3425 ret = -EFAULT;
3426 goto out;
3429 if (!objectid)
3430 objectid = BTRFS_FS_TREE_OBJECTID;
3432 new_root = btrfs_get_fs_root(fs_info, objectid, true);
3433 if (IS_ERR(new_root)) {
3434 ret = PTR_ERR(new_root);
3435 goto out;
3437 if (!is_fstree(new_root->root_key.objectid)) {
3438 ret = -ENOENT;
3439 goto out_free;
3442 path = btrfs_alloc_path();
3443 if (!path) {
3444 ret = -ENOMEM;
3445 goto out_free;
3448 trans = btrfs_start_transaction(root, 1);
3449 if (IS_ERR(trans)) {
3450 ret = PTR_ERR(trans);
3451 goto out_free;
3454 dir_id = btrfs_super_root_dir(fs_info->super_copy);
3455 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3456 dir_id, "default", 7, 1);
3457 if (IS_ERR_OR_NULL(di)) {
3458 btrfs_release_path(path);
3459 btrfs_end_transaction(trans);
3460 btrfs_err(fs_info,
3461 "Umm, you don't have the default diritem, this isn't going to work");
3462 ret = -ENOENT;
3463 goto out_free;
3466 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3467 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3468 btrfs_mark_buffer_dirty(path->nodes[0]);
3469 btrfs_release_path(path);
3471 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3472 btrfs_end_transaction(trans);
3473 out_free:
3474 btrfs_put_root(new_root);
3475 btrfs_free_path(path);
3476 out:
3477 mnt_drop_write_file(file);
3478 return ret;
3481 static void get_block_group_info(struct list_head *groups_list,
3482 struct btrfs_ioctl_space_info *space)
3484 struct btrfs_block_group *block_group;
3486 space->total_bytes = 0;
3487 space->used_bytes = 0;
3488 space->flags = 0;
3489 list_for_each_entry(block_group, groups_list, list) {
3490 space->flags = block_group->flags;
3491 space->total_bytes += block_group->length;
3492 space->used_bytes += block_group->used;
3496 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3497 void __user *arg)
3499 struct btrfs_ioctl_space_args space_args;
3500 struct btrfs_ioctl_space_info space;
3501 struct btrfs_ioctl_space_info *dest;
3502 struct btrfs_ioctl_space_info *dest_orig;
3503 struct btrfs_ioctl_space_info __user *user_dest;
3504 struct btrfs_space_info *info;
3505 static const u64 types[] = {
3506 BTRFS_BLOCK_GROUP_DATA,
3507 BTRFS_BLOCK_GROUP_SYSTEM,
3508 BTRFS_BLOCK_GROUP_METADATA,
3509 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3511 int num_types = 4;
3512 int alloc_size;
3513 int ret = 0;
3514 u64 slot_count = 0;
3515 int i, c;
3517 if (copy_from_user(&space_args,
3518 (struct btrfs_ioctl_space_args __user *)arg,
3519 sizeof(space_args)))
3520 return -EFAULT;
3522 for (i = 0; i < num_types; i++) {
3523 struct btrfs_space_info *tmp;
3525 info = NULL;
3526 list_for_each_entry(tmp, &fs_info->space_info, list) {
3527 if (tmp->flags == types[i]) {
3528 info = tmp;
3529 break;
3533 if (!info)
3534 continue;
3536 down_read(&info->groups_sem);
3537 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3538 if (!list_empty(&info->block_groups[c]))
3539 slot_count++;
3541 up_read(&info->groups_sem);
3545 * Global block reserve, exported as a space_info
3547 slot_count++;
3549 /* space_slots == 0 means they are asking for a count */
3550 if (space_args.space_slots == 0) {
3551 space_args.total_spaces = slot_count;
3552 goto out;
3555 slot_count = min_t(u64, space_args.space_slots, slot_count);
3557 alloc_size = sizeof(*dest) * slot_count;
3559 /* we generally have at most 6 or so space infos, one for each raid
3560 * level. So, a whole page should be more than enough for everyone
3562 if (alloc_size > PAGE_SIZE)
3563 return -ENOMEM;
3565 space_args.total_spaces = 0;
3566 dest = kmalloc(alloc_size, GFP_KERNEL);
3567 if (!dest)
3568 return -ENOMEM;
3569 dest_orig = dest;
3571 /* now we have a buffer to copy into */
3572 for (i = 0; i < num_types; i++) {
3573 struct btrfs_space_info *tmp;
3575 if (!slot_count)
3576 break;
3578 info = NULL;
3579 list_for_each_entry(tmp, &fs_info->space_info, list) {
3580 if (tmp->flags == types[i]) {
3581 info = tmp;
3582 break;
3586 if (!info)
3587 continue;
3588 down_read(&info->groups_sem);
3589 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3590 if (!list_empty(&info->block_groups[c])) {
3591 get_block_group_info(&info->block_groups[c],
3592 &space);
3593 memcpy(dest, &space, sizeof(space));
3594 dest++;
3595 space_args.total_spaces++;
3596 slot_count--;
3598 if (!slot_count)
3599 break;
3601 up_read(&info->groups_sem);
3605 * Add global block reserve
3607 if (slot_count) {
3608 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3610 spin_lock(&block_rsv->lock);
3611 space.total_bytes = block_rsv->size;
3612 space.used_bytes = block_rsv->size - block_rsv->reserved;
3613 spin_unlock(&block_rsv->lock);
3614 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3615 memcpy(dest, &space, sizeof(space));
3616 space_args.total_spaces++;
3619 user_dest = (struct btrfs_ioctl_space_info __user *)
3620 (arg + sizeof(struct btrfs_ioctl_space_args));
3622 if (copy_to_user(user_dest, dest_orig, alloc_size))
3623 ret = -EFAULT;
3625 kfree(dest_orig);
3626 out:
3627 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3628 ret = -EFAULT;
3630 return ret;
3633 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3634 void __user *argp)
3636 struct btrfs_trans_handle *trans;
3637 u64 transid;
3638 int ret;
3640 trans = btrfs_attach_transaction_barrier(root);
3641 if (IS_ERR(trans)) {
3642 if (PTR_ERR(trans) != -ENOENT)
3643 return PTR_ERR(trans);
3645 /* No running transaction, don't bother */
3646 transid = root->fs_info->last_trans_committed;
3647 goto out;
3649 transid = trans->transid;
3650 ret = btrfs_commit_transaction_async(trans, 0);
3651 if (ret) {
3652 btrfs_end_transaction(trans);
3653 return ret;
3655 out:
3656 if (argp)
3657 if (copy_to_user(argp, &transid, sizeof(transid)))
3658 return -EFAULT;
3659 return 0;
3662 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3663 void __user *argp)
3665 u64 transid;
3667 if (argp) {
3668 if (copy_from_user(&transid, argp, sizeof(transid)))
3669 return -EFAULT;
3670 } else {
3671 transid = 0; /* current trans */
3673 return btrfs_wait_for_commit(fs_info, transid);
3676 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3678 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
3679 struct btrfs_ioctl_scrub_args *sa;
3680 int ret;
3682 if (!capable(CAP_SYS_ADMIN))
3683 return -EPERM;
3685 sa = memdup_user(arg, sizeof(*sa));
3686 if (IS_ERR(sa))
3687 return PTR_ERR(sa);
3689 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3690 ret = mnt_want_write_file(file);
3691 if (ret)
3692 goto out;
3695 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3696 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3700 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3701 * error. This is important as it allows user space to know how much
3702 * progress scrub has done. For example, if scrub is canceled we get
3703 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3704 * space. Later user space can inspect the progress from the structure
3705 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3706 * previously (btrfs-progs does this).
3707 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3708 * then return -EFAULT to signal the structure was not copied or it may
3709 * be corrupt and unreliable due to a partial copy.
3711 if (copy_to_user(arg, sa, sizeof(*sa)))
3712 ret = -EFAULT;
3714 if (!(sa->flags & BTRFS_SCRUB_READONLY))
3715 mnt_drop_write_file(file);
3716 out:
3717 kfree(sa);
3718 return ret;
3721 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3723 if (!capable(CAP_SYS_ADMIN))
3724 return -EPERM;
3726 return btrfs_scrub_cancel(fs_info);
3729 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3730 void __user *arg)
3732 struct btrfs_ioctl_scrub_args *sa;
3733 int ret;
3735 if (!capable(CAP_SYS_ADMIN))
3736 return -EPERM;
3738 sa = memdup_user(arg, sizeof(*sa));
3739 if (IS_ERR(sa))
3740 return PTR_ERR(sa);
3742 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3744 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3745 ret = -EFAULT;
3747 kfree(sa);
3748 return ret;
3751 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3752 void __user *arg)
3754 struct btrfs_ioctl_get_dev_stats *sa;
3755 int ret;
3757 sa = memdup_user(arg, sizeof(*sa));
3758 if (IS_ERR(sa))
3759 return PTR_ERR(sa);
3761 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3762 kfree(sa);
3763 return -EPERM;
3766 ret = btrfs_get_dev_stats(fs_info, sa);
3768 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3769 ret = -EFAULT;
3771 kfree(sa);
3772 return ret;
3775 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3776 void __user *arg)
3778 struct btrfs_ioctl_dev_replace_args *p;
3779 int ret;
3781 if (!capable(CAP_SYS_ADMIN))
3782 return -EPERM;
3784 p = memdup_user(arg, sizeof(*p));
3785 if (IS_ERR(p))
3786 return PTR_ERR(p);
3788 switch (p->cmd) {
3789 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3790 if (sb_rdonly(fs_info->sb)) {
3791 ret = -EROFS;
3792 goto out;
3794 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3795 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3796 } else {
3797 ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3798 btrfs_exclop_finish(fs_info);
3800 break;
3801 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3802 btrfs_dev_replace_status(fs_info, p);
3803 ret = 0;
3804 break;
3805 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3806 p->result = btrfs_dev_replace_cancel(fs_info);
3807 ret = 0;
3808 break;
3809 default:
3810 ret = -EINVAL;
3811 break;
3814 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3815 ret = -EFAULT;
3816 out:
3817 kfree(p);
3818 return ret;
3821 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3823 int ret = 0;
3824 int i;
3825 u64 rel_ptr;
3826 int size;
3827 struct btrfs_ioctl_ino_path_args *ipa = NULL;
3828 struct inode_fs_paths *ipath = NULL;
3829 struct btrfs_path *path;
3831 if (!capable(CAP_DAC_READ_SEARCH))
3832 return -EPERM;
3834 path = btrfs_alloc_path();
3835 if (!path) {
3836 ret = -ENOMEM;
3837 goto out;
3840 ipa = memdup_user(arg, sizeof(*ipa));
3841 if (IS_ERR(ipa)) {
3842 ret = PTR_ERR(ipa);
3843 ipa = NULL;
3844 goto out;
3847 size = min_t(u32, ipa->size, 4096);
3848 ipath = init_ipath(size, root, path);
3849 if (IS_ERR(ipath)) {
3850 ret = PTR_ERR(ipath);
3851 ipath = NULL;
3852 goto out;
3855 ret = paths_from_inode(ipa->inum, ipath);
3856 if (ret < 0)
3857 goto out;
3859 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3860 rel_ptr = ipath->fspath->val[i] -
3861 (u64)(unsigned long)ipath->fspath->val;
3862 ipath->fspath->val[i] = rel_ptr;
3865 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3866 ipath->fspath, size);
3867 if (ret) {
3868 ret = -EFAULT;
3869 goto out;
3872 out:
3873 btrfs_free_path(path);
3874 free_ipath(ipath);
3875 kfree(ipa);
3877 return ret;
3880 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3882 struct btrfs_data_container *inodes = ctx;
3883 const size_t c = 3 * sizeof(u64);
3885 if (inodes->bytes_left >= c) {
3886 inodes->bytes_left -= c;
3887 inodes->val[inodes->elem_cnt] = inum;
3888 inodes->val[inodes->elem_cnt + 1] = offset;
3889 inodes->val[inodes->elem_cnt + 2] = root;
3890 inodes->elem_cnt += 3;
3891 } else {
3892 inodes->bytes_missing += c - inodes->bytes_left;
3893 inodes->bytes_left = 0;
3894 inodes->elem_missed += 3;
3897 return 0;
3900 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3901 void __user *arg, int version)
3903 int ret = 0;
3904 int size;
3905 struct btrfs_ioctl_logical_ino_args *loi;
3906 struct btrfs_data_container *inodes = NULL;
3907 struct btrfs_path *path = NULL;
3908 bool ignore_offset;
3910 if (!capable(CAP_SYS_ADMIN))
3911 return -EPERM;
3913 loi = memdup_user(arg, sizeof(*loi));
3914 if (IS_ERR(loi))
3915 return PTR_ERR(loi);
3917 if (version == 1) {
3918 ignore_offset = false;
3919 size = min_t(u32, loi->size, SZ_64K);
3920 } else {
3921 /* All reserved bits must be 0 for now */
3922 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3923 ret = -EINVAL;
3924 goto out_loi;
3926 /* Only accept flags we have defined so far */
3927 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3928 ret = -EINVAL;
3929 goto out_loi;
3931 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3932 size = min_t(u32, loi->size, SZ_16M);
3935 path = btrfs_alloc_path();
3936 if (!path) {
3937 ret = -ENOMEM;
3938 goto out;
3941 inodes = init_data_container(size);
3942 if (IS_ERR(inodes)) {
3943 ret = PTR_ERR(inodes);
3944 inodes = NULL;
3945 goto out;
3948 ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3949 build_ino_list, inodes, ignore_offset);
3950 if (ret == -EINVAL)
3951 ret = -ENOENT;
3952 if (ret < 0)
3953 goto out;
3955 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3956 size);
3957 if (ret)
3958 ret = -EFAULT;
3960 out:
3961 btrfs_free_path(path);
3962 kvfree(inodes);
3963 out_loi:
3964 kfree(loi);
3966 return ret;
3969 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3970 struct btrfs_ioctl_balance_args *bargs)
3972 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3974 bargs->flags = bctl->flags;
3976 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3977 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3978 if (atomic_read(&fs_info->balance_pause_req))
3979 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3980 if (atomic_read(&fs_info->balance_cancel_req))
3981 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3983 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3984 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3985 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3987 spin_lock(&fs_info->balance_lock);
3988 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3989 spin_unlock(&fs_info->balance_lock);
3992 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3994 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3995 struct btrfs_fs_info *fs_info = root->fs_info;
3996 struct btrfs_ioctl_balance_args *bargs;
3997 struct btrfs_balance_control *bctl;
3998 bool need_unlock; /* for mut. excl. ops lock */
3999 int ret;
4001 if (!capable(CAP_SYS_ADMIN))
4002 return -EPERM;
4004 ret = mnt_want_write_file(file);
4005 if (ret)
4006 return ret;
4008 again:
4009 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
4010 mutex_lock(&fs_info->balance_mutex);
4011 need_unlock = true;
4012 goto locked;
4016 * mut. excl. ops lock is locked. Three possibilities:
4017 * (1) some other op is running
4018 * (2) balance is running
4019 * (3) balance is paused -- special case (think resume)
4021 mutex_lock(&fs_info->balance_mutex);
4022 if (fs_info->balance_ctl) {
4023 /* this is either (2) or (3) */
4024 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4025 mutex_unlock(&fs_info->balance_mutex);
4027 * Lock released to allow other waiters to continue,
4028 * we'll reexamine the status again.
4030 mutex_lock(&fs_info->balance_mutex);
4032 if (fs_info->balance_ctl &&
4033 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4034 /* this is (3) */
4035 need_unlock = false;
4036 goto locked;
4039 mutex_unlock(&fs_info->balance_mutex);
4040 goto again;
4041 } else {
4042 /* this is (2) */
4043 mutex_unlock(&fs_info->balance_mutex);
4044 ret = -EINPROGRESS;
4045 goto out;
4047 } else {
4048 /* this is (1) */
4049 mutex_unlock(&fs_info->balance_mutex);
4050 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4051 goto out;
4054 locked:
4056 if (arg) {
4057 bargs = memdup_user(arg, sizeof(*bargs));
4058 if (IS_ERR(bargs)) {
4059 ret = PTR_ERR(bargs);
4060 goto out_unlock;
4063 if (bargs->flags & BTRFS_BALANCE_RESUME) {
4064 if (!fs_info->balance_ctl) {
4065 ret = -ENOTCONN;
4066 goto out_bargs;
4069 bctl = fs_info->balance_ctl;
4070 spin_lock(&fs_info->balance_lock);
4071 bctl->flags |= BTRFS_BALANCE_RESUME;
4072 spin_unlock(&fs_info->balance_lock);
4074 goto do_balance;
4076 } else {
4077 bargs = NULL;
4080 if (fs_info->balance_ctl) {
4081 ret = -EINPROGRESS;
4082 goto out_bargs;
4085 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4086 if (!bctl) {
4087 ret = -ENOMEM;
4088 goto out_bargs;
4091 if (arg) {
4092 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4093 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4094 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4096 bctl->flags = bargs->flags;
4097 } else {
4098 /* balance everything - no filters */
4099 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4102 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4103 ret = -EINVAL;
4104 goto out_bctl;
4107 do_balance:
4109 * Ownership of bctl and exclusive operation goes to btrfs_balance.
4110 * bctl is freed in reset_balance_state, or, if restriper was paused
4111 * all the way until unmount, in free_fs_info. The flag should be
4112 * cleared after reset_balance_state.
4114 need_unlock = false;
4116 ret = btrfs_balance(fs_info, bctl, bargs);
4117 bctl = NULL;
4119 if ((ret == 0 || ret == -ECANCELED) && arg) {
4120 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4121 ret = -EFAULT;
4124 out_bctl:
4125 kfree(bctl);
4126 out_bargs:
4127 kfree(bargs);
4128 out_unlock:
4129 mutex_unlock(&fs_info->balance_mutex);
4130 if (need_unlock)
4131 btrfs_exclop_finish(fs_info);
4132 out:
4133 mnt_drop_write_file(file);
4134 return ret;
4137 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4139 if (!capable(CAP_SYS_ADMIN))
4140 return -EPERM;
4142 switch (cmd) {
4143 case BTRFS_BALANCE_CTL_PAUSE:
4144 return btrfs_pause_balance(fs_info);
4145 case BTRFS_BALANCE_CTL_CANCEL:
4146 return btrfs_cancel_balance(fs_info);
4149 return -EINVAL;
4152 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4153 void __user *arg)
4155 struct btrfs_ioctl_balance_args *bargs;
4156 int ret = 0;
4158 if (!capable(CAP_SYS_ADMIN))
4159 return -EPERM;
4161 mutex_lock(&fs_info->balance_mutex);
4162 if (!fs_info->balance_ctl) {
4163 ret = -ENOTCONN;
4164 goto out;
4167 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4168 if (!bargs) {
4169 ret = -ENOMEM;
4170 goto out;
4173 btrfs_update_ioctl_balance_args(fs_info, bargs);
4175 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4176 ret = -EFAULT;
4178 kfree(bargs);
4179 out:
4180 mutex_unlock(&fs_info->balance_mutex);
4181 return ret;
4184 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4186 struct inode *inode = file_inode(file);
4187 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4188 struct btrfs_ioctl_quota_ctl_args *sa;
4189 int ret;
4191 if (!capable(CAP_SYS_ADMIN))
4192 return -EPERM;
4194 ret = mnt_want_write_file(file);
4195 if (ret)
4196 return ret;
4198 sa = memdup_user(arg, sizeof(*sa));
4199 if (IS_ERR(sa)) {
4200 ret = PTR_ERR(sa);
4201 goto drop_write;
4204 down_write(&fs_info->subvol_sem);
4206 switch (sa->cmd) {
4207 case BTRFS_QUOTA_CTL_ENABLE:
4208 ret = btrfs_quota_enable(fs_info);
4209 break;
4210 case BTRFS_QUOTA_CTL_DISABLE:
4211 ret = btrfs_quota_disable(fs_info);
4212 break;
4213 default:
4214 ret = -EINVAL;
4215 break;
4218 kfree(sa);
4219 up_write(&fs_info->subvol_sem);
4220 drop_write:
4221 mnt_drop_write_file(file);
4222 return ret;
4225 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4227 struct inode *inode = file_inode(file);
4228 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4229 struct btrfs_root *root = BTRFS_I(inode)->root;
4230 struct btrfs_ioctl_qgroup_assign_args *sa;
4231 struct btrfs_trans_handle *trans;
4232 int ret;
4233 int err;
4235 if (!capable(CAP_SYS_ADMIN))
4236 return -EPERM;
4238 ret = mnt_want_write_file(file);
4239 if (ret)
4240 return ret;
4242 sa = memdup_user(arg, sizeof(*sa));
4243 if (IS_ERR(sa)) {
4244 ret = PTR_ERR(sa);
4245 goto drop_write;
4248 trans = btrfs_join_transaction(root);
4249 if (IS_ERR(trans)) {
4250 ret = PTR_ERR(trans);
4251 goto out;
4254 if (sa->assign) {
4255 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
4256 } else {
4257 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
4260 /* update qgroup status and info */
4261 err = btrfs_run_qgroups(trans);
4262 if (err < 0)
4263 btrfs_handle_fs_error(fs_info, err,
4264 "failed to update qgroup status and info");
4265 err = btrfs_end_transaction(trans);
4266 if (err && !ret)
4267 ret = err;
4269 out:
4270 kfree(sa);
4271 drop_write:
4272 mnt_drop_write_file(file);
4273 return ret;
4276 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4278 struct inode *inode = file_inode(file);
4279 struct btrfs_root *root = BTRFS_I(inode)->root;
4280 struct btrfs_ioctl_qgroup_create_args *sa;
4281 struct btrfs_trans_handle *trans;
4282 int ret;
4283 int err;
4285 if (!capable(CAP_SYS_ADMIN))
4286 return -EPERM;
4288 ret = mnt_want_write_file(file);
4289 if (ret)
4290 return ret;
4292 sa = memdup_user(arg, sizeof(*sa));
4293 if (IS_ERR(sa)) {
4294 ret = PTR_ERR(sa);
4295 goto drop_write;
4298 if (!sa->qgroupid) {
4299 ret = -EINVAL;
4300 goto out;
4303 trans = btrfs_join_transaction(root);
4304 if (IS_ERR(trans)) {
4305 ret = PTR_ERR(trans);
4306 goto out;
4309 if (sa->create) {
4310 ret = btrfs_create_qgroup(trans, sa->qgroupid);
4311 } else {
4312 ret = btrfs_remove_qgroup(trans, sa->qgroupid);
4315 err = btrfs_end_transaction(trans);
4316 if (err && !ret)
4317 ret = err;
4319 out:
4320 kfree(sa);
4321 drop_write:
4322 mnt_drop_write_file(file);
4323 return ret;
4326 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4328 struct inode *inode = file_inode(file);
4329 struct btrfs_root *root = BTRFS_I(inode)->root;
4330 struct btrfs_ioctl_qgroup_limit_args *sa;
4331 struct btrfs_trans_handle *trans;
4332 int ret;
4333 int err;
4334 u64 qgroupid;
4336 if (!capable(CAP_SYS_ADMIN))
4337 return -EPERM;
4339 ret = mnt_want_write_file(file);
4340 if (ret)
4341 return ret;
4343 sa = memdup_user(arg, sizeof(*sa));
4344 if (IS_ERR(sa)) {
4345 ret = PTR_ERR(sa);
4346 goto drop_write;
4349 trans = btrfs_join_transaction(root);
4350 if (IS_ERR(trans)) {
4351 ret = PTR_ERR(trans);
4352 goto out;
4355 qgroupid = sa->qgroupid;
4356 if (!qgroupid) {
4357 /* take the current subvol as qgroup */
4358 qgroupid = root->root_key.objectid;
4361 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
4363 err = btrfs_end_transaction(trans);
4364 if (err && !ret)
4365 ret = err;
4367 out:
4368 kfree(sa);
4369 drop_write:
4370 mnt_drop_write_file(file);
4371 return ret;
4374 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4376 struct inode *inode = file_inode(file);
4377 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4378 struct btrfs_ioctl_quota_rescan_args *qsa;
4379 int ret;
4381 if (!capable(CAP_SYS_ADMIN))
4382 return -EPERM;
4384 ret = mnt_want_write_file(file);
4385 if (ret)
4386 return ret;
4388 qsa = memdup_user(arg, sizeof(*qsa));
4389 if (IS_ERR(qsa)) {
4390 ret = PTR_ERR(qsa);
4391 goto drop_write;
4394 if (qsa->flags) {
4395 ret = -EINVAL;
4396 goto out;
4399 ret = btrfs_qgroup_rescan(fs_info);
4401 out:
4402 kfree(qsa);
4403 drop_write:
4404 mnt_drop_write_file(file);
4405 return ret;
4408 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4409 void __user *arg)
4411 struct btrfs_ioctl_quota_rescan_args *qsa;
4412 int ret = 0;
4414 if (!capable(CAP_SYS_ADMIN))
4415 return -EPERM;
4417 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
4418 if (!qsa)
4419 return -ENOMEM;
4421 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4422 qsa->flags = 1;
4423 qsa->progress = fs_info->qgroup_rescan_progress.objectid;
4426 if (copy_to_user(arg, qsa, sizeof(*qsa)))
4427 ret = -EFAULT;
4429 kfree(qsa);
4430 return ret;
4433 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4434 void __user *arg)
4436 if (!capable(CAP_SYS_ADMIN))
4437 return -EPERM;
4439 return btrfs_qgroup_wait_for_completion(fs_info, true);
4442 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4443 struct btrfs_ioctl_received_subvol_args *sa)
4445 struct inode *inode = file_inode(file);
4446 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4447 struct btrfs_root *root = BTRFS_I(inode)->root;
4448 struct btrfs_root_item *root_item = &root->root_item;
4449 struct btrfs_trans_handle *trans;
4450 struct timespec64 ct = current_time(inode);
4451 int ret = 0;
4452 int received_uuid_changed;
4454 if (!inode_owner_or_capable(inode))
4455 return -EPERM;
4457 ret = mnt_want_write_file(file);
4458 if (ret < 0)
4459 return ret;
4461 down_write(&fs_info->subvol_sem);
4463 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4464 ret = -EINVAL;
4465 goto out;
4468 if (btrfs_root_readonly(root)) {
4469 ret = -EROFS;
4470 goto out;
4474 * 1 - root item
4475 * 2 - uuid items (received uuid + subvol uuid)
4477 trans = btrfs_start_transaction(root, 3);
4478 if (IS_ERR(trans)) {
4479 ret = PTR_ERR(trans);
4480 trans = NULL;
4481 goto out;
4484 sa->rtransid = trans->transid;
4485 sa->rtime.sec = ct.tv_sec;
4486 sa->rtime.nsec = ct.tv_nsec;
4488 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4489 BTRFS_UUID_SIZE);
4490 if (received_uuid_changed &&
4491 !btrfs_is_empty_uuid(root_item->received_uuid)) {
4492 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4493 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4494 root->root_key.objectid);
4495 if (ret && ret != -ENOENT) {
4496 btrfs_abort_transaction(trans, ret);
4497 btrfs_end_transaction(trans);
4498 goto out;
4501 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4502 btrfs_set_root_stransid(root_item, sa->stransid);
4503 btrfs_set_root_rtransid(root_item, sa->rtransid);
4504 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4505 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4506 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4507 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4509 ret = btrfs_update_root(trans, fs_info->tree_root,
4510 &root->root_key, &root->root_item);
4511 if (ret < 0) {
4512 btrfs_end_transaction(trans);
4513 goto out;
4515 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4516 ret = btrfs_uuid_tree_add(trans, sa->uuid,
4517 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4518 root->root_key.objectid);
4519 if (ret < 0 && ret != -EEXIST) {
4520 btrfs_abort_transaction(trans, ret);
4521 btrfs_end_transaction(trans);
4522 goto out;
4525 ret = btrfs_commit_transaction(trans);
4526 out:
4527 up_write(&fs_info->subvol_sem);
4528 mnt_drop_write_file(file);
4529 return ret;
4532 #ifdef CONFIG_64BIT
4533 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4534 void __user *arg)
4536 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4537 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4538 int ret = 0;
4540 args32 = memdup_user(arg, sizeof(*args32));
4541 if (IS_ERR(args32))
4542 return PTR_ERR(args32);
4544 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4545 if (!args64) {
4546 ret = -ENOMEM;
4547 goto out;
4550 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4551 args64->stransid = args32->stransid;
4552 args64->rtransid = args32->rtransid;
4553 args64->stime.sec = args32->stime.sec;
4554 args64->stime.nsec = args32->stime.nsec;
4555 args64->rtime.sec = args32->rtime.sec;
4556 args64->rtime.nsec = args32->rtime.nsec;
4557 args64->flags = args32->flags;
4559 ret = _btrfs_ioctl_set_received_subvol(file, args64);
4560 if (ret)
4561 goto out;
4563 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4564 args32->stransid = args64->stransid;
4565 args32->rtransid = args64->rtransid;
4566 args32->stime.sec = args64->stime.sec;
4567 args32->stime.nsec = args64->stime.nsec;
4568 args32->rtime.sec = args64->rtime.sec;
4569 args32->rtime.nsec = args64->rtime.nsec;
4570 args32->flags = args64->flags;
4572 ret = copy_to_user(arg, args32, sizeof(*args32));
4573 if (ret)
4574 ret = -EFAULT;
4576 out:
4577 kfree(args32);
4578 kfree(args64);
4579 return ret;
4581 #endif
4583 static long btrfs_ioctl_set_received_subvol(struct file *file,
4584 void __user *arg)
4586 struct btrfs_ioctl_received_subvol_args *sa = NULL;
4587 int ret = 0;
4589 sa = memdup_user(arg, sizeof(*sa));
4590 if (IS_ERR(sa))
4591 return PTR_ERR(sa);
4593 ret = _btrfs_ioctl_set_received_subvol(file, sa);
4595 if (ret)
4596 goto out;
4598 ret = copy_to_user(arg, sa, sizeof(*sa));
4599 if (ret)
4600 ret = -EFAULT;
4602 out:
4603 kfree(sa);
4604 return ret;
4607 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4608 void __user *arg)
4610 size_t len;
4611 int ret;
4612 char label[BTRFS_LABEL_SIZE];
4614 spin_lock(&fs_info->super_lock);
4615 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4616 spin_unlock(&fs_info->super_lock);
4618 len = strnlen(label, BTRFS_LABEL_SIZE);
4620 if (len == BTRFS_LABEL_SIZE) {
4621 btrfs_warn(fs_info,
4622 "label is too long, return the first %zu bytes",
4623 --len);
4626 ret = copy_to_user(arg, label, len);
4628 return ret ? -EFAULT : 0;
4631 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4633 struct inode *inode = file_inode(file);
4634 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4635 struct btrfs_root *root = BTRFS_I(inode)->root;
4636 struct btrfs_super_block *super_block = fs_info->super_copy;
4637 struct btrfs_trans_handle *trans;
4638 char label[BTRFS_LABEL_SIZE];
4639 int ret;
4641 if (!capable(CAP_SYS_ADMIN))
4642 return -EPERM;
4644 if (copy_from_user(label, arg, sizeof(label)))
4645 return -EFAULT;
4647 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4648 btrfs_err(fs_info,
4649 "unable to set label with more than %d bytes",
4650 BTRFS_LABEL_SIZE - 1);
4651 return -EINVAL;
4654 ret = mnt_want_write_file(file);
4655 if (ret)
4656 return ret;
4658 trans = btrfs_start_transaction(root, 0);
4659 if (IS_ERR(trans)) {
4660 ret = PTR_ERR(trans);
4661 goto out_unlock;
4664 spin_lock(&fs_info->super_lock);
4665 strcpy(super_block->label, label);
4666 spin_unlock(&fs_info->super_lock);
4667 ret = btrfs_commit_transaction(trans);
4669 out_unlock:
4670 mnt_drop_write_file(file);
4671 return ret;
4674 #define INIT_FEATURE_FLAGS(suffix) \
4675 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4676 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4677 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4679 int btrfs_ioctl_get_supported_features(void __user *arg)
4681 static const struct btrfs_ioctl_feature_flags features[3] = {
4682 INIT_FEATURE_FLAGS(SUPP),
4683 INIT_FEATURE_FLAGS(SAFE_SET),
4684 INIT_FEATURE_FLAGS(SAFE_CLEAR)
4687 if (copy_to_user(arg, &features, sizeof(features)))
4688 return -EFAULT;
4690 return 0;
4693 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4694 void __user *arg)
4696 struct btrfs_super_block *super_block = fs_info->super_copy;
4697 struct btrfs_ioctl_feature_flags features;
4699 features.compat_flags = btrfs_super_compat_flags(super_block);
4700 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4701 features.incompat_flags = btrfs_super_incompat_flags(super_block);
4703 if (copy_to_user(arg, &features, sizeof(features)))
4704 return -EFAULT;
4706 return 0;
4709 static int check_feature_bits(struct btrfs_fs_info *fs_info,
4710 enum btrfs_feature_set set,
4711 u64 change_mask, u64 flags, u64 supported_flags,
4712 u64 safe_set, u64 safe_clear)
4714 const char *type = btrfs_feature_set_name(set);
4715 char *names;
4716 u64 disallowed, unsupported;
4717 u64 set_mask = flags & change_mask;
4718 u64 clear_mask = ~flags & change_mask;
4720 unsupported = set_mask & ~supported_flags;
4721 if (unsupported) {
4722 names = btrfs_printable_features(set, unsupported);
4723 if (names) {
4724 btrfs_warn(fs_info,
4725 "this kernel does not support the %s feature bit%s",
4726 names, strchr(names, ',') ? "s" : "");
4727 kfree(names);
4728 } else
4729 btrfs_warn(fs_info,
4730 "this kernel does not support %s bits 0x%llx",
4731 type, unsupported);
4732 return -EOPNOTSUPP;
4735 disallowed = set_mask & ~safe_set;
4736 if (disallowed) {
4737 names = btrfs_printable_features(set, disallowed);
4738 if (names) {
4739 btrfs_warn(fs_info,
4740 "can't set the %s feature bit%s while mounted",
4741 names, strchr(names, ',') ? "s" : "");
4742 kfree(names);
4743 } else
4744 btrfs_warn(fs_info,
4745 "can't set %s bits 0x%llx while mounted",
4746 type, disallowed);
4747 return -EPERM;
4750 disallowed = clear_mask & ~safe_clear;
4751 if (disallowed) {
4752 names = btrfs_printable_features(set, disallowed);
4753 if (names) {
4754 btrfs_warn(fs_info,
4755 "can't clear the %s feature bit%s while mounted",
4756 names, strchr(names, ',') ? "s" : "");
4757 kfree(names);
4758 } else
4759 btrfs_warn(fs_info,
4760 "can't clear %s bits 0x%llx while mounted",
4761 type, disallowed);
4762 return -EPERM;
4765 return 0;
4768 #define check_feature(fs_info, change_mask, flags, mask_base) \
4769 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
4770 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
4771 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
4772 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4774 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4776 struct inode *inode = file_inode(file);
4777 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4778 struct btrfs_root *root = BTRFS_I(inode)->root;
4779 struct btrfs_super_block *super_block = fs_info->super_copy;
4780 struct btrfs_ioctl_feature_flags flags[2];
4781 struct btrfs_trans_handle *trans;
4782 u64 newflags;
4783 int ret;
4785 if (!capable(CAP_SYS_ADMIN))
4786 return -EPERM;
4788 if (copy_from_user(flags, arg, sizeof(flags)))
4789 return -EFAULT;
4791 /* Nothing to do */
4792 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4793 !flags[0].incompat_flags)
4794 return 0;
4796 ret = check_feature(fs_info, flags[0].compat_flags,
4797 flags[1].compat_flags, COMPAT);
4798 if (ret)
4799 return ret;
4801 ret = check_feature(fs_info, flags[0].compat_ro_flags,
4802 flags[1].compat_ro_flags, COMPAT_RO);
4803 if (ret)
4804 return ret;
4806 ret = check_feature(fs_info, flags[0].incompat_flags,
4807 flags[1].incompat_flags, INCOMPAT);
4808 if (ret)
4809 return ret;
4811 ret = mnt_want_write_file(file);
4812 if (ret)
4813 return ret;
4815 trans = btrfs_start_transaction(root, 0);
4816 if (IS_ERR(trans)) {
4817 ret = PTR_ERR(trans);
4818 goto out_drop_write;
4821 spin_lock(&fs_info->super_lock);
4822 newflags = btrfs_super_compat_flags(super_block);
4823 newflags |= flags[0].compat_flags & flags[1].compat_flags;
4824 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4825 btrfs_set_super_compat_flags(super_block, newflags);
4827 newflags = btrfs_super_compat_ro_flags(super_block);
4828 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4829 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4830 btrfs_set_super_compat_ro_flags(super_block, newflags);
4832 newflags = btrfs_super_incompat_flags(super_block);
4833 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4834 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4835 btrfs_set_super_incompat_flags(super_block, newflags);
4836 spin_unlock(&fs_info->super_lock);
4838 ret = btrfs_commit_transaction(trans);
4839 out_drop_write:
4840 mnt_drop_write_file(file);
4842 return ret;
4845 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
4847 struct btrfs_ioctl_send_args *arg;
4848 int ret;
4850 if (compat) {
4851 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4852 struct btrfs_ioctl_send_args_32 args32;
4854 ret = copy_from_user(&args32, argp, sizeof(args32));
4855 if (ret)
4856 return -EFAULT;
4857 arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4858 if (!arg)
4859 return -ENOMEM;
4860 arg->send_fd = args32.send_fd;
4861 arg->clone_sources_count = args32.clone_sources_count;
4862 arg->clone_sources = compat_ptr(args32.clone_sources);
4863 arg->parent_root = args32.parent_root;
4864 arg->flags = args32.flags;
4865 memcpy(arg->reserved, args32.reserved,
4866 sizeof(args32.reserved));
4867 #else
4868 return -ENOTTY;
4869 #endif
4870 } else {
4871 arg = memdup_user(argp, sizeof(*arg));
4872 if (IS_ERR(arg))
4873 return PTR_ERR(arg);
4875 ret = btrfs_ioctl_send(file, arg);
4876 kfree(arg);
4877 return ret;
4880 long btrfs_ioctl(struct file *file, unsigned int
4881 cmd, unsigned long arg)
4883 struct inode *inode = file_inode(file);
4884 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4885 struct btrfs_root *root = BTRFS_I(inode)->root;
4886 void __user *argp = (void __user *)arg;
4888 switch (cmd) {
4889 case FS_IOC_GETFLAGS:
4890 return btrfs_ioctl_getflags(file, argp);
4891 case FS_IOC_SETFLAGS:
4892 return btrfs_ioctl_setflags(file, argp);
4893 case FS_IOC_GETVERSION:
4894 return btrfs_ioctl_getversion(file, argp);
4895 case FS_IOC_GETFSLABEL:
4896 return btrfs_ioctl_get_fslabel(fs_info, argp);
4897 case FS_IOC_SETFSLABEL:
4898 return btrfs_ioctl_set_fslabel(file, argp);
4899 case FITRIM:
4900 return btrfs_ioctl_fitrim(fs_info, argp);
4901 case BTRFS_IOC_SNAP_CREATE:
4902 return btrfs_ioctl_snap_create(file, argp, 0);
4903 case BTRFS_IOC_SNAP_CREATE_V2:
4904 return btrfs_ioctl_snap_create_v2(file, argp, 0);
4905 case BTRFS_IOC_SUBVOL_CREATE:
4906 return btrfs_ioctl_snap_create(file, argp, 1);
4907 case BTRFS_IOC_SUBVOL_CREATE_V2:
4908 return btrfs_ioctl_snap_create_v2(file, argp, 1);
4909 case BTRFS_IOC_SNAP_DESTROY:
4910 return btrfs_ioctl_snap_destroy(file, argp, false);
4911 case BTRFS_IOC_SNAP_DESTROY_V2:
4912 return btrfs_ioctl_snap_destroy(file, argp, true);
4913 case BTRFS_IOC_SUBVOL_GETFLAGS:
4914 return btrfs_ioctl_subvol_getflags(file, argp);
4915 case BTRFS_IOC_SUBVOL_SETFLAGS:
4916 return btrfs_ioctl_subvol_setflags(file, argp);
4917 case BTRFS_IOC_DEFAULT_SUBVOL:
4918 return btrfs_ioctl_default_subvol(file, argp);
4919 case BTRFS_IOC_DEFRAG:
4920 return btrfs_ioctl_defrag(file, NULL);
4921 case BTRFS_IOC_DEFRAG_RANGE:
4922 return btrfs_ioctl_defrag(file, argp);
4923 case BTRFS_IOC_RESIZE:
4924 return btrfs_ioctl_resize(file, argp);
4925 case BTRFS_IOC_ADD_DEV:
4926 return btrfs_ioctl_add_dev(fs_info, argp);
4927 case BTRFS_IOC_RM_DEV:
4928 return btrfs_ioctl_rm_dev(file, argp);
4929 case BTRFS_IOC_RM_DEV_V2:
4930 return btrfs_ioctl_rm_dev_v2(file, argp);
4931 case BTRFS_IOC_FS_INFO:
4932 return btrfs_ioctl_fs_info(fs_info, argp);
4933 case BTRFS_IOC_DEV_INFO:
4934 return btrfs_ioctl_dev_info(fs_info, argp);
4935 case BTRFS_IOC_BALANCE:
4936 return btrfs_ioctl_balance(file, NULL);
4937 case BTRFS_IOC_TREE_SEARCH:
4938 return btrfs_ioctl_tree_search(file, argp);
4939 case BTRFS_IOC_TREE_SEARCH_V2:
4940 return btrfs_ioctl_tree_search_v2(file, argp);
4941 case BTRFS_IOC_INO_LOOKUP:
4942 return btrfs_ioctl_ino_lookup(file, argp);
4943 case BTRFS_IOC_INO_PATHS:
4944 return btrfs_ioctl_ino_to_path(root, argp);
4945 case BTRFS_IOC_LOGICAL_INO:
4946 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4947 case BTRFS_IOC_LOGICAL_INO_V2:
4948 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4949 case BTRFS_IOC_SPACE_INFO:
4950 return btrfs_ioctl_space_info(fs_info, argp);
4951 case BTRFS_IOC_SYNC: {
4952 int ret;
4954 ret = btrfs_start_delalloc_roots(fs_info, U64_MAX, false);
4955 if (ret)
4956 return ret;
4957 ret = btrfs_sync_fs(inode->i_sb, 1);
4959 * The transaction thread may want to do more work,
4960 * namely it pokes the cleaner kthread that will start
4961 * processing uncleaned subvols.
4963 wake_up_process(fs_info->transaction_kthread);
4964 return ret;
4966 case BTRFS_IOC_START_SYNC:
4967 return btrfs_ioctl_start_sync(root, argp);
4968 case BTRFS_IOC_WAIT_SYNC:
4969 return btrfs_ioctl_wait_sync(fs_info, argp);
4970 case BTRFS_IOC_SCRUB:
4971 return btrfs_ioctl_scrub(file, argp);
4972 case BTRFS_IOC_SCRUB_CANCEL:
4973 return btrfs_ioctl_scrub_cancel(fs_info);
4974 case BTRFS_IOC_SCRUB_PROGRESS:
4975 return btrfs_ioctl_scrub_progress(fs_info, argp);
4976 case BTRFS_IOC_BALANCE_V2:
4977 return btrfs_ioctl_balance(file, argp);
4978 case BTRFS_IOC_BALANCE_CTL:
4979 return btrfs_ioctl_balance_ctl(fs_info, arg);
4980 case BTRFS_IOC_BALANCE_PROGRESS:
4981 return btrfs_ioctl_balance_progress(fs_info, argp);
4982 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4983 return btrfs_ioctl_set_received_subvol(file, argp);
4984 #ifdef CONFIG_64BIT
4985 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4986 return btrfs_ioctl_set_received_subvol_32(file, argp);
4987 #endif
4988 case BTRFS_IOC_SEND:
4989 return _btrfs_ioctl_send(file, argp, false);
4990 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4991 case BTRFS_IOC_SEND_32:
4992 return _btrfs_ioctl_send(file, argp, true);
4993 #endif
4994 case BTRFS_IOC_GET_DEV_STATS:
4995 return btrfs_ioctl_get_dev_stats(fs_info, argp);
4996 case BTRFS_IOC_QUOTA_CTL:
4997 return btrfs_ioctl_quota_ctl(file, argp);
4998 case BTRFS_IOC_QGROUP_ASSIGN:
4999 return btrfs_ioctl_qgroup_assign(file, argp);
5000 case BTRFS_IOC_QGROUP_CREATE:
5001 return btrfs_ioctl_qgroup_create(file, argp);
5002 case BTRFS_IOC_QGROUP_LIMIT:
5003 return btrfs_ioctl_qgroup_limit(file, argp);
5004 case BTRFS_IOC_QUOTA_RESCAN:
5005 return btrfs_ioctl_quota_rescan(file, argp);
5006 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5007 return btrfs_ioctl_quota_rescan_status(fs_info, argp);
5008 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5009 return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
5010 case BTRFS_IOC_DEV_REPLACE:
5011 return btrfs_ioctl_dev_replace(fs_info, argp);
5012 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5013 return btrfs_ioctl_get_supported_features(argp);
5014 case BTRFS_IOC_GET_FEATURES:
5015 return btrfs_ioctl_get_features(fs_info, argp);
5016 case BTRFS_IOC_SET_FEATURES:
5017 return btrfs_ioctl_set_features(file, argp);
5018 case FS_IOC_FSGETXATTR:
5019 return btrfs_ioctl_fsgetxattr(file, argp);
5020 case FS_IOC_FSSETXATTR:
5021 return btrfs_ioctl_fssetxattr(file, argp);
5022 case BTRFS_IOC_GET_SUBVOL_INFO:
5023 return btrfs_ioctl_get_subvol_info(file, argp);
5024 case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5025 return btrfs_ioctl_get_subvol_rootref(file, argp);
5026 case BTRFS_IOC_INO_LOOKUP_USER:
5027 return btrfs_ioctl_ino_lookup_user(file, argp);
5030 return -ENOTTY;
5033 #ifdef CONFIG_COMPAT
5034 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5037 * These all access 32-bit values anyway so no further
5038 * handling is necessary.
5040 switch (cmd) {
5041 case FS_IOC32_GETFLAGS:
5042 cmd = FS_IOC_GETFLAGS;
5043 break;
5044 case FS_IOC32_SETFLAGS:
5045 cmd = FS_IOC_SETFLAGS;
5046 break;
5047 case FS_IOC32_GETVERSION:
5048 cmd = FS_IOC_GETVERSION;
5049 break;
5052 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5054 #endif