1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2009 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include <linux/error-injection.h>
15 #include "transaction.h"
18 #include "btrfs_inode.h"
19 #include "async-thread.h"
20 #include "free-space-cache.h"
22 #include "print-tree.h"
23 #include "delalloc-space.h"
24 #include "block-group.h"
31 * [What does relocation do]
33 * The objective of relocation is to relocate all extents of the target block
34 * group to other block groups.
35 * This is utilized by resize (shrink only), profile converting, compacting
36 * space, or balance routine to spread chunks over devices.
39 * ------------------------------------------------------------------
40 * BG A: 10 data extents | BG A: deleted
41 * BG B: 2 data extents | BG B: 10 data extents (2 old + 8 relocated)
42 * BG C: 1 extents | BG C: 3 data extents (1 old + 2 relocated)
44 * [How does relocation work]
46 * 1. Mark the target block group read-only
47 * New extents won't be allocated from the target block group.
49 * 2.1 Record each extent in the target block group
50 * To build a proper map of extents to be relocated.
52 * 2.2 Build data reloc tree and reloc trees
53 * Data reloc tree will contain an inode, recording all newly relocated
55 * There will be only one data reloc tree for one data block group.
57 * Reloc tree will be a special snapshot of its source tree, containing
58 * relocated tree blocks.
59 * Each tree referring to a tree block in target block group will get its
62 * 2.3 Swap source tree with its corresponding reloc tree
63 * Each involved tree only refers to new extents after swap.
65 * 3. Cleanup reloc trees and data reloc tree.
66 * As old extents in the target block group are still referenced by reloc
67 * trees, we need to clean them up before really freeing the target block
70 * The main complexity is in steps 2.2 and 2.3.
72 * The entry point of relocation is relocate_block_group() function.
75 #define RELOCATION_RESERVED_NODES 256
77 * map address of tree root to tree
81 struct rb_node rb_node
;
83 }; /* Use rb_simle_node for search/insert */
88 struct rb_root rb_root
;
93 * present a tree block to process
97 struct rb_node rb_node
;
99 }; /* Use rb_simple_node for search/insert */
100 struct btrfs_key key
;
101 unsigned int level
:8;
102 unsigned int key_ready
:1;
105 #define MAX_EXTENTS 128
107 struct file_extent_cluster
{
110 u64 boundary
[MAX_EXTENTS
];
114 struct reloc_control
{
115 /* block group to relocate */
116 struct btrfs_block_group
*block_group
;
118 struct btrfs_root
*extent_root
;
119 /* inode for moving data */
120 struct inode
*data_inode
;
122 struct btrfs_block_rsv
*block_rsv
;
124 struct btrfs_backref_cache backref_cache
;
126 struct file_extent_cluster cluster
;
127 /* tree blocks have been processed */
128 struct extent_io_tree processed_blocks
;
129 /* map start of tree root to corresponding reloc tree */
130 struct mapping_tree reloc_root_tree
;
131 /* list of reloc trees */
132 struct list_head reloc_roots
;
133 /* list of subvolume trees that get relocated */
134 struct list_head dirty_subvol_roots
;
135 /* size of metadata reservation for merging reloc trees */
136 u64 merging_rsv_size
;
137 /* size of relocated tree nodes */
139 /* reserved size for block group relocation*/
145 unsigned int stage
:8;
146 unsigned int create_reloc_tree
:1;
147 unsigned int merge_reloc_tree
:1;
148 unsigned int found_file_extent
:1;
151 /* stages of data relocation */
152 #define MOVE_DATA_EXTENTS 0
153 #define UPDATE_DATA_PTRS 1
155 static void mark_block_processed(struct reloc_control
*rc
,
156 struct btrfs_backref_node
*node
)
160 if (node
->level
== 0 ||
161 in_range(node
->bytenr
, rc
->block_group
->start
,
162 rc
->block_group
->length
)) {
163 blocksize
= rc
->extent_root
->fs_info
->nodesize
;
164 set_extent_bits(&rc
->processed_blocks
, node
->bytenr
,
165 node
->bytenr
+ blocksize
- 1, EXTENT_DIRTY
);
171 static void mapping_tree_init(struct mapping_tree
*tree
)
173 tree
->rb_root
= RB_ROOT
;
174 spin_lock_init(&tree
->lock
);
178 * walk up backref nodes until reach node presents tree root
180 static struct btrfs_backref_node
*walk_up_backref(
181 struct btrfs_backref_node
*node
,
182 struct btrfs_backref_edge
*edges
[], int *index
)
184 struct btrfs_backref_edge
*edge
;
187 while (!list_empty(&node
->upper
)) {
188 edge
= list_entry(node
->upper
.next
,
189 struct btrfs_backref_edge
, list
[LOWER
]);
191 node
= edge
->node
[UPPER
];
193 BUG_ON(node
->detached
);
199 * walk down backref nodes to find start of next reference path
201 static struct btrfs_backref_node
*walk_down_backref(
202 struct btrfs_backref_edge
*edges
[], int *index
)
204 struct btrfs_backref_edge
*edge
;
205 struct btrfs_backref_node
*lower
;
209 edge
= edges
[idx
- 1];
210 lower
= edge
->node
[LOWER
];
211 if (list_is_last(&edge
->list
[LOWER
], &lower
->upper
)) {
215 edge
= list_entry(edge
->list
[LOWER
].next
,
216 struct btrfs_backref_edge
, list
[LOWER
]);
217 edges
[idx
- 1] = edge
;
219 return edge
->node
[UPPER
];
225 static void update_backref_node(struct btrfs_backref_cache
*cache
,
226 struct btrfs_backref_node
*node
, u64 bytenr
)
228 struct rb_node
*rb_node
;
229 rb_erase(&node
->rb_node
, &cache
->rb_root
);
230 node
->bytenr
= bytenr
;
231 rb_node
= rb_simple_insert(&cache
->rb_root
, node
->bytenr
, &node
->rb_node
);
233 btrfs_backref_panic(cache
->fs_info
, bytenr
, -EEXIST
);
237 * update backref cache after a transaction commit
239 static int update_backref_cache(struct btrfs_trans_handle
*trans
,
240 struct btrfs_backref_cache
*cache
)
242 struct btrfs_backref_node
*node
;
245 if (cache
->last_trans
== 0) {
246 cache
->last_trans
= trans
->transid
;
250 if (cache
->last_trans
== trans
->transid
)
254 * detached nodes are used to avoid unnecessary backref
255 * lookup. transaction commit changes the extent tree.
256 * so the detached nodes are no longer useful.
258 while (!list_empty(&cache
->detached
)) {
259 node
= list_entry(cache
->detached
.next
,
260 struct btrfs_backref_node
, list
);
261 btrfs_backref_cleanup_node(cache
, node
);
264 while (!list_empty(&cache
->changed
)) {
265 node
= list_entry(cache
->changed
.next
,
266 struct btrfs_backref_node
, list
);
267 list_del_init(&node
->list
);
268 BUG_ON(node
->pending
);
269 update_backref_node(cache
, node
, node
->new_bytenr
);
273 * some nodes can be left in the pending list if there were
274 * errors during processing the pending nodes.
276 for (level
= 0; level
< BTRFS_MAX_LEVEL
; level
++) {
277 list_for_each_entry(node
, &cache
->pending
[level
], list
) {
278 BUG_ON(!node
->pending
);
279 if (node
->bytenr
== node
->new_bytenr
)
281 update_backref_node(cache
, node
, node
->new_bytenr
);
285 cache
->last_trans
= 0;
289 static bool reloc_root_is_dead(struct btrfs_root
*root
)
292 * Pair with set_bit/clear_bit in clean_dirty_subvols and
293 * btrfs_update_reloc_root. We need to see the updated bit before
294 * trying to access reloc_root
297 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE
, &root
->state
))
303 * Check if this subvolume tree has valid reloc tree.
305 * Reloc tree after swap is considered dead, thus not considered as valid.
306 * This is enough for most callers, as they don't distinguish dead reloc root
307 * from no reloc root. But btrfs_should_ignore_reloc_root() below is a
310 static bool have_reloc_root(struct btrfs_root
*root
)
312 if (reloc_root_is_dead(root
))
314 if (!root
->reloc_root
)
319 int btrfs_should_ignore_reloc_root(struct btrfs_root
*root
)
321 struct btrfs_root
*reloc_root
;
323 if (!test_bit(BTRFS_ROOT_SHAREABLE
, &root
->state
))
326 /* This root has been merged with its reloc tree, we can ignore it */
327 if (reloc_root_is_dead(root
))
330 reloc_root
= root
->reloc_root
;
334 if (btrfs_header_generation(reloc_root
->commit_root
) ==
335 root
->fs_info
->running_transaction
->transid
)
338 * if there is reloc tree and it was created in previous
339 * transaction backref lookup can find the reloc tree,
340 * so backref node for the fs tree root is useless for
347 * find reloc tree by address of tree root
349 struct btrfs_root
*find_reloc_root(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
351 struct reloc_control
*rc
= fs_info
->reloc_ctl
;
352 struct rb_node
*rb_node
;
353 struct mapping_node
*node
;
354 struct btrfs_root
*root
= NULL
;
357 spin_lock(&rc
->reloc_root_tree
.lock
);
358 rb_node
= rb_simple_search(&rc
->reloc_root_tree
.rb_root
, bytenr
);
360 node
= rb_entry(rb_node
, struct mapping_node
, rb_node
);
361 root
= (struct btrfs_root
*)node
->data
;
363 spin_unlock(&rc
->reloc_root_tree
.lock
);
364 return btrfs_grab_root(root
);
368 * For useless nodes, do two major clean ups:
370 * - Cleanup the children edges and nodes
371 * If child node is also orphan (no parent) during cleanup, then the child
372 * node will also be cleaned up.
374 * - Freeing up leaves (level 0), keeps nodes detached
375 * For nodes, the node is still cached as "detached"
377 * Return false if @node is not in the @useless_nodes list.
378 * Return true if @node is in the @useless_nodes list.
380 static bool handle_useless_nodes(struct reloc_control
*rc
,
381 struct btrfs_backref_node
*node
)
383 struct btrfs_backref_cache
*cache
= &rc
->backref_cache
;
384 struct list_head
*useless_node
= &cache
->useless_node
;
387 while (!list_empty(useless_node
)) {
388 struct btrfs_backref_node
*cur
;
390 cur
= list_first_entry(useless_node
, struct btrfs_backref_node
,
392 list_del_init(&cur
->list
);
394 /* Only tree root nodes can be added to @useless_nodes */
395 ASSERT(list_empty(&cur
->upper
));
400 /* The node is the lowest node */
402 list_del_init(&cur
->lower
);
406 /* Cleanup the lower edges */
407 while (!list_empty(&cur
->lower
)) {
408 struct btrfs_backref_edge
*edge
;
409 struct btrfs_backref_node
*lower
;
411 edge
= list_entry(cur
->lower
.next
,
412 struct btrfs_backref_edge
, list
[UPPER
]);
413 list_del(&edge
->list
[UPPER
]);
414 list_del(&edge
->list
[LOWER
]);
415 lower
= edge
->node
[LOWER
];
416 btrfs_backref_free_edge(cache
, edge
);
418 /* Child node is also orphan, queue for cleanup */
419 if (list_empty(&lower
->upper
))
420 list_add(&lower
->list
, useless_node
);
422 /* Mark this block processed for relocation */
423 mark_block_processed(rc
, cur
);
426 * Backref nodes for tree leaves are deleted from the cache.
427 * Backref nodes for upper level tree blocks are left in the
428 * cache to avoid unnecessary backref lookup.
430 if (cur
->level
> 0) {
431 list_add(&cur
->list
, &cache
->detached
);
434 rb_erase(&cur
->rb_node
, &cache
->rb_root
);
435 btrfs_backref_free_node(cache
, cur
);
442 * Build backref tree for a given tree block. Root of the backref tree
443 * corresponds the tree block, leaves of the backref tree correspond roots of
444 * b-trees that reference the tree block.
446 * The basic idea of this function is check backrefs of a given block to find
447 * upper level blocks that reference the block, and then check backrefs of
448 * these upper level blocks recursively. The recursion stops when tree root is
449 * reached or backrefs for the block is cached.
451 * NOTE: if we find that backrefs for a block are cached, we know backrefs for
452 * all upper level blocks that directly/indirectly reference the block are also
455 static noinline_for_stack
struct btrfs_backref_node
*build_backref_tree(
456 struct reloc_control
*rc
, struct btrfs_key
*node_key
,
457 int level
, u64 bytenr
)
459 struct btrfs_backref_iter
*iter
;
460 struct btrfs_backref_cache
*cache
= &rc
->backref_cache
;
461 /* For searching parent of TREE_BLOCK_REF */
462 struct btrfs_path
*path
;
463 struct btrfs_backref_node
*cur
;
464 struct btrfs_backref_node
*node
= NULL
;
465 struct btrfs_backref_edge
*edge
;
469 iter
= btrfs_backref_iter_alloc(rc
->extent_root
->fs_info
, GFP_NOFS
);
471 return ERR_PTR(-ENOMEM
);
472 path
= btrfs_alloc_path();
478 node
= btrfs_backref_alloc_node(cache
, bytenr
, level
);
487 /* Breadth-first search to build backref cache */
489 ret
= btrfs_backref_add_tree_node(cache
, path
, iter
, node_key
,
495 edge
= list_first_entry_or_null(&cache
->pending_edge
,
496 struct btrfs_backref_edge
, list
[UPPER
]);
498 * The pending list isn't empty, take the first block to
502 list_del_init(&edge
->list
[UPPER
]);
503 cur
= edge
->node
[UPPER
];
507 /* Finish the upper linkage of newly added edges/nodes */
508 ret
= btrfs_backref_finish_upper_links(cache
, node
);
514 if (handle_useless_nodes(rc
, node
))
517 btrfs_backref_iter_free(iter
);
518 btrfs_free_path(path
);
520 btrfs_backref_error_cleanup(cache
, node
);
523 ASSERT(!node
|| !node
->detached
);
524 ASSERT(list_empty(&cache
->useless_node
) &&
525 list_empty(&cache
->pending_edge
));
530 * helper to add backref node for the newly created snapshot.
531 * the backref node is created by cloning backref node that
532 * corresponds to root of source tree
534 static int clone_backref_node(struct btrfs_trans_handle
*trans
,
535 struct reloc_control
*rc
,
536 struct btrfs_root
*src
,
537 struct btrfs_root
*dest
)
539 struct btrfs_root
*reloc_root
= src
->reloc_root
;
540 struct btrfs_backref_cache
*cache
= &rc
->backref_cache
;
541 struct btrfs_backref_node
*node
= NULL
;
542 struct btrfs_backref_node
*new_node
;
543 struct btrfs_backref_edge
*edge
;
544 struct btrfs_backref_edge
*new_edge
;
545 struct rb_node
*rb_node
;
547 if (cache
->last_trans
> 0)
548 update_backref_cache(trans
, cache
);
550 rb_node
= rb_simple_search(&cache
->rb_root
, src
->commit_root
->start
);
552 node
= rb_entry(rb_node
, struct btrfs_backref_node
, rb_node
);
556 BUG_ON(node
->new_bytenr
!= reloc_root
->node
->start
);
560 rb_node
= rb_simple_search(&cache
->rb_root
,
561 reloc_root
->commit_root
->start
);
563 node
= rb_entry(rb_node
, struct btrfs_backref_node
,
565 BUG_ON(node
->detached
);
572 new_node
= btrfs_backref_alloc_node(cache
, dest
->node
->start
,
577 new_node
->lowest
= node
->lowest
;
578 new_node
->checked
= 1;
579 new_node
->root
= btrfs_grab_root(dest
);
580 ASSERT(new_node
->root
);
583 list_for_each_entry(edge
, &node
->lower
, list
[UPPER
]) {
584 new_edge
= btrfs_backref_alloc_edge(cache
);
588 btrfs_backref_link_edge(new_edge
, edge
->node
[LOWER
],
589 new_node
, LINK_UPPER
);
592 list_add_tail(&new_node
->lower
, &cache
->leaves
);
595 rb_node
= rb_simple_insert(&cache
->rb_root
, new_node
->bytenr
,
598 btrfs_backref_panic(trans
->fs_info
, new_node
->bytenr
, -EEXIST
);
600 if (!new_node
->lowest
) {
601 list_for_each_entry(new_edge
, &new_node
->lower
, list
[UPPER
]) {
602 list_add_tail(&new_edge
->list
[LOWER
],
603 &new_edge
->node
[LOWER
]->upper
);
608 while (!list_empty(&new_node
->lower
)) {
609 new_edge
= list_entry(new_node
->lower
.next
,
610 struct btrfs_backref_edge
, list
[UPPER
]);
611 list_del(&new_edge
->list
[UPPER
]);
612 btrfs_backref_free_edge(cache
, new_edge
);
614 btrfs_backref_free_node(cache
, new_node
);
619 * helper to add 'address of tree root -> reloc tree' mapping
621 static int __must_check
__add_reloc_root(struct btrfs_root
*root
)
623 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
624 struct rb_node
*rb_node
;
625 struct mapping_node
*node
;
626 struct reloc_control
*rc
= fs_info
->reloc_ctl
;
628 node
= kmalloc(sizeof(*node
), GFP_NOFS
);
632 node
->bytenr
= root
->commit_root
->start
;
635 spin_lock(&rc
->reloc_root_tree
.lock
);
636 rb_node
= rb_simple_insert(&rc
->reloc_root_tree
.rb_root
,
637 node
->bytenr
, &node
->rb_node
);
638 spin_unlock(&rc
->reloc_root_tree
.lock
);
640 btrfs_panic(fs_info
, -EEXIST
,
641 "Duplicate root found for start=%llu while inserting into relocation tree",
645 list_add_tail(&root
->root_list
, &rc
->reloc_roots
);
650 * helper to delete the 'address of tree root -> reloc tree'
653 static void __del_reloc_root(struct btrfs_root
*root
)
655 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
656 struct rb_node
*rb_node
;
657 struct mapping_node
*node
= NULL
;
658 struct reloc_control
*rc
= fs_info
->reloc_ctl
;
659 bool put_ref
= false;
661 if (rc
&& root
->node
) {
662 spin_lock(&rc
->reloc_root_tree
.lock
);
663 rb_node
= rb_simple_search(&rc
->reloc_root_tree
.rb_root
,
664 root
->commit_root
->start
);
666 node
= rb_entry(rb_node
, struct mapping_node
, rb_node
);
667 rb_erase(&node
->rb_node
, &rc
->reloc_root_tree
.rb_root
);
668 RB_CLEAR_NODE(&node
->rb_node
);
670 spin_unlock(&rc
->reloc_root_tree
.lock
);
673 BUG_ON((struct btrfs_root
*)node
->data
!= root
);
677 * We only put the reloc root here if it's on the list. There's a lot
678 * of places where the pattern is to splice the rc->reloc_roots, process
679 * the reloc roots, and then add the reloc root back onto
680 * rc->reloc_roots. If we call __del_reloc_root while it's off of the
681 * list we don't want the reference being dropped, because the guy
682 * messing with the list is in charge of the reference.
684 spin_lock(&fs_info
->trans_lock
);
685 if (!list_empty(&root
->root_list
)) {
687 list_del_init(&root
->root_list
);
689 spin_unlock(&fs_info
->trans_lock
);
691 btrfs_put_root(root
);
696 * helper to update the 'address of tree root -> reloc tree'
699 static int __update_reloc_root(struct btrfs_root
*root
)
701 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
702 struct rb_node
*rb_node
;
703 struct mapping_node
*node
= NULL
;
704 struct reloc_control
*rc
= fs_info
->reloc_ctl
;
706 spin_lock(&rc
->reloc_root_tree
.lock
);
707 rb_node
= rb_simple_search(&rc
->reloc_root_tree
.rb_root
,
708 root
->commit_root
->start
);
710 node
= rb_entry(rb_node
, struct mapping_node
, rb_node
);
711 rb_erase(&node
->rb_node
, &rc
->reloc_root_tree
.rb_root
);
713 spin_unlock(&rc
->reloc_root_tree
.lock
);
717 BUG_ON((struct btrfs_root
*)node
->data
!= root
);
719 spin_lock(&rc
->reloc_root_tree
.lock
);
720 node
->bytenr
= root
->node
->start
;
721 rb_node
= rb_simple_insert(&rc
->reloc_root_tree
.rb_root
,
722 node
->bytenr
, &node
->rb_node
);
723 spin_unlock(&rc
->reloc_root_tree
.lock
);
725 btrfs_backref_panic(fs_info
, node
->bytenr
, -EEXIST
);
729 static struct btrfs_root
*create_reloc_root(struct btrfs_trans_handle
*trans
,
730 struct btrfs_root
*root
, u64 objectid
)
732 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
733 struct btrfs_root
*reloc_root
;
734 struct extent_buffer
*eb
;
735 struct btrfs_root_item
*root_item
;
736 struct btrfs_key root_key
;
739 root_item
= kmalloc(sizeof(*root_item
), GFP_NOFS
);
742 root_key
.objectid
= BTRFS_TREE_RELOC_OBJECTID
;
743 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
744 root_key
.offset
= objectid
;
746 if (root
->root_key
.objectid
== objectid
) {
749 /* called by btrfs_init_reloc_root */
750 ret
= btrfs_copy_root(trans
, root
, root
->commit_root
, &eb
,
751 BTRFS_TREE_RELOC_OBJECTID
);
754 * Set the last_snapshot field to the generation of the commit
755 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
756 * correctly (returns true) when the relocation root is created
757 * either inside the critical section of a transaction commit
758 * (through transaction.c:qgroup_account_snapshot()) and when
759 * it's created before the transaction commit is started.
761 commit_root_gen
= btrfs_header_generation(root
->commit_root
);
762 btrfs_set_root_last_snapshot(&root
->root_item
, commit_root_gen
);
765 * called by btrfs_reloc_post_snapshot_hook.
766 * the source tree is a reloc tree, all tree blocks
767 * modified after it was created have RELOC flag
768 * set in their headers. so it's OK to not update
769 * the 'last_snapshot'.
771 ret
= btrfs_copy_root(trans
, root
, root
->node
, &eb
,
772 BTRFS_TREE_RELOC_OBJECTID
);
776 memcpy(root_item
, &root
->root_item
, sizeof(*root_item
));
777 btrfs_set_root_bytenr(root_item
, eb
->start
);
778 btrfs_set_root_level(root_item
, btrfs_header_level(eb
));
779 btrfs_set_root_generation(root_item
, trans
->transid
);
781 if (root
->root_key
.objectid
== objectid
) {
782 btrfs_set_root_refs(root_item
, 0);
783 memset(&root_item
->drop_progress
, 0,
784 sizeof(struct btrfs_disk_key
));
785 btrfs_set_root_drop_level(root_item
, 0);
788 btrfs_tree_unlock(eb
);
789 free_extent_buffer(eb
);
791 ret
= btrfs_insert_root(trans
, fs_info
->tree_root
,
792 &root_key
, root_item
);
796 reloc_root
= btrfs_read_tree_root(fs_info
->tree_root
, &root_key
);
797 BUG_ON(IS_ERR(reloc_root
));
798 set_bit(BTRFS_ROOT_SHAREABLE
, &reloc_root
->state
);
799 reloc_root
->last_trans
= trans
->transid
;
804 * create reloc tree for a given fs tree. reloc tree is just a
805 * snapshot of the fs tree with special root objectid.
807 * The reloc_root comes out of here with two references, one for
808 * root->reloc_root, and another for being on the rc->reloc_roots list.
810 int btrfs_init_reloc_root(struct btrfs_trans_handle
*trans
,
811 struct btrfs_root
*root
)
813 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
814 struct btrfs_root
*reloc_root
;
815 struct reloc_control
*rc
= fs_info
->reloc_ctl
;
816 struct btrfs_block_rsv
*rsv
;
824 * The subvolume has reloc tree but the swap is finished, no need to
825 * create/update the dead reloc tree
827 if (reloc_root_is_dead(root
))
831 * This is subtle but important. We do not do
832 * record_root_in_transaction for reloc roots, instead we record their
833 * corresponding fs root, and then here we update the last trans for the
834 * reloc root. This means that we have to do this for the entire life
835 * of the reloc root, regardless of which stage of the relocation we are
838 if (root
->reloc_root
) {
839 reloc_root
= root
->reloc_root
;
840 reloc_root
->last_trans
= trans
->transid
;
845 * We are merging reloc roots, we do not need new reloc trees. Also
846 * reloc trees never need their own reloc tree.
848 if (!rc
->create_reloc_tree
||
849 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
)
852 if (!trans
->reloc_reserved
) {
853 rsv
= trans
->block_rsv
;
854 trans
->block_rsv
= rc
->block_rsv
;
857 reloc_root
= create_reloc_root(trans
, root
, root
->root_key
.objectid
);
859 trans
->block_rsv
= rsv
;
861 ret
= __add_reloc_root(reloc_root
);
863 root
->reloc_root
= btrfs_grab_root(reloc_root
);
868 * update root item of reloc tree
870 int btrfs_update_reloc_root(struct btrfs_trans_handle
*trans
,
871 struct btrfs_root
*root
)
873 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
874 struct btrfs_root
*reloc_root
;
875 struct btrfs_root_item
*root_item
;
878 if (!have_reloc_root(root
))
881 reloc_root
= root
->reloc_root
;
882 root_item
= &reloc_root
->root_item
;
885 * We are probably ok here, but __del_reloc_root() will drop its ref of
886 * the root. We have the ref for root->reloc_root, but just in case
887 * hold it while we update the reloc root.
889 btrfs_grab_root(reloc_root
);
891 /* root->reloc_root will stay until current relocation finished */
892 if (fs_info
->reloc_ctl
->merge_reloc_tree
&&
893 btrfs_root_refs(root_item
) == 0) {
894 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE
, &root
->state
);
896 * Mark the tree as dead before we change reloc_root so
897 * have_reloc_root will not touch it from now on.
900 __del_reloc_root(reloc_root
);
903 if (reloc_root
->commit_root
!= reloc_root
->node
) {
904 __update_reloc_root(reloc_root
);
905 btrfs_set_root_node(root_item
, reloc_root
->node
);
906 free_extent_buffer(reloc_root
->commit_root
);
907 reloc_root
->commit_root
= btrfs_root_node(reloc_root
);
910 ret
= btrfs_update_root(trans
, fs_info
->tree_root
,
911 &reloc_root
->root_key
, root_item
);
913 btrfs_put_root(reloc_root
);
919 * helper to find first cached inode with inode number >= objectid
922 static struct inode
*find_next_inode(struct btrfs_root
*root
, u64 objectid
)
924 struct rb_node
*node
;
925 struct rb_node
*prev
;
926 struct btrfs_inode
*entry
;
929 spin_lock(&root
->inode_lock
);
931 node
= root
->inode_tree
.rb_node
;
935 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
937 if (objectid
< btrfs_ino(entry
))
938 node
= node
->rb_left
;
939 else if (objectid
> btrfs_ino(entry
))
940 node
= node
->rb_right
;
946 entry
= rb_entry(prev
, struct btrfs_inode
, rb_node
);
947 if (objectid
<= btrfs_ino(entry
)) {
951 prev
= rb_next(prev
);
955 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
956 inode
= igrab(&entry
->vfs_inode
);
958 spin_unlock(&root
->inode_lock
);
962 objectid
= btrfs_ino(entry
) + 1;
963 if (cond_resched_lock(&root
->inode_lock
))
966 node
= rb_next(node
);
968 spin_unlock(&root
->inode_lock
);
973 * get new location of data
975 static int get_new_location(struct inode
*reloc_inode
, u64
*new_bytenr
,
976 u64 bytenr
, u64 num_bytes
)
978 struct btrfs_root
*root
= BTRFS_I(reloc_inode
)->root
;
979 struct btrfs_path
*path
;
980 struct btrfs_file_extent_item
*fi
;
981 struct extent_buffer
*leaf
;
984 path
= btrfs_alloc_path();
988 bytenr
-= BTRFS_I(reloc_inode
)->index_cnt
;
989 ret
= btrfs_lookup_file_extent(NULL
, root
, path
,
990 btrfs_ino(BTRFS_I(reloc_inode
)), bytenr
, 0);
998 leaf
= path
->nodes
[0];
999 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1000 struct btrfs_file_extent_item
);
1002 BUG_ON(btrfs_file_extent_offset(leaf
, fi
) ||
1003 btrfs_file_extent_compression(leaf
, fi
) ||
1004 btrfs_file_extent_encryption(leaf
, fi
) ||
1005 btrfs_file_extent_other_encoding(leaf
, fi
));
1007 if (num_bytes
!= btrfs_file_extent_disk_num_bytes(leaf
, fi
)) {
1012 *new_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1015 btrfs_free_path(path
);
1020 * update file extent items in the tree leaf to point to
1021 * the new locations.
1023 static noinline_for_stack
1024 int replace_file_extents(struct btrfs_trans_handle
*trans
,
1025 struct reloc_control
*rc
,
1026 struct btrfs_root
*root
,
1027 struct extent_buffer
*leaf
)
1029 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1030 struct btrfs_key key
;
1031 struct btrfs_file_extent_item
*fi
;
1032 struct inode
*inode
= NULL
;
1044 if (rc
->stage
!= UPDATE_DATA_PTRS
)
1047 /* reloc trees always use full backref */
1048 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
)
1049 parent
= leaf
->start
;
1053 nritems
= btrfs_header_nritems(leaf
);
1054 for (i
= 0; i
< nritems
; i
++) {
1055 struct btrfs_ref ref
= { 0 };
1058 btrfs_item_key_to_cpu(leaf
, &key
, i
);
1059 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
1061 fi
= btrfs_item_ptr(leaf
, i
, struct btrfs_file_extent_item
);
1062 if (btrfs_file_extent_type(leaf
, fi
) ==
1063 BTRFS_FILE_EXTENT_INLINE
)
1065 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1066 num_bytes
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
1069 if (!in_range(bytenr
, rc
->block_group
->start
,
1070 rc
->block_group
->length
))
1074 * if we are modifying block in fs tree, wait for readpage
1075 * to complete and drop the extent cache
1077 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
) {
1079 inode
= find_next_inode(root
, key
.objectid
);
1081 } else if (inode
&& btrfs_ino(BTRFS_I(inode
)) < key
.objectid
) {
1082 btrfs_add_delayed_iput(inode
);
1083 inode
= find_next_inode(root
, key
.objectid
);
1085 if (inode
&& btrfs_ino(BTRFS_I(inode
)) == key
.objectid
) {
1087 btrfs_file_extent_num_bytes(leaf
, fi
);
1088 WARN_ON(!IS_ALIGNED(key
.offset
,
1089 fs_info
->sectorsize
));
1090 WARN_ON(!IS_ALIGNED(end
, fs_info
->sectorsize
));
1092 ret
= try_lock_extent(&BTRFS_I(inode
)->io_tree
,
1097 btrfs_drop_extent_cache(BTRFS_I(inode
),
1098 key
.offset
, end
, 1);
1099 unlock_extent(&BTRFS_I(inode
)->io_tree
,
1104 ret
= get_new_location(rc
->data_inode
, &new_bytenr
,
1108 * Don't have to abort since we've not changed anything
1109 * in the file extent yet.
1114 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, new_bytenr
);
1117 key
.offset
-= btrfs_file_extent_offset(leaf
, fi
);
1118 btrfs_init_generic_ref(&ref
, BTRFS_ADD_DELAYED_REF
, new_bytenr
,
1120 ref
.real_root
= root
->root_key
.objectid
;
1121 btrfs_init_data_ref(&ref
, btrfs_header_owner(leaf
),
1122 key
.objectid
, key
.offset
);
1123 ret
= btrfs_inc_extent_ref(trans
, &ref
);
1125 btrfs_abort_transaction(trans
, ret
);
1129 btrfs_init_generic_ref(&ref
, BTRFS_DROP_DELAYED_REF
, bytenr
,
1131 ref
.real_root
= root
->root_key
.objectid
;
1132 btrfs_init_data_ref(&ref
, btrfs_header_owner(leaf
),
1133 key
.objectid
, key
.offset
);
1134 ret
= btrfs_free_extent(trans
, &ref
);
1136 btrfs_abort_transaction(trans
, ret
);
1141 btrfs_mark_buffer_dirty(leaf
);
1143 btrfs_add_delayed_iput(inode
);
1147 static noinline_for_stack
1148 int memcmp_node_keys(struct extent_buffer
*eb
, int slot
,
1149 struct btrfs_path
*path
, int level
)
1151 struct btrfs_disk_key key1
;
1152 struct btrfs_disk_key key2
;
1153 btrfs_node_key(eb
, &key1
, slot
);
1154 btrfs_node_key(path
->nodes
[level
], &key2
, path
->slots
[level
]);
1155 return memcmp(&key1
, &key2
, sizeof(key1
));
1159 * try to replace tree blocks in fs tree with the new blocks
1160 * in reloc tree. tree blocks haven't been modified since the
1161 * reloc tree was create can be replaced.
1163 * if a block was replaced, level of the block + 1 is returned.
1164 * if no block got replaced, 0 is returned. if there are other
1165 * errors, a negative error number is returned.
1167 static noinline_for_stack
1168 int replace_path(struct btrfs_trans_handle
*trans
, struct reloc_control
*rc
,
1169 struct btrfs_root
*dest
, struct btrfs_root
*src
,
1170 struct btrfs_path
*path
, struct btrfs_key
*next_key
,
1171 int lowest_level
, int max_level
)
1173 struct btrfs_fs_info
*fs_info
= dest
->fs_info
;
1174 struct extent_buffer
*eb
;
1175 struct extent_buffer
*parent
;
1176 struct btrfs_ref ref
= { 0 };
1177 struct btrfs_key key
;
1189 BUG_ON(src
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
);
1190 BUG_ON(dest
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
);
1192 last_snapshot
= btrfs_root_last_snapshot(&src
->root_item
);
1194 slot
= path
->slots
[lowest_level
];
1195 btrfs_node_key_to_cpu(path
->nodes
[lowest_level
], &key
, slot
);
1197 eb
= btrfs_lock_root_node(dest
);
1198 level
= btrfs_header_level(eb
);
1200 if (level
< lowest_level
) {
1201 btrfs_tree_unlock(eb
);
1202 free_extent_buffer(eb
);
1207 ret
= btrfs_cow_block(trans
, dest
, eb
, NULL
, 0, &eb
,
1213 next_key
->objectid
= (u64
)-1;
1214 next_key
->type
= (u8
)-1;
1215 next_key
->offset
= (u64
)-1;
1220 level
= btrfs_header_level(parent
);
1221 BUG_ON(level
< lowest_level
);
1223 ret
= btrfs_bin_search(parent
, &key
, &slot
);
1226 if (ret
&& slot
> 0)
1229 if (next_key
&& slot
+ 1 < btrfs_header_nritems(parent
))
1230 btrfs_node_key_to_cpu(parent
, next_key
, slot
+ 1);
1232 old_bytenr
= btrfs_node_blockptr(parent
, slot
);
1233 blocksize
= fs_info
->nodesize
;
1234 old_ptr_gen
= btrfs_node_ptr_generation(parent
, slot
);
1236 if (level
<= max_level
) {
1237 eb
= path
->nodes
[level
];
1238 new_bytenr
= btrfs_node_blockptr(eb
,
1239 path
->slots
[level
]);
1240 new_ptr_gen
= btrfs_node_ptr_generation(eb
,
1241 path
->slots
[level
]);
1247 if (WARN_ON(new_bytenr
> 0 && new_bytenr
== old_bytenr
)) {
1252 if (new_bytenr
== 0 || old_ptr_gen
> last_snapshot
||
1253 memcmp_node_keys(parent
, slot
, path
, level
)) {
1254 if (level
<= lowest_level
) {
1259 eb
= btrfs_read_node_slot(parent
, slot
);
1264 btrfs_tree_lock(eb
);
1266 ret
= btrfs_cow_block(trans
, dest
, eb
, parent
,
1272 btrfs_tree_unlock(parent
);
1273 free_extent_buffer(parent
);
1280 btrfs_tree_unlock(parent
);
1281 free_extent_buffer(parent
);
1286 btrfs_node_key_to_cpu(path
->nodes
[level
], &key
,
1287 path
->slots
[level
]);
1288 btrfs_release_path(path
);
1290 path
->lowest_level
= level
;
1291 ret
= btrfs_search_slot(trans
, src
, &key
, path
, 0, 1);
1292 path
->lowest_level
= 0;
1296 * Info qgroup to trace both subtrees.
1298 * We must trace both trees.
1299 * 1) Tree reloc subtree
1300 * If not traced, we will leak data numbers
1302 * If not traced, we will double count old data
1304 * We don't scan the subtree right now, but only record
1305 * the swapped tree blocks.
1306 * The real subtree rescan is delayed until we have new
1307 * CoW on the subtree root node before transaction commit.
1309 ret
= btrfs_qgroup_add_swapped_blocks(trans
, dest
,
1310 rc
->block_group
, parent
, slot
,
1311 path
->nodes
[level
], path
->slots
[level
],
1316 * swap blocks in fs tree and reloc tree.
1318 btrfs_set_node_blockptr(parent
, slot
, new_bytenr
);
1319 btrfs_set_node_ptr_generation(parent
, slot
, new_ptr_gen
);
1320 btrfs_mark_buffer_dirty(parent
);
1322 btrfs_set_node_blockptr(path
->nodes
[level
],
1323 path
->slots
[level
], old_bytenr
);
1324 btrfs_set_node_ptr_generation(path
->nodes
[level
],
1325 path
->slots
[level
], old_ptr_gen
);
1326 btrfs_mark_buffer_dirty(path
->nodes
[level
]);
1328 btrfs_init_generic_ref(&ref
, BTRFS_ADD_DELAYED_REF
, old_bytenr
,
1329 blocksize
, path
->nodes
[level
]->start
);
1330 ref
.skip_qgroup
= true;
1331 btrfs_init_tree_ref(&ref
, level
- 1, src
->root_key
.objectid
);
1332 ret
= btrfs_inc_extent_ref(trans
, &ref
);
1334 btrfs_init_generic_ref(&ref
, BTRFS_ADD_DELAYED_REF
, new_bytenr
,
1336 ref
.skip_qgroup
= true;
1337 btrfs_init_tree_ref(&ref
, level
- 1, dest
->root_key
.objectid
);
1338 ret
= btrfs_inc_extent_ref(trans
, &ref
);
1341 btrfs_init_generic_ref(&ref
, BTRFS_DROP_DELAYED_REF
, new_bytenr
,
1342 blocksize
, path
->nodes
[level
]->start
);
1343 btrfs_init_tree_ref(&ref
, level
- 1, src
->root_key
.objectid
);
1344 ref
.skip_qgroup
= true;
1345 ret
= btrfs_free_extent(trans
, &ref
);
1348 btrfs_init_generic_ref(&ref
, BTRFS_DROP_DELAYED_REF
, old_bytenr
,
1350 btrfs_init_tree_ref(&ref
, level
- 1, dest
->root_key
.objectid
);
1351 ref
.skip_qgroup
= true;
1352 ret
= btrfs_free_extent(trans
, &ref
);
1355 btrfs_unlock_up_safe(path
, 0);
1360 btrfs_tree_unlock(parent
);
1361 free_extent_buffer(parent
);
1366 * helper to find next relocated block in reloc tree
1368 static noinline_for_stack
1369 int walk_up_reloc_tree(struct btrfs_root
*root
, struct btrfs_path
*path
,
1372 struct extent_buffer
*eb
;
1377 last_snapshot
= btrfs_root_last_snapshot(&root
->root_item
);
1379 for (i
= 0; i
< *level
; i
++) {
1380 free_extent_buffer(path
->nodes
[i
]);
1381 path
->nodes
[i
] = NULL
;
1384 for (i
= *level
; i
< BTRFS_MAX_LEVEL
&& path
->nodes
[i
]; i
++) {
1385 eb
= path
->nodes
[i
];
1386 nritems
= btrfs_header_nritems(eb
);
1387 while (path
->slots
[i
] + 1 < nritems
) {
1389 if (btrfs_node_ptr_generation(eb
, path
->slots
[i
]) <=
1396 free_extent_buffer(path
->nodes
[i
]);
1397 path
->nodes
[i
] = NULL
;
1403 * walk down reloc tree to find relocated block of lowest level
1405 static noinline_for_stack
1406 int walk_down_reloc_tree(struct btrfs_root
*root
, struct btrfs_path
*path
,
1409 struct extent_buffer
*eb
= NULL
;
1415 last_snapshot
= btrfs_root_last_snapshot(&root
->root_item
);
1417 for (i
= *level
; i
> 0; i
--) {
1418 eb
= path
->nodes
[i
];
1419 nritems
= btrfs_header_nritems(eb
);
1420 while (path
->slots
[i
] < nritems
) {
1421 ptr_gen
= btrfs_node_ptr_generation(eb
, path
->slots
[i
]);
1422 if (ptr_gen
> last_snapshot
)
1426 if (path
->slots
[i
] >= nritems
) {
1437 eb
= btrfs_read_node_slot(eb
, path
->slots
[i
]);
1440 BUG_ON(btrfs_header_level(eb
) != i
- 1);
1441 path
->nodes
[i
- 1] = eb
;
1442 path
->slots
[i
- 1] = 0;
1448 * invalidate extent cache for file extents whose key in range of
1449 * [min_key, max_key)
1451 static int invalidate_extent_cache(struct btrfs_root
*root
,
1452 struct btrfs_key
*min_key
,
1453 struct btrfs_key
*max_key
)
1455 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1456 struct inode
*inode
= NULL
;
1461 objectid
= min_key
->objectid
;
1466 if (objectid
> max_key
->objectid
)
1469 inode
= find_next_inode(root
, objectid
);
1472 ino
= btrfs_ino(BTRFS_I(inode
));
1474 if (ino
> max_key
->objectid
) {
1480 if (!S_ISREG(inode
->i_mode
))
1483 if (unlikely(min_key
->objectid
== ino
)) {
1484 if (min_key
->type
> BTRFS_EXTENT_DATA_KEY
)
1486 if (min_key
->type
< BTRFS_EXTENT_DATA_KEY
)
1489 start
= min_key
->offset
;
1490 WARN_ON(!IS_ALIGNED(start
, fs_info
->sectorsize
));
1496 if (unlikely(max_key
->objectid
== ino
)) {
1497 if (max_key
->type
< BTRFS_EXTENT_DATA_KEY
)
1499 if (max_key
->type
> BTRFS_EXTENT_DATA_KEY
) {
1502 if (max_key
->offset
== 0)
1504 end
= max_key
->offset
;
1505 WARN_ON(!IS_ALIGNED(end
, fs_info
->sectorsize
));
1512 /* the lock_extent waits for readpage to complete */
1513 lock_extent(&BTRFS_I(inode
)->io_tree
, start
, end
);
1514 btrfs_drop_extent_cache(BTRFS_I(inode
), start
, end
, 1);
1515 unlock_extent(&BTRFS_I(inode
)->io_tree
, start
, end
);
1520 static int find_next_key(struct btrfs_path
*path
, int level
,
1521 struct btrfs_key
*key
)
1524 while (level
< BTRFS_MAX_LEVEL
) {
1525 if (!path
->nodes
[level
])
1527 if (path
->slots
[level
] + 1 <
1528 btrfs_header_nritems(path
->nodes
[level
])) {
1529 btrfs_node_key_to_cpu(path
->nodes
[level
], key
,
1530 path
->slots
[level
] + 1);
1539 * Insert current subvolume into reloc_control::dirty_subvol_roots
1541 static void insert_dirty_subvol(struct btrfs_trans_handle
*trans
,
1542 struct reloc_control
*rc
,
1543 struct btrfs_root
*root
)
1545 struct btrfs_root
*reloc_root
= root
->reloc_root
;
1546 struct btrfs_root_item
*reloc_root_item
;
1548 /* @root must be a subvolume tree root with a valid reloc tree */
1549 ASSERT(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
);
1552 reloc_root_item
= &reloc_root
->root_item
;
1553 memset(&reloc_root_item
->drop_progress
, 0,
1554 sizeof(reloc_root_item
->drop_progress
));
1555 btrfs_set_root_drop_level(reloc_root_item
, 0);
1556 btrfs_set_root_refs(reloc_root_item
, 0);
1557 btrfs_update_reloc_root(trans
, root
);
1559 if (list_empty(&root
->reloc_dirty_list
)) {
1560 btrfs_grab_root(root
);
1561 list_add_tail(&root
->reloc_dirty_list
, &rc
->dirty_subvol_roots
);
1565 static int clean_dirty_subvols(struct reloc_control
*rc
)
1567 struct btrfs_root
*root
;
1568 struct btrfs_root
*next
;
1572 list_for_each_entry_safe(root
, next
, &rc
->dirty_subvol_roots
,
1574 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
) {
1575 /* Merged subvolume, cleanup its reloc root */
1576 struct btrfs_root
*reloc_root
= root
->reloc_root
;
1578 list_del_init(&root
->reloc_dirty_list
);
1579 root
->reloc_root
= NULL
;
1581 * Need barrier to ensure clear_bit() only happens after
1582 * root->reloc_root = NULL. Pairs with have_reloc_root.
1585 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE
, &root
->state
);
1588 * btrfs_drop_snapshot drops our ref we hold for
1589 * ->reloc_root. If it fails however we must
1590 * drop the ref ourselves.
1592 ret2
= btrfs_drop_snapshot(reloc_root
, 0, 1);
1594 btrfs_put_root(reloc_root
);
1599 btrfs_put_root(root
);
1601 /* Orphan reloc tree, just clean it up */
1602 ret2
= btrfs_drop_snapshot(root
, 0, 1);
1604 btrfs_put_root(root
);
1614 * merge the relocated tree blocks in reloc tree with corresponding
1617 static noinline_for_stack
int merge_reloc_root(struct reloc_control
*rc
,
1618 struct btrfs_root
*root
)
1620 struct btrfs_fs_info
*fs_info
= rc
->extent_root
->fs_info
;
1621 struct btrfs_key key
;
1622 struct btrfs_key next_key
;
1623 struct btrfs_trans_handle
*trans
= NULL
;
1624 struct btrfs_root
*reloc_root
;
1625 struct btrfs_root_item
*root_item
;
1626 struct btrfs_path
*path
;
1627 struct extent_buffer
*leaf
;
1635 path
= btrfs_alloc_path();
1638 path
->reada
= READA_FORWARD
;
1640 reloc_root
= root
->reloc_root
;
1641 root_item
= &reloc_root
->root_item
;
1643 if (btrfs_disk_key_objectid(&root_item
->drop_progress
) == 0) {
1644 level
= btrfs_root_level(root_item
);
1645 atomic_inc(&reloc_root
->node
->refs
);
1646 path
->nodes
[level
] = reloc_root
->node
;
1647 path
->slots
[level
] = 0;
1649 btrfs_disk_key_to_cpu(&key
, &root_item
->drop_progress
);
1651 level
= btrfs_root_drop_level(root_item
);
1653 path
->lowest_level
= level
;
1654 ret
= btrfs_search_slot(NULL
, reloc_root
, &key
, path
, 0, 0);
1655 path
->lowest_level
= 0;
1657 btrfs_free_path(path
);
1661 btrfs_node_key_to_cpu(path
->nodes
[level
], &next_key
,
1662 path
->slots
[level
]);
1663 WARN_ON(memcmp(&key
, &next_key
, sizeof(key
)));
1665 btrfs_unlock_up_safe(path
, 0);
1669 * In merge_reloc_root(), we modify the upper level pointer to swap the
1670 * tree blocks between reloc tree and subvolume tree. Thus for tree
1671 * block COW, we COW at most from level 1 to root level for each tree.
1673 * Thus the needed metadata size is at most root_level * nodesize,
1674 * and * 2 since we have two trees to COW.
1676 reserve_level
= max_t(int, 1, btrfs_root_level(root_item
));
1677 min_reserved
= fs_info
->nodesize
* reserve_level
* 2;
1678 memset(&next_key
, 0, sizeof(next_key
));
1681 ret
= btrfs_block_rsv_refill(root
, rc
->block_rsv
, min_reserved
,
1682 BTRFS_RESERVE_FLUSH_LIMIT
);
1685 trans
= btrfs_start_transaction(root
, 0);
1686 if (IS_ERR(trans
)) {
1687 ret
= PTR_ERR(trans
);
1693 * At this point we no longer have a reloc_control, so we can't
1694 * depend on btrfs_init_reloc_root to update our last_trans.
1696 * But that's ok, we started the trans handle on our
1697 * corresponding fs_root, which means it's been added to the
1698 * dirty list. At commit time we'll still call
1699 * btrfs_update_reloc_root() and update our root item
1702 reloc_root
->last_trans
= trans
->transid
;
1703 trans
->block_rsv
= rc
->block_rsv
;
1708 ret
= walk_down_reloc_tree(reloc_root
, path
, &level
);
1714 if (!find_next_key(path
, level
, &key
) &&
1715 btrfs_comp_cpu_keys(&next_key
, &key
) >= 0) {
1718 ret
= replace_path(trans
, rc
, root
, reloc_root
, path
,
1719 &next_key
, level
, max_level
);
1725 btrfs_node_key_to_cpu(path
->nodes
[level
], &key
,
1726 path
->slots
[level
]);
1730 ret
= walk_up_reloc_tree(reloc_root
, path
, &level
);
1736 * save the merging progress in the drop_progress.
1737 * this is OK since root refs == 1 in this case.
1739 btrfs_node_key(path
->nodes
[level
], &root_item
->drop_progress
,
1740 path
->slots
[level
]);
1741 btrfs_set_root_drop_level(root_item
, level
);
1743 btrfs_end_transaction_throttle(trans
);
1746 btrfs_btree_balance_dirty(fs_info
);
1748 if (replaced
&& rc
->stage
== UPDATE_DATA_PTRS
)
1749 invalidate_extent_cache(root
, &key
, &next_key
);
1753 * handle the case only one block in the fs tree need to be
1754 * relocated and the block is tree root.
1756 leaf
= btrfs_lock_root_node(root
);
1757 ret
= btrfs_cow_block(trans
, root
, leaf
, NULL
, 0, &leaf
,
1759 btrfs_tree_unlock(leaf
);
1760 free_extent_buffer(leaf
);
1762 btrfs_free_path(path
);
1765 insert_dirty_subvol(trans
, rc
, root
);
1768 btrfs_end_transaction_throttle(trans
);
1770 btrfs_btree_balance_dirty(fs_info
);
1772 if (replaced
&& rc
->stage
== UPDATE_DATA_PTRS
)
1773 invalidate_extent_cache(root
, &key
, &next_key
);
1778 static noinline_for_stack
1779 int prepare_to_merge(struct reloc_control
*rc
, int err
)
1781 struct btrfs_root
*root
= rc
->extent_root
;
1782 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1783 struct btrfs_root
*reloc_root
;
1784 struct btrfs_trans_handle
*trans
;
1785 LIST_HEAD(reloc_roots
);
1789 mutex_lock(&fs_info
->reloc_mutex
);
1790 rc
->merging_rsv_size
+= fs_info
->nodesize
* (BTRFS_MAX_LEVEL
- 1) * 2;
1791 rc
->merging_rsv_size
+= rc
->nodes_relocated
* 2;
1792 mutex_unlock(&fs_info
->reloc_mutex
);
1796 num_bytes
= rc
->merging_rsv_size
;
1797 ret
= btrfs_block_rsv_add(root
, rc
->block_rsv
, num_bytes
,
1798 BTRFS_RESERVE_FLUSH_ALL
);
1803 trans
= btrfs_join_transaction(rc
->extent_root
);
1804 if (IS_ERR(trans
)) {
1806 btrfs_block_rsv_release(fs_info
, rc
->block_rsv
,
1808 return PTR_ERR(trans
);
1812 if (num_bytes
!= rc
->merging_rsv_size
) {
1813 btrfs_end_transaction(trans
);
1814 btrfs_block_rsv_release(fs_info
, rc
->block_rsv
,
1820 rc
->merge_reloc_tree
= 1;
1822 while (!list_empty(&rc
->reloc_roots
)) {
1823 reloc_root
= list_entry(rc
->reloc_roots
.next
,
1824 struct btrfs_root
, root_list
);
1825 list_del_init(&reloc_root
->root_list
);
1827 root
= btrfs_get_fs_root(fs_info
, reloc_root
->root_key
.offset
,
1829 BUG_ON(IS_ERR(root
));
1830 BUG_ON(root
->reloc_root
!= reloc_root
);
1833 * set reference count to 1, so btrfs_recover_relocation
1834 * knows it should resumes merging
1837 btrfs_set_root_refs(&reloc_root
->root_item
, 1);
1838 btrfs_update_reloc_root(trans
, root
);
1840 list_add(&reloc_root
->root_list
, &reloc_roots
);
1841 btrfs_put_root(root
);
1844 list_splice(&reloc_roots
, &rc
->reloc_roots
);
1847 btrfs_commit_transaction(trans
);
1849 btrfs_end_transaction(trans
);
1853 static noinline_for_stack
1854 void free_reloc_roots(struct list_head
*list
)
1856 struct btrfs_root
*reloc_root
, *tmp
;
1858 list_for_each_entry_safe(reloc_root
, tmp
, list
, root_list
)
1859 __del_reloc_root(reloc_root
);
1862 static noinline_for_stack
1863 void merge_reloc_roots(struct reloc_control
*rc
)
1865 struct btrfs_fs_info
*fs_info
= rc
->extent_root
->fs_info
;
1866 struct btrfs_root
*root
;
1867 struct btrfs_root
*reloc_root
;
1868 LIST_HEAD(reloc_roots
);
1872 root
= rc
->extent_root
;
1875 * this serializes us with btrfs_record_root_in_transaction,
1876 * we have to make sure nobody is in the middle of
1877 * adding their roots to the list while we are
1880 mutex_lock(&fs_info
->reloc_mutex
);
1881 list_splice_init(&rc
->reloc_roots
, &reloc_roots
);
1882 mutex_unlock(&fs_info
->reloc_mutex
);
1884 while (!list_empty(&reloc_roots
)) {
1886 reloc_root
= list_entry(reloc_roots
.next
,
1887 struct btrfs_root
, root_list
);
1889 root
= btrfs_get_fs_root(fs_info
, reloc_root
->root_key
.offset
,
1891 if (btrfs_root_refs(&reloc_root
->root_item
) > 0) {
1892 BUG_ON(IS_ERR(root
));
1893 BUG_ON(root
->reloc_root
!= reloc_root
);
1894 ret
= merge_reloc_root(rc
, root
);
1895 btrfs_put_root(root
);
1897 if (list_empty(&reloc_root
->root_list
))
1898 list_add_tail(&reloc_root
->root_list
,
1903 if (!IS_ERR(root
)) {
1904 if (root
->reloc_root
== reloc_root
) {
1905 root
->reloc_root
= NULL
;
1906 btrfs_put_root(reloc_root
);
1908 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE
,
1910 btrfs_put_root(root
);
1913 list_del_init(&reloc_root
->root_list
);
1914 /* Don't forget to queue this reloc root for cleanup */
1915 list_add_tail(&reloc_root
->reloc_dirty_list
,
1916 &rc
->dirty_subvol_roots
);
1926 btrfs_handle_fs_error(fs_info
, ret
, NULL
);
1927 free_reloc_roots(&reloc_roots
);
1929 /* new reloc root may be added */
1930 mutex_lock(&fs_info
->reloc_mutex
);
1931 list_splice_init(&rc
->reloc_roots
, &reloc_roots
);
1932 mutex_unlock(&fs_info
->reloc_mutex
);
1933 free_reloc_roots(&reloc_roots
);
1939 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
1941 * here, but it's wrong. If we fail to start the transaction in
1942 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
1943 * have actually been removed from the reloc_root_tree rb tree. This is
1944 * fine because we're bailing here, and we hold a reference on the root
1945 * for the list that holds it, so these roots will be cleaned up when we
1946 * do the reloc_dirty_list afterwards. Meanwhile the root->reloc_root
1947 * will be cleaned up on unmount.
1949 * The remaining nodes will be cleaned up by free_reloc_control.
1953 static void free_block_list(struct rb_root
*blocks
)
1955 struct tree_block
*block
;
1956 struct rb_node
*rb_node
;
1957 while ((rb_node
= rb_first(blocks
))) {
1958 block
= rb_entry(rb_node
, struct tree_block
, rb_node
);
1959 rb_erase(rb_node
, blocks
);
1964 static int record_reloc_root_in_trans(struct btrfs_trans_handle
*trans
,
1965 struct btrfs_root
*reloc_root
)
1967 struct btrfs_fs_info
*fs_info
= reloc_root
->fs_info
;
1968 struct btrfs_root
*root
;
1971 if (reloc_root
->last_trans
== trans
->transid
)
1974 root
= btrfs_get_fs_root(fs_info
, reloc_root
->root_key
.offset
, false);
1975 BUG_ON(IS_ERR(root
));
1976 BUG_ON(root
->reloc_root
!= reloc_root
);
1977 ret
= btrfs_record_root_in_trans(trans
, root
);
1978 btrfs_put_root(root
);
1983 static noinline_for_stack
1984 struct btrfs_root
*select_reloc_root(struct btrfs_trans_handle
*trans
,
1985 struct reloc_control
*rc
,
1986 struct btrfs_backref_node
*node
,
1987 struct btrfs_backref_edge
*edges
[])
1989 struct btrfs_backref_node
*next
;
1990 struct btrfs_root
*root
;
1996 next
= walk_up_backref(next
, edges
, &index
);
1999 BUG_ON(!test_bit(BTRFS_ROOT_SHAREABLE
, &root
->state
));
2001 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
) {
2002 record_reloc_root_in_trans(trans
, root
);
2006 btrfs_record_root_in_trans(trans
, root
);
2007 root
= root
->reloc_root
;
2009 if (next
->new_bytenr
!= root
->node
->start
) {
2010 BUG_ON(next
->new_bytenr
);
2011 BUG_ON(!list_empty(&next
->list
));
2012 next
->new_bytenr
= root
->node
->start
;
2013 btrfs_put_root(next
->root
);
2014 next
->root
= btrfs_grab_root(root
);
2016 list_add_tail(&next
->list
,
2017 &rc
->backref_cache
.changed
);
2018 mark_block_processed(rc
, next
);
2024 next
= walk_down_backref(edges
, &index
);
2025 if (!next
|| next
->level
<= node
->level
)
2032 /* setup backref node path for btrfs_reloc_cow_block */
2034 rc
->backref_cache
.path
[next
->level
] = next
;
2037 next
= edges
[index
]->node
[UPPER
];
2043 * Select a tree root for relocation.
2045 * Return NULL if the block is not shareable. We should use do_relocation() in
2048 * Return a tree root pointer if the block is shareable.
2049 * Return -ENOENT if the block is root of reloc tree.
2051 static noinline_for_stack
2052 struct btrfs_root
*select_one_root(struct btrfs_backref_node
*node
)
2054 struct btrfs_backref_node
*next
;
2055 struct btrfs_root
*root
;
2056 struct btrfs_root
*fs_root
= NULL
;
2057 struct btrfs_backref_edge
*edges
[BTRFS_MAX_LEVEL
- 1];
2063 next
= walk_up_backref(next
, edges
, &index
);
2067 /* No other choice for non-shareable tree */
2068 if (!test_bit(BTRFS_ROOT_SHAREABLE
, &root
->state
))
2071 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
)
2077 next
= walk_down_backref(edges
, &index
);
2078 if (!next
|| next
->level
<= node
->level
)
2083 return ERR_PTR(-ENOENT
);
2087 static noinline_for_stack
2088 u64
calcu_metadata_size(struct reloc_control
*rc
,
2089 struct btrfs_backref_node
*node
, int reserve
)
2091 struct btrfs_fs_info
*fs_info
= rc
->extent_root
->fs_info
;
2092 struct btrfs_backref_node
*next
= node
;
2093 struct btrfs_backref_edge
*edge
;
2094 struct btrfs_backref_edge
*edges
[BTRFS_MAX_LEVEL
- 1];
2098 BUG_ON(reserve
&& node
->processed
);
2103 if (next
->processed
&& (reserve
|| next
!= node
))
2106 num_bytes
+= fs_info
->nodesize
;
2108 if (list_empty(&next
->upper
))
2111 edge
= list_entry(next
->upper
.next
,
2112 struct btrfs_backref_edge
, list
[LOWER
]);
2113 edges
[index
++] = edge
;
2114 next
= edge
->node
[UPPER
];
2116 next
= walk_down_backref(edges
, &index
);
2121 static int reserve_metadata_space(struct btrfs_trans_handle
*trans
,
2122 struct reloc_control
*rc
,
2123 struct btrfs_backref_node
*node
)
2125 struct btrfs_root
*root
= rc
->extent_root
;
2126 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2131 num_bytes
= calcu_metadata_size(rc
, node
, 1) * 2;
2133 trans
->block_rsv
= rc
->block_rsv
;
2134 rc
->reserved_bytes
+= num_bytes
;
2137 * We are under a transaction here so we can only do limited flushing.
2138 * If we get an enospc just kick back -EAGAIN so we know to drop the
2139 * transaction and try to refill when we can flush all the things.
2141 ret
= btrfs_block_rsv_refill(root
, rc
->block_rsv
, num_bytes
,
2142 BTRFS_RESERVE_FLUSH_LIMIT
);
2144 tmp
= fs_info
->nodesize
* RELOCATION_RESERVED_NODES
;
2145 while (tmp
<= rc
->reserved_bytes
)
2148 * only one thread can access block_rsv at this point,
2149 * so we don't need hold lock to protect block_rsv.
2150 * we expand more reservation size here to allow enough
2151 * space for relocation and we will return earlier in
2154 rc
->block_rsv
->size
= tmp
+ fs_info
->nodesize
*
2155 RELOCATION_RESERVED_NODES
;
2163 * relocate a block tree, and then update pointers in upper level
2164 * blocks that reference the block to point to the new location.
2166 * if called by link_to_upper, the block has already been relocated.
2167 * in that case this function just updates pointers.
2169 static int do_relocation(struct btrfs_trans_handle
*trans
,
2170 struct reloc_control
*rc
,
2171 struct btrfs_backref_node
*node
,
2172 struct btrfs_key
*key
,
2173 struct btrfs_path
*path
, int lowest
)
2175 struct btrfs_backref_node
*upper
;
2176 struct btrfs_backref_edge
*edge
;
2177 struct btrfs_backref_edge
*edges
[BTRFS_MAX_LEVEL
- 1];
2178 struct btrfs_root
*root
;
2179 struct extent_buffer
*eb
;
2185 BUG_ON(lowest
&& node
->eb
);
2187 path
->lowest_level
= node
->level
+ 1;
2188 rc
->backref_cache
.path
[node
->level
] = node
;
2189 list_for_each_entry(edge
, &node
->upper
, list
[LOWER
]) {
2190 struct btrfs_ref ref
= { 0 };
2194 upper
= edge
->node
[UPPER
];
2195 root
= select_reloc_root(trans
, rc
, upper
, edges
);
2198 if (upper
->eb
&& !upper
->locked
) {
2200 ret
= btrfs_bin_search(upper
->eb
, key
, &slot
);
2204 bytenr
= btrfs_node_blockptr(upper
->eb
, slot
);
2205 if (node
->eb
->start
== bytenr
)
2208 btrfs_backref_drop_node_buffer(upper
);
2212 ret
= btrfs_search_slot(trans
, root
, key
, path
, 0, 1);
2217 btrfs_release_path(path
);
2222 upper
->eb
= path
->nodes
[upper
->level
];
2223 path
->nodes
[upper
->level
] = NULL
;
2225 BUG_ON(upper
->eb
!= path
->nodes
[upper
->level
]);
2229 path
->locks
[upper
->level
] = 0;
2231 slot
= path
->slots
[upper
->level
];
2232 btrfs_release_path(path
);
2234 ret
= btrfs_bin_search(upper
->eb
, key
, &slot
);
2240 bytenr
= btrfs_node_blockptr(upper
->eb
, slot
);
2242 if (bytenr
!= node
->bytenr
) {
2243 btrfs_err(root
->fs_info
,
2244 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2245 bytenr
, node
->bytenr
, slot
,
2251 if (node
->eb
->start
== bytenr
)
2255 blocksize
= root
->fs_info
->nodesize
;
2256 eb
= btrfs_read_node_slot(upper
->eb
, slot
);
2261 btrfs_tree_lock(eb
);
2264 ret
= btrfs_cow_block(trans
, root
, eb
, upper
->eb
,
2265 slot
, &eb
, BTRFS_NESTING_COW
);
2266 btrfs_tree_unlock(eb
);
2267 free_extent_buffer(eb
);
2270 BUG_ON(node
->eb
!= eb
);
2272 btrfs_set_node_blockptr(upper
->eb
, slot
,
2274 btrfs_set_node_ptr_generation(upper
->eb
, slot
,
2276 btrfs_mark_buffer_dirty(upper
->eb
);
2278 btrfs_init_generic_ref(&ref
, BTRFS_ADD_DELAYED_REF
,
2279 node
->eb
->start
, blocksize
,
2281 ref
.real_root
= root
->root_key
.objectid
;
2282 btrfs_init_tree_ref(&ref
, node
->level
,
2283 btrfs_header_owner(upper
->eb
));
2284 ret
= btrfs_inc_extent_ref(trans
, &ref
);
2287 ret
= btrfs_drop_subtree(trans
, root
, eb
, upper
->eb
);
2291 if (!upper
->pending
)
2292 btrfs_backref_drop_node_buffer(upper
);
2294 btrfs_backref_unlock_node_buffer(upper
);
2299 if (!ret
&& node
->pending
) {
2300 btrfs_backref_drop_node_buffer(node
);
2301 list_move_tail(&node
->list
, &rc
->backref_cache
.changed
);
2305 path
->lowest_level
= 0;
2306 BUG_ON(ret
== -ENOSPC
);
2310 static int link_to_upper(struct btrfs_trans_handle
*trans
,
2311 struct reloc_control
*rc
,
2312 struct btrfs_backref_node
*node
,
2313 struct btrfs_path
*path
)
2315 struct btrfs_key key
;
2317 btrfs_node_key_to_cpu(node
->eb
, &key
, 0);
2318 return do_relocation(trans
, rc
, node
, &key
, path
, 0);
2321 static int finish_pending_nodes(struct btrfs_trans_handle
*trans
,
2322 struct reloc_control
*rc
,
2323 struct btrfs_path
*path
, int err
)
2326 struct btrfs_backref_cache
*cache
= &rc
->backref_cache
;
2327 struct btrfs_backref_node
*node
;
2331 for (level
= 0; level
< BTRFS_MAX_LEVEL
; level
++) {
2332 while (!list_empty(&cache
->pending
[level
])) {
2333 node
= list_entry(cache
->pending
[level
].next
,
2334 struct btrfs_backref_node
, list
);
2335 list_move_tail(&node
->list
, &list
);
2336 BUG_ON(!node
->pending
);
2339 ret
= link_to_upper(trans
, rc
, node
, path
);
2344 list_splice_init(&list
, &cache
->pending
[level
]);
2350 * mark a block and all blocks directly/indirectly reference the block
2353 static void update_processed_blocks(struct reloc_control
*rc
,
2354 struct btrfs_backref_node
*node
)
2356 struct btrfs_backref_node
*next
= node
;
2357 struct btrfs_backref_edge
*edge
;
2358 struct btrfs_backref_edge
*edges
[BTRFS_MAX_LEVEL
- 1];
2364 if (next
->processed
)
2367 mark_block_processed(rc
, next
);
2369 if (list_empty(&next
->upper
))
2372 edge
= list_entry(next
->upper
.next
,
2373 struct btrfs_backref_edge
, list
[LOWER
]);
2374 edges
[index
++] = edge
;
2375 next
= edge
->node
[UPPER
];
2377 next
= walk_down_backref(edges
, &index
);
2381 static int tree_block_processed(u64 bytenr
, struct reloc_control
*rc
)
2383 u32 blocksize
= rc
->extent_root
->fs_info
->nodesize
;
2385 if (test_range_bit(&rc
->processed_blocks
, bytenr
,
2386 bytenr
+ blocksize
- 1, EXTENT_DIRTY
, 1, NULL
))
2391 static int get_tree_block_key(struct btrfs_fs_info
*fs_info
,
2392 struct tree_block
*block
)
2394 struct extent_buffer
*eb
;
2396 eb
= read_tree_block(fs_info
, block
->bytenr
, 0, block
->key
.offset
,
2397 block
->level
, NULL
);
2400 } else if (!extent_buffer_uptodate(eb
)) {
2401 free_extent_buffer(eb
);
2404 if (block
->level
== 0)
2405 btrfs_item_key_to_cpu(eb
, &block
->key
, 0);
2407 btrfs_node_key_to_cpu(eb
, &block
->key
, 0);
2408 free_extent_buffer(eb
);
2409 block
->key_ready
= 1;
2414 * helper function to relocate a tree block
2416 static int relocate_tree_block(struct btrfs_trans_handle
*trans
,
2417 struct reloc_control
*rc
,
2418 struct btrfs_backref_node
*node
,
2419 struct btrfs_key
*key
,
2420 struct btrfs_path
*path
)
2422 struct btrfs_root
*root
;
2429 * If we fail here we want to drop our backref_node because we are going
2430 * to start over and regenerate the tree for it.
2432 ret
= reserve_metadata_space(trans
, rc
, node
);
2436 BUG_ON(node
->processed
);
2437 root
= select_one_root(node
);
2438 if (root
== ERR_PTR(-ENOENT
)) {
2439 update_processed_blocks(rc
, node
);
2444 if (test_bit(BTRFS_ROOT_SHAREABLE
, &root
->state
)) {
2445 BUG_ON(node
->new_bytenr
);
2446 BUG_ON(!list_empty(&node
->list
));
2447 btrfs_record_root_in_trans(trans
, root
);
2448 root
= root
->reloc_root
;
2449 node
->new_bytenr
= root
->node
->start
;
2450 btrfs_put_root(node
->root
);
2451 node
->root
= btrfs_grab_root(root
);
2453 list_add_tail(&node
->list
, &rc
->backref_cache
.changed
);
2455 path
->lowest_level
= node
->level
;
2456 ret
= btrfs_search_slot(trans
, root
, key
, path
, 0, 1);
2457 btrfs_release_path(path
);
2462 update_processed_blocks(rc
, node
);
2464 ret
= do_relocation(trans
, rc
, node
, key
, path
, 1);
2467 if (ret
|| node
->level
== 0 || node
->cowonly
)
2468 btrfs_backref_cleanup_node(&rc
->backref_cache
, node
);
2473 * relocate a list of blocks
2475 static noinline_for_stack
2476 int relocate_tree_blocks(struct btrfs_trans_handle
*trans
,
2477 struct reloc_control
*rc
, struct rb_root
*blocks
)
2479 struct btrfs_fs_info
*fs_info
= rc
->extent_root
->fs_info
;
2480 struct btrfs_backref_node
*node
;
2481 struct btrfs_path
*path
;
2482 struct tree_block
*block
;
2483 struct tree_block
*next
;
2487 path
= btrfs_alloc_path();
2490 goto out_free_blocks
;
2493 /* Kick in readahead for tree blocks with missing keys */
2494 rbtree_postorder_for_each_entry_safe(block
, next
, blocks
, rb_node
) {
2495 if (!block
->key_ready
)
2496 btrfs_readahead_tree_block(fs_info
, block
->bytenr
, 0, 0,
2500 /* Get first keys */
2501 rbtree_postorder_for_each_entry_safe(block
, next
, blocks
, rb_node
) {
2502 if (!block
->key_ready
) {
2503 err
= get_tree_block_key(fs_info
, block
);
2509 /* Do tree relocation */
2510 rbtree_postorder_for_each_entry_safe(block
, next
, blocks
, rb_node
) {
2511 node
= build_backref_tree(rc
, &block
->key
,
2512 block
->level
, block
->bytenr
);
2514 err
= PTR_ERR(node
);
2518 ret
= relocate_tree_block(trans
, rc
, node
, &block
->key
,
2526 err
= finish_pending_nodes(trans
, rc
, path
, err
);
2529 btrfs_free_path(path
);
2531 free_block_list(blocks
);
2535 static noinline_for_stack
int prealloc_file_extent_cluster(
2536 struct btrfs_inode
*inode
,
2537 struct file_extent_cluster
*cluster
)
2542 u64 offset
= inode
->index_cnt
;
2546 u64 prealloc_start
= cluster
->start
- offset
;
2547 u64 prealloc_end
= cluster
->end
- offset
;
2548 u64 cur_offset
= prealloc_start
;
2550 BUG_ON(cluster
->start
!= cluster
->boundary
[0]);
2551 ret
= btrfs_alloc_data_chunk_ondemand(inode
,
2552 prealloc_end
+ 1 - prealloc_start
);
2556 inode_lock(&inode
->vfs_inode
);
2557 for (nr
= 0; nr
< cluster
->nr
; nr
++) {
2558 start
= cluster
->boundary
[nr
] - offset
;
2559 if (nr
+ 1 < cluster
->nr
)
2560 end
= cluster
->boundary
[nr
+ 1] - 1 - offset
;
2562 end
= cluster
->end
- offset
;
2564 lock_extent(&inode
->io_tree
, start
, end
);
2565 num_bytes
= end
+ 1 - start
;
2566 ret
= btrfs_prealloc_file_range(&inode
->vfs_inode
, 0, start
,
2567 num_bytes
, num_bytes
,
2568 end
+ 1, &alloc_hint
);
2569 cur_offset
= end
+ 1;
2570 unlock_extent(&inode
->io_tree
, start
, end
);
2574 inode_unlock(&inode
->vfs_inode
);
2576 if (cur_offset
< prealloc_end
)
2577 btrfs_free_reserved_data_space_noquota(inode
->root
->fs_info
,
2578 prealloc_end
+ 1 - cur_offset
);
2582 static noinline_for_stack
2583 int setup_extent_mapping(struct inode
*inode
, u64 start
, u64 end
,
2586 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
2587 struct extent_map
*em
;
2590 em
= alloc_extent_map();
2595 em
->len
= end
+ 1 - start
;
2596 em
->block_len
= em
->len
;
2597 em
->block_start
= block_start
;
2598 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
2600 lock_extent(&BTRFS_I(inode
)->io_tree
, start
, end
);
2602 write_lock(&em_tree
->lock
);
2603 ret
= add_extent_mapping(em_tree
, em
, 0);
2604 write_unlock(&em_tree
->lock
);
2605 if (ret
!= -EEXIST
) {
2606 free_extent_map(em
);
2609 btrfs_drop_extent_cache(BTRFS_I(inode
), start
, end
, 0);
2611 unlock_extent(&BTRFS_I(inode
)->io_tree
, start
, end
);
2616 * Allow error injection to test balance cancellation
2618 int btrfs_should_cancel_balance(struct btrfs_fs_info
*fs_info
)
2620 return atomic_read(&fs_info
->balance_cancel_req
) ||
2621 fatal_signal_pending(current
);
2623 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance
, TRUE
);
2625 static int relocate_file_extent_cluster(struct inode
*inode
,
2626 struct file_extent_cluster
*cluster
)
2628 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2631 u64 offset
= BTRFS_I(inode
)->index_cnt
;
2632 unsigned long index
;
2633 unsigned long last_index
;
2635 struct file_ra_state
*ra
;
2636 gfp_t mask
= btrfs_alloc_write_mask(inode
->i_mapping
);
2643 ra
= kzalloc(sizeof(*ra
), GFP_NOFS
);
2647 ret
= prealloc_file_extent_cluster(BTRFS_I(inode
), cluster
);
2651 file_ra_state_init(ra
, inode
->i_mapping
);
2653 ret
= setup_extent_mapping(inode
, cluster
->start
- offset
,
2654 cluster
->end
- offset
, cluster
->start
);
2658 index
= (cluster
->start
- offset
) >> PAGE_SHIFT
;
2659 last_index
= (cluster
->end
- offset
) >> PAGE_SHIFT
;
2660 while (index
<= last_index
) {
2661 ret
= btrfs_delalloc_reserve_metadata(BTRFS_I(inode
),
2666 page
= find_lock_page(inode
->i_mapping
, index
);
2668 page_cache_sync_readahead(inode
->i_mapping
,
2670 last_index
+ 1 - index
);
2671 page
= find_or_create_page(inode
->i_mapping
, index
,
2674 btrfs_delalloc_release_metadata(BTRFS_I(inode
),
2676 btrfs_delalloc_release_extents(BTRFS_I(inode
),
2683 if (PageReadahead(page
)) {
2684 page_cache_async_readahead(inode
->i_mapping
,
2685 ra
, NULL
, page
, index
,
2686 last_index
+ 1 - index
);
2689 if (!PageUptodate(page
)) {
2690 btrfs_readpage(NULL
, page
);
2692 if (!PageUptodate(page
)) {
2695 btrfs_delalloc_release_metadata(BTRFS_I(inode
),
2697 btrfs_delalloc_release_extents(BTRFS_I(inode
),
2704 page_start
= page_offset(page
);
2705 page_end
= page_start
+ PAGE_SIZE
- 1;
2707 lock_extent(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
);
2709 set_page_extent_mapped(page
);
2711 if (nr
< cluster
->nr
&&
2712 page_start
+ offset
== cluster
->boundary
[nr
]) {
2713 set_extent_bits(&BTRFS_I(inode
)->io_tree
,
2714 page_start
, page_end
,
2719 ret
= btrfs_set_extent_delalloc(BTRFS_I(inode
), page_start
,
2724 btrfs_delalloc_release_metadata(BTRFS_I(inode
),
2726 btrfs_delalloc_release_extents(BTRFS_I(inode
),
2729 clear_extent_bits(&BTRFS_I(inode
)->io_tree
,
2730 page_start
, page_end
,
2731 EXTENT_LOCKED
| EXTENT_BOUNDARY
);
2735 set_page_dirty(page
);
2737 unlock_extent(&BTRFS_I(inode
)->io_tree
,
2738 page_start
, page_end
);
2743 btrfs_delalloc_release_extents(BTRFS_I(inode
), PAGE_SIZE
);
2744 balance_dirty_pages_ratelimited(inode
->i_mapping
);
2745 btrfs_throttle(fs_info
);
2746 if (btrfs_should_cancel_balance(fs_info
)) {
2751 WARN_ON(nr
!= cluster
->nr
);
2757 static noinline_for_stack
2758 int relocate_data_extent(struct inode
*inode
, struct btrfs_key
*extent_key
,
2759 struct file_extent_cluster
*cluster
)
2763 if (cluster
->nr
> 0 && extent_key
->objectid
!= cluster
->end
+ 1) {
2764 ret
= relocate_file_extent_cluster(inode
, cluster
);
2771 cluster
->start
= extent_key
->objectid
;
2773 BUG_ON(cluster
->nr
>= MAX_EXTENTS
);
2774 cluster
->end
= extent_key
->objectid
+ extent_key
->offset
- 1;
2775 cluster
->boundary
[cluster
->nr
] = extent_key
->objectid
;
2778 if (cluster
->nr
>= MAX_EXTENTS
) {
2779 ret
= relocate_file_extent_cluster(inode
, cluster
);
2788 * helper to add a tree block to the list.
2789 * the major work is getting the generation and level of the block
2791 static int add_tree_block(struct reloc_control
*rc
,
2792 struct btrfs_key
*extent_key
,
2793 struct btrfs_path
*path
,
2794 struct rb_root
*blocks
)
2796 struct extent_buffer
*eb
;
2797 struct btrfs_extent_item
*ei
;
2798 struct btrfs_tree_block_info
*bi
;
2799 struct tree_block
*block
;
2800 struct rb_node
*rb_node
;
2805 eb
= path
->nodes
[0];
2806 item_size
= btrfs_item_size_nr(eb
, path
->slots
[0]);
2808 if (extent_key
->type
== BTRFS_METADATA_ITEM_KEY
||
2809 item_size
>= sizeof(*ei
) + sizeof(*bi
)) {
2810 ei
= btrfs_item_ptr(eb
, path
->slots
[0],
2811 struct btrfs_extent_item
);
2812 if (extent_key
->type
== BTRFS_EXTENT_ITEM_KEY
) {
2813 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
2814 level
= btrfs_tree_block_level(eb
, bi
);
2816 level
= (int)extent_key
->offset
;
2818 generation
= btrfs_extent_generation(eb
, ei
);
2819 } else if (unlikely(item_size
== sizeof(struct btrfs_extent_item_v0
))) {
2820 btrfs_print_v0_err(eb
->fs_info
);
2821 btrfs_handle_fs_error(eb
->fs_info
, -EINVAL
, NULL
);
2827 btrfs_release_path(path
);
2829 BUG_ON(level
== -1);
2831 block
= kmalloc(sizeof(*block
), GFP_NOFS
);
2835 block
->bytenr
= extent_key
->objectid
;
2836 block
->key
.objectid
= rc
->extent_root
->fs_info
->nodesize
;
2837 block
->key
.offset
= generation
;
2838 block
->level
= level
;
2839 block
->key_ready
= 0;
2841 rb_node
= rb_simple_insert(blocks
, block
->bytenr
, &block
->rb_node
);
2843 btrfs_backref_panic(rc
->extent_root
->fs_info
, block
->bytenr
,
2850 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
2852 static int __add_tree_block(struct reloc_control
*rc
,
2853 u64 bytenr
, u32 blocksize
,
2854 struct rb_root
*blocks
)
2856 struct btrfs_fs_info
*fs_info
= rc
->extent_root
->fs_info
;
2857 struct btrfs_path
*path
;
2858 struct btrfs_key key
;
2860 bool skinny
= btrfs_fs_incompat(fs_info
, SKINNY_METADATA
);
2862 if (tree_block_processed(bytenr
, rc
))
2865 if (rb_simple_search(blocks
, bytenr
))
2868 path
= btrfs_alloc_path();
2872 key
.objectid
= bytenr
;
2874 key
.type
= BTRFS_METADATA_ITEM_KEY
;
2875 key
.offset
= (u64
)-1;
2877 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2878 key
.offset
= blocksize
;
2881 path
->search_commit_root
= 1;
2882 path
->skip_locking
= 1;
2883 ret
= btrfs_search_slot(NULL
, rc
->extent_root
, &key
, path
, 0, 0);
2887 if (ret
> 0 && skinny
) {
2888 if (path
->slots
[0]) {
2890 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
2892 if (key
.objectid
== bytenr
&&
2893 (key
.type
== BTRFS_METADATA_ITEM_KEY
||
2894 (key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
2895 key
.offset
== blocksize
)))
2901 btrfs_release_path(path
);
2907 btrfs_print_leaf(path
->nodes
[0]);
2909 "tree block extent item (%llu) is not found in extent tree",
2916 ret
= add_tree_block(rc
, &key
, path
, blocks
);
2918 btrfs_free_path(path
);
2922 static int delete_block_group_cache(struct btrfs_fs_info
*fs_info
,
2923 struct btrfs_block_group
*block_group
,
2924 struct inode
*inode
,
2927 struct btrfs_root
*root
= fs_info
->tree_root
;
2928 struct btrfs_trans_handle
*trans
;
2934 inode
= btrfs_iget(fs_info
->sb
, ino
, root
);
2939 ret
= btrfs_check_trunc_cache_free_space(fs_info
,
2940 &fs_info
->global_block_rsv
);
2944 trans
= btrfs_join_transaction(root
);
2945 if (IS_ERR(trans
)) {
2946 ret
= PTR_ERR(trans
);
2950 ret
= btrfs_truncate_free_space_cache(trans
, block_group
, inode
);
2952 btrfs_end_transaction(trans
);
2953 btrfs_btree_balance_dirty(fs_info
);
2960 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
2961 * cache inode, to avoid free space cache data extent blocking data relocation.
2963 static int delete_v1_space_cache(struct extent_buffer
*leaf
,
2964 struct btrfs_block_group
*block_group
,
2967 u64 space_cache_ino
;
2968 struct btrfs_file_extent_item
*ei
;
2969 struct btrfs_key key
;
2974 if (btrfs_header_owner(leaf
) != BTRFS_ROOT_TREE_OBJECTID
)
2977 for (i
= 0; i
< btrfs_header_nritems(leaf
); i
++) {
2978 btrfs_item_key_to_cpu(leaf
, &key
, i
);
2979 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
2981 ei
= btrfs_item_ptr(leaf
, i
, struct btrfs_file_extent_item
);
2982 if (btrfs_file_extent_type(leaf
, ei
) == BTRFS_FILE_EXTENT_REG
&&
2983 btrfs_file_extent_disk_bytenr(leaf
, ei
) == data_bytenr
) {
2985 space_cache_ino
= key
.objectid
;
2991 ret
= delete_block_group_cache(leaf
->fs_info
, block_group
, NULL
,
2997 * helper to find all tree blocks that reference a given data extent
2999 static noinline_for_stack
3000 int add_data_references(struct reloc_control
*rc
,
3001 struct btrfs_key
*extent_key
,
3002 struct btrfs_path
*path
,
3003 struct rb_root
*blocks
)
3005 struct btrfs_fs_info
*fs_info
= rc
->extent_root
->fs_info
;
3006 struct ulist
*leaves
= NULL
;
3007 struct ulist_iterator leaf_uiter
;
3008 struct ulist_node
*ref_node
= NULL
;
3009 const u32 blocksize
= fs_info
->nodesize
;
3012 btrfs_release_path(path
);
3013 ret
= btrfs_find_all_leafs(NULL
, fs_info
, extent_key
->objectid
,
3014 0, &leaves
, NULL
, true);
3018 ULIST_ITER_INIT(&leaf_uiter
);
3019 while ((ref_node
= ulist_next(leaves
, &leaf_uiter
))) {
3020 struct extent_buffer
*eb
;
3022 eb
= read_tree_block(fs_info
, ref_node
->val
, 0, 0, 0, NULL
);
3027 ret
= delete_v1_space_cache(eb
, rc
->block_group
,
3028 extent_key
->objectid
);
3029 free_extent_buffer(eb
);
3032 ret
= __add_tree_block(rc
, ref_node
->val
, blocksize
, blocks
);
3037 free_block_list(blocks
);
3043 * helper to find next unprocessed extent
3045 static noinline_for_stack
3046 int find_next_extent(struct reloc_control
*rc
, struct btrfs_path
*path
,
3047 struct btrfs_key
*extent_key
)
3049 struct btrfs_fs_info
*fs_info
= rc
->extent_root
->fs_info
;
3050 struct btrfs_key key
;
3051 struct extent_buffer
*leaf
;
3052 u64 start
, end
, last
;
3055 last
= rc
->block_group
->start
+ rc
->block_group
->length
;
3058 if (rc
->search_start
>= last
) {
3063 key
.objectid
= rc
->search_start
;
3064 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
3067 path
->search_commit_root
= 1;
3068 path
->skip_locking
= 1;
3069 ret
= btrfs_search_slot(NULL
, rc
->extent_root
, &key
, path
,
3074 leaf
= path
->nodes
[0];
3075 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
3076 ret
= btrfs_next_leaf(rc
->extent_root
, path
);
3079 leaf
= path
->nodes
[0];
3082 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
3083 if (key
.objectid
>= last
) {
3088 if (key
.type
!= BTRFS_EXTENT_ITEM_KEY
&&
3089 key
.type
!= BTRFS_METADATA_ITEM_KEY
) {
3094 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
3095 key
.objectid
+ key
.offset
<= rc
->search_start
) {
3100 if (key
.type
== BTRFS_METADATA_ITEM_KEY
&&
3101 key
.objectid
+ fs_info
->nodesize
<=
3107 ret
= find_first_extent_bit(&rc
->processed_blocks
,
3108 key
.objectid
, &start
, &end
,
3109 EXTENT_DIRTY
, NULL
);
3111 if (ret
== 0 && start
<= key
.objectid
) {
3112 btrfs_release_path(path
);
3113 rc
->search_start
= end
+ 1;
3115 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
)
3116 rc
->search_start
= key
.objectid
+ key
.offset
;
3118 rc
->search_start
= key
.objectid
+
3120 memcpy(extent_key
, &key
, sizeof(key
));
3124 btrfs_release_path(path
);
3128 static void set_reloc_control(struct reloc_control
*rc
)
3130 struct btrfs_fs_info
*fs_info
= rc
->extent_root
->fs_info
;
3132 mutex_lock(&fs_info
->reloc_mutex
);
3133 fs_info
->reloc_ctl
= rc
;
3134 mutex_unlock(&fs_info
->reloc_mutex
);
3137 static void unset_reloc_control(struct reloc_control
*rc
)
3139 struct btrfs_fs_info
*fs_info
= rc
->extent_root
->fs_info
;
3141 mutex_lock(&fs_info
->reloc_mutex
);
3142 fs_info
->reloc_ctl
= NULL
;
3143 mutex_unlock(&fs_info
->reloc_mutex
);
3146 static int check_extent_flags(u64 flags
)
3148 if ((flags
& BTRFS_EXTENT_FLAG_DATA
) &&
3149 (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
))
3151 if (!(flags
& BTRFS_EXTENT_FLAG_DATA
) &&
3152 !(flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
))
3154 if ((flags
& BTRFS_EXTENT_FLAG_DATA
) &&
3155 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
3160 static noinline_for_stack
3161 int prepare_to_relocate(struct reloc_control
*rc
)
3163 struct btrfs_trans_handle
*trans
;
3166 rc
->block_rsv
= btrfs_alloc_block_rsv(rc
->extent_root
->fs_info
,
3167 BTRFS_BLOCK_RSV_TEMP
);
3171 memset(&rc
->cluster
, 0, sizeof(rc
->cluster
));
3172 rc
->search_start
= rc
->block_group
->start
;
3173 rc
->extents_found
= 0;
3174 rc
->nodes_relocated
= 0;
3175 rc
->merging_rsv_size
= 0;
3176 rc
->reserved_bytes
= 0;
3177 rc
->block_rsv
->size
= rc
->extent_root
->fs_info
->nodesize
*
3178 RELOCATION_RESERVED_NODES
;
3179 ret
= btrfs_block_rsv_refill(rc
->extent_root
,
3180 rc
->block_rsv
, rc
->block_rsv
->size
,
3181 BTRFS_RESERVE_FLUSH_ALL
);
3185 rc
->create_reloc_tree
= 1;
3186 set_reloc_control(rc
);
3188 trans
= btrfs_join_transaction(rc
->extent_root
);
3189 if (IS_ERR(trans
)) {
3190 unset_reloc_control(rc
);
3192 * extent tree is not a ref_cow tree and has no reloc_root to
3193 * cleanup. And callers are responsible to free the above
3196 return PTR_ERR(trans
);
3198 btrfs_commit_transaction(trans
);
3202 static noinline_for_stack
int relocate_block_group(struct reloc_control
*rc
)
3204 struct btrfs_fs_info
*fs_info
= rc
->extent_root
->fs_info
;
3205 struct rb_root blocks
= RB_ROOT
;
3206 struct btrfs_key key
;
3207 struct btrfs_trans_handle
*trans
= NULL
;
3208 struct btrfs_path
*path
;
3209 struct btrfs_extent_item
*ei
;
3216 path
= btrfs_alloc_path();
3219 path
->reada
= READA_FORWARD
;
3221 ret
= prepare_to_relocate(rc
);
3228 rc
->reserved_bytes
= 0;
3229 ret
= btrfs_block_rsv_refill(rc
->extent_root
,
3230 rc
->block_rsv
, rc
->block_rsv
->size
,
3231 BTRFS_RESERVE_FLUSH_ALL
);
3237 trans
= btrfs_start_transaction(rc
->extent_root
, 0);
3238 if (IS_ERR(trans
)) {
3239 err
= PTR_ERR(trans
);
3244 if (update_backref_cache(trans
, &rc
->backref_cache
)) {
3245 btrfs_end_transaction(trans
);
3250 ret
= find_next_extent(rc
, path
, &key
);
3256 rc
->extents_found
++;
3258 ei
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3259 struct btrfs_extent_item
);
3260 item_size
= btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]);
3261 if (item_size
>= sizeof(*ei
)) {
3262 flags
= btrfs_extent_flags(path
->nodes
[0], ei
);
3263 ret
= check_extent_flags(flags
);
3265 } else if (unlikely(item_size
== sizeof(struct btrfs_extent_item_v0
))) {
3267 btrfs_print_v0_err(trans
->fs_info
);
3268 btrfs_abort_transaction(trans
, err
);
3274 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
3275 ret
= add_tree_block(rc
, &key
, path
, &blocks
);
3276 } else if (rc
->stage
== UPDATE_DATA_PTRS
&&
3277 (flags
& BTRFS_EXTENT_FLAG_DATA
)) {
3278 ret
= add_data_references(rc
, &key
, path
, &blocks
);
3280 btrfs_release_path(path
);
3288 if (!RB_EMPTY_ROOT(&blocks
)) {
3289 ret
= relocate_tree_blocks(trans
, rc
, &blocks
);
3291 if (ret
!= -EAGAIN
) {
3295 rc
->extents_found
--;
3296 rc
->search_start
= key
.objectid
;
3300 btrfs_end_transaction_throttle(trans
);
3301 btrfs_btree_balance_dirty(fs_info
);
3304 if (rc
->stage
== MOVE_DATA_EXTENTS
&&
3305 (flags
& BTRFS_EXTENT_FLAG_DATA
)) {
3306 rc
->found_file_extent
= 1;
3307 ret
= relocate_data_extent(rc
->data_inode
,
3308 &key
, &rc
->cluster
);
3314 if (btrfs_should_cancel_balance(fs_info
)) {
3319 if (trans
&& progress
&& err
== -ENOSPC
) {
3320 ret
= btrfs_force_chunk_alloc(trans
, rc
->block_group
->flags
);
3328 btrfs_release_path(path
);
3329 clear_extent_bits(&rc
->processed_blocks
, 0, (u64
)-1, EXTENT_DIRTY
);
3332 btrfs_end_transaction_throttle(trans
);
3333 btrfs_btree_balance_dirty(fs_info
);
3337 ret
= relocate_file_extent_cluster(rc
->data_inode
,
3343 rc
->create_reloc_tree
= 0;
3344 set_reloc_control(rc
);
3346 btrfs_backref_release_cache(&rc
->backref_cache
);
3347 btrfs_block_rsv_release(fs_info
, rc
->block_rsv
, (u64
)-1, NULL
);
3350 * Even in the case when the relocation is cancelled, we should all go
3351 * through prepare_to_merge() and merge_reloc_roots().
3353 * For error (including cancelled balance), prepare_to_merge() will
3354 * mark all reloc trees orphan, then queue them for cleanup in
3355 * merge_reloc_roots()
3357 err
= prepare_to_merge(rc
, err
);
3359 merge_reloc_roots(rc
);
3361 rc
->merge_reloc_tree
= 0;
3362 unset_reloc_control(rc
);
3363 btrfs_block_rsv_release(fs_info
, rc
->block_rsv
, (u64
)-1, NULL
);
3365 /* get rid of pinned extents */
3366 trans
= btrfs_join_transaction(rc
->extent_root
);
3367 if (IS_ERR(trans
)) {
3368 err
= PTR_ERR(trans
);
3371 btrfs_commit_transaction(trans
);
3373 ret
= clean_dirty_subvols(rc
);
3374 if (ret
< 0 && !err
)
3376 btrfs_free_block_rsv(fs_info
, rc
->block_rsv
);
3377 btrfs_free_path(path
);
3381 static int __insert_orphan_inode(struct btrfs_trans_handle
*trans
,
3382 struct btrfs_root
*root
, u64 objectid
)
3384 struct btrfs_path
*path
;
3385 struct btrfs_inode_item
*item
;
3386 struct extent_buffer
*leaf
;
3389 path
= btrfs_alloc_path();
3393 ret
= btrfs_insert_empty_inode(trans
, root
, path
, objectid
);
3397 leaf
= path
->nodes
[0];
3398 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_inode_item
);
3399 memzero_extent_buffer(leaf
, (unsigned long)item
, sizeof(*item
));
3400 btrfs_set_inode_generation(leaf
, item
, 1);
3401 btrfs_set_inode_size(leaf
, item
, 0);
3402 btrfs_set_inode_mode(leaf
, item
, S_IFREG
| 0600);
3403 btrfs_set_inode_flags(leaf
, item
, BTRFS_INODE_NOCOMPRESS
|
3404 BTRFS_INODE_PREALLOC
);
3405 btrfs_mark_buffer_dirty(leaf
);
3407 btrfs_free_path(path
);
3412 * helper to create inode for data relocation.
3413 * the inode is in data relocation tree and its link count is 0
3415 static noinline_for_stack
3416 struct inode
*create_reloc_inode(struct btrfs_fs_info
*fs_info
,
3417 struct btrfs_block_group
*group
)
3419 struct inode
*inode
= NULL
;
3420 struct btrfs_trans_handle
*trans
;
3421 struct btrfs_root
*root
;
3425 root
= btrfs_grab_root(fs_info
->data_reloc_root
);
3426 trans
= btrfs_start_transaction(root
, 6);
3427 if (IS_ERR(trans
)) {
3428 btrfs_put_root(root
);
3429 return ERR_CAST(trans
);
3432 err
= btrfs_find_free_objectid(root
, &objectid
);
3436 err
= __insert_orphan_inode(trans
, root
, objectid
);
3439 inode
= btrfs_iget(fs_info
->sb
, objectid
, root
);
3440 BUG_ON(IS_ERR(inode
));
3441 BTRFS_I(inode
)->index_cnt
= group
->start
;
3443 err
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
3445 btrfs_put_root(root
);
3446 btrfs_end_transaction(trans
);
3447 btrfs_btree_balance_dirty(fs_info
);
3451 inode
= ERR_PTR(err
);
3456 static struct reloc_control
*alloc_reloc_control(struct btrfs_fs_info
*fs_info
)
3458 struct reloc_control
*rc
;
3460 rc
= kzalloc(sizeof(*rc
), GFP_NOFS
);
3464 INIT_LIST_HEAD(&rc
->reloc_roots
);
3465 INIT_LIST_HEAD(&rc
->dirty_subvol_roots
);
3466 btrfs_backref_init_cache(fs_info
, &rc
->backref_cache
, 1);
3467 mapping_tree_init(&rc
->reloc_root_tree
);
3468 extent_io_tree_init(fs_info
, &rc
->processed_blocks
,
3469 IO_TREE_RELOC_BLOCKS
, NULL
);
3473 static void free_reloc_control(struct reloc_control
*rc
)
3475 struct mapping_node
*node
, *tmp
;
3477 free_reloc_roots(&rc
->reloc_roots
);
3478 rbtree_postorder_for_each_entry_safe(node
, tmp
,
3479 &rc
->reloc_root_tree
.rb_root
, rb_node
)
3486 * Print the block group being relocated
3488 static void describe_relocation(struct btrfs_fs_info
*fs_info
,
3489 struct btrfs_block_group
*block_group
)
3491 char buf
[128] = {'\0'};
3493 btrfs_describe_block_groups(block_group
->flags
, buf
, sizeof(buf
));
3496 "relocating block group %llu flags %s",
3497 block_group
->start
, buf
);
3500 static const char *stage_to_string(int stage
)
3502 if (stage
== MOVE_DATA_EXTENTS
)
3503 return "move data extents";
3504 if (stage
== UPDATE_DATA_PTRS
)
3505 return "update data pointers";
3510 * function to relocate all extents in a block group.
3512 int btrfs_relocate_block_group(struct btrfs_fs_info
*fs_info
, u64 group_start
)
3514 struct btrfs_block_group
*bg
;
3515 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
3516 struct reloc_control
*rc
;
3517 struct inode
*inode
;
3518 struct btrfs_path
*path
;
3523 bg
= btrfs_lookup_block_group(fs_info
, group_start
);
3527 if (btrfs_pinned_by_swapfile(fs_info
, bg
)) {
3528 btrfs_put_block_group(bg
);
3532 rc
= alloc_reloc_control(fs_info
);
3534 btrfs_put_block_group(bg
);
3538 rc
->extent_root
= extent_root
;
3539 rc
->block_group
= bg
;
3541 ret
= btrfs_inc_block_group_ro(rc
->block_group
, true);
3548 path
= btrfs_alloc_path();
3554 inode
= lookup_free_space_inode(rc
->block_group
, path
);
3555 btrfs_free_path(path
);
3558 ret
= delete_block_group_cache(fs_info
, rc
->block_group
, inode
, 0);
3560 ret
= PTR_ERR(inode
);
3562 if (ret
&& ret
!= -ENOENT
) {
3567 rc
->data_inode
= create_reloc_inode(fs_info
, rc
->block_group
);
3568 if (IS_ERR(rc
->data_inode
)) {
3569 err
= PTR_ERR(rc
->data_inode
);
3570 rc
->data_inode
= NULL
;
3574 describe_relocation(fs_info
, rc
->block_group
);
3576 btrfs_wait_block_group_reservations(rc
->block_group
);
3577 btrfs_wait_nocow_writers(rc
->block_group
);
3578 btrfs_wait_ordered_roots(fs_info
, U64_MAX
,
3579 rc
->block_group
->start
,
3580 rc
->block_group
->length
);
3585 mutex_lock(&fs_info
->cleaner_mutex
);
3586 ret
= relocate_block_group(rc
);
3587 mutex_unlock(&fs_info
->cleaner_mutex
);
3591 finishes_stage
= rc
->stage
;
3593 * We may have gotten ENOSPC after we already dirtied some
3594 * extents. If writeout happens while we're relocating a
3595 * different block group we could end up hitting the
3596 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
3597 * btrfs_reloc_cow_block. Make sure we write everything out
3598 * properly so we don't trip over this problem, and then break
3599 * out of the loop if we hit an error.
3601 if (rc
->stage
== MOVE_DATA_EXTENTS
&& rc
->found_file_extent
) {
3602 ret
= btrfs_wait_ordered_range(rc
->data_inode
, 0,
3606 invalidate_mapping_pages(rc
->data_inode
->i_mapping
,
3608 rc
->stage
= UPDATE_DATA_PTRS
;
3614 if (rc
->extents_found
== 0)
3617 btrfs_info(fs_info
, "found %llu extents, stage: %s",
3618 rc
->extents_found
, stage_to_string(finishes_stage
));
3621 WARN_ON(rc
->block_group
->pinned
> 0);
3622 WARN_ON(rc
->block_group
->reserved
> 0);
3623 WARN_ON(rc
->block_group
->used
> 0);
3626 btrfs_dec_block_group_ro(rc
->block_group
);
3627 iput(rc
->data_inode
);
3628 btrfs_put_block_group(rc
->block_group
);
3629 free_reloc_control(rc
);
3633 static noinline_for_stack
int mark_garbage_root(struct btrfs_root
*root
)
3635 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3636 struct btrfs_trans_handle
*trans
;
3639 trans
= btrfs_start_transaction(fs_info
->tree_root
, 0);
3641 return PTR_ERR(trans
);
3643 memset(&root
->root_item
.drop_progress
, 0,
3644 sizeof(root
->root_item
.drop_progress
));
3645 btrfs_set_root_drop_level(&root
->root_item
, 0);
3646 btrfs_set_root_refs(&root
->root_item
, 0);
3647 ret
= btrfs_update_root(trans
, fs_info
->tree_root
,
3648 &root
->root_key
, &root
->root_item
);
3650 err
= btrfs_end_transaction(trans
);
3657 * recover relocation interrupted by system crash.
3659 * this function resumes merging reloc trees with corresponding fs trees.
3660 * this is important for keeping the sharing of tree blocks
3662 int btrfs_recover_relocation(struct btrfs_root
*root
)
3664 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3665 LIST_HEAD(reloc_roots
);
3666 struct btrfs_key key
;
3667 struct btrfs_root
*fs_root
;
3668 struct btrfs_root
*reloc_root
;
3669 struct btrfs_path
*path
;
3670 struct extent_buffer
*leaf
;
3671 struct reloc_control
*rc
= NULL
;
3672 struct btrfs_trans_handle
*trans
;
3676 path
= btrfs_alloc_path();
3679 path
->reada
= READA_BACK
;
3681 key
.objectid
= BTRFS_TREE_RELOC_OBJECTID
;
3682 key
.type
= BTRFS_ROOT_ITEM_KEY
;
3683 key
.offset
= (u64
)-1;
3686 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
,
3693 if (path
->slots
[0] == 0)
3697 leaf
= path
->nodes
[0];
3698 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
3699 btrfs_release_path(path
);
3701 if (key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
||
3702 key
.type
!= BTRFS_ROOT_ITEM_KEY
)
3705 reloc_root
= btrfs_read_tree_root(root
, &key
);
3706 if (IS_ERR(reloc_root
)) {
3707 err
= PTR_ERR(reloc_root
);
3711 set_bit(BTRFS_ROOT_SHAREABLE
, &reloc_root
->state
);
3712 list_add(&reloc_root
->root_list
, &reloc_roots
);
3714 if (btrfs_root_refs(&reloc_root
->root_item
) > 0) {
3715 fs_root
= btrfs_get_fs_root(fs_info
,
3716 reloc_root
->root_key
.offset
, false);
3717 if (IS_ERR(fs_root
)) {
3718 ret
= PTR_ERR(fs_root
);
3719 if (ret
!= -ENOENT
) {
3723 ret
= mark_garbage_root(reloc_root
);
3729 btrfs_put_root(fs_root
);
3733 if (key
.offset
== 0)
3738 btrfs_release_path(path
);
3740 if (list_empty(&reloc_roots
))
3743 rc
= alloc_reloc_control(fs_info
);
3749 rc
->extent_root
= fs_info
->extent_root
;
3751 set_reloc_control(rc
);
3753 trans
= btrfs_join_transaction(rc
->extent_root
);
3754 if (IS_ERR(trans
)) {
3755 err
= PTR_ERR(trans
);
3759 rc
->merge_reloc_tree
= 1;
3761 while (!list_empty(&reloc_roots
)) {
3762 reloc_root
= list_entry(reloc_roots
.next
,
3763 struct btrfs_root
, root_list
);
3764 list_del(&reloc_root
->root_list
);
3766 if (btrfs_root_refs(&reloc_root
->root_item
) == 0) {
3767 list_add_tail(&reloc_root
->root_list
,
3772 fs_root
= btrfs_get_fs_root(fs_info
, reloc_root
->root_key
.offset
,
3774 if (IS_ERR(fs_root
)) {
3775 err
= PTR_ERR(fs_root
);
3776 list_add_tail(&reloc_root
->root_list
, &reloc_roots
);
3777 btrfs_end_transaction(trans
);
3781 err
= __add_reloc_root(reloc_root
);
3782 BUG_ON(err
< 0); /* -ENOMEM or logic error */
3783 fs_root
->reloc_root
= btrfs_grab_root(reloc_root
);
3784 btrfs_put_root(fs_root
);
3787 err
= btrfs_commit_transaction(trans
);
3791 merge_reloc_roots(rc
);
3793 unset_reloc_control(rc
);
3795 trans
= btrfs_join_transaction(rc
->extent_root
);
3796 if (IS_ERR(trans
)) {
3797 err
= PTR_ERR(trans
);
3800 err
= btrfs_commit_transaction(trans
);
3802 ret
= clean_dirty_subvols(rc
);
3803 if (ret
< 0 && !err
)
3806 unset_reloc_control(rc
);
3807 free_reloc_control(rc
);
3809 free_reloc_roots(&reloc_roots
);
3811 btrfs_free_path(path
);
3814 /* cleanup orphan inode in data relocation tree */
3815 fs_root
= btrfs_grab_root(fs_info
->data_reloc_root
);
3817 err
= btrfs_orphan_cleanup(fs_root
);
3818 btrfs_put_root(fs_root
);
3824 * helper to add ordered checksum for data relocation.
3826 * cloning checksum properly handles the nodatasum extents.
3827 * it also saves CPU time to re-calculate the checksum.
3829 int btrfs_reloc_clone_csums(struct btrfs_inode
*inode
, u64 file_pos
, u64 len
)
3831 struct btrfs_fs_info
*fs_info
= inode
->root
->fs_info
;
3832 struct btrfs_ordered_sum
*sums
;
3833 struct btrfs_ordered_extent
*ordered
;
3839 ordered
= btrfs_lookup_ordered_extent(inode
, file_pos
);
3840 BUG_ON(ordered
->file_offset
!= file_pos
|| ordered
->num_bytes
!= len
);
3842 disk_bytenr
= file_pos
+ inode
->index_cnt
;
3843 ret
= btrfs_lookup_csums_range(fs_info
->csum_root
, disk_bytenr
,
3844 disk_bytenr
+ len
- 1, &list
, 0);
3848 while (!list_empty(&list
)) {
3849 sums
= list_entry(list
.next
, struct btrfs_ordered_sum
, list
);
3850 list_del_init(&sums
->list
);
3853 * We need to offset the new_bytenr based on where the csum is.
3854 * We need to do this because we will read in entire prealloc
3855 * extents but we may have written to say the middle of the
3856 * prealloc extent, so we need to make sure the csum goes with
3857 * the right disk offset.
3859 * We can do this because the data reloc inode refers strictly
3860 * to the on disk bytes, so we don't have to worry about
3861 * disk_len vs real len like with real inodes since it's all
3864 new_bytenr
= ordered
->disk_bytenr
+ sums
->bytenr
- disk_bytenr
;
3865 sums
->bytenr
= new_bytenr
;
3867 btrfs_add_ordered_sum(ordered
, sums
);
3870 btrfs_put_ordered_extent(ordered
);
3874 int btrfs_reloc_cow_block(struct btrfs_trans_handle
*trans
,
3875 struct btrfs_root
*root
, struct extent_buffer
*buf
,
3876 struct extent_buffer
*cow
)
3878 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3879 struct reloc_control
*rc
;
3880 struct btrfs_backref_node
*node
;
3885 rc
= fs_info
->reloc_ctl
;
3889 BUG_ON(rc
->stage
== UPDATE_DATA_PTRS
&&
3890 root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
);
3892 level
= btrfs_header_level(buf
);
3893 if (btrfs_header_generation(buf
) <=
3894 btrfs_root_last_snapshot(&root
->root_item
))
3897 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
&&
3898 rc
->create_reloc_tree
) {
3899 WARN_ON(!first_cow
&& level
== 0);
3901 node
= rc
->backref_cache
.path
[level
];
3902 BUG_ON(node
->bytenr
!= buf
->start
&&
3903 node
->new_bytenr
!= buf
->start
);
3905 btrfs_backref_drop_node_buffer(node
);
3906 atomic_inc(&cow
->refs
);
3908 node
->new_bytenr
= cow
->start
;
3910 if (!node
->pending
) {
3911 list_move_tail(&node
->list
,
3912 &rc
->backref_cache
.pending
[level
]);
3917 mark_block_processed(rc
, node
);
3919 if (first_cow
&& level
> 0)
3920 rc
->nodes_relocated
+= buf
->len
;
3923 if (level
== 0 && first_cow
&& rc
->stage
== UPDATE_DATA_PTRS
)
3924 ret
= replace_file_extents(trans
, rc
, root
, cow
);
3929 * called before creating snapshot. it calculates metadata reservation
3930 * required for relocating tree blocks in the snapshot
3932 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot
*pending
,
3933 u64
*bytes_to_reserve
)
3935 struct btrfs_root
*root
= pending
->root
;
3936 struct reloc_control
*rc
= root
->fs_info
->reloc_ctl
;
3938 if (!rc
|| !have_reloc_root(root
))
3941 if (!rc
->merge_reloc_tree
)
3944 root
= root
->reloc_root
;
3945 BUG_ON(btrfs_root_refs(&root
->root_item
) == 0);
3947 * relocation is in the stage of merging trees. the space
3948 * used by merging a reloc tree is twice the size of
3949 * relocated tree nodes in the worst case. half for cowing
3950 * the reloc tree, half for cowing the fs tree. the space
3951 * used by cowing the reloc tree will be freed after the
3952 * tree is dropped. if we create snapshot, cowing the fs
3953 * tree may use more space than it frees. so we need
3954 * reserve extra space.
3956 *bytes_to_reserve
+= rc
->nodes_relocated
;
3960 * called after snapshot is created. migrate block reservation
3961 * and create reloc root for the newly created snapshot
3963 * This is similar to btrfs_init_reloc_root(), we come out of here with two
3964 * references held on the reloc_root, one for root->reloc_root and one for
3967 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle
*trans
,
3968 struct btrfs_pending_snapshot
*pending
)
3970 struct btrfs_root
*root
= pending
->root
;
3971 struct btrfs_root
*reloc_root
;
3972 struct btrfs_root
*new_root
;
3973 struct reloc_control
*rc
= root
->fs_info
->reloc_ctl
;
3976 if (!rc
|| !have_reloc_root(root
))
3979 rc
= root
->fs_info
->reloc_ctl
;
3980 rc
->merging_rsv_size
+= rc
->nodes_relocated
;
3982 if (rc
->merge_reloc_tree
) {
3983 ret
= btrfs_block_rsv_migrate(&pending
->block_rsv
,
3985 rc
->nodes_relocated
, true);
3990 new_root
= pending
->snap
;
3991 reloc_root
= create_reloc_root(trans
, root
->reloc_root
,
3992 new_root
->root_key
.objectid
);
3993 if (IS_ERR(reloc_root
))
3994 return PTR_ERR(reloc_root
);
3996 ret
= __add_reloc_root(reloc_root
);
3998 new_root
->reloc_root
= btrfs_grab_root(reloc_root
);
4000 if (rc
->create_reloc_tree
)
4001 ret
= clone_backref_node(trans
, rc
, root
, reloc_root
);