Merge tag 'regmap-fix-v5.11-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux/fpc-iii.git] / fs / btrfs / relocation.c
blob19b7db8b211719b33938dcefeaaa07640787509b
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2009 Oracle. All rights reserved.
4 */
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include <linux/error-injection.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "volumes.h"
17 #include "locking.h"
18 #include "btrfs_inode.h"
19 #include "async-thread.h"
20 #include "free-space-cache.h"
21 #include "qgroup.h"
22 #include "print-tree.h"
23 #include "delalloc-space.h"
24 #include "block-group.h"
25 #include "backref.h"
26 #include "misc.h"
29 * Relocation overview
31 * [What does relocation do]
33 * The objective of relocation is to relocate all extents of the target block
34 * group to other block groups.
35 * This is utilized by resize (shrink only), profile converting, compacting
36 * space, or balance routine to spread chunks over devices.
38 * Before | After
39 * ------------------------------------------------------------------
40 * BG A: 10 data extents | BG A: deleted
41 * BG B: 2 data extents | BG B: 10 data extents (2 old + 8 relocated)
42 * BG C: 1 extents | BG C: 3 data extents (1 old + 2 relocated)
44 * [How does relocation work]
46 * 1. Mark the target block group read-only
47 * New extents won't be allocated from the target block group.
49 * 2.1 Record each extent in the target block group
50 * To build a proper map of extents to be relocated.
52 * 2.2 Build data reloc tree and reloc trees
53 * Data reloc tree will contain an inode, recording all newly relocated
54 * data extents.
55 * There will be only one data reloc tree for one data block group.
57 * Reloc tree will be a special snapshot of its source tree, containing
58 * relocated tree blocks.
59 * Each tree referring to a tree block in target block group will get its
60 * reloc tree built.
62 * 2.3 Swap source tree with its corresponding reloc tree
63 * Each involved tree only refers to new extents after swap.
65 * 3. Cleanup reloc trees and data reloc tree.
66 * As old extents in the target block group are still referenced by reloc
67 * trees, we need to clean them up before really freeing the target block
68 * group.
70 * The main complexity is in steps 2.2 and 2.3.
72 * The entry point of relocation is relocate_block_group() function.
75 #define RELOCATION_RESERVED_NODES 256
77 * map address of tree root to tree
79 struct mapping_node {
80 struct {
81 struct rb_node rb_node;
82 u64 bytenr;
83 }; /* Use rb_simle_node for search/insert */
84 void *data;
87 struct mapping_tree {
88 struct rb_root rb_root;
89 spinlock_t lock;
93 * present a tree block to process
95 struct tree_block {
96 struct {
97 struct rb_node rb_node;
98 u64 bytenr;
99 }; /* Use rb_simple_node for search/insert */
100 struct btrfs_key key;
101 unsigned int level:8;
102 unsigned int key_ready:1;
105 #define MAX_EXTENTS 128
107 struct file_extent_cluster {
108 u64 start;
109 u64 end;
110 u64 boundary[MAX_EXTENTS];
111 unsigned int nr;
114 struct reloc_control {
115 /* block group to relocate */
116 struct btrfs_block_group *block_group;
117 /* extent tree */
118 struct btrfs_root *extent_root;
119 /* inode for moving data */
120 struct inode *data_inode;
122 struct btrfs_block_rsv *block_rsv;
124 struct btrfs_backref_cache backref_cache;
126 struct file_extent_cluster cluster;
127 /* tree blocks have been processed */
128 struct extent_io_tree processed_blocks;
129 /* map start of tree root to corresponding reloc tree */
130 struct mapping_tree reloc_root_tree;
131 /* list of reloc trees */
132 struct list_head reloc_roots;
133 /* list of subvolume trees that get relocated */
134 struct list_head dirty_subvol_roots;
135 /* size of metadata reservation for merging reloc trees */
136 u64 merging_rsv_size;
137 /* size of relocated tree nodes */
138 u64 nodes_relocated;
139 /* reserved size for block group relocation*/
140 u64 reserved_bytes;
142 u64 search_start;
143 u64 extents_found;
145 unsigned int stage:8;
146 unsigned int create_reloc_tree:1;
147 unsigned int merge_reloc_tree:1;
148 unsigned int found_file_extent:1;
151 /* stages of data relocation */
152 #define MOVE_DATA_EXTENTS 0
153 #define UPDATE_DATA_PTRS 1
155 static void mark_block_processed(struct reloc_control *rc,
156 struct btrfs_backref_node *node)
158 u32 blocksize;
160 if (node->level == 0 ||
161 in_range(node->bytenr, rc->block_group->start,
162 rc->block_group->length)) {
163 blocksize = rc->extent_root->fs_info->nodesize;
164 set_extent_bits(&rc->processed_blocks, node->bytenr,
165 node->bytenr + blocksize - 1, EXTENT_DIRTY);
167 node->processed = 1;
171 static void mapping_tree_init(struct mapping_tree *tree)
173 tree->rb_root = RB_ROOT;
174 spin_lock_init(&tree->lock);
178 * walk up backref nodes until reach node presents tree root
180 static struct btrfs_backref_node *walk_up_backref(
181 struct btrfs_backref_node *node,
182 struct btrfs_backref_edge *edges[], int *index)
184 struct btrfs_backref_edge *edge;
185 int idx = *index;
187 while (!list_empty(&node->upper)) {
188 edge = list_entry(node->upper.next,
189 struct btrfs_backref_edge, list[LOWER]);
190 edges[idx++] = edge;
191 node = edge->node[UPPER];
193 BUG_ON(node->detached);
194 *index = idx;
195 return node;
199 * walk down backref nodes to find start of next reference path
201 static struct btrfs_backref_node *walk_down_backref(
202 struct btrfs_backref_edge *edges[], int *index)
204 struct btrfs_backref_edge *edge;
205 struct btrfs_backref_node *lower;
206 int idx = *index;
208 while (idx > 0) {
209 edge = edges[idx - 1];
210 lower = edge->node[LOWER];
211 if (list_is_last(&edge->list[LOWER], &lower->upper)) {
212 idx--;
213 continue;
215 edge = list_entry(edge->list[LOWER].next,
216 struct btrfs_backref_edge, list[LOWER]);
217 edges[idx - 1] = edge;
218 *index = idx;
219 return edge->node[UPPER];
221 *index = 0;
222 return NULL;
225 static void update_backref_node(struct btrfs_backref_cache *cache,
226 struct btrfs_backref_node *node, u64 bytenr)
228 struct rb_node *rb_node;
229 rb_erase(&node->rb_node, &cache->rb_root);
230 node->bytenr = bytenr;
231 rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node);
232 if (rb_node)
233 btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST);
237 * update backref cache after a transaction commit
239 static int update_backref_cache(struct btrfs_trans_handle *trans,
240 struct btrfs_backref_cache *cache)
242 struct btrfs_backref_node *node;
243 int level = 0;
245 if (cache->last_trans == 0) {
246 cache->last_trans = trans->transid;
247 return 0;
250 if (cache->last_trans == trans->transid)
251 return 0;
254 * detached nodes are used to avoid unnecessary backref
255 * lookup. transaction commit changes the extent tree.
256 * so the detached nodes are no longer useful.
258 while (!list_empty(&cache->detached)) {
259 node = list_entry(cache->detached.next,
260 struct btrfs_backref_node, list);
261 btrfs_backref_cleanup_node(cache, node);
264 while (!list_empty(&cache->changed)) {
265 node = list_entry(cache->changed.next,
266 struct btrfs_backref_node, list);
267 list_del_init(&node->list);
268 BUG_ON(node->pending);
269 update_backref_node(cache, node, node->new_bytenr);
273 * some nodes can be left in the pending list if there were
274 * errors during processing the pending nodes.
276 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
277 list_for_each_entry(node, &cache->pending[level], list) {
278 BUG_ON(!node->pending);
279 if (node->bytenr == node->new_bytenr)
280 continue;
281 update_backref_node(cache, node, node->new_bytenr);
285 cache->last_trans = 0;
286 return 1;
289 static bool reloc_root_is_dead(struct btrfs_root *root)
292 * Pair with set_bit/clear_bit in clean_dirty_subvols and
293 * btrfs_update_reloc_root. We need to see the updated bit before
294 * trying to access reloc_root
296 smp_rmb();
297 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
298 return true;
299 return false;
303 * Check if this subvolume tree has valid reloc tree.
305 * Reloc tree after swap is considered dead, thus not considered as valid.
306 * This is enough for most callers, as they don't distinguish dead reloc root
307 * from no reloc root. But btrfs_should_ignore_reloc_root() below is a
308 * special case.
310 static bool have_reloc_root(struct btrfs_root *root)
312 if (reloc_root_is_dead(root))
313 return false;
314 if (!root->reloc_root)
315 return false;
316 return true;
319 int btrfs_should_ignore_reloc_root(struct btrfs_root *root)
321 struct btrfs_root *reloc_root;
323 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
324 return 0;
326 /* This root has been merged with its reloc tree, we can ignore it */
327 if (reloc_root_is_dead(root))
328 return 1;
330 reloc_root = root->reloc_root;
331 if (!reloc_root)
332 return 0;
334 if (btrfs_header_generation(reloc_root->commit_root) ==
335 root->fs_info->running_transaction->transid)
336 return 0;
338 * if there is reloc tree and it was created in previous
339 * transaction backref lookup can find the reloc tree,
340 * so backref node for the fs tree root is useless for
341 * relocation.
343 return 1;
347 * find reloc tree by address of tree root
349 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
351 struct reloc_control *rc = fs_info->reloc_ctl;
352 struct rb_node *rb_node;
353 struct mapping_node *node;
354 struct btrfs_root *root = NULL;
356 ASSERT(rc);
357 spin_lock(&rc->reloc_root_tree.lock);
358 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
359 if (rb_node) {
360 node = rb_entry(rb_node, struct mapping_node, rb_node);
361 root = (struct btrfs_root *)node->data;
363 spin_unlock(&rc->reloc_root_tree.lock);
364 return btrfs_grab_root(root);
368 * For useless nodes, do two major clean ups:
370 * - Cleanup the children edges and nodes
371 * If child node is also orphan (no parent) during cleanup, then the child
372 * node will also be cleaned up.
374 * - Freeing up leaves (level 0), keeps nodes detached
375 * For nodes, the node is still cached as "detached"
377 * Return false if @node is not in the @useless_nodes list.
378 * Return true if @node is in the @useless_nodes list.
380 static bool handle_useless_nodes(struct reloc_control *rc,
381 struct btrfs_backref_node *node)
383 struct btrfs_backref_cache *cache = &rc->backref_cache;
384 struct list_head *useless_node = &cache->useless_node;
385 bool ret = false;
387 while (!list_empty(useless_node)) {
388 struct btrfs_backref_node *cur;
390 cur = list_first_entry(useless_node, struct btrfs_backref_node,
391 list);
392 list_del_init(&cur->list);
394 /* Only tree root nodes can be added to @useless_nodes */
395 ASSERT(list_empty(&cur->upper));
397 if (cur == node)
398 ret = true;
400 /* The node is the lowest node */
401 if (cur->lowest) {
402 list_del_init(&cur->lower);
403 cur->lowest = 0;
406 /* Cleanup the lower edges */
407 while (!list_empty(&cur->lower)) {
408 struct btrfs_backref_edge *edge;
409 struct btrfs_backref_node *lower;
411 edge = list_entry(cur->lower.next,
412 struct btrfs_backref_edge, list[UPPER]);
413 list_del(&edge->list[UPPER]);
414 list_del(&edge->list[LOWER]);
415 lower = edge->node[LOWER];
416 btrfs_backref_free_edge(cache, edge);
418 /* Child node is also orphan, queue for cleanup */
419 if (list_empty(&lower->upper))
420 list_add(&lower->list, useless_node);
422 /* Mark this block processed for relocation */
423 mark_block_processed(rc, cur);
426 * Backref nodes for tree leaves are deleted from the cache.
427 * Backref nodes for upper level tree blocks are left in the
428 * cache to avoid unnecessary backref lookup.
430 if (cur->level > 0) {
431 list_add(&cur->list, &cache->detached);
432 cur->detached = 1;
433 } else {
434 rb_erase(&cur->rb_node, &cache->rb_root);
435 btrfs_backref_free_node(cache, cur);
438 return ret;
442 * Build backref tree for a given tree block. Root of the backref tree
443 * corresponds the tree block, leaves of the backref tree correspond roots of
444 * b-trees that reference the tree block.
446 * The basic idea of this function is check backrefs of a given block to find
447 * upper level blocks that reference the block, and then check backrefs of
448 * these upper level blocks recursively. The recursion stops when tree root is
449 * reached or backrefs for the block is cached.
451 * NOTE: if we find that backrefs for a block are cached, we know backrefs for
452 * all upper level blocks that directly/indirectly reference the block are also
453 * cached.
455 static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
456 struct reloc_control *rc, struct btrfs_key *node_key,
457 int level, u64 bytenr)
459 struct btrfs_backref_iter *iter;
460 struct btrfs_backref_cache *cache = &rc->backref_cache;
461 /* For searching parent of TREE_BLOCK_REF */
462 struct btrfs_path *path;
463 struct btrfs_backref_node *cur;
464 struct btrfs_backref_node *node = NULL;
465 struct btrfs_backref_edge *edge;
466 int ret;
467 int err = 0;
469 iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info, GFP_NOFS);
470 if (!iter)
471 return ERR_PTR(-ENOMEM);
472 path = btrfs_alloc_path();
473 if (!path) {
474 err = -ENOMEM;
475 goto out;
478 node = btrfs_backref_alloc_node(cache, bytenr, level);
479 if (!node) {
480 err = -ENOMEM;
481 goto out;
484 node->lowest = 1;
485 cur = node;
487 /* Breadth-first search to build backref cache */
488 do {
489 ret = btrfs_backref_add_tree_node(cache, path, iter, node_key,
490 cur);
491 if (ret < 0) {
492 err = ret;
493 goto out;
495 edge = list_first_entry_or_null(&cache->pending_edge,
496 struct btrfs_backref_edge, list[UPPER]);
498 * The pending list isn't empty, take the first block to
499 * process
501 if (edge) {
502 list_del_init(&edge->list[UPPER]);
503 cur = edge->node[UPPER];
505 } while (edge);
507 /* Finish the upper linkage of newly added edges/nodes */
508 ret = btrfs_backref_finish_upper_links(cache, node);
509 if (ret < 0) {
510 err = ret;
511 goto out;
514 if (handle_useless_nodes(rc, node))
515 node = NULL;
516 out:
517 btrfs_backref_iter_free(iter);
518 btrfs_free_path(path);
519 if (err) {
520 btrfs_backref_error_cleanup(cache, node);
521 return ERR_PTR(err);
523 ASSERT(!node || !node->detached);
524 ASSERT(list_empty(&cache->useless_node) &&
525 list_empty(&cache->pending_edge));
526 return node;
530 * helper to add backref node for the newly created snapshot.
531 * the backref node is created by cloning backref node that
532 * corresponds to root of source tree
534 static int clone_backref_node(struct btrfs_trans_handle *trans,
535 struct reloc_control *rc,
536 struct btrfs_root *src,
537 struct btrfs_root *dest)
539 struct btrfs_root *reloc_root = src->reloc_root;
540 struct btrfs_backref_cache *cache = &rc->backref_cache;
541 struct btrfs_backref_node *node = NULL;
542 struct btrfs_backref_node *new_node;
543 struct btrfs_backref_edge *edge;
544 struct btrfs_backref_edge *new_edge;
545 struct rb_node *rb_node;
547 if (cache->last_trans > 0)
548 update_backref_cache(trans, cache);
550 rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
551 if (rb_node) {
552 node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
553 if (node->detached)
554 node = NULL;
555 else
556 BUG_ON(node->new_bytenr != reloc_root->node->start);
559 if (!node) {
560 rb_node = rb_simple_search(&cache->rb_root,
561 reloc_root->commit_root->start);
562 if (rb_node) {
563 node = rb_entry(rb_node, struct btrfs_backref_node,
564 rb_node);
565 BUG_ON(node->detached);
569 if (!node)
570 return 0;
572 new_node = btrfs_backref_alloc_node(cache, dest->node->start,
573 node->level);
574 if (!new_node)
575 return -ENOMEM;
577 new_node->lowest = node->lowest;
578 new_node->checked = 1;
579 new_node->root = btrfs_grab_root(dest);
580 ASSERT(new_node->root);
582 if (!node->lowest) {
583 list_for_each_entry(edge, &node->lower, list[UPPER]) {
584 new_edge = btrfs_backref_alloc_edge(cache);
585 if (!new_edge)
586 goto fail;
588 btrfs_backref_link_edge(new_edge, edge->node[LOWER],
589 new_node, LINK_UPPER);
591 } else {
592 list_add_tail(&new_node->lower, &cache->leaves);
595 rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
596 &new_node->rb_node);
597 if (rb_node)
598 btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
600 if (!new_node->lowest) {
601 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
602 list_add_tail(&new_edge->list[LOWER],
603 &new_edge->node[LOWER]->upper);
606 return 0;
607 fail:
608 while (!list_empty(&new_node->lower)) {
609 new_edge = list_entry(new_node->lower.next,
610 struct btrfs_backref_edge, list[UPPER]);
611 list_del(&new_edge->list[UPPER]);
612 btrfs_backref_free_edge(cache, new_edge);
614 btrfs_backref_free_node(cache, new_node);
615 return -ENOMEM;
619 * helper to add 'address of tree root -> reloc tree' mapping
621 static int __must_check __add_reloc_root(struct btrfs_root *root)
623 struct btrfs_fs_info *fs_info = root->fs_info;
624 struct rb_node *rb_node;
625 struct mapping_node *node;
626 struct reloc_control *rc = fs_info->reloc_ctl;
628 node = kmalloc(sizeof(*node), GFP_NOFS);
629 if (!node)
630 return -ENOMEM;
632 node->bytenr = root->commit_root->start;
633 node->data = root;
635 spin_lock(&rc->reloc_root_tree.lock);
636 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
637 node->bytenr, &node->rb_node);
638 spin_unlock(&rc->reloc_root_tree.lock);
639 if (rb_node) {
640 btrfs_panic(fs_info, -EEXIST,
641 "Duplicate root found for start=%llu while inserting into relocation tree",
642 node->bytenr);
645 list_add_tail(&root->root_list, &rc->reloc_roots);
646 return 0;
650 * helper to delete the 'address of tree root -> reloc tree'
651 * mapping
653 static void __del_reloc_root(struct btrfs_root *root)
655 struct btrfs_fs_info *fs_info = root->fs_info;
656 struct rb_node *rb_node;
657 struct mapping_node *node = NULL;
658 struct reloc_control *rc = fs_info->reloc_ctl;
659 bool put_ref = false;
661 if (rc && root->node) {
662 spin_lock(&rc->reloc_root_tree.lock);
663 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
664 root->commit_root->start);
665 if (rb_node) {
666 node = rb_entry(rb_node, struct mapping_node, rb_node);
667 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
668 RB_CLEAR_NODE(&node->rb_node);
670 spin_unlock(&rc->reloc_root_tree.lock);
671 if (!node)
672 return;
673 BUG_ON((struct btrfs_root *)node->data != root);
677 * We only put the reloc root here if it's on the list. There's a lot
678 * of places where the pattern is to splice the rc->reloc_roots, process
679 * the reloc roots, and then add the reloc root back onto
680 * rc->reloc_roots. If we call __del_reloc_root while it's off of the
681 * list we don't want the reference being dropped, because the guy
682 * messing with the list is in charge of the reference.
684 spin_lock(&fs_info->trans_lock);
685 if (!list_empty(&root->root_list)) {
686 put_ref = true;
687 list_del_init(&root->root_list);
689 spin_unlock(&fs_info->trans_lock);
690 if (put_ref)
691 btrfs_put_root(root);
692 kfree(node);
696 * helper to update the 'address of tree root -> reloc tree'
697 * mapping
699 static int __update_reloc_root(struct btrfs_root *root)
701 struct btrfs_fs_info *fs_info = root->fs_info;
702 struct rb_node *rb_node;
703 struct mapping_node *node = NULL;
704 struct reloc_control *rc = fs_info->reloc_ctl;
706 spin_lock(&rc->reloc_root_tree.lock);
707 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
708 root->commit_root->start);
709 if (rb_node) {
710 node = rb_entry(rb_node, struct mapping_node, rb_node);
711 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
713 spin_unlock(&rc->reloc_root_tree.lock);
715 if (!node)
716 return 0;
717 BUG_ON((struct btrfs_root *)node->data != root);
719 spin_lock(&rc->reloc_root_tree.lock);
720 node->bytenr = root->node->start;
721 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
722 node->bytenr, &node->rb_node);
723 spin_unlock(&rc->reloc_root_tree.lock);
724 if (rb_node)
725 btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
726 return 0;
729 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
730 struct btrfs_root *root, u64 objectid)
732 struct btrfs_fs_info *fs_info = root->fs_info;
733 struct btrfs_root *reloc_root;
734 struct extent_buffer *eb;
735 struct btrfs_root_item *root_item;
736 struct btrfs_key root_key;
737 int ret;
739 root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
740 BUG_ON(!root_item);
742 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
743 root_key.type = BTRFS_ROOT_ITEM_KEY;
744 root_key.offset = objectid;
746 if (root->root_key.objectid == objectid) {
747 u64 commit_root_gen;
749 /* called by btrfs_init_reloc_root */
750 ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
751 BTRFS_TREE_RELOC_OBJECTID);
752 BUG_ON(ret);
754 * Set the last_snapshot field to the generation of the commit
755 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
756 * correctly (returns true) when the relocation root is created
757 * either inside the critical section of a transaction commit
758 * (through transaction.c:qgroup_account_snapshot()) and when
759 * it's created before the transaction commit is started.
761 commit_root_gen = btrfs_header_generation(root->commit_root);
762 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
763 } else {
765 * called by btrfs_reloc_post_snapshot_hook.
766 * the source tree is a reloc tree, all tree blocks
767 * modified after it was created have RELOC flag
768 * set in their headers. so it's OK to not update
769 * the 'last_snapshot'.
771 ret = btrfs_copy_root(trans, root, root->node, &eb,
772 BTRFS_TREE_RELOC_OBJECTID);
773 BUG_ON(ret);
776 memcpy(root_item, &root->root_item, sizeof(*root_item));
777 btrfs_set_root_bytenr(root_item, eb->start);
778 btrfs_set_root_level(root_item, btrfs_header_level(eb));
779 btrfs_set_root_generation(root_item, trans->transid);
781 if (root->root_key.objectid == objectid) {
782 btrfs_set_root_refs(root_item, 0);
783 memset(&root_item->drop_progress, 0,
784 sizeof(struct btrfs_disk_key));
785 btrfs_set_root_drop_level(root_item, 0);
788 btrfs_tree_unlock(eb);
789 free_extent_buffer(eb);
791 ret = btrfs_insert_root(trans, fs_info->tree_root,
792 &root_key, root_item);
793 BUG_ON(ret);
794 kfree(root_item);
796 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
797 BUG_ON(IS_ERR(reloc_root));
798 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
799 reloc_root->last_trans = trans->transid;
800 return reloc_root;
804 * create reloc tree for a given fs tree. reloc tree is just a
805 * snapshot of the fs tree with special root objectid.
807 * The reloc_root comes out of here with two references, one for
808 * root->reloc_root, and another for being on the rc->reloc_roots list.
810 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
811 struct btrfs_root *root)
813 struct btrfs_fs_info *fs_info = root->fs_info;
814 struct btrfs_root *reloc_root;
815 struct reloc_control *rc = fs_info->reloc_ctl;
816 struct btrfs_block_rsv *rsv;
817 int clear_rsv = 0;
818 int ret;
820 if (!rc)
821 return 0;
824 * The subvolume has reloc tree but the swap is finished, no need to
825 * create/update the dead reloc tree
827 if (reloc_root_is_dead(root))
828 return 0;
831 * This is subtle but important. We do not do
832 * record_root_in_transaction for reloc roots, instead we record their
833 * corresponding fs root, and then here we update the last trans for the
834 * reloc root. This means that we have to do this for the entire life
835 * of the reloc root, regardless of which stage of the relocation we are
836 * in.
838 if (root->reloc_root) {
839 reloc_root = root->reloc_root;
840 reloc_root->last_trans = trans->transid;
841 return 0;
845 * We are merging reloc roots, we do not need new reloc trees. Also
846 * reloc trees never need their own reloc tree.
848 if (!rc->create_reloc_tree ||
849 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
850 return 0;
852 if (!trans->reloc_reserved) {
853 rsv = trans->block_rsv;
854 trans->block_rsv = rc->block_rsv;
855 clear_rsv = 1;
857 reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
858 if (clear_rsv)
859 trans->block_rsv = rsv;
861 ret = __add_reloc_root(reloc_root);
862 BUG_ON(ret < 0);
863 root->reloc_root = btrfs_grab_root(reloc_root);
864 return 0;
868 * update root item of reloc tree
870 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
871 struct btrfs_root *root)
873 struct btrfs_fs_info *fs_info = root->fs_info;
874 struct btrfs_root *reloc_root;
875 struct btrfs_root_item *root_item;
876 int ret;
878 if (!have_reloc_root(root))
879 goto out;
881 reloc_root = root->reloc_root;
882 root_item = &reloc_root->root_item;
885 * We are probably ok here, but __del_reloc_root() will drop its ref of
886 * the root. We have the ref for root->reloc_root, but just in case
887 * hold it while we update the reloc root.
889 btrfs_grab_root(reloc_root);
891 /* root->reloc_root will stay until current relocation finished */
892 if (fs_info->reloc_ctl->merge_reloc_tree &&
893 btrfs_root_refs(root_item) == 0) {
894 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
896 * Mark the tree as dead before we change reloc_root so
897 * have_reloc_root will not touch it from now on.
899 smp_wmb();
900 __del_reloc_root(reloc_root);
903 if (reloc_root->commit_root != reloc_root->node) {
904 __update_reloc_root(reloc_root);
905 btrfs_set_root_node(root_item, reloc_root->node);
906 free_extent_buffer(reloc_root->commit_root);
907 reloc_root->commit_root = btrfs_root_node(reloc_root);
910 ret = btrfs_update_root(trans, fs_info->tree_root,
911 &reloc_root->root_key, root_item);
912 BUG_ON(ret);
913 btrfs_put_root(reloc_root);
914 out:
915 return 0;
919 * helper to find first cached inode with inode number >= objectid
920 * in a subvolume
922 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
924 struct rb_node *node;
925 struct rb_node *prev;
926 struct btrfs_inode *entry;
927 struct inode *inode;
929 spin_lock(&root->inode_lock);
930 again:
931 node = root->inode_tree.rb_node;
932 prev = NULL;
933 while (node) {
934 prev = node;
935 entry = rb_entry(node, struct btrfs_inode, rb_node);
937 if (objectid < btrfs_ino(entry))
938 node = node->rb_left;
939 else if (objectid > btrfs_ino(entry))
940 node = node->rb_right;
941 else
942 break;
944 if (!node) {
945 while (prev) {
946 entry = rb_entry(prev, struct btrfs_inode, rb_node);
947 if (objectid <= btrfs_ino(entry)) {
948 node = prev;
949 break;
951 prev = rb_next(prev);
954 while (node) {
955 entry = rb_entry(node, struct btrfs_inode, rb_node);
956 inode = igrab(&entry->vfs_inode);
957 if (inode) {
958 spin_unlock(&root->inode_lock);
959 return inode;
962 objectid = btrfs_ino(entry) + 1;
963 if (cond_resched_lock(&root->inode_lock))
964 goto again;
966 node = rb_next(node);
968 spin_unlock(&root->inode_lock);
969 return NULL;
973 * get new location of data
975 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
976 u64 bytenr, u64 num_bytes)
978 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
979 struct btrfs_path *path;
980 struct btrfs_file_extent_item *fi;
981 struct extent_buffer *leaf;
982 int ret;
984 path = btrfs_alloc_path();
985 if (!path)
986 return -ENOMEM;
988 bytenr -= BTRFS_I(reloc_inode)->index_cnt;
989 ret = btrfs_lookup_file_extent(NULL, root, path,
990 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
991 if (ret < 0)
992 goto out;
993 if (ret > 0) {
994 ret = -ENOENT;
995 goto out;
998 leaf = path->nodes[0];
999 fi = btrfs_item_ptr(leaf, path->slots[0],
1000 struct btrfs_file_extent_item);
1002 BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1003 btrfs_file_extent_compression(leaf, fi) ||
1004 btrfs_file_extent_encryption(leaf, fi) ||
1005 btrfs_file_extent_other_encoding(leaf, fi));
1007 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1008 ret = -EINVAL;
1009 goto out;
1012 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1013 ret = 0;
1014 out:
1015 btrfs_free_path(path);
1016 return ret;
1020 * update file extent items in the tree leaf to point to
1021 * the new locations.
1023 static noinline_for_stack
1024 int replace_file_extents(struct btrfs_trans_handle *trans,
1025 struct reloc_control *rc,
1026 struct btrfs_root *root,
1027 struct extent_buffer *leaf)
1029 struct btrfs_fs_info *fs_info = root->fs_info;
1030 struct btrfs_key key;
1031 struct btrfs_file_extent_item *fi;
1032 struct inode *inode = NULL;
1033 u64 parent;
1034 u64 bytenr;
1035 u64 new_bytenr = 0;
1036 u64 num_bytes;
1037 u64 end;
1038 u32 nritems;
1039 u32 i;
1040 int ret = 0;
1041 int first = 1;
1042 int dirty = 0;
1044 if (rc->stage != UPDATE_DATA_PTRS)
1045 return 0;
1047 /* reloc trees always use full backref */
1048 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1049 parent = leaf->start;
1050 else
1051 parent = 0;
1053 nritems = btrfs_header_nritems(leaf);
1054 for (i = 0; i < nritems; i++) {
1055 struct btrfs_ref ref = { 0 };
1057 cond_resched();
1058 btrfs_item_key_to_cpu(leaf, &key, i);
1059 if (key.type != BTRFS_EXTENT_DATA_KEY)
1060 continue;
1061 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1062 if (btrfs_file_extent_type(leaf, fi) ==
1063 BTRFS_FILE_EXTENT_INLINE)
1064 continue;
1065 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1066 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1067 if (bytenr == 0)
1068 continue;
1069 if (!in_range(bytenr, rc->block_group->start,
1070 rc->block_group->length))
1071 continue;
1074 * if we are modifying block in fs tree, wait for readpage
1075 * to complete and drop the extent cache
1077 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1078 if (first) {
1079 inode = find_next_inode(root, key.objectid);
1080 first = 0;
1081 } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1082 btrfs_add_delayed_iput(inode);
1083 inode = find_next_inode(root, key.objectid);
1085 if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1086 end = key.offset +
1087 btrfs_file_extent_num_bytes(leaf, fi);
1088 WARN_ON(!IS_ALIGNED(key.offset,
1089 fs_info->sectorsize));
1090 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1091 end--;
1092 ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1093 key.offset, end);
1094 if (!ret)
1095 continue;
1097 btrfs_drop_extent_cache(BTRFS_I(inode),
1098 key.offset, end, 1);
1099 unlock_extent(&BTRFS_I(inode)->io_tree,
1100 key.offset, end);
1104 ret = get_new_location(rc->data_inode, &new_bytenr,
1105 bytenr, num_bytes);
1106 if (ret) {
1108 * Don't have to abort since we've not changed anything
1109 * in the file extent yet.
1111 break;
1114 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1115 dirty = 1;
1117 key.offset -= btrfs_file_extent_offset(leaf, fi);
1118 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1119 num_bytes, parent);
1120 ref.real_root = root->root_key.objectid;
1121 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1122 key.objectid, key.offset);
1123 ret = btrfs_inc_extent_ref(trans, &ref);
1124 if (ret) {
1125 btrfs_abort_transaction(trans, ret);
1126 break;
1129 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1130 num_bytes, parent);
1131 ref.real_root = root->root_key.objectid;
1132 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1133 key.objectid, key.offset);
1134 ret = btrfs_free_extent(trans, &ref);
1135 if (ret) {
1136 btrfs_abort_transaction(trans, ret);
1137 break;
1140 if (dirty)
1141 btrfs_mark_buffer_dirty(leaf);
1142 if (inode)
1143 btrfs_add_delayed_iput(inode);
1144 return ret;
1147 static noinline_for_stack
1148 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1149 struct btrfs_path *path, int level)
1151 struct btrfs_disk_key key1;
1152 struct btrfs_disk_key key2;
1153 btrfs_node_key(eb, &key1, slot);
1154 btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1155 return memcmp(&key1, &key2, sizeof(key1));
1159 * try to replace tree blocks in fs tree with the new blocks
1160 * in reloc tree. tree blocks haven't been modified since the
1161 * reloc tree was create can be replaced.
1163 * if a block was replaced, level of the block + 1 is returned.
1164 * if no block got replaced, 0 is returned. if there are other
1165 * errors, a negative error number is returned.
1167 static noinline_for_stack
1168 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1169 struct btrfs_root *dest, struct btrfs_root *src,
1170 struct btrfs_path *path, struct btrfs_key *next_key,
1171 int lowest_level, int max_level)
1173 struct btrfs_fs_info *fs_info = dest->fs_info;
1174 struct extent_buffer *eb;
1175 struct extent_buffer *parent;
1176 struct btrfs_ref ref = { 0 };
1177 struct btrfs_key key;
1178 u64 old_bytenr;
1179 u64 new_bytenr;
1180 u64 old_ptr_gen;
1181 u64 new_ptr_gen;
1182 u64 last_snapshot;
1183 u32 blocksize;
1184 int cow = 0;
1185 int level;
1186 int ret;
1187 int slot;
1189 BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1190 BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1192 last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1193 again:
1194 slot = path->slots[lowest_level];
1195 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1197 eb = btrfs_lock_root_node(dest);
1198 level = btrfs_header_level(eb);
1200 if (level < lowest_level) {
1201 btrfs_tree_unlock(eb);
1202 free_extent_buffer(eb);
1203 return 0;
1206 if (cow) {
1207 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1208 BTRFS_NESTING_COW);
1209 BUG_ON(ret);
1212 if (next_key) {
1213 next_key->objectid = (u64)-1;
1214 next_key->type = (u8)-1;
1215 next_key->offset = (u64)-1;
1218 parent = eb;
1219 while (1) {
1220 level = btrfs_header_level(parent);
1221 BUG_ON(level < lowest_level);
1223 ret = btrfs_bin_search(parent, &key, &slot);
1224 if (ret < 0)
1225 break;
1226 if (ret && slot > 0)
1227 slot--;
1229 if (next_key && slot + 1 < btrfs_header_nritems(parent))
1230 btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1232 old_bytenr = btrfs_node_blockptr(parent, slot);
1233 blocksize = fs_info->nodesize;
1234 old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1236 if (level <= max_level) {
1237 eb = path->nodes[level];
1238 new_bytenr = btrfs_node_blockptr(eb,
1239 path->slots[level]);
1240 new_ptr_gen = btrfs_node_ptr_generation(eb,
1241 path->slots[level]);
1242 } else {
1243 new_bytenr = 0;
1244 new_ptr_gen = 0;
1247 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1248 ret = level;
1249 break;
1252 if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1253 memcmp_node_keys(parent, slot, path, level)) {
1254 if (level <= lowest_level) {
1255 ret = 0;
1256 break;
1259 eb = btrfs_read_node_slot(parent, slot);
1260 if (IS_ERR(eb)) {
1261 ret = PTR_ERR(eb);
1262 break;
1264 btrfs_tree_lock(eb);
1265 if (cow) {
1266 ret = btrfs_cow_block(trans, dest, eb, parent,
1267 slot, &eb,
1268 BTRFS_NESTING_COW);
1269 BUG_ON(ret);
1272 btrfs_tree_unlock(parent);
1273 free_extent_buffer(parent);
1275 parent = eb;
1276 continue;
1279 if (!cow) {
1280 btrfs_tree_unlock(parent);
1281 free_extent_buffer(parent);
1282 cow = 1;
1283 goto again;
1286 btrfs_node_key_to_cpu(path->nodes[level], &key,
1287 path->slots[level]);
1288 btrfs_release_path(path);
1290 path->lowest_level = level;
1291 ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1292 path->lowest_level = 0;
1293 BUG_ON(ret);
1296 * Info qgroup to trace both subtrees.
1298 * We must trace both trees.
1299 * 1) Tree reloc subtree
1300 * If not traced, we will leak data numbers
1301 * 2) Fs subtree
1302 * If not traced, we will double count old data
1304 * We don't scan the subtree right now, but only record
1305 * the swapped tree blocks.
1306 * The real subtree rescan is delayed until we have new
1307 * CoW on the subtree root node before transaction commit.
1309 ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1310 rc->block_group, parent, slot,
1311 path->nodes[level], path->slots[level],
1312 last_snapshot);
1313 if (ret < 0)
1314 break;
1316 * swap blocks in fs tree and reloc tree.
1318 btrfs_set_node_blockptr(parent, slot, new_bytenr);
1319 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1320 btrfs_mark_buffer_dirty(parent);
1322 btrfs_set_node_blockptr(path->nodes[level],
1323 path->slots[level], old_bytenr);
1324 btrfs_set_node_ptr_generation(path->nodes[level],
1325 path->slots[level], old_ptr_gen);
1326 btrfs_mark_buffer_dirty(path->nodes[level]);
1328 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1329 blocksize, path->nodes[level]->start);
1330 ref.skip_qgroup = true;
1331 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1332 ret = btrfs_inc_extent_ref(trans, &ref);
1333 BUG_ON(ret);
1334 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1335 blocksize, 0);
1336 ref.skip_qgroup = true;
1337 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1338 ret = btrfs_inc_extent_ref(trans, &ref);
1339 BUG_ON(ret);
1341 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1342 blocksize, path->nodes[level]->start);
1343 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1344 ref.skip_qgroup = true;
1345 ret = btrfs_free_extent(trans, &ref);
1346 BUG_ON(ret);
1348 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1349 blocksize, 0);
1350 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1351 ref.skip_qgroup = true;
1352 ret = btrfs_free_extent(trans, &ref);
1353 BUG_ON(ret);
1355 btrfs_unlock_up_safe(path, 0);
1357 ret = level;
1358 break;
1360 btrfs_tree_unlock(parent);
1361 free_extent_buffer(parent);
1362 return ret;
1366 * helper to find next relocated block in reloc tree
1368 static noinline_for_stack
1369 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1370 int *level)
1372 struct extent_buffer *eb;
1373 int i;
1374 u64 last_snapshot;
1375 u32 nritems;
1377 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1379 for (i = 0; i < *level; i++) {
1380 free_extent_buffer(path->nodes[i]);
1381 path->nodes[i] = NULL;
1384 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1385 eb = path->nodes[i];
1386 nritems = btrfs_header_nritems(eb);
1387 while (path->slots[i] + 1 < nritems) {
1388 path->slots[i]++;
1389 if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1390 last_snapshot)
1391 continue;
1393 *level = i;
1394 return 0;
1396 free_extent_buffer(path->nodes[i]);
1397 path->nodes[i] = NULL;
1399 return 1;
1403 * walk down reloc tree to find relocated block of lowest level
1405 static noinline_for_stack
1406 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1407 int *level)
1409 struct extent_buffer *eb = NULL;
1410 int i;
1411 u64 ptr_gen = 0;
1412 u64 last_snapshot;
1413 u32 nritems;
1415 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1417 for (i = *level; i > 0; i--) {
1418 eb = path->nodes[i];
1419 nritems = btrfs_header_nritems(eb);
1420 while (path->slots[i] < nritems) {
1421 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1422 if (ptr_gen > last_snapshot)
1423 break;
1424 path->slots[i]++;
1426 if (path->slots[i] >= nritems) {
1427 if (i == *level)
1428 break;
1429 *level = i + 1;
1430 return 0;
1432 if (i == 1) {
1433 *level = i;
1434 return 0;
1437 eb = btrfs_read_node_slot(eb, path->slots[i]);
1438 if (IS_ERR(eb))
1439 return PTR_ERR(eb);
1440 BUG_ON(btrfs_header_level(eb) != i - 1);
1441 path->nodes[i - 1] = eb;
1442 path->slots[i - 1] = 0;
1444 return 1;
1448 * invalidate extent cache for file extents whose key in range of
1449 * [min_key, max_key)
1451 static int invalidate_extent_cache(struct btrfs_root *root,
1452 struct btrfs_key *min_key,
1453 struct btrfs_key *max_key)
1455 struct btrfs_fs_info *fs_info = root->fs_info;
1456 struct inode *inode = NULL;
1457 u64 objectid;
1458 u64 start, end;
1459 u64 ino;
1461 objectid = min_key->objectid;
1462 while (1) {
1463 cond_resched();
1464 iput(inode);
1466 if (objectid > max_key->objectid)
1467 break;
1469 inode = find_next_inode(root, objectid);
1470 if (!inode)
1471 break;
1472 ino = btrfs_ino(BTRFS_I(inode));
1474 if (ino > max_key->objectid) {
1475 iput(inode);
1476 break;
1479 objectid = ino + 1;
1480 if (!S_ISREG(inode->i_mode))
1481 continue;
1483 if (unlikely(min_key->objectid == ino)) {
1484 if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1485 continue;
1486 if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1487 start = 0;
1488 else {
1489 start = min_key->offset;
1490 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1492 } else {
1493 start = 0;
1496 if (unlikely(max_key->objectid == ino)) {
1497 if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1498 continue;
1499 if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1500 end = (u64)-1;
1501 } else {
1502 if (max_key->offset == 0)
1503 continue;
1504 end = max_key->offset;
1505 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1506 end--;
1508 } else {
1509 end = (u64)-1;
1512 /* the lock_extent waits for readpage to complete */
1513 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
1514 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
1515 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
1517 return 0;
1520 static int find_next_key(struct btrfs_path *path, int level,
1521 struct btrfs_key *key)
1524 while (level < BTRFS_MAX_LEVEL) {
1525 if (!path->nodes[level])
1526 break;
1527 if (path->slots[level] + 1 <
1528 btrfs_header_nritems(path->nodes[level])) {
1529 btrfs_node_key_to_cpu(path->nodes[level], key,
1530 path->slots[level] + 1);
1531 return 0;
1533 level++;
1535 return 1;
1539 * Insert current subvolume into reloc_control::dirty_subvol_roots
1541 static void insert_dirty_subvol(struct btrfs_trans_handle *trans,
1542 struct reloc_control *rc,
1543 struct btrfs_root *root)
1545 struct btrfs_root *reloc_root = root->reloc_root;
1546 struct btrfs_root_item *reloc_root_item;
1548 /* @root must be a subvolume tree root with a valid reloc tree */
1549 ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1550 ASSERT(reloc_root);
1552 reloc_root_item = &reloc_root->root_item;
1553 memset(&reloc_root_item->drop_progress, 0,
1554 sizeof(reloc_root_item->drop_progress));
1555 btrfs_set_root_drop_level(reloc_root_item, 0);
1556 btrfs_set_root_refs(reloc_root_item, 0);
1557 btrfs_update_reloc_root(trans, root);
1559 if (list_empty(&root->reloc_dirty_list)) {
1560 btrfs_grab_root(root);
1561 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1565 static int clean_dirty_subvols(struct reloc_control *rc)
1567 struct btrfs_root *root;
1568 struct btrfs_root *next;
1569 int ret = 0;
1570 int ret2;
1572 list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1573 reloc_dirty_list) {
1574 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1575 /* Merged subvolume, cleanup its reloc root */
1576 struct btrfs_root *reloc_root = root->reloc_root;
1578 list_del_init(&root->reloc_dirty_list);
1579 root->reloc_root = NULL;
1581 * Need barrier to ensure clear_bit() only happens after
1582 * root->reloc_root = NULL. Pairs with have_reloc_root.
1584 smp_wmb();
1585 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1586 if (reloc_root) {
1588 * btrfs_drop_snapshot drops our ref we hold for
1589 * ->reloc_root. If it fails however we must
1590 * drop the ref ourselves.
1592 ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1593 if (ret2 < 0) {
1594 btrfs_put_root(reloc_root);
1595 if (!ret)
1596 ret = ret2;
1599 btrfs_put_root(root);
1600 } else {
1601 /* Orphan reloc tree, just clean it up */
1602 ret2 = btrfs_drop_snapshot(root, 0, 1);
1603 if (ret2 < 0) {
1604 btrfs_put_root(root);
1605 if (!ret)
1606 ret = ret2;
1610 return ret;
1614 * merge the relocated tree blocks in reloc tree with corresponding
1615 * fs tree.
1617 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1618 struct btrfs_root *root)
1620 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1621 struct btrfs_key key;
1622 struct btrfs_key next_key;
1623 struct btrfs_trans_handle *trans = NULL;
1624 struct btrfs_root *reloc_root;
1625 struct btrfs_root_item *root_item;
1626 struct btrfs_path *path;
1627 struct extent_buffer *leaf;
1628 int reserve_level;
1629 int level;
1630 int max_level;
1631 int replaced = 0;
1632 int ret = 0;
1633 u32 min_reserved;
1635 path = btrfs_alloc_path();
1636 if (!path)
1637 return -ENOMEM;
1638 path->reada = READA_FORWARD;
1640 reloc_root = root->reloc_root;
1641 root_item = &reloc_root->root_item;
1643 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1644 level = btrfs_root_level(root_item);
1645 atomic_inc(&reloc_root->node->refs);
1646 path->nodes[level] = reloc_root->node;
1647 path->slots[level] = 0;
1648 } else {
1649 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1651 level = btrfs_root_drop_level(root_item);
1652 BUG_ON(level == 0);
1653 path->lowest_level = level;
1654 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1655 path->lowest_level = 0;
1656 if (ret < 0) {
1657 btrfs_free_path(path);
1658 return ret;
1661 btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1662 path->slots[level]);
1663 WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1665 btrfs_unlock_up_safe(path, 0);
1669 * In merge_reloc_root(), we modify the upper level pointer to swap the
1670 * tree blocks between reloc tree and subvolume tree. Thus for tree
1671 * block COW, we COW at most from level 1 to root level for each tree.
1673 * Thus the needed metadata size is at most root_level * nodesize,
1674 * and * 2 since we have two trees to COW.
1676 reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1677 min_reserved = fs_info->nodesize * reserve_level * 2;
1678 memset(&next_key, 0, sizeof(next_key));
1680 while (1) {
1681 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
1682 BTRFS_RESERVE_FLUSH_LIMIT);
1683 if (ret)
1684 goto out;
1685 trans = btrfs_start_transaction(root, 0);
1686 if (IS_ERR(trans)) {
1687 ret = PTR_ERR(trans);
1688 trans = NULL;
1689 goto out;
1693 * At this point we no longer have a reloc_control, so we can't
1694 * depend on btrfs_init_reloc_root to update our last_trans.
1696 * But that's ok, we started the trans handle on our
1697 * corresponding fs_root, which means it's been added to the
1698 * dirty list. At commit time we'll still call
1699 * btrfs_update_reloc_root() and update our root item
1700 * appropriately.
1702 reloc_root->last_trans = trans->transid;
1703 trans->block_rsv = rc->block_rsv;
1705 replaced = 0;
1706 max_level = level;
1708 ret = walk_down_reloc_tree(reloc_root, path, &level);
1709 if (ret < 0)
1710 goto out;
1711 if (ret > 0)
1712 break;
1714 if (!find_next_key(path, level, &key) &&
1715 btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1716 ret = 0;
1717 } else {
1718 ret = replace_path(trans, rc, root, reloc_root, path,
1719 &next_key, level, max_level);
1721 if (ret < 0)
1722 goto out;
1723 if (ret > 0) {
1724 level = ret;
1725 btrfs_node_key_to_cpu(path->nodes[level], &key,
1726 path->slots[level]);
1727 replaced = 1;
1730 ret = walk_up_reloc_tree(reloc_root, path, &level);
1731 if (ret > 0)
1732 break;
1734 BUG_ON(level == 0);
1736 * save the merging progress in the drop_progress.
1737 * this is OK since root refs == 1 in this case.
1739 btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1740 path->slots[level]);
1741 btrfs_set_root_drop_level(root_item, level);
1743 btrfs_end_transaction_throttle(trans);
1744 trans = NULL;
1746 btrfs_btree_balance_dirty(fs_info);
1748 if (replaced && rc->stage == UPDATE_DATA_PTRS)
1749 invalidate_extent_cache(root, &key, &next_key);
1753 * handle the case only one block in the fs tree need to be
1754 * relocated and the block is tree root.
1756 leaf = btrfs_lock_root_node(root);
1757 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1758 BTRFS_NESTING_COW);
1759 btrfs_tree_unlock(leaf);
1760 free_extent_buffer(leaf);
1761 out:
1762 btrfs_free_path(path);
1764 if (ret == 0)
1765 insert_dirty_subvol(trans, rc, root);
1767 if (trans)
1768 btrfs_end_transaction_throttle(trans);
1770 btrfs_btree_balance_dirty(fs_info);
1772 if (replaced && rc->stage == UPDATE_DATA_PTRS)
1773 invalidate_extent_cache(root, &key, &next_key);
1775 return ret;
1778 static noinline_for_stack
1779 int prepare_to_merge(struct reloc_control *rc, int err)
1781 struct btrfs_root *root = rc->extent_root;
1782 struct btrfs_fs_info *fs_info = root->fs_info;
1783 struct btrfs_root *reloc_root;
1784 struct btrfs_trans_handle *trans;
1785 LIST_HEAD(reloc_roots);
1786 u64 num_bytes = 0;
1787 int ret;
1789 mutex_lock(&fs_info->reloc_mutex);
1790 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1791 rc->merging_rsv_size += rc->nodes_relocated * 2;
1792 mutex_unlock(&fs_info->reloc_mutex);
1794 again:
1795 if (!err) {
1796 num_bytes = rc->merging_rsv_size;
1797 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
1798 BTRFS_RESERVE_FLUSH_ALL);
1799 if (ret)
1800 err = ret;
1803 trans = btrfs_join_transaction(rc->extent_root);
1804 if (IS_ERR(trans)) {
1805 if (!err)
1806 btrfs_block_rsv_release(fs_info, rc->block_rsv,
1807 num_bytes, NULL);
1808 return PTR_ERR(trans);
1811 if (!err) {
1812 if (num_bytes != rc->merging_rsv_size) {
1813 btrfs_end_transaction(trans);
1814 btrfs_block_rsv_release(fs_info, rc->block_rsv,
1815 num_bytes, NULL);
1816 goto again;
1820 rc->merge_reloc_tree = 1;
1822 while (!list_empty(&rc->reloc_roots)) {
1823 reloc_root = list_entry(rc->reloc_roots.next,
1824 struct btrfs_root, root_list);
1825 list_del_init(&reloc_root->root_list);
1827 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1828 false);
1829 BUG_ON(IS_ERR(root));
1830 BUG_ON(root->reloc_root != reloc_root);
1833 * set reference count to 1, so btrfs_recover_relocation
1834 * knows it should resumes merging
1836 if (!err)
1837 btrfs_set_root_refs(&reloc_root->root_item, 1);
1838 btrfs_update_reloc_root(trans, root);
1840 list_add(&reloc_root->root_list, &reloc_roots);
1841 btrfs_put_root(root);
1844 list_splice(&reloc_roots, &rc->reloc_roots);
1846 if (!err)
1847 btrfs_commit_transaction(trans);
1848 else
1849 btrfs_end_transaction(trans);
1850 return err;
1853 static noinline_for_stack
1854 void free_reloc_roots(struct list_head *list)
1856 struct btrfs_root *reloc_root, *tmp;
1858 list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1859 __del_reloc_root(reloc_root);
1862 static noinline_for_stack
1863 void merge_reloc_roots(struct reloc_control *rc)
1865 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1866 struct btrfs_root *root;
1867 struct btrfs_root *reloc_root;
1868 LIST_HEAD(reloc_roots);
1869 int found = 0;
1870 int ret = 0;
1871 again:
1872 root = rc->extent_root;
1875 * this serializes us with btrfs_record_root_in_transaction,
1876 * we have to make sure nobody is in the middle of
1877 * adding their roots to the list while we are
1878 * doing this splice
1880 mutex_lock(&fs_info->reloc_mutex);
1881 list_splice_init(&rc->reloc_roots, &reloc_roots);
1882 mutex_unlock(&fs_info->reloc_mutex);
1884 while (!list_empty(&reloc_roots)) {
1885 found = 1;
1886 reloc_root = list_entry(reloc_roots.next,
1887 struct btrfs_root, root_list);
1889 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1890 false);
1891 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
1892 BUG_ON(IS_ERR(root));
1893 BUG_ON(root->reloc_root != reloc_root);
1894 ret = merge_reloc_root(rc, root);
1895 btrfs_put_root(root);
1896 if (ret) {
1897 if (list_empty(&reloc_root->root_list))
1898 list_add_tail(&reloc_root->root_list,
1899 &reloc_roots);
1900 goto out;
1902 } else {
1903 if (!IS_ERR(root)) {
1904 if (root->reloc_root == reloc_root) {
1905 root->reloc_root = NULL;
1906 btrfs_put_root(reloc_root);
1908 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
1909 &root->state);
1910 btrfs_put_root(root);
1913 list_del_init(&reloc_root->root_list);
1914 /* Don't forget to queue this reloc root for cleanup */
1915 list_add_tail(&reloc_root->reloc_dirty_list,
1916 &rc->dirty_subvol_roots);
1920 if (found) {
1921 found = 0;
1922 goto again;
1924 out:
1925 if (ret) {
1926 btrfs_handle_fs_error(fs_info, ret, NULL);
1927 free_reloc_roots(&reloc_roots);
1929 /* new reloc root may be added */
1930 mutex_lock(&fs_info->reloc_mutex);
1931 list_splice_init(&rc->reloc_roots, &reloc_roots);
1932 mutex_unlock(&fs_info->reloc_mutex);
1933 free_reloc_roots(&reloc_roots);
1937 * We used to have
1939 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
1941 * here, but it's wrong. If we fail to start the transaction in
1942 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
1943 * have actually been removed from the reloc_root_tree rb tree. This is
1944 * fine because we're bailing here, and we hold a reference on the root
1945 * for the list that holds it, so these roots will be cleaned up when we
1946 * do the reloc_dirty_list afterwards. Meanwhile the root->reloc_root
1947 * will be cleaned up on unmount.
1949 * The remaining nodes will be cleaned up by free_reloc_control.
1953 static void free_block_list(struct rb_root *blocks)
1955 struct tree_block *block;
1956 struct rb_node *rb_node;
1957 while ((rb_node = rb_first(blocks))) {
1958 block = rb_entry(rb_node, struct tree_block, rb_node);
1959 rb_erase(rb_node, blocks);
1960 kfree(block);
1964 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
1965 struct btrfs_root *reloc_root)
1967 struct btrfs_fs_info *fs_info = reloc_root->fs_info;
1968 struct btrfs_root *root;
1969 int ret;
1971 if (reloc_root->last_trans == trans->transid)
1972 return 0;
1974 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
1975 BUG_ON(IS_ERR(root));
1976 BUG_ON(root->reloc_root != reloc_root);
1977 ret = btrfs_record_root_in_trans(trans, root);
1978 btrfs_put_root(root);
1980 return ret;
1983 static noinline_for_stack
1984 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
1985 struct reloc_control *rc,
1986 struct btrfs_backref_node *node,
1987 struct btrfs_backref_edge *edges[])
1989 struct btrfs_backref_node *next;
1990 struct btrfs_root *root;
1991 int index = 0;
1993 next = node;
1994 while (1) {
1995 cond_resched();
1996 next = walk_up_backref(next, edges, &index);
1997 root = next->root;
1998 BUG_ON(!root);
1999 BUG_ON(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state));
2001 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2002 record_reloc_root_in_trans(trans, root);
2003 break;
2006 btrfs_record_root_in_trans(trans, root);
2007 root = root->reloc_root;
2009 if (next->new_bytenr != root->node->start) {
2010 BUG_ON(next->new_bytenr);
2011 BUG_ON(!list_empty(&next->list));
2012 next->new_bytenr = root->node->start;
2013 btrfs_put_root(next->root);
2014 next->root = btrfs_grab_root(root);
2015 ASSERT(next->root);
2016 list_add_tail(&next->list,
2017 &rc->backref_cache.changed);
2018 mark_block_processed(rc, next);
2019 break;
2022 WARN_ON(1);
2023 root = NULL;
2024 next = walk_down_backref(edges, &index);
2025 if (!next || next->level <= node->level)
2026 break;
2028 if (!root)
2029 return NULL;
2031 next = node;
2032 /* setup backref node path for btrfs_reloc_cow_block */
2033 while (1) {
2034 rc->backref_cache.path[next->level] = next;
2035 if (--index < 0)
2036 break;
2037 next = edges[index]->node[UPPER];
2039 return root;
2043 * Select a tree root for relocation.
2045 * Return NULL if the block is not shareable. We should use do_relocation() in
2046 * this case.
2048 * Return a tree root pointer if the block is shareable.
2049 * Return -ENOENT if the block is root of reloc tree.
2051 static noinline_for_stack
2052 struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2054 struct btrfs_backref_node *next;
2055 struct btrfs_root *root;
2056 struct btrfs_root *fs_root = NULL;
2057 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2058 int index = 0;
2060 next = node;
2061 while (1) {
2062 cond_resched();
2063 next = walk_up_backref(next, edges, &index);
2064 root = next->root;
2065 BUG_ON(!root);
2067 /* No other choice for non-shareable tree */
2068 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2069 return root;
2071 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2072 fs_root = root;
2074 if (next != node)
2075 return NULL;
2077 next = walk_down_backref(edges, &index);
2078 if (!next || next->level <= node->level)
2079 break;
2082 if (!fs_root)
2083 return ERR_PTR(-ENOENT);
2084 return fs_root;
2087 static noinline_for_stack
2088 u64 calcu_metadata_size(struct reloc_control *rc,
2089 struct btrfs_backref_node *node, int reserve)
2091 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2092 struct btrfs_backref_node *next = node;
2093 struct btrfs_backref_edge *edge;
2094 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2095 u64 num_bytes = 0;
2096 int index = 0;
2098 BUG_ON(reserve && node->processed);
2100 while (next) {
2101 cond_resched();
2102 while (1) {
2103 if (next->processed && (reserve || next != node))
2104 break;
2106 num_bytes += fs_info->nodesize;
2108 if (list_empty(&next->upper))
2109 break;
2111 edge = list_entry(next->upper.next,
2112 struct btrfs_backref_edge, list[LOWER]);
2113 edges[index++] = edge;
2114 next = edge->node[UPPER];
2116 next = walk_down_backref(edges, &index);
2118 return num_bytes;
2121 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2122 struct reloc_control *rc,
2123 struct btrfs_backref_node *node)
2125 struct btrfs_root *root = rc->extent_root;
2126 struct btrfs_fs_info *fs_info = root->fs_info;
2127 u64 num_bytes;
2128 int ret;
2129 u64 tmp;
2131 num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2133 trans->block_rsv = rc->block_rsv;
2134 rc->reserved_bytes += num_bytes;
2137 * We are under a transaction here so we can only do limited flushing.
2138 * If we get an enospc just kick back -EAGAIN so we know to drop the
2139 * transaction and try to refill when we can flush all the things.
2141 ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2142 BTRFS_RESERVE_FLUSH_LIMIT);
2143 if (ret) {
2144 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2145 while (tmp <= rc->reserved_bytes)
2146 tmp <<= 1;
2148 * only one thread can access block_rsv at this point,
2149 * so we don't need hold lock to protect block_rsv.
2150 * we expand more reservation size here to allow enough
2151 * space for relocation and we will return earlier in
2152 * enospc case.
2154 rc->block_rsv->size = tmp + fs_info->nodesize *
2155 RELOCATION_RESERVED_NODES;
2156 return -EAGAIN;
2159 return 0;
2163 * relocate a block tree, and then update pointers in upper level
2164 * blocks that reference the block to point to the new location.
2166 * if called by link_to_upper, the block has already been relocated.
2167 * in that case this function just updates pointers.
2169 static int do_relocation(struct btrfs_trans_handle *trans,
2170 struct reloc_control *rc,
2171 struct btrfs_backref_node *node,
2172 struct btrfs_key *key,
2173 struct btrfs_path *path, int lowest)
2175 struct btrfs_backref_node *upper;
2176 struct btrfs_backref_edge *edge;
2177 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2178 struct btrfs_root *root;
2179 struct extent_buffer *eb;
2180 u32 blocksize;
2181 u64 bytenr;
2182 int slot;
2183 int ret = 0;
2185 BUG_ON(lowest && node->eb);
2187 path->lowest_level = node->level + 1;
2188 rc->backref_cache.path[node->level] = node;
2189 list_for_each_entry(edge, &node->upper, list[LOWER]) {
2190 struct btrfs_ref ref = { 0 };
2192 cond_resched();
2194 upper = edge->node[UPPER];
2195 root = select_reloc_root(trans, rc, upper, edges);
2196 BUG_ON(!root);
2198 if (upper->eb && !upper->locked) {
2199 if (!lowest) {
2200 ret = btrfs_bin_search(upper->eb, key, &slot);
2201 if (ret < 0)
2202 goto next;
2203 BUG_ON(ret);
2204 bytenr = btrfs_node_blockptr(upper->eb, slot);
2205 if (node->eb->start == bytenr)
2206 goto next;
2208 btrfs_backref_drop_node_buffer(upper);
2211 if (!upper->eb) {
2212 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2213 if (ret) {
2214 if (ret > 0)
2215 ret = -ENOENT;
2217 btrfs_release_path(path);
2218 break;
2221 if (!upper->eb) {
2222 upper->eb = path->nodes[upper->level];
2223 path->nodes[upper->level] = NULL;
2224 } else {
2225 BUG_ON(upper->eb != path->nodes[upper->level]);
2228 upper->locked = 1;
2229 path->locks[upper->level] = 0;
2231 slot = path->slots[upper->level];
2232 btrfs_release_path(path);
2233 } else {
2234 ret = btrfs_bin_search(upper->eb, key, &slot);
2235 if (ret < 0)
2236 goto next;
2237 BUG_ON(ret);
2240 bytenr = btrfs_node_blockptr(upper->eb, slot);
2241 if (lowest) {
2242 if (bytenr != node->bytenr) {
2243 btrfs_err(root->fs_info,
2244 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2245 bytenr, node->bytenr, slot,
2246 upper->eb->start);
2247 ret = -EIO;
2248 goto next;
2250 } else {
2251 if (node->eb->start == bytenr)
2252 goto next;
2255 blocksize = root->fs_info->nodesize;
2256 eb = btrfs_read_node_slot(upper->eb, slot);
2257 if (IS_ERR(eb)) {
2258 ret = PTR_ERR(eb);
2259 goto next;
2261 btrfs_tree_lock(eb);
2263 if (!node->eb) {
2264 ret = btrfs_cow_block(trans, root, eb, upper->eb,
2265 slot, &eb, BTRFS_NESTING_COW);
2266 btrfs_tree_unlock(eb);
2267 free_extent_buffer(eb);
2268 if (ret < 0)
2269 goto next;
2270 BUG_ON(node->eb != eb);
2271 } else {
2272 btrfs_set_node_blockptr(upper->eb, slot,
2273 node->eb->start);
2274 btrfs_set_node_ptr_generation(upper->eb, slot,
2275 trans->transid);
2276 btrfs_mark_buffer_dirty(upper->eb);
2278 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2279 node->eb->start, blocksize,
2280 upper->eb->start);
2281 ref.real_root = root->root_key.objectid;
2282 btrfs_init_tree_ref(&ref, node->level,
2283 btrfs_header_owner(upper->eb));
2284 ret = btrfs_inc_extent_ref(trans, &ref);
2285 BUG_ON(ret);
2287 ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2288 BUG_ON(ret);
2290 next:
2291 if (!upper->pending)
2292 btrfs_backref_drop_node_buffer(upper);
2293 else
2294 btrfs_backref_unlock_node_buffer(upper);
2295 if (ret)
2296 break;
2299 if (!ret && node->pending) {
2300 btrfs_backref_drop_node_buffer(node);
2301 list_move_tail(&node->list, &rc->backref_cache.changed);
2302 node->pending = 0;
2305 path->lowest_level = 0;
2306 BUG_ON(ret == -ENOSPC);
2307 return ret;
2310 static int link_to_upper(struct btrfs_trans_handle *trans,
2311 struct reloc_control *rc,
2312 struct btrfs_backref_node *node,
2313 struct btrfs_path *path)
2315 struct btrfs_key key;
2317 btrfs_node_key_to_cpu(node->eb, &key, 0);
2318 return do_relocation(trans, rc, node, &key, path, 0);
2321 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2322 struct reloc_control *rc,
2323 struct btrfs_path *path, int err)
2325 LIST_HEAD(list);
2326 struct btrfs_backref_cache *cache = &rc->backref_cache;
2327 struct btrfs_backref_node *node;
2328 int level;
2329 int ret;
2331 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2332 while (!list_empty(&cache->pending[level])) {
2333 node = list_entry(cache->pending[level].next,
2334 struct btrfs_backref_node, list);
2335 list_move_tail(&node->list, &list);
2336 BUG_ON(!node->pending);
2338 if (!err) {
2339 ret = link_to_upper(trans, rc, node, path);
2340 if (ret < 0)
2341 err = ret;
2344 list_splice_init(&list, &cache->pending[level]);
2346 return err;
2350 * mark a block and all blocks directly/indirectly reference the block
2351 * as processed.
2353 static void update_processed_blocks(struct reloc_control *rc,
2354 struct btrfs_backref_node *node)
2356 struct btrfs_backref_node *next = node;
2357 struct btrfs_backref_edge *edge;
2358 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2359 int index = 0;
2361 while (next) {
2362 cond_resched();
2363 while (1) {
2364 if (next->processed)
2365 break;
2367 mark_block_processed(rc, next);
2369 if (list_empty(&next->upper))
2370 break;
2372 edge = list_entry(next->upper.next,
2373 struct btrfs_backref_edge, list[LOWER]);
2374 edges[index++] = edge;
2375 next = edge->node[UPPER];
2377 next = walk_down_backref(edges, &index);
2381 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2383 u32 blocksize = rc->extent_root->fs_info->nodesize;
2385 if (test_range_bit(&rc->processed_blocks, bytenr,
2386 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2387 return 1;
2388 return 0;
2391 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2392 struct tree_block *block)
2394 struct extent_buffer *eb;
2396 eb = read_tree_block(fs_info, block->bytenr, 0, block->key.offset,
2397 block->level, NULL);
2398 if (IS_ERR(eb)) {
2399 return PTR_ERR(eb);
2400 } else if (!extent_buffer_uptodate(eb)) {
2401 free_extent_buffer(eb);
2402 return -EIO;
2404 if (block->level == 0)
2405 btrfs_item_key_to_cpu(eb, &block->key, 0);
2406 else
2407 btrfs_node_key_to_cpu(eb, &block->key, 0);
2408 free_extent_buffer(eb);
2409 block->key_ready = 1;
2410 return 0;
2414 * helper function to relocate a tree block
2416 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2417 struct reloc_control *rc,
2418 struct btrfs_backref_node *node,
2419 struct btrfs_key *key,
2420 struct btrfs_path *path)
2422 struct btrfs_root *root;
2423 int ret = 0;
2425 if (!node)
2426 return 0;
2429 * If we fail here we want to drop our backref_node because we are going
2430 * to start over and regenerate the tree for it.
2432 ret = reserve_metadata_space(trans, rc, node);
2433 if (ret)
2434 goto out;
2436 BUG_ON(node->processed);
2437 root = select_one_root(node);
2438 if (root == ERR_PTR(-ENOENT)) {
2439 update_processed_blocks(rc, node);
2440 goto out;
2443 if (root) {
2444 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2445 BUG_ON(node->new_bytenr);
2446 BUG_ON(!list_empty(&node->list));
2447 btrfs_record_root_in_trans(trans, root);
2448 root = root->reloc_root;
2449 node->new_bytenr = root->node->start;
2450 btrfs_put_root(node->root);
2451 node->root = btrfs_grab_root(root);
2452 ASSERT(node->root);
2453 list_add_tail(&node->list, &rc->backref_cache.changed);
2454 } else {
2455 path->lowest_level = node->level;
2456 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2457 btrfs_release_path(path);
2458 if (ret > 0)
2459 ret = 0;
2461 if (!ret)
2462 update_processed_blocks(rc, node);
2463 } else {
2464 ret = do_relocation(trans, rc, node, key, path, 1);
2466 out:
2467 if (ret || node->level == 0 || node->cowonly)
2468 btrfs_backref_cleanup_node(&rc->backref_cache, node);
2469 return ret;
2473 * relocate a list of blocks
2475 static noinline_for_stack
2476 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2477 struct reloc_control *rc, struct rb_root *blocks)
2479 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2480 struct btrfs_backref_node *node;
2481 struct btrfs_path *path;
2482 struct tree_block *block;
2483 struct tree_block *next;
2484 int ret;
2485 int err = 0;
2487 path = btrfs_alloc_path();
2488 if (!path) {
2489 err = -ENOMEM;
2490 goto out_free_blocks;
2493 /* Kick in readahead for tree blocks with missing keys */
2494 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2495 if (!block->key_ready)
2496 btrfs_readahead_tree_block(fs_info, block->bytenr, 0, 0,
2497 block->level);
2500 /* Get first keys */
2501 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2502 if (!block->key_ready) {
2503 err = get_tree_block_key(fs_info, block);
2504 if (err)
2505 goto out_free_path;
2509 /* Do tree relocation */
2510 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2511 node = build_backref_tree(rc, &block->key,
2512 block->level, block->bytenr);
2513 if (IS_ERR(node)) {
2514 err = PTR_ERR(node);
2515 goto out;
2518 ret = relocate_tree_block(trans, rc, node, &block->key,
2519 path);
2520 if (ret < 0) {
2521 err = ret;
2522 break;
2525 out:
2526 err = finish_pending_nodes(trans, rc, path, err);
2528 out_free_path:
2529 btrfs_free_path(path);
2530 out_free_blocks:
2531 free_block_list(blocks);
2532 return err;
2535 static noinline_for_stack int prealloc_file_extent_cluster(
2536 struct btrfs_inode *inode,
2537 struct file_extent_cluster *cluster)
2539 u64 alloc_hint = 0;
2540 u64 start;
2541 u64 end;
2542 u64 offset = inode->index_cnt;
2543 u64 num_bytes;
2544 int nr;
2545 int ret = 0;
2546 u64 prealloc_start = cluster->start - offset;
2547 u64 prealloc_end = cluster->end - offset;
2548 u64 cur_offset = prealloc_start;
2550 BUG_ON(cluster->start != cluster->boundary[0]);
2551 ret = btrfs_alloc_data_chunk_ondemand(inode,
2552 prealloc_end + 1 - prealloc_start);
2553 if (ret)
2554 return ret;
2556 inode_lock(&inode->vfs_inode);
2557 for (nr = 0; nr < cluster->nr; nr++) {
2558 start = cluster->boundary[nr] - offset;
2559 if (nr + 1 < cluster->nr)
2560 end = cluster->boundary[nr + 1] - 1 - offset;
2561 else
2562 end = cluster->end - offset;
2564 lock_extent(&inode->io_tree, start, end);
2565 num_bytes = end + 1 - start;
2566 ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2567 num_bytes, num_bytes,
2568 end + 1, &alloc_hint);
2569 cur_offset = end + 1;
2570 unlock_extent(&inode->io_tree, start, end);
2571 if (ret)
2572 break;
2574 inode_unlock(&inode->vfs_inode);
2576 if (cur_offset < prealloc_end)
2577 btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2578 prealloc_end + 1 - cur_offset);
2579 return ret;
2582 static noinline_for_stack
2583 int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
2584 u64 block_start)
2586 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2587 struct extent_map *em;
2588 int ret = 0;
2590 em = alloc_extent_map();
2591 if (!em)
2592 return -ENOMEM;
2594 em->start = start;
2595 em->len = end + 1 - start;
2596 em->block_len = em->len;
2597 em->block_start = block_start;
2598 set_bit(EXTENT_FLAG_PINNED, &em->flags);
2600 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2601 while (1) {
2602 write_lock(&em_tree->lock);
2603 ret = add_extent_mapping(em_tree, em, 0);
2604 write_unlock(&em_tree->lock);
2605 if (ret != -EEXIST) {
2606 free_extent_map(em);
2607 break;
2609 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
2611 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2612 return ret;
2616 * Allow error injection to test balance cancellation
2618 int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info)
2620 return atomic_read(&fs_info->balance_cancel_req) ||
2621 fatal_signal_pending(current);
2623 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2625 static int relocate_file_extent_cluster(struct inode *inode,
2626 struct file_extent_cluster *cluster)
2628 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2629 u64 page_start;
2630 u64 page_end;
2631 u64 offset = BTRFS_I(inode)->index_cnt;
2632 unsigned long index;
2633 unsigned long last_index;
2634 struct page *page;
2635 struct file_ra_state *ra;
2636 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2637 int nr = 0;
2638 int ret = 0;
2640 if (!cluster->nr)
2641 return 0;
2643 ra = kzalloc(sizeof(*ra), GFP_NOFS);
2644 if (!ra)
2645 return -ENOMEM;
2647 ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster);
2648 if (ret)
2649 goto out;
2651 file_ra_state_init(ra, inode->i_mapping);
2653 ret = setup_extent_mapping(inode, cluster->start - offset,
2654 cluster->end - offset, cluster->start);
2655 if (ret)
2656 goto out;
2658 index = (cluster->start - offset) >> PAGE_SHIFT;
2659 last_index = (cluster->end - offset) >> PAGE_SHIFT;
2660 while (index <= last_index) {
2661 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
2662 PAGE_SIZE);
2663 if (ret)
2664 goto out;
2666 page = find_lock_page(inode->i_mapping, index);
2667 if (!page) {
2668 page_cache_sync_readahead(inode->i_mapping,
2669 ra, NULL, index,
2670 last_index + 1 - index);
2671 page = find_or_create_page(inode->i_mapping, index,
2672 mask);
2673 if (!page) {
2674 btrfs_delalloc_release_metadata(BTRFS_I(inode),
2675 PAGE_SIZE, true);
2676 btrfs_delalloc_release_extents(BTRFS_I(inode),
2677 PAGE_SIZE);
2678 ret = -ENOMEM;
2679 goto out;
2683 if (PageReadahead(page)) {
2684 page_cache_async_readahead(inode->i_mapping,
2685 ra, NULL, page, index,
2686 last_index + 1 - index);
2689 if (!PageUptodate(page)) {
2690 btrfs_readpage(NULL, page);
2691 lock_page(page);
2692 if (!PageUptodate(page)) {
2693 unlock_page(page);
2694 put_page(page);
2695 btrfs_delalloc_release_metadata(BTRFS_I(inode),
2696 PAGE_SIZE, true);
2697 btrfs_delalloc_release_extents(BTRFS_I(inode),
2698 PAGE_SIZE);
2699 ret = -EIO;
2700 goto out;
2704 page_start = page_offset(page);
2705 page_end = page_start + PAGE_SIZE - 1;
2707 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
2709 set_page_extent_mapped(page);
2711 if (nr < cluster->nr &&
2712 page_start + offset == cluster->boundary[nr]) {
2713 set_extent_bits(&BTRFS_I(inode)->io_tree,
2714 page_start, page_end,
2715 EXTENT_BOUNDARY);
2716 nr++;
2719 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start,
2720 page_end, 0, NULL);
2721 if (ret) {
2722 unlock_page(page);
2723 put_page(page);
2724 btrfs_delalloc_release_metadata(BTRFS_I(inode),
2725 PAGE_SIZE, true);
2726 btrfs_delalloc_release_extents(BTRFS_I(inode),
2727 PAGE_SIZE);
2729 clear_extent_bits(&BTRFS_I(inode)->io_tree,
2730 page_start, page_end,
2731 EXTENT_LOCKED | EXTENT_BOUNDARY);
2732 goto out;
2735 set_page_dirty(page);
2737 unlock_extent(&BTRFS_I(inode)->io_tree,
2738 page_start, page_end);
2739 unlock_page(page);
2740 put_page(page);
2742 index++;
2743 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
2744 balance_dirty_pages_ratelimited(inode->i_mapping);
2745 btrfs_throttle(fs_info);
2746 if (btrfs_should_cancel_balance(fs_info)) {
2747 ret = -ECANCELED;
2748 goto out;
2751 WARN_ON(nr != cluster->nr);
2752 out:
2753 kfree(ra);
2754 return ret;
2757 static noinline_for_stack
2758 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
2759 struct file_extent_cluster *cluster)
2761 int ret;
2763 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
2764 ret = relocate_file_extent_cluster(inode, cluster);
2765 if (ret)
2766 return ret;
2767 cluster->nr = 0;
2770 if (!cluster->nr)
2771 cluster->start = extent_key->objectid;
2772 else
2773 BUG_ON(cluster->nr >= MAX_EXTENTS);
2774 cluster->end = extent_key->objectid + extent_key->offset - 1;
2775 cluster->boundary[cluster->nr] = extent_key->objectid;
2776 cluster->nr++;
2778 if (cluster->nr >= MAX_EXTENTS) {
2779 ret = relocate_file_extent_cluster(inode, cluster);
2780 if (ret)
2781 return ret;
2782 cluster->nr = 0;
2784 return 0;
2788 * helper to add a tree block to the list.
2789 * the major work is getting the generation and level of the block
2791 static int add_tree_block(struct reloc_control *rc,
2792 struct btrfs_key *extent_key,
2793 struct btrfs_path *path,
2794 struct rb_root *blocks)
2796 struct extent_buffer *eb;
2797 struct btrfs_extent_item *ei;
2798 struct btrfs_tree_block_info *bi;
2799 struct tree_block *block;
2800 struct rb_node *rb_node;
2801 u32 item_size;
2802 int level = -1;
2803 u64 generation;
2805 eb = path->nodes[0];
2806 item_size = btrfs_item_size_nr(eb, path->slots[0]);
2808 if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
2809 item_size >= sizeof(*ei) + sizeof(*bi)) {
2810 ei = btrfs_item_ptr(eb, path->slots[0],
2811 struct btrfs_extent_item);
2812 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
2813 bi = (struct btrfs_tree_block_info *)(ei + 1);
2814 level = btrfs_tree_block_level(eb, bi);
2815 } else {
2816 level = (int)extent_key->offset;
2818 generation = btrfs_extent_generation(eb, ei);
2819 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
2820 btrfs_print_v0_err(eb->fs_info);
2821 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
2822 return -EINVAL;
2823 } else {
2824 BUG();
2827 btrfs_release_path(path);
2829 BUG_ON(level == -1);
2831 block = kmalloc(sizeof(*block), GFP_NOFS);
2832 if (!block)
2833 return -ENOMEM;
2835 block->bytenr = extent_key->objectid;
2836 block->key.objectid = rc->extent_root->fs_info->nodesize;
2837 block->key.offset = generation;
2838 block->level = level;
2839 block->key_ready = 0;
2841 rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
2842 if (rb_node)
2843 btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
2844 -EEXIST);
2846 return 0;
2850 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
2852 static int __add_tree_block(struct reloc_control *rc,
2853 u64 bytenr, u32 blocksize,
2854 struct rb_root *blocks)
2856 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2857 struct btrfs_path *path;
2858 struct btrfs_key key;
2859 int ret;
2860 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2862 if (tree_block_processed(bytenr, rc))
2863 return 0;
2865 if (rb_simple_search(blocks, bytenr))
2866 return 0;
2868 path = btrfs_alloc_path();
2869 if (!path)
2870 return -ENOMEM;
2871 again:
2872 key.objectid = bytenr;
2873 if (skinny) {
2874 key.type = BTRFS_METADATA_ITEM_KEY;
2875 key.offset = (u64)-1;
2876 } else {
2877 key.type = BTRFS_EXTENT_ITEM_KEY;
2878 key.offset = blocksize;
2881 path->search_commit_root = 1;
2882 path->skip_locking = 1;
2883 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
2884 if (ret < 0)
2885 goto out;
2887 if (ret > 0 && skinny) {
2888 if (path->slots[0]) {
2889 path->slots[0]--;
2890 btrfs_item_key_to_cpu(path->nodes[0], &key,
2891 path->slots[0]);
2892 if (key.objectid == bytenr &&
2893 (key.type == BTRFS_METADATA_ITEM_KEY ||
2894 (key.type == BTRFS_EXTENT_ITEM_KEY &&
2895 key.offset == blocksize)))
2896 ret = 0;
2899 if (ret) {
2900 skinny = false;
2901 btrfs_release_path(path);
2902 goto again;
2905 if (ret) {
2906 ASSERT(ret == 1);
2907 btrfs_print_leaf(path->nodes[0]);
2908 btrfs_err(fs_info,
2909 "tree block extent item (%llu) is not found in extent tree",
2910 bytenr);
2911 WARN_ON(1);
2912 ret = -EINVAL;
2913 goto out;
2916 ret = add_tree_block(rc, &key, path, blocks);
2917 out:
2918 btrfs_free_path(path);
2919 return ret;
2922 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
2923 struct btrfs_block_group *block_group,
2924 struct inode *inode,
2925 u64 ino)
2927 struct btrfs_root *root = fs_info->tree_root;
2928 struct btrfs_trans_handle *trans;
2929 int ret = 0;
2931 if (inode)
2932 goto truncate;
2934 inode = btrfs_iget(fs_info->sb, ino, root);
2935 if (IS_ERR(inode))
2936 return -ENOENT;
2938 truncate:
2939 ret = btrfs_check_trunc_cache_free_space(fs_info,
2940 &fs_info->global_block_rsv);
2941 if (ret)
2942 goto out;
2944 trans = btrfs_join_transaction(root);
2945 if (IS_ERR(trans)) {
2946 ret = PTR_ERR(trans);
2947 goto out;
2950 ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
2952 btrfs_end_transaction(trans);
2953 btrfs_btree_balance_dirty(fs_info);
2954 out:
2955 iput(inode);
2956 return ret;
2960 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
2961 * cache inode, to avoid free space cache data extent blocking data relocation.
2963 static int delete_v1_space_cache(struct extent_buffer *leaf,
2964 struct btrfs_block_group *block_group,
2965 u64 data_bytenr)
2967 u64 space_cache_ino;
2968 struct btrfs_file_extent_item *ei;
2969 struct btrfs_key key;
2970 bool found = false;
2971 int i;
2972 int ret;
2974 if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
2975 return 0;
2977 for (i = 0; i < btrfs_header_nritems(leaf); i++) {
2978 btrfs_item_key_to_cpu(leaf, &key, i);
2979 if (key.type != BTRFS_EXTENT_DATA_KEY)
2980 continue;
2981 ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
2982 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_REG &&
2983 btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
2984 found = true;
2985 space_cache_ino = key.objectid;
2986 break;
2989 if (!found)
2990 return -ENOENT;
2991 ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
2992 space_cache_ino);
2993 return ret;
2997 * helper to find all tree blocks that reference a given data extent
2999 static noinline_for_stack
3000 int add_data_references(struct reloc_control *rc,
3001 struct btrfs_key *extent_key,
3002 struct btrfs_path *path,
3003 struct rb_root *blocks)
3005 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3006 struct ulist *leaves = NULL;
3007 struct ulist_iterator leaf_uiter;
3008 struct ulist_node *ref_node = NULL;
3009 const u32 blocksize = fs_info->nodesize;
3010 int ret = 0;
3012 btrfs_release_path(path);
3013 ret = btrfs_find_all_leafs(NULL, fs_info, extent_key->objectid,
3014 0, &leaves, NULL, true);
3015 if (ret < 0)
3016 return ret;
3018 ULIST_ITER_INIT(&leaf_uiter);
3019 while ((ref_node = ulist_next(leaves, &leaf_uiter))) {
3020 struct extent_buffer *eb;
3022 eb = read_tree_block(fs_info, ref_node->val, 0, 0, 0, NULL);
3023 if (IS_ERR(eb)) {
3024 ret = PTR_ERR(eb);
3025 break;
3027 ret = delete_v1_space_cache(eb, rc->block_group,
3028 extent_key->objectid);
3029 free_extent_buffer(eb);
3030 if (ret < 0)
3031 break;
3032 ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3033 if (ret < 0)
3034 break;
3036 if (ret < 0)
3037 free_block_list(blocks);
3038 ulist_free(leaves);
3039 return ret;
3043 * helper to find next unprocessed extent
3045 static noinline_for_stack
3046 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3047 struct btrfs_key *extent_key)
3049 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3050 struct btrfs_key key;
3051 struct extent_buffer *leaf;
3052 u64 start, end, last;
3053 int ret;
3055 last = rc->block_group->start + rc->block_group->length;
3056 while (1) {
3057 cond_resched();
3058 if (rc->search_start >= last) {
3059 ret = 1;
3060 break;
3063 key.objectid = rc->search_start;
3064 key.type = BTRFS_EXTENT_ITEM_KEY;
3065 key.offset = 0;
3067 path->search_commit_root = 1;
3068 path->skip_locking = 1;
3069 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3070 0, 0);
3071 if (ret < 0)
3072 break;
3073 next:
3074 leaf = path->nodes[0];
3075 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3076 ret = btrfs_next_leaf(rc->extent_root, path);
3077 if (ret != 0)
3078 break;
3079 leaf = path->nodes[0];
3082 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3083 if (key.objectid >= last) {
3084 ret = 1;
3085 break;
3088 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3089 key.type != BTRFS_METADATA_ITEM_KEY) {
3090 path->slots[0]++;
3091 goto next;
3094 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3095 key.objectid + key.offset <= rc->search_start) {
3096 path->slots[0]++;
3097 goto next;
3100 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3101 key.objectid + fs_info->nodesize <=
3102 rc->search_start) {
3103 path->slots[0]++;
3104 goto next;
3107 ret = find_first_extent_bit(&rc->processed_blocks,
3108 key.objectid, &start, &end,
3109 EXTENT_DIRTY, NULL);
3111 if (ret == 0 && start <= key.objectid) {
3112 btrfs_release_path(path);
3113 rc->search_start = end + 1;
3114 } else {
3115 if (key.type == BTRFS_EXTENT_ITEM_KEY)
3116 rc->search_start = key.objectid + key.offset;
3117 else
3118 rc->search_start = key.objectid +
3119 fs_info->nodesize;
3120 memcpy(extent_key, &key, sizeof(key));
3121 return 0;
3124 btrfs_release_path(path);
3125 return ret;
3128 static void set_reloc_control(struct reloc_control *rc)
3130 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3132 mutex_lock(&fs_info->reloc_mutex);
3133 fs_info->reloc_ctl = rc;
3134 mutex_unlock(&fs_info->reloc_mutex);
3137 static void unset_reloc_control(struct reloc_control *rc)
3139 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3141 mutex_lock(&fs_info->reloc_mutex);
3142 fs_info->reloc_ctl = NULL;
3143 mutex_unlock(&fs_info->reloc_mutex);
3146 static int check_extent_flags(u64 flags)
3148 if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3149 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3150 return 1;
3151 if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3152 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3153 return 1;
3154 if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3155 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3156 return 1;
3157 return 0;
3160 static noinline_for_stack
3161 int prepare_to_relocate(struct reloc_control *rc)
3163 struct btrfs_trans_handle *trans;
3164 int ret;
3166 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3167 BTRFS_BLOCK_RSV_TEMP);
3168 if (!rc->block_rsv)
3169 return -ENOMEM;
3171 memset(&rc->cluster, 0, sizeof(rc->cluster));
3172 rc->search_start = rc->block_group->start;
3173 rc->extents_found = 0;
3174 rc->nodes_relocated = 0;
3175 rc->merging_rsv_size = 0;
3176 rc->reserved_bytes = 0;
3177 rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3178 RELOCATION_RESERVED_NODES;
3179 ret = btrfs_block_rsv_refill(rc->extent_root,
3180 rc->block_rsv, rc->block_rsv->size,
3181 BTRFS_RESERVE_FLUSH_ALL);
3182 if (ret)
3183 return ret;
3185 rc->create_reloc_tree = 1;
3186 set_reloc_control(rc);
3188 trans = btrfs_join_transaction(rc->extent_root);
3189 if (IS_ERR(trans)) {
3190 unset_reloc_control(rc);
3192 * extent tree is not a ref_cow tree and has no reloc_root to
3193 * cleanup. And callers are responsible to free the above
3194 * block rsv.
3196 return PTR_ERR(trans);
3198 btrfs_commit_transaction(trans);
3199 return 0;
3202 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3204 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3205 struct rb_root blocks = RB_ROOT;
3206 struct btrfs_key key;
3207 struct btrfs_trans_handle *trans = NULL;
3208 struct btrfs_path *path;
3209 struct btrfs_extent_item *ei;
3210 u64 flags;
3211 u32 item_size;
3212 int ret;
3213 int err = 0;
3214 int progress = 0;
3216 path = btrfs_alloc_path();
3217 if (!path)
3218 return -ENOMEM;
3219 path->reada = READA_FORWARD;
3221 ret = prepare_to_relocate(rc);
3222 if (ret) {
3223 err = ret;
3224 goto out_free;
3227 while (1) {
3228 rc->reserved_bytes = 0;
3229 ret = btrfs_block_rsv_refill(rc->extent_root,
3230 rc->block_rsv, rc->block_rsv->size,
3231 BTRFS_RESERVE_FLUSH_ALL);
3232 if (ret) {
3233 err = ret;
3234 break;
3236 progress++;
3237 trans = btrfs_start_transaction(rc->extent_root, 0);
3238 if (IS_ERR(trans)) {
3239 err = PTR_ERR(trans);
3240 trans = NULL;
3241 break;
3243 restart:
3244 if (update_backref_cache(trans, &rc->backref_cache)) {
3245 btrfs_end_transaction(trans);
3246 trans = NULL;
3247 continue;
3250 ret = find_next_extent(rc, path, &key);
3251 if (ret < 0)
3252 err = ret;
3253 if (ret != 0)
3254 break;
3256 rc->extents_found++;
3258 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3259 struct btrfs_extent_item);
3260 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3261 if (item_size >= sizeof(*ei)) {
3262 flags = btrfs_extent_flags(path->nodes[0], ei);
3263 ret = check_extent_flags(flags);
3264 BUG_ON(ret);
3265 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3266 err = -EINVAL;
3267 btrfs_print_v0_err(trans->fs_info);
3268 btrfs_abort_transaction(trans, err);
3269 break;
3270 } else {
3271 BUG();
3274 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3275 ret = add_tree_block(rc, &key, path, &blocks);
3276 } else if (rc->stage == UPDATE_DATA_PTRS &&
3277 (flags & BTRFS_EXTENT_FLAG_DATA)) {
3278 ret = add_data_references(rc, &key, path, &blocks);
3279 } else {
3280 btrfs_release_path(path);
3281 ret = 0;
3283 if (ret < 0) {
3284 err = ret;
3285 break;
3288 if (!RB_EMPTY_ROOT(&blocks)) {
3289 ret = relocate_tree_blocks(trans, rc, &blocks);
3290 if (ret < 0) {
3291 if (ret != -EAGAIN) {
3292 err = ret;
3293 break;
3295 rc->extents_found--;
3296 rc->search_start = key.objectid;
3300 btrfs_end_transaction_throttle(trans);
3301 btrfs_btree_balance_dirty(fs_info);
3302 trans = NULL;
3304 if (rc->stage == MOVE_DATA_EXTENTS &&
3305 (flags & BTRFS_EXTENT_FLAG_DATA)) {
3306 rc->found_file_extent = 1;
3307 ret = relocate_data_extent(rc->data_inode,
3308 &key, &rc->cluster);
3309 if (ret < 0) {
3310 err = ret;
3311 break;
3314 if (btrfs_should_cancel_balance(fs_info)) {
3315 err = -ECANCELED;
3316 break;
3319 if (trans && progress && err == -ENOSPC) {
3320 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3321 if (ret == 1) {
3322 err = 0;
3323 progress = 0;
3324 goto restart;
3328 btrfs_release_path(path);
3329 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
3331 if (trans) {
3332 btrfs_end_transaction_throttle(trans);
3333 btrfs_btree_balance_dirty(fs_info);
3336 if (!err) {
3337 ret = relocate_file_extent_cluster(rc->data_inode,
3338 &rc->cluster);
3339 if (ret < 0)
3340 err = ret;
3343 rc->create_reloc_tree = 0;
3344 set_reloc_control(rc);
3346 btrfs_backref_release_cache(&rc->backref_cache);
3347 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3350 * Even in the case when the relocation is cancelled, we should all go
3351 * through prepare_to_merge() and merge_reloc_roots().
3353 * For error (including cancelled balance), prepare_to_merge() will
3354 * mark all reloc trees orphan, then queue them for cleanup in
3355 * merge_reloc_roots()
3357 err = prepare_to_merge(rc, err);
3359 merge_reloc_roots(rc);
3361 rc->merge_reloc_tree = 0;
3362 unset_reloc_control(rc);
3363 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3365 /* get rid of pinned extents */
3366 trans = btrfs_join_transaction(rc->extent_root);
3367 if (IS_ERR(trans)) {
3368 err = PTR_ERR(trans);
3369 goto out_free;
3371 btrfs_commit_transaction(trans);
3372 out_free:
3373 ret = clean_dirty_subvols(rc);
3374 if (ret < 0 && !err)
3375 err = ret;
3376 btrfs_free_block_rsv(fs_info, rc->block_rsv);
3377 btrfs_free_path(path);
3378 return err;
3381 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3382 struct btrfs_root *root, u64 objectid)
3384 struct btrfs_path *path;
3385 struct btrfs_inode_item *item;
3386 struct extent_buffer *leaf;
3387 int ret;
3389 path = btrfs_alloc_path();
3390 if (!path)
3391 return -ENOMEM;
3393 ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3394 if (ret)
3395 goto out;
3397 leaf = path->nodes[0];
3398 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3399 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3400 btrfs_set_inode_generation(leaf, item, 1);
3401 btrfs_set_inode_size(leaf, item, 0);
3402 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3403 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3404 BTRFS_INODE_PREALLOC);
3405 btrfs_mark_buffer_dirty(leaf);
3406 out:
3407 btrfs_free_path(path);
3408 return ret;
3412 * helper to create inode for data relocation.
3413 * the inode is in data relocation tree and its link count is 0
3415 static noinline_for_stack
3416 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3417 struct btrfs_block_group *group)
3419 struct inode *inode = NULL;
3420 struct btrfs_trans_handle *trans;
3421 struct btrfs_root *root;
3422 u64 objectid;
3423 int err = 0;
3425 root = btrfs_grab_root(fs_info->data_reloc_root);
3426 trans = btrfs_start_transaction(root, 6);
3427 if (IS_ERR(trans)) {
3428 btrfs_put_root(root);
3429 return ERR_CAST(trans);
3432 err = btrfs_find_free_objectid(root, &objectid);
3433 if (err)
3434 goto out;
3436 err = __insert_orphan_inode(trans, root, objectid);
3437 BUG_ON(err);
3439 inode = btrfs_iget(fs_info->sb, objectid, root);
3440 BUG_ON(IS_ERR(inode));
3441 BTRFS_I(inode)->index_cnt = group->start;
3443 err = btrfs_orphan_add(trans, BTRFS_I(inode));
3444 out:
3445 btrfs_put_root(root);
3446 btrfs_end_transaction(trans);
3447 btrfs_btree_balance_dirty(fs_info);
3448 if (err) {
3449 if (inode)
3450 iput(inode);
3451 inode = ERR_PTR(err);
3453 return inode;
3456 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3458 struct reloc_control *rc;
3460 rc = kzalloc(sizeof(*rc), GFP_NOFS);
3461 if (!rc)
3462 return NULL;
3464 INIT_LIST_HEAD(&rc->reloc_roots);
3465 INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3466 btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1);
3467 mapping_tree_init(&rc->reloc_root_tree);
3468 extent_io_tree_init(fs_info, &rc->processed_blocks,
3469 IO_TREE_RELOC_BLOCKS, NULL);
3470 return rc;
3473 static void free_reloc_control(struct reloc_control *rc)
3475 struct mapping_node *node, *tmp;
3477 free_reloc_roots(&rc->reloc_roots);
3478 rbtree_postorder_for_each_entry_safe(node, tmp,
3479 &rc->reloc_root_tree.rb_root, rb_node)
3480 kfree(node);
3482 kfree(rc);
3486 * Print the block group being relocated
3488 static void describe_relocation(struct btrfs_fs_info *fs_info,
3489 struct btrfs_block_group *block_group)
3491 char buf[128] = {'\0'};
3493 btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
3495 btrfs_info(fs_info,
3496 "relocating block group %llu flags %s",
3497 block_group->start, buf);
3500 static const char *stage_to_string(int stage)
3502 if (stage == MOVE_DATA_EXTENTS)
3503 return "move data extents";
3504 if (stage == UPDATE_DATA_PTRS)
3505 return "update data pointers";
3506 return "unknown";
3510 * function to relocate all extents in a block group.
3512 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
3514 struct btrfs_block_group *bg;
3515 struct btrfs_root *extent_root = fs_info->extent_root;
3516 struct reloc_control *rc;
3517 struct inode *inode;
3518 struct btrfs_path *path;
3519 int ret;
3520 int rw = 0;
3521 int err = 0;
3523 bg = btrfs_lookup_block_group(fs_info, group_start);
3524 if (!bg)
3525 return -ENOENT;
3527 if (btrfs_pinned_by_swapfile(fs_info, bg)) {
3528 btrfs_put_block_group(bg);
3529 return -ETXTBSY;
3532 rc = alloc_reloc_control(fs_info);
3533 if (!rc) {
3534 btrfs_put_block_group(bg);
3535 return -ENOMEM;
3538 rc->extent_root = extent_root;
3539 rc->block_group = bg;
3541 ret = btrfs_inc_block_group_ro(rc->block_group, true);
3542 if (ret) {
3543 err = ret;
3544 goto out;
3546 rw = 1;
3548 path = btrfs_alloc_path();
3549 if (!path) {
3550 err = -ENOMEM;
3551 goto out;
3554 inode = lookup_free_space_inode(rc->block_group, path);
3555 btrfs_free_path(path);
3557 if (!IS_ERR(inode))
3558 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
3559 else
3560 ret = PTR_ERR(inode);
3562 if (ret && ret != -ENOENT) {
3563 err = ret;
3564 goto out;
3567 rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
3568 if (IS_ERR(rc->data_inode)) {
3569 err = PTR_ERR(rc->data_inode);
3570 rc->data_inode = NULL;
3571 goto out;
3574 describe_relocation(fs_info, rc->block_group);
3576 btrfs_wait_block_group_reservations(rc->block_group);
3577 btrfs_wait_nocow_writers(rc->block_group);
3578 btrfs_wait_ordered_roots(fs_info, U64_MAX,
3579 rc->block_group->start,
3580 rc->block_group->length);
3582 while (1) {
3583 int finishes_stage;
3585 mutex_lock(&fs_info->cleaner_mutex);
3586 ret = relocate_block_group(rc);
3587 mutex_unlock(&fs_info->cleaner_mutex);
3588 if (ret < 0)
3589 err = ret;
3591 finishes_stage = rc->stage;
3593 * We may have gotten ENOSPC after we already dirtied some
3594 * extents. If writeout happens while we're relocating a
3595 * different block group we could end up hitting the
3596 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
3597 * btrfs_reloc_cow_block. Make sure we write everything out
3598 * properly so we don't trip over this problem, and then break
3599 * out of the loop if we hit an error.
3601 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
3602 ret = btrfs_wait_ordered_range(rc->data_inode, 0,
3603 (u64)-1);
3604 if (ret)
3605 err = ret;
3606 invalidate_mapping_pages(rc->data_inode->i_mapping,
3607 0, -1);
3608 rc->stage = UPDATE_DATA_PTRS;
3611 if (err < 0)
3612 goto out;
3614 if (rc->extents_found == 0)
3615 break;
3617 btrfs_info(fs_info, "found %llu extents, stage: %s",
3618 rc->extents_found, stage_to_string(finishes_stage));
3621 WARN_ON(rc->block_group->pinned > 0);
3622 WARN_ON(rc->block_group->reserved > 0);
3623 WARN_ON(rc->block_group->used > 0);
3624 out:
3625 if (err && rw)
3626 btrfs_dec_block_group_ro(rc->block_group);
3627 iput(rc->data_inode);
3628 btrfs_put_block_group(rc->block_group);
3629 free_reloc_control(rc);
3630 return err;
3633 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
3635 struct btrfs_fs_info *fs_info = root->fs_info;
3636 struct btrfs_trans_handle *trans;
3637 int ret, err;
3639 trans = btrfs_start_transaction(fs_info->tree_root, 0);
3640 if (IS_ERR(trans))
3641 return PTR_ERR(trans);
3643 memset(&root->root_item.drop_progress, 0,
3644 sizeof(root->root_item.drop_progress));
3645 btrfs_set_root_drop_level(&root->root_item, 0);
3646 btrfs_set_root_refs(&root->root_item, 0);
3647 ret = btrfs_update_root(trans, fs_info->tree_root,
3648 &root->root_key, &root->root_item);
3650 err = btrfs_end_transaction(trans);
3651 if (err)
3652 return err;
3653 return ret;
3657 * recover relocation interrupted by system crash.
3659 * this function resumes merging reloc trees with corresponding fs trees.
3660 * this is important for keeping the sharing of tree blocks
3662 int btrfs_recover_relocation(struct btrfs_root *root)
3664 struct btrfs_fs_info *fs_info = root->fs_info;
3665 LIST_HEAD(reloc_roots);
3666 struct btrfs_key key;
3667 struct btrfs_root *fs_root;
3668 struct btrfs_root *reloc_root;
3669 struct btrfs_path *path;
3670 struct extent_buffer *leaf;
3671 struct reloc_control *rc = NULL;
3672 struct btrfs_trans_handle *trans;
3673 int ret;
3674 int err = 0;
3676 path = btrfs_alloc_path();
3677 if (!path)
3678 return -ENOMEM;
3679 path->reada = READA_BACK;
3681 key.objectid = BTRFS_TREE_RELOC_OBJECTID;
3682 key.type = BTRFS_ROOT_ITEM_KEY;
3683 key.offset = (u64)-1;
3685 while (1) {
3686 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
3687 path, 0, 0);
3688 if (ret < 0) {
3689 err = ret;
3690 goto out;
3692 if (ret > 0) {
3693 if (path->slots[0] == 0)
3694 break;
3695 path->slots[0]--;
3697 leaf = path->nodes[0];
3698 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3699 btrfs_release_path(path);
3701 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
3702 key.type != BTRFS_ROOT_ITEM_KEY)
3703 break;
3705 reloc_root = btrfs_read_tree_root(root, &key);
3706 if (IS_ERR(reloc_root)) {
3707 err = PTR_ERR(reloc_root);
3708 goto out;
3711 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
3712 list_add(&reloc_root->root_list, &reloc_roots);
3714 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
3715 fs_root = btrfs_get_fs_root(fs_info,
3716 reloc_root->root_key.offset, false);
3717 if (IS_ERR(fs_root)) {
3718 ret = PTR_ERR(fs_root);
3719 if (ret != -ENOENT) {
3720 err = ret;
3721 goto out;
3723 ret = mark_garbage_root(reloc_root);
3724 if (ret < 0) {
3725 err = ret;
3726 goto out;
3728 } else {
3729 btrfs_put_root(fs_root);
3733 if (key.offset == 0)
3734 break;
3736 key.offset--;
3738 btrfs_release_path(path);
3740 if (list_empty(&reloc_roots))
3741 goto out;
3743 rc = alloc_reloc_control(fs_info);
3744 if (!rc) {
3745 err = -ENOMEM;
3746 goto out;
3749 rc->extent_root = fs_info->extent_root;
3751 set_reloc_control(rc);
3753 trans = btrfs_join_transaction(rc->extent_root);
3754 if (IS_ERR(trans)) {
3755 err = PTR_ERR(trans);
3756 goto out_unset;
3759 rc->merge_reloc_tree = 1;
3761 while (!list_empty(&reloc_roots)) {
3762 reloc_root = list_entry(reloc_roots.next,
3763 struct btrfs_root, root_list);
3764 list_del(&reloc_root->root_list);
3766 if (btrfs_root_refs(&reloc_root->root_item) == 0) {
3767 list_add_tail(&reloc_root->root_list,
3768 &rc->reloc_roots);
3769 continue;
3772 fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
3773 false);
3774 if (IS_ERR(fs_root)) {
3775 err = PTR_ERR(fs_root);
3776 list_add_tail(&reloc_root->root_list, &reloc_roots);
3777 btrfs_end_transaction(trans);
3778 goto out_unset;
3781 err = __add_reloc_root(reloc_root);
3782 BUG_ON(err < 0); /* -ENOMEM or logic error */
3783 fs_root->reloc_root = btrfs_grab_root(reloc_root);
3784 btrfs_put_root(fs_root);
3787 err = btrfs_commit_transaction(trans);
3788 if (err)
3789 goto out_unset;
3791 merge_reloc_roots(rc);
3793 unset_reloc_control(rc);
3795 trans = btrfs_join_transaction(rc->extent_root);
3796 if (IS_ERR(trans)) {
3797 err = PTR_ERR(trans);
3798 goto out_clean;
3800 err = btrfs_commit_transaction(trans);
3801 out_clean:
3802 ret = clean_dirty_subvols(rc);
3803 if (ret < 0 && !err)
3804 err = ret;
3805 out_unset:
3806 unset_reloc_control(rc);
3807 free_reloc_control(rc);
3808 out:
3809 free_reloc_roots(&reloc_roots);
3811 btrfs_free_path(path);
3813 if (err == 0) {
3814 /* cleanup orphan inode in data relocation tree */
3815 fs_root = btrfs_grab_root(fs_info->data_reloc_root);
3816 ASSERT(fs_root);
3817 err = btrfs_orphan_cleanup(fs_root);
3818 btrfs_put_root(fs_root);
3820 return err;
3824 * helper to add ordered checksum for data relocation.
3826 * cloning checksum properly handles the nodatasum extents.
3827 * it also saves CPU time to re-calculate the checksum.
3829 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len)
3831 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3832 struct btrfs_ordered_sum *sums;
3833 struct btrfs_ordered_extent *ordered;
3834 int ret;
3835 u64 disk_bytenr;
3836 u64 new_bytenr;
3837 LIST_HEAD(list);
3839 ordered = btrfs_lookup_ordered_extent(inode, file_pos);
3840 BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len);
3842 disk_bytenr = file_pos + inode->index_cnt;
3843 ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
3844 disk_bytenr + len - 1, &list, 0);
3845 if (ret)
3846 goto out;
3848 while (!list_empty(&list)) {
3849 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
3850 list_del_init(&sums->list);
3853 * We need to offset the new_bytenr based on where the csum is.
3854 * We need to do this because we will read in entire prealloc
3855 * extents but we may have written to say the middle of the
3856 * prealloc extent, so we need to make sure the csum goes with
3857 * the right disk offset.
3859 * We can do this because the data reloc inode refers strictly
3860 * to the on disk bytes, so we don't have to worry about
3861 * disk_len vs real len like with real inodes since it's all
3862 * disk length.
3864 new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr;
3865 sums->bytenr = new_bytenr;
3867 btrfs_add_ordered_sum(ordered, sums);
3869 out:
3870 btrfs_put_ordered_extent(ordered);
3871 return ret;
3874 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
3875 struct btrfs_root *root, struct extent_buffer *buf,
3876 struct extent_buffer *cow)
3878 struct btrfs_fs_info *fs_info = root->fs_info;
3879 struct reloc_control *rc;
3880 struct btrfs_backref_node *node;
3881 int first_cow = 0;
3882 int level;
3883 int ret = 0;
3885 rc = fs_info->reloc_ctl;
3886 if (!rc)
3887 return 0;
3889 BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
3890 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
3892 level = btrfs_header_level(buf);
3893 if (btrfs_header_generation(buf) <=
3894 btrfs_root_last_snapshot(&root->root_item))
3895 first_cow = 1;
3897 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
3898 rc->create_reloc_tree) {
3899 WARN_ON(!first_cow && level == 0);
3901 node = rc->backref_cache.path[level];
3902 BUG_ON(node->bytenr != buf->start &&
3903 node->new_bytenr != buf->start);
3905 btrfs_backref_drop_node_buffer(node);
3906 atomic_inc(&cow->refs);
3907 node->eb = cow;
3908 node->new_bytenr = cow->start;
3910 if (!node->pending) {
3911 list_move_tail(&node->list,
3912 &rc->backref_cache.pending[level]);
3913 node->pending = 1;
3916 if (first_cow)
3917 mark_block_processed(rc, node);
3919 if (first_cow && level > 0)
3920 rc->nodes_relocated += buf->len;
3923 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
3924 ret = replace_file_extents(trans, rc, root, cow);
3925 return ret;
3929 * called before creating snapshot. it calculates metadata reservation
3930 * required for relocating tree blocks in the snapshot
3932 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
3933 u64 *bytes_to_reserve)
3935 struct btrfs_root *root = pending->root;
3936 struct reloc_control *rc = root->fs_info->reloc_ctl;
3938 if (!rc || !have_reloc_root(root))
3939 return;
3941 if (!rc->merge_reloc_tree)
3942 return;
3944 root = root->reloc_root;
3945 BUG_ON(btrfs_root_refs(&root->root_item) == 0);
3947 * relocation is in the stage of merging trees. the space
3948 * used by merging a reloc tree is twice the size of
3949 * relocated tree nodes in the worst case. half for cowing
3950 * the reloc tree, half for cowing the fs tree. the space
3951 * used by cowing the reloc tree will be freed after the
3952 * tree is dropped. if we create snapshot, cowing the fs
3953 * tree may use more space than it frees. so we need
3954 * reserve extra space.
3956 *bytes_to_reserve += rc->nodes_relocated;
3960 * called after snapshot is created. migrate block reservation
3961 * and create reloc root for the newly created snapshot
3963 * This is similar to btrfs_init_reloc_root(), we come out of here with two
3964 * references held on the reloc_root, one for root->reloc_root and one for
3965 * rc->reloc_roots.
3967 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
3968 struct btrfs_pending_snapshot *pending)
3970 struct btrfs_root *root = pending->root;
3971 struct btrfs_root *reloc_root;
3972 struct btrfs_root *new_root;
3973 struct reloc_control *rc = root->fs_info->reloc_ctl;
3974 int ret;
3976 if (!rc || !have_reloc_root(root))
3977 return 0;
3979 rc = root->fs_info->reloc_ctl;
3980 rc->merging_rsv_size += rc->nodes_relocated;
3982 if (rc->merge_reloc_tree) {
3983 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
3984 rc->block_rsv,
3985 rc->nodes_relocated, true);
3986 if (ret)
3987 return ret;
3990 new_root = pending->snap;
3991 reloc_root = create_reloc_root(trans, root->reloc_root,
3992 new_root->root_key.objectid);
3993 if (IS_ERR(reloc_root))
3994 return PTR_ERR(reloc_root);
3996 ret = __add_reloc_root(reloc_root);
3997 BUG_ON(ret < 0);
3998 new_root->reloc_root = btrfs_grab_root(reloc_root);
4000 if (rc->create_reloc_tree)
4001 ret = clone_backref_node(trans, rc, root, reloc_root);
4002 return ret;